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ABSTRACT

Some of the fundamental assumptions of ship-motion theory are examined
for the purposes of elucidating the success of the heuristically derived
strip theory of Korvin-Kroukovsky and of recognizing some inadequacies of
that theory. The formal approach employed is a systematic slender-body ex-
pansion. In the zero-speed problem, both far-field and near-field views can
be used generally to recommend the assumption that frequency of oscillation
be taken as "large," in the sense that the corresponding waves have wavelength
that is comparable to ship beam. This assumption leads to considerable trouble
in the head-sea case, however, and this special case has not been fully solved
yet. Force and moment on a ship can be computed, even in the head-sea case,
through use of the Khaskind formula, but computation of the load distribution
necessitates solving the diffraction problem, or, possibly, solving two-dimen-
sional near-~field problems involving the Helmholtz equation. Rationalization
of the short-wave assumption is not really successful in the forward-speed
case, except in terms of the observed accuracy of the motion predictions. The
most thorough analyses to date of the forced-motion and head-sea diffraction
problems are based on disparate assumptions about the orders of magnitude of
the characteristic wavelengths, although both require the product of speed and
wave frequency to be large. Some discussion is presented on the interaction
between ship oscillations and the steady-motion perturbation of the incident

stream.
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INTRODUCTION

There are three general approaches to the formulation of a theory of
ship motions:
* heuristic stripwise analysis, in which two-dimensional boundary-
value problems are formulated at the start;

* linearized analysis based on the complete three-dimensional boun-
dary-value problem, stripwise approximations being introduced
ultimately into the final formulas;

* systematic perturbation analysis, which may lead to any of several
final forms, depending on what assumptions are made initially.

There have been enough reviews of this subject in recent vears, and so I
shall not describe these various approaches in a systematic or thorough
fashion. (For a recent review, see Ogilvie & Beck (1973).) Instead, I hope
to show how different initial assumptions lead to certain conclusions and why
some of these assumptions are more reasonable than others. Thus, in a sense,
I shall be emphasizing the third approach, and this paper can be considered
perhaps as a sequel to the article by Newman (1970), which deals specifically
with the systematic application of the slender-body idealization to ship

problems.

There is one basic property of a ship which makes possible many hydro-
dynamic calculations, namely, its shape. Except in the regions near bow and
stern, the cross-section changes slowly in both size and shape along the
longitudinal axis. Of course, this property has been utilized in all of the
above-mentioned approaches to predicting ship motions, for it is the key to
reducing the intractable three-dimensional (3-D) boundary-value problems to
manageable two~dimensional (2-D) problems. However, there are several possible
ways of introducing the simplification, even within the context of a careful
perturbation analysis, with results that differ profoundly. Moreover, the
exception noted (concerning the shi? ends) leads to many difficulties in any

approach, and this situation has not been thoroughly studied yet.

One aspect of particular importance is the relationship assumed (or

implied) between characteristic wavelengths and ship dimensions . Whenever a



3-D problem involving a free surface is reduced to a set of 2-D problems,
there is some choice to be made as to how the wavelengths enter into the
problem: Are they intimately connected with the problems in the transverse
planes, or do they have their effect primarily on the 3-D aspects, in which
interactions between sections arise and forward-speed effects modify predic-

tions? This will be a major focus of attention in this paper.

It will be assumed (unless specifically stated otherwise) that the
hydrodynamic problems of interest can be linearized, either heuristically or
through the use of a systematic perturbation technique. In the latter case,
therc may be more than one small parameter, and "linearization" may have
various meanings, but we shall always linearize with respect to a motion
parameter, which means that superposition of our motions problems is permis-
sible. This allows us to separate each ship-motion problem into a problem
of wave excitation acting on a restrained body and a separate problem con-
cerning the actual motions that result from the excitation. The latter is

the easier problem to handle, and so we shall be examining it first.

It is also much easier to treat problems in which the ship has no forward
speed. Several aspects of the zero-speed problem can be examined rather pre-
cisely, and we shall do this in some detail before even considering the forward-
speed problem. Major difficulties arise when we try to extend the same consid-
erations to the forward-speed problem, but obviously we must attempt it never-

theless.



SHIP OSCILLATIONS AT ZERO SPEED

It has long been recognized that the slender-body theory of ship motions
is similar to the Korvin-Kroukovsky (1955) strip theory if one assumes that
the frequency of oscillation is high enough. A disturbance at radian fre-
quency w produces gravity waves of length A = 21/v = 2'rrg/w2 , and so
"high frequency" means "short waves." Similarity between the theories is
achieved, specifically, if A = O(g) or v = o(e~ly » Wwhere € 1is the slen-
derness parameter, which is assumed to be very small. Mathematically, of
course, this means only that A/e remains bounded as € - 0 asymptotically,
Physically, however, one is tempted to imply more, namely, that A is com-
parable with ship beam®*. This physical approach is justified by the fact that
we intend ultimately to apply the theory to problems in which the ship beam is
quite finite, and so the mathematical arguments about what happens as € - 0
are not very useful in the practical problem. However, the physical approach

can be misleading, as we shall show.

Suppose that a ship is heaving with a sinusoidal motion at radian fre-
quency ® . At points not too near the ship, we may expect that a fluid
motion equivalent to that produced by the heaving ship can be produced by
a line of pulsating sources located along the axis of the ship. Let the
velocity potential of the source-induced motion be represented by

Re {¢(x,y,2) eiwt}

r

in which case ¢ (x,y,z) is given by
L/2 ©

1 K &2
b (x,y,2) =-§jd£ o (&) J P J, (kR) dk , (1)
-L/2 0 .

where R = VTE:Ejjring , 0(x) 1is the source density along the axis, JO(kR)
is the Bessel function which is usually denoted this way, and the coordinate
axes are taken with the x axis along the longitudinal axis of the ship, the
Zz axis upwards, and the y axis laterally in the plane of the undisturbed

free surface. The arrow under the inner integral sign indicates that the

*We shall generally imply that ship length, L , remains fixed as € >0,
and so € 1is a small parameter somehow representing the size of the beam of
the ship.



integral is to be computed along a contour indented above the simple pole at

k = v . If the complex conjugate of this potential function is multiplied by
-4m , the result is identical to Equation (13.17") of Wehausen & Laitone (1960);
the difference is caused by slightly different conventions adopted by those
authors. For large r = /25155-, the above potential can be approximated by
the following:

L/2
$(x,y,2) v eV J aE o(g) H@WR)
-L/2

where H&f) denotes a Hankel function. From the addition theorem for Bessel

functions, Equation (9.1.79) in Abramowitz & Stequn (1964), we rewrite this:

L L/2
be,y,z) v 2 eV g en BD(vr) cos ne J dE o(8) I, (vE) ,
“1/2
where
_ 1, n=20,
®n = 2, n>1.

For o(x) equal to a constant, say Oy » We can evaluate this easily. Only
the terms for even n will be nonvanishing, and the integrals of the Jp

functions can be computed from the series expressions:

[a,x) ax = x) .

2 Z Jp+2k+1

At the level of the free surface, we have 2z = 0 approximately. Thus we
obtain ¢(x,vy,0) as a function of «r and 6 . The amplitude of ¢ , that
is, |¢| ; is shown in a polar diagram in Figure 1. This quantity is pro-
portional to the wave amplitude. Thus, the radial distance to the curve at
any angle represents the amplitude of the wave that propagates outwards in
that direction. For VL = 2 (that is, for L/X = 1/1 ), the waves propagate
outwards with almost the same amplitude in every direction. On the other
hand, for vL = 20 ( L/ = 10/7 ), the waves propagate almost entirely in the
broadside direction. Two intermediate cases are also shown, and it is seen
that even in the case VL = 10 ( L/X = 5/7 ) the waves moving laterally have

an amplitude five times that of the waves moving away longitudinally.

The situation represented in Figure 1 is valid only at large distance

from the disturbance. In fact, the Hankel function was even evaluated by its
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large-argument approximation. However, the implication is clear: If the
length of the disturbance is only slightly longer than the length of the
waves that it generates, there is a strong focusing effect. 1In a qualita-
tive way, this is not surprising, for such behavior is well-known in all
branches of wave theory. However, the intensity of the focusing action is
not well-recognized in ship hydrodynamics. "Short" waves do not have to be
very short at all; they may be almost as long as the ship that generates

them, at least when the ship oscillates in the heave mode.

In formulating a theory for predicting ship motions, we must make some
explicit assumption relating wave length and ship dimensions. In Figure 1,
we show a range of conditions, from IL/A approximately equal to 1/3 up to
L/X equal to about 3 , but we cannot very well encompass such a range in
a single theory. We must assume a relationship between L/A and the

slenderness parameter, € . There are two obvious possibilities:

i) Moderate-length waves, i.e., A = O(l) and v = 0(1) ;

ii) Short waves, i.e., A =0() and v = 0(e 1) .

From a completely systematic point of view, we might add other possibilities,
but no other seems to offer useful results. Newman (1970) discusses the
literature on the above two possibilities, and so there is no need to cover
that ground again. Ursell (1962) studied these two problems very thoroughly
from the far-field point of view, although unfortunately his inner expansion
of the far-field solution is not useful in the short-wave case since, in his
near-field approximation, he requires always that lateral distances be small
compared with wavelength, rather than small compared simply with ship length.

The emphasis here will be on the physical interpretation of these results.

The velocity potential in (1) can be taken as the starting point for a
far-field description in any case, although it is not "consistent" from the
point of perturbation theory. 1In the moderate-wavelength case, the inner
expansion of (1) is the sum of two terms, one being a function of x only,
the other being proportional to 1log YyZ+zZ . On the other hand, for A =
O(e) , Ogilvie & Tuck (1969) showed that (1) can be simplified, even for y =
0(l) , to the following:

L/2 ,
i ~-1VR
dGe,y,2) v -\gr e R f dg O—(gfwez— : (2)

-L/2



That is, (2) is a valid approximation even at distances from the ship that
are comparable with ship length. The integrand in (2) has a point of sta-
tionary phase at £ = x if ,xl < L/2 , and so the integral can be approxi-

mated:

vze-ivlyl

¢ (x,y,2) v iog(x) e x| < L2, (3)

which, when combined with the time-dependence factor, eiwt ; Obviously
represents an outgoing 2-D wave. There is no point of stationary phase if
lx, > L/2 , and so the solution in that region is smaller by an order of
magnitude. The result expressed in (3) remains valid even if y = O(e) ,

and so (3) represents the inner expansion of (1) for the short-wave case.

In the near field of the body, it is assumed in either case that all
field variables change at a much higher rate in the transverse directions
than in the longitudinal direction. Specifically, it is assumed that ap/3y ,
9¢/3z , 23¢/dr , etc., are all O(¢e_1) » Wwhereas 23¢/9x is simply 0(¢p) as
€ > 0 . The 3-D Laplace equation reduces to a 2-D Laplace equation to be
solved in the planes of the cross-sections. The body boundary condition
becomes a condition on just the transverse component of velocity. The free-

surface condition degenerates to

¢, = 0 on z=0, A

0(L) (v =0() ); (4a)

o(e) (v =o0(1y). (4b)

I
o
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Condition (4a) represents a rigid-wall in place of the free-surface condition;
of course, it is not possible for the corresponding solution to represent
waves, but that solution can be made to match with the inner expansion of the
outer solution, as shown by Newman & Tuck (1964). Condition (4b) is the usual
free-surface condition in linearized gravity-wave problems, and solutions
satisfying (4b) and the other conditions of the near-field problem generally
represent gravity waves — standing waves or progressive waves. The solution
is made unique by matching it with the inner expansion of the far-field solu-
tion, as given by (3), that is, the solution must represent outgoing waves,
even in the near field. This seems to be quite obvious physically, and Korvin-
Kroukovsky assumed that from the beginning. However, the situation is not so

obvious when forward speed is introduced into the problem.



Mathematically, either of the wavelength assumptions leads to a tractable
problem, and it appears that the choice between them depends entirely on what
wavelength range is of interest in a particular problem. However, further
consideration suggests that perhaps this is not really true. There are two

reasons for this statement:

1) The situations represented in Figure 1 indicate that the short-wave

solution is the proper one to use even when the waves are not extremely short.

2) The near-field solution satisfying the rigid-wall condition is non-
uniform as IyI + o . This is evident from the fact that, far away from the
ship, the fluid motion is dominated by the wavelike motion, which cannot be
represented in the near-field solution if one assumes that X = O0(l1) . In
fact, the long-wave assumption is an extremely strong assumption, for it
implies not only that the beam is small compared with wavelength but that
points at "infinity" in the near field are still not very far away compared
with a wavelength. There is a vast difference between assuming that ship beam
is small compared with wavelength and assuming that the entire near field is
small compared with wavelength! The mathematical nonuniformity can be fixed
up through the matching, but that does not relieve the severity of the basic

assumption.

Furthermore, it may be noted that one probably never obtains an incor-
rect solution by solving the problem involving condition (4b). If v 1is in
fact not large, the solution satisfying (4b) will have an appropriate beha-
vior numerically consistent with that fact. The boundary-value problem will
be inconsistent itself, in the sense that some higher-order quantities are
retained, but that should not seriously affect the accuracy of the solution.
In other words, if the quantity v¢ is everywhere much smaller than b5
then the solution satisfying (4b) will exhibit this property, and, to leading

order, ¢, will vanish on z = 0 .



SHIP AT ZERO SPEED IN INCIDENT WAVES

Korvin-Kroukovsky (1955) hypothesized that the wave-induced force on
a ship could be computed in the same way as the motion-induced hydrodynamic
force if one defined an effective "relative velocity" between the hull and
the water surface. The precise way in which the relative velocity was defined
was somewhat arbitrary, but the concept has proven to be very useful. In
effect, he supposed that the local fluid motion around the hull did not depend
on whether the hull was moving down into the water or the water was moving up
around the hull. Thus, when computations such as those discussed in the
Previous section have been completed, it is not necessary to solve any more

hydrodynamics problems in order to handle the incident-wave problem.

In recent years, this approach has largely been replaced by the use of
the formulas of Khaskind (1957), Hanaoka (1959), and Newman (1965). They
avoid having to solve the diffraction problem too, but they do not introduce
new and perhaps artificial concepts such as the "relative velocity." Their
formulas all require just the appropriate application of Green's theorem.

For reference later, we state here the essential steps in their derivation.

Let the incident waves be described by the potential function,
iwt
Re {¢0(x,y,z) e}
where
a vz -ikx -ivv2-kZ
¢o (x,y,2) = 92 Ve e Y,
w
The amplitude of the wave itself is a , and, as before, v = wz/g . The new
parameter here, k , is the apparent wave number along a track parallel to the

X axis; it must be smaller than v . It is sometimes useful to write:

k = %g-cos B = vcos B ,

where B 1is the angle between the direction of propagation of the incident

waves and the positive x axis.

We shall assume that the ship is situated on the x axis between ~L/2
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and +L/2 . Let H denote the surface of the hull. The force*on the ship,
first of all, according to the Froude~Krylov hypothesis is:

Foj = - ipw J ds ny ¢0 '
H

where p is the water density and ny

to the j-th** component of force. The force due to the diffracted wave

is the direction cosine appropriate

can be computed similarly:

Fj = - ipw J ds ny ¢ ’ (5)
H
where ¢ is the velocity potential for the diffracted wave. It satisfies

the conditions:

(L] bxx t Pyy + ¢zz = O in the fluid region;
a _. —. —-—
m 22 - 5%0 = - B (0] (-iK) +n, (-IATKD) +n v}e Ze X mIVERT Y

on the body surface, H ;

[F] bz - v$¢ = 0 on =z =0 ;

A .
[R] o (x,v,2) ~ v V%™V as r = /RZTHZ > w

r
n = (nl,nz,na) is the unit vector normal to H , directed into the hull, and

A 1is some constant or possibly a function of 8 r generally complex.

The point of the Khaskind method is to define a new potential function,

45

in (5), so that the roles of ¢j and ¢ are interchanged:

, such that 8¢j/3n =ny on H and then use Green's theorem on the integral

. 3¢ . 3
Fj = - ipw j das 5;?¢ = ~ ipw J das 5%'¢j . (6)
H . H

If the use of Green's theorem is legitimate, this integral gives the force
caused by the diffracted wave, and it can be computed if the corresponding ¢.

J
problem has been solved, since the condition [H] gives the value of 9¢/on .

*The actual expression should be multiplied by exp {iwt} and just the real
part used.

** j can vary from 1 to 6 if suitable generalized direction cosines are
used.
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The use of Green's theorem is indeed proper if ¢j satisfies the Laplace
equation and the same free-surface and radiation conditions as ¢ . The
function satisfying all of these conditions is just the potential for the
forced-motion problem, which has to be found in any case if the entire
ship-motion problem is to be solved, and so Equation (6) permits the deter-
mination of Fj without the need to solve any further boundary-value prob-
lems. Furthermore, the solution for ¢j in the immediate vicinity of the
ship satisfies approximately the 2-D Laplace equation, and one can use the
strip-theory values for ¢j in the computation of Fj . This in no way
implies that ¢j satisfies the 2-D Laplace equation everywhere — just in

the neighborhood of the hull, where the strip-theory solution is actually used.

Newman (1970) points out that the last integrand in (6) cannot be iden-
tified in any way with the pressure on the hull, although the result can be
interpreted loosely as a verification of Korvin-Kroukovsky's relative-motion
hypothesis. The application of Green's theorem leads to the consequence that
only the complete integral can be interpreted physically. If one needs to
know the load distribution on the hull, an alternative procedure has to be
found. One such alternative was described by Ogilvie (1971), in which the
Khaskind idea is just slightly modified so that any particular load, e.g.,
bending moment at midship, can be computed in the same way as Fj above.
However, that method is not of practical usefulness if it really is the
pressure distribution that is needed or if a load (such as bending moment)

must be found at many places. One must generally solve the diffraction

problem in such cases.

However, the force per unit length acting on the hull can be computed
without one's having to solve the diffraction problem. Suppose that we want

to know the vertical force per unit length at x = X,y - It could be written:

dF
=3 = _ ;
I ipw J dg n, ¢
Cy (xl)
where Cy is a contour around the hull H at x = X, . Now we multiply
this quantity by Ax and apply Green's theorem in a conventional 3-D manner.
We construct the surface bounding the fluid region as shown in Figure 2: There

is a cross-section plane at x = 3 that we denote D , and a second such plane
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Figure 2. Surface Bounding Region in Which Green's Theorem Is Applied

in Calculation of Force Per Unit Length

at x = x1-+Ax is called D' ; then there are strips of width Ax on the
hull, the undisturbed free surface ( z =0 ), at y =R , and at z = -»
As before, we assume that there is a function ¢3 which is the solution of
the forced-heave problem, for which 8¢3/3n =n; . We also assume that ¢3
satisfies the usual linearized free-surface condition [F], and so the integral
3

J(e-ge]e
vanishes when computed over the free surface strip. It presumably also
vanishes trivially on the horizontal strip at great depth. But the integral
does not generally vanish over D and D’ , nor does it necessarily vanish
over the two vertical strips at y = *R -— unless ¢3 has certain special

properties. First compute the above integral over the two cross-sections:

3¢ d 3¢ 3 3¢. 3
[o-tte] o - et - [ [B0-220)

9x
D'+D D' D
. 9 (3¢5, _ 3¢ _ 3203 _ 324
D D

In a region near the ship hull, that is, in the near field, the diffraction
wave potential presumably behaves like exp {-ikx} times a function that

varies slowly in the x direction, and so, to a first approximation, ¢
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satisfies a Helmholtz equation:

byy + 9zz - k% = 0 ;

Thus, in the last integral above, 82¢/3x2 is replaced approximately by
—k2¢ » and the integral vanishes over this near-field region if ¢3 has
approximately the same behavior. Furthermore, the potential ¢ behaves at
large lyl like exp {vz—ikx—i/ci:ii1y|} » and, if we require that ¢3
also behave this way, the integral over the vertical strips in the applica-
tion of Green's theorem vanishes. This leaves us finally with the result

that the force per unit length on the ship is:

dF . 3¢ . 3¢
=3 = _ 29 _ —0
ax ipw f dg ¢3 " ipw J dR ¢3 o . (7)

Cy Cy
This is equivalent to the result obtained by Newman (1970), although he simply
used Green's theorem in two dimensions to obtain it. When the quantity in
(7) is integrated along the length of the ship, the resulting expression for
the total force is identical in appearance to (6), but now ¢3 has an entirely
different meaning: Recall that in (6) ¢3 was supposed to satisfy the 2-D
Laplace equation in the near field and to satisfy a radiation condition appro-
priate to a strictly 2-D wave problem. Newman pointed out too that, for a
ship with pointed ends, the solution of the Helmholtz equation appropriate to
the end cross-sections ought to be identical to the solution of the 2-D Laplace
equation for the same sections, and so the two formulas are asymptotically
equivalent for computing total force on the ship. But only the solution of
the Helmholtz problem can be used for computing load distribution, unless the

alternate procedure of Ogilvie (1971) is applied.

"Asymptotic equivalence" of two formulas is not an entirely satisfactory
concept for the person who wants to use the formulas for practical computations.
It is one thing to derive a formula on the assumption that a small parameter
such as € 1is approaching zero and another thing to use the formula in a problem
in which the parameter is a finite — albeit small — quantity. There may be a
serious difficulty in taking advantage of the equivalence discussed above, for

the following reason: In deriving (7), we assumed that the two potential func-
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tions both behaved like the product of exp {-ikx} and a function varying
slowly in x . This seems to be quite acceptable in studying the local

behavior of the fluid motion, but, when these functions are integrated over
the entire length of the hull, the "slowly varying" parts may produce cumu-
lative contributions that cannot be neglected. I do not know of any inves-

tigations that can settle this question at present.

The above discussion has all been based on an implicit assumption that
one should treat the waves as "short," in the sense of the preceding section.
Even if we accept the conclusion of that section, i.e., that we should always
take A = O(e) , there is a further uncertainty in that we have not specified
from which direction the waves come. There are really three wave numbers in
the problem, v , k , and V22 , and it may happen that only two of these

are large. We should distinguish three cases:

a) Waves from the beam (or nearly so), for which case k = 0(l) and
NZ-kZ = 0(e”!) . The velocity potential, ¢ , for the diffraction wave
satisfies the 2-D Laplace equation (approximately) in the near field, and
the body boundary condition reduces to
ze-lkxe—lvy

[Ha] g%— N opa {in2 - n3} eV

The variable x appears here as a parameter only. On the free surface, ¢
satisfies the same [F] condition given previously. This case gives no real

difficulty of any kind; it leads to the simplest form of strip theory.

b) Quartering seas, for which both k = 0(e™!) and V3V2-k2 = o(e71) .
This is really the case discussed in detail above; the waves are neither from
the beam nor from the bow. The potential for the diffraction wave satisfies
the Helmholtz equation, the free-surface condition [F], the body boundary
condition, '

Yv2-k2 e\)ze—ikxe-iv/\)z—kzy
v

[Hb] g%— v wpa {in2 ny}

’

and the radiation condition,

vz -ikx —in2~k2|y|
e e

[Rb] ¢ ~ Ae as |yl >« ,

where A is some constant (generally different according to whether y + o ),
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The properties of the solutions of such problems have been studied by Ursell
(1968a, 1968b) and actual solutions have been produced by Bolton & Ursell
(1973) for the case of bodies of semicircular cross-section. For noncircular
bodies, it will be necessary to use an integral equation technique involving
Green's functions, since the techniques of conformal mapping are not useful

with the Helmholtz equation.

c) Waves from nearly end-on, for which k = o(e™!) anda AHZkZ = o(1)
The potential satisfies the Helmholtz equation again, the free-surface condi-

tion [F], the body condition,

a¢ vz -ikx
[He) n n wa n3 e e '
and a radiation condition formally equivalent to [Rb] — provided that k is

not precisely equal to v , for which special difficulties arise. There
appears to be no reason why this case cannot be solved just as well as case
b) if the waves are really short enough compared with body length, but the
solution may not be very useful in practical problems. This qualification

is made because of the special problem that arises when k - v , the limit
representing precisely head waves. One can anticipate trouble by noting that

solutions of problems in this case become undefined in this limit.

The special problem of head waves. Ursell (1968a) showed that a potential
function satisfying the conditions:

¢yy + byy - v2¢ = 0 in the fluid region,

¢, - vp = 0O on z =20,

has no possible form that is symmetric in Y and which remains bounded as
Yy > *» , except for some possible forms that vanish exponentially and which are
thus not general enough to be useful. This means that the problem of head waves

cannot be formulated in the manner just described for the oblique-wave case.

We can get some hint of the cause of the trouble by considering the
obligue-wave problem again, but now from a far-field point of view. At a

considerable distance from the ship, we may expect that the diffracted wave
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will appear to have been produced by a line distribution of singularities
along the axis of the ship, just as in the problem of forced motion that was
discussed in the preceding section. There is no reason to expect the dif-
fracted wave to be symmetrical with respect to y , and so we should include
both sources and lateral dipoles in the distribution. However, our point can

be made quite adequately with just a distribution of sources.

We start with a potentiél identical to that given in (1), but we suppose
that the source density varies rapidly along the axis. To be precise, let
o(x) = Z(x) exp {-ikx} in the interval Ix[ < L/2 , where K < v = wz/g .
(We use K instead of k in order to avoid confusion with the variable of
integration in (1).) The function £(x) is assumed to vary slowly with x ,
that is, it does not change much over a distance 2m/K . The simplification
represented in (2) is still possible, and we can again apply the method of
stationary phase to simplify further. We find that there exists a point of

stationary phase of the integrand provided that

K|yl L
T il Sz v

and, when this condition is satisfied, the potential is given approximately by:

6 (x,y,2) = i :fiféi; Z(X"KIYI//VE:EE) evze—i(Kx-+Vv2—K2|y|) ’ )
ve=K

which represents a wave outgoing from the x axis at an angle B8 = cos—lK/v .
What is more important is that the wave amplitude at any point (x,y) depends
on the source density at (x-—KIyl//GI:ET) = (x - lylcot 8) . This is most
easily understood from the sketch of Figure 3. Starting at (x,y) , one follows
a wave ray back to the axis from which the disturbance emanates; the intersec-
tion of that ray with the axis gives the point from which the wave at (x,vy)
seems to arise. In the corresponding forced-heave problem, (2) represents the
outgoing wave, which, of course, appears to move directly out to the sides,

and the wave amplitude at any (x,y) depends on the source strength at the

same X .

In (8), the amplitude of the wave is multiplied by a factor \)/V\)z—K2 P

which was missing in (2). From Figure 3, it is apparent that this amplifica-
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tion arises because the length of the wave front is shorter than the length
of the source distribution by a factor /sf:ifyv » and so the wave energy is
concentrated into a smaller and smaller region as K-+ v . 1In fact, as the
limit is approached, the amplitude of the waves (according to this analysis)

approaches infinity, and the waves move practically parallel to the x axis.

K<v =2a/\ =w2/g
cos 8 =K/

i // 7//// |

Figure 3. Waves radiated from a line of sources of density

Z(x)eexp i{ut -Kx} on |[x| < 1r/2 .

Ursell (1968a) produced the general solution of the limit problem in
which it is assumed that all field variables behave like exp {-ivx} for all
X , the solution satisfying the free-surface condition ¢, -v$ = 0 . He
required only that the solution be bounded algebraically as Iyl > o , and he
found that the solution generally increased linearly in Yy for large lyl .
However, it should be noted that this solution is not in any sense a limit of
the solutions for the oblique-wave case; one should note the unusual contour
of integration in Ursell's solution of this special case. His analysis, taken
along with the above discussion, suggests strongly that the case of nearly head
waves should be treated as a perturbation of the head-wave case and not as an

extreme case of the oblique-wave case.
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It appears that Grim (1962) understood this problem many years ago, but
unfortunately his analysis has been neglected. 1In the actual problem of
wave diffraction by a ship, one may take the following point of view: If
the waves come directly from ahead, diffraction waves will be generated at
the bow portion of the ship, and these waves will radiate in all directions
according to the usual laws of such fluid motion. However, those waves that
move along the ship axis will have been generated with just the proper phase
relationship so that they move right along with the incident wave that they
Serve to cancel in the bow region. Furthermore, the amplitude of these par-
ticular waves will drop off slowly in this particular direction. Since the
amplitude does drop off, the portions of the ship aft of the bow will have
to produce more diffraction waves, but the size of the additional diffraction
wave will be very small, depending partly on the rate of change of hull cross-
section and partly on the rate at which the bow-generated waves disperse

laterally.

Faltinsen (1971) showed mathematically what Grim predicted heuristically.
In Faltinsen's analysis, the problem is divided into near-field and far-field
broblems, in the usual way with the method of matched asymptotic expansions.
In the near field, the first approximation to the diffraction wave 1is just the
negative of the incident wave. This wave does not satisfy an ordinary radia-
tion condition, of course, but Faltinsen did show that it matches with the
inner expansion of the far-field solution provided the latter represents the
fluid disturbance caused by a line of sources with density varying as
x"1/2exp i{ut - vx} + X here being measured positive from the ship bow. This
solution is singular at the bow itself and thus not valid in the immediate
neighborhood of the bow, but it shows the expected general behavior: There is
a high-density source distribution near the bow, creating waves that cancel the
incident wave in the appropriate way on the hull surface, the density dropping
off rapidly toward the stern because the diffraction wave travels along the

hull with the incident wave, continuing partly to cancel it.

Faltinsen showed that his predictions agreed fairly well with experimental
data (except in the immediate neighborhood of the bow) for the case M\/L = 0.5 ,

but the agreement was not good for A/L = 0.75 . Since his analysis is based
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on the assumption that wavelength is very small compared with ship length,
the agreement for the former case seems remarkable enough. It certainly
strengthens my conjecture that one ought always to adopt a short-wave hypo-
thesis. On the other hand, the failure of his analysis for the case A/L

= 0.75 appears to put a limit on the validity of that hypothesis. This is
not clear at present, for the failure of his analysis in this case may be

due to another cause: The singularity in the diffraction wave at the bow in
Faltinsen's analysis may have important effects all along the ship if the
waves are not very short compared with ship length; he has assumed, effec~
tively, that the incident wave is canceled in the entire near field, starting
abruptly at the bow, which is quite unrealistic, and the elimination of this
idealization may improve his overall results. In order to improve his solu-
tion in this respect, it will be necessary to consider that the source density
can be described in terms of a spectrum, which will undoubtedly be peaked at
k = v (instead of being concentrated there); in this way, it may be possible
to obtain a smooth rise in the density of the source distribution. However,
it will still be a short-wave analysis. The problem is a difficult one and

has not been solved yet.

In concluding this section, we present a table comparing the orders of
magnitude of the various terms in the body boundary condition according to
three different systematic perturbation schemes: a) slender-body theory
with the short-wave assumption ( v = O(e'l)); b) slender-body theory with
the long-wave assumption ( v = O(1) ) ¢+ c¢) thin-ship theory with the long-
wave assumption . In the table, the exact body boundary condition is written,
and, under it, the orders of magnitude of the terms are given, according to
each of the three theories. These estimates all apply in the near field, of

course. Several conclusions can be drawn:

1) In case a), the diffraction-wave potential, ¢ , is of the same order
of magnitude as the incident-wave potential, and the value of dh/8x affects
only higher-order approximations of ¢ . (Here we represent the body surface
by the equation, y ¥ h(x,z) = 0 » in order to be able to include the thin-

ship case readily.)

2) In case b), the diffraction-wave potential, ¢ , is of the order of
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TABLE 1

ORDER OF MAGNITUDE OF TERMS

IN BODY BOUNDARY CONDITION

Exact Condition: ¢y F hypdy F hyéy = iNZkZ¢g F vhz¢o F  ikhy¢,

a} Slender body,

| | | | |
short waves [4/€] | [$/¢] | [¢] | [4,/€] | [$y/€] | (dg]

b) Slender body, | | I I I
long waves [¢/¢] | [¢/e] | led] | [é41 | [9,] | [ed,]

c) Thin body, I | I I I
long waves [¢] | [eg] | legl | (9] | led,] | led,]

Notes:

1) The incident wave is given by

g_@_e\)ze-ikxe-iv’vz—k2 y

¢O(XIYIZ) = ©

2) The body surface is given by:

y + hix,z) = 0 .

e¢0 , and, as in case a), the value of 23h/9x does not affect the lowest-order

approximation of ¢ .

3) For the thin ship, case c¢), two cases must be distinguished: i) If
k # v (waves not from directly ahead), then ¢ = O(¢0) » and neither hy, nor
h, affects the lowest-order solution; all that matters is the size of the
projection of the hull onto the center plane. ii) If the waves are from
directly ahead, so that k = v , then ¢ = O(s¢0) . Furthermore, in such a
case, h, is likely to be negligible near the free surface, and so the longi-
tudinal slope of the waterplanes, given by 0dh/3x , has a dominant effect on

the diffraction potential.



SHIP OSCILLATIONS AT FORWARD SPEED

Ship motions can be predicted analytically with impressive accuracy,
even in the case of a ship with forward speed, but the theory has many gaps
and uncertainties. In keeping with the attitude expressed in the Introduc-
tion, I shall here be concerned more with the gaps and uncertainties than
with the accomplishments of present-day ship-motion theory. However, my
eémphasis on the negative aspects of the situation should not be considered
in any way as a denigration of the extant theory — which is one of the

brightest facets of ship hydrodynamics.

The first difficulty to arise is the inadequacy of slender-ship theory
for the steady-forward-motion problem. This inadequacy is perhaps not so
bad as was once thought, some of the poor predictions having been the conse-
quence of restrictions implied in early formulations of the theory. For the
pPresent purpose, I shall start with the steady-motion slender-ship theory of
Tuck (1964). This theory is definitely deficient in some ways, and, were
the present purpose to develop the steady-motion problem as fully as possible
by means of slender-body theory, I would try to use an alternative to the Tuck
theory. But shortcomings in the steady-motion theory clearly do not have
catastrophic consequences in the ship-motion theory, and so I shall avoid
digressing into the matter of possible improvements of Tuck's theory. Never-
theless, when the agreement between motion predictions and observations is
imperfect, one should always recall that the fault could lie in the use of

an inadequate steady-motion description.

In the discussion of the zero-speed problem, I concentrated rather
heavily on the assumptions connecting wavelength with body dimensions. The
wavelength of interest was easy to define, namely, X = 21rg/w2 . In the forward-
speed problem, there is no single characteristic wavelength. 1In the simple case
of a pulsating, traveling source, there is a very complicated system of waves,
comprising several fairly distinct wave systems in addition to the familiar
Kelvin wave pattern. See Becker (1958) or Wehausen & Laitone (1960) (p. 494)

for figures showing some of these wave systems. The entire nature of the wave
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pattern changes with speed and frequency, the most marked change occurring
when T = wU/g = 1/4 ; below this speed (or, for fixed speed, at a lower fre-
quency), waves propagate ahead of the pulsating source, whereas at higher
speed the wave motion is entirely confined to a region behind the source.
Presumably the waves generated by an oscillating ship show the same kinds of

behavior.

Led by the obvious practical success of Korvin-Kroukovsky's strip theory
for predicting ship motions, Ogilvie & Tuck (1969) showed that similar results
could be obtained in a first approximation by assuming that the frequency of
oscillation is "high," again in the sense that w = 0(8—1/2) — Jjust as in
the zero-speed problem. They carried out a systematic perturbation analysis
of the forward-speed problem on this basis. They made no explicit assumption
about the order of magnitude of the steady-motion wave number, «k = 21rg/U2 R
which is equivalent to saying that they assumed that k = O0(1l) as € - 0 .

It is this fact that reduces their theory to Tuck's (1964) steady-motion

theory when there is no oscillation.

Actually, Ogilvie & Tuck used two small parameters in their perturbation
analysis, viz., the usual slenderness parameter, ¢ , and a "motion-amplitude"
parameter, ¢ . Use of the latter allows the motion amplitude to be varied
independently of ship dimensions, and, in particular, it is the means of
linearizing the problem with respect to the motion amplitude without simul-
taneously introducing artificial restrictions on ship slenderness. Formally,

they assumed the existence of a double asymptotic expansion, as follows:
o (x,y,2,8) v {¢); + €%, + ...} &0
+ {32, + e2¢,, + ...} 8!
+ ... FF (9)

The first term in the first line is really ¢11 = Ux , representing the uniform

**I am following the possibly controversial practice of treating quantities
that are O(log €) as being 0(l) . In any case, terms that are O(ez) and
O(ezlog €) must certainly be carried along together, and so they are both
included in the term denoted simply by the factor €2 .
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incident stream. The orders of magnitude of the various terms were found
systematically; they are certainly not known or even assumed in advance, as

one might imply from the way in which the above series was written down.

The first line in (9) represents the steady-motion potential. It should
be noted that the first term in the second line is lower order in terms of ¢
than the steady perturbation of the uniform stream. As a consequence, the
lowest-order term in the formula for the time-dependent hydrodynamic force on
an oscillating ship comes from $o1 » and it is precisely the same as the
corresponding force formula in the zero-speed problem. It is the simplest
kind of a strip-theory result: There are no forward-speed effects and no
interactions between sections of the ship. ¢21 satisfies Equation (4b) on
z = 0, and, of course, it satisfies the 2-D Laplace equation in the plane
of the cross-section. If one does not make the high-frequency assumption,
the first term in the velocity potential for the motion problem satisfies a

rigid-wall condition on z = 0 , just as it does in the zero-speed problem.

In earlier attempts to derive a ship-motion theory on the basis of the
thin-ship idealization, as in Stoker (1957), the free-surface condition for

the first approximation was always taken as:
U2¢xx +  2iwU¢, - w2¢ + g, = 0 on z =0. (10)

Here one could also have assumed that frequency is high, and it is then clear
that the first two terms would be much smaller than the third term. Slender-
body theory requires us to assume that 0¢/9z is much larger than ¢ itself,
and so the fourth term is "large" too. 1In introducing the high-frequency
assumption into slender-body theory, one must realize that one — and only

one — of the linear terms in the free-surface condition is reintroduced; the
first and second terms in (10) remain of higher order. Of course, those two
terms contain the explicit effect of forward speed in the boundary condition,
and so we may expect them to appear in the conditions for higher-order approxi-

mations.

Ogilvie & Tuck completely formulated the boundary-value problem for ¢22 .

They found that it was not necessary to solve for this function in order to
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compute the corresponding term in the force expansion, but some of the proper-
ties of ¢22 had to be used in that computation. Since this problem has not
been correctly interpreted by some researchers, it appears desirable here to

discuss it briefly.

Both ¢21 and ¢,, satisfy the 2-D Laplace equation in the cross-sec-

tion planes. On the mean position of the hull, which we express:
S.O (x,y,2z) = hO (x,vy) - z = 0 ,

they satisfy the following condition:

9(do7 + ¢5,)
on

= lw(n3€3 + n5€5)
+ U [(n3g3 + nsgs)(Vso-V¢12) - n3£5] + ..., (11)

where we have now suppressed factors exp {iwt} , and the heave and pitch
displacements are given, respectively, by £3 and 55 r each multiplied by
exp {iwt} . The first line on the right-hand side of (11) would appear in
the same form in the zero-speed problem. The last term in the second line
represents an angle of attack (or cross-flow). The rest of the terms on the
second line arise from the fact that the boundary condition, which ought to be
applied on the exact, instantaneous hull surface, has been transferred to the
mean hull position by means of a Taylor expansion of the field variables.
Actually, the angle-of-attack term is obtained formally in the same way; how-
ever, the terms preceding it involve the gfadient of the steady-motion poten-

tial, (These terms are missing in all strip theories that are not

¢ .
12
based on a systematic perturbation procedure, but formally they are of the
same order of magnitude as the angle-of-attack term.) Condition (11) can be

obtained directly from the formula given by Timman & Newman (1962).

Because of the Ogilvie-Tuck assumption that o = O(e_l/z) , the first

line on the right-hand side of (11) is lower order than the second line by

a factor el/2 . Thus, separate conditions can be written down for ¢,, and
b2
3912L=iw2ng (3 =3,5) ; (11a)
dn 373 ! !
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3¢

2 = . .
2% = UL(VS,+V4,,) Janaj - ng&gl (3 =3,5). (11b)

These potentials satisfy the following free-surface condition:

- 0¥, + 96, = - 2in¢2x - 2iw¢12y¢2y - iw¢12yy¢2 + ...

on z=20, (12)
where we have written ¢2 to denote ¢21 + ¢22 . The terms on the left-hand
side are the same as the third and fourth terms in (10), the usual linearized
free-surface condition. Now note that the first term on the right-hand side
is identical to another term, the second, in the linearized condition, (10).
However, the entire right-hand side of (12) is higher order than the left-hand
side by a factor el/2 » and so we sort out similar orders of magnitude, as

follows:

(12a)

~e

2 N
Wiy + 95, = O
2 _ . . .
- w,, + gb = - 2iwU¢ - 2iwdy, ¢ = iw¢ ¢ . (12b)
22 22, 21, 12 21, 12,,%21

Condition (l2a) is, of course, the same as (4b), derived for the zero-speed

problem.

Condition (12b) is the interesting condition. It is a nonhomogeneous
condition on ¢22 + the right-hand side depending on the lower-order solution,
¢21 » which will presumably have been determined first. The terms on the
right-hand side have two physical origins: a) The kinematic condition for
¢21 was applied on z = 0 , which introduced an error that must be accounted
for in the next-higher-order problem; one can make a direct analogy to the
origin of the right-hand side of (1lb). b) The dynamic condition for ¢21
was also satisfied on z = 0 , and there was also an error of higher order in
evaluating the pressure in the dynamic condition; these factors have no direct
analogy in the body boundary condition, but their effect is similar —
except for one thing: The first term on the right-hand side of (12b) is a
solution of the homogeneous equation, and so the solution satisfying (12b)
will have to be determined with great care. One can make a direct analogy
with the elementary problem of applying a sinusoidal force to an undamped

spring-mass system at the natural frequency: there is no periodic solution.
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Ogilvie & Tuck showed that the solution of the ¢22 problem represents
an outgoing wave with amplitude increasing linearly with Iy, ; such a solu-
tion matches perfectly with the far-field solution representing the distur-
bance generated by a line distribution of pulsating, translating sources.

It is not the purpose here to review that solution. What should be noted is
that this perhaps unexpected kind of solution arises from a strictly linear
problem. The difficulty in the ¢22 problem starts with the first term on
the right-hand side of (12b), and that term is equivalent to the second term
in the old, familiar, linearized free-surface condition, (10). The other
terms on the right-hand side of (12b) might be called nonlinear, in the sense
that they represent interactions between the oscillatory fluid motion and the
Steady perturbation of the incident stream; they would be eliminated at the
beginning in any analysis in which such interactions are considered to be
"nonlinear." But these terms does not give rise to the unusual nature of

¢22 - In fact, when the hydrodynamic force is computed, these terms play an
essential role in allowing the force to be computed without the necessity for
solving the ¢22 problem explicitly. To some extent, they alleviate the
trouble caused by the linear term on the right-hand side of (12b).

The analysis of Ogilvie & Tuck is based on the simple assumption that
w = 0(8—1/2) r or the equivalent, v = 0(e™!) . The frequency is the actual
frequency of oscillation of the ship, which will be equivalent to the fre-
quency of encounter in an incident-wave problem. The steady-motion problem
is treated on the basis that «k = g/u? = 0(l) as e = 0 . The primary reason
for accepting such assumptions is just that they give rather good results in
comparison with experimental observations. I have not been able to develop
any rationalizations comparable to those in the Preceding section on the zero-
speed problem that are really convincing in themselves. Considering the com-
plicated nature of the wave system generated by an oscillating ship which is
moving with a steady forward speed, I doubt that simple arguments are llkely

to be developed for this purpose.

One further implication of the Ogilvie-Tuck assumption should be noted,
however: The critical parameter, T = wU/g , must be large, in fact, 0(8_1/2)
in the above analysis. Therefore the Ogilvie~Tuck theory applies to speeds

and/or frequencies above the critical value. In particular, one cannot let

r
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the forward speed, U , approach zero in their results, and so the well-known
singular behavior of the steady-motion problem for asymptotically low speed
does not upset the results. On the other hand, it is difficult to reconcile
this observation with the fact that their lowest-order results are precisely
the same as what is obtained in the zero-speed problem itself. Furthermore,
their forward-speed effects approach zero continuously as U ~> 0 . It is
rather obvious that the forward-speed effects are not very sensitive to the

manner of treating the steady-motion problem, but this does not explain much!

All of the discussion up to this point has dealt with the heave/pitch
problem. As far as I know, no one has worked out the details of the analysis
for motions in the lateral directions. I do not expect any great surprises
to occur when this is done, but it is surprising that it has apparently not

been done yet.



SHIP ADVANCING THROUGH INCIDENT WAVES

All of the questions that arose in connection with a restrained ship at
Zero speed now arise again, but with the expected further complications. This
is the most difficult problem considered in this paper, and for precisely that

reason I have the least to say about it.

For a ship moving into head waves, let the frequency of encounter be w ,
and let the frequency of the waves be w, when measured in a reference frame
fixed to the fluid at infinity. There there is the following relationship

connecting w , wo , and U :

w o= w. + ng/g . (13)

0

The basic assumption of Ogilvie & Tuck (1969) was that w = 0(5_1/2) , and so
(13) requires then that w, = O(e_l/”) . Thus, the actual wave frequency has
to be a different order of magnitude from that of the frequency of encounter.

At zero speed, this is not required, of course.

Physically, this consequence of the Ogilvie-Tuck assumption has an
interesting implication. At zero speed, the waves ought to have a wavelength
which is 0(e) in order for the strip theory to be valid, since w = w, and
A= O(g/wg) = O(e) . However, for the ship with forward speed, it is suffi-
cient for the waves to be only short enough that ) = 0(91/2) , since the
wavelength is related to W, and not to w . sSuch a wavelength is long com-
pared with ship beam and short compared with ship length — in a strict asymp-

totic sense. What this means practically remains to be determined.

Faltinsen's (1971) analysis, which was discussed previously, included the
forward-speed case, but his assumptions were somewhat different from those of
Ogilvie & Tuck. He assumed always that the waves are so short that Wy =
0(5_1/2) » and he further assumed tﬁat U is asymptotically small, but in a

very weak way, namely,
U = o(el/2-23), 0 <ac<1/2 .

This assumption implies that the characteristic steady-motion wavelength,
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2ﬂU2/g + is short compared with ship length but long compared with ship beam.
(Ogilvie & Tuck assumed that this wavelength was O(l) , or comparable with
ship length.) The frequency of encounter under Faltinsen's assumptions has
the estimate, w = O(e_l/2 ") , and so it is even larger than in the Ogilvie-
Tuck analysis. Finally, we note that Faltinsen's theory is still a "large-T "
theory, since 1T = wU/g = 0(e~2a) , and so the forward-speed results are
separated from the zero-speed results by the singular behavior that accom-

Panies T = 1/4 .

It is difficult to rationalize Faltinsen's assumptions except to note
that he obtained rather good agreement with experimental data. His unique
assumption about the order of magnitude of the forward speed has an impor-
tant analytical consequence: There is no coupling betweeh the steady-motion
perturbation of the incident uniform stream and the time-dependent diffrac-
tion-wave motion. It was a comparable coupling that caused considerable com-

plication in the Ogilvie-Tuck theory for added mass and damping.

Faltinsen undertook his analysis in order to be able to predict actual
pressure distributions on ships in waves. He was particularly interested in
the case of large ships, for which the net integrated force might be quite
small and the motions themselves of little interest, but in which the distri-
buted loads could cause design limitations. 1In calculating the forces and
moments that cause ship motions, one is probably best off using the Khaskind-
Newman formulas, as derived by Newman (1965) for the forward-~speed case. As
disucssed in the section above on the zero-speed problem, these formulas do
not provide much of an insight into how and where the force is applied by the
incident waves, but they do avoid the many questions about how to treat the
various length scales of the problem — questions which we cannot answer. The
derivation of the Khaskind-Newman formulas recently by McCreight (1973) under
the general conditions assumed by Ogilvie & Tuck makes those formulas more

generally useful and dependable than ever.
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