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ABSTRACT

A new approach to the higher-order thin-ship theory is developed by
means of the method of matched asymptotic expansions. The result which is
obtained here is not new, but the approach is entirely different from others.
The source distributions are determined by the process of matching of the
far-field solution to the near-field solution. So the expression for the

higher-order thin-ship theory is valid in the far field.

The near field is a combination of thin-ship and slender-ship near
field. The slender-ship near field is necessary to take care of the free-
surface condition, which is satisfied on the free surface instead of the
z = 0 plane. A combination thin-ship and slender~-ship approach makes it

possible to construct higher-order potentials.

In the far field, the potential is composed of three types of potentials.
They are the thin-ship potential, the slender-ship potential, and the pressure-
distribution potential, all of which satisfy linearized free-surface condi-
tions at the z = 0 plane., Among them, the slender-ship potential has the

most interesting features.
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I. INTRODUCTION

It was shown by Ashley and Landahl (1965) how we can treat a thin-body
problem by the method of matched asymptotic expansions. Ogilvie (1970) sug-
gested that the symmetrical thin-ship problem may be treated by the method of
matched asymptotic expansions if a combination thin-body/slender-body approach
were taken. The introduction of such a combination approach will make it easy

to handle the boundary conditions which must be satisfied on the free surface.

However, the problem which results from introducing such an approach is
how one should define the two near fields and how one can match the solutions
which will be obtained in each near field. Once one could get an appropriate
definition of the near fields and a set of solutions there, one would have
also a solution in the far field which will coincide with the well-known thin-

ship potential.

By the method of matched asymptotic expansions, we may construct the
higher-order thin-ship theory. This approach seems to be different from
others which start from the Green's theorem in construction of the velocity
potential which satisfies the higher-order boundary conditions on both the
hull surface and the free surface. But, sometimes, the usual Green's-theorem
approach leads to different expressions of the velocity potential according
to the different treatments of the free-surface condition near (or at) the
hull surface (See Wehausen (1963), Eggers (1966), and Yim (1968)). The
approach which I employ also seems to be different from that of Maruo (1966),

which originated in Sisov's method.

The difference in the expressions of the higher-order thin-ship potential
arises mainly in the line integral part in the velocity potential. Although
the importance of the line integral part in the thin-ship potential has been
stressed, we do not have a generally accepted expression for the line integral
part. Of course, Wehausen (1963) gave the complete expression for the higher-
order thin-ship theory. But his result involves a lengthy and complicated

expression which seems to make further discussion difficult.



It was shown by Wehausen (1963) that at the intersection of the free
surface and the hull surface the solution is singular, and the singular part
is represented by a line integral taken along the line of intersection. This
suggests that, from the point of view of the method of matched asymptotic
expansions, it will be possible to represent the far-field effects of this
singular part by a line of singularities on the centerline and to determine
the density of the singularity distribution by matching the solution to the
near-field expansion. So the interference between the hull and the waves
appears from the far-field point of view as a line of singularities on the
centerline. This leads to the introduction of the slender-ship near field,
in addition to the thin-ship near field. Thus, a combination of thin-ship
and slender-ship near fields can be introduced to construct the higher~order

thin-ship theory by means of the method of matched asymptotic expansions.



II. FORMULATION OF THE MATHEMATICAL PROBLEM

Consider a symmetrical ship at rest on the surface of a uniform stream
of velocity U . The coordinate system is fixed to the ship, as shown in
Figure 1. The ship is assumed not to be allowed to move. Also, the fluid is
assumed to have infinite extent in the fluid domain 2z < 0 . The origin of
the Cartesian coordinates is on the undisturbed free surface. The x axis
is in the direction of the stream, the y axis horizontal, and the 2z axis

vertical, positive upwards.
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FIGURE 1. Coordinate System

The surface of the ship is expressed by an eguation
y = * hix,z) . (1)

It is assumed that the fluid is inviscid and incompressible and that the
fluid motion is irrotational, so that the velocity potential of the fluid

motion due to the ship can be written
¢ =Ux+ ¢,

where ¢ 1is the perturbation velocity potential, which satisfies the three-

dimensional Laplace equation:

[L] Oyye + By & By, = O (2)



in the fluid domain. The velocity components of the fluid motion are:

r V=0 =¢ , w=0 =¢ . (3)

The boundary condition satisfied by ® on the surface of the ship is:

(H] t gxhyx = 9y * $h, = 0 on y =% nh(x,z) . (4)

The boundary conditions on the free surface are, assuming the free
surface is expressed by z = {(x,y) and neglecting surface tension, the

dynamic free-surface condition,
[a] L+ 2002 + 62 + 021 = 2U2 on z=cixy (5)
=TT T Oy T Oy 2 - '
the kinematic free-surface condition,
[B] buly + ¢YCY -¢; = 0 on z = [(x,y) . (6)
These boundary conditions are nonlinear.
Moreover, the velocity potential ¢ must satisfy a radiation condition:

[R] There are water waves only on the downstream side.

It is assumed that the ship is thin, with beam/length ratio, B/L = & ’

much smaller than unity. So h(x,z) is O(g) , that is, h(x,z) = eH(x,2) ,

where H(x,z) = O0(1) , say.

Now let us define the far field. From the far-field point of view, a
ship seems to be represented by a singularity distribution on the x-z plane

as € >0 . We define the centerplane on which singularities are distributed:

H : -

N

<x < %-, -T<z<0, y=0. (7)

Moreover, the interaction between the ship hull and the waves generated by the
ship may be seen from the far-field point of view as a disturbance due to a

singularity distribution on the centerline, L , where L is defined:

L: -

NS

< x 5-% y, Y=0, z=0, (8)



So the far field is defined to be the entire space, 2z < 0 , except the y =0
plane. One may expect the far-field solution to be singular on the centerplane

and on the centerline.

The near field is defined and shown in Figure 2. It is implied from the

definitions in Figure 2 that

% = 0(e™ ) , —8‘3; = Biz = 0(1) in Domain I, ()
and
3 3 -1 9 . .
—===0(") , =— = 0(1) in Domain III. (10)
dy Oz 9x
y VA
7 —_
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FIGURE 2. Near-Field Geometry

Domain I: Thin-ship near field, in which x = 0(1) ,
y=0), z=0(1) as -0

Domain II: Far field.

Domain III: Slender-ship near field, in which y = 0(e)
and z =0(e) as € >0 .



ITII. FAR-FIELD EXPANSION

In the far field, in which y = 0(1) s We assume the existence of
the expansions,

N
$Gx,y,2) VUX + ] . (x,y,2) ,
n=1

N
E(x,y) v 2 gn(xry) ’

n=1
where
= >
n+1 O(¢n) nzl
as € * 0 for fixed (x,y,z).
= >
En+l O(gn) nzl

Moreover, we assume ¢n is composed of three parts,

Op = 91, *+ 0g, + dp (11)

¢Tn being the potential due to a singularity distribution on the center-
plane H , ¢Sn the potential due to a singularity distribution on the
center line L , and ¢pn the potential which will be introduced so as

to satisfy the higher-order free surface condition.

On substituting the expansions into (2), we have

(1] Sy * Ongy * 9ngy = O - (12)

Yy

A systematic treatment of the free surface conditions leads to:
[a] U¢1X + 9, [O0(e)]

+ Yo, + U

1 .
2x &yt 5'(¢§x * ¢2 * ¢§z) * 9L, [o(e®)]

1xgz ly

+ higher order terms = 0 , at z =0 ; (13)



[B] UZiy ~ 61, [o(e)]
2
UL 9,0, ¢1y‘;1y = 9,,8, - ¢, [0(e?)]
+ higher order terms = 0 , at z =0 . (14)

Combining (13) and (14), the lowest~order condition on z = 0 is

D1y * 521, = O - (15)

1xx

The second order condition, from (13) and (14), is

2
g - _ 1.2 2 2 1 oy
¢2xx * 55¢22 ﬁ{¢1x * ¢1y * ¢1z}x M ¢1x{g'¢1xx * ¢1z}z

on z =0, (16)
The free surface condition may also be written:

Ongx * G5 Iny = 9, (,3) on z=0, (17)

Nyx

where gn(x,y) can be expressed in terms of the lower order potentials,

¢m s With m < n . Moreover, ¢n must satisfy a radiation condition.

¢n was assumed to be composed of three components of potential in
(11). We are now more specific about these potentials. We assume that

¢Tn and ¢Sn are potentials that satisfy, respectively, the conditions

Py + o ¢ry, = O on z =0, (18)
and
OSnyy * E% dsn, = O on z =0, (19)

and ¢Pn is a potential that satisfies the condition

¢anx + .[-J% ¢Pnz = gn (x,vy) on z =0, (20)



Thus, the free surface boundary conditions satisfied by the velocity
potentials are defined on the plane z = 0 , and they are linear equations.
It is well known that (20) is identical with the linearized free surface
condition when a pressure distribution is applied to the water surface.

The solution for such a problem is now well studied. So the velocity

potentials, ¢Pn , can be known if ¢Tn and ¢Sn are known.
It is easily seen that ¢Tn and ¢sn are of the forms

q)Tn(XIYIZ) = - -4i'ﬂ' L((:ln(E'C)G(X’Y'Z;E’O’C)dgdc ’ (21)
and

1 ; 2
¢Sn(leIZ) =- Z,EJ Yn(g)G(xIYIzlgl()IC)dg . (22)

L

Here, we assume that the distributed sinqularities with densities
Gn(E,C) and yn(é) ¢ are sources, This assumption is valid for

On r n=1,2,3,... , and it is valid for at least the lowest-order Yn .

Let us consider the inner expansion of the far field potentials. Since
we have two different inner regions, we must make the inner expansions
for each inner region, I and III. Here, we consider the inner expansion
in the domain I, where y = 0(g) and z = O0(l) . Ogilvie (1970) gave the

inner expansion for ¢Tn in the domain I:
¢Tn(x,y,z) Y ¢Tn(x,0,z) + %—Iylon(x,z;e) + higher order terms. (23)

¢Sn , the slender-ship potential, and ¢Pn » the pressure potential, are

expanded into power series in y *:

1 .
¢Sn(x,y,z) N ¢Sn(x,0,z) + §-|y2|¢snyy(x,0,z) + higher order terms,
n+2

o™ (o™ )] (24)

and

*This is permissible only because region I is really in the far field of
the line distribution of singularities.



1 . .
¢pn(x,y,z) 3 ¢Pn(x,0,z) + §4y2l¢Pnyy(X:0pZ) + higher order terms.

[o(e™1 [0(en+2)] (25)

Here, we used the facts that ¢sny(x,0,z) =0 and ¢Pny(x,0,z) = 0 , which

are true because of the symmetry of the potentials.

Since it turns out ¢Sl(x,y,z) = 0 , the two-term inner expansion

of the two-term outer expansion is

¢(x,y,2) Vv Ux + ¢)T1 (x,0,2) . (26)
[0(1)] [0(e)]

The three-term inner expansion of the two-term outer expansion is

¢ (x,7,2) v Ux + ¢p, (x,0,2) + %lylﬁl(x,Z;e) . (27)
[0(1)]1  [0(e)] [o(e?)1

The three-term inner expansion of the three-term outer expansion is

0Ge,y,2) Uk + 0r,0,0,2) + Zly|o, G,z56) + bp,(x,0,2)
[0(1)1 [o(e)] [o(e?)] [0(e?)]

+ ¢Sz(x’0’2) + ¢P2(x'o'z) . (28)
[o(e?)1 [o(e?)1

The four-term inner expansion of the three-term outer expansion is

¢(x,y,z) vUx + ¢T1<x,0,2) + %Iylcl(x,z;e) + ¢p,(x,0,2)
[0(1)]1 [0O(e)] [o(e?)1 [o(g?)1]

+ (bSZ (X,O,Z) + q)Pz(xlorz) + %Iyloz (x,z;i—:) . (29)
[o(e?)1 [0(e?)] [o(e®)1]

We must here consider that y = O(e) in order to recognize the orders of

magnitude as indicated above.



IV. THIN-SHIP NEAR~-FIELD EXPANSION

Now, consider the near-field problem in the domain I. We use new
coordinates in this near field, y =€¥Y, x=X, and z = Z , where
X, Y, Z are all O(l) as € > 0 . Substitute these into the formula-

tion of the problem. Using the assumption,

8 _L18 gy, 2.3 5
dy € 9y ole )y gx=ag o, )
The Laplace equation, (2), becomes
2 = .
(L] Pyy + ET(Ppy +0,.) =0 (30)

in the fluid domain, and the boundary condition, (4), becomes
= + 2 = =+
[H] ¢Y e [¢XHX(x,z) + ¢ZHZ(x,z)] on Y H(X,z) . (31)

Assume that there is an asymptotic expansion for the velocity potential ¢ :

N
¢ vUX + ) ?_(X,Y,2Z;:€)
n=1

where ®n+l = o(@n) as € * 0 for fixed (X,Y,Z) . We then can express

the conditions on the near-field expansion as follows:

[L] Qlyy + QZYY + ®3YY + eooe

2 LA
Nvo-g [lex + élzz + ®2xx + QZZZ + 1 (32)

in the fluid domain;
[H] .+ O+ D, 4 eeenee

N oxe? [UH, + o, H

+ _'_, * ® o0 0
X QIZH 1

X z

on Y = *H(X,Z) . (33)

There is no free surface condition in Region I.

- 10 -
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Solution of the &; problem. From (32) and (33), we have the con-

ditions for &, :
[L] 0] =0 in the fluid domain, (34)
[H] ®ly(X,iH(X,Z),Z;€) =0 on Y = *H(X,Z) . (35)
Since the potential is symmetric with respect to Y , we can set
0 (X,¥,2;€) = A, (X,2;€) + B, (X,2;€) Y| for |¥| > H(X,2) . (36)
From (35), we have
BI(X,Z;S) =0,

The reason why we set ©1Y = 0 in (35) is this: If we set ©1Y = iszUHX

we cannot match the inner solution with the outer solution. Then we have
two-~term inner solution,

¢ (x,y,2;€) v UX + A, (X,Z;€) . (37)

Its outer expansion is the same as (37), and it should match with the

two-term inner expansion of the two-term outer expansion, (26):
d(x,y,2z; ) Vv Ux + ¢, (x,0,2) . (26)
This matching determines AI(X,Z;E) :
A, (X,Z;€) = ¢p,(x,0,2) = O(e) . (38)
Now the inner solution to two terms is

¢(x,y,2z;€) Vv Ux + ¢T1 (X,0,z;¢) . (39)
[0(1}] [0(e)]

Solution of the ¢, problem. 1In this case, we have

[L] 0] =0 in the fluid domain, (40)

= o(e?) ,
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and
[H] ?,,(%,¥,2:€) = ir—:zUHX(x,z) on Y = #H(X,Z) . (41)
Then the solution is straightforwardly given by

®, (X,Y,Z;€) = A, (X,2;€) + B, (X,2;€) |¥]| , (42)
where B, (X,2Z;€) = EZUHX(X,Z) . (43)

The three-term inner expansion is

¢(x,y,2;€) Vv Ux + ¢T1(X,O,z) + A, (X,2Z2;€) + €2UHX (x,z)[Y] .
[0(1)] [o(e)] [0(e?)] [o(e?)] (44)

Its two-term outer expansion is obtained by setting Y = y/€ and re~-

ordering terms:

¢(x,y,2;€) Vv Ux + ¢p, (x,0,2) +eUH(x,2)]y] . (45)
[0(1)1 [o(e) ] [o(e)]

The three-term inner expansion of the two-term outer expansion is, from (27)
1
¢ (x,y,2:€) v Ux + 6p, (x,0,2) + S|y[o, (x,2;:€) .
These two match if:
Ol(x,z;e) = 2€UHX(X,Z) = 2Uh,({x,2) = O(g) . (46)

Thus, ol(x,z;e) is determined by this matching; it is given as a function
of the ship geometry. So the first-order outer potential coincides with

the well-known Michell potential.

The source density, 0,(x,z;€) , is determined in the domain I, with-
out regard to a free-surface condition. This means that the first-order

velocity potential, which satisfies the free surface condition
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by T T b, = O at z =0, (15)

can be determined without considering the free—surfaée condition near the
body. But, in fact, the first~order inner solution can satisfy the free-
surface condition (15), even near the body, because (37) is wvalid in

z = 0(€) . But this will not be true when @2 is included in the

expansion.

The matching of the three~term outer expansion of the three-term inner
expansion and the three~term inner expansion of the three-term outer potential

will give AZ(X,Z;E) , as follows:
By (XiZi€) = 0p, (X,0,2) + ¢g (X,0,2) + ¢p_(X,0,2) = 0(e?) . (47)

So at this stage the inner potential in the domain I shows an influence of

the potentials ¢Sz and ¢P2 . Then,
<I>2 (X,Y,Z;€) = ¢T2 (Xx,0,2) + q)sz(x,o,z) + ¢P2 (x,0,2)
+ e’un (x,2) |v| . (48)

@2 also seems to satisfy the free surface condition (17)

g — —
®2XX + F @22 = gZ (X,O) at z =0 (17)

near the body when Hx(x,z) = 0 , at parallel-middle-body part, say. But

0] is not now valid in z = O(g) . The free surface conditions cannot be

2
satisfied at 2z = 0 near the body. The first-order inner solution in the
domain III turns out to be given by the same first-~order thin-ship poten-
tial as in the first~order inner solution in the domain I. This indicates
that, as far as the first-order potential is concerned, we do not need to
introduce the domain III. Or, in other words, the problem is not vet a
singular perturbation problem. To the contrary, the second-order problem

will be a genuine singular perturbation problem.

Solution of the &, problem. In order to know the second-order thin-

ship potential, ¢T2 » We have to solve the problem of ®3 . In this case,
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the problem is slightly different from the previous problems because the
Laplace equation degenerates into a nonhomogeneous differential equation.

So ®3 is not linear in Y . The conditions on @a are:

[L] oy (Xi Y Z5E) = € {lex(x Y,Z;€)
+ <I>1ZZ(x,Y,z;.e)} in the fluid domain, (49)
[H] @sy(x,y,z;e)==iez{élx(x,y,z;s)ﬂx(x,z)
+ élz(x,y,z;e)ﬂz(x,z)} on Y = #H(X,Z) . (50)
Since ®1XX and ¢lzz do not depend on Y , the solution for ¢, is:
@, (X,Y,2;€) = A, (X,2;€) + By(X,2;€)|¥| + c (x,z;¢) [¥]?, (51)
[o(e®) ] [0(e®)] o1
82
where C,(X,Z;€) = - 2{ 1y KrY,Zi€) + ®1ZZ(X,Y,z;e)}, from (49).

Immediately from the boundary condition (50), BS(X,Z;S) is given by

B, (X,Z;€) = 82{(¢1XH)X + (®1ZH)Z}

So far, the potential @s is
2
9, (x,Y,2;€) = A (x,2;8) + e2{(8, g + (&, 1) F|¥|

2
[
—{¢, o,
2 XX 77

Hel? .
Then, the four-term inner solution is

¢(x,y,2;€) ~ UX + ¢p, (X,0,2)
[o(1)] [0(e)]

+ e2UHy (X,2) Y| + ¢p,(2,0,2) + bg, (X,0,2) + ¢p, (X,0,2)
[0(e?)] [0(e2)] [0(e?)] [0(e?)]

+ B, (x,z5e) + e{(8; H) + (&) H ) - 518y,
[o(e?)] [0(e?)] [o(e?) ]

X + ¢
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Its three-term outer expansion is obtained by setting Y = Y/€ :
$(x,y,z;€) Vv Ux + ¢7, (x,0,2) + eUHx(x,z)lyl + ¢, (x,0,2)
+ s, (x,0,2) + ¢p, (x,0,2) + e{(d, H) + (¢IZH)Z}|y|

and this should match with the four-term inner expansion of the three~term
outer potential, (29). This matching gives the source distribution,

Oz(x,z;e) 2
0,(x,z;g) = 2{¢T1x(x,0,z)h(x,z)}x4-2{¢leh}z .

Now, we will stop at this stage of solving the problem in the domain
I. The source distribution 0,(x,z) gives the second-order outer thin-
ship potential, As in the first-order outer thin-ship potential, the
second-order potential can be determined without considering the free-
surface condition near the ship body. So far, in solving the inner prob-
lem, there is no difference between the infinite symmetric thin-body
problem and the thin-body problem with the free surface, except for the
introduction of both the slender-body potential and the pressure potential
in @n , n>2,

In addition, it may be noted that both source distributions, 0, and

0, » represent well-known results in thin-ship theory.



and

V. SLENDER-BODY NEAR-FIELD EXPANSION

Next, we consider the near-field problem in the domain I1I, where vy = 0O(g)
and z = O(e) . Now, since the free surface must be considered in this region,

we must be careful in treating the conditions at the free surface.

Let us look for the inner expansions in the domain III of the outer
potentials. As for the thin-ship potential, Ogilvie (1970) gave the expression

of the two-term expansions:

1 1
¢Tn(errz) v ¢Tn(xroro) + 35 On(x,O) IYI RV ¢Tnxx(xlolo)z

2
[0(e™) ] [o(e™1y] o™

e ., (54)

with v = é% . This expression is valid in the domain III. Tuck (1965) gave
the inner expansions of the slender-ship potentials in his slender-ship

theory. The one-term inner expansion of the outer slender-body potential,
(22), is:

1 1
¢sn(X’Y'Z) vy Y, (®)log r - o7 En(x) - g (x) + - 0., (55)
[0(e™ ] [0E™] [oE™]
where
£ (x) = j dEY(E)1og 2|x-E|sqn (x-£) (56)
= - %f ke Xy x (k) 1og —C—sz—l- ,

]

im [ geeikn 2 asg
1 —_
gn (X) uigl 4.n-2 j dke }ﬁ( Y* (k)f/(kz_,_zz) [g/(k2+22) _ (Uk—lu/Z)Tf

-00 =00

fwdke_ika(x) .

~-00

Y* (k)

- 16 -
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The pressure potential, ¢Pn » can be expanded into a Taylor series in

the domain III, and so, as in (25), its two-term expansion is:

¢Pn(leIz) = (\an(xIOro) + ¢Pnz(x,0,0)z + ocecee , (58)
[0(e™)] [o(e™ )]

Using the expansions (54), (55), and (58), the inner expansions of the

outer potentials become as follows:

(1) The two-term inner expansion of the two-term outer expansion:
¢(x,v,z) Vv Ux + ¢T1(x,0,0) . (59)
(2) The three-term inner expansion of the two-term outer expansion:
1
¢ (x,y,2) Vv Ux + ¢p, (x,0,0) + 50, (x,0) ly|
1 0,0 60
- Ud’Tlxx(x' 0)z . (60)
(3) The three-term inner expansion of the three-term outer expansion:

$G,y,2) v U + dp, (x,0,0) + =0 (x,0|y]

- = Opy e (X00,0)2 + b, (x,0,0) + ¢p, (x,0,0)
1 1. 1
T Y, (x)log r - 5= £, (x) - g,(x) . (61)

Now consider the near-field problem in the domain III. We use new

coordinates in the near-field:

y=€¢Y, 2 =€Z , and x =X

r

where we treat X,Y,Z each as being O0(l) as € - 0 . We substitute

these into the equations (2), (4), (5), and (6). Using the assumptions

9 _ 19 _, L S 19 _,4 9 .2 _
E_EBY—O(E)' az"saz—o(s) and 50 = 3% oL,
except that %§'= O(h) = 0(e) , the Laplace equation, (2), becomes
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2 =
(] byy * Oy + E20y = 0 (63)

in the fluid domain, and the boundary conditions are

2 —

[H] € ¢XHX + ¢Y + ¢ZHZ =0 on Y = tH(x,z) * , (64)

[A] gz + = {62 + —2-1 (02 + ¢2)} = = y? on the free surface (65)
- 2 X € Y Z 2 B

[B] . T+ —£—¢ .. - l-d) =0 on the free surface (66)
X°X €2 Y’Y ¢ 'z *

We assume that there are asymptotic expansions for the velocity potential

¢ and the wave elevation C(x,y) :

N
O0x,y,2) VUK + ] O (X,Y,2;¢) , (67)
n=1
where ¢n+l = o(@n) as € > 0 for fixed (X,Y,2) ;
N
L,y v )z (X,v5€) (68)
n=1
where
Zn+l = o(Zn) as € > 0 for fixed (X,Y) .

Substitution of these asymptotic expansions gives the following:

= d 2 - - L]
[L] ®1YY + ®lzz + ®2yy+'®22z + = -g (lex + szx +

Iv

in the fluid domain. Thus, if @1 = o0(l) , then

® + @ =0 (69)

and if €2®1 = o(@z) ;, then

®2YY + szz =0, (70)

- 2
Qavy * oz T € Puyy o (71)

and so on.

Note that, with h(x,z) = €H(X,Z) , we have:

hx = eHX = 0O(g) , hz = HZ + O(e) .
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The body boundary condition becomes

[H] &, + &, + ®3Y e o+ 0

lY 2Y + e . ']HX(XIZ)

2xX

[0, + &, + « « -1H,(X,2) on Y =tH(X,2) . (72)

Thus, if @1 = o(l) , it follows that

9, =0, (73)

o, = ierHx + ¢, H (74)

2y z'z !

and so on. In this domain III, we assumed, as in (62), that if @1 = 0(g) ,

then 90 = O0(1l) . However, it turns out that @1 is just the first-order

9z
thin~ship potential, evaluated at y =z = 0 . And so %%} = O(e) , which

implies that in (72) we should consider the order of magnitude of ®1ZHZ to

be 0(82) . Then (74) becomes

0, = iezugx . (75)

Conditions are satisfied on Y = H(X,Z) , but we make only a higher-order error
if we satisfy them instead on Y = H(X,0) , since
H(X,z) = H(X,0)[1 + o(e)] .
On the free surface, the dynamic boundary condition is:

[A] gZ, + gZ, + « + - + U[(I)1X + ®2X + o o o]

1 2 1 2 2 .
+ 5{¢1X+®2X+ eee 1%+ 557—([®1Y+®2Y+ see 17 + [le+®22+ s ] ) =0 .

We assume that Z1 = 0(g) . Thus, the lowest order condition on the free sur-~

face is

1 2 _
2eZ [¢1Y + Qﬁz] =0,

orxr
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®1Y = @12 =0, (76)
The second-order condition is:
gZ1 + U@lx =0 , (77)

These conditions are satisfied on the free surface.

The kinematic free-surface condition is

[B] (U + CI)IX + (I)ZX + eee )(ZIX + ZZX + oo )
(78)
1 1

on the free surface. The lowest order relation, by using (76), is

1
UZiy - T @22 =0 . (79)

The second-order relation is

1

These conditions are satisfied on the free surface.

In this near field, the free surface conditions cannot be satisfied on
the surface =z = 0 . But at each stage of the inner problem, the position of
the free surface should be specified. To this burpose, we try to evaluate
potentials and their derivatives on z = €2 = Z, which will turn out to be
the wave elevation due to the first-order thin-ship potential. This procedure
is valid because the free surface is C(x,y) = Zl(x,y) + o(e) in the domain
III. Then we can expand some functions around 2z = ZI(X,Y) in the domain
IIT, where z = O(g) . So the conditions appearing in [A], [B], are to be
satisfied on z = z,(X,Y) . Now we have conditions by which the inner problem

will be solved.

Problem for &, : From (69), (73), and (76), we have conditions on @1

(L] Oryy * C1,, =0, (69)
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[H] QIY =0 on Y = H(X,0) , (73)
and
[a] le = ®1Y =0 on Z = ELLELXL . (76)
N
ZZ==ZQ,/4E
L L L2 LLLLS

/’// // :/ ©|Z=O’ ¢|Y:O

/ Z >Y

? O 7

L/ ‘; ¢HY=:C)

4 / 2

/ g Vop® =0

" /

/ /

V, /]

“ /

; 4Y =H(X,0)

FIGURE 3. Domain III for &,

From (69) and (76), in fact, @1 cannot depend on Y and 2 , and so we set:

¢, x,v,2) =& (X) . (81)

This satisfies all the conditions on @1 . Moreover, this solution should
match with the outer solution. With @1 given in (81), the two-term inner

solution is

b(x,y,z) v UX + & (X) . (82)
/

This should match with the two-term inner expansion of the two-term outer

potential, (59). They match if:
K]_(X) = ¢T1 (xlolo) = 0(g) .

So the two-term inner solution is
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¢(Xpy,z) v oUx + ¢T1 (xlolo) . (83)
[0(1)]1] [O(e)]

This solution also should match with the potential in the domain I, where

? = 0(1) . That potential is

¢(x,v,z) v Ux + ¢Tl(x,0,z) . (39)
Its inner expansion to two terms is

%wmmw+%mmm.

This matches with (83). Also, the body boundary conditions are continuous

between domains I and III.

Now we can determine the first-order free-surface elevation, Z, , from
(77) :

U U
Z, (X,Y) = - §-®1X(x,y,z) =-3 ¢T1x(x,o,0) . (84)

This represents just the waves along the centerplane due to the first-order

thin-ship potential. Hereafter, the free surface conditions in the domain I1I

are evaluated on Z1(X) .

Problem for %, : From (70), (75) and (79), we have conditions on @&

2

[1L] ®2YY + ¢2ZZ =0 in the fluid domain, (70)
1
[H] 2, = iEZUHx(X,O) = F€0,(x,0) on Y = H(X,0) , (75)
2
U Zq, (X)
= = - — = 214
[B] @22 €U21x 3 ¢r, .. (x,0,0) on Z = . (79)

And the outer expansion of @2 must have the form given by (61), or,
o 2 ly| - 2 0,0
2 50'1 (x,0) |y| - G¢T1XX(X’ /0)z

+ 6, (,0,0) + 2y, () 1og T ~ £, (x) - g, (x) + dp, (x,0,0) . (85)



- 23 -

N | N

&, =€ Byx(X)
/’/’/'/0?; 4 * * f T —"—‘___‘_,,—5'-]
> > >Y  — R >Y
o /—-i
L’ 7
f ;—-b 2 @ _ 62
; 4._) VZ"D 2-0
- | =
7z Zi C
” —
C | IO =teaxo
~ A=
” ~ ~R
FIGURE 4a. Domain III for o, FIGURE 4b. Contour in Domain III

As shown in Fig. 4(a), there is inflow through the ship body and outflow

through the free surface.

We may be able to solve the problem for @2 explicitly, but we will not
try to do so. We just determine the unknown source density, Yz(x) , by the
same method used by Tuck (1965). Using the conservation of mass, the flux

through the cortour C in Fig. 4(b) is given by:

. <
Q = -f ?,,dY + ¢,y4%

H -R
= = -eUZ, [R-H] + €2UH_[Z} + R]
1x X' €

= - 86
ER[-UZ) +EUH, ] + EU[HZ) +H 7] (86)

as R > o

Rewriting in the outer variables:
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Q = rl-Ug, (x,0) + Uh (x,2)] + Ulh(x,2)¢, (x,0)]_ (87)
In the far-field, the flux from the contour C is given by:

5,
Q= f ®2Yrd6

1

)
62 1 ! 1 1 1
[Ecl(x,0)51n 6 + 3¢T1xx(x,0,0)cos 6 + %yz(x);ﬂrde
5]

1

- %ol(x,O)[cos 62-cos 61] + %¢T1XX(X'O'O)[Sin 8,~sin 6,]

1
+ 2Y, (x)[0,-6,1 .

Since 61 = g—= O0(e) and ez-ﬂ/Z = %} = O0(e) , then, neglecting the higher-

order terms, the flux @ is
_ 1 1 hiah
Q= r[E o,(x,0) - Uclx(x,o)] + E'Yz(x) + higher order terms (88)
This matches with (87) if:
1 = 0
7 Yo (x) = Ulh(x,0)g, (x,00]_ . (89)

The density of the line source distribution, Y, » is proportional to the
rate of change of the volume in the x-direction caused by the waves due to

the first-order thin-ship potential.

We will not step further into the @3 problem in the domain III. So
far, it becomes clear that the interaction of the ship hull and the ship waves
is a higher-order phenomenon, and this effect can appear in the far field as

the flow due to a line source distribution on the center-line.



VI. HIGHER-ORDER THIN-SHIP POTENTIAL

Now it remains to solve the problem for the pressure potential, ¢P2_,

in order to get the full expression for the second-order thin-ship theory.
From (12) and (16), we have

(L] ¢P2xx + ¢P2yy + ¢P2zz =0, (90)

| . 1 1 u?
[a][B] dpa ., * ﬁ%¢Pzz - ﬁ{¢%1x+¢%1y+¢%1z}x + 5¢T1x(2;¢T1xx+¢le)z

g2(x,y) on z =20, (°1)

From the previous result, we now know ¢T1(x,y,z) ; Sso the problem ¢P2 can
be solved. From the result for the potential due to a pressure distribution

in Wehausen and Laitone (1960) (p. 598), we have for ¢P2 :

00 2
p, (ry,2) == g ﬂ {<¢%1g+¢%1n+¢%1c>g - ¢T1£‘U?¢T1££+¢Tlc’cJ

-0 =00
Gx,y,2;€,n,0)d&an . (92)
Then the velocity potential in the far field to three terms is now
¢ (x,y,2) Vv Ux + bp, (x,¥,2;€) + ¢, (x,y,2;€)
+ ¢Sz(x,y,z;€) + ¢P2(x,y,z;€) ' (93)

where

U
2

=
——

¢T1(X,Y,Z;€) = - fhg(glC) G(XIYIZ;EIOIC)dEdC I}

L
2T

¢T2(XIYIZ;€) - f[¢T1€h€+¢T1ChC-¢T1nnh]G(X'Y'Z;E'O'C)dgdg ’

|

¢52(X1erie) {h(glo)(El(EIO))}EG(XIYIZ;EIOIO)dg ’

N
=

- 25 -
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and

00 p00 2
¢’P2 (x,¥,2;€) = - 4_73-11'\')'} f [{¢%‘1£+¢%1n+¢%1§}£ - d)T]_g(% ¢T1€g+¢T1C)C]

=00 CO

G(XIYIZ;gInIO)dng .

The wave heights are found to be:

U
CI(X:Y) = - a ¢T1x(X,Y’0) (94)
U
Cz (x,y) = - 'é‘ [¢T2x(xly10) + ¢52x(erIO) + ¢PZX(XIYIO)]
U 1.2 2 2
- §'¢T1XZC1 - §§{¢T1X+¢T1y+¢le] (95)

Now we have completed the second-order thin-ship theory by making use of
the method of matched asymptotic expansion. The results are not new, but
the process to the result is clear. 1In the far field, the velocity potential
is composed of the three parts. They are the thin-ship potential, the slender-
ship potential, and the pressure potential. The thin-ship part of the potential
is interpreted in the usual sense. This part is the disturbance due to the

main hull under the free surface.

The slender-ship part of the potential is interpreted as that part which
provides the correction which is necessary because of the existence of ship
waves along the ship hull. Its source density is, in fact, the rate of change
in the x-direction of the sectional area of the rectangle which is the product
of the beam and wave height, as shown in Fig. 5. In this sense, this slender-
ship potential part has the same property as the potential in the slender~ship
theory. 1In the near-field, only the slender ship potential part becomes sing-
ular. The properties of the slender-ship potential are to some extent known
by the investigation of the line integral which appeared in the thin-ship
theory by Yim (1964). But we do not know so much about the higher order effect
of the line integral part in the thin-ship theory. From the viewpoint of the
inner region, especially in the domain III, where the free surface is included,
the first-order thin-ship potential gives the entire description for the problem

within the limit of the first-order theory. But this first-order solution in
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the domain III does not have any Y or Z dependent terms. In order to

know the velocities in both Y and 2 -direction near the free surface, we
have to solve the second-order inner problem. In that boundary value problem,
the free-surface condition must be satisfied on the first-order thin-ship waves.
In order to make clear the behavior of the flow near the body, we have to take
the effect of the free surface near the body into account. It suggests

that the effects of the slender-ship potential part on the wave making theory

may be more important than the other higher~order terms.

In the problem of a submerged body, the importance of the second-order
pressure potential has been stressed. Maybe in the problem of a surface ship,
this pressure potential will also play an important role, just as in the case

of the submerged body.

FIGURE 5. Line Source Density
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