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Introduction 

As a developing country, China has a relatively high degree of inequality in many aspects 

due to limited resources. Education, as an important factor closely associated with economic 

development and people’s welfare, is raising increasing concern, and it deserves our study. 

Nowadays, spatial analysis has become an important tool in studying social science data with 

geographical features. It helps people identify spatial patterns and distribute resources more 

effectively. The purpose of this thesis is to perform a spatial analysis of education in mainland 

China, and hopefully to shed some light on the geographic pattern of education in China. 

Previously, similar issues in other countries, such as Bangladesh, have been discussed (see 

Zahiduzzaman, Quasem, Khan, & Rahman, 2010). In this thesis, some other spatial analysis 

techniques, such as geographically weighted regression, are applied to analyze the inequality 

problem. Special administrative regions, such as Hong Kong and Macau, are excluded. Centrally 

administered municipalities, such as Beijing and Shanghai, and autonomous regions, such as 

Xinjiang and Tibet, are included in the discussion. All are referred to as “provinces” in this paper 

because they are at the same level as a province. 

 

General Pattern 

Nine-year compulsory education is a basic national policy in China. China’s fundamental 

education level has been improved greatly in the last decade. According to the National Bureau 

of Statistics of China, the national illiteracy rate has decreased from 6.72% in 2000 to 4.08% in 

2010. However, disparity in fundamental education among provinces remains an important issue 

in China.  
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Figure 1. Illiteracy Rate Distribution in China
1
                Figure 2. Average Years of Schooling in China

2 

   Figure 1 demonstrates that spatial clustering of illiteracy rates clearly exists in mainland 

China. Provinces geographically close to each other tend to share similar illiteracy rates. The 

illiteracy rate is considerably lower in northeastern China and southeastern China, while the rate 

remains high in the southwestern provinces. Among all the provinces, Tibet is highlighted due to 

its uncommonly high illiteracy rate of 24.42%. Not surprisingly, the areas suffering from high 

illiteracy rates are also the most undeveloped regions in China. Figure 2 displays the average 

                                                           
1
 Data Source: National Bureau of Statistics of China, China Statistical Year Book 2011. The software used to draw 

the map is ArcView GIS.  GIS data of China are retrieved from http://china-

archive.library.tamu.edu/datasets/chinaarchive/Geospatial/General%20GIS%20Data%20Sets/Data/ (The China 

Archive at Texas A&M University). Chongqing is not included in the shape file. 

 
2
 The average year of schooling is calculated using data from the National Bureau of Statistics of China, 

“Comparison of Population with Various Education Attainment per 100000 Persons by Region” in China Statistical 

Year Book 2011. The year of primary school attainment counts as 6 years, junior secondary school counts as 9 years, 

senior second school counts as 12 years, junior college and above counts as 16 years. 

http://china-archive.library.tamu.edu/datasets/chinaarchive/Geospatial/General%20GIS%20Data%20Sets/Data/
http://china-archive.library.tamu.edu/datasets/chinaarchive/Geospatial/General%20GIS%20Data%20Sets/Data/


4 
 

years of schooling in each province. Similarly, provinces in southwestern China have the lowest 

average years of schooling. According to the moment condition suggested by Anselin (1999), we 

notice that    [       ]    for    , where    and    are the illiteracy rates for the ith and jth 

observations. 

 

Methodology 

Moran’s I (Moran, 1950) is a popular statistic with which to study the global spatial 

autocorrelation of the variables people are interested in. In addition to the global spatial 

autocorrelation measurement, local indicators of spatial correlation (LISA) have been suggested 

to further analyze local spatial patterns (Anselin, 1993). Moreover, in exploring the relationship 

among different variables, geographically weighted regression (Fotheringham, Charlton, & 

Brunsdon) has received attention due to its recognition of the spatial pattern of the relationship. It 

allows researchers to examine the relationship among explanatory variables and dependent 

variables for each region, while making full use of the spatial information contained in these data. 

These techniques will be applied in this thesis to study the educational pattern of China. 

However, a certain weakness of the spatial analysis methods should be kept in mind. Although 

these methods pay close attention to the geographic proximity, they may fail to consider the 

“strength of links” among regions, such as the condition of transportation among provinces in 

our case (Cliff & Ord, 1981).  

Moran’ I and Moran Scatterplot 

Moran’s I (Moran, 1950) allows us to study the spatial autocorrelation of a variable we 

are interested in. In computing Moran’s I, we use the binary contiguity matrix W; namely, 
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      when the ith observation shares boarder with the jth observation and       otherwise.
3
 

In addition, an observation does not count as a neighbor of itself. The matrix is row standardized 

and N is the number of observations.  

Moran’s I for illiteracy rate:  

       
 

∑ ∑      
 

∑ ∑          ̅      ̅  

∑       ̅  
        

where    is the illiteracy rate for ith observation and   ̅is the mean of illiteracy rate. 

A positive Moran’s I value indicates the existence of positive spatial autocorrelation. 

Under the assumption of no spatial autocorrelation,  

                           [ ]   
 

     
                                                            (Moran, 1950)  

Hence, 0.1603 indicates that provinces geographically closer to each other tend to have 

moderately similar illiteracy rates. However, the Moran’s I statistic is lower than what we would 

expect from Figure 1, which suggests a more significant positive spatial autocorrelation. A 

Moran scatterplot is useful for diagnosis of spatial autocorrelation (Anselin & Bao, 1997). The 

normalized observation is plotted against its own normalized spatial lag, where spatial lag refers 

to the average of its neighbors’ values. The spatial lag of illiteracy rate is    , where   

denotes the contiguity matrix discussed above and   is a normalized vector of illiteracy rates in 

each province. 

                                                           
3
 Although there is discontiguity between Hainan Province and Guangdong Province, their weight is assigned to be 1 

for analysis because Guangdong is the nearest province of Hainan.  
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Figure 3: Moran Scatterplot of Illiteracy Rate 

Two observations in the Moran scatterplot merit our attention. The top left point 

corresponds to Xinjiang; despite the high illiteracy rate of its neighbor provinces, Xinjiang itself 

has an illiteracy rate lower than the national level. The right point corresponds to Tibet, which 

has illiteracy rate four standard deviations above the mean, although the average of Tibet’s 

neighbors is only slightly above the mean of illiteracy rate. Following Anselin and Bao (1997), 

the Moran’s I corresponds to the slope coefficient of regressing     on  . Tibet drags down the 

slope as a high leverage point and extreme outlier. Moran’s I will increase to 0.3715 if we 

exclude Tibet and Xinjiang, which indicates a stronger positive spatial autocorrelation in the rest 

of China. 
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          Local Indicator of Spatial Autocorrelation 

 The traditional Moran’s I statistic provides us with a measurement of the global spatial 

autocorrelation of illiteracy rates; however, it fails to capture the local spatial pattern. Local 

indicators of spatial autocorrelation, such as local Moran’s I, have been suggested to compensate 

for the local measurement (Anselin, 1993). The local Moran’s I statistic could be calculated as 

below: 

                                                          
  

  
∑                                                        (Anselin, 1993) 

    is defined in the same way as discussed in global Moran’s I,    is the normalized observation 

of illiteracy rates, and    ∑
  

 

  . Anselin and Bao (1997) further suggested that plotting the 

LISA significance map contributes to identifying the local clustering.  

 

Figure 4: LISA Significance Map
4
                                         Figure 5: LISA Cluster Map

5
 

                                                           
4
  

5.  
The LISA significance and cluster maps are created by the software OpenGeoDa provided by GeoDa Center at 

Arizona State University. The software is downloaded from http://geodacenter.asu.edu/software/downloads 
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 Among those regions with significant local indicators of spatial autocorrelation, Xinjiang 

located at the northwestern corner of China, has a negative local Moran value, indicating a 

significant negative local spatial autocorrelation. Xinjiang has a surprisingly low illiteracy rate of 

2.36% while its neighbors all suffer from high illiteracy rates. The provinces in the southwest of 

China, including Yunnan, Sichuan, Tibet and Qinghai all have significant positive local Moran’s 

I values. As we notice on the map, high illiteracy levels are consistent and persistent in the 

southwestern part of China. China’s government should devote more effort in ensuring the 

fundamental education in those provinces. 

Geographically Weighted Regression 

A traditional regression model, such as the linear regression model, will return the global 

relationship among explanatory variables and dependent variables. However, it is possible that 

the relationship would vary across the country; it is sloppy to assume such a relationship would 

remain constant among different regions. Geographically weighted regression has been 

suggested to deal with this issue (Fotheringham, Charlton, & Brunsdon). 

Traditional Linear Regression Model:                            ∑                           (1) 

Geographically Weighted Regression Model:             ∑                        (2)  

Moreover, the estimator of   is given by   ̂         
          (Fotheringham, 

Charlton, & Brunsdon). 

                                    where       (

      
      
    
      

) 
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One choice of      is suggested by Fotheringham, Charlton and Brunsdon by 

setting                
  , where    denotes a distance-decay parameter, and     is the distance 

between ith observation and jth observation. They further suggested some optimizing criteria of 

the distance-decay parameter   using cross-validation method and Golden Section search 

approach, but this will not be addressed here. Several choices of    and their effects are displayed 

below. 

Table 1. Weights under Different Choices of Distance Decay Parameter  6 

 Distance Weight under 

    

Weight under 

  
 

       
 

Weight under 

  
 

       
 

Weight under 

  
 

       
 

Beijing – Tianjin 104 km 1 0.9928 0.9964 0.9976 

Beijing – Shanghai 1065 km 1 0.4695 0.6852 0.7772 

Beijing – Guangdong 1889 km 1 0.0927 0.3044 0.4525 

Beijing – Xinjiang 2417 km 1 0.0204 0.1427 0.2730 

 

From Table 1 above let us observe that the further apart two observations are located, the 

smaller their mutual effects are. The distance between Beijing and Shanghai is around 1065 

kilometers, and Shanghai accounts for only 68.52% of the weight under   
 

       
 when we 

estimate the model for Beijing; and the weight of Xinjiang is almost negligible due to the long 

distance. Different from Equation (1), Equation (2) allows each observation to have its unique 

parameter of each explanatory variable to describe the underlying relationship within that area 

                                                           
6
 The distance between two provinces is measured as the distance between their capital cities. Data is retrieved from 

http://wenku.baidu.com/view/a1bbae8583d049649b6658af.html 
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and its neighbors. By studying the spatial pattern of these parameters, we can possibly find out 

how the effects of explanatory variables vary across the country. 

Application 

I use the geographically weighted regression to explore how effectively the educational 

funds have been used in each province. Consider the following model: 

                                             

where    denotes the average year of schooling in ith observation, and    corresponds to 

the educational fund per capita in ith observation.    is the constant,    is the parameter of 

educational funds per capita, and    is the error term. 

 

Figure 6. Educational Funds Per Capita against Average Years of Education for each Province
7
 

                                                           
7
  The educational funds data and population data are from China Statistical Year Book 2011. 
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Figure 3 shows a fairly strong linear relationship between educational fund per capita and 

the average year of schooling, with Tibet as an exception. Tibet suffers from poor education 

although it has high educational fund support. Tibet is one of those autonomous regions with 

unique characteristics, such as religion and ethnicity. The majority of its population adheres to 

Tibetan Buddhism, which greatly differs from the rest of mainland China. In addition, China’s 

government implements special beneficiary policies toward Tibet; hence, we drop it out of the 

regression model and discuss it separately. 

Using ordinary least squared method,  ̂               , the national model 

therefore is estimated as:  

                         

                      t-statistic (18.83)                    (5.95)                                             

  

The linear regression model above suggests that on average 1000 Yuan increase in 

educational fund per capita is associated with an improvement of 1.58 years in average years of 

schooling. Then we apply geographically weighted regression to estimate the model for each 

region. The model is described as:  

                 

        The estimators of constant term and parameters of educational fund per capita for each 

observation are given as: 

   ̂                  
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Figure 7. Spatial Distribution of the Educational Funds per Capita Parameter under   
 

       
 

Figure 7 suggests that the effects of educational funds vary across the country. As we 

notice, the parameters in the western region and northeastern region tend to be smaller than the 

other parts of China. It implies the educational funds there may have not been spent as 

effectively as their counterparts. Table 2 in the appendix displays the estimates for each province 

under various choices of distance decay parameter  . 

 

Conclusion   

 Positive spatial autocorrelation of education is relatively clear in most parts of China. 

Provinces geographically close to each other tend to have similar educational levels. Generally 

speaking, provinces in western China are less developed and they suffer from poor education as 
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well. China’s government needs to continue supporting fundamental education in less developed 

regions in order to get rid of the stubbornness of illiteracy there.  

As we may expect, the effect of educational funds varies across the country. The effects 

of educational investment are less prominent in the western and northeastern China than the 

other part of the country. Furthermore, although Tibet enjoys high educational fund per capita, 

its educational level is considerably lower than the other parts of the country. A possible 

explanation is that infrastructures there are not as advanced as in the rest of mainland China. 

Other factors, such as different ethnicities and religions, could also contribute to the difference 

discussed above.  

 

Limitation and Further Study 

 The data from the National Bureau of Statistics of China are highly aggregated. When a 

local government implements regional educational policy, it is important to recognize the large 

inequality within each province, particularly the disparity between urban and rural regions. By 

doing a spatial analysis, local government could more effectively distribute its limited resources, 

and hence improve the education level in each region.  In addition, we drop Tibet out of the 

regression model due to its unique characteristics; in the future, it is worthwhile to study why 

and how much the cultural and ethnic differences contribute to the discrepancy in the education 

levels. China is a country with 56 ethnic groups and ethnic conflicts occasionally arise partly 

because of inequality; therefore, understanding the differences among ethnic groups is essential 

to maintaining social stability.  
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Thanks to the rapid development in spatial statistics, more sophiscated statistical methods 

and software make a deeper and more complete spatial analysis possible. Hopefully spatial 

analysis could play a more important role in China’s policy making process in the near future. 
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Appendix 

Table 2. Estimators of Constant and Parameter of Educational Fund per Capital under 

Different Distance Decaying Parameters 

 

  
 

       
   

 

       
   

 

       
   

 

       
 

Region   ̂   ̂   ̂   ̂   ̂   ̂   ̂   ̂ 

Beijing 6.588 0.00157 6.507 0.00157 6.470 0.00157 6.449 0.00157 

Tianjing 6.590 0.00157 6.508 0.00157 6.470 0.00157 6.449 0.00157 

Hebei 6.499 0.00158 6.449 0.00158 6.427 0.00158 6.416 0.00158 

Shanxi 6.451 0.00159 6.418 0.00159 6.405 0.00158 6.399 0.00158 

Inner Mongolia 6.439 0.00161 6.429 0.00159 6.417 0.00158 6.409 0.00158 

Liaoning 6.851 0.00149 6.661 0.00153 6.577 0.00154 6.531 0.00155 

Jilin 6.989 0.00144 6.736 0.00150 6.627 0.00153 6.568 0.00154 

Heilongjiang 7.115 0.00139 6.817 0.00147 6.681 0.00151 6.607 0.00153 

Shanghai 6.534 0.00155 6.473 0.00157 6.444 0.00158 6.428 0.00158 

Jiangsu 6.502 0.00156 6.443 0.00158 6.420 0.00158 6.409 0.00159 

Zhejiang 6.504 0.00155 6.443 0.00158 6.420 0.00158 6.409 0.00159 

Anhui 6.476 0.00157 6.419 0.00159 6.402 0.00159 6.395 0.00159 

Fujian 6.471 0.00152 6.397 0.00158 6.380 0.00159 6.375 0.00159 

Jiangxi 6.422 0.00156 6.346 0.00161 6.329 0.00161 6.327 0.00161 

Shandong 6.533 0.00157 6.470 0.00158 6.442 0.00158 6.427 0.00158 

Henan 6.438 0.00159 6.399 0.00159 6.389 0.00159 6.385 0.00159 

Hubei 6.414 0.00157 6.367 0.00159 6.361 0.00160 6.361 0.00159 

Hunan 6.375 0.00156 6.330 0.00160 6.330 0.00160 6.335 0.00160 

Guangdong 6.359 0.00153 6.303 0.00159 6.302 0.00160 6.310 0.00160 

Guangxi 6.227 0.00157 6.239 0.00160 6.255 0.00161 6.271 0.00161 

Hainan 6.267 0.00155 6.252 0.00160 6.261 0.00161 6.274 0.00161 

Chongqing 6.265 0.00155 6.261 0.00160 6.279 0.00160 6.294 0.00160 

Sichuan 6.250 0.00152 6.243 0.00159 6.265 0.00160 6.284 0.00160 

Guizhou 6.234 0.00156 6.243 0.00160 6.262 0.00161 6.278 0.00161 

Yunnan 6.145 0.00155 6.193 0.00159 6.221 0.00161 6.244 0.00161 

Shaanxi 6.339 0.00158 6.328 0.00160 6.335 0.00160 6.342 0.00159 

Gansu 6.279 0.00153 6.284 0.00159 6.303 0.00159 6.317 0.00159 

Qinghai 6.267 0.00149 6.267 0.00158 6.291 0.00159 6.307 0.00159 

Ningxia 6.320 0.00157 6.335 0.00159 6.345 0.00159 6.352 0.00159 

Xinjiang 6.276 0.00130 6.218 0.00149 6.254 0.00154 6.280 0.00156 
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Figure 8. Map of China 

 


