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When treatment effects are studied in the context of successive or recurrent life
events, separate analyses of the quality-of-life scores and of the inter-event, gap, times
might lead to possibly contradictory conclusions. In an attempt to reconcile this, we
propose a unitary and more comprehensive nonparametric analysis that combines the
two separate analyses by introducing the quality-of-life-adjusted gap time concept. Inverse
probability of censoring estimators of the quality-of-life-adjusted gap time joint and con-
ditional distributions are proposed and are shown to be consistent and asymptotically
normal. Simulations performed in a variety of scenarios indicate that the joint and
conditional quality-of-life-adjusted gap time distribution estimators are virtually unbiased,
with properly estimated standard errors and asymptotic normality features. An example
from the International Breast Cancer Study Group Trial V illustrates the use of the
proposed estimators.
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1. I

During a clinical trial one may experience improvement or deterioration in quality-of-
life. It is often of interest to describe both the magnitude of the overall quality-of-life
changes and the way quality-of-life evolves during a series of events of the same type,
called recurrent, or of different types, called successive. Certainly, the timing of adverse
repetitive events also influences the quality-of-life at a basic level.
Repeated hospitalisations or pulmonary exacerbations are examples of recurrent event

occurrences in chronic diseases, whereas a series of different-type events such as therapy
initiation time, end of the toxicity period, end of the disease-free period and death illustrate
types of successive event. Regardless of the event nature, the inter-event times are usually
referred to as gap times. Although quality-of-life scores and gap times are usually analysed
separately, each analysis fails to take into account all the aspects influencing quality-of-
life. A comprehensive summary of both sources of information would be particularly useful
in studying chronic or other diseases subject to depreciating quality-of-life scores but
extended lifetimes.
As an attempt to reconcile quality- and quantity-of-life through a series of life events,

we propose the quality-adjusted gap time concept, having in mind a scenario in which a
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deteriorating trend in quality-of-life is observed, leading to a sequence of recurrent or
successive adverse events. Analyses pertaining to ‘average’ gap times in this context might
convey a highly incomplete image of one individual’s health state, since quality-of-life
adjustments are likely to vary as the disease progresses. Therefore, quality-of-life gap-
adjustment emerges as a natural undertaking in the context of nonparametric statistical
inference. Although in the recurrent events literature it is common to assume that the gap
times are conditionally independent and identically distributed (Wang et al., 2001), our
approach does not require such assumptions.
The quality-of-life-adjusted gap time concept is particularly appealing in a cancer clinical

trial like the International Breast Cancer Study Group Trial V, where increased amounts
of chemotherapy may lead to lower quality-of-life during the toxicity period, but may have
a positive impact on the quality-of-life during the cancer-relapse period. Understanding
the joint distribution of the quality-adjusted gap times for landmark events during the
trial would be useful. It would enable the investigator to provide the patient with a wide
spectrum of ‘chemotherapy dose during the toxicity period versus life prolongation at
superior quality-of-life levels during disease relapse’ options, in terms of both joint and
conditional probability statements.
Zhao & Tsiatis (1997, 1999) propose consistent estimators for the quality-adjusted

lifetime, while ‘recognising that there is still debate on the use of such a simple measure’.
However, the quality-adjusted lifetime concept is favourably regarded and its use is
advocated in clinical practice, especially through derivatives such as ‘time without
symptoms and toxicity’ or ‘quality-adjusted time without symptoms and toxicity’; see for
example Gelber et al. (1989). Huang & Louis (1999) study mean quality-adjusted lifetime
estimation, while van der Laan & Hubbard (1999) propose doubly-robust quality-adjusted
lifetime estimators under dependent censoring.
Even under independent or random censoring, all but the first gap time are subject to

induced dependent censoring, because of dependence among the recurrent or successive
events, as pointed out for example by Lin et al. (1999). Various nonparametric estimators
of the ( joint) gap time(s) distribution have been proposed by, among others, Huang &
Louis (1998), Wang & Wells (1998), Lin et al. (1999), Wang et al. (2001), Wang & Chang
(1999), Huang (2000), PenAa et al. (2001) and van der Laan et al. (2002). Some, but not
all, of these methods involve inverse probability of censoring techniques as in Robins &
Rotnitzky (1992).

2. E        
---  

Since study entry, an individual may experience a number of consecutive events at
continuously distributed times Y1<Y2<Y3< . . . . Suppose that the interest is centred
upon the first K such events, and from now on consider K to be fixed. Define the
inter-event or gap times as T

j
=Y
j
−Y
j−1
, with j=1, . . . , K and Y0=0. The total individual

follow-up time may not be completely observed because of a censoring event C, which is
assumed to be continuous and independent of the vector (Y1 , Y2 , . . . , YK ). However, unless
Y
j−1
and T

j
are independent, T

j
is dependently censored by C−Y

j−1
, thereby creating

the induced dependent censoring problem. Note that no restriction is imposed on the
dependence structure of the inter-event times.
For an individual, let the health history be quantified by a continuous time stochastic

process V ( . ), whose states are {0, 1, . . . , S}. Ordering with respect to disease severity is
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assumed among the health states, state ‘0’ representing death and state ‘S ’ being perfect
health. State ‘0’ is assumed to be absorbing, while all others are transient. Let Q ( . ) be a
deterministic, nondecreasing and known utility function assigning to each health state a
utility value between 0, corresponding to state ‘0’ and 1, to state ‘S ’. Although dependence
is allowed and likely between V ( . ) and (Y1 , Y2 , . . . , YK ), it is assumed that V ( . ) and C are
independent.
For reasons that will become clear later on, we assume the existence of two strictly

positive constants L and d such that Y1< . . .<YK<L and pr(C>L )>d>0. In brief, we
require that the probability of observing complete, uncensored data is strictly bounded
away from zero. As a result of censoring, one observes instead

{(YB
1
, D
1
), (YB
2
, D
2
), . . . , (YB

K
, D
K
), V (t), t∏YB

K
},

where YB
j
=min(Y

j
, C) and D

j
=I(Y

j
∏C), for j=1, . . . , K.

Define the quality-adjusted event times to be

QY
j
=P Yj
0
Q{V (t)}dt,

and the quality-adjusted gap times to be

QT
j
=P Yj
Y
j−1

Q{V (t)}dt.

In the presence of censoring, their observed versions are, respectively,

QB Y
j
=P YBj
0
Q{V (t)}dt, QB T

j
=P YBj
YB
j−1

Q{V (t)}dt ( j=1, . . . , K ).

Let q(K−1), q(K), q∞(K) and q(K)
0
be the vectors of nonnegative numbers (q1 , q2 , . . . , qK−1 ),

(q(K−1), q
K
), (q(K−1), q∞

K
) and (q(K−1), 0), respectively. Similarly, define r(K−1), r(K), r∞(K)

and r(K)
0
in the obvious way, where r

j
replaces q

j
, for j=1, . . . , K. Let T (K−1), T (K), QT (K−1)

and QT (K) denote the vectors (T1 , T2 , . . . , TK−1 ), (T (K−1), TK ), (QT1 , QT2 , . . . , QTK−1 ) and
(QT (K−1), QT

K
), respectively.

Based on the observed data, the goal is to estimate the joint distribution

F
Q
(q(K) )=pr(QT (K)∏q(K) )

and the conditional distribution FK|K−1
Q

(q
K
|q(K−1) )=pr (QT

K
∏q
K
|QT (K−1)∏q(K−1) ). If

we let

H
Q
(q(K) )=pr(QT (K−1)∏q(K−1), QT

K
>q
K
),

then F
Q
(q(K) )=H

Q
(q(K)
0
)−H

Q
(q(K) ) and FK|K−1

Q
(q
K
|q(K−1) )=1−H

Q
(q(K) )/H

Q
(q(K)
0
). Thus,

to estimate both F
Q
( . ) and FK|K−1

Q
( . | . ) it suffices to estimate H

Q
( . ).

We define m(q
K
)= inf{s�Y

K−1
; ∆s
Y
K−1

Q{V (t)}dt�q
K
} and D(q

K
)=min{m(q

K
), Y
K
}.

This expression states that D(q
K
) marks the first time during the unfolding of the Kth gap

time that the individual has accumulated at least q
K
quality-adjusted time since the last

event. Should this event not happen until time Y
K
, D(q

K
) is assigned the value Y

K
.

Throughout this presentation, attaching the index i=1, . . . , n indicates that the
quantity in question is computed for the ith individual. Without censoring, H

Q
(qK) ) could
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be consistently estimated by

n−1 ∑
n

i=1
I{QT (K−1)

i
∏q(K−1), QT

Ki
>q
K
}.

In the presence of censoring, an inverse probability-of-censoring weighted estimator can
be constructed by carefully noting when the indicator function of interest is observed.
First, if QB T

K
>q
K
>0, then QB T1 , QB T2 , . . . , QB TK−1 are uncensored and YK−1<D(qK )<YK .

Consequently, if

A(q(K) )=I{QT (K−1)∏q(K−1), QT
K
>q
K
, C>D(q

K
)},

B(q(K) )=I{QB Y
1
∏q
1
, QB Y
2
−QB Y

1
∏q
2
, . . . , QB Y

K−1
−QB Y

K−2
∏q
K−1
, QB Y
K
−QB Y

K−1
>q
K
},

then A(q(K) )=B(q(K) ). Then, if G(u)=pr(C>u) were known,

HB
Q
(q(K) )=n−1 ∑

n

i=1

A
i
(q(K) )

G{D
i
(q
K
)}

would be an unbiased estimator for H
Q
(q(K) ). To see why, note that

EC A(q(K) )G{D(q
K
)}D=EAEC A(q(K) )G{D(q

k
)}K T (K), V (. )DB

=EAI(QT (K−1)∏q(K−1), QTK>qK )ECI{C�D(qK )}G{D(q
K
)} K T (K), V (. )DB

=E{I(QT (K−1)∏q(K−1), QT
K
>q
K
)}=H

Q
(q(K) ).

Since G(.) is unknown, it is estimated by the Kaplan–Meier estimator GC ( . ) of the censoring
time survival function, using {(YB

Ki
, 1−D

Ki
); i=1, . . . , n}. Then a consistent estimator for

H
Q
(q(K) ) is

HC
Q
(q(K) )=n−1 ∑

n

i=1

B
i
(q(K) )

GC {D
i
(q
K
)}
,

from which consistent estimators FC
Q
(q(K) ) and FC K|K−1

Q
(q
K
|q(K−1) ) of F

Q
(q(K) ) and

FK|K−1
Q

(q
K
|q(K−1) ), respectively, can be constructed. The relevant asymptotic theory is

developed in the Appendix.

3. S 

Simulations have been conducted under two scenarios to assess the moderate
sample size properties of FC

Q
(q1 , q2 ) and FC 2|1Q (q2 |q1 ), where q1µ{a1;0·25 , a1;0·50 , a1;0·75},

q2µ{a2;0·25 , a2;0·5} and ai;r is the rth upper quantile of QTi , for i=1, 2.
Correlated gap times (T1 , T2 ) have been generated from the Ex( 1

10
) and Ex(1

6
)

distributions, respectively, with between-gaps correlation levels r successively being
approximately 0 and 0·3. Throughout, we have employed the utility function Q(s)=s/100,
where s belongs to the health states space S={0, 1, . . . , 100}. Under the first simulation
scenario, the health process was V (s)=100, for all sµS, so that the quality-adjusted gap
times (QT1 , QT2 ) were equal to their unadjusted counterparts (T1 , T2 ). For the second set
of simulations, the value of the health history process V (.) at any time point between 0
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Table 1. Simulation results for FC
Q
(q1 , q2 ) based on approximately r-correlated

exponential successive gap times

r=0 r=0·3
(q1 , q2 )          

Scenario 1
(2·877, 1·726) 0·062 0·063 0·018 0·018 0·942 0·096 0·095 0·021 0·021 0·941
(2·877, 4·159) 0·125 0·125 0·024 0·024 0·947 0·164 0·164 0·027 0·027 0·945
(6·931, 1·726) 0·125 0·125 0·024 0·025 0·949 0·164 0·163 0·028 0·028 0·942
(6·931, 4·159) 0·250 0·250 0·032 0·032 0·949 0·298 0·298 0·034 0·034 0·948
(13·863, 1·726) 0·187 0·188 0·030 0·030 0·949 0·217 0·216 0·031 0·031 0·947
(13·863, 4·159) 0·375 0·376 0·038 0·037 0·946 0·414 0·412 0·038 0·038 0·945

Scenario 2
(2·308, 1·009) 0·091 0·091 0·021 0·021 0·938 0·122 0·122 0·024 0·024 0·938
(2·308, 2·578) 0·168 0·168 0·028 0·027 0·942 0·201 0·201 0·029 0·029 0·944
(6·231, 1·009) 0·156 0·157 0·027 0·027 0·947 0·191 0·190 0·029 0·029 0·947
(6·231, 2·578) 0·299 0·299 0·048 0·049 0·948 0·343 0·343 0·035 0·035 0·948
(13·752, 1·009) 0·208 0·210 0·031 0·031 0·945 0·231 0·230 0·031 0·031 0·948
(13·752, 2·578) 0·408 0·409 0·038 0·038 0·949 0·442 0·441 0·038 0·038 0·950

, true probability F
Q
(q1 , q2 ); , empirical mean of the FC

Q
(q1 , q2 ) values; , empirical standard

error of the FC
Q
(q1 , q2 ) values; , empirical mean of estimated standard errors of FC

Q
(q1 , q2 )

probabilities; , coverage probability of true F
Q
(q1 , q2 ) by the 95% confidence intervals

and T1+T2 was found by linear interpolation, given that V (0)=100:

V (T
1
)=G100, if T1�t1;0·75 ,80, if t

1;0·5
∏T
1
<t
1;0·75
,

60, if t
1;0·25
∏T
1
<t
1;0·5
,

40, if T
1
<t
1;0·25
;

V (T
1
+T
2
)=V (T

1
)×G1·0, if T2�t2;0·75 ,0·9, if t

2;0·5
∏T
2
<t
2;0·75
,

0·8, if t
2;0·25
∏T
2
<t
2;0·5
,

0·7, if T
2
<t
2;0·25
.

In the definition of the health history process V ( . ) above, t
i;r
was the rth quantile of T

i
,

where rµ{0·25, 0·50, 0·75} and iµ{1, 2}. Under this latter simulation scenario, with
dependent (QT1 , QT2 ) quality-adjusted gaps being observed, we have captured a
deteriorating trend in quality-of-life accompanied by shorter second gap times. Under
each scenario, random samples of size n=200 were replicated 5000 times, with censoring,
corresponding to end of follow-up, generated independently from Un(0, 84). The results
presented in Tables 1 and 2 confirm that the estimators FC

Q
(q1 , q2 ) and FC 2|1Q (q2 |q1 ) are

virtually unbiased in the case of finite sample sizes and the empirical standard errors of
the estimated probabilities agree with the empirical means of the estimated standard
errors. Also, the sample average coverage probabilities of the 95%-confidence intervals
for F

Q
(q1 , q2 ) and F2|1Q (q2 |q1 ) are close to the nominal levels in all cases.
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Table 2. Simulation results for FC 2|1
Q
(q
2
|q
1
) based on approximately r-correlated

exponential successive gap times

r=0 r=0·3
(q1 , q2 )          

Scenario 1
(2·877, 1·726) 0·250 0·250 0·065 0·064 0·940 0·384 0·380 0·071 0·071 0·942
(2·877, 4·159) 0·500 0·500 0·074 0·074 0·939 0·654 0·655 0·070 0·070 0·942
(6·931, 1·726) 0·250 0·250 0·032 0·032 0·944 0·327 0·327 0·050 0·049 0·943
(6·931, 4·159) 0·500 0·500 0·054 0·053 0·944 0·596 0·597 0·052 0·052 0·945
(13·863, 1·726) 0·250 0·250 0·038 0·038 0·948 0·289 0·287 0·039 0·039 0·947
(13·863, 4·159) 0·500 0·501 0·044 0·044 0·946 0·552 0·550 0·044 0·044 0·947

Scenario 2
(2·308, 1·009) 0·364 0·366 0·072 0·071 0·942 0·489 0·491 0·073 0·073 0·947
(2·308, 2·578) 0·671 0·673 0·071 0·071 0·936 0·201 0·201 0·030 0·029 0·944
(6·231, 1·009) 0·312 0·314 0·048 0·049 0·948 0·381 0·380 0·051 0·051 0·947
(6·231, 2·578) 0·598 0·598 0·052 0·052 0·949 0·686 0·686 0·049 0·049 0·947
(13·752, 1·009) 0·277 0·279 0·039 0·039 0·952 0·308 0·307 0·040 0·040 0·951
(13·752, 2·578) 0·408 0·409 0·038 0·038 0·949 0·589 0·589 0·044 0·043 0·951

, true probability F2|1
Q
(q
2
|q
1
); , empirical mean of the FC 2|1

Q
(q
2
|q
1
) values; , empirical standard

error of the FC 2|1
Q
(q
2
|q
1
) values; , empirical mean of estimated standard errors of FC 2|1

Q
(q
2
|q
1
)

probabilities; , coverage probability of true F2|1
Q
(q
2
|q
1
) by the 95% confidence intervals

4. I B C S G T V 

During the randomised adjuvant chemotherapy Trial V conducted by the International
Breast Cancer Study Group (Gelber et al., 1992), 411 node-positive breast cancer
patients received short-duration, 1–3 months, chemotherapy and 804 node-positive
patients received long-duration, 6–7 months, chemotherapy. After a fully observed
treatment toxicity period, patients experience a time without symptoms or toxicity,
denoted by T1 , followed by a cancer relapse period, denoted by T2 , subject to censoring.
Both T1 and T2 are measured in months. We base the current analyses on the first
108 months of follow-up.
It is of interest to know whether or not a longer quality-of-life-adjusted T1 period, QT1 ,
generally leads to a longer quality-of-life-adjusted T2 period, QT2 , in either of the two
treatment arms. In order to understand better the implications stemming from the choice
of the health process V (.), we have envisaged two scenarios, V1 ( . ) and V2 ( . ). In either of
them, V (.) assumes values in the health space S={0, 1, . . . , 100} and the utility function
is Q(s)=s/100, for sµS.
Under the first scenario, V1 (t)=100 on [0, T1 ) and V1 (t)=50 on [T1 , T1+T2]. Under
the second scenario, V2 (t)=100 on [0, T1 ). If T2>84 months, then V2 (t)=100 on
[T1 , T1+T2]. Otherwise, if

12× (6− i )<T
2
∏12× (7− i ) (i=0, 1, . . . , 6),

then V2 (T1 )=100− (i+1) and V2 (T1+T2 )=100−5× (i+1 ). The health state at any time
point between T1 and T1+T2 is found by linear interpolation. This health process reflects
the fact that a shorter time to cancer relapse, T2 , may incur lower quality-of-life scores
since, in general, it is considered to be a poor turn of events. For example, a patient whose
gap time T2 is between 36 and 48 months has a score of 96 at time T1 that decreases to
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Table 3. International Breast Cancer Study Group T rial V example.
Estimates of the joint distribution functions FC

Q
(q1 , q2 ) under

scenarios V1 ( . ) and V2 ( . ), respectively, for both the short- and long-
duration chemotherapy treatment arms. Standard errors of the

estimates are shown in parentheses

Short-duration chemotherapy Long-duration chemotherapy
(q1 , q2 ) Scenario V1 ( . ) Scenario V2 ( . ) Scenario V1 ( . ) Scenario V2 ( . )

(12, 12) 0·087 (0·014) 0·063 (0·012) 0·114 (0·011) 0·092 (0·010)
(24, 12) 0·185 (0·019) 0·121 (0·016) 0·178 (0·014) 0·138 (0·012)
(36, 12) 0·249 (0·021) 0·155 (0·018) 0·217 (0·015) 0·160 (0·013)
(48, 12) 0·272 (0·023) 0·159 (0·018) 0·254 (0·016) 0·183 (0·014)

(12, 24) 0·135 (0·017) 0·097 (0·015) 0·125 (0·012) 0·115 (0·011)
(24, 24) 0·266 (0·022) 0·201 (0·020) 0·206 (0·014) 0·181 (0·014)
(36, 24) 0·372 (0·025) 0·270 (0·022) 0·265 (0·016) 0·221 (0·015)
(48, 24) 0·414 (0·027) 0·288 (0·024) 0·329 (0·018) 0·254 (0·016)

80 at time T1+T2 . In contrast, a patient with T2 of at least 72 but no more than 84 months
has scores of 99 at T1 and 95 at T1+T2 . There is flexibility in the method to explore such
possibilities for dependence between quality-of-life and the gap times.
The estimates FC

Q
(q1 , q2 ) of the joint distribution of (QT1 , QT2 ) at (q1 , q2 ), where

q1=12, 24, 36, 48 months and q2=12, 24 months, are presented in Table 3, with the
short- and long-duration chemotherapy groups shown side-by-side. In scenario V1 ( . ), the
estimates for the short-duration chemotherapy group are higher than those for the long-
duration chemotherapy group in almost every case. For example, in the short-duration
chemotherapy group, the joint probability of a QT1 period lasting at most 48 months
followed by a QT2 period lasting at most 12 months is equal to 0·272. This probability
is higher than the corresponding value 0·254 of the same event in the long-duration
chemotherapy group. However, in scenario V2 ( . ), the probability of the same event
occurrence in the long-duration chemotherapy group is equal to 0·183, higher than the
corresponding probability 0·159 in the short-duration chemotherapy group. In general,
under scenario V2 ( . ), the estimates FCQ (q1 , q2 ) at q2=12 months are more often lower in
the short-duration chemotherapy group compared to the long-duration chemotherapy
group, but this tendency is reversed for q2=24 months.
The conditional distribution FC 2|1

Q
(q
2
|q
1
) estimates of QT2 given QT1 , at the same values of

(q1 , q2 ) as before, are shown in Table 4. For example, under scenario V1 ( . ), the probability
of QT2 lasting at most 24 months, given that QT1 lasted at most 36 months, is equal to
0·803 in the short-duration chemotherapy group, compared to 0·876 in the long-duration
chemotherapy group. A similar outcome is observed under scenario V2 ( . ), when the
same quantities are equal to 0·584 and 0·731, respectively. Furthermore, when a direct
comparison of the estimates obtained under V1 ( . ) and V2 ( . ) is desired, as seen from Table 4,
FC 2|1
Q
(q
2
|q
1
) is always higher under V1 ( . ) than under V2 ( . ), in each chemotherapy group.

Equally true for both therapy groups, for q2 fixed, a lower value of q1 is usually associated
with a higher value of the conditional distribution estimate FC 2|1

Q
(q
2
|q
1
); that is, the longer

QT1 , the higher the chance of experiencing a prolonged QT2 period. For example, in the
short-duration chemotherapy group under V1 ( . ), if q2=24 months, the probability of QT2
being at least 24 months, given that QT1 was at most 36 months, is equal to 0·197, while
the probability of QT2 being at least 24 months, given that QT1 was at most 48 months,
is equal to 0·211. Still in the short-duration chemotherapy group, but under scenario V2 ( . ),
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Table 4. International Breast Cancer Study Group T rial V example.
Estimates of the conditional distribution functions FC 2|1

Q
(q
2
|q
1
) under

scenarios V1 ( . ) and V2 ( . ), respectively, for both the short- and long-
duration chemotherapy treatment arms. Standard errors of the

estimates are shown in parentheses

Short-duration chemotherapy Long-duration chemotherapy
(q1 , q2 ) Scenario V1 ( . ) Scenario V2 ( . ) Scenario V1 ( . ) Scenario V2 ( . )

(12, 12) 0·520 (0·036) 0·375 (0·030) 0·851 (0·033) 0·685 (0·029)
(24, 12) 0·562 (0·037) 0·369 (0·030) 0·776 (0·031) 0·602 (0·027)
(36, 12) 0·538 (0·036) 0·334 (0·033) 0·717 (0·030) 0·529 (0·026)
(48, 12) 0·519 (0·036) 0·307 (0·027) 0·675 (0·029) 0·485 (0·025)

(12, 24) 0·807 (0·044) 0·578 (0·037) 0·934 (0·034) 0·861 (0·033)
(24, 24) 0·807 (0·044) 0·613 (0·039) 0·898 (0·033) 0·791 (0·031)
(36, 24) 0·803 (0·044) 0·584 (0·038) 0·876 (0·033) 0·731 (0·030)
(48, 24) 0·789 (0·043) 0·548 (0·037) 0·874 (0·033) 0·674 (0·029)

the probabilities presented above are equal to 0·416 and 0·452, respectively. On the other
hand, in the long-duration chemotherapy group, under V1 ( . ) the same probabilities are
equal to 0·124 and 0·126, respectively, while under V2 ( . ) they are 0·269 and 0·326,
respectively.
The comparisons involving joint and conditional probabilities in the two chemotherapy

groups or under the two scenarios are shown for illustrative purposes. Testing for
statistically significant differences between the joint distributions involved will be reported
elsewhere.

5. D

Although our methodology corrects dependent censoring caused by shifting the
survival time-scale to the quality-of-life-adjusted time-scale, it does not address dependent
censoring as measured through prognostic covariates influencing both gap times and
censoring times. Our approach to this problem is mainly nonparametric and assumes
that censoring is independent of the gap times and of the health process. In well-controlled
clinical trials patient drop-out is limited and censoring occurs for administrative reasons,
at the end of the study, making these assumptions very reasonable. The independent
censoring assumption has been made by authors such as Wang & Wells (1998), Wang &
Chang (1999) and Lin et al. (1999) in recurrent/successive events problems, and by
Zhao & Tsiatis (1997, 1999), among others, in problems involving quality-of-life-adjusted
lifetimes. There was some indication of mild dependent censoring as measured through
oestrogen receptor status and menopausal status that was not addressed in this research.
Doubly-robust estimators can be constructed under a coarsening at random assumption
(van der Laan & Hubbard, 1999; van der Laan et al., 2002) when covariates such as these
are available, and this will be the subject of further research.
In nonparametric estimation of the joint distribution of a prespecified number of

gap times or the conditional distribution of the current gap time, given the previous gap
time(s), it would be natural to explore quality-of-life adjustment of the previous gap times.
It is plausible that groups that have experienced comparable previous gap-time histories
at similar overall quality-of-life levels, but that are currently living at 100% or at 50%
levels of quality-of-life, would have different prognoses, in terms of both the ensuing gap
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time duration and the quality-of-life level during that gap time. In this case, separate
analyses of the two aspects would fail to reveal such subtle differences.
We plan to develop methods for testing for overall differences in the joint distributions

of the quality-of-life-adjusted gap times in two or more groups, including sensitivity
analyses for the choice of utility function.
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A

Asymptotic theory

Consistency of HC
Q
( . ), which in turn implies consistency of FC

Q
( . ) and FC K|K−1

Q
( . | . ), is shown along

the lines of Lin et al. (1999) and Zhao & Tsiatis (1997), if we write
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(A1)

The first term in (A1) converges to zero in probability as a sum of zero-mean independent and
identically distributed terms. Note that D

i
(q
K
)<L<t

C
)sup{t; G(t)>0} and GC ( . ) converges

uniformly in probability to G( . ) on [0, t
C
). The second term in (A1) is bounded from above, in

absolute value, by

sup{|GC (u)−G(u)|; u∏t
C
}
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C
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,

and therefore it converges to zero in probability. This concludes the proof that HC
Q
( . ) is consistent.

Furthermore, if we defineMc (u)=I{C∏min(u, Y
K
)}−∆u

0
I(YB
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�s)dLc (s), then, based on Lemma 2.4

of Gill (1983), it follows that, for any t∏max{YB
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Since

GC (u−)
G(u)

1
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almost surely, the second term in (A2) can further be expressed as

n−1/2 P L
0
n−1 ∑

n

i=1
C{pr (YBK�u)}−1I{Di (qK )�u} Ai (q(K) )GC {D

i
(q
K
)}D ∑n
j=1
dMc
j
(u)+o

P
(1)

=n−1/2 P L
0
{pr (YB

K
�u)}−1ECI{D(qK )�u} A(q(K) )GC {D(q

K
)}D ∑n
j=1
dMc
j
(u)+o

P
(1)

=n−1/2 ∑
n

i=1
P L
0
{pr(YB

K
�u)}−1ECI{D(qK )�u} A(q(K) )G{D(q

K
)}D dMci (u)+oP (1)

=n−1/2 ∑
n

i=1
P L
0

J
Q
(q(K), u)

pr (YB
K
�u)

dMc
i
(u)+o

P
(1),

where

J
Q
(q(K), u))ECI{D(qK )�u} A(q(K) )G{D(q

K
)}D .

Consequently,

W
Q
(q(K) )=n−1/2 ∑

n

i=1
C Ai (q(K) )G{D

i
(q
K
)}
−H
Q
(q(K) )D+n−1/2 ∑n

i=1
P L
0

J
Q
(q(K),u)

pr (YB
K
�u)

dMc
i
(u)+o

P
(1).

Hence, asymptotically,
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We can observe that (A3) is equal to

EC A(q(K) )G{D(q
K
)} P L
0

J
Q
(r(K), u)

pr (YB
K
�u)

dMc (u)D−EqP L
0
H
Q
(q(K) )

J
Q
(r(K), u)

pr (YB
K
�u)

dMc (u)r . (A6)

Since it represents the expected value of a zero-mean martingale, the second term in (A6) is equal
to zero. The first term in (A6) and the expression in (A4) are both equal to

−P L
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J
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K
�u)
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based on arguments along the lines of Lin et al. (1999). Using standard results for stochastic
integrals with respect to martingales, it follows that the expression in (A5) is equal to
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By the multivariate central limit theorem, W
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Estimators of all the previously presented covariance expressions are obtained as follows. The
cumulative hazard Lc (t) of the censoring distribution could be estimated by its Nelson–Aalen
estimator
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