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SPECIFICATION AND ESTIMATION OF COBB-DOUGLAS 
PRODUCTION FUNCTION MODELS' 

BY A. ZELLNER, J. KMENTA AND J. DREZE 

In this paper we consider the specification and estimation of the Cobb-Douglas production 
function model. After reviewing the "traditional" specifying assumptions for the model 
which are based on deterministic profit maximization, we develop a model in which 
profits are stochastic and in which maximization of the mathematical expectation of 
profits is posited. "Sampling theory" and Bayesian estimation techniques for this model 
are presented. 

1. INTRODUCTION 

IN THIS PAPER we take up the problem of specifying and estimating a model of a 
profit maximizing firm operating with a Cobb-Douglas production function. Our 
model differs from the traditional production model considered in the literature, in 
that we assume that: (a) the production process is neither instantaneous nor 
deterministic; and (b) entrepreneurs are aware of the stochastic nature of production 
in their profit maximizing endeavors. 

This fundamental conceptual difference in our approach leads us to a new model 
with properties different from that of the traditional model.2 Also we develop 
both sampling theory and Bayesian estimation procedures for the new model. 

The order of presentation is as follows. In Section 2 we review the traditional 
model, and then go on in Section 3 to formulate the new model. In Section 4, 
sampling theory estimation procedures are developed for the new model. In 
contrast with the traditional model, it is found that classical least squares provides 
consistent estimators of the parameters of the Cobb-Douglas production function. 
With a normality assumption, these are also unbiased and maximum likelihood 
estimators. Finally, in Section 5, a Bayesian analysis of the new model is presented. 

2. REVIEW OF THE TRADITIONAL MODEL 

According to economic theory, output, inputs, and profit of a firm are determined 
by the production function, the definition of profit, and the conditions of profit 
maximization. If the production function is of the Cobb-Douglas type with two 

1 This research was supported in part by the National Science Foundation under Grants GS-151 
and GS-1350, in part by the U.S. Army Mathematics Research Center, University of Wisconsin, 
and in part by the Social Systems Research Institute, University of Wisconsin. 

2 A recent paper by Mundlak and Hoch [11], which was brought to our attention after this 
paper had been written, considers a similar departure from the traditional model; their rationale 
and statistical coverage are different from ours. See footnotes 9 and 11 below. 
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inputs,3 the production model of the firm would be represented as follows: 

(2.1) X = Ael'K 2 Production function, 

(2.2) 7c = pX - wL- rK Profit definition, 

(2.3) AL = ? 

Maximizing conditions. 

(2.4) aK = 0 
OK 

Here 7c represents profits; X, L, and K represent quantities of output and labor and 
capital inputs, respectively; and p, w, and r their respective prices. 

In empirical work concerned with estimation of production function parameters 
from cross-section data, the deterministic form of the model has been modified by 
the introduction of stochastic disturbances. Following Marschak and Andrews 
[9], the traditional representation of the production model has been :' 

(2.5) X?i-'XXi-oC2X2i=4+Voi, 

(2.6) Xoi-Xi= 21 +VI i , 

(2.7) Xoi-X2i= X2+V2i , 

where the subscript i refers to the ith firm, xoi=log Xi, x1i=log Li, x2i=log Ki, 
2% =log A, and v0o, v1 j, and v2i are stochastic disturbances, assumed to have zero 
means and variances (and possibly nonzero covariances) which are the same for 
different firms. The parameters X, and X2 are given by 

wR, r,R 
X1=log and a2-log 2 

It should be noted that X, and X2 are the same for all firms, since it is assumed that 
prices of output and inputs are the same for all firms. The parameters R1 and R2, 
suggested by Hoch [5], are introduced to allow for the possibility that firms in the 
sample may exhibit systematic errors, perhaps as a result of institutional or other 
constraints, with respect to satisfying the first order conditions. Of course, if R1 = 

R2= 1, such systematic errors are absent. 
The random disturbance terms v1 i and v2 i in the traditional model are introduced 

to allow for random, nonsystematic errors on the part of entrepreneurs in their 
attempts to adjust inputs to satisfy the necessary conditions for profit maximiza- 
tion. On the other hand, the interpretation of v0i has not been as clearcut in the 
literature. Marschak and Andrews [9, p. 145 and p. 156] describe v0i as reflecting 

3 A two-input case is used here in order to economize on exposition. The argument and the 
estimation methods developed in this paper can be readily extended to any number of inputs. 

4 The specification of the model given in the text is a special case of the imperfectly competitive 
model considered by Marschak and Andrews. It can be found in Klein [7], Hoch [5], Walters [14], 
Mundlak [10], and Kmenta [8]. 
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"technical efficiency" and depending "on the technical knowledge, the will, effort 
and luck of a given entrepreneur." One way of making these observations regarding 
v0i more explicit is to assume that the production functions of all firms are identical 
up to a neutral disembodied productivity differential; in other words, the param- 
eters oc and O2 are assumed common to all firms in the sample, but the parameter A 
varies from firm to firm with A = AO evoi , where AO is a common parameter, and v'o+ 
is a random variable. Without loss of generality, we can assume Ev + = 0. Then v0 = 
v0+f + v*+v, where v*i is an additional random element, with zero mean, introduced to 
allow for random factors affecting output, such as luck, etc.5 If this interpretation 
of the disturbance v0i is accepted, then it should be recognized that the variance 
of voi will depend on the variances of v+ and v*j, and that with a single cross- 
section of data it will not be possible to identify these two variance components. As 
is well known, more than one cross-section of data is needed to estimate the com- 
ponents of variance. Further, if this interpretation of v0i is accepted, the production 
function and profit function for the individual entrepreneur are stochastic even if 
he knows Ai. Thus, the rationale for assuming deterministic profit maximizationl, as 
is done in the traditional approach, is at variance with the above interpretation of 
voi, an interpretation which appears to be consistent with that in the literature. 

With this said about voj, v1 , and v2 , it is clear from (2.5)-(2.7) that x1i and x2i 
are not independent of voi, since each input is a function of all disturbances of the 
system. Consequently, classical least squares estimates of the production function 
parameters will be, in general, biased and inconsistent. This conclusion led to the 
development of a number of alternative estimation methods based on various 
assumptions concerning the profit maximizing conditions. In particular, the so- 
called "factor shares" method6 assumes absence of profit maximizing restraints 
(i.e., R1 =R2= 1), and the maximum likelihood method7 requires the assumption 
that v1i and v2i are distributed independently of v0i.8 

3. THE NEW MODEL 

An alternative specification, developed in the present paper,9 involves assuming 
that the production function of firm i is stochastic, being defined by: 

(3.1) Xi=ALlK ,2 eu?, 

5 See Walters [14, p. 14], where a similar interpretation of the error term in the production 
function is given. 

6 See Klein [7], pp. 193-196. 
7 See Kmenta [8]. Maximum likelihood estimates are identically equivalent to those obtained 

by "indirect least squares," "moments" or "covariance matrix," and Hoch's generalized methods. 
8 If voi represents "the technical knowledge, the will, effort and luck of a given entrepreneur," 

as Marschak and Andrews state, the assumption that voi and vii and V2i are independently distri- 
buted may be questionable. 

9 Basically the same statistical specification is considered by Mundlak and Hoch (section 3 of 
[11]), when they assume that the production function disturbance is not "transmitted" to inputs- 
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where uoi is a random disturbance'" representing factors such as weather, un- 
predictable variations in machine or labor performance, and so on. Whenever the 
production process is not instantaneous, the effect of the disturbance on output 
cannot be known until after the preselected quantities of inputs have been employed 
in production. Any given level of inputs will result in an uncertain quantity of out- 
put and, consequently, in an uncertain profit. The concept of "profit maximization," 
which is unambiguous within the deterministic framework of the model postulated 
by economic theory, needs a more subtle interpretation when stochastic elements 
are introduced: obviously no manager can maximize something which is uncertain 
and beyond his control. 

In this paper, we assume that: (a) entrepreneurs maximize the mathematical 
expectation of profit;"t (b) the prices (p, w, r) are either known with certainty'2 or 
statistically independent of the production function disturbance, with expectations 
(p', wt, ri+) for firm i.'3 
The profit maximizing conditions are then 

(3.2) dE(7r) 
- o 

(3L L 

(3.3) 8E(7m) = 0, where 
a K 

either because the firm does not maximize profits (case BI in [11]), or because firms maximize 
profits while assuming that uoj =0 in (3.1) (case B2 in [11]). As will be seen, our rationale is 
quite different, but our results are consistent with those of [11]. The interesting generalization 
considered in section 4 of [11] would apply to our specification as well. 

10 The disturbances in this section are designated with the letter u instead of v, as in Section 1, 
to emphasize the difference between the two models. 

11 Hoch [5] noted in passing that entrepreneurs may be maximizing "anticipated" profit, but 
the notion was not further developed. There is no indication in Hoch's paper that "anticipated" 
profit should be interpreted as the "mathematical expectation" of profit; more likely, the author 
had in mind "next period's" profit, which is, of course, also stochastic. P. J. Dhrymes [3] considered 
using the nonstochastic part of the production function, but not necessarily the mathematical 
expectation of output. The difficulty resulting from uncertainty concerning output was noted by 
Yair Mundlak [101, but the specific case of maximizing the mathematical expectation of profit was 
not developed. In any case, Mundlak did not consider this difficulty to be serious enough to reject 
the traditional formulation of the production model (ibid., pp. 147-149). Mundlak and Hoch [11] 
recognize uncertainty, but assume that entrepreneurs behave as if production were nonstochastic 
with uoi = 0. 

12 This is a natural assumption for inputs-which are typically purchased before they are used 
in production-but not so much for output, since a stochastic output cannot be sold on a future's 
market. 

13 We are indebted to George J. Stigler for bringing to our attention the role of this assumption, 
If one were assuming that output prices are related to the quantity sold (imperfect competition), 
the assumption that p is statistically independent of uoi would not be tenable, and a more subtle 
analysis would be needed with E(pX) A p+E(X). 
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(3.4) E(iZ)=p+E(X)-w+L-r+ K. 

Now, assuming that the disturbance in the production function is normally distrib- 
uted, we have 

(3.5) E(X)=ALAE Ka2e(+)70oo, 

where ao is the variance of the production function disturbance.'4 
In reality, the profit maximizing conditions are not likely to be exactly fulfilled 

because of managerial errors originating in inertia, ignorance, etc. These errors, 
resulting in deviations from the desirable position, can be assumed to be randomly 
distributed over all firms in the industry. Another source of deviations from op- 
timality ex post is the difference between anticipated and realized prices. Let us 
again assume that these differences are randomly distributed over firms; more 
precisely, let 

log + =log1- + uii and 

log (1+) = log +u2i 

where p, w, and r are realized prices, and u' and u2 are random differences. The 
latter will disappear if prices are known with certainty. 

The profit maximizing conditions given by (3.1) and (3.2) should then be extend- 
ed to include the two sets of disturbances. Let the disturbances resulting from 
managerial inertia be u* j and u*i and let Uri=U*+U+ (r= 1, 2). Then the "new" 
production model can be written as 

(3.6) X0i-'lXli-oc2X2i=o0 + Ui 

(3.7) x0-xli=k' +u0i+uli, 

(3.8) Xoi-x2i=k?uo0i+u2i, 

where oc =log A, k' =log (w - )-laoo, k ( - aoo and u(i, u1j, 

and u2j are stochastic disturbances. The remaining symbols have the same meaning 
as in equations (2.5) to (2.7) of the previous section. 

One important implication of the new model is that inputs do not depend on the 

14 It should be noted that the assumption of normality of the production function disturbance 
uoj implies a positive relationship between E(rr) and the variance of the disturbance. When optimal 
input quantities are substituted in the expression for expected profit, the latter is proportional to 
exp roo/2(l - l- C2). The positive association between E(z) and roo would of course disappear 
if one assumed that E(euoi) = 1, instead of assuming normality of uoj. 
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disturbance in the production function. This is clearly seen by referring to the 
reduced form equations of the model, which are: 

(3.9) X0=i[oc0-a, k' -x2k'2 +(1-Ol -C2)U0i 

CX1 U 1i - ?2 U2J /(I - C1 - 02) 

(3.10) xIi= ICX0 + (X2-1) kl-c 2k2 +(a2-l1) U1i-c2 U2l -( -2)a 

(3.11) x2i=[%0-o1 k' + (x-1) k-L IuIi +(, I-1) U2i]/(1-aI- C2)- 

A reasonable specifying assumption is that the correlations of the u0E and ul 
and of uoi and u2 are both zero, since uoi results largely from "acts of nature" 
such as weather conditions and machine performance, whereas u,i and u2j are due 
to "human errors." Under this assumption, the result that simple least squares 
estimates of (3.6) are inconsistent is no longer valid. Clearly, in the new model with 
the assumptions that E(u0jujj)=E(u0ju2,)=0, simple least squares estimators are 
consistent; under normality, or with the stronger assumption that uli and u2 are 
statistically independent of uoi, they are also unbiased.'5 

Another implication of the new model relates to the properties of the "factor 
shares" estimates. Within the context of the traditional model, the "factor shares" 
method leads to unbiased estimates of log ocx and log a2, providing that R1 = R2 = 1. 

This is no longer true within the framework of our alternative model: the "factor 
shares" estimate of log ox, is 

I n wL\ 
(3.12) logca,=-' logI. 

n j=1 pXi) 

But from (3.5) we have, after substituting unity for R,, 

(3.13) log (pX) = log - Uoiu-u, I+(oo 00. 

Consequently, 

(3.14) E(1og l) =log cx1 + ()00 = log oc. 

Thus, the "factor shares" estimator of log ot, has an upward bias, and 

(3.15) anitilog E (log a 1) = , e2 

Similarly, 

(3.16) antilog E(iog i2)= a2 e?OO2. 

Thus, the ratio of the antilogs of the two expectations is equal to true ratio al/X2, 

15 For proof see Section 4. 
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but the sum of the antilogs, (ce, + oC2) e(l26oo is not equal to the returns to scale 
parameter. The bias in estimating returns to scale is a natural consequence of the 
stochastic nature of the production function: the numerators of the factor share 
estimates are uncorrelated with uo but the denominators are-which has an effect 
similar (but opposed in sign) to that of a measurement error or "transitory com- 
ponent" in a regressand.' 6 

A final point worth noting concerns the maximum likelihood estimates derived 
for the traditional model. These estimates are identified by the assumption that 
(xo i-xli ) and (x0 i-x2 i) are independent of the disturbance in the produc- 
tion function. But in our model it follows, from equations (3.7) and (3.8), that 

E(xoi-Xli)uoi=E(xli-X2 i) Uoi =o ( AO), even if ulE and u2i are independent 
of uoi. 

4. MAXIMUM LIKELIHOOD ESTIMATION OF THE NEW MODEL 

In the previous section we argued that the disturbances in the profit maximizing 
conditions, ul and u2i, can be expected to be independent of the disturbance 
in the production function, uoi. If this is true, and if firms' disturbances are 
normally and independently distributed with zero means and constant covariance 
matrix, we can derive the maximum likelihood estimates of the production function 
parameters as follows.'7 

The system, described by equations (3.6) to (3.8), can be rewritten as 

(4.1) X?i-OIXIi- 2X2i-0?=U0i, 

(4.2) (XI -1)x i+cL2x2i-kl,=uli, 

(4.3) XI1 xl i + (X2-)x2 i-k2 = u2 i, 

where 

k, =log 
wR - 2 + xo' k2=log A rR 1 2+ oco, 

and ao =log A. 
The variance-covariance matrix of the disturbances is 

.......... ............... L= KO 00. 

where 

z = [cu 1 12] 
1a,2 22] 

16 The analogy would be perfect if one were trying to estimate returns to scale by regressing 
cost on output. 

17 Subject to the condition that x1 +X2 2 1, and xi, A2 > 0. As pointed out by T. Takayama 
and G. G. Judge, this prior information is not incorporated in "conventional" maximum likeli- 
hood estimates. 
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Further, let u, (r= 0, 1, 2) be a (n x 1) vector of the random disturbances. Then the 
logarithm of the likelihood function is given by 

(4.4) L= - 2iog(27r)+n log IJI - gZ 
2 2nogf 

- 
2 , - W(u1 U2) (27 

1 
I.)(tl)' 

where IJI = I' 1 - 1 21 is the Jacobian for the transformation from the u's to the 
x's given in (4.1)-(4.3). Differentiating L with respect to the unknown parameters 
and putting the first derivatives equal to zero leads to simple least squares estimates 
of ocI and C2. The estimates of the nonzero elements of I are 

7rr 
= UrUr, (r=0, 1, 2) 

1A 7 1 
A 

2 
A 

0r12 
= - I 

U 

where u2r (r=0, 1, 2) is a vector of residuals. 
Since each of the x's can be expressed in terms of the disturbances, as per (3.9)- 

(3.11), il and i2-the simple least squares estimates of oc and O2-can be similarly 
expressed. This gives 

(4.5) Qr = Ltr + [(:2r +r }-2) (ul2 U2) -(ar- OA ulu2](Dt 

-[Cr+ Jr r-2) (u 1u)('- + l )(U1 u 1) (DI ) 

where D = (ulu) (u4u2)-(ulu2)2, and r=1, 2. From this it immediately follows 
that &l and 12 are unbiased and consistent. Further, it can easily be shown that the 
estimates of the variances of i and Q2 calculated in the conventional way are 
asymptotically equal to 

ti-' lim E [Ifn(Lar-(r)]2, (r= 1, 2) . 
n -oo 

From the classical sampling theory point of view, the new model thus vindicates 
the single-equation approach to estimation of the Cobb-Douglas function from 
cross-section data. The profit maximizing conditions are interesting as a means of 
testing for the efficient average allocation of resources. As far as estimation of the 
production function parameters is concerned, the simultaneous nature of the model 
is relevant only because it makes xl and x2 stochastic. As a result, the finite sample 
properties of the least squares estimators, except for their property of unbiasedness, 
remain to be established. 
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5. BAYESIAN ANALYSIS OF THE NEW MODEL 

In the Bayesian analysis of the new model, we employ the following "minimal 
information" or "noninformative" prior distribution for the parameters of the 
model, oc=(O1, O2, 2), k=(kl, k2), co and Z*: 

(5.1) p(x, k, coo, Z *) ocp,(oc, k) P2(U00) P3(1*) 

where 

(5.2a) pl(c, k) oc I I-04 - 21 

(5.2b) P2(Q00) Oc I/oo, and P3(Z*) OC 
I 

E * 

In (5.1) we follow Jeffreys [6] and Box and Tiao [1] in taking location and scale 
parameters to be independently distributed. Further, (5.2b) expresses ignorance 
about co and Z * in accord with Jeffreys' invariance theory [6, p. 179 ff.] and in a 
way consistent with the approach employed by Savage [13]. As regards (5.2a), we 
take oco, kl, and k2 to be uniformly and independently distributed. Further, the 
prior density of ocl and Oc2 is taken proportional to I 1 - ocl - 1, a result provided 
by application of Jeffreys' invariance theory. 

Now we use Bayes' Theorem to combine the prior distribution in (5.1) with the 
likelihood function for the model to obtain the following joint posterior distribu- 
tion of the parameters: 

(5.3) p(ac, k, coo, ZI S) oc 1(n + 2)/2 (nl 3)/2 exp {- uo u 07/00 - I tr A -'1}, 

where S denotes the sample information; u0, ul, and u2, each n x 1 column vectors, 
are defined by the equations of the new model in (4.1)-(4.3); and 

A _ (u' u1 u u2\ 
U2U1 U2U2 

On integrating over coo and the elements of Z , we obtain the following joint 
posterior distribution for the parameters oc and k: 

(5.4) p(o, kIS) oc c 
(Ui u0)n/2 JAjn'2 

Noting that JAI is quadratic in k1 and k2, these parameters can be easily integrated 
out to yield: 

(5.5) X04, O2, %OIS) oc I'-Otl u -C2 In-l 

where 

A* - L(ul - u t)' (u1 -u1t) (u 1 - u1) (u2- U2 t) 
(u2-U2 )'(U1-u1 t) (U2-U20)'(u2-U20)J 
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with a =n'1I=1 Un for r= 1,2, and t is a n x column vector of ones, i.e., ' = 

(1, 1, ..., 1). We note that 

A * = ( x ... .. .. .. . ............ . x l (tx ...... ..... ..... .. 5l .................I............ ) 
?C1~~~~~~ (xi- -XI2 

t 
. ?2- 

and thus IA*I OC (1 - - (2)2. With this fact noted, (5.5) becomes: 

(5.6) pIc, 0C xoIS) OC (U uo) n/2 
XC [VS2 +(a )'X'X(a_A)]-(v+3)/2 

where X=(x1x2l), v=n-3, a = (X'X)-'X'xo, and S2 = V - 1 (Xo-Xi)' (xo-X&). 
From (5.6) it is apparent that the posterior distribution of the production functions' 
parameters, oc, ac,, and C2, is in the form of a trivariate t distribution.'8 From this 
fact it follows that: 

(i) (i i has a univariate t distribution with v = n -3 degrees of 
s hit 

freedom, where o&i (i=O, 1, 2) is the least squares quantity, and h" is the (i, i)th 
element of (X'X)- 1; 

(ii) a, and a2 have a posterior distribution in the bivariate - t form;'9 
and 

(iii) the returns to scale parameter, say co, defined as w)= 0C +OC2' is 

distributed in the univariate t form; that is, the quantity 

c-Q + 6i2) 

SO) 

has a univariate t distribution with n -3 degrees of freedom, where 

1/l +M22- 2m1l2 
_2 Min, + 122lfl2 

and mi' = (Xr - ir t)' (Xr' - ir f t) (r, r'= 1, 2) are sample moments about sample 
means. 

The generalization of these results to the case of more inputs is quite direct and 
thus will not be developed here. In this case, the parameters of the production 
function are again distributed a posteriori in the multivariate t form. Further, the 
returns to scale parameter is distributed in the univariate t form. Thus, all the 
required distributional results for making exact finite sample inferences are 
available. 

18 For properties of the multivariate t distribution, see Cornish [2], Dunnet and Sobel [4], and 
Raiffa and Schlaifer [12]. 

19 If the prior information, a > 0, A2 > 0 and 0 < A1 + X2 < 1, were introduced as a uniform 
prior distribution, the posterior distribution for Ax1 and O62 would be truncated. Numerical tech- 
niques for analyzing such a distribution are readily available. 
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6. CONCLUSION 

Above, we have presented two alternative specifications of the Cobb-Douglas 
production function model. The first, which we refer to as the "traditional model," 
assumes that firms operate on a nonstochastic production function and maximize 
profits. The model is then made stochastic by introduction of random disturbance 
terms by the econometrician, which yields the traditional or Marschak-Andrews' 
model. 

The second model which we have considered involves assuming that the pro- 
duction functions of firms are identical insofar as form and parameters are con- 
cerned and, in addition, are stochastic. In this model, the profit function is random, 
and we have assumed that firms maximize the mathematical expectation of 
profits, an assumption that leads to a new model for which estimating techniques 
have been presented above. In our opinion, it seems desirable in many economic 
contexts to incorporate the assumption that entrepreneurs are aware of the stochas- 
tic nature of the production process. Further, we have noted that others, mentioned 
above, and more recently Mundlak and Hoch [11], appear to be aware of some of 
the statistical properties of this model, but have failed to provide an economic 
rationale for it in terms of maximization of the mathematical expectation of returns. 
\Vhile we consider this rationalization of our model an improvement relative to 
deterministic profit maximization, we are fully aware of the fact that one-period 
maximization of expected returns is just a step in the direction of a proper treatment 
of stochastic elements in a firms' sequential decision-making process under uncer- 
tainty. For instance, attention should be paid to the fact that the variability of output 
given inputs is sometimes controllable at some cost-so that the variance of the 
production function disturbance may reflect some underlying optimization pro- 
cess.20 In addition, even within the context of our one-period model, further 
generalization is possible to take account of interfirm differences. For example, as 
Mundlak and Hoch point out, specific nonrandom firm effects, as well as random 
disturbance terms, can be introduced to take account of possible neutral disem- 
bodied productivity differentials.2' Further, it would be possible to consider all or 
some parameters of the production function to be random, thus allowing for 
interfirm differences in the exponents of the Cobb-Douglas function, as well as in 
the multiplicative parameter. In such a specification of the model, the econometric- 
ian can estimate the means of random coefficients. 

Finally, we note that in many production function analyses annual data are 
employed, when actual production decisions are probably made in terms of time 

20 This remark is not meant to apply to such sources of randomness as weather conditions; 
examples of situations to which it seems relevant would include control of machine performance, 
the choice of equipment by telephone or electricity companies, the management of processes 
involving waiting lines, etc. 

21 See [11], Section 4. 
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intervals much shorter than a year. There is thus, on many occasions, an important 
temporal aggregation problem which should not be glossed over. In our opinion, 
an appropriate approach to this problem would involve analyzing the intrayear 
sequential decision-making process to ascertain what implications it has for the 
annual data. Current specifying assumptions for production models rmay very well 
be found to be seriously deficient in terms of such an analysis. 

University of Chicago, 
Michigan State Uniiversity, 

and 
Universite Catholique de Louvain 

REFERENCES 

[1] Box, G. E. P., AND G. C. TIAO: "A Further Look at Robustness via Bayes' Theorem," 
Biometrika, 49 (1962), 419-432. 

[2] CORNISH, E. A.: "The Multivariate t-Distribution Associated with a Set of Normal Sample 
Deviates," Australian Journal of Physics, 7 (1954), 531-542. 

[3] DHRYMES, P. J.: "On Devising Unbiased Estimators for the Parameters of the Cobb-Douglas 
Production Function," Econiometrica, 30 (April, 1962), 297-304. 

[4] DUNNETT, C. W., AND M. SOBEL: "A Bivariate Generalization of Student's t-Distribution 
with Tables for Certain Special Cases," Biometrika, 41 (1954), 153-169. 

[5] HOCH, IRVING: "Simultaneous Equation Bias in the Context of the Cobb-Douglas Production 
Function," Econometrica, 26 (October, 1958), 566-578. 

[61 JEFFREYS, H.: Theory of Probability (3rd edition), Oxford: Clarendon Press, 1961. 
[7] KLEIN, L. R.: A Textbook of Econometrics, New York: Row, Peterson, and Co., 1953. 
[8] KMENTA, J.: "Some Properties of Alternative Estimates of the Cobb-Douglas Production 

Function," Econiometrica, 32 (January-April, 1964), 183-188. 
[9] MARSCHAK, J., AND W. J. ANDREWS: "Random Simultaneous Equations and the Theory of 

Production," Econiometrica, 12 (July-October, 1944), 143-205. 
[10] MUNDLAK, YAIR: "Estimation of Production and Behavioral Functions from a Combination 

of Cross-Section and Time-Series Data," in Christ, C. F., et al., Measurenment in Economics, 
Stanford: Stanford University Press, 1963. 

[11] MUNDLAK, Y., AND I. HoCH: "Consequence of Alternative Specifications in Estimation of 
Cobb-Douglas Production Functions," Econometrica, 33 (October, 1965), 814-828. 

[12] RAIFFA, H., AND R. SCHLAIFER: Applied Statistical Decision Thieory, Cambridge, Massachu- 
setts: Harvard University Press, 1961. 

[13] SAVAGE, L. J.: The Subjective Basis of StatisticalPractice (manuscript', Ann Arbor: University 
of Michigan, 1961. 

[14] WALTERS, A. A.: "Production and Cost Functions: An Econometric Survey," Econometrica, 
31 (January-April, 1963), 1-66. 


	Article Contents
	p. 784
	p. 785
	p. 786
	p. 787
	p. 788
	p. 789
	p. 790
	p. 791
	p. 792
	p. 793
	p. 794
	p. 795

	Issue Table of Contents
	Econometrica, Vol. 34, No. 4 (Oct., 1966), pp. 733-909
	Front Matter [pp.  889 - 889]
	Oskar Ryszard Lange, 1904-1965 [pp.  733 - 738]
	Invariance Axioms and Economic Indexes [pp.  739 - 755]
	International Trade Theory in a Vintage-Capital Model [pp.  756 - 767]
	Equilibrium in a Capital Asset Market [pp.  768 - 783]
	Specification and Estimation of Cobb-Douglas Production Function Models [pp.  784 - 795]
	Multi-Item Production and Inventory Management Under Price Uncertainty [pp.  796 - 804]
	Quasi-Cores in a Monetary Economy with Nonconvex Preferences [pp.  805 - 827]
	Aggregate Koyck Functions [pp.  828 - 832]
	Optimum Growth in an Aggregative Model of Capital Accumulation: A Turnpike Theorem [pp.  833 - 850]
	The Estimation of Nonlinear Econometric Systems [pp.  851 - 861]
	The Role of Macroeconomic Models in Short-Term Forecasting [pp.  862 - 872]
	Linear Probability Functions and Discriminant Functions [pp.  873 - 885]
	Notes and Comments
	Optimal Paths of Capital Accumulation Under the Minimum Time Objective--A Comment [pp.  886 - 887]
	Estimation with Heteroscedastic Error Terms [p.  888]

	Book Reviews
	untitled [pp.  890 - 891]
	untitled [pp.  891 - 892]
	untitled [pp.  892 - 894]
	untitled [pp.  894 - 895]
	untitled [pp.  895 - 896]
	untitled [pp.  896 - 897]
	untitled [p.  897]
	untitled [pp.  897 - 899]
	untitled [pp.  899 - 900]
	untitled [pp.  900 - 902]
	untitled [pp.  902 - 903]
	untitled [pp.  903 - 905]
	untitled [pp.  905 - 906]
	untitled [pp.  906 - 907]

	News Notes [p.  908]
	Errata
	Simultaneous Tests for Trend and Serial Correlations for Gaussian Markov Residuals [pp.  908 - 909]
	The Short-Run Flows of Nonfarm Residential Mortgage Credit [p.  909]

	Back Matter





