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SUMMARY. Inference regarding the inclusion or exclusion of random effects in linear mixed models is challenging because the
variance components are located on the boundary of their parameter space under the usual null hypothesis. As a result, the
asymptotic null distribution of the Wald, score, and likelihood ratio tests will not have the typical x” distribution. Although it
has been proved that the correct asymptotic distribution is a mixture of x? distributions, the appropriate mixture distribution
is rather cumbersome and nonintuitive when the null and alternative hypotheses differ by more than one random effect. As
alternatives, we present two permutation tests, one that is based on the best linear unbiased predictors and one that is based
on the restricted likelihood ratio test statistic. Both methods involve weighted residuals, with the weights determined by
the among- and within-subject variance components. The null permutation distributions of our statistics are computed by
permuting the residuals both within and among subjects and are valid both asymptotically and in small samples. We examine
the size and power of our tests via simulation under a variety of settings and apply our test to a published data set of chronic

myelogenous leukemia patients.
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1. Introduction

Linear mixed models (LMMs) are a rich class of models con-
taining both fixed and random effects. LMMs are often used
to fit longitudinal or repeated measures data (Laird and Ware,
1982), where outcomes for a limited number of subjects are
collected repeatedly over time, or with multilevel or clustered
data, where random effects are used to account for the within-
level or within-cluster correlations. Often, inference focuses
upon the need for the inclusion of random effects. For exam-
ple, subjects in a clinical trial may be recruited from a set
of hospitals that are participating in the study. Homogeneity
among patients from the same hospital is likely and can be
accounted for through a random hospital effect in the model.
However, if there is no correlation among patients from the
same hospital then there would be a loss of power by estimat-
ing an unnecessary random effect variance.

The difficulty in testing for random effects lies in the fact
that the variance component of the random effect is equal to
0 under the null hypothesis, a value that is on the bound-
ary of the parameter space. As a result, the usual x> asymp-
totic distributions of the Wald, score, and likelihood ratio
test statistics do not hold. Instead, the correct null distribu-
tion for the likelihood ratio statistic has been shown to be a
mixture of x? distributions (Self and Liang, 1987; Stram and
Lee, 1994). For example, when testing for one random effect,
the null distribution becomes a 50:50 mixture of xi and Xi—l
distributions, where ¢ is the total number of random effects
in the alternative model. The score (Silvapulle and Silvapulle,
1995; Verbeke and Molenberghs, 2003) and Wald (Silvapulle,
1992) tests for variance components have been proven to have
equivalent mixture x? distributions. These modified tests also
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rely on asymptotic approximations and are not guaranteed to
have nominal size with small sample sizes.

Other methods for variance component inference have been
published. Ofversten (1993) developed an exact test for uncor-
related random effects in unbalanced LMMs through orthog-
onal transformations of the model matrix. Crainiceanu and
Ruppert (2004) derived the finite sample null distribution for
the likelihood ratio and restricted likelihood ratio test statis-
tics when testing for a single variance component with no
other nuisance variance components. They derived the spec-
tral decomposition of each test statistic, and they also devel-
oped a simulation algorithm that generates the approximate
finite sample null distribution via the spectral decomposition.
Greven et al. (2008) extended the methods of Crainiceanu
and Ruppert to test for a single variance component in the
presence of multiple independent nuisance random effects and
also developed an approximation to the parametric bootstrap.
Kinney and Dunson (2008) used a Bayesian stochastic search
variable selection method to identify nonzero random effect
variances in LMMs using a modified Cholesky decomposition
of the random effect covariance matrix. By reparameterizing
the LMM, the stochastic search variable selection method can
perform variable selection with the random effects. An alter-
native Bayesian method was developed by Saville and Herring
(2009) in which null and alternative models are compared via
Bayes factors.

Permutation tests are a viable alternative to the above
methods, as permutation tests are known to have nominal
size in finite samples while requiring only a few weak assump-
tions. Nonetheless, the only existing permutation approach
for testing for random effects was presented by Fitzmaurice
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and Ibrahim (2007). The test was specifically designed for
multilevel studies where inclusion of a single random effect
to quantify the heterogeneity among the different levels may
be required. They compared the likelihood ratio test statistic
to an empirical null distribution generated by randomly per-
muting the observed level assignments among the subjects.
However, their test is limited to the setting at hand and can-
not be generalized to longitudinal studies and other correlated
data sources if there are multiple random effects or a single
continuous random effect, such as time.

Our work is a generalization to the approach of Fitzmau-
rice and Ibrahim and leads to a pair of permutation tests that
allow for inference with any number and type of random ef-
fects in an LMM. Both test statistics are a sum of weighted
squared residuals with the weights determined by the among-
and within-subject variance components, and the empirical
null distributions generated via permutations of the residuals.
The first test statistic is based on the best linear unbiased pre-
dictions (BLUPs) (Robinson, 1991) and the second statistic
is the restricted likelihood ratio test statistic assuming nor-
mality of the data. We will show that our tests have valid size
and their powers are comparable to existing methods. We will
also demonstrate that our likelihood ratio based permutation
test can address simultaneous inference on multiple random
effects. We begin with LMM notation and some background
on permutation methods in Section 2. Section 3 follows with a
presentation of our proposed methods. We present the results
of simulations in Section 4 that demonstrate the validity and
power of our methods as we vary both the numbers of subjects
and the numbers of observations per subject. In Section 5, we
apply our methods to data from a longitudinal study inves-
tigating the levels of adenosine deaminase (ADA) in chronic
myelogenous leukemia patients. We close with a discussion of
our work in Section 6.

2. Methods
2.1 Linear Mized Models

Let Y be observation j of subject or cluster i for i = 1,
2,...,Nand =1, 2,...,n;. Following the Laird and Ware
(1982) formulation of the LMM, we have

Yij =Bz + o+ Bppij + binzug + o+ bigzgis + €,

where (i,...,3, are the population level fixed-effect coef-
ficients, and b;,..., b, are the random effects for the ith
subject or cluster. The zy;,...,2,; and zy,...,%,; are the
observed fixed-effect covariates and random effect covari-
ates, respectively, for observation j of subject i. Generally,
71; and 2z, are constant and equal to 1 to represent the
fixed and random intercepts, respectively. The random effects,
b; = {bi1, b2, ... ,b;, } are assumed to have a multivariate nor-
mal distribution with mean 0 and covariance matrix 3, in
which the respective variances for b;i, b, ..., b; are denoted
as aj 0,5 ,ofq. The random errors, €;, are independent,
identically distributed normal random variables with mean
0 and variance o2. For each j, b; and €; are assumed to be
independent, although the elements of b; are not necessarily
independent of each other.

Equivalently, we can write the LMM for subject i us-
ing matrix notation, Y, = X;8+ Z,b; +€;,, where 3=
{B1,B2,...,6,}, € ={€i1,€2,...,€n,}, and X; and Z; are
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subject-specific design matrices for the p fixed-effect covari-
ates and ¢ random effect covariates, respectively. We then
combine data from all subjects sothat Y = {Y|,Y5,..., Y x}
is the Y ;n; vector of outcomes, € = {€1,€,...,€x} is the
> "in; vector of errors, and X and Z are the respective de-
sign matrices for the p fixed-effect covariates and ¢ random
effect covariates formed by successively placing each subject’s
design matrices under each other. Furthermore, if we denote

b={by,by,...,by}, we have
b G 0
Var =
€ 0 R

where G =X ® I and R = 0*Ip, in which ® denotes the
Kroenecker product, and I and Iy, are N x N and Z,n, X
> "in; identity matrices, respectively.

Estimation of the elements of B, G, and R is typically
done through maximum likelihood or restricted maximum
likelihood (REML). Asymptotically, the maximum likelihood
and REML estimators are equivalent, but for small sam-
ple sizes, the REML estimator is expected to be less biased
than the maximum likelihood estimator (Ruppert, Wand,
and Carroll, 2003). In addition, a comprehensive simulation
study performed by Morrell (1998) found that the asymp-
totic likelihood ratio test based on the REML estimates
are closer to nominal than test statistics utilizing the max-
imum likelihood estimates. Therefore, in our proposed meth-
ods we used the REML estimators. Subject-specific random
effects, b;1,..., by, can be predicted using BLUP, the re-
sults from which we denote b = {El, bo,..., l~)\}, where b; =
{bi1,bio, .. ., Biq}. The estimate of 3, B = {51, fs, - . . ,Bp}, and
b are solutions to the following mixed model equations given
by Henderson (1950)

XTR'XB8+XTR'Zb= XTR'Y,
ZTR'XB+ (ZTR'Z+G )b=ZTR'Y,
and lead to the solutions
B=(X"VIX)'X"VY,
b=GZV e, (1)

where é =Y — XﬁA are the residuals and V = ZGZ” + R is
the estimated covariance matrix for Y. In general, b can be
interpreted as realized values of the random vector b (Robin-
son, 1991).

Our objective in this article is to compare an LMM con-
taining p fixed effects and ¢ random effects to a model with
the same p fixed effects but only ¢ — r random effects, where
0 < r < ¢ Performing this inference is equivalent to testing
if the variances of the r random effects are all equal to O.
As stated before classical tests in this situation do not follow
their typical x? distributions. Intuitive arguments as to why
this is the case are presented by Molenberghs and Verbeke
(2007).

2.2 Permutation Tests

A permutation test is one in which the null distribution of
the test statistic is determined through permutations of the
data; the test will have nominal size when the permutations
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are performed correctly. As an example, consider a study in-
vestigating the efficacy of a new treatment by comparing it to
a placebo. The investigators wish to see if the treatment has
an effect on some measured outcome of interest and random-
ize subjects equally to the treatment and placebo groups. Let
X, be the measured outcome for subject i in the treatment
group, i = 1, 2,...,n,, and Y; be the outcome for subject j
in the placebo group, j = 1, 2,...,n,. The X; are assumed
to have distribution F with mean p, and variance o2, and
the Y; are assumed to have distribution F with mean p, and
variance 0. Under the null hypothesis of no treatment effect,
lz = [y, the two groups will have the same mean response,
and more importantly, the same distribution.

Therefore, we can test our null hypothesis using the
mean difference in observed response between treatment and
placebo groups or T'= X — Y, in which X is the observed
mean response in the treatment group and Y is the observed
mean in the placebo group. If F were a normal distribu-
tion, then T, appropriately standardized by its standard error,
would have a t-distribution and the appropriate critical value
would be determined from this distribution. If F were not a
normal distribution, we could still appeal to the Central Limit
Theorem and use the same t-distribution as an asymptotic ap-
proximation to the exact null distribution.

However, under the null hypothesis of no treatment ef-
fect, and conditioning on the observed outcomes of the
n, + n, subjects, the observed response of each patient would
have occurred independent of group assignment. Thus, we can
generate the null distribution for 7 by recomputing 7 under
all P = ("'f””) possible permutations of group assignments.
The p-value is obtained by computing the percentage of values
in the permutation distribution whose magnitudes are at least
as large as the magnitude of T. This permutation test is guar-
anteed to be nominal, meaning its size is no larger than desired
(Hoeffding, 1952). More specifically, permutation tests assume
that the values being permuted are exchangeable under the
null hypothesis (Good, 2005). A vector, Y, is exchangeable
if, for any permutation of Y denoted as Y*, Y* has the same
distribution as Y (Commenges, 2003). It should be noted that
exchangeability is a weaker condition than independent and
identically distributed.

As the amount of data increases, so does the number of
possible permutations, eventually making exact enumeration
of all P permutations computationally unfeasible. Instead of
calculating all possible permutations, an approximate permu-
tation distribution can be generated through Monte Carlo
sampling (Dwass, 1957). By randomly permuting the data
between 100 and 1600 times (Good, 2005), an approximate
permutation distribution can be generated, assuming the ran-
domly selected permutations are drawn to sufficiently repre-
sent the tails of the exact permutation distribution.

3. Proposed Methods

3.1 Best Linear Unbiased Predictors Based Permutation Test
We begin by considering the hypothesis test for the inclusion
or exclusion of a single random effect, b; ~ N(O,Jfl ), in an
LMM with no other random effects present. This is equivalent
to testing if U}f’ = 0. Thus, we are comparing the following
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models:

Hy: Y = Biwyj + -+ Bymwyij + €5, (2)

H: Y = fixy; + -+ Bpxpij + binzij + €. (3)

We use
N
7= B4/N, (4)
i=1

as our test statistic, which is the sample variance of the
BLUPs for the random effect, b;. This statistic involves the
sum of the squared BLUPs where the BLUPs are treated as a
random sample of b; ~ N (0, ofl ). Note that the denominator
of the test statistic is constant for all of the permutations and
does not affect the validity or power of our test.

To construct the permutation distribution with which to
compare the observed test statistic, we permute the marginal
errors, € =Y — X 3. Under the null hypothesis of no ran-
dom effects, the € are exchangeable, and more specifically,
independent and identically normally distributed with mean
0 and variance o?. By subtracting the fixed effects, X 3 from
the response Y, the errors have the benefit of not requiring
the continuous X'’s to be identical among all subjects nor
do the number of observations for each subject need to be
the same. Therefore, we can permute the errors both within
and between subjects. In practice, the errors are estimated by
the residuals, é =Y — XB, calculated from estimates fit from
the alternative model, and Schmoyer (1994) showed that the
residuals are also asymptotically exchangeable both within
and among subjects under the null hypothesis.

The marginal residuals are part of the calculation for the
BLUPs and lead to a straightforward permutation distribu-
tion for Tj. For each permutation £ = 1, 2,...,1000, we ran-
domly permute the marginal residuals. Using these permuted
residuals, we generate a permuted estimate ab 4 for ah , from
which we compute permuted values of the BLUPs that are
used to compute T7,, the permuted value of our test statistic
T;. These 1000 permuted values of T; result in an approxi-
mate empirical null distribution of 7). The reestimation of o;
is performed because some permutations of the residuals will
result in &f/ =0 and lead to the empirical null distribution
having positive mass at zero. We then generate a p-value by
calculating the percentage of permutations with 7} greater
than 7.

Next, we extend the permutation test to test for the pres-
ence of a single random effect in a model that contains other
random effects such as:

Hy:Y, j

= Bz + o+ BpTpiy + binzuy + €y, (5)

H, Y =iz + -4 Bpxpij + binzi + biszai; + €. (6)

In this setting, the null model now contains other ran-
dom effects so that all Z n; errors are no longer ex-
changeable under the null hypothesis. Instead, the errors are
normally distributed with mean 0 and covariance matrix,
Vo = Jflu Z"Z + Ry with Ry =0 I. We resolve this issue
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by weighting the errors by the matrix (U{)~!, where U, is
the Cholesky decomposition of Vi, ie., Vo = Ul U,. As a
result, the set of weighted errors, (UT)"(Y — X 3), are nor-
mally distributed with mean 0 and covariance matrix I, and
are thereby exchangeable, allowing once again for permuta-
tions both within and between subjects. We reexpress the test
statistic 7} in equation (4), to incorporate the Cholesky de-
composition as:

1= N = @2V U (U7) (v - XA)].
i=1 i=1 (7)

Note that T3 is only calculated for the single random effect
being tested. For the observed data the statistic remains the
sample variance of b;, because UL (UT)~! equals the identity
for the unpermuted weighted residuals. Also, the earlier ran-
dom intercept hypothesis test is a special case of this test,
because the Cholesky decomposition in that scenario is equal
to the identity, and (7) reduces to (4). With the appropriate
weights, this BLUP-based permutation test can be used to
perform inference on any single random effect of interest.

In simulation studies, this permutation test is shown to be
valid and displays power comparable to the asymptotic mix-
ture x? likelihood ratio tests. The test is very intuitive and
easy to perform. However, because the test is based on the
BLUPs, it does have one limitation: it can only test for one
random effect at a time. In the next section, we present a like-
lihood ratio based permutation test that allows for testing of
multiple random effects and of which the BLUP permutation
test is a special case.

3.2 Likelithood Ratio Based Permutation Test

This permutation test is based on the restricted likelihood
ratio test statistic, A = —2log(Ly, — Lu,), where Ly, and
Ly, are the restricted likelihoods under the null and alter-
native hypotheses, respectively. Using the same LMM nota-
tion as described previously where Y ~ N(X3,V) and € =
Y — X3, we have A =log[|[Vo|/|Vi]] + €l (Vo' = Vit)e+
log [|X7 Vo X|/|X7 Vi L X
Let us test for a random intercept using the null and alter-
native hypotheses stated in (2) and (3). Similar to the BLUP-
based permutation test, the likelihood ratio test statistic in-
volves the marginal errors, €, and we can permute € within
and between the subjects under the null hypothesis. There-
fore, the test statistic becomes
Ty = log [[Vo|/Vall + & (Vo ' = Vi )& ®
+log[IXT Vo' X /| X" Vi X ],

which is A with all parameters replaced by their estimates
under the null and alternative hypotheses as denoted by their
subscripts.

Similar to the BLUP-based permutation test, a new Vo
and V, is estimated for each permutation of é; and denoted
as VO* and ‘71* The permuted residuals are treated as an
outcome, and Vb* is estimated from a mixed model with a
fixed intercept and random effects from the null hypothesis.
We estimate Vl* from a mixed model with a fixed intercept
and random effects from the alternative hypothesis.
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Reestimation of Vp and V;  is necessary due to the changes
that occur in the rank of 3 when random effect variances are
estimated to be equal to 0. If we do not reestimate Vg, and
Vi (including ¥, and 3;), the permutation distribution will
be completely based on estimates from the observed data. By
estimating V and V; for each permutation, we allow the em-
pirical distribution to ‘mix’ as the rank of 3 varies, thereby
generating a distribution similar to the mixture x? asymptotic
distribution of Stram and Lee (1994). We create the permu-
tation distribution by calculating T3 for each of the random
permutations and determine a p-value through the location
of T3 in the permutation distribution.

When testing the presence of one random effect with one or
more additional random effects in the null hypothesis, things
proceed similar to that of the BLUP permutation test. To be
able to permute the errors, they must first be weighted by
(UTF)~'. Once weighted, the errors are exchangeable and can
be permuted. The permuted weighted errors are then multi-
plied (unweighted) by (U7') to get them back on the original
scale of the residuals, and for each permutation, V{)* and Vl*
are reestimated using the unweighted permuted errors as de-
scribed earlier. Then Tj is calculated, and the permutation
distribution is generated for the likelihood ratio test statistic
to which the observed test statistic will be compared and a
p-value calculated.

If we wish to test for the inclusion of 0 < r < ¢ random
effects, we have the models:

Ho:Yij = Bz + -+ Bppij + bz
Tt b 2-ris €
Hy Y = Py + -+ Bpmpij + binzug + -+ bigzgij + €ij-

The steps for this scenario are identical to those from the
previous scenario where testing for one random effect in the
presence of additional random effects in the null hypothesis.
Nonetheless, we emphasize the importance of reestimating ¥y
and X, after each permutation when testing for multiple ran-
dom effects. Herein lies the largest contribution of our meth-
ods: for a general value of r, simulation is the only existing
approach for calculating the correct mixing probabilities for
the x? distributions. In contrast, our permutation test based
on the likelihood ratio statistic will automatically generate
the correct mixing probabilities as the rank of )38 changes
from permutation to permutation.

4. Simulation Studies
4.1 Validity

We performed a series of simulation studies to examine the
performance of our permutation tests under a number of dif-
ferent settings. The first study was used to evaluate the valid-
ity of our two tests under four different scenarios: (1) testing
for a random intercept, (2) testing for a random slope given
an independent random intercept is present in the null hy-
pothesis, (3) testing for a random slope given a potentially
correlated random intercept, and (4) simultaneously testing
for both random intercept and random slope. Five hundred
data sets were generated for each of the simulation scenarios
using the following random intercept model:

Yi; = Bi + Poxaij + biy + €5, 9)
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with 8; = 3, By = 2.75, 02 = 1, byy ~ N(0, 02,), and our fixed
effect, 2,;;, was randomly drawn from the standard normal
distribution. Then, similar to Saville and Herring (2009), z,;
was centered at 0 and scaled by twice its standard error. For
scenarios 1 and 4, Ul?u was set equal to 0, while for scenarios
2 and 3, o7 was set to 1. We varied both the number of sub-
jects, N € {50 10}, as well as the number of observations per
subject, n € {10, 5}, and compared the size of our permutation
tests to that of the asymptotic restricted likelihood ratio test
with a 50:50 mixture of x? distributions with 0 and 1 degrees
of freedom, 1 and 2 degrees of freedom, 1 and 2 degrees of free-
dom, and 0, 1, and 2 degrees of freedom in a 25:50:25 ratio,
for scenarios 1, 2, 3, and 4, respectively. The mixing probabil-
ities for scenario 4 were derived from case 4 of Stram and Lee
(1994) who state that when the information matrix is equal
to the identity under the null hypothesis, the likelihood ratio
test has an asymptotic null distribution that is a mixture of x>
distributions with binomial mixing probabilities. For all other
situations they recommend finding the critical value through
simulations.

All estimates were performed in the statistical package R
using the lmer() function from the R-package 1me4 (Bates,
Maechler, and Bolker, 2011). Unlike other LMM fitting al-
gorithms that can only estimate extremely small values for
variances, 1mer () is able to estimate 0 for the variance com-
ponents. The simulations were performed using 20 cores of
an Intel Xeon X5660 2.80 GHz server with 32 gigabytes of
memory.
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The simulation results for validity are presented in Table 1.
In all settings, both permutation tests have valid size, defined
as a size contained in the interval (0.031, 0.061), the approx-
imate 95% confidence interval for type I error rate with 500
simulations. In contrast, the asymptotic test for one random
effect (scenarios 1, 2, and 3) becomes more conservative as the
number of subjects or the number of observations decreases.
In addition, it appears that under scenario 4, the asymptotic
likelihood ratio test is liberal when N = 10 and n = 5.

4.2 Power

The simulations to examine the power of the tests were per-
formed for the same four scenarios in the validity study. We
generated 500 data sets using the random intercept and slope
model:

Yij = 81+ Bowaij + bin + binzaij + €, (10)

with the same fixed effects from the validity simulations and
with b ~ N(0, 02), bis ~ N(0, 6%), and a»;; = 2;;. We varied
the variance of the random effect (or random effects under
scenario 4) of interest, k € {1, 2}, o2 € {0.15, 0.2, 0.3} as
well as both the number of subjects, N € {50, 10}, and the
number of observations per subject, n € {10, 5}. For scenarios
3 and 4 the correlation of the random effects, p, was set equal
to —0.3.

The results of the power simulations are shown in Table 1.
With the exception of scenario 4, both permutation tests dis-
played strictly better power than the asymptotic test, even

Table 1
Size and power for the permutation tests compared to the asymptotic likelihood ratio test

Testing scenarios

(1)

(2) (3)

o2, and/or

N n 0%2 B L A B L A B L A L A
50 10 0 5.8 5.8 5.0 5.8 5.8 5.6 5.0 4.8 4.2 4.2 4.4
0.15 99.2 99.2 98.8 40.2 41.2 38.4 45.2 42.6 38.9 98.0 98.0
0.20 100.0 100.0 100.0 57.4 58.4 55.4 62.2 58.4 56.4 98.8 98.8
0.30 100.0 100.0 100.0 82.4 81.0 78.8 78.8 75.4 73.6 99.8 99.8
5 0 3.8 3.6 2.6 6.2 5.2 5.0 5.0 5.2 4.4 4.8 4.0
0.15 80.0 80.0 77.6 16.2 18.2 16.0 21.4 22.0 18.6 56.4 55.4
0.20 91.2 91.2 90.2 27.8 27.4 24.4 27.0 25.4 22.0 70.1 69.3
0.30 97.6 97.6 97.6 38.4 39.0 36.8 41.6 39.6 36.6 92.6 92.6
10 10 0 5.4 5.4 4.0 5.2 4.4 3.0 6.2 4.8 3.4 4.2 5.0
0.15 63.4 63.2 58.8 16.2 15.2 12.6 17.3 16.3 11.0 55.6 58.3
0.20 75.2 74.6 69.6 23.6 23.6 19.8 23.1 21.7 17.3 68.1 70.1
0.30 89.0 89.0 87.6 34.4 34.8 29.8 30.7 27.3 22.5 88.2 89.0
5 0 4.6 4.4 3.6 5.2 3.8 2.6 5.6 5.2 3.8 5.6 7.0
0.15 31.6 29.4 27.0 10.0 8.6 7.0 9.8 10.0 7.2 24.8 29.1
0.20 44.6 43.4 37.6 12.6 114 9.2 12.6 13.0 8.8 37.5 42.1
0.30 63.6 62.0 58.6 12.8 13.8 11.2 15.7 15.7 10.6 47.9 53.3

Results are reported in percentages.

Random intercept test.
Random slope test with an independent random intercept present.
Random slope test with a correlated random intercept present.
Simultaneous test for the random intercept and random slope.
B: BLUP-based permutation test.
L: Likelihood ratio based permutation test.
A: Asymptotic likelihood ratio test.

(1):
(2):
(3):
(4):
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when the asymptotic test had nominal size. For scenario 4
the asymptotic likelihood ratio test using the 25:50:25 ratio
of x? distributions and the likelihood ratio based permuta-
tion test performed very similarly when N = 50. However,
the number of rejections of the asymptotic test is higher than
the permutation test for N = 10, and this can be explained
by its inflated type I error rate. In fact, when critical values
found through simulation were used instead of the 25:50:25
mixture x? null distribution, the power results for the asymp-
totic test were almost identical to those from the permutation
test for all combinations of N and n.

Given that the residuals follow known normal distributions,
it is possible that residuals could be drawn directly from those
distributions (bootstrapped), rather than permuting the ac-
tual residuals, to generate the empirical null distributions of
Ty, Ty, and T3. To examine this idea, we performed simu-
lations in which we replaced permuting the residuals with
instead simulating new values from the appropriate normal
distributions. All other steps in the permutation tests were
identical to those presented in Section 3. Both the BLUP and
the restricted likelihood ratio versions were examined. N and
n were set at 10, and we varied the variance of the random
slope, 02, € {0, 0.15, 0.2, 0.3}. We tested for the presence of a
random slope given a potentially correlated random intercept.
The results from these simulations closely mirrored the results
of the permutation tests in Table 1. Both test statistics using
bootstrap residuals led to valid inference. When o2, = 0.15
the powers were 16.1% and 16.6% for the BLUP test and the
restricted likelihood ratio tests, respectively, compared with
the 17.3% and 16.3% from the permutation tests. For 0%, =
0.2 the powers for the BLUP and the restricted likelihood ra-
tio tests were 23.1% and 20.7%, respectively, and for o2, =
0.3, the powers were 29.1% and 27.9%, respectively.

4.3 Sensitivity to Nonnormality

We also investigated the sensitivity of the permutation tests
to nonnormality of the random effects and/or residuals when
testing for a random slope given an independent random inter-
cept in the model with N =10 and n = 10. Both the null model
with 0%, = 0 and the alternative with o2, = 0.3 were run. Four
different settings were studied: (1a) normal errors and normal
random effects, (1b) logistically distributed errors and normal
random effects, (1¢) normal errors and logistically distributed
random effects, and (1d) logistically distributed errors and
logistically distributed random effects. Size and power esti-
mates are given in Table 2. We see that under the null hy-
pothesis, both permutation tests appear have size closer to
nominal than the asymptotic test, with the asymptotic test
being conservative in settings la, 1b, and lc. Under the alter-
native hypothesis, we see that as expected, the permutation
test is most powerful when the data truly are normally dis-
tributed (setting la), with slight losses in power when extra
variation due to nonnormality exists in the data. Nonetheless,
the power losses of the permutation tests are slight, and in all
settings, the permutation tests display greater power than the
asymptotic test.

4.4 Comparison to Existing Methods

In our final simulation study, we compared the permutation
tests to a portion of the results published by Saville and Her-
ring (2009) when testing for the presence of a random slope.
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Table 2
Size and power of proposed permutation tests when random
effects and/or errors are nonnormally distributed

Method

Model Setting B L A

0?2 = 0.0 la 5.2 4.4 3.0
1b 5.4 4.4 3.6
1lc 4.4 4.4 3.2
1d 5.0 5.0 5.6

0?2 =0.3 la 34.4 34.8 29.8
1b 29.2 29.4 26.8
1lc 29.4 30.4 25.2
1d 29.4 30.0 27.2

Results are reported in percentages.

Settings: (1a): Normal errors and normal random effects.
(1b): Logistic errors and normal random effects.

(1c¢): Normal errors and logistic random effects.

(1d): Logistic errors and logistic random effects.

B: BLUP-based permutation test.

L: Likelihood ratio based permutation test.

A: Asymptotic likelihood ratio test.

Following their simulation settings, we generated 250 data
sets from (10) with 8y = 2.75, 31 = 3, n, = n = 10, 0%, = 1,
and p = —0.3. The standard deviation for the random slope,
o € {0, 0.15, 0.30, 0.45, 0.60}. Table 3 presents the BLUP
and likelihood ratio based permutation results for N € {100,
50} next to the published results from Saville and Herring
resulting from Bayes factors based on two different parame-
terizations of the model.

We see that the power for the likelihood ratio based permu-
tation test is comparable with the approximate Bayes factors
method employed by Saville and Herring. Despite some differ-
ence in results due to simulation variability, for all settings,
our permutation test is as powerful or even more powerful
than one or both of the tests of Saville and Herring.

Table 3
Comparison of power of permutation tests to results reported
by Saville and Herring when testing for the inclusion of a
random slope

N 0 SH1 SH2 BLUP LRT

50 0.00 8 3 3 4
0.15 14 7 8 9
0.30 30 17 28 22
0.45 56 57 66 60
0.60 75 90 94 91

100 0.00 4 4 5 4
0.15 12 8 14 12
0.30 38 38 44 43
0.45 69 87 91 90
0.60 72 99 100 100

Results are reported in percentages.

SH1: Bayes’ factor as described in Saville and Herring (2009, p. 370).
SH2: Bayes’ factor as described in Saville and Herring (2009, p. 371).
BLUP: BLUP-based permutation test.

LRT: Likelihood ratio based permutation test.
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Figure 1. Boxplots stratified by stage of the patient-specific
intercepts and slopes produced from a linear regression model
of ADA levels over time.

5. Application

We applied our permutation test to a set of data presented
in Klein, Klotz, and Grever (1984) that was collected on pa-
tients with chronic myelogenous leukemia. Chronic myeloge-
nous leukemia is characterized by a lengthy chronic phase
with little to no symptoms that eventually transitions into
an accelerated phase that behaves similar to acute leukemia.
The length of time until the transition from a chronic to an
accelerated phase can vary greatly among patients, motivat-
ing the discovery of markers that can indicate when chronic
myelogenous leukemia is about to change from a chronic to an
accelerated stage. One potential marker is adenosine deami-
nase or ADA. This particular data set contains the ADA levels
of 55 patients that were measured at various time points dur-
ing their follow-up. Time is quantified as days following the
initial observation date, and at each time point, investigators
also recorded the phase of each patient’s disease as chronic
or accelerated. The frequency of the repeated measurements
as well as the times of the measurements were not fixed and
fluctuated greatly. Patients had anywhere from 2 to 59 mea-
surements, and the repeated measurements took place from
the initial observation date up to 1073 days following the di-
agnosis date.

We modeled the ADA measurements as patients progress
from chronic to accelerated phases, and we were primarily
interested in evaluating the level of heterogeneity among the
patients to see if random effects are necessary in our model.
Figure 1 contains boxplots stratified by stage of disease of the
slopes and intercepts from individual linear regressions of each
patient’s ADA measurements on time. The figure indicates
significant variation between the two stages, both in terms of
mean ADA levels as well as changes over time, necessitating
the inclusion of random effects.

We are also interested in investigating how the rate of
change in ADA differs between chronic and accelerated
phases. We applied a cubed root transformation to the ADA
values so that they were approximately normally distributed,
and fit an LMM with the cubed root ADA assay values re-
gressed on disease phase, with chronic as the baseline cate-
gory, number of days from the initial observation date, and
interaction terms between the two to allow the time effect
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Table 4
Permutation and asymptotic likelihood ratio test results for
inclusion of specific random effects when modeling ADA levels
in patients with chronic myelogenous leukemia

Observed Permutation Asymptotic
Test LRTS p-value p-value
(5) versus (4) 3.00 0.226 0.474
(4) versus (1) 234.59 < 0.001 < 0.001
(4) versus (2) 146.99 < 0.001 < 0.001
(4 12.88 0.019 0.004

1): No random effects.
2): Random intercept only model.
3): Random intercepts for both stages model.
(4): Random intercepts for both stages and a random slope for acute
stage only.
(5): Random intercepts and slopes for both stages.

)
)
) versus (3)
(
(
(

to differ between the two disease states. Our initial model is
ADA:/& = 31 + ba + (B2 + bi)State; + (B3 + biz)Days;; +
(B4 + bis)State; = Days; + €;. The full random effects model
includes four random effects, b;1, b;2, b;3, and b4, to allow for
at most a random intercept and time effect for each of the
two disease stages. We wish test if any or all of these random
effects should be included.

Table 4 shows the results of our permutation tests, based
on 1000 permutations, for the inclusion or exclusion of the
random effects, along with results from the asymptotic likeli-
hood ratio test. Both tests support what is seen in Figure 1:
the random day effect for the chronic stage is not significant,
while the other three random effects appear to be significant.
As a gauge of the computation time necessary, each of these
tests takes around 4 minutes to perform when using 20 cores
of an Intel Xeon X5660 2.80 GHz server with 32 gigabytes of
memory.

6. Discussion

In this article, we have proposed two methods for performing
inference on random effects by permuting the weighted resid-
uals both within and among subjects. In some simulations,
we have found that the convergence of the solutions derived
from the 1mer () function in the statistical package R appears
to suffer as the number of random effects increases. Our cur-
rent solution is to generate more permutations to ensure that
there are enough permutations to create the null distribution.

As demonstrated, the proposed permutation tests perform
well even when the number of patients and the number of
observations per patient is small. The tests also do not re-
quire balanced data nor do the measurements need to oc-
cur at the same points in time. As a result, our meth-
ods can be applied to the use of an LMM representation
of penalized spline models (Ruppert et al., 2003) in which
the smoothing parameter is a random effect. Finally, im-
plementing these permutation tests is straightforward and
can be incorporated into standard practice for analysis of
LMDMs using existing software; example computer code can
be found at www.sph.umich.edu//tombraun/software.html.
Although the methods are computationally intensive, the re-
cent rise in parallel computing through clusters and multicore
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processors has made it possible to greatly reduce the amount
of time necessary to implement these tests.

We are currently generalizing the methods presented in this
manuscript to allow for permutation-based inference in gener-
alized linear mixed models (GLMMs). Our approach is based
upon a first-order approximation of the GLMMs to make it
resemble the form of an LMM, an approach that is the founda-
tion of penalized quasi-likelihood (Breslow and Clayton, 1993)
for estimation in GLMMs. We plan to present the results of
our research in a forthcoming manuscript.
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