FREE CODE
FOR PROPER ORTHOGONAL DECOMPOSITION OF VELOCITY DISTRIBUTIONS

The POD codes for the work described in this paper were developed using commercial
software MATLAB®, Ver. 2009b. The code for velocity distributions is provided below.
Comments to explain the code are shown in ‘italics’.

Details of the code and how to use POD (also for scalar fields) are provided in the original
paper published in the International Journal of Engine Research 2012

A practical guide for using proper orthogonal decomposition in engine research
Hao Chen?, David L. Reuss?, David L.S. Hung3, Volker Sick?
1 Shanghai Jiao Tong University
2The University of Michigan

3 University of Michigan-Shanghai Jiao Tong University Joint Institute

The paper is accepted and will soon be available online.
When using this code, please reference this paper.
Also consider reading the following:

“On the use and interpretation of proper orthogonal decomposition of in-cylinder engine
flows” Hao Chen, David L. Reuss, Volker Sick

Measurement Science and Technology, 2012, Vol. 23, 085302

Doi: 10.1088/0957-0233/23/8/085302

Contact: Volker Sick, vsick@umich.edu

function VelocityDistributionPOD (SnapshotsAddress)
Method of Snapshots
Section 1 - Input snapshots
Each snapshot (txt file) contains four columns. The first two columns are the velocity
distribution grid point coordinates for x and y direction, respectively. The last two columns
are u and v velocities, respectively.
files = dir([SnapshotsAddress,"*.txt']);
n_snapshots = size(files,1);
for j=1:n_snapshots
fid = fopen([SnapshotsAddress,files(j).name], 'r');
data = fscanf(fid,'%f %f %f %f",[4,inf]);
x=data(1l,:); % x coordinate
y =data(2,:); %y coordinate
U(j,:) =data(3,:); % u velocity

Page 1 of 2



V(j,:) =data(4,:); % vvelocity
fclose(fid);
end

Section 2 - Compute spatial correlation matrix C
cl =U*U%

c2 =V*V",

C =(c1+c2)/n_snapshots;

Section 3 - Solve the eigenvalue problem: C * EigenVector = EigenValue * EigenVector
[beta, Imd] = svd(C);

Section 4 - Calculate basis functions
phix = U'*beta;
phiy = V'*beta;
% Normalize basis functions
GridNum = size(x,2);
for j=1:n_snapshots
PhiNor = 0;
for i=1:GridNum
PhiNor = PhiNor + phix(i,j)*2 + phiy(i,j)*2;
end
PhiNor = sqrt(PhiNor);
phix(:,j)= phix(:j)/PhiNor;
phiy(:,j)= phiy(:,j)/PhiNor;
end

Section 5 - Calculate coefficient
TimCoeU = U*phix;

TimCoeV = V*phiy;

TimCoe = TimCoeU + TimCoeV;

Section 6 - Export basis functions
for a=1:n_snapshots
FilNamPhi = 1000+a;
PhiOut = fopen([SnapshotsAddress,num2str(FilNamPhi),".txt']’, 'wt');
fprintf(PhiOut, '#DaVis 7.2.2 2D-vector 16 145 145 "position" "mm" "position" "mm"
"velocity" "m/s"\n');
phia = [x;y;phix(:,a)’;phiy(:,a)'];
fprintf(PhiOut, '%20.9f %20.9f %20.9f %20.9f\n',phia);
fclose(PhiOut);
end
% Write coefficients into excel file
xlswrite([SnapshotsAddress,'TimCoe.xlsx'],TimCoe);

Page 2 of 2



