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Abstract

According to a regnant criterion of physical equivalence for quantum theories, a quantum field
theory (QFT) typically admits continuously many physically inequivalent realizations. This, the
second of a two-part introduction to topics in the philosophy of QFT, continues the investigation
of this alarming circumstance. It begins with a brief catalog of quantum field theoretic examples
of this non-uniqueness, then presents the basics of the algebraic approach to quantum theories,
which discloses a structure common even to ‘physically inequivalent’ realizations of a QFT.
Finally, it introduces and evaluates a handful of strategies for interpreting quantum theories in the
face of the non-uniqueness of their Hilbert space representations.

Part I of this mathematically informal introduction to interpretive questions that arise
in connection with quantum field theory (QFT) highlighted a signal disanalogy
between ordinary non-relativistic quantum mechanics (QM) and what it called QM¥.
Ordinary QM lies within the scope of the Stone–von Neumann and Wigner–Jordan
theorems, which guarantee the uniqueness of the representation of the canonical com-
mutation relations (CCRs) (Stone von-Neumann) or canonical anticommutation rela-
tions (CARs) (Wigner–Jordan) constituting the quantum theory of a system with
finitely many degrees of freedom. For n finite, the Jordan–Wigner theorem assures us,
any representation of the CARs for n spin systems is unitarily equivalent to any
other. Mutatis mutandis (and with a few qualifications (cf. Summers 2001), the
Stone–von Neumann theorem assures us that representations of the CCRs are unique
up to unitary equivalence. As unitary equivalence is both a plausible and a venerable
criterion for the physical equivalence of quantum theories, these theorems are taken
to establish that the physical theory obtained by carrying out the instruction ‘quantize
this system’ is unique, provided the system possesses only finitely many degrees of
freedom.

Theories of QM¥ concern systems possessing infinitely many degrees of freedom:
QFTs, which associate a field amplitude and a conjugate momentum with every point of
spacetime, and the thermodynamic limit of statistical mechanics, reached by letting the
number of microsystems considered and the volume they occupy go to infinity, while
keeping their density finite. Theories of QM¥ fall outside the scope of the Stone–von
Neumann and Jordan–Wigner theorems. They admit presumptively physically inequiva-
lent realizations. This essay considers interpretive responses to that circumstance. Sec-
tion 1 documents examples of unitarily inequivalent quantizations of the simplest
imaginable classical field theory, the Klein–Gordon theory, and considers repercussions of
this non-uniqueness for the idea that QFT – understood by its practitioners as particle
physics – sustains a particle interpretation. The consideration is continued in Section 2’s
account of Haag’s theorem and interacting QFTs. Section 3 sketches the rudiments of
the algebraic approach to quantum theories, an approach which enables us not only to
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compare different unitarily inequivalent realizations of a quantum theory, but also to see
what those realizations might have in common. Section 4 uses the algebraic apparatus to
articulate, and begin to evaluate, a variety of approaches to interpreting QM¥.

1. The Free Klein–Gordon Field: Particle Ontology

The theory of the mass m free boson field, obtained by quantizing the classical mass m
Klein–Gordon field in Minkowski spacetime, may be the simplest QFT there is. The aim
of section’s impressionistic treatment is to place this theory of QM¥ outside the scope of
the Stone–von Neumann theorem.

First, some spacetime preliminaries (for a proper introduction, consult Wald 1984)
Minkowski spacetime, the spacetime of Special Relativity, is highly symmetric. It admits
a (indeed, many) coordinate system such that the light cone structure at each point
assumes the familiar 45s shape in that coordinate system. Less pictorially put, the metric
of Minkowski spacetime is unchanged under a group of transformations that include
translations, rotations, and Lorentz boosts (which can be thought of as translating between
inertial coordinate systems adapted to observers moving at constant velocity with respect
to one another). These symmetries of the metric, aka isometries, form a group called the
Poincaré group. General Relativity traffics in more general spacetimes, typically with a
much more variable light cone structure. An arbitrary general relativistic spacetime – a
solution to Einstein’s field equations – needn’t have any isometries whatsoever.

Where (x1, x2, x3, t) are inertial coordinates for Minkowski spacetime, the classical
Klein–Gordon equation for mass m is
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Solutions /(x) to (1) are maps from points of Minkowski spacetime to C. To follow the
Hamiltonian recipe for quantizing classical Klein–Gordon theory is to find a Hilbert space
representation of CCRs involving the field amplitudes u(x) and conjugate momenta p(x)
(see Wald (1994, §3.1) for details).

In Minkowski space-time, such a representation can be obtained by following a text-
book ‘frequency-splitting’ heuristic for quantizing Klein–Gordon theory (for which, see
Kaku 1993, Ch. 3.2; Wald 1994, Ch. 4.3). Solutions to the Klein–Gordon equation can
be Fourier-decomposed into uncoupled normal modes with angular frequency xk. This
suggests an infinite collection of independent oscillators as a model of the classical field.
The standard quantization of the simple harmonic oscillator deploys ‘raising’ and ‘lower-
ing’ operators interdefined with p̂ and q̂ and facilitating a perspicuous treatment of system
energetics. Exploiting the analogy with the simple harmonic oscillator, the textbook
approach represents the CCRs quantizing Klein–Gordon theory by means of ‘raising’ and
‘lowering’ operators â
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These operators (which are more commonly, albeit misleadingly (see Teller 1995),
known as ‘creation and ‘annihilation’ operators) act on a kind of Hilbert space known as
a symmetric Fock space (see Wald 1994, A.2 for a definition).

The action of the raising and lowering operators facilitates the interpretation of quan-
tized Klein–Gordon theory as particle physics. The Fock space features a state |0æ such
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that âkj0i ¼ 0 for all k. |0æ, called the vacuum state, is the lowest energy eigenstate of the
quantum Hamiltonian for the free boson field (also handled by analogy with the simple
harmonic oscillator). The state â

y
kj0i is an eigenstate of the Hamiltonian with the same

total energy a particle with frequency xk would have – provided the momentum and rest
masses of this particles are given by standard relativistic expressions. The pattern reiterates.
The state |nkæ, obtained by acting on the vacuum n times with â

y
k and normalizing, has

the energy appropriate to n particles of frequency xk, and so on. Acting on |nkæ with âk

and normalizing yields a state with the energy appropriate to n)1 particles of frequency
xk, and so on. (It is important to emphasize that these are truths about the relations
between Fock space vectors and raising and lowering operators. While the truths tempt
an understanding of the action of the raising operator as an event of physical particle cre-
ation, that is an optional interpretive overlay to the mathematical facts.) The operator
N̂k ¼ â

y
kâk is known as the number operator for particles of variety k. Its eigenvalues are

natural numbers; the state |nkæ is an N̂k eigenstate with eigenvalue n. Thus N̂k is under-
stood to count particles of variety k: its expectation value in a state gives the mean num-
ber of particles of variety k one would find in that state. Hence, N̂ ¼

P
j â
y
j âj is the total

number operator. That for all k, h0jN̂kj0i ¼ h0jN̂ j0i ¼ 0 reinforces |0æ’s claim to be the
vacuum or no-particle state.

States that admit analysis in terms of their particle contents are not isolated. Every state
in the Fock space can be approximated to arbitrary precision by acting on |0æ with poly-
nomial combinations of raising and lowering operators.

Still, it must be noted just how radically a particle concept framed by QFT departs
from our ingrained particulate expectations. Particles, as we think of them, are confined
to finite, bounded regions of spacetime. A number of results (Malament 1996; Halvorson
and Clifton 2002) suggest that such confinement cannot be had in QFT. Particles, as we
think of them, possess what the scholastics called ‘haecceity’, Teller (1995, 17) ‘primitive
thisness,’ and Redhead (1983, 59) ‘transcendental identity.’ An extensive literature (see
Castellani (1998) for a sample) questions whether bosons and fermions can exhibit this
and yet abide by the non-Maxwell-Boltzmann statistics characteristic of their aggregates.
Particles, as we think of them, are persistent in their presence and inert in their absence.
Excitations of the quantum field are subject to creation and annihilation; even the vac-
uum fluctuates (Redhead, op. cit.). Particles, as we think of them, come in sets with
determinate cardinality. States of the quantum field need not be eigenstates of the total
particle number operator, and thus (on the usual way of thinking about quantum systems)
need not be states describing a determinate number of particles (Teller 1995, Ch. 2).
These are all grounds for doubting that QFT is a theory of particles as we think of them,
particles as well-localized, enduring, individuable gobbets of mass-energy. But they leave
intact the possibility of a particle concept fundamental to QFT in something like the way
position and momentum are fundamental to classical mechanics: just as a classical state
can be completely characterized and distinguished from other classical states by specifying
its position and momentum, so too a state of the quantum field can be completely char-
acterized in terms of its particle contents.

Because the phase space of Klein–Gordon theory is not finite, the Stone–von Neumann
theorem cannot vouch that this representation is unique up to unitary equivalence. Indeed,
the CCRs for the Klein–Gordon field admit continuously many inequivalent representations.
(See Garding and Wightman (1954) or Arageorgis (1995, Appendix C), for a construction of
unitarily inequivalent Fock space representations that deploys a move similar to that used in
Section 5.1 of Aspects of QFT, Part I to exhibit unitarily inequivalent models of the infinite
spin chain.) One symptom of this unitary inequivalence is that the vacuum state of one of a
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pair of unitarily inequivalent representations can’t be realized as a density operator state on
the other representation.

There is a consortium of tacit assumptions that tends to frame foundational engagement
with physics. I’ll call this consortium ‘extremism’. Extremism supposes that there exist
fundamental, non-approximate laws that determine which circumstances are physically
possible and which aren’t. It supposes further that it is the task of physics to identify these
laws, and identify them with precision: physics aims at truth outright, and nothing so
hazy as approximate truth. Extremism accordingly supposes that to interpret a physical
theory is to take its laws as these fundamental ones, and so to seek to characterize the
unique and determinate set of physical possibilities those laws allow. What falls outside
this set simply isn’t physically possible, according to the theory so interpreted; what falls
within is simply physically possible; because the laws are fundamental and exact, there is
nothing in between. Here I will try to suggest that part of what makes QM¥ interesting
is the pressure it puts on these extremist assumptions about the character of physics and
the task of interpretation. I will develop my suggestion by, until further notice, operating
within the scope of these (now not so tacit) extremist assumptions, and identifying the
limitations of interpretations of the sort considered.

So assume that theorists wielding inequivalent representations are extremists. Each assumes
that the set of states countenanced by his or her representation coincides with the unique set
of physically possible states. Then the theorists don’t simply disagree about which state is the
ground state of the free boson field. Each denies that the other’s ground state is a state at all.
That is, they’re not disagreeing about how to describe worlds they both agree are possible.
A translation manual of the sort set up by a unitary map between their theories could resolve
(or at least drastically temper) that disagreement. They’re disagreeing about which worlds are possi-
ble to begin with. Because the sets of worlds each deems possible are (in a sense that can be
made precise) disjoint, theorists wielding unitarily inequivalent representations can’t both be
even partially right. Regarded as theories of ordinary QM, unitarily inequivalent representa-
tions of the CCRs quantizing classical Klein–Gordon theory are out-and-out rivals. This
leaves us with continuum-many starkly distinct theories vying for the title of free boson field
– a veritable embarrassment of riches for particle physics.

2. Haag’s Theorem: Particle Ontology

So far, the QFTs under discussion have been free field theories. Real particle physics
treats interactions, often through the so-called ‘interaction picture’. To first approxima-
tion, the interaction picture works as follows. What we want is a scattering amplitude
between incoming states |winæ (e.g., the state of an electron-postiron pair) and outgoing
states |/outæ (e.g., the state of a pair of muons). The gadget that predicts probabilities for
this pair-production process is the S-matrix S, in the sense that

hwinjSj/outi ð3Þ
gives us the quantum mechanical amplitude that a system enters the detector in the state
|winæ and leaves it in the state |/outæ. Insofar as both |winæ and |/outæ admit an interpre-
tation in terms of particle contents, the event for which (3) gives the amplitude can be
understood as a particle scattering event.

Assume that at early and late times – that is, t ¼ ±¥ – the system is governed by a free
Hamiltonian H. What generates interesting scattering amplitudes is the imposition of a
non-zero interaction Hamiltonian Hint at intermediate times. The interaction picture pro-
vides a recipe for expressing S-matrix elements such as Æwin|S|/outæ in terms of the free

574 Aspects of QFT II

ª 2012 The Author Philosophy Compass 7/8 (2012): 571–584, 10.1111/j.1747-9991.2011.00387.x
Philosophy Compass ª 2012 Blackwell Publishing Ltd



and interacting Hamiltonians (see Peskin and Schroeder 1995). Extending a particle inter-
pretation of incoming and outgoing particles to particles at intermediate times
)¥ < t < ¥, we assume that a single Fock space representation embraces them all.

Haag’s theorem reveals this assumption to be false, at least if Hint is different from 0. To
simplify somewhat (see Earman and Fraser 2006 for further discussion), Haag’s theorem
shows that if certain prima facie reasonable assumptions about the interacting theory are satisfied,
then that theory is not really an interacting theory at all: it’s a theory in which Hint ¼ 0!
As a consequence, any non-trivial (that is, Hint „ 0) interacting theory satisfying the
assumptions is unitarily inequivalent to the free (that is, Hint ¼ 0) theory.

The importance of Haag’s theorem is multifold. For one thing, it makes a physically
compelling case for the relevance of unitarily inequivalent representations to the interpre-
tation of QFT. For it suggests that if we want to contend with interactions, we must
come to terms with unitarily inequivalent representations. For another thing, it represents
a challenge to the idea that a single particle notion could be fundamental. Supposing that
some particle notion is appropriate to the interacting theory (a supposition Fraser (2008)
challenges), Haag’s theorem alerts us that if the interaction is non-trivial, that particle
notion is incommensurable with the particle notion appropriate to the free theory. The
apparent upshot is that there isn’t a single particle notion that embraces the entire history
of a scattering experiment. Perhaps all is not so bleak for particles: Bain (2000) has
explored options for making sense of particles in the context of interacting quantum field
theories.

3. Abstraction: Algebraic Approaches

Investigations of the formal structure of standard realizations of quantum field theoretic
CCRs conducted in the 50s and 60s made possible an intriguing commentary on their
embarrassing abundance. Each concrete Hilbert space representation of the CCRs gives
rise to an algebra, called the Weyl algebra, which is representation-independent. The Weyl
algebra for a system is constructed by taking linear combinations of operators satisfying the
CCRs for that system, then closing in the norm topology, whose criterion of convergence
is stricter than that of the weak topology we use to build BðHÞ from a representation of
the CCRs. This Weyl algebra is unique in the sense that no matter what Hilbert space
realization of the CCRs for the system one starts with, one obtains the same Weyl alge-
bra. Thus independent of its Hilbert space antecedents, the Weyl algebra for a system can
be regarded as an abstract algebra, the algebraic structure shared by all its Hilbert space
representations. For a system whose canonical observables obey CARs, one can likewise
abstract from those CARs a single algebraic structure common to every Hilbert space
representation of those CARs. Technically, these algebras are C� algebras; see Kadison
and Ringrose (1983, Ch. 4) for a more formal introduction.

Although this algebraic structure can be considered in abstraction from any concrete
Hilbert space, an abstract algebra A will always admit a concrete Hilbert space representa-
tion, an algebraic-structure-preserving map p from A into BðHÞ. In particular, all Hilbert
spaces carrying a representation of the Weyl relations are also representations of the
abstract Weyl algebra. Two representations ðp;HÞ and ðp0;H0Þ of the same algebra A
are unitarily equivalent just in case there exists a unitary map U : H!H0 such that for
each A 2 A, Up(A)U)1 ¼ p¢(A). A QFT operates outside the scope of the Stone–von
Neumann theorem, and admits representations that fail to be unitarily equivalent.

The algebraic approach to quantum theories associates observables pertaining to a
system with the self-adjoint elements of a C� algebra A appropriate to the system. The
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algebraic approach accommodates ordinary QM’s picture of observables as a special case:
A is set equal to BðHÞ for some Hilbert space H. In ordinary QM, states on BðHÞ
are normed, positive, countably additive linear functionals over that algebra. If
dimðHÞ > 2, Gleason’s theorem places states, so conceived, in one-to-one correspon-
dence with density operators on H. By contrast, the algebraic approach to QM defines
states directly in terms of the observable algebra A, not assumed to coincide with some
BðHÞ. An algebraic state x on A is a linear functional x : A! C that is normed
(x(I) ¼ 1)) and positive (x(A�A) ‡ 0 for all A 2 A). x(A) may be understood as the
expectation value of (self-adjoint) A 2 A. Like the states of ordinary QM, the set of states
on a C� algebra A is convex. Its extremal elements – that is, states x which cannot be
expressed as non-trivial convex combinations of other states – are pure states; all other
states are mixed.

Connections both straightforward and surprising can be established between the ordin-
ary QM and the algebraic notions of state. Straightforwardly, an ordinary QM state Ŵ
acting on a Hilbert space H carrying a representation p : A! BðHÞ of an algebra A
defines an algebraic state x on A. Simply set xðAÞ ¼ TrðŴpðAÞÞ for all A 2 A. Sur-
prisingly, we can travel in the other direction, from an abstract algebraic state to its reali-
zation on a concrete Hilbert space. Let x be a state on a C� algebra A. Then there exists
a Hilbert space Hx, a representation px : A:! BðHxÞ of the algebra, and a cyclic1

vector jWxi 2Hx such that, for all A 2 A, the expectation value the algebraic state x
assigns A is duplicated by the expectation value the Hilbert space state vector |Wxæ
assigns the Hilbert space observable p(A). The triple ðHx; px; jWxiÞ is unique up to uni-
tary equivalence, and known as the state’s GNS (named for Gel’fand, Naimark, and
Segal, who devised it) representation.

Clearly, a state x on a algebra A can, by the agency of the cyclic vector |Wxæ, be
expressed in terms of x’s GNS representation. But x is not the only algebraic state that
has a natural home in that GNS representation. In particular, some algebraic states / on
A can be implemented as density operator states on x’s GNS representation, in the sense
that there exists a density operator Ŵ acting on Hx such that /ðAÞ ¼ TrðŴpxðAÞÞ
for all A 2 A. The set of algebraic states expressible as density matrices on x’s GNS rep-
resentation comprise what is known as x’s folium. When the GNS representations px and
p/ of two algebraic states are unitarily equivalent, the folia of those algebraic states coin-
cide. If two pure algebraic states / and x have unitarily inequivalent GNS representa-
tions, their folia are disjoint: no algebraic state expressible as density matrix on /’s GNS
representation is so-expressible on x’s and vice-versa. (With mixed algebraic states, the
situation is more delicate. See Kadison and Ringrose (1983, Ch. 4) for details.) Disjoint
states are states whose folia are disjoint.

The algebraic notions just sketched help to articulate, and to evaluate, strategies for
interpreting QM¥. To that task let us turn.

4. Interpretation

An extremist interpretation of a physical theory seeks to carve out the space of physical
possibilities determined by the theory in one fell swoop, and by appeal only to the laws
of the theory interpreted and other considerations (e.g., metaphysical, mathematical,
maybe even methodological) similarly fundamental. Thus the output of an extremist
interpretation of a theory T is the unique and unambiguous set of circumstances simply
physically possible according to T. This catalog of interpretive options begins with two
extremisms that are liable to have already occurred to the reader.
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4.1. HILBERT SPACE CONSERVATISM

Following the precedent of ordinary QM, the interpreter I’ll label the Hilbert space conser-
vative identifies the kinematic content of a theory of QM¥ the same way it’s standardly
identified on behalf of a theory of ordinary QM. The theory’s observables form the self-
adjoint part of BðHÞ for some concrete separable Hilbert space H; its states are density
operators on that Hilbert space. The conservative thereby inherits a criterion of physical
equivalence for theories of ordinary QM so understood: they’re physically equivalent just
in case they’re unitarily equivalent.

The conservative’s work hardly ceases here. In ordinary QM, the uniqueness theorems
assure us, once the CCRs/CARs individuating a theory are fixed, all their representations
are unitarily equivalent. This is not so in QM¥. There the CCRs or CARs individuating
a theory admit continuously many unitarily inequivalent Hilbert space representations.
Committed to unitary equivalence as a criterion of physical equivalence, the Hilbert space
conservative must regard each of these as rival quantum theories. At most one of them
can be the theory she’s set out to interpret. Thus the burden of the Hilbert space conser-
vative is to articulate and motivate a principle of privilege that enables her to identify the
single unitary equivalence class of physical representations, and reject the rest as without
physical content.

Promising principles of privilege apply to quantum field theories, and appeal to the
symmetries of the spacetimes in which they’re set. In a spacetime equipped with global
time symmetries, a unitary equivalence class of representations of CCRs for the Klein–
Gordon field sustains an energy observable respecting those isometries. The respect takes
roughly the following form: a privileged Hamiltonian operator can be identified as the
infinitesmal generator of time translations that leave the metric unchanged. A respectful
representation has a vacuum state which is not only itself invariant under these time sym-
metries, but also the lowest energy eigenstate of the privileged Hamiltonian. What’s
more, each n-particle state of a respectful representation is an eigenstate of the privileged
Hamiltonian, with an eigenvalue matching the energy of a corresponding classical state.
Kay and Wald (1991) show that in suitably symmetric spacetimes, respectful representa-
tions of the Klein–Gordon CCRs are unique up to unitary equivalence.

If it’s reasonable to demand such respect, it’s reasonable to distinguish invidiously
between respectful and disrespectful representations. The invidious distinction makes
available univocal and powerful particle talk: the distinguished Fock space representation
circumscribes a (similarly distinguished) particle notion. Particle notions incommensurable
with, because circumscribed by representations unitarily inequivalent to, that of the
respectful representation can be dismissed as unphysical. Each state in the privileged foli-
um can be characterized in terms of its particle content; different states can be distin-
guished in terms of their particle content. If an adequate interpretation is obliged to
understand QFT as particle physics – and that is how many of its practitioners do under-
stand it – then the pursuit of Hilbert space conservatism in spacetime settings with
enough symmetry to pick out a particle-friendly unitary equivalence class of representa-
tions is one route to adequacy.

But QFT is also pursued in the unsymmetric curved spacetimes of general relativity, and
these spacetimes block the route. Notoriously, the route is complicated even in a subset of
Minkowski spacetime. Positive energy states correspond to solutions to the Klein–Gordon
equation that oscillate with purely positive frequency. States in the standard Minkowski
representation are positive frequency with respect to time as measured by families of inertial
observers. But restricting our attention to the right Rindler wedge of two-dimensional

Aspects of QFT II 577

ª 2012 The Author Philosophy Compass 7/8 (2012): 571–584, 10.1111/j.1747-9991.2011.00387.x
Philosophy Compass ª 2012 Blackwell Publishing Ltd



Minkowski spacetime – using inertial coordinates and setting c ¼ 1, this is the wedge-
shaped region to the right of the origin where x is positive and less than t – we can quan-
tize the Klein–Gordon field by admitting solutions that oscillate with positive frequency
with respect to time as measured by observers whose accelerations are constant. The
Rindler representation we thereby obtain has a natural particle interpretation – but
the Rindler representation is unitarily inequivalent to the Minkowski representation! This
is sometimes, and loosely, expressed as the Unruh effect: observers accelerating through
the Minkowski vacuum ‘see’ a thermal flux of particles (see Wald 1994, ch. 5). Some
have regarded the availability, even within Minkowski spacetime, of incommensurable
particle notions as grounds for demoting the particle notion from fundamental status (see
Arageorgis et al. (2003) for a critical review). Clifton and Halvorson (2001) object
that Minkowski and Rindler particle notions are better understood as ‘complementary’
than incommensurable. Picking up another thread of Copenhagen orthodoxy, Davies
(1984) urges that the lesson of the Unruh effect is that the particle notion must be
operationalized.

Quantizing in Rindler spacetime suggests that respect for symmetries may not be suffi-
cient to privilege a unitary equivalence class of representations for a QFT. Baker (2008)
has observed that respect for symmetries may not even always be desirable. So-called
coherent states of the quantum field enjoy wide application in optics. But certain coher-
ent states correspond to representations violating Poincaré symmetries! Insisting that phys-
ically reasonable representations exhibit symmetries removes these coherent states from
the physicist’s tool box.

When it comes to the thermodynamic limit of quantum statistical mechanics (QSM),
Hilbert space conservatism threatens an even more drastic impoverishment of the theory’s
explanatory resources. Short of the thermodynamic limit, and in the setting of concrete
Hilbert spaces, the Gibbs state equips QSM with a notion of equilibrium. For realistic,
finite quantum systems this Gibbs state is well-defined and unique. For infinite quantum
systems this needn’t be so.

Suppose that we aspire to construct a quantum statistical account of phase structure. The
apparent macroscopic explanandum is the existence, at certain temperatures, of multiple
thermodynamic phases: reverting to the toy model of the infinite spin chain, it can enjoy
a paramagnetic phase, heuristically modeled as a condition wherein its constituent spins
are so disordered that they generate no net magnetic field, as well as ferromagnetic
phases, heuristically modeled as conditions wherein its constituent spins are sufficiently
aligned that a net magnetic field ensues. If an account of phase structure requires the exis-
tence, at these temperatures, of multiple distinct equilibrium states, answering to different
thermodynamic phases, then, as long as we’re dealing with finite systems, our explanatory
hopes are dashed. At any given temperature, the Gibbs equilibrium state is unique, and
so there is no temperature at which there are multiple distinct Gibbs states that might
answer to different phases.

Explanatory hope is restored in the thermodynamic limit by using the KMS (named
for Kubo, Marin, and Schwinger, who first remarked its connection to equilibrium) condi-
tion to explicate a notion of equilibrium more general than that afforded by the Gibbs
state (see Ruetsche (2003) for elaboration and references). The set of KMS equilibrium
states with respect to a given dynamics has several striking features. Consider a system
whose observables belong to a C� algebra A. Its equilibrium state at a temperature T is
disjoint from its equilibrium state at a different temperature. Provided neither temperature
is 0, each equilibrium state is moreover – and mind-bogglingly – disjoint from every pure
state on A. And at critical temperatures where A admits multiple KMS states, the extremal
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elements of that set – which correspond to the pure phases whose co-presence constitutes
the phase structure we aspire to explain – are either equivalent or disjoint.

Hilbert space conservatism insists that at most one of a pair of disjoint representations
of A is the ‘physical’ representation coding genuine possibilities. By its lights, the rest are
mathematical artifacts. But this implies that at most one equilibrium state at a non-zero
temperature is possible. The implication hamstrings the attempt to explain phase structure
in terms of the availability, at the critical temperatures at which phase transitions occur,
of multiple distinct (and therefore disjoint) equilibrium states.

This challenge to Hilbert space conservatism take the form of charging that it recog-
nizes too few states for physics to discharge its explanatory tasks. Next we consider an
extreme reaction to this charge: to recognize as legitimate every algebraic state.

4.2. ALGEBRAIC IMPERIALISM

Inspired by the representation-independence of the Weyl algebra, an interpretive strategy
Arageorgis (1995) has dubbed ‘algebraic imperialism’ construes a theory of QM¥ not in
terms of the Hilbert space setting of a particular concrete representation of the CARs/
CCRs for that theory, but in terms of the abstract algebraic structure every such repre-
sentation shares. Physical magnitudes pertaining to a system are given by the self-adjoint
part of the abstract algebra A; possible states are states in the algebraic sense on A. We
are understanding this as a form of extremism: the algebraic imperialist declares once and
for all, without qualification, what possibilities the theory allows; this declaration endows
the theory with content.

Algebraic imperialism and Hilbert space conservatism are rival accounts of the content
of QM¥. For there can arise algebraic states x and x¢ on an observable algebra A of
QM¥ which are disjoint. Both are, according to the algebraic imperialist, possible states
of the system associated with A. But there is no BðHÞ generated by a concrete Hilbert
space representation of A on which both states can be implemented by density matrices.
So there’s no Hilbert space conservative account of the content of the theory according
to which both states are possible. If unitary equivalence is criterial for physical equiva-
lence, any theory admitting one state as possible will be physically inequivalent to a the-
ory admitting the other as possible.

This makes it clear that unitary equivalence is a criterion of physical equivalence ill-
adapted to algebraic imperialism. Recognizing a mismatch, early advocates of the alge-
braic approach offered instead of unitary equivalence weak equivalence as a criterion of
physical equivalence for Hilbert space representations. Weak equivalence is a relation that
holds (or not) between Hilbert space representations of a C� algebra A. Two representa-
tions are weakly equivalent exactly when no finite set of expectation values of observables
in A, specified to finite accuracy can locate a state in one, rather than the other, repre-
sentation. The imperialist ‘define[s] two representations to be physically equivalent if and
only if they are weakly equivalent’ (Robinson 1966: 488). A mathematical result known
as Fell’s theorem consolidates this definition. Fell’s theorem implies that all faithful2 repre-
sentations of a C� algebra are weakly equivalent (see Wald 1994, Ch. 4.5). Defining
physical equivalence as weak equivalence, the imperialist can conclude that, ‘All faithful
representations of [the Weyl algebra] are physically equivalent’ (Robinson 1966: 488).

Notice that the observables with respect to which weakly equivalent representations
are practically indistinguishable are elements of the abstract algebra A. Consider, for some
concrete representation ðp1;H1Þ of A, an observable in BðH1Þ but without correlate in
A. I will call such an observable parochial to the representation p1. Examples of parochial
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observables include the total number operators encountered in suitable representations of
the Weyl algebra for the free Klein–Gordon field. The vacuum state of the p1 representa-
tion assigns the total number operator expectation value 0. But there is no density opera-
tor state in any representation p2 unitarily inequivalent to p1 that assigns this total
number operator an expectation value within any finite � of 0 (Clifton and Halvorson
2001, Prop. 11, 450). Every faithful representation of the Weyl algebra is weakly
equivalent to every other. So imperialists would hail p1 and p2 as physically equivalent –
even though all p2 states assign a p1 observable – its total number operator – ‘expectation
values’ arbitrarily far from that assigned by the p1 vacuum state. Of course, this is a com-
pelling criticism of weak equivalence as an explication of physical equivalence only for
those inclined – as imperialists are not – to regard parochial observables as physical.

The justifications imperialists offer for weak equivalence as a criterion of physical
equivalence for Hilbert space representations are, broadly speaking, operationalist. But
they ultimately fail, even by operationalist lights. For, as Summers (2001) has observed, even
operationalists ought to take states to be predictive instrumentalities. Operationalists
should therefore expect the equivalence of states to extend to their predictions concern-
ing future measurements. But Fell’s theorem offers us no assurance that a p1 state for all
practical purposes indistinguishable from a p2 state with respect to some set {Ai} of alge-
braic observables will continue to mimic the first state’s predictions with respect to an
expanded or altered set of observables.

Of course, the imperialist needn’t nail his banner to the mast of weak equivalence –
which is, after all, a criterion of equivalence for Hilbert space representations, which rep-
resentations the imperialist denies to be physically significant! A more direct imperialism
would define quantum theories to be physically equivalent only if their associated algebras
are isomorphic. Once an abstract algebra is identified as the algebra appropriate to a
theory of QM¥, this criterion of physical equivalence follows straightforwardly. The
challenge for the bold imperialist is to justify his choice of algebra. Segal (1959), which
develops an argument for the operational significance of norm but not (where they differ)
weak closure, represents one attempt to rise to the challenge.

The Hilbert space conservative was liable to recognize too few states to support
QM¥’s explanatory agendas. The imperialist is prone to the complementary shortfall of
recognizing two few observables. As the discussion of weak equivalence suggests, the
abstract algebra A of observables an imperialist attributes a quantum field theoretic system
typically excludes observables constituting a particle notion. The abstract algebra A for a
system at the thermodynamic limit of QSM excludes such significant observables as global
charge, temperature, and chemical potential (Kronz and Lupher 2005). Reverting to the
toy example of the infinite spin chain, the global polarization observable – the observable
whose value distinguishes between the paramagnetic phase of no net magnetization and
the ferromagnetic phase of net magnetization – is an observable from which the imperial-
ist withholds physical significance. Broken symmetry is yet another phenomenon the toy
model illustrates. On the supposition that the dynamics of the spin chain is rotationally
symmetric, both the Hþ and H� representations break that symmetry. (The rotational
symmetry is broken in the esoteric sense, elaborated in Earman (2004), of constituting a
transformation that can’t be implemented by a untiary operator on the representations in
question.) What Liu and Emch (2005) have aptly termed a witness to broken symmetry is
an observable that takes different values in different states of broken symmetry. Once
again, global polarization, a magnitude the imperialist foreswears, is an example. Insofar as
robust laws of physics involve commodities such as phase observables and witnesses to
broken symmetry, imperialism denatures those laws.
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4.3. SELECTION CRITERIA

Some would temper unbridled imperialism by restricting admissible algebraic states, but
not (necessarily) confining them to the constricted single folium favored by the Hilbert
space conservative. I close by sketching some tempering strategies, and suggesting that we
might see in these sketches reasons to abandon extremist interpretive policies.

4.3.1. Dynamics
So far we have focussed on the kinematics of theories of QM¥. It could be that consider-
ations of dynamics usefully constrain the set of physically relevant instantaneous states.
Two prima facie reasonable constraints are that the set of physically relevant instantaneous
states be closed under dynamical evolution, and that each state in this set be one for
which dynamics are well-defined. The first constraint precludes a physically possible state
evolving into a physically impossible one; the second builds a capacity for dynamical
development into the very notion of physical possibility.

In ordinary Hilbert space QM, dynamics are typically implemented by unitary Hilbert
space operators. In algebraic QM, dynamics are implemented by means of automorphisms
of the algebra A of observables (that is, structure-preserving maps from A to itself). A
question of equipollence arises: is it the case that every dynamical evolution implement-
able by an automorphism on the an algebra A is also implementable as a unitary evolu-
tion in a concrete Hilbert space representation of that algebra? In QFT, the answer is no:
dynamical automorphisms corresponding (in an admittedly attenuated sense) to time evo-
lution between time slices related by isometries can be implemented unitarily in standard
vacuum representations, but more general dynamical automorphisms cannot be (see Ara-
georgis et al. (2002), for details). In other words, a system starting in algebraic state x can
evolve into a state disjoint from x. A Hilbert space conservative regarding x’s folium as
the folium of physical possibilities must reject the endpoint of evolution as physical. Such
rejection is sufficiently awkward to suggest that in more general settings the algebraic for-
mulation is better suited to expressing QFT’s dynamics.

Unitarity breaks down even more dramatically in the exotic spacetime setting of an
evaporating black hole. Hawking has argued that a pure to mixed state transition – the
sort of transition von Neumann’s collapse postulate asserts to happen upon measurement
– occurs in the course of black hole evaporation. Not only unitarity but also symmetries
of time and pre/retrodiction are lost if Hawking is right. Belot et al. (1999) review reac-
tions to the Hawking Information Loss Paradox; not the least of the many questions the
Hawking paradox raises is how to pursue QFT in non-globally hyperbolic spacetimes.

Aristotle would advocate restricting physically admissible states to those that sustain
dynamics. The cases to which this principle applies most directly come from the thermo-
dynamic limit of quantum statistical mechanics. There it can happen that the abstract
algebra A sustains no dynamics of its own, but dynamics are well-defined on Hilbert
spaces carrying particular concrete representations p of A (see Sewell 2002, §2.4.5). The
idea behind this principle is that states whose GNS representations enable a well-defined
dynamics are physical; states that do not admit of dynamical development are not.

4.3.2. The Hadamard condition
Semiclassical quantum gravity considers a quantum field on spacetime manifold subject to
Einstein’s field equations, with a quantum commodity (the expectation value <Tab> of
the stress energy tensor Tab) substituted for a classical one (plain old Tab). A restriction
that looks down the road to quantum gravity is the Hadamard condition, which requires
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admissible state to be states for which a prescription assigning the stress-energy tensor an
expectation value succeeds. (Provocatively, in closed spacetimes such states form a unitary
equivalence class (see Wald 1994, § 4.6).) But this principle stands in surprising tension
with another heralded signpost along the road to quantum gravity: Hawking radiation
and black hole entropy. The Unruh vacuum, which is the state some contend gives the
best model of what happens outside an evaporating black hole, violates the Hadamard
condition (Candelas 1980).

4.3.3. DHR selection criteria
DHR (Doplicher, Haag, and Roberts) selection theory is an approach to superselection
in algebraic QFT which identifies the physical representations of the field algebra A with
those representations whose observable differences from the representation p0 of a fixed
vacuum state are confined to local regions. Considering the set of DHR representations
from the vantage point of category theory, one can then reconstruct the quantum fields
and the gauge group. For more about this powerful and profound approach, see Halvor-
son and Müger (2007) or Baker and Halvorson (2010). Abstracting away from the details,
observe that this principle of selection proceeds from a pre-identified vacuum state. It is
fair to ask what justifies the selection of this vacuum state as the reference state. It may be
fair to answer that the explanatory accomplishments of the ensuing theory do!

5. Conclusion

Attempts to temper the extremisms of Hilbert space conservatism and algebraic imperial-
ism were prompted by the inadequacy of those stances to the demands of physics. Each
extremism undermined some application of the theory it would interpret, some use of
that theory to explain, predict, or engender other theories. As cursory as the foregoing
account of possible tempering principles is, it may still suggest that there isn’t a single
universal corrective for this: that under different applications, a typical theory of QM¥
might call for differently tempered interpretations, so that no single interpretation makes
univocal sense of that theory’s galaxy of empirical and theoretical successes. If this is so,
the tacit suppositions constituting extremism are incorrect. The content of a physical the-
ory isn’t given by a unique and unequivocal space of possibilities determined by that the-
ory’s fundamental laws and good taste, but rather by various sets, variously configured,
sometimes with the exigencies of applications in mind. To my mind, the point of trying
to interpret theories of QM¥ is their capacity to dramatize the predicament that no lonely
extremist interpretation can do them justice, and to thereby invite reflection – reflection
across the foundations of all physics, not just QM¥ – about the predicament’s extent and
significance.
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1 |Wæ is cyclic for pxðAÞ means fpxðAÞjWig is dense in H.
2 p is faithful iff p(A) ¼ 0 implies A ¼ 0 for all A 2 A.
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