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INTRODUCTION

The design and construction of energy function that

has a global minimum in the native state are essential for

protein folding and protein structure prediction.1–3

Since Anfinsen’s hypothesis 4 was put forward in the

1970s, different types of knowledge-based empirical

potentials have developed like mushrooms,5–7 by virtue

of the rapid increase of structure data in the PDB

library.8 Any aspects of structural features that differ sub-

stantially between the set of native and nonnative confor-

mations can be used to construct statistical potential,9

for example, the strength of electrostatic interactions, the

torsion angle, the exposure of nonpolar groups to sol-

vent, and so forth. In particular, following the idea of

Sippl,6,10 a variety of atomic-level distance-dependent

contact potentials have been recently developed,9,11–17

and successfully applied to many molecular modeling

areas, including fold recognition,18–20 ab initio fold-

ing,21–26 protein structure refinement,27,28 3D model

assessment,12,17,29 protein stability analysis,15,30 and

protein–protein docking.11,31

Most of the knowledge-based potentials were derived

based on the Boltzmann or Bayesian formulations. For

the atomic distance-specific contact potentials, the poten-

tial can be written as:

�ui;j rð Þ ¼ �RT ln
f OBS
i;j rð Þ
f ERF
i;j rð Þ

" #
ð1Þ

where R and T are Boltzmann constant and Kelvin tem-

perature, respectively. f OBS
i;j rð Þ is the observed probability

of atomic pairs (i, j) within a distance bin r to r1Dr in
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ABSTRACT

Many statistical potentials were developed in last two decades for protein folding and protein structure recognition. The

major difference of these potentials is on the selection of reference states to offset sampling bias. However, since these poten-

tials used different databases and parameter cutoffs, it is difficult to judge what the best reference states are by examining

the original programs. In this study, we aim to address this issue and evaluate the reference states by a unified database and

programming environment. We constructed distance-specific atomic potentials using six widely-used reference states based

on 1022 high-resolution protein structures, which are applied to rank modeling in six sets of structure decoys. The reference

state on random-walk chain outperforms others in three decoy sets while those using ideal-gas, quasi-chemical approxima-

tion and averaging sample stand out in one set separately. Nevertheless, the performance of the potentials relies on the ori-

gin of decoy generations and no reference state can clearly outperform others in all decoy sets. Further analysis reveals that

the statistical potentials have a contradiction between the universality and pertinence, and optimal reference states should be

extracted based on specific application environments and decoy spaces.
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experimental protein conformations. f REF
i;j rð Þ is the

expected probability of atomic pairs (i, j) in the corre-

sponding distance from random conformations without

atomic interactions, which is so-called reference state.

Since most existing statistical potentials use the same size

of datasets to calculate f OBS
i;j rð Þ and f REF

i;j rð Þ, the probabil-

ities in Eq. (1) can be replaced by the frequency counts

of atomic pairs:

�ui;j rð Þ � �RT ln
NOBS

i;j rð Þ=NOBS
i;j

NERF
i;j rð Þ=NERF

i;j

" #
¼ �RT ln

NOBS
i;j rð Þ

NERF
i;j rð Þ

" #

ð2Þ

Here, NOBS
i;j rð Þ is the observed number of atom pairs (i,

j) at the distance r in experimental protein structures.

NREF
i;j rð Þ is the expected number of atomic pairs (i, j) if

there were no interactions between atoms. NOBS
i;j

� NREF
i;j ¼

Prcut

r NOBS
i;j rð Þ is the total number of atomic

pairs (i, j) in the structure samples, where rcut is the cut-

off distance.

The statistical potential in Eqs. (1) and (2) is also

known as the potential of mean force. In specific deriva-

tions, it needs a clear delineation of distance interval and

bin splitting scheme. Meanwhile, it should be clearly

defined on what kinds of atoms to be considered, and

which set of experimental structures to be used. The

most critical step for statistical potentials is the selection

of reference states.2 In principle, the reference state

should be obtained from the statistics of random confor-

mations which lacks of inherent atomic interactions and

has the ability to offset the statistical biases from specific

sample selections and parameter cutoffs.

There is however no universal way as for the construc-

tion of the reference states. Common disposal methods

for the reference state calculation can be divided into

two categories: one is by analytical assumptions, the

other is by statistics but the statistical samples are from

native protein conformations or their decoys. Because of

the importance, a number of studies have been con-

ducted for assessing the performance of different refer-

ence states.2,14,15,17,32 However, because these studies

exploited the potentials from the original programs

which had been constructed using different databases

and programming environments, it remains unclear

whether the observed differences in performance is due

to the selection of reference state, or due to the technical

details of training databases, programming, and parame-

ter cutoffs.

Meanwhile, most of the previous assessment studies

were focused on the selection of native structures. Since

the native structures can never been generated by com-

puter simulations, a more realistic and challenging task is

to prioritize the best near-native computer models from

the structural decoys. Another critical criterion of the

potential development is to examine the correlations of

the potential with the similarity to the native (e.g.

RMSD, TM-score and GDT_TS),33 because a better

long-range correlation is essential to guide the protein

folding simulations from nonnative states to the native

ones.28

In this article, we made a systematical examination of

six most-often used reference states, including averaging,9

quasi-chemical approximation,12 finite ideal-gas,15

spherical noninteracting,17 atom-shuffled,16 and ran-

dom-walk chain.14 To rule out the dependence of train-

ing databases and technical details from original poten-

tials, we reconstructed all the potentials using a uniform

dataset by the same programming environment. To estab-

lish the generality of the analyses, we applied the poten-

tials to six independent decoy sets, from various resour-

ces of template reassembly and ab initio folding, with a

comprehensive assessment of both native, near-native

structure prioritization and energy-TM-score correlation.

METHODS

We constructed six statistical potentials using Eqs. (1)

and (2). As in most of previous potential developments,

167 residue-specific heavy atom types are used.9 The dis-

tance cutoff is set to 15 Å with a bin width 0.5 Å, which

results in 30 bins. Atom pairs from the same residue are

ignored in our pair-wise potential counting. The

constructed potential can be written as a 30 3 27,889

matrix. In the cases where certain atom pairs are not

observed at specific distance bin, the potentials are set to

a score corresponding to the least favorable one in the

whole potential.

A unified, nonredundant set of experimental protein

structures was collected for the construction of various

potentials in this study. The protein list is generated

from the PISCES server,34 with a resolution cutoff 1.6 Å,

R-factor cutoff 0.25 Å, and sequence identity cutoff 20%.

Only the structures determined by X-ray crystallography

were considered. In addition, protein structures with

incomplete, missing or nonstandard residues were

excluded, except for the structures that missed residues

only in the terminals. The final sample of the experimen-

tal structures contains 1022 protein chains, including 165

a, 100 b, and 713 ab proteins (others 44 have little sec-

ondary structure), which are publicly available at http://

zhanglab.ccmb.med.umich.edu/potential/assessment.

The total energy score of a given protein sequence Sq

with conformation Cp is calculated by

Score Sq;Cp

� �
¼

X
m¼1

X
n¼mþ1

�uim;in rm;n

� �
ð3Þ

where rm,n is the distance between mth and nth atoms,

and im and in are the residue-specific atom types, respec-

tively. m and n runs through all the atoms in the protein

chain except for those pairs from the same residues.
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Averaging reference state (RAPDF-REF)

The RAPDF potential was proposed by Samudrala and

Moult,9 which uses an average over different atom types

in the experimental conformations to represent the ran-

dom reference states. Therefore, NREF
i;j rð Þ can be calcu-

lated as follows:

NREF
i;j rð Þ ¼ f REF rð ÞNREF

i;j ¼
P

i;j N
OBS
i;j rð ÞP

i;j

P
r N

OBS
i;j rð Þ

X
r

NOBS
i;j rð Þ

¼ NOBS rð Þ
NOBS

total

NOBS
i;j ð4Þ

Here NOBS rð Þ is the number of observed contacts

between all pairs of atom types at a particular distance r.

NOBS
total is the total number of contacts between all pairs of

atom types summed over all distance r. The contact

numbers from different proteins in the dataset are pooled

together to calculate NOBS rð Þ, NOBS
total , and NOBS

i;j . Here, an

assumption of NREF rð Þ ¼ NOBS rð Þ has been taken by the

authors. Thus, NREF
i;j rð Þ and NOBS

i;j rð Þ can be derived from

the same protein dataset. Although the averaging refer-

ence state is easy to calculate, a weakness of the potential

is that the contact density distribution for all pairs of

atom types is assumed to be the same, which deviates

from the reality.

Quasi-chemical approximation reference
state (KBP-REF)

In the quasi-chemical approach of Lu and Skolnick,12

NREF
i;j rð Þ was defined as:

NREF
i;j rð Þ ¼ xixjN

OBS rð Þ ð5Þ

where xk is the mole fraction of atom type k, which is cal-

culated based on the whole dataset. Here it has also the

assumption NREF rð Þ ¼ NOBS rð Þ. As a reasonable approxi-

mation for reference state, the referential number of

atomic pairs (i, j) within certain distance bin is propor-

tional to the mole fraction of atom type i and atom type

j. The atomic potential using Eq. (5) was named KBP.12

Finite ideal-gas reference state (Dfire-REF)

In Dfire potential,15 Zhou and Zhou exploited a ideal-

gas system to simulate the reference state. The number of

atom pairs in the system was calculated by:

N
REF;p
i;j rð Þ ¼ N

REF;p
i;j

4pr2Dr
Vp

¼ n
p
i n

p
j

4pr2Dr
V p

ð6Þ

where VP is the volume of protein P, n
p
i and n

p
j are the

number of atoms of type i and j in the protein, respec-

tively. Since Eq. (6) is from liquid-state statistical

mechanics of infinite systems but protein chains are fi-

nite systems, to remedy the conflict, the authors assumed

that N
REF;p
i;j rð Þ increases in ra with a to-be-determined

constant a. Supposing that �ui;j rð Þ ¼ 0 for r � rcut and

N
REF;p
i;j rcutð Þ ¼ N

OBS;p
i;j rcutð Þ, NREF

i;j rð Þ can be written as:

NREF
i;j rð Þ ¼ r

rcut

� �a Dr
Drcut

NOBS
i;j rcutð Þ ð7Þ

where NOBS
i;j rcutð Þ ¼

P
p N

OBS;p
i;j rcutð Þ, and the summation

is over all protein structures in the dataset. In Zhou and

Zhou’s training, a was set to 1.57 and rcut to 14.5 Å.

Spherical non-interacting reference
state (Dope-REF)

The Dope potential developed by Shen and Sali used a

spherical noninteracting reference state,17 which consid-

ered a sphere with a uniform uncorrelated atom density:

f REF;p r; að Þ ¼
3r2 r�2að Þ2

rþ4að Þ
r3

cut r3
cut�18a2rcutþ32a3ð Þ rcut � 2a

6r2 r�2að Þ2
rþ4að Þ

16a6 rcut > 2a

8<
: ð8Þ

where a is the size of the experimental structure sample

p. Although protein structure is usually not a sphere, the

size a can be defined as the radius of an effective sphere

which has the same radius of gyration Rg as the sampled

experimental structure, i.e. a ¼
ffiffiffiffiffiffiffiffi
5=3

p
Rg. We can thus

calculate the potential by:

�ui;j rð Þ ¼ �RT ln
X
p

wp

N
OBS;p
i;j rð Þ

f REF;p r; að ÞNOBS;p
i;j

" #
ð9Þ

where N
OBS;p
i;j ¼

Prcut

r N
OBS;p
i;j rð Þ, and wp is the weight of

the sampled experimental structure p which is calculated

as the ratio between the number of atom pairs in this

structure and the number of atom pairs in all sampled

experimental structures, irrespective of the pair type. In

some extent, the spherical noninteracting reference state

can be regarded as an extended version of finite ideal-gas

reference state with more theoretical details.

Atom-shuffled reference state (SRS-REF)

Unlike the above reference states which are either

based on the sampled experimental structures or derived

from certain analytical assumption, in the atom-shuffled

reference state, all atomic positions were preserved while

atom identities were shuffled within each of the experi-

mental structures. f REF
i;j rð Þ can be calculated from these

shuffled structures, and we wrote it as f shuffled
i;j rð Þ.

�ui;j rð Þ ¼ �RT ln
f OBS
i;j rð Þ

f shuffled
i;j rð Þ

" #
� �RT ln

NOBS
i;j rð Þ

N shuffled
i;j rð Þ

" #

ð10Þ

The HA_SRS potential developed by Rykunov and

Fiser used this reference state.16 The authors presented

Designing Statistical Potentials
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three shuffle patterns including residue-shuffled,

sequence-shuffled, and atom-shuffled. Here, we imple-

mented the last one. The dataset used to generate the

shuffled structures is the same as that used to calculate

NOBS
i;j rð Þ. We shuffled every experimental structure more

than one million times by randomly exchanging the

identity of two atoms.

Random-walk chain reference state
(RW-REF)

Since the starting point of protein folding is the amino

acid sequence, the RW potential developed by Zhang and

Zhang used an ideal random-walk (RW) chain of a rigid

step length as the reference state.14 This RW model

mimics well the generic entropic elasticity and inherent

connectivity of polymer protein molecules and yet

ignores the atomic interactions of amino acids. According

to the polymer theory in the freely-jointed chain model,

the reference probability can be written as:

f REF;p rð Þ ¼
Z

f REF;p r; nð Þdn

¼
XN
n¼1

4pr2 3

2pnl2

� �3=2

exp � 3r2

2nl2

� �
Dr ð11Þ

where N is the number of residues in the sample protein

p, and l is the Kohn length. As is done in finite ideal-gas

reference state, given a cutoff distance and assuming

N
REF;p
i;j rcutð Þ ¼ N

OBS;p
i;j rcutð Þ, we can get:

NREF
i;j rð Þ ¼

X
p

r

rcut

� �2 PN
n¼1 exp �3r2=2nl2ð Þ=n3=2PN
n¼1 exp �3r2

cut=2nl2
� �

=n3=2
N

OBS;p
i;j rcutð Þ ð12Þ

The value of l2 was set to 460 in the RW potential,

under which the potential had the best performance.14

RESULTS

We constructed the six potentials based on the same

dataset of 1022 protein structures using the reference

models as formulated in Eqs. (4)–(12). Our evaluations

are focused on the ability of prioritization of the native

and near-native structures, as well as the energy-TM-

score correlations. To establish the generality of the anal-

ysis, we apply the potentials to various decoy sets gener-

ated from different methods.

CASP decoy set

First, we evaluate the potentials in the structural mod-

els generated in CASP5-CASP8 experiments as collected

by Rykunov and Fiser,13 which include 143 targets and

2628 models. Since these structural models were pre-

dicted blindly by all CASP participants using the state-

of-the-art methods, this set represents the most diverse

decoys and the selection of best decoy models has practi-

cal use.

Table I summarizes the performance results of all six

potentials on prioritizing the CASP models. Here and

after, we denote the potential based on certain reference

as ‘‘xxx-REF.’’ We can see that KBP-REF outperforms all

other potentials on most evaluation criteria except for

the average RMSD and TM-score of the first ranked

models which are slightly lower than Dfire-REF and RW-

REF. RAPDF-REF, Dope-REF, and SRS-REF have similar

performances, and select about 10 more native structures

than Dfire-REF and RW-REF; however, these potentials

have generally lower correlations than Dfire-REF and

RW-REF. The performances of Dfire-REF and RW-REF

are similar which have the best average RMSD and TM-

score of the first ranked models.

Take T0233 as a typical example, the correlations from

different potentials are varied (Fig. 1). Dfire-REF and

RW-REF fail to select the native structure while their

correlation coefficients are relatively better, which dem-

onstrates the potential usefulness of the potentials to

guide the folding simulations. In Supporting Information

Figures S1–S3, we show three additional examples from

T0137, T0211, and T0423, which have three level of high,

medium, and low potential-TM-score correlations,

respectively. They have a similar tendency in the energy-

TM-score correlations as what we have seen in Figure 1

and Table I.

Ig_structal_hires decoy set

Next we applied the potentials to three target decoy

sets from the Decoys ‘R’ Us,35 including ig_structal_hires,

fisa_casp3, and lattice_ssfit. The ig_structal-_hires decoy

set contains 20 immunoglobulin proteins and the decoy

structures were built by comparative modeling program

Table I
Performance of Six Potentials in CASP Decoys

Potentiala Nnat
b Ranknat

c Z-scored R/TMe Corrf

RAPDF-REF 90/143 2.0/19.4 1.46 10.88/0.581 20.46
KBP-REF 107/143 1.6/19.4 1.65 7.60/0.613 20.63
Dfire-REF 80/143 2.9/19.4 1.23 6.60/0.644 20.57
Dope-REF 93/143 1.9/19.4 1.50 10.71/0.584 20.46
SRS-REF 92/143 2.1/19.4 1.44 7.49/0.607 20.49
RW-REF 79/143 3.2/19.4 1.19 6.56/0.646 20.56

aPotentials that we reconstructed from a unified structure dataset by using corre-

sponding reference state models from Eqs. (4)–(12).
bThe number of targets with the native structure ranked as first versus the total

number of test proteins.
cThe average rank of the native structures versus the average number of confor-

mations per target.
dZ-score 5 (Eaverage 2 Enative)/r, where Enative is the energy of the native struc-

ture, and Eaverage is the average energy of all decoys. r is the energy deviation of

all decoys.
eThe average RMSD and TM-score to the native of the first ranked models.
fThe average Pearson correlation between energy and TM-score of decoys.
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segmod36 using other immunoglobulins as templates. As

shown in Table II, RAPDF-REF performs the best on

selecting native structures, while KBP-REF has the highest

energy-TM-score correlation with a typical example

shown in Figure 2. The average RMSD and TM-score of

the first ranked models from RW-REF is slightly better

than other potentials. In Supporting Information Figures

S4–S6, we present three additional examples of this decoy

set with the decoy structures from 1mfa, 1vge, and 7fab,

respectively.

Fisa_casp3 decoy set

There are five decoy sets in fisa_casp3, and each set

contains about 1400 decoy conformations. The backbone

conformations of these decoys were generated by Rosetta

program 21 which assembled the models using fragments

of other solved protein structures; side-chain atoms were

then added by SCWRL.37 Since the decoy conformations

were from ab initio modeling, most structures have a low

TM-score (<0.5). In this low-resolution region, all

potentials have an almost negligible correlation with the

TM-score. Figure 3 shows four proteins by RW-REF,

where the energy-TM-score correlation coefficient is

below 0.4 for all protein targets. A similar tendency is

seen in all other potentials on this decoy set (see Sup-

porting Information Figs. S7–S11).

Probably because the decoys are mainly distributed at

low TM-score (far from the native), the native structures

in this set are relatively easy to recognize by most poten-

tials. As shown in Table III, all potentials, except for

KBP-REF, can correctly recognize the native in four of

five targets. The remaining target is from 1b0nB whose

Figure 1
A typical example of energy-TM-score correlation from T0233 in the CASP decoy set, where the energy of each decoy conformation is calculated by

six different potentials. The native structure is highlighted by the open circles.

Table II
Performance of Potentials in ig_structal_hires of Decoys ‘R’ Usa

Potential Nnat Ranknat Z-score R/TM Corr

RAPDF-REF 11/20 5.4/20.0 1.05 2.21/0.945 20.77
KBP-REF 6/20 6.1/20.0 0.69 2.16/0.945 20.86
Dfire-REF 2/20 11.1/20.0 0.15 2.14/0.948 20.81
Dope-REF 10/20 6.3/20.0 0.82 2.32/0.945 20.80
SRS-REF 10/20 5.8/20.0 0.94 2.20/0.946 20.79
RW-REF 1/20 11.9/20.0 -0.04 2.11/0.949 20.80

aNotations are the same as that in Table I.
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Figure 2
A typical example of energy-TM-score correlation from 1fgv in ig_structal_hires of Decoys ‘‘R’’ Us, where the energy of each decoy conformation is

calculated by six different potentials. The native structure is highlighted by the open circles.

Figure 3
Examples of energy-TM-score correlation by RW-REF in fisa_casp3 of Decoys ‘‘R’’ Us. The native structure is highlighted by the open circles.

2316 PROTEINS
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native structure has an irregular topology of the extended

two-helix bundle which is stabled only when intertwined

with the Chain A of the protein. All potentials, ranking

on the isolated domain without counting the interaction

with Chain A, failed to recognize the native state. The

overall ranking and correlation results of fisa_casp3 are

listed in Table III, where the RW-REF performs relatively

better than other potentials on every aspect.

Lattice_ssfit decoy set

The lattice_ssfit decoy set contains eight small proteins

generated by ab initio enumerations of possible confor-

mations in a lattice system.38 Similar to the fisa_casp3,

most of the decoy structures have a low TM-score. Thus,

the recognition of the native structure is relatively easy

and all potentials could recognize the native state of all

targets with a high Z-score. Accordingly, there is almost

no correlation between energy and TM-score as shown in

Figure 4, which was based on RW-REF that has the high-

est average correlation coefficient. In Supporting Infor-

mation Figures S12–S16, we present examples from other

five potentials on the same set of proteins, where a simi-

lar correlation range is seen in these potentials. Again, as

shown in Table IV, RW-REF outperforms all potentials in

all the criteria in this decoy set.

MOULDER decoy set

We also tested the potentials in the MOULDER decoy

sets which were generated by the comparative modeling

program MODELLER where close homologous templates

have been used to guide the model generations.39 To

cover a wider RMSD range, we have selected templates

with alignments ranging from 0 to 100% of the native

overlaps. As shown in Table V, all six potentials can easily

select the native structures for the majority of targets

with an appreciable Z-score. The averages of the energy-

TM-score correlation also reach to a high level with coef-

ficient >0.75 for all potentials.

Table III
Performance of Six Potentials in fisa_casp3 of Decoys ‘R’ Usa

Potential Nnat Ranknat Z-score R/TM Corr

RAPDF-REF 4/5 203.8/1439.0 3.45 10.97/0.299 20.11
KBP-REF 2/5 108.4/1439.0 2.20 11.99/0.294 20.17
Dfire-REF 4/5 7.6/1439.0 4.62 11.00/0.298 20.26
Dope-REF 4/5 104.8/1439.0 3.88 11.46/0.265 20.12
SRS-REF 4/5 133.6/1439.0 3.98 10.97/0.299 20.14
RW-REF 4/5 4.8/1439.0 4.78 10.70/0.310 20.28

aNotations are the same as that in Table I.

Figure 4
Examples of energy-TM-score correlation by RW-REF in lattice_ssfit of Decoys ‘‘R’’ Us. The native structure is highlighted by the open circles.

Table IV
Performance of Six Potentials in lattice_ssfit of Decoys ‘R’ Usa

Potential Nnat Ranknat Z-score R/TM Corr

RAPDF-REF 8/8 1/1999.6 5.30 10.42/0.241 20.07
KBP-REF 8/8 1/1999.6 5.53 10.98/0.237 20.12
Dfire-REF 8/8 1/1999.6 7.65 9.77/0.248 20.15
Dope-REF 8/8 1/1999.6 5.39 10.00/0.245 20.08
SRS-REF 8/8 1/1999.6 5.40 10.52/0.243 20.08
RW-REF 8/8 1/1999.6 8.30 10.08/0.250 20.17

aNotations are the same as that in Table I.
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This high correlation value is partly due to the wider

range of the decoy distributions because by definition the

correlation coefficient can achieve a higher value in the

wider distributed decoys than the narrow distributed

ones even with a similar level of decoy fluctuations. Sec-

ond, the decoy structures in MOULDER were generated

by comparative modeling which keeps most of the tem-

plate structural unchanged. These are different from the

decoys generated by ab initio folding that have all struc-

ture regions reassembled from scratch. Thus, the statisti-

cal potentials, which are all developed from the PDB

structure library, may tend to have a better discrimina-

tion power on the homology-based decoys due to some

level of memory effects.

Among all the potentials, Dfire-REF has a relatively

stronger energy-TM-score correlation and recognition ac-

curacy for near-native structures according Table V, but

its performance to recognize the native structures is

slightly worse than other potentials. Figure 5 shows four

typical examples by Dfire-REF. Indeed, the decoys have a

quite uniformed distribution spanning a much larger

range than the ab initio folding decoys. The correlation is

consequently higher than that in other decoy sets. The

illustrated examples for other five potentials are shown in

Supporting Information Figures S17–S21.

I-TASSER decoy set-II

Finally, we used the I-TASSER Decoy Set-II which has

the coarse-grained models first generated by iterative

Monte Carlo fragment assembly and then refined by

GROMACS4.0 MD simulation.14 This set represents a

typical procedure of protein structure predictions com-

bining template-based modeling and atomic-level struc-

ture refinements. As shown in Table VI, the six potentials

can select the majority of native structures with discrep-

ancies less than 9. RW-REF outperforms others on all

criteria, and Dfire-REF takes second place. The gap

between the best and worst performing potentials on

energy-TM-score correlation is as high as twenty percent.

Figure 6 presents four typical examples of I-TASSER

Decoy Set-II by RW-REF. The decoy conformations from

1abv_, 1gjxA, and 1vcc_ have low TM-score, which have

accordingly a low energy-TM-score correlation value.

However, in decoy set of 1thx_, the decoy conformations

gather into two clusters, one cluster is with TM-score

around 0.8 and the other is with TM-score around 0.5.

The correlation value for this target is much stronger

Table V
Performance of Six Potentials in the MOULDER Decoy Setsa

Potential Nnat Ranknat Z-score R/TM Corr

RAPDF-REF 19/20 5.3/301.0 3.05 4.60/0.746 20.78
KBP-REF 19/20 2.4/301.0 2.42 4.57/0.750 20.87
Dfire-REF 19/20 6.0/301.0 2.98 3.98/0.771 20.88
Dope-REF 19/20 5.3/301.0 3.23 4.34/0.761 20.79
SRS-REF 19/20 4.3/301.0 3.18 4.32/0.750 20.81
RW-REF 19/20 4.5/301.0 2.94 4.45/0.752 20.88

aNotations are the same as that in Table I.

Figure 5
Examples of energy-TM-score correlation by Dfire-REF in the MOULDER decoy sets. The native structure is highlighted by the open circles.
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(20.88). This data demonstrates again that as a necessary

condition, the decoys should cover a broad range of reso-

lution in order to have a high apparent value of correla-

tion coefficient (see Fig. 5). In Supporting Information

Figures S22–S26, we present the examples of other five

potentials on the same set of proteins, where they all

have a higher correlation coefficient on 1thx_.

DISCUSSION

The importance of reference state

The characteristics of native conformations can clearly

show up only when comparing with nonnative ones,

where the nonnative conformations serve as the refer-

ence state. Our brains can subconsciously set a reference

state for every judgment or evaluation with powerful

inertia and intelligence, while computer-based statistical

potentials cannot do so. We must design a reference

state in advance and integrate it into the formula of

potential. The usefulness of statistical potential depends

on its ability to distinguish native conformations or

find best models from nonnative conformations. So the

key task for the potential construction is to explore and

utilize the structural differences between native and

nonnative conformations.9 As to atomic distance-

dependent pair-wise contact potential, what we concern

are the differences of atom pair distribution between

native and nonnative conformations. The distribution of

native conformations can be obtained through statistics

on the PDB library. The problem is how to get the dis-

tribution of nonnative conformations, or in other

words, how to describe the reference state. Any refer-

ence state can only cover a specific conformation space,

thus the potential should better be applied to the struc-

tures that the reference state can suitably cover. The

diverse performances of the potentials on different refer-

ence states imply that the potentials are strongly shaped

by its reference state.

Statistical reference state versus
theoretical reference state

In the six reference states considered here, the averag-

ing, quasi-chemical approximation and atom-shuffled

reference states are primarily base on statistics of experi-

mental structures.14 The statistical samples for averaging

and quasi-chemical approximation reference states are

directly from experimental protein structures, and atom-

shuffled reference state uses a set of shuffled experimental

Table VI
Performance of Six Potentials in I-TASSER Decoy Set-IIa

Potential Nnat Ranknat Z-score R/TM Corr

RAPDF-REF 49/56 23.48/441.2 5.28 6.20/0.545 20.34
KBP-REF 45/56 34.43/441.2 3.82 5.38/0.549 20.42
Dfire-REF 53/56 6.79/441.2 5.08 5.23/0.561 20.52
Dope-REF 50/56 18.54/441.2 5.43 6.12/0.548 20.35
SRS-REF 49/56 25.68/441.2 5.11 5.72/0.552 20.38
RW-REF 53/56 2.48/441.2 5.45 5.14/0.568 20.54

aNotations are the same as that in Table I.

Figure 6
Examples of energy-TM-score correlation by RW-REF in I-TSAAER Decoy Set-II. The native structure is highlighted by the open circles.
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conformations. Since there is no proper nonnative

dataset exploited, the reference state derived from the

native protein structures may not appropriately reflect

the conformational sampling of nonnative states encoun-

tered in real folding simulations. On the contrary, the fi-

nite ideal-gas, spherical non-interacting and random-

walk chain reference states are from theoretical reference

state for they are mainly based on theoretical assump-

tions and effectively circumvent concrete statistical proc-

esses, which are often oversimplified for real modeling

procedure. In this context, a reference state considering

the statistics of realistic computational simulation decoys

is probably essential.

The universality and pertinence
of statistical potential

The results presented here show that no potential can

always outperform others in different decoy sets. Even in

the same decoy set they often rank inconsistently in dif-

ferent evaluation criteria. As described earlier, the distinc-

tion among the six potentials merely reflects in their dif-

ferent reference states, from which their diverse perform-

ances consequently arise. No matter how to deal with the

reference state, the conformation spaces that different ref-

erence states can cover are different. For example, the

averaging reference state was based on native structures

and can be a suitable representation of near-native con-

formations; while the finite ideal-gas reference state is

based on the assumption of finite ideal-gas and thus can

roughly cover a broad conformation space. But what

method is the more suitable? If we want the potential to

be efficient under a broader application environment,

namely that the universality of potential is emphasized,

we should calculate the reference state basing on a more

general conformation space. However, the pertinence of

potential would be compromised while enhancing its

universality, and too much emphasis on universality is

likely to make the potential perform poorly in any appli-

cation environment. As for the six reference states we

used here, the conformation spaces they can cover are

obviously different, which consequently makes the poten-

tials based on them have respective universality and per-

tinence. It is the distinction on universality and perti-

nence that makes the potentials perform diversely in dif-

ferent decoy sets. To further enhance the performance of

statistical potential, we can envisage the range of applica-

tion at the beginning of potential construction while not

being keen on its universal validity, and calculate refer-

ence state based on the specific application environment.

For example, if the potential is designed mainly for

assessing and refining the conformations produced by

certain prediction method, we should probably take a

nonredundant conformation set produced by this

method as the statistical samples of reference state, and

both expanded and narrowed conformation space of the

sample structures would have negative impact on its per-

formance.

Calculation procedure of statistical potential

There are two ways that we can choose in the calcula-

tion procedure of statistical potential. One is to divide

the observed contact numbers in the entire sample data-

set by the referential contact numbers first and then take

its negative logarithm; the other is to divide the observed

contact numbers in a single sample protein by corre-

sponding referential contact numbers and then combine

the results over the entire dataset, and finally take its

negative logarithm. While the observed contact numbers

in a single sample protein would likely be too sparse to

allow an effective statistics.12 We tested the above two

ways in the calculation procedure of Dope-REF and RW-

REF potentials since both of their reference states are

related to the protein size. The result shows that the

Dope-REF potentials calculated in two ways perform

similarly, but the RW-REF potential calculated in the first

way performs much better than that calculated in the

second way (detail data not shown). With a view to the

conventional calculation procedures related to different

reference states, in this paper we used the first way to

calculate all the potentials except for the Dope-REF

potential, which is calculated in the second way.

Effects of TM-score (or RMSD) distribution
of decoy set to evaluation criteria

All decoy sets we used here include the native struc-

tures. There are often large gaps on TM-score between

the native structures and their decoy conformations,

which may partly make the native structure selection

much easier than the discrimination of decoys in differ-

ent accuracy. As shown in the previous section, the crite-

ria related to the native structure selection (Nnat, Ranknat,

and Z-score) generally get better values than those related

to the discrimination of decoys in different accuracy (R/

TM and CORR). We investigated into the TM-score and

RMSD distributions of decoy sets and found there are

large discrepancies among different decoy sets. When the

distributions are narrow and concentrated, R/TM and

CORR might be poor. For instance, energy-TM-score

correlation calculated in decoy set 1thx_ is much better

than that calculated in the other three set in Figure 6,

which is clearly linked to the particular TM-score distri-

bution of decoy set 1thx_. Overall, these data indicated

that the potentials are merely able to distinguish the

decoys in a coarse level and their discriminatory powers

remain to be enhanced.

Here, it is important to note that our assessment crite-

ria are more practices-oriented rather than physics-based,

although it is important to have the correct reference

state that is as close as possible to physics. One reason is

that most of the reference states are based on some as-
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pect of physical rules in their original developments, but

we do not have an objective criterion to quantitatively

assess how close the potentials are to physics. The

energy-TM-score correlations and the Z-score of the

native structures over decoys, on the other hand, can

give a quantitative assessment of the potentials in their

ability of assisting protein folding and decoy recognition.

These criteria have been widely used in the development

and assessment of various statistical potentials.9,12,14–

15,17 Second, due to the limit size of the current struc-

tural databases, the ‘‘physically correct’’ reference states

do not always work the best in practical uses. Although

the ideal potential should be both physically and practi-

cally sound, here we prefer to choose those that can have

best performance in practical applications, when a com-

promise has to make between them and especially when

we do not have a clear criterion to assess the physical

correctness of the potentials.

CONCLUSION

Starting with different reference states, we constructed

six atomic distance-dependent pair-wise contact poten-

tials based on a uniform sampling dataset and bin-width

procedure. These potentials were assessed by virtue of six

independent decoy sets. Overall, the random-walk chain

model outperformed others in three sets of decoy sets,

while reference states based on ideal-gas, quasi-chemical

approximation and averaging sample did so in one decoy

set separately. Nevertheless, the performance of the

potentials fluctuated depending on the decoy sets. No

potential could dominate the structural selection and

energy-TM-score correlation in all the cases. Our analyses

demonstrate that statistical potential has its universality

and pertinence which is decided by the reference

state and the decoy sets. The optimal reference state

should probably be derived by the consideration of

the conformational sampling of specific modeling simu-

lations.

The somewhat contradictory assessment results and

especially the performance dependence on decoy distribu-

tions indicate that the current mean-force statistical

potential developments are far from the true solution (if

it exists at all). This result is consistent with the well-

established agreement in the community that the single-

model based quality assessment method cannot compete

with the consensus-based approaches in near-native

structure recognitions.40–44 However, the performance

of statistical potentials is still significantly better than the

random model selections based on our unpublished data.

Recent studies showed that a combination of the single-

model potentials with structural clustering can outper-

form that based on consensus,45,46 which may represent

another promising avenue to the improvement of the

single-model statistical potentials.
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