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Abstract: We redesigned residues on the surface of MICA, a protein that binds the homodimeric
immunoreceptor NKG2D, to increase binding affinity with a series of rational, incremental changes.

A fixed-backbone RosettaDesign protocol scored a set of initial mutations, which we tested by

surface plasmon resonance for thermodynamics and kinetics of NKG2D binding, both singly and in
combination. We combined the best four mutations at the surface with three affinity-enhancing

mutations below the binding interface found with a previous design strategy. After curating design

scores with three cross-validated tests, we found a linear relationship between free energy of
binding and design score, and to a lesser extent, enthalpy and design score. Multiple mutants

bound with substantial subadditivity, but in at least one case full additivity was observed when

combining distant mutations. Altogether, combining the best mutations from the two strategies
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into a septuple mutant enhanced affinity by 50-fold, to 50 nM, demonstrating a simple, effective

protocol for affinity enhancement.

Keywords: protein design; protein–protein interaction; immunoreceptors; additivity; free energy of

binding; thermodynamics and kinetics of binding; van’t Hoff enthalpy

Introduction

Improvement of protein–protein binding has utility

in applications ranging from in vitro assays to

in vivo therapies.1 Different strategies for enhancing

affinity incorporate combinatorial and/or computa-

tional design: combinatorial design tests large popu-

lations of randomized mutants in a process similar

to antibody affinity maturation, whereas computa-

tional or rational design calculates the biochemical

stability of protein conformations and amino acid

mutations using various scoring functions.2 Compu-

tational optimization of the chemical interactions in

proteins has successfully stabilized protein–protein

interfaces with final KD values ranging from micro-

molar to picomolar (Supporting Information Table

S1), although substantial challenges remain.3–5

Computational and combinatorial techniques can

work together, as when computational techniques

created a de novo 200 nM interface between influ-

enza hemagglutinin and a binding scaffold, and then

affinity maturation via combinatorial screening

produced three mutations that together brought the

affinity to 4 nM.6

Previously, we used the rational design algo-

rithm RosettaDesign to enhance the affinity of the

interface between the immunoproteins NKG2D and

MICA.7 This interaction acts as a dominant activat-

ing trigger for NK cells and is involved in several

pathologies.8 Our first design strategy targeted resi-

dues that do not directly contact NKG2D to alter the

stability of unbound MICA and affect NKG2D bind-

ing indirectly [Fig. 1(A)].7 Extrainterfacial changes

Figure 1. Locations redesigned with two strategies and measurement of binding thermodynamics and kinetics. (A) Targets

for design highlighted in the structure for the NKG2D-MICA complex (purple: NKG2D homodimer with core tyrosines shown

as sticks; yellow: MICA with redesigned residues shown as sticks; green: backbone of ‘‘disordered loop’’ region of MICA that

is not observed in the unbound MICA structure; orange/red: subinterfacial residues redesigned in first strategy, with stabilizing

residues combined in septuple mutant in red and labeled; light blue/dark blue: interfacial residues redesigned in second

strategy, with stabilizing residues combined in septuple mutant in dark blue and labeled). Figure was made using Pymol

http://www.pymol.org/. (B) SPR sensorgrams and residuals for injection of serial dilutions of NKG2D over a MICA-coupled

dextran surface (red: kinetic data collected; black: two-step model fit). (C) van’t Hoff plots of four single and three multiple

mutants for triplicate SPR data at nine temperatures, with KA values calculated from kinetic data and enthalpies of binding

calculated from linear slopes as described in Lengyel et al.
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in MICA that enhanced affinity for NKG2D were

predicted to destabilize the region underneath the

interface. A triple mutant was found with this strat-

egy that bound with 17-fold enhanced affinity.

Because none of these mutations directly con-

tacts NKG2D, we began a second round of rational

design in which MICA residues that directly contact

NKG2D were optimized with RosettaDesign to

enhance interfacial affinity, with the goal of com-

bining the mutations from the two strategies. Sin-

gle mutations predicted to enhance affinity were

expressed, purified, and tested experimentally.

Then mutations were combined iteratively with

other surface mutations, and with the most affinity-

enhancing mutations from our first subinterfacial

design strategy, to investigate the cumulative

effect of designed mutations at a protein–protein

interface.

Results and Discussion
RosettaDesign9 calculated an optimal amino acid

(selecting any amino acid except cysteine) 100 times

for each of the 22 MICA residues that contact

NKG2D in the MICA-NKG2D complex structure

(PDB ID: 1HYR).10 Each location was varied individ-

ually and all other residues were wild-type. For 11

locations, Rosetta either returned the wild-type resi-

due or a similar residue with insignificant predicted

stabilization (score >�0.05), and the other 11 muta-

tions were investigated through experiment (bold

type in Supporting Information Table S2). Also, cal-

culations were done in which all MICA contact resi-

dues were allowed to vary at once. In the set of 100

such calculations, alterative stabilizing residues

were chosen by the algorithm more than 10% of the

time at six locations, which were added to the exper-

imental set as single mutants (normal type in Sup-

porting Information Table S2). These 17 single

mutants were produced by site-directed mutagene-

sis, expressed in Escherichia coli as inclusion bodies,

then refolded and purified by affinity and size-exclu-

sion chromatography. Each MICA mutant was

amine-coupled to a dextran surface on a gold chip

and its affinity for NKG2D measured by surface

plasmon resonance (SPR) [Fig. 1(B) and Supporting

Information Table S2]. For 11 mutants binding with

affinities similar to or stronger than wild-type, affin-

ities were determined at nine temperatures and

van’t Hoff plots constructed to calculate enthalpies

of binding [Fig. 1(C)]. Overall, this simple design

technique produced seven mutants that stabilized

the interaction with NKG2D by 0.5 kcal/mol or

more, with two stabilized by more than 1.0 kcal/mol

[Fig. 2(A)].

The best single mutations at the interface were

combined in 18 multiple-mutant MICA molecules,

which were analyzed for NKG2D binding by SPR

(Supporting Information Table S2). Most of the

single mutants stabilized the interaction with

NKG2D significantly, but combining mutations at

the interface resulted in eight MICA molecules sta-

bilized by 0.5 kcal/mol or more, four of which were

stabilized by more than 1.0 kcal/mol [Fig. 2(A)]. The

best multiple mutant from this step of the strategy

combined four of the best five single mutations,

increasing affinity by �1.74 kcal/mol about half of a

kcal/mol better than the best single mutant. The

H156A mutation was excluded from this combina-

tion after we observed that, despite its highly stabi-

lizing character in the context of wild-type MICA,

this mutation produced negative additivity when

combined with other mutations suggested by Roset-

taDesign in several multiple mutants [Fig. 2(B)].

H156A fails the first of our three design tests below

because Rosetta predicts an unrealistically large

upper-quintile stabilization to both bound and

unbound proteins. Inspection of the predicted struc-

tural model for H156A reveals that His156 forms

few specific interactions with NKG2D, and when it

is mutated to an alanine, a cavity is created in the

center of the disordered loop region of MICA that

may allow other mutations to shift in a manner not

captured by our fixed-backbone assumptions and/or

may increase stability and reduce flexibility of this

region in which flexibility is important to binding.7

Removing this mutation from the quintuple mutant

resulted in a 0.65 kcal/mol stabilization of interac-

tion with NKG2D.

In the final step of design, we combined the

best three subinterfacial mutations found previ-

ously7 with the four best interfacial mutations. The

resulting mutant bound NKG2D with a 50-fold

enhanced affinity, which is a �2.29 kcal/mol stabili-

zation relative to wild-type at 25�C [Fig. 2(A)]. This

is similar to many computational results (Support-

ing Information Table S1), but it is also partially

subadditive by about a kcal/mol relative to the

added affinities of the triple and quadruple mutants

from the two design strategies [Fig. 2(B)]. The affin-

ity enhancement of the septuple mutant was con-

firmed with a previously developed size-exclusion

chromatography assay11 in which the mutant was

mixed with NKG2D and injected at a slow flow

rate. Under these conditions, the septuple mutant

eluted as a large peak (�60 kDa), indicating that

the complex had persisted through the column, but

wild-type MICA eluted as a small peak (�30kDa)

corresponding to unbound MICA monomer and

NKG2D dimer.

Design scores were calculated with RosettaDe-

sign for all expressed mutants to compare fixed-

backbone design calculations with experimental

results (Supporting Information Table S3). We

calibrated and cross-validated our NKG2D-MICA

calculations with 44 designed models recapitulating

published binding data for mutations at two
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antibody-antigen interfaces12 and a TCR-MHC inter-

face13, with affinities ranging from picomolar to

micromolar (Supporting Information Table S4).

Some design scores were apparent outliers by about

an order of magnitude, either from steric clashes

producing high repulsive energies or from unrealis-

tic stabilization calculations for particular interac-

tions. Three tests separated out the most extreme

upper-quintile calculated results:

1 Is the change the total design score undergoes

upon mutation within the 80th percentile of all

total scores? This was calculated as the absolute

value of any of the following relative to wild-type:

unbound ligand alone, bound protein–protein com-

plex, or the subtracted value of unbound-bound

[Eq. (1)]. For our set of NKG2D-MICA scores, this

corresponded to a value less than about 620

(Supporting Information Fig. S1). In terms of

Table S2, a passing score means the following

equation was true for the columns titled unbound,

bound, and bound-unbound (which is the unbound

value subtracted from the bound value to calculate

the change in energy upon binding):

jTotal design scorej < 20 (1)

2 Is the change the total design score undergoes on

mutation within the 80th percentile of all of Roset-

ta’s repulsive term (fa_rep) scores? For our set of

NKG2D-MICA scores, this also corresponded to a

value less than about 620. In terms of the col-

umns in Table S3, a passing score means the fol-

lowing equation was true for the columns

Drep_MICA (unbound), Drep_complex (bound),

and the two columns subtracted (as Drep_complex

� Drep_MICA):

jfa rep for mutant � fa rep for wild typej < 20 (2)

These two tests are similar to the criterion that

the design should not be predicted to significantly

Figure 2. Comparison of design scores (¼bound complex score–unbound MICA score relative to wild-type scores) to binding

thermodynamics of single and multiple mutants relative to wild-type MICA. (A) Experimentally determined free energies of

binding for all mutants tested arranged by number of mutations made (h: passed all three tests and sized and shaded by

relative design score, with best design score largest and colored black; X: failed one of the three design score tests). (B)

Additivity of mutants arranged with three sets of examples: negative additivity of H156A, subadditivity of D15N, and both

subadditivity and full additivity of N69W Bars shaded by number of mutations, from white:one mutation to black:seven

mutations; patterned bars:subinterfacial mutations from the first strategy. N ¼ D15N; T ¼ R38T; V ¼ D149V; D ¼ H158D; A ¼
H156A . Third section only: W ¼ N69W; E ¼ K152E; second D ¼ K154D. (C) Relationship between experimentally determined

free energy of binding and design score and (D) between enthalpy of binding and design score for mutants shown as black

boxes that pass the three tests (h: first-strategy N69W and second-strategy D15N mutants discussed in the text and closely

related combined mutants WED and NWED). R2 values for linear regression fits ¼ 0.61 and 0.40, respectively.
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destabilize the unbound molecules,14 also exclud-

ing unusually large predicted stabilization. Eight

designs of the 41 NKG2D-MICA mutants failed

one or both of the first two tests.

3 For the subtracted value of bound-unbound only:

does Rosetta’s side chain hydrogen bonding term

(hb_sc) stay the same or decrease? This threshold

was suggested by Sammond et al. to counteract

Rosetta’s reported tendency to replace a good

hydrogen bond with a less specific — for example,

hydrophobic — interaction in the bound com-

plex,14 and corresponds to the 80th percentile of

our set of hb_sc scores. We follow Sammond et al.

in using the subtracted value only (¼bound–

unbound), to the first decimal place, so that a

score of less than 0.05 is considered to stay the

same within error. In terms of the columns in Ta-

ble S3, the Dhb_sc_MICA value was subtracted

from the Dhb_sc_complex value so that a passing

score means the following equation was true:

½ðhb sc for mutant complex � hb sc wild-type complexÞ
� ðhb sc for mutant MICA � hb sc for

wild-type MICAÞ� < 0:05 ð3Þ

Four more NKG2D-MICA designs failed this test.

Application of these thresholds to other interfa-

ces could use either the percentile or the raw score

depending on the number of scores in the design set.

Cross-validation with the experimental binding data

published for 44 mutations at the three other inter-

faces showed that the three tests marked out 20 of

Rosetta’s scores for these mutations as suspect, 17 of

which were successful applications of the tests

(either incorrect predictions by Rosetta or correct

predictions of destabilization; Supporting Informa-

tion Fig. S2). Interestingly, all three cases in which

the tests did not succeed—experimentally stabilizing

mutants correctly predicted by Rosetta yet incor-

rectly excluded by the tests—replaced glycine resi-

dues: two of these predicted the effects of mutating

glycines in the low-affinity MHC-TCR complex and

the third altered a glycine in an antibody CDR loop.

The MHC-TCR complex produced the most incorrect

predictions by Rosetta. For example, several TCR

mutants that replace a smaller residue with a larger

one fail tests 1 and 2 because of steric repulsion in

the complex (D26W and G28L) or in the unbound

TCR (G28I). In silico, the fixed-backbone model can-

not avoid these repulsions, but in vitro, these

mutants improve binding; in these cases, small back-

bone movements would minimize repulsion. Rosetta

scores for two other TCR mutations (G28M and

S100T) passed all three tests, yet incorrectly pre-

dicted destabilization of the complex; in these cases,

loop adjustments may allow stabilizing interactions

to form in the complex by the new side chain atoms

that cannot be reached in our fixed-backbone mod-

els. In general, Rosetta was able to more accurately

estimate quantitative effects of mutation for the

higher-affinity antibody-antigen complexes, but in

all three cases, the tests would have pre-filtered the

predictions so that a more experimentally amenable

set of stabilizing mutations remained.

After these tests were applied to curate the

Rosetta data for NKG2D-MICA, correlations were

observed for the remaining data, using the sub-

tracted design score suggested by Sammond et al.14

The best design score corresponds to the best experi-

mental result, which is the septuple mutant [Fig.

2(A)]. A linear relationship is observed between the

change in free energy of binding as determined by

SPR and the design score [Fig. 2(C)], and a similar

but more dispersed relationship is observed between

van’t Hoff enthalpy of binding and design score (note

that enthalpy measurements have a larger standard

error as well) [Fig. 2(D)]. Linear relationships within

some error have been observed between free energy

of binding and design score for various design meth-

ods.12,15,16 The linear relationship shown here

between enthalpy of binding and Rosetta’s design

score suggests that fixed-backbone Rosetta calcula-

tions better recapitulate characteristics associated

with enthalpy (e.g., charge-charge interactions, close

atom packing) than with entropy (e.g., flexibility).

Each design strategy produced one significantly

stabilizing (DDG<�0.5 kcal/mol), peripherally

located mutation that Rosetta does not predict as

stabilizing: N69W for the subinterfacial strategy and

D15N for the interfacial strategy. These may pro-

mote NKG2D-MICA interface formation through

mechanisms more complex than optimizing direct

atomic contacts. For example, N69W is predicted to

destabilize the unbound MICA molecule, which bio-

physical tests have confirmed,7 and which is

reflected in the positive total design score for

unbound MICA relative to wild-type. In MHC mole-

cules, which are structurally homologous to MICA,

flexibility of the helices in the center of the binding

surface influences T-cell receptor binding.17,18 Such

movements in MICA would not be captured by fixed-

backbone calculations. D15N alters charge distribu-

tion on the outer edge of the interface, and is pre-

dicted to stabilize the MICA-NKG2D complex, but

also to stabilize the unbound MICA by the same

amount so that the subtracted design score predic-

tion is close to zero. Empirically, we found that this

mutation, alone and in combination with other

mutants, successfully stabilizes the interface.

Combining mutations at an interface can result

in different degrees of additivity,19,20,15 with subad-

ditivity observed for a T-cell receptor-MHC

interface21 and a single-chain Fv-PSA interface.22

Similarly, we repeatedly observed subadditivity and

negative additivity at this interface [Fig. 2(B)]. In a
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study of antibody affinity maturation, interface af-

finity was found to be inherently limited,23 so the

NKG2D-MICA interface architecture may impose a

structural limit here, particularly the requirement

that a homodimer engage a monomer with two sym-

metric half-sites on a flat surface. Also, mutations

located in independent modules distant from each

other combine additively,19,20 and the arrangement of

each NKG2D half-site as residues clustered around a

pair of tyrosines may cause each half-site to cooper-

ate as a single non-additive module. When the

NKG2D-MICA crystal structure was analyzed for

modules according to the technique of Reichmann

et al., each NKG2D half site consisted of a single co-

operative module (unpublished data). Distance from

the half-site cores may explain why the peripheral

mutation N69W provides a fully additive gain

observed in this study when combined with the sex-

tuple mutant to make the septuple mutant [Fig.

2(B)]. However, factors other than distance must

affect cooperativity, because two alterations in charge

distribution at the interface at opposite ends of the

NKG2D footprint, D15N and H158D, combine with

negative additivity in the ND mutant [Fig. 2(B)].

Conclusion

Here, we demonstrate a rational, iterative enhance-

ment of MICA that qualitatively changed NKG2D

affinity from weak (KD ¼ 2.5 lM) to moderately tight

(KD ¼ 51 nM) with seven mutations, engineering af-

finity past thresholds appropriate for applications

such as immunoprecipitation and vaccination.24,25

Different strategies of mutating residues that were at

and below the binding interface enhanced affinity,

although when combined, mutants often bound with

partial or negative additivity. Three tests identified 32

out of 85 design scores as incorrect or destabilizing,

with no wrongly identified scores for NKG2D-MICA,

and with three wrongly identified scores combined for

three other protein–protein interfaces. RosettaDesign

scores could be compared with experimentally deter-

mined free energies, showing that simple design

calculations with fixed backbone design can systemati-

cally enhance an existing protein interface.

Methods

Computational
RosettaDesign26 v2.1 was used to model side chain

mutations and calculate energies with the -fixbb

-repack_neighbors -soft_rep options selected.27,14

Structural coordinates from the PDB file (1HYR for

NKG2D-MICA) were relaxed, repacked, and remod-

eled with Rosetta to provide wild-type models, which

were then mutated, repacked, and evaluated. For

each mutant, Rosetta calculated a score 100 times

and an example with the lowest score from that set

was used. Most scores converged two to nine times

within the set of 100.

Experimental

Recombinant MICA and NKG2D proteins were pro-

duced and purified with affinity chromatography to

>�95% purity and sized with size-exclusion chroma-

tography using methods identical to those previously

published in report of the first design strategy7 to

allow for comparison of results, including production

of proteins by undergraduates in a biochemistry

teaching laboratory.28 Plasmids for expression of sev-

eral mutant MICA molecules were constructed by

Genscript (Piscataway, NJ).

SPR assays were also consistent with earlier

work to allow for direct comparison of results, per-

formed on a BIAcore 3000 and fit with a two-step

model, which was supported by controls and biophysi-

cal tests.7 We confirmed in Lengyel et al. that relative

affinities on mutation for the MICA-NKG2D system

are similar for a two-step kinetic model and a simple

equilibrium model. (Recently, two-step modeling of

SPR kinetic data has been validated biophysically for

another protein–protein interface.29) The accuracy of

our independent measurements can be assessed by

comparing pairs of proteins with highly conservative

mutations that were made and evaluated by different

groups of students at different points in the project,

giving identical results within error: e.g., wild-type

vs. R64K (DDG ¼ �0.06 60.1 kcal/mol); and

R38T_H158D vs. R38T_H158DþY157F (DDG ¼
�0.03 6 0.1 kcal/mol). Kinetic data were gathered at

five to nine temperatures and then combined into

van’t Hoff plots, with enthalpy calculated as reported

in Lengyel et al.
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