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Over the past several years, genome-wide association studies (GWAS) have succeeded in identifying hundreds of genetic
markers associated with common diseases. However, most of these markers confer relatively small increments of risk and
explain only a small proportion of familial clustering. To identify obstacles to future progress in genetic epidemiology research
and provide recommendations to NIH for overcoming these barriers, the National Cancer Institute sponsored a workshop
entitled ‘‘Next Generation Analytic Tools for Large-Scale Genetic Epidemiology Studies of Complex Diseases’’ on September
15–16, 2010. The goal of the workshop was to facilitate discussions on (1) statistical strategies and methods to efficiently identify
genetic and environmental factors contributing to the risk of complex disease; and (2) how to develop, apply, and evaluate these
strategies for the design, analysis, and interpretation of large-scale complex disease association studies in order to guide
NIH in setting the future agenda in this area of research. The workshop was organized as a series of short presentations
covering scientific (gene-gene and gene-environment interaction, complex phenotypes, and rare variants and next generation
sequencing) and methodological (simulation modeling and computational resources and data management) topic areas.
Specific needs to advance the field were identified during each session and are summarized. Genet. Epidemiol. 36 : 22–35, 2012.
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INTRODUCTION

In the past 5 years, genetic epidemiology studies have
progressed from investigating single variants in candidate
genes to interrogating millions of variants in genome-wide
association studies (GWAS). Over the past several years,
GWAS have succeeded in identifying hundreds of genetic
markers associated with common diseases. However, most
of these markers confer relatively small increments of risk
and, collectively, explain only a small proportion of
familial clustering.

There are many possible explanations for the low
attributable risk observed from current discoveries. Analysis
of GWAS data has focused almost exclusively on detecting
single SNP effects, while the bulk of susceptibility may
reside in more subtle configurations that require accurate
modeling of gene-gene or gene-environment interactions.
Imprecise phenotyping or genetic heterogeneity may also
contribute to difficulties in detecting genetic associations. In
addition, findings have been limited to variants represented
on commercially available genotyping arrays. Therefore, the
contribution of other classes of genetic variation to complex
diseases, including less common or rare variants and
structural variants, has not been well-studied [Eichler et al.,
2010; Lander, 2011; Manolio et al., 2009]. Each of these
explanations presents numerous study design and analytical
challenges to overcome. Moreover, with the advent of even
higher density genotyping platforms and next generation
sequencing technologies, new opportunities are emerging for
identifying even larger numbers of genetic variants asso-
ciated with disease. The tsunami of data generated using
these technologies has created tremendous challenges for
data management, storage, and interpretation. Despite these
challenges, the National Institutes of Health (NIH) have
funded few grants to specifically develop new analytic tools
for genetic epidemiology studies.

To identify obstacles to future progress in genetic
epidemiology research and provide recommendations to
NIH for overcoming these barriers, the National Cancer
Institute (NCI) sponsored a workshop, entitled ‘‘Next
Generation Analytic Tools for Large-Scale Genetic Epide-
miology Studies of Complex Diseases’’ on September
15–16, 2010. As the analytical challenges apply to multiple
disease phenotypes, planning and organization of the
workshop was performed by a trans-NIH steering com-
mittee, including members from the NCI (Division of
Cancer Control and Population Sciences and Division of
Cancer Epidemiology and Genetics), National Institute of
Dental and Craniofacial Research, National Institute of
Environmental Health Sciences (NIEHS), National Heart
Lung and Blood Institute (NHLBI), and National Human
Genome Research Institute. The goal of the workshop was
to facilitate discussions on (1) statistical strategies and
methods to efficiently identify genetic and environmental
factors contributing to the risk of complex disease; and (2)
how to develop, apply, and evaluate these strategies for
the design, analysis, and interpretation of large-scale
complex disease association studies in order to guide
NIH in setting the future agenda in this area of research.
To best represent a variety of view points and perspectives,
the workshop brought together staff from NIH Institutes
and included experts in fields of biostatistics, genetics,
statistical genetics, genetic epidemiology, epidemiology,
and computer science (Supplemental Table I).

The workshop was organized as a series of short
presentations covering scientific (gene-gene and gene-
environment interaction, complex phenotypes, and rare
variants and next generation sequencing) and methodolo-
gical (simulation modeling and computational resources
and data management) topic areas, providing an overview
of the state of the science. These presentations were
followed by two breakout sessions on each topic area to
discuss a series of questions prepared in advance of the
meeting. Nilanjan Chatterjee (NCI Division of Cancer
Epidemiology and Genetics) and Peter Kraft (Harvard
School of Public Health) described challenges for studying
gene-gene and gene-environment interactions. Nancy Cox
(University of Chicago) and Matthew Stephens (University
of Chicago) emphasized the importance of adequately
appreciating the complexity of phenotypes in genetic
analyses and presented alternative approaches to account
for this complexity in analysis. John Witte (University of
California, San Francisco) and Kathryn Roeder (Carnegie
Mellon University) discussed different methods for
analysis of rare and uncommon variants. Christopher
Amos (The University of Texas M.D. Anderson Cancer
Center) and Michael Province (Washington University
School of Medicine) commented on the utility of simula-
tion modeling, different methods and models, and
potential pitfalls of simulation studies. Jason Moore
(Dartmouth Medical School) and Marylyn Ritchie (Van-
derbilt University) described the challenges of working
with large-scale genetic epidemiology data sets and
opportunities for the future using novel analytic and
computational methods. Daniel J. Schaid (Mayo Clinic)
summarized the topics discussed in the workshop and
suggested several approaches for addressing challenges
during his keynote address. After the breakout sessions,
short reports were presented to the entire group by the
discussion leaders (Gene-Gene and Gene-Environment
Interactions, Clarice Weinberg, NIEHS; Complex Pheno-
types, Duncan C. Thomas, Keck School of Medicine,
University of Southern California; Rare Variants and Next
Generation Sequencing, Sebastian Zöllner, University of
Michigan School of Public Health; Simulations, Suzanne
M. Leal, Baylor College of Medicine; Computational
Resources and Data Management, Kevin Jacobs, NCI
Division of Cancer Epidemiology and Genetics).

This meeting report summarizes the discussions held
during the workshop and provides recommendations to
facilitate future research in next generation of analytic
tools for large-scale population studies. Specific recom-
mendations to advance the field were identified during
each session and are summarized in Table I.

GENE-GENE AND GENE-
ENVIRONMENT INTERACTIONS

One session of this workshop was devoted to the
challenges and issues associated with identifying gene-
environment (G�E) and gene-gene (G�G) interactions in
complex human diseases [for review: Cordell, 2009;
Thomas, 2010]. As many GWAS of complex diseases are
completed, there is a strong interest in the scientific
community to follow up on these findings with analysis of
G�E and G�G interactions (Recommendations 1.1, 1.2).
There are multiple reasons for studying these types of
interactions including integrating biological pathways and
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TABLE I. Overview of recommendations to foster the next generation of research in genetic epidemiology of complex
diseases

1. Gene-gene and gene-environment interactions
1.1 Re-analysis of existing GWAS studies for G�G and G�E interactions
1.2 Meta-analyses of existing studies for G�G and G�E interaction studies
1.3 Development of methods and study designs that can better identify gene-gene (G�G) and gene-environment (G�E) interactions

with user-friendly software
1.4 Comparisons of study design models and methods for use with different data sets (e.g., case-control studies, family studies) for best

approaches for G�G and G�E interaction discovery
1.5 Improved methods of exposure assessment
1.6 Incorporation of improved environmental measures into planning of long-term cohort studies
1.7 Incorporation of repeated measures of exposures over time in cohort studies
1.8 Reducing measurement error and identification of methods to handle sources of variability and optimal methods for sampling when

using biomarkers
1.9 Improved causal models to integrate biomarkers, genes, the environment and traits
1.10 Harmonization of data types (especially environmental measures)
1.11 Functional studies (e.g. mouse models, cell lines) for validation of interaction findings for genetic variants and environmental factors

2. Complex phenotypes
2.1 Integration of many data types (e.g. genomics, metabolomics, gene expression, and epigenomics)
2.2 Development of analysis methods that enable more efficient use of systems of related traits
2.3 Increased investment in robust and accurate phenotype assessment
2.4 Increased focus on identifying and validating intermediate phenotypes
2.5 Building of pathway/network models to link inherited and acquired variation together in a unified framework
2.6 Evaluation of the effectiveness of retrieving phenotypic data from EHRs compared to data collection methods used in population-

based research studies
2.7 Generation of one or more large and well-documented sets of study participants with extensive phenotype, genotype, and other ‘‘-

omics’’ data to be used as a resource for developing and testing data integration methods

3. Rare variants and next generation sequencing
3.1 Development and sharing of quality control (QC) methods for next generation sequencing
3.2 Create a forum for establishing QC standards for next-generation sequencing
3.3 Generation and sharing of standardized data sets for testing and evaluation of sequencing errors
3.4 Development of improved methods to account for sequencing error (systematic and random)
3.5 Improved methods to account for ambiguous functional information for variants, in particular in noncoding genomic regions
3.6 Data to interpret accuracy of functional prediction algorithms for variants
3.7 Estimation of population-specific variant frequencies
3.8 Pilot sequencing studies to inform data analysis

4. Simulations
4.1 Development and distribution of standardized simulated data sets
4.2 Development of well-documented, modular, user-friendly, and open source simulation program(s)
4.3 Availability of simulated data sets through a common repository, such as the database of Genotypes and Phenotypes (dbGaP)
4.4 Creation of a web-based catalog of simulation programs and data sets
4.5 Forums for collaboration among simulation modelers to advance the science of simulation in a systematic manner
4.6 Funding for documentation of simulation programs and data sets
4.7 Improved funding for simulation modeling

5. Computational resources and data management
5.1 Regional shared computational clusters
5.2 Training of graduate students and post-doctoral fellows in computer programming
5.3 Increased funding and support for computational personnel
5.4 More efficient data formats and data structures for data storage
5.5 Conference to develop a consensus on best practices and methods to store, deliver, archive, and describe data
5.6 Improved methods for combining data across multiple data sources and data types
5.7 Development and sharing of standard quality control procedures for data combination and integration
5.8 Development of new open-source, user-friendly analytical tools
5.9 Establishment of new opportunities to support analytical tool development
5.10 Conference to form consensus standards and identify formats needed for development of analytical software tools
5.11 Improved annotation and curation of biological pathway databases
5.12 Development of tools for data visualization
5.13 Creation or identification of common, easily accessible, data sets for methods development
5.14 Forum to share lessons learned regarding data management and analysis
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understanding biological mechanisms that cause complex
diseases, improving the power to discover underlying
susceptibility loci, explaining heterogeneity across studies,
and identifying susceptible subpopulations. Understand-
ing G�E interactions involved in complex disease out-
comes may improve performance of risk prediction
models for disease prevention and treatment and is the
basis of the field of pharmacogenomics [Thomas, 2010].
Despite the potential importance of these interaction
studies, an open question is how much of the risk for trait
or disease can be explained by G�G or G�E jointly, if
joint effects are properly accounted for during analysis.
Once concern is that empirical data suggest that interac-
tions, even if they are present, may not explain much of the
heritability [Hill et al., 2008]. Some recent reports
suggested that multiplicative interactions, even if present,
are likely to be of modest magnitude for complex diseases
and may not be easily detectable using GWAS approaches
[Ciampa et al., 2011; Milne et al., 2010].

An overarching theme of this session was to identify
challenges for detecting and interpreting G�G and G�E
interactions. It was noted that statistical interaction, per se,
offers only circumstantial evidence of biological mechan-
ism, i.e. statistical interaction is not the same as a biological
interaction [Blot and Day, 1979; Rothman et al., 1980;
Siemiatycki and Thomas, 1981; Thompson, 1991; Wein-
berg, 1986]. This distinction is due in part to the fact that
detection of a statistical interaction refers to departure
from a model on a particular scale [Thomas, 2004].
Moreover, in the context of GWAS data, only markers are
measured and rather than the functional or causal variants
themselves, which may not be ideal for testing mechanistic
interactions. Even if the appropriate scale is selected, the
power to detect interactions is often limited [Greenland,
1993]. However, participants argued that even in absence
of statistical interaction, identifying the increased risk of
disease with the combination of G and E remains of public
health relevance. Participants agreed that although there
are many different ways to statistically define G�G or
G�E interactions, the key question is how to model joint
effects when both multiple genes or multiple genes and
multiple environmental factors influence risk. Most dis-
ease is ‘‘complex’’ in that multiple factors contribute to
etiology, and the fundamental issue is not whether
interactions exist, but how to jointly model the effects of
multiple contributors to risk.

The presentations and breakout sessions focused on
identifying novel study designs and strategies that would
best detect G�G and G�E interactions, given the
challenge of poor statistical power for detection (Recom-
mendations 1.3, 1.4). Although very large sample sizes are
generally necessary for identifying interactions, some
methods, particularly case-only approaches, can be
exploited to increase statistical power for detecting interac-
tions, when the interacting factors can be assumed to be
independently distributed in the underlying population

[Piegorsch et al., 1994]. The gain in power, however, comes
at the risk of major bias when the independence assumption
is violated [Albert et al., 2001; Cornelis et al., 2011;
Mukherjee et al., 2011; Thomas et al., 2011]. Recently,
various types of hybrid methods have been proposed that
can exploit the assumption of gene-environment indepen-
dence to gain power, but are also robust to violation of the
independence assumption [Chen et al., 2009; Li and Conti,
2009; Mukherjee and Chatterjee, 2008; Murcray et al., 2009].

Efficiency for studies of interaction can be enhanced by
two-phase designs [Breslow and Chatterjee, 1998]. In a
two-stage case-control design, the population can be
oversampled for a rare exposure prior to genotyping to
improve the statistical power to detect G�E. Designs that
look for genetic effects in environmentally exposed or
high-risk populations (e.g. individuals exposed to radia-
tion for breast cancer treatment or BRCA1/2 carriers,
respectively) can also be a powerful approach for detecting
G�E interaction. Prior biological or pathway knowledge,
if available, could also be incorporated into G�E scans
and may increase power to detect associations. The
formation of consortia can ultimately be used to achieve
very large sample sizes, but this approach may also
increase the heterogeneity of the study population.

Many of the methods described were focused on
pairwise interactions, although it was acknowledged that
more complex interactions are likely involved in the
etiology of complex diseases. Methods for exploring
higher order interactions have been developed including
those for candidate genes or SNPs selected after prescre-
ening [Kooperberg and Ruczinski, 2005; Ritchie et al.,
2001] and in the context of GWAS discovery [Schwarz
et al., 2010; Zhang and Liu, 2007]. There has been major
computational progress toward examining these complex
interactions, but challenges remain, including the need for
even greater sample sizes to detect complex interactions
compared with pairwise tests, and difficulty of replicating
complex interactions in unique populations.

Another challenge identified by the group was diffi-
culty in measuring the environment. Given that environ-
mental exposures drive the etiology of many complex
diseases, how an exposure is measured, where in the
population distribution an exposure falls, and when an
exposure is measured in a population can have profound
consequences for discovering and/or replicating G�E
[Kraft and Hunter, 2009]. In addition, for several complex
diseases, the critical time period for measuring exposure in
unclear. Moreover, most current measurements of envir-
onmental factors have significant margins of error. Taken
together, these challenges decrease the power to detect
G�E.

The participants discussed different approaches to
minimize measurement error in exposure assessment
while controlling costs. One option is a two-stage design
in which a subsample of the population is measured using
a more accurate exposure test, the remainder is measured

TABLE I. Continued.

6. Overall
6.1 Designate a set of GWAS (and/or sequencing) data sets available in dbGaP that are appropriate for methods development and testing,

allowing performance of different methods to be more readily compared
6.2 Sharing of lessons-learned for quality control and data analysis
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with a cost-efficient test, and a joint analysis of main and
subsample data is performed. Alternatively, it may be cost-
effective to use the less precise measure and make up the
loss in power with increased enrollment. Clever multistage
sampling, such as exposure stratified sampling [Breslow
and Chatterjee, 1998] or countermatching [Langholz and
Borgan, 1995], can also increase the efficiency of study
while keeping costs down [Andrieu et al., 2001]. In
addition, in case-control studies, panels of related expo-
sures can be pooled for increased power and decreased
cost. Meeting participants identified several needs includ-
ing the development of improved methods of exposure
assessment and incorporation of methods into long-term
cohort studies (Recommendations 1.5–1.7).

Biomarkers can be used in epidemiology studies as a
method to assess environmental exposure. These markers
can be either direct measurements as biomarkers of
exposure or measures of early effect [Vineis and Perera,
2007]. Exposure biomarkers are direct measurements of
the toxin or chemical, whereas measures of early effect
reflect the underlying biological process. An example of a
measure of early effect may include epigenetic changes,
which may result in changes of gene expression in
response to environmental exposure [for review: Jirtle
and Skinner, 2007]. Measurement error can be a particular
challenge when using biomarkers because of sources of
variability, such as heterogeneity across individuals in
absorption and metabolism, systematic and random
differences between levels in the substrate measured
compared with the target organ, variability from handling
of biospecimens, timing of collection (e.g. circadian, or
seasonal variability in marker levels), and laboratory
variability, among others. It was cautioned that studies
using biomarkers as surrogates for exposures need to be
carefully designed since genetics might influence the
measurement of the exposures the biomarkers are repre-
senting (e.g. genetic variation might influence uptake or
alter metabolism of a toxin). Some needs that were
identified for measuring biomarkers included: reducing
the measurement error, identifying methods to handle
sources of variability, and identifying optimal methods for
sampling when using biomarkers (Recommendation 1.8).

In addition to needs identified regarding biomarkers
themselves, improved causal models are needed to
integrate biomarkers, genes, the environment, and traits
(Recommendation 1.9). Although establishing causation in
human studies is notoriously difficult, fraught with
hidden biases, the one-way causal direction from genes
to phenotypes has been leveraged to build and evaluate
causal models in genetic epidemiology based on Mende-
lian randomization [Bochud et al., 2008; Smith and
Ebrahim, 2004]. Further work to disentangle the influence
of genes on biomarkers, intermediate traits, and distant
phenotypes might guide interpretations of genetic associa-
tions [Vansteelandt et al., 2009], and might guide further
laboratory studies of genetic causation [Drake et al., 2006;
Schadt et al., 2005].

Debate with some level of disagreement focused on what
constitutes appropriate replication in G�E and G�G
interaction studies. Some participants suggested that too
much emphasis is placed on replication and it is possible
that a truly functional variant may not replicate across
different study populations for biological and statistical
reasons. Under a model of complexity with significant
G�G and G�E interactions, it could be a challenge to

replicate between independent studies when those samples
are drawn from different populations with different
underlying environmental exposures and genetic modifiers.
However, given that an observed association also can arise
purely from chance in the context of genome-wide analysis,
other participants cautioned against lowering the threshold
of significance for G�G or G�E interactions, since doing
so would increase false-positive associations. In addition,
interaction findings may need to be prioritized by the
interpretability of the observed joint effect and whether
such a joint effect replicates in independent studies. It was
pointed out that replication of some kind of interaction
coefficient in an independent study is not easily inter-
pretable unless investigators observe similar patterns of
joint effects. This may be a challenge if the genetic marker is
not the causative variant, as different patterns of linkage
disequilibrium (LD) between populations could result in
conflicting or even opposite detected interactions.

Other unique challenges associated with G�E and
G�G interaction studies were discussed. The most
predictive statistical or analytical methods for integrating
environmental exposures over time are not clear, and this
will need to be resolved since many exposures affect
disease risk over long periods of time. Some participants
suggested that geospatial technology should be utilized to
measure some exposures over a continuous timeframe
(e.g. using residential history to measure air pollution
exposure over time). Harmonization of exposures across
studies will increase our ability to form consortia to detect
G�E interactions, but is extremely difficult retrospec-
tively (Recommendation 1.10). Unique challenges also
arise when exploring the role of G�G and G�E
interactions for prenatal effects—two genomes are in-
volved, imprinting effects may play a key role, and the
timing of the exposure measurements is critical, particu-
larly with regard to birth defects. Improved methods for
determining how historical time-dependent exposures
should be weighted over time could provide insights into
disease latencies and mechanisms. The group also sug-
gested that functional studies (e.g. mouse models, cell
lines) are needed to validate interaction findings and
complement population-based observations (Recommen-
dation 1.11).

COMPLEX PHENOTYPES

Understanding the underlying biological mechanisms is
a principal goal in the study of complex traits/diseases.
The heterogeneous nature of many complex traits/
diseases and the difficulty in obtaining and integrating
multifaceted phenotypic information to characterize and
subtype complex diseases create analytical challenges for
genetic epidemiology studies. In recent years, technology
has improved our ability to identify thousands of genetic
variants associated with diseases or traits. It is now
possible to annotate the genome with functional informa-
tion about how genetic variants relate to expression,
methylation, metabolite levels, or protein levels, further
improving the ability to identify interesting genetic
variants. Despite the large number of discoveries, translat-
ing these discoveries into biological insights remains
challenging. There are few examples of insights into
biological pathways that stand out [i.e. the complement
system in macular degeneration [Klein et al., 2005] and
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autophagy in Crohn’s disease [Rosenstiel et al., 2009]
among the large number of SNP discoveries].

The impact of phenotype characteristics on the study of
genetic variants was explored by examining the distribu-
tion of the number of SNP discoveries in GWAS by
phenotype using the Long-Cox ratio [Cox, 2010]. The
Long-Cox ratio is the ratio of the number of SNPs
reproducibly associated with a complex trait by GWAS
divided by the log of the number of genotypes (full GWAS
plus followup) required when making these discoveries.
By comparing the ratio for different phenotypes, several
characteristics were observed. In phenotypes, such as Type
1 diabetes, Crohn’s disease, and rheumatoid arthritis,
more discoveries were made with less genotyping invest-
ment. It was suggested that these phenotypes may be more
precisely defined and better distinguished from other
closely related phenotypes, and involve single organ
systems. In contrast, diseases that may be considered to
have less precise phenotype definitions and involved
multiple organ systems (e.g. hypertension and cardiovas-
cular disease) had fewer discoveries with much greater
genotyping investment. Consistent with this observation,
association of genetic variants with specific clinical
subtypes of breast cancer was observed [Broeks et al.,
2011]. These results suggest that increased precision of
phenotyping may reduce heterogeneity and improve
power to detect genetic variants associated with disease.

Multidimensional and multivariate methods to integrate
information from different data types and related pheno-
types will be key to making progress (Recommendation
2.1). Integrating data types, including ‘‘omics’’ data such
as DNA methylation, RNA expression, and protein
expression, may lead to improved understanding of
biological mechanisms. Endophenotypes and intermediate
phenotypes, defined as traits that are heritable and
associated with disease, may provide insight into biologi-
cal mechanisms for complex diseases because these
intermediate traits are more proximal to genetic variation
or environmental exposure than the complex disease
[Gottesman and Gould, 2003; Kendler and Neale, 2010].
However, experience thus far shows that the genetic
relationship between a disease and its endophenotypes
or intermediate traits may be complex, with potential
differences in underlying genetic mechanisms [e.g. glu-
cose traits and type 2 diabetes: De Silva and Frayling, 2010;
cognitive performance and schizophrenia: Cirulli and
Goldstein, 2010].

Despite the proliferation of data and information, much
of the analysis has focused on simple, univariate analyses.
Exploiting multivariate information to perform more
complex analyses could improve statistical power and
provide scientific insights, especially when phenotypes are
related (e.g. height and weight). One method discussed
was to test partitions of independent, dependent, or linear
combinations of effects for the different phenotypic
measures and using data to provide more or less support
for particular partitions [Stephens, 2010]. Multivariate
methods could be expanded to facilitate data integration
and incorporate multiple levels of phenotypic information.
However, improved methods are needed to effectively
model these systems and fit topological graphs of complex
relationships between phenotypic measures (Recommen-
dation 2.2).

Numerous challenges regarding complex phenotypes
were identified and discussed. In many cases to date, the

relative investment in collecting robust and accurate
phenotype and environmental exposure data has been
small compared to the time and resources devoted to
measuring and interpreting genomic data. If phenotypic
heterogeneity reflects etiologic heterogeneity, measuring
phenotypic subtypes, biomarkers, and intermediate phe-
notypes in addition to primary disease endpoints, can
improve power to identify the underlying genetic risk
factors contributing to disease. However, choosing the
correct intermediates to measure and analyze can be
difficult because of gaps in biological knowledge. For
example, only limited numbers of intermediate pheno-
types and biomarkers have been identified for cancer (e.g.
colorectal polyps and prostate-specific antigen). It was
emphasized that endophenotypes are more informative for
prospective studies due to the risk of ‘‘reverse causation’’
in retrospective designs. Meeting participants recommend
increased investment in robust phenotyping and emphasis
on identifying and validating intermediate phenotypes
(Recommendations 2.3–2.5). The group identified data
types currently overlooked that may provide biological
insights in complex phenotypes: Geographic Information
Systems, animal model systems (e.g. zebrafish) where
high-throughput assays may be performed, cell models
and systems (e.g. induced pluripotent stem cells), and data
regarding association between gene expression and geno-
type in cell lines to inform epidemiological research.

It was also noted that the cost of collecting extensive,
well-measured phenotypes from large numbers of re-
search participants is currently prohibitive. Therefore,
different study designs and approaches were discussed.
Two-phase study designs in which more detailed pheno-
typic information is collected in subsamples and analyzed
jointly or one-stage study designs that sample a subset of
individuals in more detail can help to reduce the costs of
measuring phenotypes and exposures in large studies.
Another approach is to perform a multistage design in
which sampling is performed based on genetic and
phenotype data to maximize efficiency. In this type of
design, one would need to account for the bias in the
sampling of the population. Biorepositories linked to
Electronic Health Records (EHRs) contain a wealth of
phenotypic data that could be exploited as an alternative
method of collecting dense phenotype data. However,
retrieving phenotypic data from EHRs is challenging and
the comparative advantage of clinical biorepositories
compared to data collection in population-based studies
needs to be evaluated (Recommendation 2.6).

Another major challenge arises from the difficulties in
integrating multiple data types, such as genotype, gene
expression, microbiome, metabolomic, and methlyation
data, is to both define a more etiologically homogenous
population for analysis and better understand the biology
contributing to disease risk and phenotypic variation. The
group identified several opportunities to address these
challenges. Ideally, one or more large and well-documen-
ted sets of study participants with extensive phenotype,
genotype, and other -omics data could be generated and
made broadly available as a resource for testing methods
for data integration (Recommendation 2.7). The NIH
Common Fund Project, Genotype-Tissue Expression
(GTEx) (https://commonfund.nih.gov/GTEx/), is an
example of such a resource. However, establishing such
resources is complicated and expensive. Therefore, it
might be more practical to integrate data using distinct
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studies or populations and use hierarchical modeling to
integrate data from nonmatching data sets by making
connections across models. For example, the association
between genes and gene expression phenotypes could be
examined in one data set and the model of this association
then applied to data in a second population from which
genes and phenotype data are obtained. It was also
suggested that an increased emphasis should be placed
on developing tools for data visualization, aligning data
across disparate platforms, and providing increased
funding for computational personnel.

To incorporate more precisely defined phenotypes or to
better analyze complex phenotypes, larger sample sizes
will be needed which result in challenges for integrating
data across multiple distinct studies. While meeting
participants agreed that there has been a shift toward
consortia to achieve larger sample sizes, even more
facilitation of interactions amongst investigators would
be helpful. Another challenge to combining data from
multiple different studies is the lack of uniformity in
methods used for collecting phenotypic data, though
activities such as the PhenX project (https://www.
phenx.org/) are helping to address this issue. Finally,
successful data integration across multiple studies and
data sources will require additional information about
individual data sets including detailed information about
study design, phenotyping protocols, and quality control
methods implemented.

RARE VARIANTS AND NEXT
GENERATION SEQUENCING

Recent advances in next generation sequencing technol-
ogies have invigorated the search for rare variants
involved in the etiology of complex traits. However, the
power to detect an association with a single rare variant is
low even in very large samples [for review: Bansal et al.,
2010; Carvajal-Carmona, 2010; Cirulli and Goldstein, 2010].
In an effort to obtain increased statistical power from
smaller sample sizes, many groups have investigated
aggregating sets of rare variants into a single group and
testing their collective frequency differences between cases
and controls. Recently published studies show that power
to detect rare variants can be greatly enhanced by
collapsing variants in a target region, such as a gene or
exon [Han and Pan, 2010; Li and Leal, 2008, 2010; Madsen
and Browning, 2009; Morgenthaler and Thilly, 2007; Price
et al., 2010].

However, it is very difficult to define which rare
variants should be aggregated into a single group for
analysis. One solution discussed at the meeting was to use
empirical methods to determine the optimal weighting
and aggregation scheme. In such cases, multiple aggrega-
tion schemes could be considered, evaluated based on
some metric (e.g. minimum P-value), and corrected by
permutation. A simulation study using sequence data
from 18 candidate genes from the folate metabolism
pathway was presented, which compared several different
approaches to aggregating such variants. Two approaches
to empirically determine the most efficient grouping of
rare variants were described. The first considered multiple
possible groupings leveraging functional elements and
annotations (e.g. minor allele frequency, MAF, or protein
coding function information) in a genomic region to

collapse the variants together. The second was an agnostic
"step-up" approach in which all possible subsets were
considered and the grouping that best differentiates cases
and controls was selected. Results of this simulation study
showed that leveraging prior information to guide the
collapsing of rare variants is advantageous only when
information is quite accurate, but the step-up approach
worked well across a broad range of plausible scenarios
[Hoffmann et al., 2010].

In general, aggregation methods not only have increased
power to detect associations but also have limitations. For
example, most aggregation methods assume that all
variation affecting phenotype acts in the same direction,
but the effects of rare variants could be heterogeneous—
some variants have no effect, some variants increase risk,
and some variants are protective. Summing across variants
with differential effects can obscure true associations.
Therefore, statistical methods that allow for heterogeneity
of SNP effects within a gene are needed. The C-a test
statistic was presented as a novel approach, which is
robust in the presence of a mixture of effects across a set of
rare variants. Specifically, analysis of both simulated and
case-control data showed that the C-a statistic had power
comparable to other aggregation methods when all effects
were in the same direction, but much greater power when
protective and risk variants exist in the test set [Neale
et al., 2011]. The HapMap project examining ENCODE
regions has shown that rare variants are often unique
to particular ethnic groups [International HapMap
consortium, 2010; International HapMap Consortium, 2007;
International HapMap, 2005], thus highlighting the potential
for false-positive associations due to population stratification
in rare variant association studies. Therefore, similar to all
methods designed to discover rare variants the C-a test is
sensitive to population stratification because its null assumes
rare variants are equally likely in cases and controls; this could
be controlled using standard strategies such as principal
component analyses to match or control for ancestry.

A number of open questions surrounding the discovery
of rare variants were discussed and meeting participants
provided recommendations for advancing the study of
rare variants. These included the implications and limita-
tions of existing high coverage genotyping and sequencing
technologies and how theory can incorporate any errors.
The group agreed that sequencing, as opposed to ultra-
high-density SNP chips, will be necessary to detect very
rare variants and variants that only occur in cases. There
was strong consensus that every subject in a next
generation sequencing study should also be genotyped
using a standard genome-wide chip for quality control
(QC) purposes (including assessing and controlling for
population stratification).

Participants recognized that assembly and base calling
are difficult technological challenges, and the scientific
community must proactively develop and implement
standard QC measures (Recommendation 3.1). One ap-
proach the group supported was creating a forum to
establish QC standards for next generation sequencing
(Recommendation 3.2). It was noted that the ability to
process sequencing data will likely improve in the future.
Therefore, participants discussed storage of the raw BAM
files. Failing to store these files reduces the utility of the
stored data. However, storage costs for this data will be
substantial. Several noted that these files should be stored
until QC standards are established. At a minimum, the
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group suggested saving the BAM files for a few bench
mark data sets. Publicly available data sets would be a
valuable resource for testing error-checking methods
(Recommendation 3.3). The group agreed that NIH would
be wise to facilitate the generation and sharing of standard
validation data sets. It would be helpful if each of the
different sequencing platforms provided control or refer-
ent samples for each platform, and in particular, running
each sequencing platform on a shared set of common
samples would provide a means for cross-referencing
strengths and weaknesses of each platform. Well-cali-
brated quality scores that evaluate the likelihood a
polymorphism truly exists at a particular location and
confidence in the genotype assignment could be used as a
weight in a rare variants test. The challenge is obtaining
well-calibrated scores similar to those generated by the
phred/phrap software for Sanger sequencing reads. Error
in sequencing studies can arise randomly as a result of low
depth of coverage or systematically when sequencing
particular local sequences (e.g. repetitive elements or
homopolymer stretches). Further research is needed to
develop improved methods to account for sequencing
error, develop analytic methods that distinguish between
random and systematic genotyping errors, and evaluate
the impact of rare variant misclassification on genetic
association studies (Recommendation 3.4).

Discussion also focused on the feasible models for rare
variants and how population genetics models and existing
GWAS and linkage data inform such models. Importantly,
it was noted that the relative contribution of uncommon
(MAF 0.5–5%), rare (MAF o0.5%), and private (detected
in single individuals) variants to disease risk is unclear.
Participants agreed rare variants with much stronger
associations or odds ratios (ORs) compared to those
observed in studies of common variants (i.e. OR 5 1–1.3)
must be under selection pressure. Modeling of existing
linkage study results can be informative for understanding
potential architectures of rare variants for a given disease.
Assuming that the variant is of intermediate frequency,
some argued that in large multiplex families, any variants
with ORs greater than 10 would already have been
discovered by linkage analysis. Well-powered GWAS can
provide an upper bound for the ORs and MAFs of rare
variants. It is unclear whether most disease-associated rare
variants will be located within exons, although GWAS
results suggest that many disease-associated common
variants are located outside of exons. Participants recom-
mended that rare variant studies begin simply (e.g.
Mendelian diseases and families) as a proof of principle.
Until cost differentials between exome and whole-genome
sequencing improve, focusing on exomes is sensible
because exonic variation is easier to interpret than
nonexonic variation. In approximately 12 months, NHLBI
will have sequenced 10,000 exomes. These data will be
tremendously informative for designing studies.

Other study design considerations were discussed. Some
approaches for selecting the study population may improve
the likelihood of discovery of rare variants [for review:
Cirulli and Goldstein, 2010]. These include sampling
individuals with extreme phenotypes, family history of
disease, extreme environmental exposure for G�E studies,
or using genetic linkage or haplotype data in selecting study
populations. In addition to proof of principle studies, two-
stage designs were discussed in which the first stage is used
to screen for rare variants and the second stage is used for

replication. One challenge encountered with multistage
designs (or replication) is filtering variants for consideration
in the second stage. Several methods may be used including
filtering based on data quality (e.g. consistency, coverage),
prediction of function, and expected population frequencies
from HapMap or dbSNP. In family-based designs, an
additional approach for filtering may include using co-
segregation information. Regarding functional prediction,
the field needs better methods to account for ambiguous
functional information and data informing the accuracy of
predictions (Recommendations 3.5, 3.6). Population-specific
variant frequencies and accounting for population stratifica-
tion also are needed to use methods that filter based on
variant frequencies (Recommendation 3.7).

There was much discussion about the evidence or
standards needed to evaluate associations observed with
rare variants and whether replication should be used as a
‘‘gold’’ standard. Participants felt strongly that technical
replication, repeating the sequencing or genotyping on the
identical samples, should be absolutely required. It was
noted that technical replications should start from the
original specimen because library preparation is often a
source of genotyping error. Meeting participants felt that
allele frequency should influence replication strategy;
single rare variants cannot be replicated in an independent
sample. Unlike the standard set with GWAS requiring
replication of the specific genetic variant, significant
aggregation tests with different rare variants within the
same gene or region should be considered replication.

Genotype imputation, which allows for the evaluation of
evidence for association at genetic markers that are not
directly genotyped, is now an essential tool in the analysis of
GWAS. Current challenges for imputation of rare variants
were discussed. The low MAF of rare variants and their low
LD with other variants make them difficult to impute. The
meeting participants felt that current reference genomes
available in HapMap are insufficient to impute variants
with MAF o2% [Zawistowski et al., 2010]. The count of a
variant in a reference panel matters; observing a variant five
or more times is sufficient for imputation. Quality of
haplotyping is important for imputation. For accumulation
tests, information from poor imputation still may usefully
contribute to test statistics. In a recent study, whole-genome
sequencing was performed on a small subset of a population
with GWAS data, followed by imputation for the larger
population, and association analysis and replication by
direct genotyping identified a rare variant associated with
sick sinus syndrome [Zeggini, 2011].

Finally, meeting participants were asked to consider the
utility of funding a small (pilot) sequencing study of rare
variants, given our current knowledge of the genetic
architecture of common diseases (i.e. it will differ depend-
ing on the disease). The group agreed that low power
studies can be informative for data handling issues
(Recommendation 3.7). NIH can facilitate sharing of data
sets and should facilitate data access. However, using
public controls can increase sample issues (e.g. hetero-
geneity). Cases and controls should be genetically matched
prior to performing a sequencing study.

SIMULATIONS

Simulations are often performed to evaluate conditions
that could give rise to current observations, to develop
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replications that permit comparisons between statistical
methods for analysis, and to evaluate how changes to a
system alter its attributes. There are three types of
approaches to simulation studies in humans: (1) coalescent
(or backwards) approaches, in which ancestral conditions
are modeled from present observation; (2) forward-time
simulations, in which initial conditions are specified and
modeled forward in time; and (3) sideways simulations, in
which conditions are modeled by resampling existing
data. Coalescent models can provide rapid simulations for
restricted models, forward-time models provide flexibility
to study a broad range of questions but are computation-
ally demanding, and sideways models can simulate data
from very dense sets of markers but are limited to
haplotypes and alleles contained in available data. Hybrid
approaches that may also be used, for fitting a coalescent
model then applying a forward-time simulation in which
the allele frequencies of the disease locus are constrained
by the coalescent, allows data from large regions to be
simulated [Peng et al., 2007]. Depending on the problem
and available data, each of these approaches offers distinct
advantages and disadvantages [for review: Liu et al., 2008;
Ritchie and Bush, 2010].

A danger of using simulations is that selecting the
simulated data set for the purpose of testing a particular
method can become a self-fulfilling prophecy, i.e. the
method being tested is optimal using the particular data
set simulated. For example, if the data set was generated
using known candidate regions, testing statistical methods
leveraging biological knowledge will perform better than
agnostic methods. Other potential sources of bias in
generating simulated data sets are poor random number
generators.

Currently, there is a lack of benchmark simulation
programs or data sets and established criteria for evalua-
tion of programs or models. Therefore, it is difficult for
investigators who are less familiar with simulation
methodologies to appropriately select programs and data
sets. It was noted that some researchers are using outdated
simulated data sets generated with overly simplistic
models because they are unaware of other data sources.
Evaluating simulation programs and resulting data sets is
often difficult because of inadequate documentation or
lack of comparability between approaches. As a result of
discussions during the workshop, participants provided
the following recommendations.

One recommendation was the creation of a small
number of generalizable benchmark data sets and/or a
reference simulation program(s) for the user community
(Recommendation 4.1). The characteristics of potential
benchmark data sets were discussed. Given the large
amount of sequencing and genotyping data that will be
available shortly (e.g. 1000 Genomes, NHLBI 1000 exomes)
and limited knowledge about the genome, some suggested
using sideways approaches to generate simulated data
sets. Meanwhile other meeting participants commented
that this approach is limited because it is not possible to
model natural selection using sideways approaches. The
following characteristics of benchmark data sets were
suggested: genotypes of European and African-American
ancestry, gene-based variants in pathways, and G�G and
G�E. Moreover, exome sequence data selected for
simulation modeling should have parallel GWAS data
available to more comprehensively model genetic struc-
ture in these data sets. Several phenotypic models,

including quantitative and qualitative traits, with multiple
replicates could be added to the real genotype data to
create the benchmark data sets. These sets should be
available as Variant Call Format format, or binary version
of the Sequence Alignment/Map by request. Probability
terms for genotypes should be incorporated into the
models to account for genotyping error.

Access to the reference data sets was also discussed. To
facilitate sharing of the benchmark sets, access should be
through NIH’s database of Genotypes and Phenotypes
(dbGaP) or a similar resource with a simple application
process. Since sideways simulations could be generated
from exome sequencing data (or even whole-genome
sequencing data), there may be data access issues. To
avoid this issue, the exomes selected for the generation of
the simulated data might be limited to those that do not
require IRB approval for access, and would not be subject
to strict data use limitations; such requests would still
require review by an NIH Data Access Committee.

Although benchmark data sets would benefit methods
development, such data sets will not meet all investigator
needs and cannot feasibly capture all genetic and
phenotypic models of interest. Therefore, the group
suggested that NIH support the development of a
simulation program or series of programs (Recommenda-
tion 4.2). Several approaches for generating simulation
program(s) were discussed, including development by a
single group or as a collaborative effort by multiple
groups. The latter was believed to be more beneficial, but
was likely to be more expensive. Regardless of the
approach, the group emphasized that any reference
simulation program(s) developed should be well-docu-
mented, open-source, modular, user-friendly, adaptable
and scalable to allow maximum flexibility and future
development. An alternative suggestion called for a
centralized group of simulators to generate a series of
reference scripts that would be provided for users. Such
reference programs or scripts could be used to generate
data sets for a broader set of purposes than a small set of
benchmark simulated data sets. Moreover, reference
programs would reduce issues associated with data
storage because the data sets could simply be regenerated.
Several features were identified as desirable in a reference
program(s), but the group recommended that the pro-
grams should begin with a smaller, initial set of features.
Some suggested features included allowing different
approaches to simulation, and modeling quantitative and
qualitative traits, interactions, ascertainment models, and
correlation of phenotypes.

As the group discussed possible benchmark data sets
and programs, it was noted that several simulated data
sets are currently available that may be used for methods
development, including all simulated data generated for
the Genetic Analysis Workshops (GAW) workshops.
Another opportunity to foster analytical methods devel-
opment is to facilitate sharing of these existing data sets,
even in the absence of developing the proposed bench-
mark data sets. Therefore, the group recommended that
researchers and GAW be encouraged to deposit simulated
data to dbGaP for distribution (Recommendation 4.3). The
GAW16 data are already available through dbGAP and
could serve as a model. Deposition of the data to a
common location would facilitate the development of
documentation standards for simulated data and would
serve as a standard resource for simulated data sets.
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It would also alleviate some of the distribution burden on
the individual investigators who generated the data. A
concern was raised about whether dbGaP would be able to
handle all this additional data.

Because many of these recommendations will take time
to implement, the group suggested that an immediate
opportunity could be to create a web page that sum-
marizes available simulation programs and data, includ-
ing links to both programs and data (Recommendation
4.4). The website could include a blog for researchers to
comment on the utility of various software tools for
different purposes and aid in evaluation of the software or
data sets.

Meeting participants supported further research into a
diversity of approaches to simulation, as well as hybrid
approaches, and noted that the science of simulation could
be stimulated by a supported forum for comparison of the
structure, assumptions, and results of models in a
systematic manner (similar to what has been done in the
Cancer Intervention and Surveillance Modeling Network
for population modeling) (Recommendation 4.5). Such a
group could also develop benchmark data sets, and
distribute well-documented programs with guidelines to
assist selection of the most appropriate approach for
specific situations. Moreover, the group noted that limited
opportunities exist for those developing simulations to
work together and collaborate on common issues. This
type of forum could supplement existing analysis and
methods workshops such as GAW or the Pharmacoge-
nomics Research Network.

Finally, the group discussed the need for improved
documentation and standards for simulation modeling.
Funding is needed both for the development of programs
and for the documentation of simulated data sets and
programs (Recommendations 4.6 and 4.7). Often docu-
mentation of the program is the least exciting aspect of
developing the program and there is currently limited
financial support for documentation. Standards for data
set and program documentation are also lacking.

COMPUTATIONAL RESOURCES
AND DATA MANAGEMENT

Advances in next generation sequencing technologies
and their use in discovering genetic variations associated
with complex diseases are generating enormous amounts
of data. The major bottleneck in genome sequencing is no
longer data generation, but the computational challenges
around data analysis, display, and integration of disparate
data types [Green and Guyer, 2011]. As GWAS data have
stretched informatics capacity, meeting the storage and
analytical needs for next generation sequencing data will
be even more challenging. The average next generation
sequencing experiment generates terabytes of data [Zhang
et al., 2011]. In fact, the rate of increase in DNA sequencing
and genotyping capacity is outstripping the rate of
increase in disk storage [Richter and Sexton, 2009; Stein,
2010]. In some cases, the expense of storing and archiving
raw data is greater than repeating the experiment, which is
not ideal given finite biospecimen resources and the need
to evaluate changes in base-calling methods over time.
In a review of informatics requirements for next
generation sequence data, some needs outlined included
scalable, dense, and inexpensive disk storage systems,

high-performance disk storage systems, archival storage
systems, improved software, data analysis tools and
increased staffing to handle the large increase in data
[Richter and Sexton, 2009].

Adequate computation infrastructure is necessary to
analyze and manage large-scale data sets. Participants
strongly agreed that there is a need for investigator(s)-led
regional or statewide shared computing clusters, to
support small- to medium-sized laboratories in particular
(Recommendation 5.1). The group specified that research-
ers, rather than administrators, should design these
clusters because of their better understanding of analytical
needs. Exploiting the power of graphical processing units
(GPUs) may enhance computational power [Sinnott-
Armstrong et al., 2009; Greene et al., 2010] for some
analytical studies. However, to effectively use clusters and
GPU technologies (or GPGPU/FPGA), an increased
emphasis on cluster-friendly software and conversion of
applications for GPU computing is required. Overall,
meeting participants noted that computing power, relative
to other challenges discussed, is less of a limitation
because they felt that the technology is already moving
in this direction. However, it was noted that while the goal
of the $1,000 genome sequencing platform is likely within
reach, this does not include the cost of data analysis or
storage, which some suggested could be substantial
[Mardis, 2010; Pennisi, 2011]. Finally, given the computa-
tional demands of scientific research, the group advocated
for improved and increased training of graduate students
and postdoctoral fellows in computer programming either
through training programs or other grant support and
increased support of computational personnel (Recom-
mendations 5.2 and 5.3).

Meeting participants agreed that impending issues
surrounding data storage and networking were most
daunting as the field migrates to denser genotyping and
sequencing platforms and more complex analyses. Histor-
ical methods of data storage, e.g. relational databases, are
no longer adequate for the next generation of studies.
Some newer models to improve storage capacity being
explored include compressed and binary formats for data,
hybrid database architectures (e.g. row/column oriented
designs or chunking formats), virtualization of data, and
cloud computing. Participants identified needs for cost-
effective and increased data storage capacity, including
new, more efficient data structures and formats (Recom-
mendation 5.4). In addition to new formats and structures,
participants concluded that there is a need for establishing
standardized data formats for data storage and network-
ing. One approach for developing standards discussed
was organizing a conference of multiple different inter-
ested groups to reach a consensus on the best methods to
store, deliver, archive, describe, and distribute data
(Recommendation 5.5).

In addition to issues regarding data storage, combining
data sets from multiple sites and sources creates further
challenges that require careful attention to QC assessment.
Best practices for QC of GWAS data were recently
published based on lessons learned from the eMERGE
network and Gene Environment Association Studies
(GENEVA) program [Laurie et al., 2010; Turner et al.,
2001]. Integrating GWAS and sequencing data with other
data sources, e.g. omics data, also leads to data manage-
ment challenges. These additional -omic data sets are quite
large. Improved methods for combining meta-dimensional
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data from multiple data sources (e.g. dbGaP, gene
ontology databases) and data types (e.g. DNA, RNA,
protein and clinical data) are needed along with standard
QC procedures (Recommendations 5.6 and 5.7).

Analytical software tools are needed to efficiently
manage large genotype and sequence data sets, including
the ability to efficiently subset, merge, annotate, harmo-
nize data, perform variant calling, run standard QC tasks,
fit standard models to test for relationships and popula-
tion structure, and detect association with phenotypes.
Meeting participants advocated for the development of
user-friendly, and ideally open-source, tools available for
the research community to accommodate next generation
sequencing data and more complex forms of data analysis
(Recommendation 5.8). The group outlined needs for
baseline tools and environments for core libraries, data
management, QC, data analysis, and methods develop-
ment. These tools would ideally be extendable to more
sophisticated tasks and models. It was suggested that a
new funding mechanism should be used to support such
development (Recommendation 5.9). As well as funding
support, the group suggested that NIH should coordinate
the development of these resources by organizing a
conference among multiple groups to form consensus
standards and formats that are needed (Recommendation
5.10). The group emphasized that more collaboration is
needed among computer scientists, statisticians, and
biologists to more effectively leverage biological
knowledge and interpret the vast amounts of data
obtained.

As described during the session on complex pheno-
types, most genetic epidemiology studies focused on a
‘‘one SNP at a time’’ approach, ignoring the complexity of
disease pathways. Biological pathways are typically non-
linear and a linear assumption may hinder our ability to
detect complex relationships. Therefore, some participants
suggested that analytical approaches that handle different
models may improve our ability to detect genetic variants
or pathways with important roles in disease [Moore et al.,
2010]. Some alternatives to traditional linear models
mentioned included symbolic modeling of epistasis
[Moore et al., 2007], computational evolution systems
[Moore et al., 2008], and logic regression [Kooperberg
et al., 2001]. Strengths of these approaches are that they are
not bound by assumptions of the underlying linear model.
However, some cautioned that testing such a large number
of models, or even millions of models, may be hindered by
a large false-positive rate (i.e. there is a low prior
probability that any individual model is correct). This
limitation may be partially addressed by providing
biological knowledge to limit the model space of the
search, i.e. limiting the number of potential models.
Improved high-throughput biological systems, as cur-
rently being assessed in the National Toxicology Program’s
toxicogenomics program (http://ntp.niehs.nih.gov/?ob-
jectid 5 7E6CAEBD-BDB5-82F8-F8C29152153B80B1), to test
different models may be used to add to the knowledge
base for analysis. Additional analytical approaches may be
found in the computer science fields, such as quantum
computing or immune systems.

Leveraging biological knowledge was suggested as an
approach for managing and analyzing large complex
genetic data sets. Biological annotation may be implemen-
ted to guide searches for interactions or as an approach
for combining rare variants obtained by sequencing.

However, many different databases exist (e.g. Kegg,
Biocarta, Ensemble, Entrez, Gene Ontology), and these
databases often use different genome builds and have
inconsistencies in gene nomenclature. Another challenge
for using these databases relates to the uncertainty in
current pathway knowledge and ontologies. The uncer-
tainty in these models within existing databases should be
quantified and accounted for within analysis. Importantly,
a large percentage of known genes do not map to
functional annotation within these biological functional
databases. Therefore, improved annotation is needed
along with other sources of biological information to
better assign pathways. Combining data based on biolo-
gical pathway information is an emerging field—consis-
tent, reliable, and well-curated annotation resources are
needed (Recommendation 5.11).

Data visualization is an integral part of scientific
discovery; this is challenging for large data sets. One
novel method of visualization described was the 3D Heat
Map which enables exploration of high-throughput data
using an interactive medium that allows addition of
information or annotation to the map [Moore et al.,
2011]. The group discussed ways to utilize the emerging
3D visualization tools in genomic epidemiology. The
majority agreed that innovative methods for visualizing
data may lead to novel scientific discoveries and empha-
sized the need for baseline charts and visualizations which
require no scripting, but could be used for a variety of
applications and improve current capabilities for visualiz-
ing increasingly complex data sets (Recommendation
5.12).

Sharing genomics data sets must be facilitated by
information technology, which must also enforce data
access protections based on the guidance of IRBs, data
access committees, legal requirements, and institutional
policies. Participants debated the best practices for data
sharing and discussed road blocks to accessing existing
databases or datasets. The accessibility of data housed in
dbGaP was discussed. Some meeting participants believed
that although access to dbGaP is straightforward to users
of the resource, the process may be a barrier to data
sharing among nonusers. For example, in computer
science fields, data sets often are made available by simply
clicking on links. It was also suggested that some simple
data sets could be made available or identified for sharing
to allow researchers to use comparable sets for methods
development research (Recommendation 5.13). Addition-
ally, the group opined that, at present, computing
architectures, software development, data cleaning meth-
ods, etc., are not generally published, despite being
critically important. Participants suggested that the field
should support a mechanism to publish and/or share this
type of knowledge, perhaps through additional analytical
conferences (Recommendation 5.14).

SUMMARY AND CONCLUSIONS

In addition to recommendations made regarding spe-
cific topic areas, several common themes became apparent
over the course of the workshop. Meeting participants
were excited about the opportunities for discovery using
the avalanche of data now available (or arriving soon), but
were cautious about the challenges ahead in regards to
data management and interpretation. It was frequently
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noted that although the costs for laboratory genotyping
assays have declined, substantial costs for data manage-
ment and analysis remain. These areas are frequently
under-represented or under-appreciated in grant applica-
tions and study sections. Some also cautioned that
generating more data will not lead to new biological
insights; instead, improved analytical methods may be
more beneficial.

An emphasis in many discussions was that all these
different data types and discoveries must be evaluated in a
biological context. However, leveraging functional or
mechanistic information is only as good as the science
behind the annotations. Our understanding of the under-
lying biology is incomplete and future work should
address methods to supplement current knowledge.

The current approach for analyzing much of the existing
genetic epidemiology data based on identifying a list of
SNPs reaching a P-value threshold also was discussed; this
approach may not be optimal for studies of complex
diseases. Several different methods were discussed,
including multivariate methods to model related pheno-
types. An alternative method could be to focus on model
selection (e.g. by grouping SNPs into genes, genes into
pathways, or environmental exposures) with the goal of
replicating the model [Zhou et al., 2010]. Many other fields
(e.g. computer science, physics, and operations research)
have been working on approaches to analyzing high-
dimensional data, and enhanced communication with
other fields will foster future research.

As analytical approaches become more complex and
integrate phenotypic data, multiple genotypes, environ-
mental exposures, and less common or rare variants,
replication of observed associations becomes more diffi-
cult. Therefore, several discussions were centered on the
standards and requirements for replication.

Other themes included encouraging the use of common
data sets, developing QC standards, and encouraging
enhanced collaboration with other fields for future
methods development. The use of common data sets,
either identified in dbGaP or another resource, would
facilitate the development and evaluation of methods and
standards (Recommendation 6.1). Moreover, the group
supported improved sharing of lessons learned or best
practices and QC procedures not typically published,
either through workshops or small meetings (Recommen-
dation 6.2).

Finally, the workshop participants frequently noted
challenges for future investigators. The group recom-
mended improved computational training and support for
graduate students and postdoctoral fellows, as these skills
are essential for next generation studies. Importantly, as
the current research environment is focused on team
science and collaboration, the group suggested that there
was a need for an improved system for recognizing the
contribution of young investigators who are team players.
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