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ABSTRACT

The differential cross section for the d.euteron stripping reaction to a

particular .state in the residual nucleus (target .plus captured. neutron) is

evaluated subject to the following approximations :

1. The interaction between the outgoing proton and. the residual nucleus

is divided. into a central, non-spin-depend.ent potential Vp between the pro-
ton and the neutron in the incident deuteron, plus an optical potential Vtp
between the proton and. the target nucleus4  Both potentials are treated as

source terms in the transition matrix element.

2. The exact wave function is approximated. by a modified. plane (in .

cident) wave. The modification consists of phenomenological cutoff functions

which decrease the amplitude of the wave when either the neutron or the pro-

ton approaches the nucleus, This attenuation represents absorption in the

sense of the optical model.

Compared to the Butler theory, the present work involves three prin-
cipal differences:

1. If the Butler cutoff is regard.ed. as absorption of the incident wave

then additional proton-induced. absorption has been add.ed.,

2. The radius at which the incident wave falls to half its asymptotic

intensity (the cutoff radius) is regard.ed. as an adjustable parameter, essen-

tially independent of the nuclear radius.

3. The interaction between the proton and. the target nucleus is taken
into account. Because it is treated. as a source term in the matrix element,
and. scattering or refraction of the incid.ent wave is neglected., the complexity

of the distorted. wave treatment is avoided..

As a result of the above three points, certain features of the stripping
reaction seem more physically reasonable than hitherto:

1. By allowing the cutoff radius to vary with .energy, the angular dis-

tribution can in principle be fitted. with an energy- independent nuclear radius

and. reduced. width. (On the other hands when the Butler radius is chosen to

fit a particular stripping peak at different energies, its value generally

varies, so that it is effectively energy--dependent, and. causes a similar en-

ergy-dependence of' the reduced. width.)

vii



2. By divorcing the nuclear radius from the larger cutoff radii, the

former' s value is reduced. from that required. by the Butler theory. A sec-

ond. factor tending in the same direction is the removal of the inner proton

region by the additional cutoff. In the Butler theory, this region pushes

the stripping peak to large angles, and. bringing it forward. requires a fic-

titious enhancement of the neutron cutoff radius,

3. The proton cutoff reduces the single-particle cross section by an

order-of-magnitude, with a corresponding increase of the reduced. width rela-

tive to the Butler theory value. Because the modified. matrix element is

roughly proportional to Butler' s, the reduced. width ratios are not drastically

affected..

4. Quantitatively reasonable results are obtained. by including as a

source term an optical potential interaction between the target nucleus and.

the stripped. proton. A similar procedure in the Butler theory lead.s to in-

correct results, because the proton "overlaps" too strongly with this poten-

tial. The imaginary part of the potential produces qualitatively new results,

eliminating the nodes in the Butler angular distribution, and. causing a

polarization of the outgoing proton.. Of special interest is the prediction

of a correlation between the capture j-value and. the sign of the polarization,

the latter being in agreement with experiment.

The same formalism is applied. to the deuteron elastic scattering reaction,

and. it is shown how a (d,d.) analysis can in principle determine the cutoff radii,

so that the (d.,p) parameters .are essentially specified. in advance. The prac-

tical application of this procedure is however hampered. by a lack of uniqueness

in the shapes of the cutoff functions and. in the absorptive potential represent-

ing deuteron dissociation. [The proton-nucleuspotential, itself not unique,
is .supposed for simplicity to be' d.eterm.ned.' by the (p,p) reaction].

viii



CHAPTER I

INTRODUCTION

A. SUNMARY AND RESULTS OF THE PRESENT WORK

From the standpoint of nuclear spectroscopy, deuteron stripping

theories fall roughly into two classes: plane wave theories and distort-

ed wave theories. The former, in particular the theories of Butler (1)

and Bhatia, et al.,(2), have served as the basis for the analysis of a

great number of nuclear levels, although they possess some puzzling fea-

tures. Generalizations of the plane wave theories have invariably been

in the direction of adding scattered or distorted waves to the ingoing

and outgoing plane waves, a technique which greatly complicates the

formalism (3).

In the present work an approach is adopted which retains the

essential simplicity of the plane wave theories, while minimizing cer-

tain of their difficulties. Following a suggestion by Francis and

Watson (ii), the neutron cutoff in the Butler theory, as formulated by

Daitch and French (5), is regarded as an absorption of the incident

wave. From this, two -consequences are then drawn:

1. Absorption must be induced also by the approach of the proton

to the nucleus, i.e., a proton cutoff must occur.

2. It is not correct to identify the nuclear radius (an energy-
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independent size parameter) with the cutoff radius. The latter meas-

ures the extent of penetration of the incident wave into the nucleus

and can reasonably be expected to decrease as the inciyent energy in-

creases.

Both of these points can be readily included in a plane wave

theory, distortion and scattering of the incident and outgoing waves

not being essential to their description. Accordingly, in the pre-

sent work the differential cross section for stripping to a particular

final state is evaluated subject to the following approximations:

1. The interaction between the outgoing proton and the residual

nucleus is divided into a central, non-spin-dependent potential Vnp

between the proton ,and the neutron in the incident deuteron, plus an

optical potential Vt. between the proton and the target nucleus. Both

potentials are treated as source terms in the transition matrix element.

Compound nucleus processes (6), exchange reactions (7), and heavy par-

ticle stripping (8) are neglected.

2. The exact wave function is approximated by a modified plane

(incident) wave. The modification consists of phenomenological cutoff

functions which decrease the amplitude of the wave when either the

neutron or the proton approaches the nucleus. This attenuation repre-

sents absorption in the sense of the optical model, due to excitation

of the target nucleus, and in the present case, also dissociation of

the incident deuterons.
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Compared to the Butler theory (1,5), the present work involves

three principal differences:

1. If the Butler cutoff is regarded as absorption of the incident

wave when the neutron reaches the nuclear surface (4), then additional

proton-induced absorption has been added.

2. The radius at which the incident wave falls to half its as-

ymptotic intensity (the cutoff radius) is regarded as an adjustable

parameter, essentially independent of the nuclear radius.

3. The interaction between the proton and the target nucleus is

taken into account. Because it is treated as a source term in the

matrix element, and scattering and distortion of the incident wave is

neglected, the complexity of the distorted wave treatment (3) is avoided.

As a result of the above three points, certain features of the

stripping reaction seem more physically reasonable than hitherto:

1. By allowing the cutoff radius to vary with energy, the angular

distribution can in principle be fitted with an energy-independent nu-

clear radius and reduced width. (On the other hand, when the Butler

radius is chosen to fit a particular stripping peak at different en-

ergies, its value generally varies, so that it is effectively energy-

dependent, and causes a similar energy-dependence of the reduced width.)

2. The peculiarly large size of the Butler radius is in part ex-

plained by its hybrid nature-a cross between a true nuclear radius and

an absorption or cutoff radius, the latter being quite large at low en-

ergies (2 10 Mev). As a corollary,.it follows that the Butler radius
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is not intrinsically large, but will tend to a small value at high en-

ergy.

A second factor tending to fictitiously enlarge the Butler radius

is the tendency of stripping from small radial distances, rn or rp, to

peak at large angles and vice-versa. By removing the interior proton

region, the present theory moves the peak forward so that this effect

need not be accomplished, as in the Butler theory, by a fictitous en-

largement of the neutron cutoff radius.

3. Elimination of the interior proton region reduces the low-

energy single-particle cross section by roughly a factor of ten. (This

refers to the neutron-proton interaction term which occurs in the Butler

theory.) As a result, the neutron reduced widths fall in the interme-

diate coupling theory range instead of having the puzzlingly small val-

ues predicted by the Butler theory (9,10). Since the size of the cross

section is roughly proportional to the square of the volume of config-

uration space over which the transition amplitude is non-negligible,

and the same region is removed in the matrix elements leading to dif-

ferent levels in the same nucleus, the reduced width ratios will not be

drastically affected. In principle, however, their presumably incorrect

energy-dependence is eliminated.

4. Elimination of the interior proton region permits a simple

evaluation. of the transition amplitude resulting from the interaction

of the proton with the target nucleus. If this interaction is approx-

imated by an optical potential (assumed the same as that operative in
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(p,p) reactions), and inserted into the Butler matrix element as a

source term, it results in an amplitude larger than the n-p inter-

action term (11). This is paradoxical in view of the- fact that it is

neglected as small in the Butler theory. The proton cutoff, which pro-

duces the afore-mentioned order-of-magnitude reduction in the n-p inter-

action term, reduces the optical potential terms even more drastically

so that they become more nearly "correction terms" to the main n-p

interaction. This unequal reduction in size results from the relatively

good overlap between the excised region at small °p and the proton op-

tical potential, as compared to this region's overlap with the n-p poten-

tial, the latter being strongest along the "diagonal" region kn " p'
This possibility, of evaluating the nuclear contribution as a

source term, rather than in the guise of a distorted outgoing wave,

makes the present formulation much simpler than the distorted wave treat-

ment.

The result of including a real nuclear potential and a Coulomb

repulsion, which interfere with the real n-p potential, is mainly to

change the height of the stripping peak. The extent of this effect is

sensitive to the amount of cancellation between the attractive nuclear

and repulsive Coulomb potentials. With present-day diffuse wells, this

cancellation tends to b~e rather complete, the usual Coulomb barrier es-

timate, Z/SMev, being a considerable overestimate for light nuclei.

On the other hand, the imaginary (absorptive) component of the op-

tical potential produces qualitatively new results. Being incoherent
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with the real amplitudes, it provides a "background" to the angular

distribution and, eliminates the nodes which are characteristic of the

Butler theory. More importantly, it provides a non-zero polarization

of the emitted. protons. A result of special interest is the fact that

for 1=1 capture, a correlation is predicted. between the value of j=2±

2, and. the sign of the polarization. Such a correlation is suggested.

by the experimental data (12) but has not been successfully explained

by the distorted. wave theories. The cases of capture with 2 greater

than one are a little more complicated. and the question of a correla-

tion must await further numerical work with the present theory. (The

semi-classical arguments (13) which originally predicted. such a cor-

relation make no distinction between different 2-values, but it is not

certain that they can be trusted in this respect.)

B. PARAMETER DETERMINATION IN THE PRESENT THEORY

I. f the view is taken that the n-p interaction and. the proton optical

potential are known quantities, then the un4nown parameters in the (d,p)

reaction are the cutoff radii and. the nuclear radius. However, it can

be shown (Chapter 5) that precisely the same formalism must apply to t1ie

deuteron elastic scattering reaction, in which only the cutoff parameters

are unknown. The (d,d) reaction therefore in principle determines these

parameters, leaving only the nuclear radius adjustable in the (d.,p) re-

action. Indeed., since the nuclear radius is energy- independent, its

determination at any energy reduces the (d,p) analysis at any other en-

ergy (where (d.,d) results are available) to a completely predictive
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procedure (within the framework of the present method).

The principal difficulty in realizing this program is the unique-

ness question. Just as inphase-shift analyses of nucleon-nucleus scat-

tering the optical potentials are not uniquely.defined, so in the pre-

sent case it is not possible to -completely fix the shape of the cutoff

functions (for a set of assumed potentials). In addition, the absorp-

tive potential which represents the effects of deuteron dissociation is

unknown. One might hope that the deuteron-induced reactions will even-

tually provide another set of conditions to be met by the optical poten-

tials, but the theoretical and experimental accuracy will need improve-

ment for this goal to be realized,

C.0 PHYSICAL INTERPRETATION OF DEUTERON- INDUCED DIRECT REACTIONS

The fact that introducing the physically reasonable proton absorp-

tion, and recognizing the distinction between the nuclear radius and the

cutoff radius remedies many of the previous difficulties with plane wave

theories leads to the following picture of deuteron-induced direct re-

actions:

Because of specifically nuclear absorption (target nucleus excita-

tion) and deuteron dissociation (projectile excitation), the projection

of the total wave function onto the product of the target and deuteroni

ground states (the elastic component of the total wave function) ex-

hibits very strong absorption. The success of the plane wave approx-

imation,however, suggests that this absorption can occur without entirely



8

distorting the incident wave. The simplest explanation of this is

that a strong interaction, which would distort the wave function of

a tightly bound particle, succeeds mainly in breaking up the easily

dissociated deuteron, so that the.distortion is transmuted into an

apparent absorption. Plane wave theories, .which can give a reasonable

account of absorption while completely ignoring distortion and scat-

tering, can therefore succeed despite the fact that perturbation theory

is not applicable.

Essential to this interpretation is the assumption that, once the

target nucleus has been excited (4-) or the deuteron dissociated, the

(d,d) and (d,p) reactions will be strongly inhibited, and this is very

reasonable.

It is probable that the inner regions which are "cut off" in the

present formulation c:ontribute primarily a large-angle component to the

(d,d) and (d,p) reactions. The plane wave theories handle accurately

only those events involving deuterons moving directly forward. The

elastically scattered deuterons, which are largely moving in other direc-

tions, will provide back-angle scattering and stripping, and this is

the principal improvement obtainable by including (as in distorted wave

theories) elastically scattered deuterons in the approximation to the

exact wave function. An important point however, is that a plane wave

theory, even though valid only at forward angles, is adequate for the

purposes of nuclear spectroscopy.
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D. TECENIQUE OF EVALUATING THE TRANSITION AMPLITUDES

Concerning the actual evaluation of the transition matrix elements,

the handling of the n-p interaction term is not very different from the

method employed by Daitch and French (5). In fact, by a suitable approx-

imation, (3.26) and (3.27), the results can be evaluated with the help

of the tabulated Butler cross section (li), avoiding the explicit hand-

ling of spherical Bessel functions.a

The proton optical potential terms are more difficult, but rel-

atively simple closed formulas are still obtained. The essential point

in splitting the original six-dimensional integral (in Rn and Rp) is

the observation that the proton coordinate is a relative coordinate

with respect to the neutron coordinate and the n-p separation, i.e.,

Rp=Rn-Rnpo If the dependence of the integrand on Rn and Rnp is expressed

( as is possible)' in terms of harmonic oscillator eigenfunctions, then

a "center-of-mass" transformation in and Rnp succeeds in splitting

the integral into simple three-dimensional ones. Since the oscillator

frequencies are unequal, this requires a generalization of the trans-

formation originally employed by Talmi (15) in a different context.

However, as in Talmi's application, the result is a short sum of terms

rather than the infinite series which results from expanding the proton

potential or the deuteron wave f'unction (16).



CHAPTER II

DISCUSSION

The purpose of this chapter is to discuss qualitatively certain

points concerning the interpretation of plane wave theories. The el-

ement which these topics have in common is the localization of the

stripping process in the surface region of the nucleus,

A. TRANSITION MATRIX ELEMENTS FOR THE PLAlE WAVE THEORIES (1,2,5)

The (d,p) cross sections predicted by these theories are derivable

from matrix elements exhibiting a close similarity. in structure. Neg-

lecting the proton-target interaction, they are:

(a) Butler (1):

~ d (P (,- BU (2.1)

(b) Bhatia, et a.. (2):

MBH =1 B S~r H)>o2

(c) Born approximation (5):

M 0 < ,x,~IV ( / 3)
The various symbols are:

8(x) = Dirac delta function.

2()= Heaviside step function.

10
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K = an outgoing proton plane wave.

I,m> = the component of the captured neutron's wave function

with angular momentum 2,. z-projection m.

V = the neutron-proton interaction.

d> = an incident plane wave of deuterons.

These expressions differ in appearance from the forms originally

given. The equivalence of (2.1) to Butler's method has been shown in

(4,5,17) among others. The use in (2,5) of the neutron-target inter-

action Vtn involves the post-prior ambiguity or equivalence (18, p.233).

In Born approximation the (prior) deuteron-target interaction Vtn+V

is equivalent to the (post) proton-residual nucleus interaction Vnp +

Vt . .Since Vtp is neglected, Vtn and Vnp are interchangeable in Born

approximation.

The distinguishing feature of these matrix elements is the real

function which modulates the incident plane wave, H, 5, and 1 (one),

respectively. Since in these integrals regions of small rn or rp con-

tribute most heavily to stripping at large angles (and vice-versa), it

is a simple matter to understand certain regularities in their behavior.

Bo LOCALIZATION OF THE STRIPPING PROCESS IN THE PLANE WAVE THEORIES
AND ITS INFLUENCE ON STRIPPING RADII AND REDUCED WIDTHS

In the Butler matrix element (2.1) the reaction is confined tor-

> r~ and the proton integration is unrestricted. For given rBu, the

peak in the angular distribution occurs at some angle Buwith a height
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as that implies a reduced width 9 2.(Throughout this section a willBu0  Truhu hsscinawl

mean the intrinsic or single-particle cross section which must b.e mul-

tiplied by the reduced width to give the actual cross section.)

In the Bhatia, et al.,version (2.2), the proton integration is still

unrestricted but the neutron integration is confined to the surface rn=

rBh. The interior is therefore eliminated as in (2.1) but the exterior

is also. If rBh=rBu, this mpeans a relative weakening of the large rn

contributions and a reduction in the small-angle stripping. As a re-

sult the peak angle is at Bh Bu. It can be brought into coincidence

with by taking rBhrBu'

In the Born approximation (2.3) there are no restrictions at all.

However, the largersize of the neutron wave function inside the nuclear

radius rBo than outside weights the integrand to small rn compared with

(2.2). This throws the peak out so that if rBorB Bhh.> TobringBohBo Bh T rn

them into coincidence requires rBo> rBh. Relative to the Butler theory,

there is a contribution to the peak height from rn < rBu which increases

aBo over aBu with the result that 0o< 9u. This explains the regular-

ities (assuming peak locations and heights equalized):

~ (2.51)

Since rBu is larger than conventional radii at low energy while

uis too small, the necessary modification is clear. To increase 02
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above 9 (i.e., reduce aBu) the integration in (2.1) must be further

restricted. If' at the same time rBu is to be reduced, the interior

(small rn or rp) contribution must be reduced more than the .exterior

(large rn or rp) one. Interpreting the Butler cutoff as absorption due

to neutron-induced excitation of the target nucleus implies the neces-

sity for a proton cutoff at small rp and this is precisely what is

needed.

This "optical" interpretation of the Butler cutoff seems first to

have been suggested by Francis and Watson (L4), their equation (20).

The absorption is the same as that encountered in optical model analyses

of elastic nucleon scattering where only the projection of the total

wave function on the target ground state is considered. Target excita-

tion then appears as absorption of this incomplete wave function by the

optical potential. For deuteron scattering the projection is onto the

target ground state and the .deuteron ground state. In addition to tar-

get excitation there occurs deuteron dissociation, so that the deuteron

absorptive potential will not be merely the sum of the nucleon optical

potentials.

Indeed, this "extra" absorption representing deuteron breakup would

appear to play a role in understanding the accuracy of the plane wave

stripping theories. Compared to elastic nucleon scattering, the deu-

teron scattering results (Chapter 5, Section E), exhibit considerably

more absorption and a better f'it to experiment. These ef'fects are con-

sistent with the view that the interactions which distort the incident
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nucleon wave function and spoil the agreement with the plane wave theory,

will to a large extent merely dissociate the deuteron and therefore

appear, not as distortion but as absorption, which can be handled rather

simply. It is necessary that the broken up deuterons not contribute

appreciably to .either the (d,d) or (d,p) reactions and this is quite

plausible .(4).

C. A W. K. B. - TYPE OF APPROXIMATION

Although the present work employs only phenomenological cutoff

functions which are spherically symmetric in rn and rp, it is illuminat-

ing to consider the form which these functions might take in a more

exact theory. The following approximate treatment exhibits a number of

interesting features which are duplicated by the cutoff functions of

the present work (independent, real cutoffs in rn and rp, approximately

related to the nucleon scattering results at half the deuteron energy)'

The main feature not duplicated is the shadow region behind the nucleus.

As the previous discussion has indicated, the plane wave theories

are characterized by the following approximation to the exact wave

function,

(2.6)

where (| is the incident wave, and f is a real function. A similar

approximation is well-known for the nucleon scattering case (19), name-

ly,
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While this expression is derivable as an approximate solution to

the Schrodinger equation, a closely related one can be obt&ined as an

exact solution to the continuity. equation:

C/'p (2.8)

This equation, where J is the current and p the probability density,

involves only the imaginary part of the potential, U. In.a sense,

therefore, the real potential is neglected in (2.8) while the absorp-

tion is taken into account, and this is similar to the viewpoint of the

plane wave theories. It is not difficult to show that (2.6) defines

an exact, unique solution t.o (2.8), namely

~ (2.9)

In (2.9), the envelope function is real, as desired.

In a similar manner, the Schrodinger equation describing the inter-

action of a neutron and proton with a complex potential well and each

other,

+Tp +-Vp + V + UA - E )f=(2.10)

leads to the continuity equation,

U,+ (f(2.11)

In this equation p is ~***; V eis the six-dimensional gradient operator,

Vn + v;and J6 is the current (-I/m) Imt*V6et. If the relative and
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center-of-mass coordinates are denoted by Rnp=Rn-Rp and Rd=N(n+Q ,

then V6 .= Vd.

For the cutoff plane wave we take

(2.12)

where np is the deuteron ground state. Using this expression to eval-

uate J6 and p in (2.11) leads to

k~* 2 =2r (&'.)4j(2.13)

where s = ln f 2 and md = 2m is the deuteron muss. The solution to this

equation is

(2.14)

uniqueness being obtained by the boundary condition f + 1 as z -+ - oo.

The term involving Un(Rn) = Un(Rd + np) is explicitly

- (J4~IZV~ ~ 24k pE'd / (2.15)

A change of variable to z = z + lznp (And the corresponding trensla-

tion in the proton integral) yields

The absorption induced by each nucleon contributes additively to

the logarithm in (2.16) , so that f' is a product of' independent nucleon
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cutoffs. These will be formally.identical to ('2.9)if the nucleon veloc-

ity in the latter equation is taken equal to the deuteron velocity vd =

Pikd/md in (2.16). This suggests that the optical -potentials in (2.16)

should be taken as those for nucleon scattering at half the deuteron en-

ergy. The physical meaning of this choice is that under deuteron bom-

bardment the nuclear excitation is the same as that due to two independ-

ent nucleons each with half the deuteron energy. The weak binding of

the deuteron makes this not unreasonable, at least at deuteron energies

well above the deuteron binding energy.

On the other hand, the same weak binding complicates the situation

as follows. The potentials Un and Up determined from elastic nucleon

scattering are a measure of the absorption due to two processes, nuclear

excitation and spin-flip of the incident nucleon. (At much higher en-

ergies, meson processes would also enter.) However, when the projectile

is a deuteron, the.entirely new process of deuteron dissociation also

contributes to the absorption.. This means that the nucleon scattering

absorptive potentials must be augmented by additional terms to account

for this new effect.

D. SCATTERING OF LARGER AGGREGATES

The f'ormal procedure of' the preceding paragraphs can be applied

to the scattering of' an aggregate of' A nucleons, an essential point

being that the internal wave funct ion c anc els f'rom the f'lux equ~ation.

The analog of' (2.16) is:
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J -(2.17)

where VA is the center-of-mass velocity and U. is the absorptive poten-

tial felt by the jth nucleon, The remarks of the preceding section con-

cerning the difference between the absorptive potentials of (2,9) and

those of (2,16) apply with equal force here. (As an example of. a tight-

ly bound particle for which projectile excitation might be negligible,

one thinks immediately of the a-particle.) The content of (2.17) is

expressible in terms of absorption coefficients in hypothetical uniform-

ly absorbing nuclear matter. If the intensity of a beam of A-nucleon

aggregates is

A I Q(2.18)

(with corresponding equations for nucleon beams) , then

9(J. , A x(2.19)

For an alpha particle this predicts an absorption four times the nucleon

value (20), suggestive of the "black nucleus" model (21) which has had

some success in the interpretation of elastic alpha scattering.

E. RESONANCES IN STRIPPING REACTIONS

The present theory, like all direct reaction theories, does not

apply to compound nucleus proc-esses. Hiowever, according to the res-

onance theory of nuclear reactions, increased penetration of the in-
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cident wave occurs on resonance and it is possible that this can cause

an enhancement of the direct process. .Insofar As the localization

argument applies to a single partial wave (the usual resonant situation),

the increased penetration should result in a shift of the stripping peak

to -larger angles on resonance. According to the Butler theory, this

would reflect as a decrease in the Butler radius, An:example of this

type of.behavior appears to occur in reference (22)

F. EFFECT OF THE ZERO- RANGE APPROXIMATION

.In a theory without proton-absorption (1,2,5), the zero-range

approximation, Vnp. C ( Rn - I), will be quite accurate. The contribu-

tion to the stripping reaction arises in a sphere surrounding the neu-

tron, with a radius equal to the n-p force range. If the proton den-

sity over that sphere is uniform, then the zero-range approximation,

which replaces the density by its value at the center of the sphere,

will be correct. In distorted-wave theories, or the present type, the

proton density decreases inwardly over that sphere, so the delta-

function produces an (incorrect) enhancement of the small-rp stripping.

This in turn will lead to an overly large nuclear radius,



CHAPTER III

DEUTERON STRIPPING: THE PROTON-NEUTRON INTERACTION AMPLITUDE

A. SUNMARY

In this and the following chapter the.cutoff Born approximation

will be applied to the deuteron stripping reaction, using (d,p)

nomenclature throughtout. For (d,n) reactions the Coulomb part of

the proton-target optical interaction is omitted and if necessary, the

correction described in Ref. 23, Chapter 5, Section 2,is made.

Starting from the exact transition matrix element (3.1), the use

of an .optical potential as an approximation to the proton-target inter-

action and the particular form of the cutoff Born approximation (3.2)

permits a relatively :simple evaluation of all integrals. By a suitable

choice of approximations, (3..26) and (3.27), the Vnp-amplitude can benp

expressed in terms of the tabulated Butler cross section (14).

Spin-dependent forces are neglected for the reason that they do

not play an essential role in the (d,p) problem. In the Vnp-amplitude

they result in the appearance of the D-state part of the deuteron wave

function in an unimportant manner (2h, 25). In the Vtp-amplitude they

have a small effect on the polarization in the vicinity of the stripping

peak, but serve mainly to provide polarizations greater than 1/3 at

larger angles. (With spin-independent forces the maximum ~polarization

20
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is 1/3 (26)). Since observed polarizations appear to be less than 1/3

on the stripping peak, spin-dependent forces are not required for their

explanation. The present work is not concerned with the large-angle

stripping (Chapter 1, Section C) .

A partial reduction of the matrix element is carried out in Sec-

tion B, while Section C gives some details of the remaining evaluation.

The results for the V -amplitude are summarized in Section D, while
np

Section E is intended as a guide to the use of the formulas. The re-

sults for the proton-target interaction amplitudes are given in Chapter

4, together with the polarization formulas.

B. TIE (d,p) STRIPPING CROSS SECTION

In this section the transition matrix element will be expressed

in terms of an integral over spatial functions, (3.6). This is accom-

plished by introducing an appropriate angular momentum coupling scheme

and integrating out the spin coordinates. The procedure is standard

and is only sketched here. For details see Refs. (23, 27, 28) .

The exact matrix element may be written in the form:

A1

nh n thefacto- 
lrt

A4 (3.1)

plane wave, %fg being its separation from the center-of-mass of the

final nucleus (target plus neutron) ; the proton spin function; the final
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nucleus wave function; the interaction between the proton and all the

other nucleons; and the exact wave function. The integration is ex-

tended over the coordinates of the neutron, the proton, and the target

nucleons "t," including all spins.

To simplify (3.1), the interaction between the proton and the tar-

get nucleons is replaced by an average potential Vtp, and the exact

wave function by a cutoff plane wave:

The factors here are the deuteron c.m. wave function, its internal wave

function, the triplet spin function, the target ground state wave func-

tion, and two Gaussian-type cutoff functions,

fjr,~=1- (3.3a)

(f) = 1- 2p(3-3b)

Next the final nucleus wave function is expanded in the target

eigenfunctions, the coefficients depending on Rn and an. Only the term

corresponding to the target ground state survives the integration over

the target coordinates and the coefficient (the neutron wave function)

can be expanded in a complete set of spin-angle functions for the neu-

tron. These are taken in a representation which diagonalizes the neu-

tron' s total and orbital angular momenta, j and 2. This is convenient

for expressing the polarization results (Chapter h),.
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Carrying out the spin integrations yields

where Xim is the spatial integral:

(305)

The quantum number m stands for mf+mP-mi-md and wij 2 (rn) is the neutron

radial wave function, i.e., the radial coefficient in the spin-angle

expansion mentioned above. The large set of quantum numbers needed to

specify the target and final nucleus wave functions, implicit in the

symbols Jt and Jf (which have the restricted significance of angular

momenta in the Clebsch-Gordan coefficients), and which label wj2 (rn),

have been suppressed. The Clebsch-Gordan coefficient Cabc expresses

the coupling of angular momenta A and B to a resultant C. The relation

a+b=c permits suppressing any one magnetic quantum number, indicated

by a dot above.

The symbol A for the matrix element has been chosen to agree. with

Ref. (25). The integral X3Lm above corresponds to Tobocman' s A J7T
Btm. In the present work a slightly .different definition is employed

(see eq. (3.25):

The differential cross section,



_2r____ '-)z/!r2 /
r(5.7)

has the well-known form of, an incoherent sum:

Z U ( 3.8 )

i5

The cross section for neutron capture to a state with definite j and I

is:

(3.9)

The remaining sum can be performed once the amplitude Xim is expressed

in terms of spherical harmonics, as in this and the following chapter.

Because of the particular form chosen for the cutoff functions (3.3),

the total amplitude Xj'm contains four partial amplitudes:

-b- (3.10)

From the explicit evaluation of X m the others are obtained as follows:

Xgm by setting op = 0, X1 by setting on = 0, and the Born approxima-

tion amplitude X jm by setting both equal to zero. The partial ampli-

tude Xmitself contains two terms,

- (5.11)
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C3.12)

the second of which will be treated in the next chapter.

C. DERIVATION OF THE V -AMPLITUDE

The usual procedure of eliminating the potential Vnp by means of

the Schrddinger equation for the deuteron ground state, (Tnp + Vnp +

2.226) 'Vnp = 0, is not used here because the presence of the proton

cutoff complicates the subsequent integration by parts. It is also

possible to avoid the zero-range approximation which is somewhat inac-

curate in the presence of proton absorption (Chapter 2, Section F and

Ref. 29) . Instead, the product Vnp*np is approximated as follows:

The Schrodinger eqation for the potential,

-- /(f" 33 2
-V 4ev (3.13)

has been numerically integrated (30) and the results for *np exhibited

as a sum of three gaussian terms. However, the product Vnpnp is ac-

curately given by one such term,
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When (3.14) is introduced into the first term of (3.12), the re-

sulting integral can be split by the following transformation: Replace

R by the vector Wnp = RP- (1p/fanp) Rn, with

(3.15)

Then the exponential terms transform as follows:

(3.16)

K7 Ra -> -7 -T + K ' V

The new constants and wave vectors are given by

z 2 2 ,(3.17)

(3:18)

A
Carrying out the integration over dWnp and the directions dRn yields

I l/"~ )=4(ir) (t X E -e ''2 (; )G (N)(3.20)

It is now necessary to choose a form for the neutron radial wave

function in the remaining integral,
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This will be taken as a square well wave function, with the dimension-

less reduced width 9g serving to normalize it,

(3723) 2 & K je (p4)/J (>) . r> (5.22)

The function hi(Krn) in (3.23) is defined in terms of the spher-

ical Hankel function (18, p.79),

For states of positive binding energy it is a real, positive function.

The reduced width g2 is defined in terms of the Wigner-Teichmann

reduced width (31) according to the usage in Ajzenberg and Lauritsen

(32),

The explicit use of an "inside" wave function (3.22) permits, as

the penetration parameters in (3.3) are varied, a continuous transition

between the Born approximation (complete transparency, n and O -+ oo)

and a situation in which the capture is nearly all outside of the radius

a, simila.r to Butler' s el.pproach. A steeper cutoff than (35.3) would be

desirable in exploring this question. (cf. Appendix F, Section 2, and

remarks in Chapter 11, Section H.)



The use of (3.22) and (3.23) splits (3.21) into an inner part (r

< a) and an outer part (rn > a). The integrals cannot be performed as

they stand, so that if numerical integration is to be avoided some

approximation is required. A convenient choice is:

Inner : W4y4))( ~~)(5.26)

Z2.

Outer: K 4 ey ) (3.27)

A discussion of these approximations, some numerical examples, and

formulas for determining the effective wave numbers ynp and np are con-
tained in Appendix C. The subscripts "np" on ynp and np indicate their

dependence on dnp and therefore on the particular partial amplitude of

(3.10).

The approximation (3.27) is suitable only for bound states (real

K) . The problem of stripping to Virtual states would require a dif-

ferent treatment and is not considered. here,

The integrations are now straightforward and lead to the follow-

ing expressions, in which the derivatives of the cylindrical functions

have been eliminated in favor -of functions of order 1-1:

I n :(2
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3 C-

Outer: (3.29)

The square bracket in (3.28) can be brought to the same form as

in (3.29) by the substitution.

_- ?p A A,_/-1 a)
7 (% ) -) (3.30)
JA ( Ep 6) 1(Kp

This represents the condition for matching square well wave functions

at the radius a, with the usual derivatives eliminated. The wave num.-

ber K'np can be found from the curves of Appendix G.

Both (3.28) and (3.29) are now expressible in terms of the tab-

ulated Butler cross section (14),

() Ge( ) e(xJ) + x(,.51)x)
TA A2 2

where

(i()

Introduc ing the "outside ," "inside,!" and Born amplitudes, O02 (x,y-) ,

Ig(x,y), and B2 (x,y), (the definitions -of these amplitudes are given-

in Appendix G, where their evaluation is discussed), (5.21) becomes
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IJ (V ) (3'8 ) ~ 4 Z,( a 4

(3.33)

-1VP

As a practical matter, the vector Tnp is very closely equal to

4. + 4+

Q = Kd-miKp/m, the momentum transfer vector occurring in the Butler

theory. This stems from the fact that the n-p force range is much

smaller than the usual cutoff radius,

2.2

Henceforth, we will put tnp =q, and Tnp = Q in the spherical harmonic.

X Lm(Vnp). appears as follows, with x = qa,

e 2
4412/,Lr(~) 12a2

3 3 -c , (z a)

(3.35)

- h , 2 ^~P 1, ( y )+, z4a)
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477(27T) f32 z

jo oo,3 (/ CGS) - L, C ,a

(3.36)

In (3.35) some of the redundant symbols have been eliminated by

the relations: fp = fnp; fn = fo = p dn = %n; do ='0; = K; -K = ';

7o = 7; and in the Born term, BI = Il + 0. The reduction from seven

amplitudes in (3.35) to five in (3.36) is the result of approximating

on n 'pip , .The quantities y and g are computed (Appendix C)

from the average value d2 = =(dn + d ) = Idnp The quantity K then

follows from y according to (3.30) This approximation is accurate

when (33.) holds and also S2n n- . The same relations permit taking

the slowly varying exponentials exp(-k 2 /2fnp)~ exp(-k 2 /2f) ~exp(-k2/

2p2) as a common factor in (3,36) .

The symbols f 0 , fn> fp; d0 , dn, dp; 7o,7ns 7pi to in sp and

Ko> En> Ep, are the analogs of fn-p (3.15) ; dnpC3'l7) . 7np(3.2 6 ). ;anp
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(3.27); and Knp (3*30), but appropriate to the other partial amnplitudes

occurring in (3.10) and therefore obtainable .as stated following that

equation. The derivation of Section C concerns explicitly the. partial

amplitude 4X (Vnp) of (3.10), up to and including the sentence follow-

ing (3.34)), while all four amplitudes are included in (3.35) and (3.36).

D. DIFFERENTIAL CROSS SECTION WITHOUT PROTON-TARGET INTERACTION

If the proton-target term in (3.3) is temporarily ignored, the re-

sult is a "cutoff - proton" version of the Butler formula. This is use-

ful for estimating reduced widths without the refinement of the addi-

tional proton-interaction terms of Chapter 4. For finding the capture

2-value, the Butler formula (with the large radius) is simpler and usu-

ally- perfectly adequate.

Because of (3.3), a single spherical harmonic occurs in (3.35)

and (3.36), so that there are no interference terms in the: m-sum of

(3.9). In the following "sumnned" form of (3.9), all quantities are to

be evaluated in nuclear units, Appendix A, the cross section itself be-

ing in units of f2/sr:

c" (p) = 36..1 -J 2J +l ta 3 .9 G exp [-.014Q- .294--q]{M)

(3.37)

Notation: (All quantities in c.m, system except Ed.)

a = nuclear radius.

Ed = deuteron laboratory energy.
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J ,Jf = target and final nuclear spins.

kp,2kd = proton and deuteron wave numbers.

ka = 0.09567 m2 Ed/(m+md) 2 .

m, mf,.md = target, final nucleus, and deuteron masses.

mpf, mdt .= reduced masses.

Q =reaction Q-value,

q2 = (t 2 +1)kd - 2tkd coagg = square of momentum transfer.

t 2 _m 2 (a m +m+2 QN
m+1 k 2 d}lm+1 m+1E

(M) = ctirly bracket in (3.35) or (3.36).

The wave number, of the captured neutron is

K2 = 0.04827m [Q+2.226]/(m+l).

The factor exp(-k 2 / 2 ) occurring in (3.36) has been re-written using

the relation,

k = |jKd-K pI = (m+l)q 2 /m + 0.02395Q.

The cross section for the (p,d) pickup reaction can be found by

reciprocity,

(pgd) = 54.12 (m2 /(m+2) 2 ) t- i a39fe-0.0141Qe-0.2937(m ) ga fM)2

f2a (3.38)

In this formula, equivalent (d,p) quantities must be used. Thus m is

the target mass for the (d,p) reaction, or final nucleus mass for (p, d) .

Q means Qdp = ~2pd, and Ed is obtained from the incident proton lab-

oratory energy in the (p,d) reaction using



This permits using the formulas cf the above tabulation as they are

written.

E. OUTLINE OF PROCEDURE

1. The energies, masses, and spins multiplying the curly bracket

in (3.37) are supposed known. The reduced width g is to be deter-

mined by comparison with the absolute cross section.

2. If the penetration parameters On and Sp have been determined

by a (d,d) analysis at the same energy, as described in Chapter 5, then

only the nuclear radius a is adjustable. Otherwise, all three may be

varied. The criterion for a correct choice is agreement in peak posi-

tion between theory and experiment. In what follows it is assumed that

On Sipand bn =bp = 1.

3. The numbers kd, kg, t, K, and q2 (the latter as a function of

the scattering angle) can be found from the formulas in Section D. In

order to eliminate interpolation in x = qa in the stripping tables, the

cross section should be evaluated at even tenths in x, converting to

angle via cos - (t 2 +1)/2t - x2 /2tkga 2 .

Interpolation in y = Ka can be partially avoided by taking a value

for the radius a that makes y an even tenth.

h. With y = Ka, enter Fig. G-2 (Appendix G, Section 2(a)) and

read out x2s observing the translated ordinate scale. Then the inter-

nal wave number is 7 = x0 /a.

5. Compute fnp =- +, and dg - npp / 'g Ten 7*, dnpan

a determine ynp via Appendix C, Section 2. Then use 7 np and a as in-
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puts to Appendix G, Section 2(b) , to find Knpo

6. Use d = idnp, 7, and a, to find 7 via Appendix C, Section 2.

Then use 7 and a as inputs to Appendix G, Section 2(b) , to find 7.

7. Use dnp, K, and a, to find Enp from Appendix C, Section 4.

8. Use d, i, and a, to find ' from Appendix C, Section 4.

9. The five amplitudes in (3.36) can now be .computed as functions

of x as described in Appendix G, Section 1. This completes the specifi-

cation of the quantities occurring in the curly bracket of (3.36) and

(3,37).

F. TEE BUTLER THEORY WITH A PROTON CUTOFF ADDED

A simpler formula than (3.36) results from grafting a proton cut-

off of the form ('3.,3b) onto the Butler theory with its sharp neutron

cutoff. Only two stripping amplitudes occur in the result, one of them

the Butler amplitude itself, so it displays directly the way in which

the excised proton region makes itself felt. Equation (3.1) is unchanged,

but (3.2) becomes:

where H(x) is the unit step function.,

The procedure is the same as in Section C, the result being

i P3=a7,22>w+ 3



The wave number i is determined by the analog to (3,27),

so that the inputs to Appendix C, Section 4, are K, a, and ~2 =d2S2

(2~) p2

For the (p,d) reaction, the factors 7.313((m+l)/(m+2))2t(2J+l)/

(2Jt+l) in (3.,41) are replaced by 10.9 6 (m/(m+2)) 2 t-1, .equivalent (d,p)

quantities being understood.



CHAPTER IV

DEUTERON STRIPPING: THE PROTON- TARGET INTERACTION AMPLITUDE

A. SUMMARY AND CONCLUSIONS

In this chapter the (d,p) stripping amplitude due to the smoothed

interaction between the proton and the target nucleus will be evaluated.

In previous plane wave theories (1, 2, 5) this interaction was neglect-

ed, while in distorted wave theories (3,'4 28) it is included in the

construction of the Green's function by adding to the outgoing proton

plane wave the scattered waves appropriate to the distorting potential

(3)-). The method.employed here is to include the proton optical poten-

tial as a source term in the cutoff Born approximation, (a com-

promise between the above two methods in respect to simplicity of treat-

ment and potentially attainable accuracy. The introduction of a proton

cutoff is essential for obtaining quantitatively reasonable results

(Chapter 1, Section A).

Since the optical potential does not involve any reference to the

coordinates of the target nucleons, the resulting amplitude is subject

to the usual stripping selection rules.

In Section B it is shown that by approximating the nuclear (non-

electrical) potential and the deuteron ground state by Gaussian type

expressions (Appendix F), and using the Coulomb potential due to a

Gaussian charge distribution, the integrals reduce to the one evaluated

37
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in the previous chapter, or are .derivable from it. However, a great

simplification occurs if the neutron square well wave function (3.22)

and (3.23), is replaced by an harmonic oscillator eigenfunction. The

accuracy of such a procedure is discussed and the evaluation of the

integrals sketched in Section C.

A final simplification occurs if the neutron cutoff function is

expanded as in eg. (4-7). Explicit formulas for this case are derived

in Section D, and summarized. in Section E, where the results are also

specialized for capture to the low single-particle states ls, lp, ld,

and 2s. An approximate, extremely simple formula for the polarization

is derived and discussed in Section F, while the last two Sections, G

and H, concern the analysis of the reactions Bee(p,d)Be 8 and Beg(d,p)

Be 10

B. PROTON-TARGET INTERACTION AMPLITUDE WITH A SQUARE WELL NEUTRON WAVE
FUNCTION

The integral whose value is required was given in eq. (3.11):

In the present section it is assumed that the radial neutron function

is described by .eqs. (3,22) and (3.23). This integral can be evaluated

if the nuclear potentials (real and imaginary) in Vtand the deuteron

ground state are approximated by series of terms of the form ran exp
p

(-ar 2 ) and r exp(-br2.) , while the Coulomb potential is that due to

a Gaussian charge distribution,
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f()= 6cZZC- (27) (.2)

with an r.m.s 0 charge radius <r 2 > = 3/2y20

Denoting the error function by ((x) = (2/a) f e't 2 dt, the latter

potential is

with the convenient integral representation,

0

The basic integral is one with n = m = 0p Employing the coordinate

transformation (3,15) - (3,19) and trivial changes in notation, the re-

sult is the same as for the Vnp-amplitude of the preceding chapter. The

integrals with n and m 0 can then be obtained by differentiating this

result with respect to the parameters a and b. The Coulomb amplitude

can be gotten analogously by (numerically) integrating with respect to

the parameter a.

The complicated nature of the above procedure makes it suitable

only for machine computation.

C. PROTON- TARGET INTERACTION AMPLITUDE WITH AN OSCILLATOR NEUTRON WAVE
FUNCTION

Much simpler expressions for the amplitude than those suggested

above can be obtained by using an harmonic oscillator eigenfunction

(Appendix D) in place of the previous square well function. This de-
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vice permits use of the generalized center-of-mass transformation (GcJT)

described in Appendix D to.split the six-fold integral with coupled

variables into a short sum of independent, easily evaluated, three-fold

integrals.

The use -of oscillator functions to represent independent particle

motion-in the nucleus is so.widespread that it might be thought no jus-

tification was required. However, the stripping reaction is sensitive

to the tail of the captured particle wave function, and it is precisely

here that the oscillator is at its worst viz-a-viz the free particle

Hankel functions. -In particular, the oscillator functions would be a

poor choice in the Vnp-amplitude of the previous chapter, since the

characteristic dependence on binding energy would be lost.

However, the proton-target interaction amplitudes of the present

chapter are less sensitive to the exact shape of the neutron wave func-

tion. The reason for this is that they are smoother functions of angle

than the V -amplitude, and more nearly isotropic. A change in thenip

neutron wave function which would alter the location of the Vnp-peak

has no such effect on the Vtp terms. It is only important to get the

magnitude, of'the latter correctly and this .can be done by a suitable

choice of oscillator parameter.

Concerning the deuteron ground state wave function, the results

of Ref. (350) are expressible as a combination of three Gaussians. A

fair approximation to the Hulthe'n function can be had with two such

terms (Appendix F, Section 3) In the remainder of this chapter, the
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results will be given for a single term of this type, expressed as the

1s harmonic oscillator eigenfunction, vioo(pd',Pp) a In the actual cal-

culations, pd is chosen so that the mean inter-particle distance agrees

with that in the Hulthen function, C;(e-arnp - e-brp) o With b = 6.2a,

<rnp> = 3.11f and pd = *3635*'

The basic approximation is therefore the introduction of the os-

cillator function with normalization and. parameter value left temporar-

ily unspecified:

_ ~ (45)

The remaining steps are exact:

(a) Combine vnim(pnRn) and exp(-1?2rn) according to

(b) Subject the two oscillator functions vkim( n, Rn) and vloo

(Pd'np) to the generalized center-of-mass transformation to split off

the dependence on the relative coordinate, Rn - Rnp Rp.

The remaining integrals are independent and easily evaluated if

the potentials are approximated as suggested in Section B, This com-

pletes the algebra for the partial amplitude x 'm(Vt.p), and the others

may be found by setting one or both of nand equal to zero.

D. THE LOW PENETRATION APPROXINATION: DERIVATION OF FORMULAS

Further simplification can be obtained by noting that the deuteron

penet rat ion is usually low enough to permit the .exp ans ion, when bn = 1,
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(eq.. (3.3a))

(fr) =|--e.z Mr+"-- -- 4'7)

with retention of only the leading term. The rapid diminution of the

neutron radial wave function at large rn provides the justification for

(4.7).

As a preliminary step to the use of the GCMT, the factor r 2 and ~
n

the neutron radial function (Appendix D) are combined,

v1+1

r2 R (Me) = CM%) R~pse-)(4.8)

While (4.8) is exact, it doubles the number of terms to be handled., so

that an approximate relation is more convenient. Temporarily inserting

the factor of rn occurring in the volume element dRn, (4.8) is replaced

by,

r R ( r ~~N 2- pr,)(4.9)

The criterion for the choice of the two normalization constants Ni

and N2 (which occur as a single number N1N2 ) and the new oscillator

parameter p occurring in (4.5) and (4.9), can now be given. Taken to-

gether, the equations (4.5), (h.7), and (4.9) imply that the function

which in the previous chapter was given by,
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is now to be approximated by the expression,

. 2 ' ZN PS14( )( 4.13)

The simplest way to fix the unknown constants in (14.,13) is to

sketch the function (4.1l)-(14.12) and then adjust (4.13) to agree with

it near the outermost peak. The peak height determines N1 N2 , while its

position determines p.. The relevant information concerning r2Rni(pr)

is in Appendix D, Section 2.

Using (x4.13) in (4.1), combining Rni(p,rn) with Ylm(Rn) to form

v*m(p, Rn),the total Vtp-amplitude (i.e., the partial "np" term of

(4,1) plus the other three partial amplitudes (cf. eq. (3.10) with bn

by=l) takes the form:

(t4..14)

In (4.14), G = 1S4NiN2 (3/a 3 )2, and. Vtp - (1-e2Pr) vtp

The GCM transformation is defined by:

c2 2/2 2/2 2 2



The new wave vectors,

'Wff I

2c

->

v - K

-c
z

(4,16)

are associated with the plane wave transformation,

1(d 
- YR3? PC

The eigenfunctions in (4.14) transform according to:

f))V(/5, 
v

=2
0(ac4

fl~ (4.18)

where the four sets of oscillator quantun numbers have been abbreviated

as

+ An
The five-fold integral over dRcdRp can be performed explicitly and

yields the final formula:

(v)=rA12 9

A
A .

a a

I(V ) S)2

(4.20)



The remaining radial integrals in (4.20) are defined as:

I ( ))r)(h-Cyr,(.21)

These may be done numerically for any .potential shapes or, as- in Appen-

dix E, by approximating the potential by Gaussian type expressions and

using the Weber-Sonine formula (35, p.35 and Appendix E, eq. 2).

E. THE LOW PENETRATION APPROXIMATION: SUMMARY OF FORMULAS

By expressing the single-particle amplitude Bum, eq. (3.6) as a

sum :of spherical harmonics of different arguments,
N

A( (1.22)

the cross section and polarization formulas can be given in summed form.

The general formulas for these quantities are: (25, 26, 23, p.88).

Differential Cross Section for Capture .to a State With Definite I-Value
and Mixed j-Values

I-value well separated in angle, so that only the mixing of j-values

need b~e .considered.



Polarization for Capture to a State With Definite 2-Value and Mixed
j-Values

2 2 2 5  4P= -(-1.(+j+)t-- (4.2-)

The usual definition of polarization P is the value of' (h.24.) when the

z-axis of the coordinate system is oriented along the direction of the

polarization vector P. Since only the polar vectors Kd and K occur in

the matrix element, P is necessarily along the direction KdxKP. This

comes out automatically when the sums in (4.24) are carried out.

Fxplicit Formulas for the B- Sums

The fact that BIM can be given the form (h.22), which is not ob-

vious from (4.20), permits the m-sums to be carried out:

2,61 
J

4-77F 1=2I W
(j'= (A

(Ii.. 25)

(4o.26)

For the case £=0, these are simply and zero respec-

tively.

Summary of the Coefficients wo
The coefficient of Y- (t) in (1l.22), o4, can be given by an ex-fm

pression valid for all n- and I-values. This is simply eq. (3.35) or

(3.36), :omitting the factors i ® .Y(Q), where for the present sec-

tion it is convenient to put.
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Q (4.27)

The coefficients wi for i > 1 require separate specification for the

different single-particle capture states. In the following,

C E 2 rT-(%3)' ^/(2,vzm

(see Appendix E) (x4.28)

E ~ ~ z)= the harmonic oscillator radial

function of the indicated arguments, (Appendix D).

n=l, 1=0: lsi-capture

There are three terms in the sum (4.22). In view of the form which

(4.25) takes for 1=0, it suffices to give the sum, (w° is given above)

/ 0 30 (4.29)

n=,, 4=1: lp-capture

There are three terms in the sum (L4.22) . (w, is given above)

= - C ( fl c) P ,I _T /0 (

2-(0



n=1, 1=2: ld-capture

There are four terms in the sum (14.22). ( is given above)

22
c (4.v33)

4- PC)s -24(4o34)

In order to go from the form involviiig vector-coupled first degree

harmonics (see Appendix D, Section 3) which facilitates the integration

in (4.14), to the form (4.22) involving only second degree harmonics,

the identity is used:

2t

YIA C T4oi7r tL'c

This can be derived by expressing Yjm(A) as the vector coupling of two

first degree harmonics, putting A = B + C, and suitably grouping the

terms.

n=2, 2=0: 2s- capture

There are four terms in the sum (h.22) . (ouE is given above) .

Again, only the sum need be given:
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2 0 20c/ (//

6: F 11P )3(4,3.6)

As in the preceding case, a vector-coupling identity was employed:

0(4.37)

F. AN APPROXIMATE POLARIZATION FORMULA FOR lp- CAPTURE

Eq. (4.26) shows that the imaginary part of 'the optical potential

interferes with the real amplitudes to produce the polarization. An

interesting formula can be derived from (h.26) by neglecting the real

amplitudes resulting from the proton-target interaction, since these

are small in comparison with the real neutron-proton interaction term

Calculation shows that the contribution of' 3 to the polarization

is much less than that of 2 . This is true for two reasons. One is

that w iscsmaller than o, the other that Q1 and 43 are nearly par-

allel, so that their cross product is small. For capture to a state

with definhite ,j = 1 + , the plrzto s

and according to the above approximations, B~ has the simple f'ormn,

g i/m (1,.39)
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In this equation, finite mass corrections have been neglected so that

A A A 1
Q2 Kd, and Q - Kp. Also, the quantities a ' a$ and b -icn2

are real and positive near the stripping peak. (Il(Vtp) in (.350) is

negative imaginary due to the absorptive potential.)

Using ()+.38) in (h.39) , it is a simple matter to derive the follow-

ing formula:

P3(2Z' )2{ + 2 (4.40)

In this equation, kp is the proton wave number, Qthe scattering angle,

and n a unit vector in the direction Kd X K. Eq. (ht.40) has a number

of consequences which appear -1o be borne out by the experimental re-

sults (12):

1. On the stripping peak, where a and b are positive, the sign

of the polarization is determined by the capture j-value, being ± when

j = 1 ±..

2. The polarization is a relative minimum on the stripping peak,

where a/b is greatest and ab/(a2 +b2 ) is least.

3. The polarization rises to a relative maximum as a and b ap-

proach equality, and ab/(a2 +b2 ) approaches its maximum value of -.
2

4. The polarization chang sign when either a or b changes sign,

thus giving information about the amplitudes rather than merely their

squares. (This bears on the shape of the absorption pattern, as dis-

cussed in the next section.)
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5. The factors multiplying the square bracket in (4,40) form an.

envelope limiting the maximum excursions of P regardless of how the

stripping amplitudes a and b may vary.

The explanation of the dip in P on the stripping peak and its

sign change were given earlier by Newns and Refai (36) on the basis of

qualitative arguments.

Because of the two terms of opposite signs occurring in ('.32),

the correlation between the sign of the polarization and the j-value

for 2d-capture is not as definite as it was above. In addition, the

distribution of polarization may exhibit more structure than above.

G, Bey(p,d)Bee(GROUND STATE) AT Ep = 12.0 AND 16.5 MEV (37)

The analysis of the Be9 (d,d) reaction described in the next chap-

ter yields the cutoff parameters appropriate to .24 Mev deuterons in-

cident 6n Be9 . In the same sequence of experiments (38), the angular

distribution of the beryllium pickup reaction, to which stripping the-

ory is applicable by reciprocity, was also measured. Since the absolute

cross section was determined, and the experimental data appear to show

a dip near zero degrees (so that the peak position is at least roughly

defined), it seemed worthwhile to neglect the fact that in this re-

action the deuterons "see" Be8 rather than Be9 and use the Be9 cutoff

parameters.

The results of such a calculation are shown in Fig. 4-1. As can

be seen, the theory predicts no dip in the forward direction (nor does

the Butler formula--the theoretical curve of Fig. 6 in Ref. 38 is
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apparently in error) . The ambiguity in the small-angle experimental

data makes it difficult to determine a unique fit, as the two curves

in Fig. 4-1 indicate. The second set of experimental points, taken at

16.5 Mev (39), suggest that the cross section would continue to rise

toward zero degrees if the experimental difficulties at small angles

could be overcome.

The remarkable tendency of the angular distribution to, remain fixed

in anglie as the deuteron energy varies, remarked in both Refs. 38

and 39, is explained qualitatively by the present theory as follows.

An increase in energy tends to throw the peak forward, purely kinemat-

ically. On the other hand, the decreasing -cutoff radius throws it to

larger angles, and the effects approximately cancel. At some higher

energy, when- "complete" penetration is achieved, the shape should change

rapidly but this has not yet occurred at 31 Mev (0i.O)

The two theoretical curves in Fig. 4-1 exhibit the qualitative fea-

tures expected from the present theory-smaller radii than in the Butler

theory and larger reduced widths. The two values of G2 indicated in

Fig. 4-l correspond to the predictions of intermediate coupling theory

(41) in the jj- and LS-coupling limits, but.there is no possibility of

distinguishing between them on the basis of the present results. (The

Lp- coupling reduced width was computed assuming that the ground state

of Be9 was pure 22P . [hl] (Ref. 4.2), while that of Be8 was pure 18[]

(43), and using the p-shell, LS-coupling, coefficients of fractional

parentage of Ref. hh. The single-particle reduced width was obtained
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0cm

Fig. h-i. Comparison of theory and experiment for the pickup
reaction Be9(p,d)Be 8 (ground state) at 12 Mev. Proton-
target interaction has been neglected.
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from Ref. 14. In jj'-coupling, the Be9 ground state was assumed to have

seniority one, Be8 seniority zero. The c.f.p. for this case are given

by an explicit formula (45).)

Because of the ambiguity in fitting the curve and the difference

in energy between this reaction and the one from which the cutoff par-

ameters were determined, the actual numbers are of only qualitative

significance. They do however show that the introduction of a proton

cutoff results in a decrease of nuclear radius, and increase of reduced

width compared to the Butler theory. For example, the latter theory

applied to the 16.5 Mev data (39) gives a radius of 3f, and 92 = 0.024,

about a factor of ten lower than the intermediate coupling theory val-

ues.

The theoretical curves of Fig. 4-1 were computed from eq. (3.36),

the proton-target interaction being neglected.

H. Be 9 (d,p)Belo (GROUND STATE) AT Ed = 8.0 MEV (46)

The deuteron cutoff parameters used in the previous section are

not applicable at 8 Mev because the incident wave penetrates much more

at the higher energy. The curves described in this section were drawn

after adjusting both the radius a and the cutoff parameter, On=2 p=S-

The values used here are a = 4.Of and Q = O.226f-1, the latter implying

that the incident wave falls to half intensity at either rn or rp = 6.9f.

The experimental points are from Holt and Marsham (47) at 8.0 Mev.

The absolute cross section was not measured, but in determing the re-



55

duced width, a peak height of 0.40f2 /ster was assumed determined by

interpolating between two absolute cross section measurements at 3.6

Mev (48) and 14,.5 Mev (32). This results in a value of.about 2.5 for

the ratio to the single-particle square well reduced width. This may

be compared to the intermediate coupling theory value of approximately

2.2 (-9) and the Butler theory value of 0.2(27, p.204).

The solid curve, labelled A in Fig. 4-2, is the prediction of the

present theory, including only the Vnp-amplitude (Chapter 3) and the

incoherent (absorptive proton-target potential amplitude, Chapter 4).

Curve D illustrates the "isotropic" nature of the latter contribution,

and the manner in which the Vnp-cross section "rides" on it. The

imaginary potential depth used here was 6.4 Mev, obtained by fitting

the ratio of the experimental cross sections at the peak and at zero

degrees. The agreement of this depth with those encountered in (p,p)

elastic scattering analyses is an indication of the overall consistency

of the present theory, although its similarity to the value obtained in

Chapter 5, Section E, is fortuitous.

The lack of a minimum in the theoretical curve A (following the

main peak) is due to the too-gradual cutoff embodied by (3.3). The

theoretical curve has a strong "Born approximation component" which has

no node (5) and which dominates the overall cross section. To see that

this behavior reflects the shape of the neutron cutoff, curve B is the

prediction of the formula given in Chapter 5, Section F, which has a
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Curve A: Stripping cross-section due
to the neutron-proton interaction, and
the imaginary part of the proton
optical potential, smooth neutron and
proton cutoffs.
Curve B: Same,sharp neutron cutoff.
Curve : Some, Butler theory (for the
Vnp-term only).
Curve D: Some, due solely to the
imaginary potential.

100 200 30* 40* 50* 60* 70*

Fig. 4-2.
0cm

Comparison of theory and experiment for the reaction
BeS(d,p)BelO (ground state) at 8 Mev. The theoretical

curves illustrate the effect of differently shaped cut-

off functions on the angular distribution.
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sharp neutron cutoff of the Butler type,. plus a smooth proton cutoff

(3.3b). The height of this curve has been normalized to agree with

Curve A since despite its incorrect shape paar the minimum, the latter

curve is the most reliable in absclute height.

Finally, Curve C is a simple Butler curve, inyolving a sharp neu-

tron cutoff and no proton cutoff, normalized in height to Curve A. Ev-

idently the difference in proton cutoffs between Curves B and C makes

little difference in the shape of the angular distribution. (The heights

of Curves B and C before normalization are of course entirely different.)

The agreement among the three curves forward of the stripping peak

is striking, but expected, since this part of the curve is determined by

the stripping at large impact parameters, where the three matrix elements

are essentially identical.

Figure 4-3 shows the Vnp-amplitudes corresponding to the cross sec-"p

tions in Fig. 4-2. These are labelled. A,B, and C, with A supplying the

normalization. Curve D is that part of the absorptive potential amplitude

which is effective in producing polarization and the curves Pa> b, and

Pc show. the polarization resulting from the interference of Curve D with

each of A, B, and C, according to the simplified formula (4.40). The

rather small difference in angular d.istribution between Curve A on the

one hand and Curves B and C on the other (Fig. 4-2) is greatly mag-

nif'ied in the polarization curves. The latter are theref'ore sensitive

to the shape of' the neutron cutof'f' function, and can provide inf'ormat ion
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Curve A: Stripping amplitude due to the neutron-proton interaction,

-3 0 0/ smooth neutron and proton cutoffs.
Curve B: Some, but with sharp neutron cutoff.
Curve C: Some, Butler theory.
Curve D: Amplitude due to the imaginary part of the proton optical
potential.
Curves P I, Pc : Polarizations corresponding to curves A, B, andC.
* Experimental (Green and Parkinson)

$ Experimental(Hird,et al)

Fig. T -3. Stripping amplitudes and polarizations for the Be9

(d,p) Bel 0 (ground state) reaction at 8 Mev, illus-
trating the effect of differently shaped cutoff
functions.
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about the degree of transparency of the nucleus in cases where the an-

gular distributions are ambiguous (50, 51, Fig. 11) . A transition from

the "opaque nucleus" of the Butler theory, to the "transparent nucleus"

of the Born approximation .as the energy increases, would not be unex-

pected, and could be easily analyzed with the present or similar for-

mulas.

The experimental points (52) are in reasonable agreement with either

curve Pb or PC. The remaining discrepancies are in part due to the onis-

sion of the spin-orbit coupling between the proton and the nucleus. A

similar polarization curve, ,exhibiting the initial rise, the dip on the

stripping peak, and the subsequent rapid sign change, is also exhibited

by the more extensive measurements on the C' 2 (d,p) CI3 reaction (53).

The close similarity between the carbon and beryllium data implies that

the present theory will be in agreement with the former also, and this

is borne out by preliminary calculations (37),

The effect of the Coulomb potential is illustrated by Fig. 4-4.
Curve A is the part of the cross. section due solely to the Coulomb poten-

tial, curve B is the interference term between the Coulomb amplitude

and. the Vn-amplitude, and curve C is the cross section due to both

terms, the real and imaginary nuclear potential amplitudes having been

omitted. The ef'f'ect of' the Coulomb potential is reduced by the inclu-

sion of' the real nuclear attraction, Thus, a Gaussian potential, VP =

pp

curve D. The latter is negative at small angles, where the repulsive,
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Curve A: Partial cross-section due to

B the Coulomb potential.

-.2 Curve B: Coulomb-Vnp interference.term,
Curve C: Cross-section due to Coulomb
plus Vnp.

-.3 - Curve D: Interference term when
-at tractive nuclear potential is added.

Fig. 4i-h. Effect of the Coulomb and real nuclear potentials on
the stripping cross section for Be9 (d,p)Bel-o at 8 Mev.



large impact parameter Coulomb potential dominates. At about 25*, the

attractive nuclear potential begins to dominate and the curve changes

signs.

Apart from the change in peak height in going from Curve A of Fig.

5-2 to Curve C of Fig. 4-4, the Coulomb potential has very little

effect on the peak shape or position. This is cOntrary to the effedt

sometimes seen in distorted wave calculations,- that the Coulomb field

broadens the peak and shifts it to larger angles (3", Figs. ..7(a),7(1),

10(a), 10)b); 54). The latter effect probably requires a stronger

Coulomb field or lower deuteron energy than in the present reaction.



CHAPTER V

ELASTIC SCATTERING OF DEUTERONS BY COMPLEX NUCLEI

A. SUMMARY AND CONCLUSIONS

In this chapter the cutoff Born approximation will be applied to

the elastic scattering of deuterons. This is a logical application of

the formalism used in the preceding chapters for the (d,p) reaction and

permits in principle a determination of the cutoff parameters indend-

ently of the latter. Starting from the exact matrix element (5.1), use

of the cutoff Born expression (3.2) leads to simple formulas for the

scattering amplitudes.

Section B discusses the approximations that are employed, while

Section C summarizes the final formulas. These are derived in Section

D. The Be 9 (d,d) reaction at 24 Mev is analyzed in Section E and com-

pared with the cutoff Born approximation prediction of Be9 (n,n) and (p,p)

at corresponding energies (i.e., one half Ed')

The results of this chapter represent an approximate method for

treating the (d,d) reaction as a three-body problem. Exact potential

scattering analyses have been made for this reaction using a single

optical potential and considering the deuteron as a particle of mass

two, charge one (35, 55, 56). The present method would appear to be more

directly related to the nucleon scattering formalism.

62
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If the optical potentials derived from elastic nucleon scattering

are used in the present (d,d) matrix element, then the absorptive poten-

tial representing specifically deuteron dissociation is neglected (Chap-

ter 2, Section B), This effect can be approximately allowed for by re-

adjusting the penetration parameters. The Beg(d,d) analysis shows (Sec-

tion E) that the deuteron cutoff ocdurs considerably further out (approx-

imately 1.2 to 1.5f) than in the corresponding nucleon reactions. This

appears to be a reason why plane wave theories enjoy some success for

deuteron induced reactions at 5-10 Mev, when distortion effects are irn-

portant in nucleon scattering at half these energies.

Consistent with .the above remark is the fact that the theoretical

deuteron angular distribution (Fig. 5-3) fits the experimental data well

past the first minimum, whereas the nucleon curves (Figs. 5-1 and 5-2)

begin to diverge at that point. Since the theoretical formulas are

identical in physical content, this is evidence that the deuteron re-

action is closer to a "plane wave reaction" than are the nucleon re-

actions at corresponding energies.

B. REDUCTION OF THE SCATTERING CROSS SECTION

The exact matrix element for elastic deuteron scattering may be

written in the form

(5.1)



In this equation the factors are, from left to right, the center-of-

mass wave function of the scattered deuteron; its internal wave func-

tion; the triplet spin function; the ground state of the target nucleus;

the total interactions between target nucleus and neutron and target

and proton. and the exact wave function. The integration is extended

over the coordinates of the neutron, the proton, and the target nucleons

"t, "' including all spins .

To simplify (5.1), the many-body interactions are replaced by optical

potentials,

and is approximated by (5..2).

The optical potentials on the rh.s. of (5.2) do not involve the

target coordinates t so that, if we imagine the exact wave function

p to be expanded in the target eigenfunctions, only the term involving

the ground state fails to vanish by orthogonality.

If this reaction were being investigated from a more fundamental

viewpoint it would be necessary to take into account the excited state

contributions which vanish in this manner, and to discuss the validity

of the optical potential replacement (5.2) in the ground-state term.

The same points arise in the (d,p) problem and have been considered by
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Francis and Watson (4). Briefly, they argue that the excited state

contributions are negligible because an interaction strong enough to

excite the target nucleus will strongly dissociate the deuteron. The

neutron and proton then have to "find" each other (their quotation marks)

in order to undergo stripping. Here the process is elastic scattering

but the idea is the same0  They then show that the ground state com-

ponent of r satisfies an equation in which the many-body interactions

of (5.1) are replaced by an optical potential independent of t (their

eq. 16). This potential is in general non-local, so that the employ-

ment of spherically symmetric, local potentials as in (5.2)isarather

drastic approximation. It can be partially justified by the fact that

these same simple potentials appear to work well in the nucleon scatter-

ing case, where non-local potentials are also required in principle.

It is also assumed that the internal deuteron wave function in $

can be taken as the undistorted ground state wave function, neglecting

the small D-admixture. Since the deuteron has only one bound state,

any "internal" distortion results in dissociation. The same argument

as before suggests that we may neglect these dissociated deuterons and

in effect keep only the projection of the distorted wave function on the

ground state. In addition, unpublished numerical estimates of distortion

effects suggest they are small (4i,57). It will be essential of course

'to take account of the absorption which this dissociation represents,

and this is done by the cutoff factors in (3.2)
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The integrals involved may be carried out most simply if the deu-

teron ground state is given a Gaussian representation. This is taken

the same as in Chapter 4 (Section C)4

Finally, and for the reason discussed in Chapter 3, Section A, spin-

dependent forces are neglected. Carrying out the final sum and initial

average over the square of (5,1) yields the differential cross section

in terms of a spatial integral.

(5.3)

2 2 >P 2

(5.4)

In this equation, Q = K - K, the momentum transfer and mdt is the re-

duced mass.

Using the methods in Section D, the integrals in (5.4) can be car-

ried out for any potentials having a G:aussian representation. For sim-

plicity, the results will be given in explicit form only for the simple

choices:
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22 (5.5b)

(5.6a)

~j2  / 27Tr , 2 2 J-'(5C.6b)

equations (h.3) - (4,4) (5.7)

The results involve only exponentials and the function F of Appen-

dix B, and are summarized in the next section,

C. SUMMARY OF DEUTERON SCATTERING FORMULAS

The real and imaginary potentials do not interfere with each other,

so that the differential cross section has the form,

(Ehote)n (f(3.8)

Each potePnti al amplitude rnn cnt of for rtial+;c10,,amp;mluesr(cf-15.lO, r

X(Vn) = X0( Vn) -bnXn( Vn) -bpXp(Vn) +bnbpXnp( Vn) (5* 9)



68

x( VP) = x0( vp) -bnXn( vp) T xP( vP) +bnbpXnp( vp)(5.10)

There are three similar equations f'or X( vs) , X(Un), =rd x(up).

The Vn-amplitude

Let cl = (mdt/2i 2) 8 p3 Vn0.

np =2p 2 + p2

dp= 2p2 + Tn+ Sn- (p)/

do = T

d2aP
d2 _ 2
np n

=n (p + S) q/( 4ip' + 292p)

q = jI

Then,

Z(VM)
Z/ h

z , j~

/ /

Z C

/ z 
q

ez
(dzt 

L
p2 2

I 

Z

e L L

t

I)

-Ey,
4 v) 06

n3d43
"r'wp

/ 2

e -Z £T2
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The VP- amplitude

Let a2 = (rndt/21 2 ) 8Tr7 p 3V pO

fnp= 2p2 + tn

d = 2p2 + T + S2-(p)2f

2 = 2 2

-- 2+

= (hp 2 +g?) q/(hP 2 +2Q2)

Then,

p~~o~ / -2 3z , 3

P~ 2,/ 3

(h
414 2

/ 1

pZ

2

I

x (gyp>
£73 

'P

2

f

4
)

The Un - axp1 itud e

Let ax3 = (mndt/2ii 2 ) 41t ~p3 eUno0an2

Cp dp~aT

= d+cy- T2.
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Then,

Xa c4)z

IuJ

2 3/G-p

e

/ I

91b
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P

a'3 (3

S (3

J)

"C 2

2 )
2

Lip01,

z CP

2

Z
~2

(3)

lz

t

4-f.
2

TheH.-ampitude

Let a~4 = (mdt/2i 2 ) 41C72 p3eUpoc~p

.-- 2 2
n = np + p-

2:..
Tp

= + 2-2 =-oap2 - T

Cp
2 + 02

CIP P

Then,
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Y-r (Lip) =

2 3
z2

Z( 
Cb g0p )

- (up) a-

(3 -
v i

{ 2 ) cz 4 )

The Vr.-arplituae

Let Oa5 = - (mdt/2n1 2 ) 16Tc Ze 2 p 3 .

2 2 2

IC= an- Tp
np= n °p ~ +Y)]2

pn = 7q/ [2In(mn+2)]2

pp = np 2PSpY

Then,
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ve ) 4/;,3 4 Z

(0y '4> /e
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o(c

ry1,

2

z
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r2

'mU

D. DERIVATION OF THE SCATTERING AMPLITUDES

If the cutoff functions in (5 .6) are multiplied out, the integral

splits into four partial amplitudes. The one containing both exponen-

1 2 2 22
tials, e-2'nrn e- p p, is denoted by indices "'np,'' the one containing

only the neutron exponential by index "n,'" and the other two by "p" and

"o;" the last-named term being just the Born approximation amplitude0

It is only necessary to evaluate the "np"-term since the others follow

from it by setting the appropiriate Q's equal to zero.

The V -amplitude

Replace the variable Rp by Wnp=Rp-2p2 Rn/(2p2 + ) . This coordinate- trans-

formation induces the identity

(2#(p Zh+V22r z4prQ +# pL p 5.12)

where d = 2p2 + + -r- (2p2 ) 2 /f2 and fnp = 2p2 + £? . In addi-

tion, the plane wave splits according to
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with ( 4  Z. 2) 5 )2w2)

The integral (5.11) then separates into easily integrated factors,

3?->

When n or or both are set equal to zero in (5.15), it remains un-

altered in form but the constant dnp is replaced by dy, dn, or d0 , re-

spectively, with similar replacements for fnp and tnp.

Th U-apliud

The "np" partial amplitude involving Un(rn) can be obtained by a

coordinate transformation as in the previous paragraph or by differen-

tiating (5.15) with respect to Ti and suitably relabelling the poten-

tial parameters. The results have been summarized in Section C.

The Vp-and U-amplitudes

These may be obtained by interchanging the indices "n" and "?p" iun

the results for the Vn and Unamplitudeso Those quantities which are

not invariant under this exchange have been denoted by a bar in Section

C.



The Vi- amplitude

Using the integral representation (L.) for the potential of a

Gaussian charge distribution, the "np" amplitude becomes

(5.16)

Introduce the same coordinate transformation as in the Vn-amplitude,

but with n and p interchanged and with .x replacing Tn. The integral

over dRpdWnp is the same as in that case and yields

-- 
T 77-b~~"""rr@X-
Tp g(5.17)

f 6(w~ z3/ <t 2t47X2)

The remaining integral was evaluated in connection with the (d,p)

reaction (Appendix B)0 The results are summarized in Section C, the

Born term Xo(Vc) being obtained from the asymptotic form of F(x) given

in Appendix B.

Inspection of the Born approximation partial amplitude just men-

tioned -shows that it is simply the Rutherford amplitude for point charge

scattering multiplied by an exponential factor involving the finite

sizes of the nucleus and deuteron, The latter causes a gentle decrease

of the Born amplitude Xo(Vc), below Rutherford as the scattering angle

increases. When the cutoff terms are added to give the complete Coulomb

amplitude X(Vc), this decrease is greatly enhanced, to the point that

X(Vc) may become positive and interfere constructively with the real
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nuclear amplitudes X(Vn) and X(VP)4 This consequence of the cutoff the-

ory is rather different from Born approximation, the extra oscillation

introduced by the cutoff being in close analogy to the different (d,p)

angular distributions predicted by the Born, approximation and. the: Butler

theory (Chapter I4, Section H).

As is well-known, the Born approximation for point charge scatter-

ing gives exactly the Rutherford. cross section, when a suitable shield-

ing factor is used at large distances. The result for Xo(Vc) is in pre-

cise analogy to this result since it is obtained from Xp(Vc) in the

limit as % approaches zero. The cutoff exponential exp(-j?22r2) there-

fore provides the shielding factor necessary to get a finite result.

In the present theory, as in the point charge case, one has a built-

in agreement with experiment at very small angles, where the actual scat-

tering also approaches Rutherford. However, at high values of the Cou-

lomb parameter Ze2/4iv the agreement is almost completely fortuitious,

there being practically no similarity between the plane incident wave,

cutoff or not, and the Coulomb wave function. This remark has been

slightly qualified since it is true that the reason this mathematical

accident occurs for the Coulomb field. is a consequence of its long-

range, and. the approximate validity of the Born approximation at large

impact parameters clearly plays a role.
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E. ANALYSIS OF THE REACTIONS Beg(n,n) , (p,p), AND (d,d)

If the neutron and proton optical potential parameters are con-

sidered known, then the formulas of Section C involve four adjustable

parameters, bn, bp, Sn, and 2p. As a trial procedure, bn and by can

be set equal to one, and On set equal to Op. This reduces the problem

to the specification (by trial and error) of a single parameter.

On the other hand, it might be thought that the cutoff parameters

could themselves be determined from the corresponding nucleon scatter-

ing data. According to Chapter 2, these would be at approximately half

the deuteron energy, The following paragraphs describe the results of

such a procedure, using data on Beg(n,n) at 14.7 Mev (58), Beg(p,p) at

12.0 Mev (38) and Beg(d,d) at 224.0 Mev (38).

Beg(n,n) at 14.7 Mev

Nakada, et al., (58) measured the elastic scattering of neutrons

from Be9 , using as a source the (d,n) reaction on tritium. Because of

their scattering geometry, the incident neutron energy varied with the

angle of scattering. This was allowed for by employing the correct

(variable) energy in the calculation of momentum-transfer versus scat-

tering angle. Any change in the optical parameters over the small en-

ergy spread involved was of course neglected..

The total cross section as' given by them was 151 ±3 f2 . Using

the wave number appropriate to zero degrees, the optical theorem gave

[Im f(O*) ]2 = 82.6 f 2 /ster, (for a~ = 130 f 2 ). The measured forward
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cross section extrapolated from their Fig. 5 was 95 f 2 /ster in the lab-

oratory system, 76.9 center-of-mass. This agrees with .the value of

about 77 f 2 /ster extrapolated from their c.m,. plot using the theoretical

Bjorklund-Fernbach curve as a guide (59), Since this is smaller than

the value 82,6 given above, it is incompatible with the total cross

section.

The value of the non-elastic cross section which they measured, 57

± 6 f 2 , is higher than the value due to MacGregor, et al., (60) which

they quote, and also higher than Howerton' s (61). Assuming therefore

that their value of at was too high, the value 77 f 2/ster was accepted

as the forward cross section. An isotropic component of 1.1 f 2 /ster,

determined from the height of the first experimental minimum, was sub-

tracted and regarded as an incoherent component (62, 63, p. 416). This

avoids the necessity for computing the compound nucleus contribution

(64) and is sufficiently accurate when the effect is as small as it is

here. This gave a coherent zero degree cross section ao = 75.9 f2/ster.

In turn this implied a total cross section of 144 f 2 , assuming the

equality kat = 4-( a)Y2 , as is implied by the data.

A purely imaginary forward scattering amplitude, as is the case

here, implied a purely imaginary potential in the cutoff Born approx-

imation. The interpretation of this is not that the real potential is

actually zero, but that it plays a negligible role in the forward scat-

tering, most probably because it is concentrated at smaller radial dis-

tances than the absorptive potential.



The cutoff Born approximation transition matrix element,

S -) -g 
K ./> -- 25

(5.18)

where Un(rn) is given by (5.5b), yields the differential cross section:

2 ( 2 Z)

/1 (5.19)

The notation employed here is: mnt= reduced mass of neutron, X= 2
2 ( n 2-1,2 M22 , =(+q = K - K = .09567 (----) Elab(1-cos G),

and all quantities are to be expressed in nuclear units (Appendix A).

Since the Bjorklund-Fernbach potential radius (65) is too large to

fit this experiment (as indicated in Fig. 3 of Ref. 58, the theoretical

curve goes through its first minimum at too small an angle), a radius

was used which reproduced the node position, although it is not clear

that this simple theory should still be accurate at an 800 scattering

angle.

While the parameters are not uniquely determined, the set bn=l,

an= 0c 6l9f'1, n= 0.70lf"', Uno = 10.7 Mev, appear reasonable and fit

the forward scattering as indicated in Fig. 5-1. The imaginary poten-

tial peaks at 2.28f = 1.1(9)Y~, while the incident wave falls to half

its asymptotic intensity at 2.24lf.
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f A/ter

0 .4 .8 q 1.2 1.6 2.0

Fig. 5-1. Comparison of~ theory and
Beg (n, n) at 14.7 Mev.

experiment for the reaction
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The logarithmic presentation in Fig. 5-1 emphasizes the disagree-

ment past the first minimum, but is helped somewhat by the isotropic

component mentioned earlier, which eliminates the true node possessed

by (5.19).

BeS(p,p) at 12.0 Mev

The data of R. G. Summers-Gill (38) were taken at nearly the neu-

tron energy of the previous section. The angular distribution was com-

puted using (arbitrarily) the same ratio %p/cop as in the neutron case,

but readjusting op to fit the node position. This could be done with

the parameters b =1, og = 0.521f~, % = 0.590f~1, and U = 6.2 Mev,

resulting in the curve of Fig. 5-2.

The first minimum is at a smaller value of momentum transfer than

in the neutron case, suggesting that the beryllium nucleus appears

larger to a proton than to a neutron. This phenomenon may be connected

with the difference between the electromagnetic radii of the neutron

and proton (66). The proton potential in this case peaks at 2.71f,

about 0.4f further out than the neutron potential, while the half inten-

sity point of the incident wave is at .2.7f, so that the proton wave

penetrates less than the neutron wave in the previous case. The lower

incident energy, the Coulomb repulsion, and the wider spread of' the

absorptive potential all work in this direction, although the lower

value of U than Un favors greater penetration. If U were to be

ad justed upward to around 11 Mev, nearer the neutron value, the pen-
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etration would be even further decreased. (This would have a negligible

effect on the angular distribution, which depends on Ugo and. p only

through the combination UpoS .)

In computing the theoretical cross section it was assumed that in

this reaction the real nuclear potential could again be neglected. This

is a weak application of "cha rge independence" since the Coulomb repul-

sion tends to keep the proton away from the inner real potential. In

this situation it is only necessary to add. (incoherently) the Coulomb

cross section to that due to the absorptive potential (5.19). For a

Gaussian charge distribution, (I4.2) - (i. 4) , the matrix element,

22> e(5.20)

yields the differential cross section,

Z
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The new symbols are:

and

~ ,6'~y1 2p

F(x) is defined in Appendix B.

The rms radius <r> = 3.0)4 for beryllium was obtained from Table VI

of Ref. 66. The remarks concerning the Rutherford component of the Ve-

amplitude (Section D) apply to eq. (5.22) also.

Be9 (d,d) at 24.0 Mev

The data of Summers-Gill (38) are at a suitable energy for compar-

ison with the above (n,n) and (p,p) reactions. If the parameters deter-

mined there are taken. over unchanged, the (d,d) cross section is con-

siderably over-estimated. To obtain agreement, smaller values of Sn and

Pp may be employed, and interpreted as reflecting the additional absorp-

tion due to deuteron dissociation.

The curve of Fig. 5-3 was obtained using the same bn, b, an, Qp,

Un o and U as in the previous reactions, but with 0 = = 0.39. The

incident wave falls to half intensity at 4.0f, about 1.5f further out

than in the (n,n) and (p,p) cases. The fact that the fit to the exper-

imental points in Fig. 5-3 appears to extend. to larger values of momentum

transfer than in the nucleon cases may be due to this confinement of the

reaction to larger separations where the neglect of distortion is better

justified.



-(d,d)

f 2 /ster

0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0 1.1 1.2 - 1.3 1.4

Fig. 5-3. Comparison of theory and experiment for the reaction
Be9(d,d) at 24 Mev. Also shown are the Rutherford
cross section and the Coulomb (non-point charge)
cross section.



APPENDIX A

NUCLEAR UNITS

It is convenient to have a system of units which exploits the fact

that nuclear data are primarily given in atomic mass units (amu, 016.

16), Mev, and fermis (10- 1 3cm) . Conversion of units is unnecessary if

the fundamental constants are evaluated in this system. Using the val-

ues given by Cohen, et al. , (67),

(a) proton charge: e =

(b) velocity of light : c =

(c) Dirac unit of action: 4i =

Various nuclear units in terms of

1.20000

30.5146

6. 46624

familiar

e2

ones

= 1.44000

= 931.141

= 41. 8123

are:

(a)

(b)

(c)

(d)

area:

time:

velocity:

charge:

10-2scm = 10 mb.

1.01786 x 10-22 sec.

0.982453 x 10 cm/sec.

4.00257 x 10-10 esu.

85



APPENDIX B

PROPERTIES OF TEE FUNCTION F(x)

j;. DEFINITION

F(x) = e-x fX etdat, (B.1)

In terms of (x) = erf' x = (2/n2e) fX e-t 2 dt,

F(x) = (ji/2i)eX2 c1(ix). (B.2)

The asymptotic series begins with

2x 4X3 X

2. INTEGRAL EVALUATION

I, 2(a, b,m) = fb(x2+im) 2 exp[- x2 +m-]d

Define c b 2 +m, g=b(mc)~,and h=cf + (2a) - + g2 , then

10 (a'b,m) =(ma) _2ea/cF(gai),

12(a,b,m) = (mna) - ea/c [h( 2 -a 2 ) Fga])+g2( 2 a)
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Proof: Since Ig = (-d/da) 2 I0 , only I0 need be evaluated. If F is ex-

panded in a power series and integr'ated term-by-term, the result is:

& Ce F(xz > 27 ( Lemma)
14?,'h_ (44/

In Io, expand the exponential and integrate term-by-term,

Rearranging the series with

00

gives a product of two series:

d __ ~H- -

-1' O v v''n! * |291 6 t2m

The first series is an exponential, the second is given by the above

lemma, Simplifying the exponent leads to the stated result. In the

formulas for I1, 12, and I3, the derivatives of F have been replaced

by expressions involving F itself. For example, F /-ZX//

3.NUMERICAL TABULATION

The function F(x) is tabulated in Ref. (68) up to x=12, at inter-

vals of 0.01. A part of that table is reproduced. here for convenience.
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TABLE OF F( x)

X

04,00

.01
a.02

0 05
,.06
.07
008
.09

.12

.115

.1h

015
®16
.17

018
019

020

.21

.22
0215
*2)4

.025
026

4,27
9,28

.29

.150
o11
.1532

F( x)

0 0000 000

.009 999

.019 995

.029 981
.0159 957

.9 917
.059 857
.069 771
.079 660
.089 516

v099 1516
.109 117
.118 85)4
.128 5h+5
.1158 185

.1)47 769

.157 297
.166 762
. 176 162
..185 x+92

.19)4 751
.2015 9151
.21150157
.222 058
.2150 9915

.2159 8159
.248 5915
.257 2515
.265 81)4

.27)4 275

.282 61

X F(x) X

0.135

.157

.158

o

,h2
13
h4

45
o1h6

h17
h18
h19

$50
.51
052

.515
.5)4

056
.57
.58
7659

60
o61

662

.615
e6)4

0.1322

.15)45

01566

.1587

.4oo

o412

435

o h5o

h6

.465

.470

h+78

.487

.490

h-97
.501

770
x-51
010
)4)47
759

9415
999
92)4
717
1575

899
285.

6)41
609

120
662

059
1511

h-18
1580
195
86)4
1586

7615

995
076
015
8035

448
9)47

50

Q. 70
o71
.72

.715
7)4

".75
.o76
.77
.78
0.79

8o
o81
.82
0815
8)4

085
.86
.87
.88
.89

0.90
.91
o92

.9)4

0.95
o96
.97
o98
.99

100

1.02

F(x)

0.510 5015
05115 286
o515 926

.518 )428

.520 789

95215 0115
0525 100
.527 050
.528 866

.5150 5)49

.5152 101
.55155215

5515)4 816
.5155 981
.5157 021

.5157 9157
®5158 7152
.5359 ho6
05319 960
.5)401599

051h0 72)4
051ho09154
.5)41 01)
.5)41 025

.5)40 910

.5)40 688

.159 9158

05159 h1h
.5158 7915

.5158 080s65
*.66
,.67
.68

0,69
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TABLE OF F(x) (concluded.)

X

1.05
1.06
1.07

1x10

1a12
1.15
1.1)4

1.15
1.16
1.17
1.18
1.19

1.20
1.21
1.-22
1d 23
1.2)4

1. 25
1.26
1.27
1.28
1.29

1.5.0
1.51

1.5531

1.35

F (x) x F (x) X

0.535
0531
.530
.529
.527

.526

.521-
@522
o521
01519
.517
0515

.515
.511
.509.

.507
0505
.502
S5 00
,)498

.)4+95

" 4.83
,48o
)4178

0)4-75

O 4+72

,o)47o
O.)467

162
925
6 09
216
7)48

207

595
915
169

559

)487
555
566
521
.x-23

275
075
829
557
202

827
x+12
960
)472
950

597
81)4
205
566
90)4

219
515
787

1.114o
1..41
1. )42

1.1)45

1,)46
1. )47
1.)48
10)49

1,5'0

1,51

1.52

1.55
1.5)4

1,55
1,56

1,57

1..58

1059

1060
1.61

1.62

1.64.

1.65
1o.66
1.67
1.68
1, 69

1. 70
1.71
1. 72

o )5 o
S)448

442

x+)28

x422
o )419
" )416

,o)41)4

411
.)4o8

X599
a397

039)4

.391
O9588

x386

,380
x577
*575

.572
O369

367

507
718
918
107
286

x+58
62)4
785
9)42
096

2)49
401

555
710
869

032

199
373
3,54
7)42

9)40
1)46
36)4
592
832

085
551
630
925
25)4

559
900
258

1a.75
1.76
19.77
1x78
1.79

1080
1.81
1.82
1.83

1.85

1.86
1.87
1. 88
1.89

1090
1.91
1,92

1.9)4

1695
1.96
1®97
1o 98
1.99

2.00

2.02

2.0)4

2.05
2.06
2. 07

F(x)

0.359 )436
9 356 865

x5)4 513
05351 780
o5)49 266

.3)46 773
.34)4.299
o3)41 8)46

.559 x413

.557 001

.35)4 609

.552 259

.529 89.1
o527 563

.325 258

0322 974i
0520 712
0318 x471
.316 253
.31)4 057

.311 883

.509 750

.507 600

.. 305 4931
o503 x405

03013 4039
.2992 9770
o2972 7685

.2952 7771
o2953 0025

o291534438



APPENDIX C

THE APPROXIMATIONS (3.26) AND (3.27)

1. THE BESSEL FUNCTION APPROXIMATION (3.26): DERIVATION OF FORMULAS

In.order to carry out the integration over the region rn < a in

(3.21) most conveniently, the function j2 (yrn) exp(-.d 2 r2) is replaced by

C j£(prn). The problem is to determine the normalization constant C

and the effective wave number P so as to make this substitution reason-

ably accurate. (In this section and the following, d stand.s for any

of the quantities dnp, dn, dp, or do defined by (3.17), (3.15), (3..3)and

(3.10), while p stands for 7rp,yn 7 'y, or 7. Since do=O and 70=7,

these will not occur explicitly in the final formulas. The subscript

n on rn will also be dropped.)

Because of the factor r 2 in the volume element of (3.21), the region

r a will be the most important, so C is chosen to make the two expres-

sions equal at r = a. That is,

jj 1eT(r2a e- 2d2 a2 (cl
ia 1idj(yr)e-d r~j(7)ejg(Pr)/j()(C.)

The constant p is then chosen so that the outermost extrema of the

l.h.s. and r.h.s. of (C.1) have the same height. (The ls state is an

exception and is treated separately.) Since j 1 (7r) is an insid~e wave

function for a square well it will execute one or more 1oops inside the

90
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well and. be decreasing in absolute magnitude as it approaches r = a.

The l.h.s. of (C.l) will have the same qualitative behaviour, as will

the r h.s, The criterion for P is that the loops nearest to r = a

(of the two sides of (C.1)) shall have the same height. The peak loca-

tions will be displaced. from each other but this effect is small for

the values of d involved here.

The first step is to.determine where the 1.h.s. of (C.l) has its

outermost peak, say r = T. This can be done by simply plotting it and

reading off T Alternatively one can set its derivative equal to zero

and iterate the resulting transcendental equation. An explicit formula

can be obtained. by fitting a parabola to j 1( yr) at the appropriate peak,

a straight line to exp(-2d2 r 2 ) at the same point, and. computing the peak

location of their product. The result is the following: Given a

straight line, f = A-Br, and a parabola, g = C+Dr+Er 2 , the extrema of

fg are located at r = r, where

3BEr = (AE-BD) ± J(AE-BD)" + 3BE(AD-BC) (c.2)

The sign is chosen which gives the smaller value of r. This will be

the plus sign when the parabola opens downward (E < 0) , the minus sign

when it opens upward (E > 0) . (This assumes B > 0, as is the case

here.) In the formulas of Section 2 the constants have all been de-

fined as positive numbers, with a suitable change in the signs of (CG2).



The lh,s. of (c.i) can now be evaluated at its (approximate) peak

and the equal peak height condition written as

j,(yr)e-d 2 r 2 = jg(ya)e-d 2 a2 j 1(fr')/j 2(pa). (.3)

Now pr' is by definition the nth peak position cf 6 4-.4 so that j

(pr') is a definite number, the height of jg at this particular peak.

1.. (.3) involves tt ukmi$ only in the argument of jg( pa) , which is it-

self determined by (0.3). The quantity pa can therefore be found. by

inverse interpolation in the NBS Tables (69). Since the inverse func-

tions are multiple-valued, it is necessary to select the argument Pa
which corresponds to the state in question. In the formula summary

of Section 2 this requirementiis incorporated in the form of limits be-

tween which Pa must lie.

The is-state does not fit the preceding pattern since jo(7r) and

the 1.h. s. of (0.1) fall monotonically from unity at r = 0 to their

values at r = a. The point r = a is kept as one point of equality, so

that (C.1) still holds, but the other point is taken arbitrarily as

r = a/2. This gives the equation,

jo(7a/2) e- d2 (a/2 = j 0 (ya) e-id 2 a2 jo(pa/2) /jo(pa) ( C.4)

The ratio j 0 (pa) /j 0 (pa/2) is determined by (C.4)0, so that pa can

be found from a plot of jox)/j 0 (x/2), as d.escribed in the next section.
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2. THE BESSEL FUNCTION APPROXIMATION (3.26): SUMMARY OF FORMULAS

The quantum numbers (n,i) and the parameters d, a, and y are sup-

posed known. The following formulas determine P for the three lowest

oscillator shells. Analogous expressions for the higher single-particle

states are easily constructed according to the method of Section 1.

(a) n=l, 1=0 (1s).

Evaluate e-3d a 2 /8jo(7a)/jo(ya/2) and with this as the value of

jo(x) /jo(x/2),enter Fig. C-l and read out x. Then p = x/a.

1.0

.9

.8

.7

.6.-
lo(x)

.5 j(x/2)

4

.3

.2-

.1

0 0.5 1.0 1.5 2.0 -2.5 3.0
x

Fig. C-1. Plot of jo(x) /jo(x/2) .
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Find T from

3 Bar = (AE+BD) - J(AE+BD) 2 - 3 BEAD+BC)

where A = (l+h.555d2/r2)e_2.167a 2 / 7 2

B = 2.082(d2/)e 2.1 6 7a2/y2

C = 0.07280

D = o.h4889y

B = 0«.l7hy2

Then

From this, Pa can be found by inverse interpolation in the Bessel func-

tion tables (69). The correct value of Pa lies between 2.08 and h4.9.

(c) n=l, 1=2 (id).

Find.! from the expression in the preceding paragraph, using the

values
A = (l+lll7d 2 /y 2 ) e 5 585d 2 / 7

2

B = 3.342 (d 2 /) e55 8 5d2/Y2

C =0o.x861
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Then

j 2 (pa) = 0.3068j 2 (7a) e- d2 (a 2-F2)/ (pF)

From this, Pa can be found by inverse interpolation in the Bessel func-

tion tables (69). The correct value of Pa lies between 3.34 and. 5.76.

(d) n=2, 1=0 (2s).

Find. T from the expression in Section 2(b), using the values

A = (l+20.19d2 /2)e-10.10d2 /7 2

B .= .494 (d2 /y) e-10.10d2/72

C = 1.976

D = 0.97617

E = 0,108672

Then

j (pa) = -0.2172j (7ra) e- d2(a 2-r ) /i 0 ( i).

From this, Pa can be found by inverse interpolation. The correct val-

ue is between )4.19 and 6.28.

3. TEE HANKEL FUNCTION APPROXIMATION (3.27): DERIVATION OF FORMULAS

As in Section 1, d stands for the different dnp, dn, etc., while g

stand for np' n, etc. The approximation (3.27) replaces h2 (Kr)exp

(-! d2 r 2 ) by Chj(gr), with C and i to be determined. Since the function

hhas its maximum value at r = a, C is chosen to make the two expres-

sions equal at that point,

hgf( r) e-yd r~ h2 (K~a) e-d2a2 hg( gr)/hg( ga). (C.5)
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The constant i is then chosen so that (C.5) is an equality also at an-

other point, r = b. This is arbitrarily taken as the point where the

l.h. s. of (C.5) has fallen to half its value at r = a.

The first step is to determine where the 1.hs. of (C.5) falls to

this 50% point. Since the Hankel functions have the form,

h2 (x) = x-lp 2 (x)e-X , (C.6)

where Po(x) is a polynomial of degree 1, the equation for b is,

b~- l-'PI (Kb) e- kb-Id 22b2 = 2a~- CPs ( ra)eas2 = e- v

(C.7)
The middle member of (0.7) determines v . Taking logarithms,

2d 2 b2 + Kb + ln [b''/P .(b) ] -v = 0. (C.8)

Since the logarithmic term is insensitive to the exact value of b this

transcendental equation can be solved iteratively as a quadratic equa-

tion for b, assuming the logarithm known:

bn+i = -(K/d 2) +l( /d2)2 + (2/d 2 ) (v + ln [b-$ 2 1 P(Kbn)])

(C.9)
One application of (c.9) using b0 = a + 0.5 usually suffices.

Writing (C.5) as an equality at r = b,

( Kb) - lP 1 ( sb) e bidb" - C( gb) 2 l- Pj( (b) e- b , (0C.10)

and dividing this equation into the similar one at r = a, yields
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e (ba)P 2 ( a)/P (b) = e (b-a) + d (b-a 2P (a)/P(tb) = e.

(C.ll)

The middle member determines n . Taking logarithms and as before,

iterating on the slowly varying logarithmic term,

= (b-a)' { + In [P(gbn)/Pi(ga)]) (C.12)

Eq. (C.13) of the following section provides a convenient starting

value,

o = K + 2d
2 (a+b)

4. THE HANKEL FUNCTION APPROXIMATION (3.27): SUlvJMARY OF FORMULAS

The quantum number 2 and the parameters d, a, and K are supposed

known. The following formulas determine i for all s, p, and d levels,

there being no dependence on the radial quantum number n. The general

formulas for higher 2-states have been given in the previous section.

Suitable starting values for the b- and g-iterations are b0 =

a+0.5 and i = K+d 2 (a+b) .

(a) 1=0. h0 (x) = x'e-X. P0(x) = 1 .

v = Ia + da 2 + In(2a)

bn+i = - ( s/d 2 ) + (I/d2)2 + (2/d2) (v-:in by)

S= K + jd 2 (b+a) ( C.13)

No a-iteration is required, eq. (c.ll) being soluble in this case.
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(b) ii

V =

(c) k=2.

h 2 ( x)

V =

bn+i.

= x 2 (1+x) e'X. P(x) = l-ix.

tza + ld 2
8,

2 + in [2a 2 /(1l+Ka)]

_- -(<a2 ) + \(k /d2)2 + (2/a2)[v+mn[(1b)/b])l

r.(-)+ 2d2 (b2 -a 2 ) + ;Qn[(1+ ca)/(1+ cb) ].

(b-aY-'( 1 + Th[(1+ nb)/(1+ na)]

=x-3(3+3x+x 2 ) e-x. P2 (x) = 33~2

ISa + .±d 2 a2 + In [29. 3 /C5+3Ica+K2a2)]l

_- -(<a2) +.1(K/d2) 2 + (2/a 2 ) I +-n[33KnKb)/]

K(b+a) + Cd2(b2- 82) + 33Ka ~2 (+3K+~2
= (b)1,+k[33n+nb) + a a)J
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0 2 3 4 5 6 T
-r-+

Fig. C-2. Some examples of the Bessel and Hanel
function approximations. Solid lines

are exact, dotted ones approximate.



APPENDIX D

HARMONIC OSCILLATOR WAVE FUNCTIONS

1. SUJMMARY OF NOTATION

En2((D) _= 'cu(2n+1e-.)= energy eigenvalue in the state (n,2).

2Q,m = orbital angular momentum and z-projection quantum numbers.

M = reduced mass.

n = radial quantum number. The lowest .estate is n = 1.

p = (k/) = oscillator parameter.

R, R, r = coordinate vector, unit vector, and radial coordinate,
respectively.

Rni(p,r) = harmonic oscillator radial wave function.

V(r) = .2Mz2r2 =- i'p4r2/M = potential energy.

vnim(p, R) = Rnj(p, r) Yim(R) = harmonic oscillator wave function.

wi = classical frequency.

YJP() = normalized spherical harmonic. Yam = (l'

2. RADIAL WAVE FUNCTIONS

R12 (p,r) = [p322+2/~(22+l) ]-2(pr) 2exp(-2p2r2)e

R2 1 (p,r) = [p~2~( 2I3) /ii(2f+l) :] 2 (pr) [lp2r2/( 1+3/2) 1.
exp( .- p2r2 ) ,

100
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Rn (P, r) = [p321(22+2n-r7,1) !!/N{(21+1) Ja3]2F(ln;+3/2;p2r2)

(pr) exp(-ip2r2)

The function Ri 2 (p,r) starts out at r = 0 like r and goes through

a single peak at p2r 2 = 2. R2g starts out similarly, goes through a

positive peak at p2 r 2 = 1+7/h-(21+9/16)2, vanishes at p2 r 2 = 1+3/2,
and goes through a negative "peak" at p2 r 2 

= 1+7/4+(21+49/16)2. R3 1
1

starts out the same way and has nodes at p2 r 2 = 1+5/2±(1+5/2)2, but its

peak positions must be found numerically. An exception is R30 which

peaks at p2 r 2 = 0, 5/2, and 13/2.

The function r 2 R1 (p,r) (Chapter 4, Section D), peaks at p2 r 2 = i+2,

while r 2R2 2 (p,r) peaks at p2 r 2 = 2+11/+[llg/h + 73/16]. The nodes

are unaffected by the factor r 2 .

3. TEE GENERALIZED CENTER-OF-MASS TRANSFORMATION

(a) Derivation

The Schr&dinger equation for two particles of equal mass, M1 =M2 ,

moving independently in the same potential well, w=co2 ,

MMzIz

remains separable in the center-of-mass system,

where R = R1-R 2, Rc = 1R+2 M = M1 /2, Mc = 2Mi, oi~o2=o(oc'
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If an eigenfunction of (D.1) is expanded in the solutions to (D.2),

pRv (pR) =q v(pR)v Pc,Rc)(qcIq2),... (P19R1)VqC9(P 
cR2) 

q, %c(D.3)

then energy and angular momentum conservation make (D.3)a finite sum.

(The q' s are sets of three quantum numbers, q=nitim 1 , q=ntm, etc. Also

p2=M/c, =Mc/ ) . That the angular momentum quantum numbers should

transform "finitely" is easily seen from the fact that the spherical

harmonics are finite polynomials in the cartesian coordinates of the

particles, but the corresponding property for the radial quantum numbers

is not to be expected, and indeed only holds for the parabolic well.

This transformation was first used by Talmi(15) in spectroscopic cal-

culations to replace the conventional Slater method, and has since be-

come standard in such calculations.

It is -a trivial step to introduce unequal masses in (D.1) with the

definitions 0Rc=(M 1R1 +M2 R2 ) /(M 1 +M2 ), M=M1 M2 /(M 1 +M2 ), MC=M1 +M2 . Eq. (D). 2)

is still separable and (D.3) is still finite. It is essential however

that o1 =o2 .

Finally consider the generalization of (D.1) to unequal frequencies.

Under the c.m. transformation the kinetic energy separates but the poten-

tial energy does not, so there is no analog of (D.2). Expansion (D.3)

is still possible but does not terminate. However there is a generaliza-

tion of the c~m. transformation which will make this expansion finite

even in this case. The simplest way to see that such a transformation

ought to exist is to observe that the functions in (D.3) depend only on
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the products Miow and Mam2 . Thus already in the case of unequal masses

the products are unequal and there .ought to be a choice of new fre-

quencies which will preserve the finite structure of' (D.3).

The essential element in the finiteness of (D.3) is not the sep-

arability of the wave equation, although it was this consideration which

led Talmi (15) to the oscillator potential, but the simple way- in which

the exponentials transform. The desired coordinate transformation must

preserve this property but need not separate the wave equation (and in-

deed does not). The exponential relation which is sought, namely

exp(- 2piri) exp(-zpir2) = exp(--lp 2 r 2 ) exp(-lpgrc) , (D, 4)

demands . p1 r+p 2 r 2 =par2+pcrc, (D.5)

which can be induced by the generalized center-of-mass transformation,

R =R - RR = + 2/ +
+ + +c Pll p2R2 ) I(p 1  p2)

(D.6)

p2 = pfp2/(pi + pc) p = pi + p2

This transformation is obviously in close analogy to the c.m. trans-

formation. The latter weights the particles according to their masses,

putting Rc closer to the less mobile (more massive) particle. (D.6) also

takes into account the loss of mobility due to the steeper well (higher

au-value). It is therefore a "center-of-rigidity" transformation.

The equation,

2ni + Li~ + 2n2 + £2 = 2n + £ + 2 nc + 2 c > (D-7)
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which expresses energy conservation when the frequencies are equal, now

states that the "number of quanta" is preserved in (D.3) . The reason

(D.7j holds in the general case is that with the infinite series part

of the wave functions split off by (D,), the remaining finite polyno-

mials transform just as they did before.

Not all the values of n, 1, nc, and Ic allowed by (D.7) will ac-

tually occur in (D.j3), a fact which further simplifies the expansion.

The additional restriction is due to conservation of angular momentum.

The values 1i and 2 can couple to total angular momenta from Ill - £2

to 1i + 2. Therefore the admissible values of I and 1c must be able

to couple to some resultant in this same range. (The angular momentum

operators implied here are the generators of the infinitesimal rotations

in the new coordinates R and Ec

The expansion (D.3) conserves parity (the reflection eigenvalue

in the new coordinates)as a consequence of (D.7). The latter implies

that

(-1) 22= (-)Z+aLc

so there is no further limitation of the sum on this account.

(b) Summary of Formulas

The following expressions are d.erived by writing out the l.h.s. of

(D.35) in each case in cartesian coordinates, introducing (D.6), and

returning to the spherical tensor notation. It is not necessary to

treat the different magnetic quantum number comibinations mim2 individ-

ually (as in Ref. (15)) if the spherical harmonics of degree greater
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than one are expressed. in terms of' vector coupled. first degree harmon-

ics. The Clebsch-Gordan coefficients appearing (explicitly or implicit-

ly) in the following formulas arise from this source. (Only the spea-.

cial cases required. f'or eq. (Ii.18) with y = 100 are listed.)

is: v'100(pi,9 v100 (p 2, 2 ) = vioo(pcAc) v 100 (p.)

lp: v~im(p 1 , R9)v 1 oo(P2, R2) = (Pi/Pc)vim(Pc,Rc)vioo(P,R)

+ (P2/Pc) Vioo(Pc,c) vJ~m(p,~)

ld: vi(p 1 ,,) voo(p 2 , R2 ) =(PI/Pc) vI~m(Pc,Rc) vioo(pTh

+ (P2/Pc) 2vloo(PcRc)v2xnIP,R) + 2 I(P/P)L Ck m v1kpcRc)

2s: v40 0 (p 1,R1 )v 1 0 0 (p 2 ,R2 ) = (p1/pc)2V2oo(Dc,1c)v1oo(p,R)

+ (P2/Pc) 2vjioo(pc,~c) v2 oo(pR) + 22(p/Pc)i bvi~(cIJ~r{9

The notation used. in the previous equations is as follows: p, R,

cand. Rc are defined, in (D.6); the Clebsch-U;ordan coefficient Cab ex-

presses the coupling of' A and.B to a resultant C, with magnetic quantum

numbers written below and. a dot indicating a suppressed quantum number

whose value is fixed. by a + b = c; the asterisk denotes complex con-

jugate and. has been. omitted on the real s-f'unctions.



APPENDIX E

RADIAL INTEGRALS FOR THE PROTON-TARGET INTERACTION

As mentioned. in connection with eqs. (x+.20) and (4.21), the radial

integrals

I (V f)~ ) 2  (!E.l1)

may be done numerically or by use of Gaussian approximations to V and

the Weber-Sonine formula (35, p. 35). In this appendix the latter ap-

proach will be adopted for the three potentials (5.6a), (5.6b), and.

(5.7). More general forms can be integrated using the above-mentioned

formula specialized to half-integral Bessel functions:

(E.2)

(2 322j 2

For t even, the confluent hypergeometric function in (E.2) is a

finite polynomial, while for t odd it can be evaluated in terms of the

function F given in Appendix B. Thus,
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and the functions involving different parameters can be reached. by

standard contiguity formulas.

The following are some special cases of (E.1), in which it is sup-

posed. that

Furthermore, because of the short range of the first two terms in (E. 4),

it is convenient to use the expans ion,

P2 _ 2 2)

Thu Z in2(El theap

_ 2ZFilcl2 2

,1 _ 2,(E.6)

2'22

0 1

Expicily

I'~ #iVr~2G~o I/(E.6))
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qj
z

-T, (9

By setting %~ = 0 in (E.11) and (E.12), the remaining integrals

in (E.3) can be obtained. The integrals 10 and I1 are given in Apen-

dix B.



'APPENDIX F

CURVE FITTING WITH GAUSSIAN-TYPE FUNCTIONS

1. THE WOODS-SAXON FORM FACTOR (70)

The Woods-Saxonpotential) V(r) = V(1+e(r-R/a) -1, can be fit

as a one-parameter form factor,

V(r) /V 0 = f(r) = (l+eY) -1, (F.1)

with y = r/a, Y = R/a.

The approximation can be .stated.'with an exponential,

= e-2gay . (F.2)

This agrees with (F.l) at r = 0 neglecting, as will be done through-

out, the small quantity e- in comparison to unity. The constant g

may be determined. by arbitrarily equating f and. fA at their 10% points.

For f this is found. to be at y = Y+2.2, which determines g. The re-

sult is,

fA = exp [-2.146y2 /(Y+2.2) 2 ]. (F.3)

A plot of the first residual, f-fA, as a function of y/Y for sev-

eral Y-values shows that its principal maximum is at y/Y 0.76, with

a half-width which is roughly, A(y/Y) .64. If this is to be fitted.

with xnexp(_gx2), using x = hy/Y, then the peak will be located. cor-

rectly if hi = 1.316, h2 = 1.861, h3 = 2.279, h4 = 2.632, etc., the

subscriptbeing n. The half-widths of these approximating functions are,

109
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when divided by the corresponding hn, A(y/Y) = 1.22, .88, .72, .63, etc.

This singles out n = 4.
Finally, if the peak height of f-fA is plotted against Y it turns

out roughly linear. This gives the final form,

f-fA = (1.43Y-2. 48) (r/R) 4 exp[--(2.632r/R)2 ]. (F.h)

This two-term approximation to f is illustrated in Fig. F-1 for R = 2.8,

a = 0.5.

0 I 2 3 4 5
0

.6 -

.8 -

1.0'

Fig. F-l. Solid curve: Woods-Saxon form factor, R =
2.8, a = 0.5. Dashed curve: Eg. (F-I), exp
(-.14lr 2 ) +. 09r exp(- . 444r 2 ) .
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2. ALTERNATIVE FORMS FOR THE CUTOFF FUNCTION

(a) If the function f of (3.3) is squared, cubed, etc.., it ex-

hibits a sharper rate of decrease, and the new integrals which arise

are identical in form to the ones already evaluated. There are merely

more terms in the final amplitude, since

( -be-2r2)m = (m)(-b)ke- k 2 r2.

k=o

(b) If a more rapidly decreasing function g is compared graph-

ically with f of (3.3), the difference is seen to be concentrated. prin-

cipally in two single peak functions.

f

This leads to an expression of the form,

g = f + Arme-ax2r2 - Brne--S2r

The integrals are all obtainable by parametric differentiation from

the ones already evaluated, but are rather lengthy to write down.

(c) A fairly simple device is to take b greater than one in (33)

The unphysical region of negative f in the center of the nucleus must

contribute negligibly to the value of the integral.
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3. THE DEUTERON WAVE FUNCTION

The single Gaussian form for the internal deuteron wave function

preceding eq. (4.5), can be improved by using two or more Gaussians.

The following figure compares the Hulthe'n function with a two-term

1
approximation chosen by eye. Using the notation e(r) =(4t)~2u(r)/r,

the Hulthe'n function is

uH(r) = [2ab(b+a) /(b-a) 2 ]2 (e-ar-e-br), (F.7)

while the "double Gaussian" is

u(r) = .33rR 1o(.83,r)+.78rR 10 (.32,r) . (F.8)

In eq. (F.7), a = .2317, b 7a, while Rio in (F.8) is the oscillator

function of Appendix D.

.8

.6
u(r)

.4 -
Hulth6n

.2

0
0 I 2 3 4. 5 6 7 8

r(fermis)

A two-term Gaussian approximation to the
Hult hen wave function.

Fig. F-2.



APPENDIX G

EVALUATION OF THE STRIPPING AMPLITUDES AND THE

SQUARE WELL BOUND STATE PROBLEM

1. THE BASIC STRIPPING AMPLITUDES

The result of integrating over the region rn > a in eq. (3.21), as

in the original Butler theory, is apart from constants, the "outside"

amplitude,

Og(x,y) = [G2(y)jf(x) + xj 2 ... i(x) ]/(x2+y2) , (G.l)

where

(1) (1)
G1 (y) 3-iy hg. i( iy') /hI )( iy) = y hi-_ 1(y) /h

2
(y) . ( G.2)

The quantities x and. y define a square well bound state eigenvalue

problem. If y is held constant, then the numerator of (G.l) is an

oscillatory function of x, similar to a slowly damped. sine curve. (The

£=0 curve is an exception, and. goes to a positive value at x=0.) Denot-

ing a node position by xo and. y, it is seen that

xoJ- 1(xo)/j3(xo) = -y h2 . 1 (y)/h(y), (G.3)

which is just the condition satisfied. by the insid.e and outsid.e wave

numbers of a square well bound. state of orbital angular momentum 1.
The notation is defined. in Fig. G-1. The first nod.e (not counting x=O)

defines the lowest .- state, to which the radial quantum number n=l may

be attached., For a given node, n, and. given 2-value, the node position
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x = X0 is a function of y and. can be plotted. as a single curve. This

is done in Fig. G-2, the square x2 being more convenient.

The simplest way to compute the outside amplitude (G.1) is not

from its definition but fron the stripping tables (1)4).

e

E

E=O ro---_-______ r--.

B =t 1/2m

E=-B ---- - - - - ---- - -

V=f2 (k2+y2) /2m

T =i2 y2/2m

Fig. G-l. Notation for the square well bound state
problem. The kinetic, binding, and poten-
tial energies are T, B, and -V, respective-
ly. The wave numbers y and K are positive
as are xo=ya and y=Ka. The reduced.mass is m.

Og (x,y) = +[l+0.00 8 (x 2 +y2 ) ] Vcro (x,y) ( G.4)

The correct sign in (G.h) can be easily determined, since (G.l) start s

out with a positive loop at small x-values and therefore the positive
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root in (G.A) is required in this region of x. A sign change in (Gel)

occurs as every node, and. since these are reflected. as minima in o ,

it is only necessary to scan this function briefly to determine when

the negative sign should begin to occur in (G.4).

The region rn < a in (3 21) lead.s to the "inside "amplitud.e,

I(x,y) = (x2+y2) O (x,y)/(xg-x2), (G.5)

while the complete integration rn > 0 gives the Born amplitude,

B2 (x,y) = (x2+y 2 ) O (x,y)/(xg-x 2 ) (G.6)

= I(x,y) + 0(x,y). (G..7)

The quantity x0 is required. in ord.er to compute these functions,

and since y is known, it is easily found.. The spectroscopic designa-

tion (ni) is determined by the shell model description of the state

in question, the procedure for finding x0 being given in Section 2-(a)

of this append.ix,

In determining the effective wave number 7np(and. its variants) in

(3.26), the method of approximation (Appendix C) is such that n is the

same for j 2 (7rn) and j(7nprn) . Therefore the wave number Knp in (35.3)

can be found. from n, b, 7np, and. a, as d.escribed. in Section 2-(b) .

The singular point in I2 and. B2 at x=x0 is only apparent, since the

nunrerator vanishes there to the same order and. the ratio is finite.



2. SOLVING THE SQUARE WELL EIGENVALUE PROBLEM

If it is assumed that the spectroscopic designation of the state

(n,t) is known, then there are several forms which the eigenvalue prob-

len can take, depending on which parameters are given, The forms of

interest in the present context are the following.:

(a). Given the radius a and. the binding energy B, find the inside wave

number 7.

Method.: Compute y=Ka = (2mBa2 /1 2 )2 and. enter Fig. G-2 at the

bottom, Read. up to the (n,1) curve and find x2 at the left, remember-

ing to correct the ordinate scale as described in the caption. Then

the inside wave number is 7=xo/a while the well depth is V= (x|+y2)

2ma

(b). Given the radius a and. the inside wave number 7, find. the outside

wave number.

Method.: Compute xo = ya 2 and. enter Fig. G-2 at the left, reading

out y at the bottom. Then K = y/a.

There are other variations of the eigenvalue problem which can be

solved in a similar manner. For example, given the radius a and. the

depth V, find the binding energy B. Or, given the depth V and the bind-

ing energy B, find. the radius a. For these problems it is more conven-

ient to plot two other quant it ies as f'unct ions of' y, namely (xf y2 ) and

y/xo. Then the f'ormer problem is solved by entering the curve of'

(x +y#) versus y with x +y2 = 2mVa2/dia .and reading out y = Ka. The
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1

latter is solved. by entering the y/x 0 curve with y/x 0 = [B/(V-B) ]2 and.

reading out y. The trick here is that y/x 0 = K/-y is independent of the

rad.ius a and. can be computed. without its knowledge. The same device

allows a straight forward. determination of the correct radius to use in

the Butler formula (Ref. (1l+), p. 125), eliminating in most cases the

need. for trial and. error.

The functions x2+y2 and. y/x 0 for the first four s,p, .d., f, g, and

h states are available from the author on request.
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9

8

x4 for square welI eigenfunctions.

x 0f+y" l=2mVa'/A'

(The number in parenthesis following
the spectroscopic designation of
each curve is to be added to the
ordinate scale.)

1P (9)

6
1 D (2o)

x fFt(33)
K0

5

4

3 -

2-

0 I 2 3 4 5 6
y

Fig. G-2. Plot of the quantity x 0 = 2mVa2/fi2-K Saa as a function
of y = Ica for various square well bound states.
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