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ABSTRACT

The differential cross section for the deuteron stripping reaction to a
particular state in the residual nucleus (target,plus captured neutron) is
evaluated subject to the following approximationss:

1, The interaction between the outgoing proton and the residual nucleus
is divided into a central, non-spin-dependent potential Vhp between the pro-
ton and the neutron in the incident deuteron, plus an optical potential V
between the proton and the target nucleus. Both potentials are treated as
source terms in the transition matrix element.

2. The exact wave function is approximated by a modified plane (ine
cident) wave, The modification consists of phenomenological cutoff functions
which decrease the amplitude of the wave when either the neutron or the pro-
ton approaches the nucleus, This attenuation represents absorption in the
sense of the optical model.

Compared to the Butler theory, the present work involves three prin-
cipal differences:

1., If the Butler cutoff is regarded as absorption of the incident wave
then additional proton-induced absorption has been added.

2. The radius at which the incident wave falls to half its asymptotic
intensity (the cutoff radius) is regarded as an adjusteble parameter, essen-
tially independent of the nuclear radius.

3. The interaction between the proton and the target nucleus 1s taken
into account. Because it is treated as a source term in the matrix element,
and scattering or refraction of the incident wave is neglected, the complexity
of the distorted wave treatment is avoided.

As a result of the above three points, certain features of the stripping
reaction seem more physically reasonable than hitherto:

1. By allowing the cutoff radius to vary with energy, the angular dis-
tribution can in principle be fitted with an energy-independent nuclear radius
and reduced width. (On the other hand, when the Butler radius is chosen to
fit a particular stripping peak at different energies, its value generally
varies, so that it is effectively energy-dependent, and causes a similar en-
ergy-dependence of the reduced width.)

vii



2. By divorcing the nuclear radius from the larger cutoff radii, the
former's value is reduced from that required by the Butler theory. A sec-
ond factor tending in the same direction is the removal of the inner proten
region by the additional cutoff. In the Butler theory, this region pushes
the stripping peask to large angles, and bringing it forward requires a fic-
titious enhancement of the neutron cutoff radius.

3. The proton cutoff reduces the single-particle cross section by an
order-of-magnitude, with a corresponding increase of the reduced width rela-
tive to the Butler theory value, Because the modified matrix element is
roughly proportional to Butler's, the reduced width ratios are not drastically
affected.

4, Quantitatively reasonable results are obtained by including as a
source term an optical potential interaction between the target nucleus and
the stripped proton, A similar procedure in the Butler theory leads to in-
correct results, because the proton "overlaps" too strongly with this poten-
tial, The imaginary part of the potential produces qualitatively new results,
eliminating the nodes in the Butler angular distribution, and causing a
polarization of the outgoing proton. Of special interest is the prediction
of a correlation between the capture j-value and the sign of the polarization,
the latter being in agreement with experiment. 4

The same formalism is applied to the deuteron elastic scattering reaction;
~and it is shown how a (d,,d.) analysis can in principle determine the cutoff radii,
so that the (d,p) paraméeters are essentially specified in advance. The prac-
tical application of this procedure is however hampered by a lack of uniqueness
in the shapes of the cutoff functions and in the sbsorptive potential represent-
ing deuteron dissoeciation. [The proton-nucleus potentiel, itself not unique,
is supposed for simplicity to be determined by the (p,p) reaction].

viii



CHAPTER T

INTRODUCTION

A, SUMMARY AND RESULTS OF THE FPRESENT WORK

From the standpoint of nuclear spectroscopy, deuteron stripping
theories fall roughly into two classes: plene wave theories and distort-
ed wave theories. The fofmer, in particuler the theories of Butler Cl)
and Bhatia, gg‘gi.,(2), have éerved as the basis for the analysis of a
great number of nuclear levels, although they possess some puzzling fea-
tures. Generalizations of the plane wave theories hawve inveriably been
in the direction of adding scattered or distorted waves to the ingoing
and outgoing plaﬁe waves, a technique which greatly complicates the
formalism (3).

In the present work an approach is adopted which retains the
essential simplicity of the plane wave theories, while minimizing cer-
tain of their difficulties. Following & suggestion by Francis and
Watson (4), the neutron cutoff in the Butler theory, as formulated by
Degitch and French (5), is regarded as an absorption of the incident
weve. From this, two consequences are then drawn:

l. Absorption must be indqced also by the approach of the proton
to the nucleus, i.e., a proton cutoff must occur.

2. Tt is not correct to identify the nuclear radius (an energy-



independent size parsmeter) with the cutoff radius. The latter meas-
ures the extent of penetration of the incident wave into the nucleus
and can reasonably be expected to decrease as the incident energy in-
creases.

Both of these points can be readily included in a plane wave
thebry, distortion and scattering of the incident and outgoing waves
not being essential to their description. Accordingly, in the pre-
sent work the differential ecross section for stripping to & particular
final state is evaluated subject to the following epproximations:

1. The interaction between the outgoing proton and the residual
nucleus is divided into & centrel, non-spin-dependent potential Vhp
between the proton end the neutron in the incident deuteron, plus an
optical potential pr betweén the proton and the target nucleus. Both
potentials are treated as source terms in the transition metrix element.
Compound nucleus processes (6), exchange reactions (7), and heavy par-
ticle stripping (8) are neglected.

2. The exact wave function is epproximated by a modified plane
(incident) wave., The modification consists of phehomenological cutof'f
functions which decrease the amplitude of the wave when either the
neutron qr the proton aepproaches the nucleus. This attenuation repre-
sents absorption in the sense of the optical model, due to excitation
of the target nucleus, and in the present case, also dissociation of

the incident deuterons.



Compared to the Butler theory (1,5), the present work involves
three principal differences:

1., If the Butler cutoff is regarded as absorption of the incident
wave when the neutron reaches the nuclear surface (4), then additional
proton-induced esbsorption has been added.

2. The radius at which the incident wave falls to helf its as-
ymptotic intensity (the cutoff radius) is regarded as an adjustable
parameter, essentially independent of the nuclear radius.

3. The interaction between the proton and the target nucleus is
taken into account. Becaﬁse it is treated as a source term in the
matrix element, and scattering and distortion of the incident wave is
neglected, the complexity of the distorted wave treatment (3) is avoided.

As ‘a result of the above three points, certain features of the
stripping reaction seem more physically reasonable than hitherto:

1. By allowing the cutoff redius to vary with energy, the angular
distribution can in principle be fitted'with an energy-independent nu-
clear radiué and reduced width. (On the other hand, when the Butler
radius is Ehosen to fit a particular stripping peak at different en-
ergies, its value generally varies, so that it is effectively energy-
dependent; and causes & similar energy-dependence of the reduced width.)

2. The peculiarly large size of the Butler radius i1s in part ex-
plained by its hybrid naiure—-a cross between a true nuclear radius and
an absorption or cutoff radius, the latter being quite large at low en-

ergies (2 10 Mev). As a corollary, it follows that the Butler radius



"is not intrinsically large, but will tend to a smell value at high en-
‘ergy.

A second factor tending to fictitiously enlarge the Butler radius
is the tendency of stripping from smell radial distances, r, or Tps to
pesk at large angles and vice-versa. By removing the interior proton
region, the present theory moves the peak forward so that this effect
need not be accomplished, as in the Butler theory, by a fictitous en-
largement of the neutron cutoff radius.

3. Elimination of the interior proton region reduces the low-
energy single-particle cross section fy roughly a factor of ten. (This
refers to the neutron-proton interaction term which occurs in the Butler
theory.) As a result, the neutron reduced widths fall in the interme-
diate coupling theory range instead of having the puzzlingly smell val-
ues predicted by the Butler theory (9,10). Since the size of the cross
section is roughiy proportional to the square of the volume of config-
uration space over which the transition amplitude is non-negligible,
and the same region is removed in the matrix elements leading to dif-
ferent levels in the same nucleus, the reduced width ratios will not be
drastically affected. In principle, however, their presumably incorrect
energy-dependence is eliminated.

4, Elimination of the interior proton region permits a simple
evaluation of the transition emplitude resulting from the interaction
of the proton with the target nucleus. If this interaction is approx-

imated by an optical potential (assumed the same as that operé.tive in



(p,p) reactions), and inserted into the Butler matrix element as a
source term, it results in an amplitude larger than the n-p inter-
action term (11). This is paradoxical in view of the fact that it is
neglected as small in‘the Butler theory. The proton cutoff, which pro-
duces the afore-mentiongd order-of-magnitude reduction in the n-p inter-
action term, reduces the optical potential terms even more drastically
so that they become more nearly "correction terms" to the main n-p
interaction. This unequal reduction in size results from the relatively
good overlap between the excised region at small Tp and the proton op-
tical potential, as compared to this region's overlep with the n-p poten-
tial, the latter being strongest along the "diagonal" region ﬁn ~ ﬁp.

This possibility, of evaluating the nuclear contribution as a
source term, rather than in the guise of a distorted outgoing wave,
mekes the present formulation much simpler than the distorted wave treat-
ment.

The result of including & real nuclear potential and a Coulomb
repulsion, which interfere with the real n-p potential, is meinly to
change the height of the stripping peak. The extent of this effect is
sensitive to the amount of cancellation between the attractive nuclear
and repulsive Coulomb potentials. With present-day diffuse wells, this
cancellation tends to be rather complete, the usual Coulomb barrier es-
timate, Z/Aé Mev, being a considerable overestimate for light nuclei.

On the other hand, the imaginary (absorptive) component of the op-

tical potential produces qualitatively new results. Being incoherent



with the real amplitudes, it provides a "background" to the angular
distribution and eliminates the nodes which are characteristic of the
Butler theory. More importantly, it provides a non-zero polarization
of the emitted protons. A result of special interest is the fact that
for (=1 capture, a correlation 1s predicted between the value of j=[%*
é, and the sign of the polarization. Such a correlation is suggested
by the experimental data (12) but has not been successfully explained
by the distorted wave theories., The cases of capture with [ greater
than one are a little more complicated and the question of & correla~
tion must aweit further numerical work with the present theory. (The
semi-classical arguments (15) which originally predicted such a cor-
relation make no distinction between different f-velues, but it 1s not

certain that they can be trusted in this respect.).

B. PARAMETER DETERMINATION IN THE PRESENT THEORY

" If the view is taken that the n-p interaction and the proton optical
potential are known quantities, then the unknown parameters in the (d,p)
reaction are the cutoff radii and the nuclear radius. However, it can
be shown (Chapter 5) that precisely the same formalism must apply to the
deuteron elastic scattering reaction, in which only the cutoff parameters
are unknown. The (d,d) reaction therefore in principle determines these
parameters, leaving only the nucleér radius adjusteble in the (d,p) re-
action. Indeed, since the nuclear radius is energy-independent, its
determination at any energy reduces the (d,p) anelysis at any other en-

ergy (where (d,d) results are available) to a completely predictive



procedure (within the framework of the present method).

The principal difficulty in realizing this program is the unique-
ness question. Just as inphase—shiff enalyses of nucleon-nucleus scat-
tering the optical potentials are not uniquely defined, so in the pre-
sent case it is not possible to completely fix the shape of the cutoff
functions (for a set of assumed potentials). In addition, the absorp-
tive potential which represents the effects of deuteron dissociation is
unknown. One might hope that the deuteron-induced reactions will even-
tually provide another set of conditions to be met by the optical poten-
tials, but the theoretical and experimentgl accuracy will need improve-

ment for this goal to be realized.

C. PHYSICAL INTERPRETATION OF DEUTERON- INDUCED DIRECT REACTIONS

The fact that introducing the physically reasonsble proton absorp-
tion, and recoghizing the distinction between the nuclear radius and the
cutoff radius remedies many of the previous difficulties with plane wave
theories leads to the followiﬁg picture of deuteron-induced direct re-
actions:

Because of specifically nuclear sbsorption (target nucleus excita-
tion) and deuteron dissociation (projectile excitation), the projection
of the total wave function onto the product of the target and deuteron
ground states (the elastic component of the total wave function) ex-
hibits very strong absorption. The success of the plane wave approx-

imation however, suggests'that this absorption can occur without entirely



distorting the incident wave. The simplest explanation of this is
that a strong interaction, which would distort the wave function of

a tightly bound particle, succeeds mainly in breaking up the easily
dissociated deuteron, so that the distortion is transmuted into an
apparent absorption. Plane wave theories, which can give a reasonable
account of ebsorption while completely ignoring distortion and scat-
tering, cen therefore succeed despite the fact that perturbation theory
is not applicable.

Essential to this ipterpretation is the assumption that, once the
target nucleus has been excited (4) or the deuteron dissociated, the
(d,d) and (d,p) reactions will be strongly inhibited, and this is very
reasonable.

It is probable that the inner regions which are "cut off" in the
present formulation contribute primerily a large-angle component to the
(d,d) and (d,p) reactions. The plane wave theories handle accurately
only those events involving deuterons moving directly forward. The
elastically scattered deuterons, which are largely moving in other direc-
tions, will provide back-angle scattering and stripping, and this is
the principal improvement obtainable by including (as in distorted wave
theories) elastically scattered deuterons in the spproximetion to the
‘exact wave function. An importent point however, is that a plane wave
theory, even though valid only at forward angles, is adequate for the

purposes of nuclear spectroscopy.



D, TECHNIQUE OF EVALUATING THE TRANSITION AMPLITUDES

Concerning the actual evaluation of the transition metrix elements,
the handling of the n-p interaction term is not very different from the
method'employed by Daitch and French (5). 1In fact, by a suitable approx-
imation, (3.26) and (3.27) , the results can be evaluated with the help
of the tabulated Butler cross section (14), avoiding the explicit hand-
ling of spherical Bessel functions,

The proton optical potentialvterms are more difficult, but rel-
atively simple closed formulas are still obtained. The essential point
in splitting the original six-dimensionel integral (in ﬁn and ﬁp) is
the observation that the proton coordinate is a relative coordinate
with respect to the neutron coordinate and the n-p separation, i.e.,
_§p=§nf§npo If the dependence of the integrand on ﬁn and ﬁmpis expressad
('aé is possible)‘ in terms of harmonic oscillator eigenfunctions, then
a "center-of-mass" transformation in ﬁn and ﬁnp succeeds in splitting
the integral into simple three-dimensional ones. Since the oscillator
frequencies are unequal, this requires a generalization of the trans-
formation originally.employed by Telmi (15) in e different context.
HbWEver,.as in Telmi's epplication, the result is a short sum of terms
rather than the infinite series which results from expanding the proton

potential or the deuteron wave function (16).



CHAPTER IT
DISCUSSION
The purpose of thiS»chapter is to discuss qualitatively certain
points concerning the interpretetion of plane wave theories. The el-
ement which thesé topiecs have in common is the localization of the

stripping process in the surface region of the nucleus.

A, TRANSITION MATRIX ELEMENTS FOR THE PLANE WAVE THEORIES (1,2,5)

The (d,p) cross séctions predicted by these theories are derivable
from matrix elements exhibiting a close similarity. in structure. Neg-
lecting the proton-target interaction, they are:

(8) Butler (1):
| Msu = <E;)£MIVM?I¢M H(‘C«-rsu)> (2.1)

(b) Bhatia, et &l.(2):

My = CKp; o )lecbq S(tn-1ay) ) (222

(¢) Born epproximation (5):

Mao :< rgP)‘@’W\l VWP I de > (2.3)
The various symbols are:

- 8(x)

Dirac delta function.

(%)

Heaviside step function.

10



an outgoing proton plane wave.

x>

| £,m>

the component of the ceptured neutron's wave function

with angular momentum £, z-projection m,

Vﬁp = +the neutron-proton interaction.
|¢4> = an incident plane wave of deuterons.

These expressions differ in appearance from the forms originally
given. The equivalence of (2.1) to Butler's method has been shown in
(4,5,17) among others., - The use in (2,5) of the neutron-target inter-
action Vi, involves the post-prior ambiguity or equivalence (18, p.233).
In Born approximation the (prior) deuteron-target interactioﬁ an+V£p

is equivalent to the (post) proton-residual nucleus interaction Vhp +

Vi Since pr is neglected, Vin end V. are interchangeable in Born

1 np
approximation.

The distinguishing feature of these matrix elements is the real
function which modulates the incident plane wave, H, &, and 1 (one),
respectively. Since in these integrals regions of small r, or rp con-
tribute most heevily to stripping at large angles (and vice-versa), it
is a simple matter to understand certein regularities in their behavior.
B. LOCALIZATION OF THE STRIPPING PROCESS IN THE PLANE WAVE THEORIES

AND ITS INFLUENCE ON STRIPPING RADII AND REDUCED WIDTHS
In the Butler matrix element (2.1) the reaction is confined to rn

>’rBu and the proton integration is unrestricted. For given Toy? the

peak in the angular distribution occurs at some angleQBu with a height



' op, thet implies a reduced width eguo (Throughout this section o will
mean the intrinsic or single-particle cross section which must be mul-
tiplied by the reduced width to give the actual cross section.)

In the Bhatia, et al.,version (2.2), the proton integration is still
unfestrictéd but the n;utron integrabion is confined to the surface r,=
rgye The intérior is therefore eliminated as in (2.1) but the exterior
is also. If rgp=rg,, this means a relative weakening of the large Ty
contribﬁtions and a reduction in the small-angle stripping. As a re-
sult the peak angle is Stfegh>£%u. It can be brought into coihcidence
witthBu by teking rBh>rBu°

In the Born approximation (2.3) there are no restrictions at all.
However, the largersize of the neutron wave function inside the nuclear
radius oo then outside Wweights the integrand to small r, compared with
(2.2). This throws the pesk out so that if Tpo=Tpns Bo>!9])3h. To bring
them into coincidence requires rp > rpy. Relative to the Butler theory,
there is a contribution to the peak height from r, <rp which increeses
Ogo OVer op, With the result that_9§o< qu. This explains the regular-

ities (assuming peak locations and heights equalized):

’/)BO > '/éH > ’/BU (2.4

2 ‘
%0 < Do (2.5)

Since Toy is larger than conventional radii at low energy while

2 is too small, the necessary modification is clear. To increase 9=
©Bu
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above qu (i.e., reduce op,) the integration in (2.1) must be fufther
restricted. If at the same time rp, is to be reduced, the interior
(small r, or rp) contribution must be reduced more than the exterior
(large r, or rp) one, Interpreting the Bﬁtler cutoff as absorption due
to neutron-induced excitation of the target nucleus implies the neces-
sity for & proton cutoff at small Tp and this is precisely what is
needed.

This "optical" interpretation of the Butler cutoff seems first to
have been suggested by Francis and Watson (4), their equation (20).

The ebsorption is the same as thet encountered in optical model analyses
of elastic nucleon scattering where only the projection of the total
wave function on the target ground state is considered. Target excita-
tion then appears as absorption of this incomplete wave function by the
opticél’pétential. For deuteron scattering the projection is onto the
target ground state and the deuteron ground state. In addition to tar-
get excitation there occurs deuteron dissocietion, so that the deuteron
ebsorptive potential will not.be merely the sum of the nucleon optical
potentials.

Inaeed, this "extra'" absorption representing deuteron breekup would
appear tp play .a role Lnﬁnderstanding'the accuracy of the plane wave
stripping theories. Compared to elastic nucleon.scattering, the deu~
teron scattering results (Chapter 5, Section E), exhibit considerably
more sbsorption and a better fit to experiment. These effects are con-

sistent with the view that the interactions which distort the incident



1L

nucleon wave function and spoil the agreement with the plane wave theory,
will to a large extent merely dissociate the deuteron and therefore
appear, not as distortion but as absorption, which can be handled rather
simply. It is necessary that the broken up deuterons not contribute
eppreciably to either the (d,d) or (d,p) reactions and this is quite

plausible (L4).

C. A W.K.B.-TYPE OF APPROXIMATION

Although the present work employs only phenomenological cutoff
functions which are spherically symmetric in r, end Tps it is illuminat-
ing to consider the form which these functions might teke in a more
exact theory. The following epproximete treatment exhibits a number of
interesting features which are duplicated by the cutoff functions of

the present work (independent, real cutoffs in r, and r_, approximately

n by

related to the nucleon scattering results at half the deuteron energy).

The main feature not duplicated is the shadow region behind the nucleus.
As the previous discussion has indiceated, the plane wave theories

are characterized by the following approximetion to the exact wave

function,
g‘/ ~ F o (2.6)

where ( is the incident wave, and f is a real funetion. A similar
approximetion is well-known for the nucleon scattering case (19), name-

1y,

. ' z
sz&Ezexpg-t—‘; / l/[)(,y,‘z/)a‘z/f (2.7)
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While this expression is derivable as an approximate solution to
the Schr&dinger equation, a closely related one can be obtained as an

exact solution to the continuity equation:
Z 2
V-J'=v;:-(//0 (2.8)

Thié equation, where J is the current and p the probgbility density,
involves only the imaginary part of the potential, U. In.a sense,
theréfore, the real potential is neglected in (2.8) while the absorp-
tion is teken into account, and this is similar to the viewpoint of the
plane wave theories. Tt is not difficult to show that (2.6) defines

an exact, unique solution to (2.8), nemely

Y= 64%?,%0 Zfﬁ/_“ fj(/(r, 7,2/)5/‘2/]7 (2.9)

In (2.9), the envelope function is real, as desired.
In & similar menner, the Schrddinger equation describing the inter-
action of a neutron and proton with a complex potential well and each

other,
(rm+|/w+l'(/w+TP+VF+1/C+L‘U/,7‘VMP —E)QD:O (2.10)
léads to the continnity equation,

> 2
7, J, = %—(UM+UP)j0 (2.11)

In this equation p is y*y; Vg is the six-dimensional gradient operator,

>
Vy + V. ; and Jg is the current (¥i/m) Imy*Vgy. If the relative and

p’
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center-of-mass coordinates are denoted by;ﬁnpsﬁnfﬁp and §d=§(§n+§p),

" For the cutoff plane wave we take
g? p-?
- = tl oy
Sb= 75(!?,,,, f?p)% € | (2.12)

where Vnp is the deuteron ground state. Using this expression to eval-

uate 36 and p.in (2.11) leads to

where s = 1n f2 and my = 2m is the deuteron mass. The solution to this

equetion is

7#0;(/ [UM/ Zd)f-(//b( Zd)Jdid (2.1k)

uniqueness being obteined by the boundary condition £ + 1 as 2 + - oo,

The term involving Un(Rn = n( Rg + ARnP) is explicitly

A , / /
#Uafooum(%/""irm/’;) ?d‘f“ztymplzd'f‘zl_z—fw)dzd (2.15)

A chenge of variable to zj = z§ + éznp (and the corresponding transla-

tion in the proton integral) yields

Z“#féfw I(W 2, )”2/%&(/’ b (% 25 (219

The absorption induced by each nucleon contributes additively to

the logerithm in (2.16), so that f is a product of independent nucleon
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 cutoffs. These will be formally identical te (2.9)if the nucleon veloc-
ity in the latter equation is taken equal to the deuteron velocity vgq =
Fkg/my in (2.16). This suggests that the optical potentials in (2,16)
should be taken as those for nucleon scattering at half the deuteron en-
ergy. The physical meaning of this choice is that under deuteron bom-
bardment the nuclear excitstion is the same as thet due to two independ-
ent nucleons each with helf the deuteron energy. The weak binding of
the deuteron mekes this not unreasonable, at least at deuteron energies
well above the deuteron binding energy.

On the other hand, the seame weak binding complicates the situastion
as follows. The potentials U, and Ub determined from elastic nucleon
scattering are a measure of the absorption due to two processes, nuclear
excitation and spin-flip of the incident nucleon. (At much higher en-
ergies, meson processes would also enter.) However, when the projectile
is & deuteron, thé.entirely new process of deuteron dissociation also
contributes to the absorption. This means that the nucleon scattering
sbsorptive potentials must be augmented by additional terms to account

for this new effect.

D. SCATTERING OF LARGER AGGREGATES

The formal procedure of the preceding paragraphs can be applied
to the scattering of an aggregate of A nucleons, an essential point
being that the internal wave function cancels from the flux equation.

The analog of (2+16) is:
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A 0%
At e = /D %(ngj%/)dgd,’ (2.17)

/

hu, Jm -
where v, is the center-of-mass velocity and Uj is the absorptive poten-
tial felt by the jth nucleon. The remarks of the preceding section con-
cerning the difference between the absorptive potentials of (2.9) and
those of (2.16) apply with equal force here. (As an example of a tight-
ly bound particle for which projectile excitation might be negligible,
one thinks immediately of the a-particle.) The content of (2.17) is
expressible in terms of absorption coefficients in hypothetical uniform-
ly absorbing nuclear matter. If the intensity of a beam of A-nucleon

aggregates is
- K42 (2.18)
;Zk - :ZAO € A

(with corresponding equations for nucleon beams), then

A
KA = 27' K (2'19)
J=1

Y A Kwvereonw

For an alpha particle this predicts an absorption four times the nucleon
velue (20), suggestive of the "black nucleus" model (21) which has had

some success in the interpretation of elastic alpha scattering.

E. RESONANCES IN STRIPPING REACTIONS
The present theory, like all direct reaction theories, does not
apply to compound nucleus processes., However, according to the res-

onance theory of nuclear reactions, increased penetration of the in-
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cident wave occurs on resonance and it is possible that this cah cause

an enhancement of the direct p?ocess. . Insofar 4s the localizsation
argument applies to a single partial wave (the usual resonant situation),'
the increased penetration should result in a shift of the stripping peak
to ‘larger angles on resonance. According to the Butler theory, this
would reflect as a decrease in the Butler radius. An:-example of this

type of behavior eppears to occur in reference (22).

F. EFFECT OF THE ZEROG-RANGE APPROXIMATION

In a theory without proton-absorption (1,2,5), the zero-range
appfoximatien, Vﬁpcz 8(§n - ﬁp), will be quite accurate. The contribu-
tion to the stripping reaction arises in a sphere surrounding the neu-
tron, with a radius equal to the n-p force range. If the proton den-
sity over that sphere is uniform, then the zero-range epproximation,
which replaces the density by its value &t the center of the sphere,
will be correct. In disborted-wave theories, or the present type, the
proton density:decreases Inwardly over that sphere, so the delte-
function produces an.(incorrect) enhancement of the small-rp stripping.

This in turn wili lead to an overly large nuclear radius.



CHAPTER ITT

DEUTERON STRIFPPING: THE PROTON-NEUTRON INTERACTION AMPLITUDE

A, SUMMARY

In this and the following chapter the cutoff Born approximation
will be applied to the deuteron stripping reaction, using (d,p)
nomenclature throughtout. For (d,n) reactions the Coulomb part of
the §roton—target opticel interaction is omitted and if necessary, the
correction described in Ref. 23, Chepter 5, Section 2,is made.

Starting from the exact transition metrix element (3.1), the use
of an optical potential as an approximation to the proton-target inter-
action end the particular form of the cutoff Born approximetion (3,2)
permits a relatively simple evaluation of all integrals. By a suitable
choice of epproximations, (3.26) and (3.27), the Vyp-emplitude can be
expressed in terms of the tebulated Butler cross section (1k).

Spin-dependent forces are neglected for the reason thet they do
nof play an essential role in the (d,p) problem. In the Vpp-emplitude
they result in the appearance of the D-state part of the deuteron wave
function in an unimportant menner (24, 25), In the Vip-emplitude they
have & small effect on the polarization in the vieinity of the stripping
peak, but serve mainly to provide polarizations greater than 1/3 at

larger angles. (With spin-independent forces the maximum polarization

20
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is 1/3 (26)). Since observed polarizations appear to be less than 1/3
on the stripping peek, spin-dependent forces are not required for their
explanation. The present work is not concerned with the large-angle
stripping (Chapter 1, Section C).

"A partial reduction of the matrix element is carried out in Sec-
tion B, while Section C gives some details of the remaining evaluation.
The resulﬁs for the Vhp-amplitude are sumarized in Section D, while
Section E is intended as a guide to the use of the formulas. The re-
sults for the proton-target interaction.amplitudes are given in Chapter

4, together with the polarization formulas.

B. THE (d,p) STRIPPING CROSS SECTION

In this section the transition matrix element will be expressed
in terms of an integral over spatial functions, (3.6). This is accom-
plished b& introducing an appropriate angular momentum coupling scheme
and integrating out the spin coordinates. The procedure is standard
and is only sketched here. For details see Refs. (23, 27, 28).

‘The exact matrix element may be written in the form:

—L/\/ E =7
A:L::L (,(P/ = ‘f@ P'F P) Hp (t/ 'z?”‘) o"")

A
g e - b (301)
x [W EI Vz,,] Pt k. a, &, a)dtdk.ds, ak do,

Tn this equation the factors are, from left to right, the final proton
plane wave, ﬁff being its separation from the center-of-mass of the

final nucleus (target plus neutron); the proton spin function; the final
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nucleus wave function; the interection between the proton and all the
other nucleons; and the exact wave function., The integration is ex-
tended over the coordinates o: the neutron, the proton, and the target
nucleons "t," including all spins.

To simplify (3.1), the interaction between the proton and the tar-
get nucleons is replaced by an average potential Vﬁp, end the exact

weve function by a cutoff plane wave:

o KR () hon 5, 5)8, ) h. () ) (59

The factors here are the deuteron c.m. wave function, its internsl wave
function, the triplet spin function, the target ground state wave func-

tion, and two Gaussian-type cutoff functions,

z 2
£u(V~\)_= 1- bm €—~E/_(ZM Vo (3.38.)

'p (3.3b)

%% (/f) =

\
~
|
A\
£

|
N

Next the final nucleus wave function is expanded in the target
eigenfunctions, the coefficients depending on En and Op. Only-the term
corresponding to the target ground state survives the integration over
the target coordinetes and the coefficient (the neutron wave function)
can be expanded in a complete set of spin-angle functions for the neu-
tron. These are teken in a representation which diagonalizes the neu-
tron's total and orbital angular momenta,j and f. This is convenient

for expressing the polarization results (Chapter k).
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Carrying out the spin integrations yields:

e Z C/ o C DU S c

,W/'m i I S Mg - g

- where lem is the 'spa:tia.l integral:
b -l

"o e Baeer) ) (B gt V] (7 ) 5,4/24@
The quantum number m stands for mf+mp-mi-md and LAY (rn) is the neutron
redial wave function, i.e., the radial coefficient in the spin-angle
expansioﬁ»mentioned eabove. The large set of quantum numbers needed to
specify the target and final nucleus wave functions, implicit in the
symbols Jy and Jp (which have the restricted significence of anguler
momente in the Clebsch-Gordan coefficients), and which label sz(rn)’
have been suppressed. The Clebsch-Gordan coefficient Cﬁ%ﬁ expresses
the coupling of angular momente A and B to a resultant C. The relation
a+b=c permits suppressing any one magnetic quantum number, indicated
by & dot above,

The symbol A for the matrix element has been chosen to agree.witﬁ
Ref. (25). The integral XJ4™ above corresponds to Tobocman'SAJ;}?p

£3

Bzm. In the present work a slightly different definition is employed

(see eq. (3.25):
x e A o, g™ (5.6)

The differential cross section,
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. MWe Wy | &
Mpr Wiz /
i) e o e .
dP( /b) (2’7_52)4 3(272-+/) AL Y (3.7)
%%ma(

has the well-known form of.an incoherent sum:

T () = 2 T,(5) (5.8)
(%) = 2 U (%)
The cross section for neutron cepture to a state with definite j and £
is:

g+ JA
JK( )= Tl ﬁ‘ = i /—Z / (3.9)

rriht K L 2£+/ -~

The remaining sum can be performed once the amplitude X‘jilm is expressed
in terms of spherical harmonics, as in this and the following chepter.
Because of the particular form chosen for the cutoff functions (3.3) B

the total amplitude Xj fm contains four partial amplitudes:

; Y/ A /5 »
b RS CUTND S Ne SIS o (5.10

From the explicit evaluation of Xgém the others are obtained as follows:
Xﬂlm by setting 2 =0, ng‘m by setting Q, = 0, and the Born approxima-
tion amplitudé ngm by setting both equal to zero. The partial ampli-

tude Xgém itself contains two terms,

I Lo R -1 £e) * 4 o1
T e B e ) o
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the second of which will be treated in the next chepter.

C. DERIVATION OF THE V -AMPLITUDE

The usual procedure of eliminating the potential Vhp by means of
the Schrddinger equation for the deuteron ground state, (Tnp + Vhp +
2.226) Ynp = 0, 1s not used here because the presence of the proton
cutoff complicates the subsequent integretion by parts. It is also
possible to avoid the zero-range approximation which is somewhat inac-
curate in the presence of proton absorption (Chapter 2, Section F and

Ref. 29). 1Instead, the product V is epproximated as follows:

np\l'n'p
The Schr&dinger equation for the potential,
~ (tup/1:332)
V, =-864C Mev (3.13)
np
has been numericelly integrated (30) and the results for Wnp exhibited

as a sum of three geussian terms. However, the product Vhpvnp is ac-

curately given by one such term,

g %
Vo ¢ - e (C= 162 Mey/F J-/LZ: 19034 ) (3.14)

(i
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When (3.14) is introduced into the first term of (3.12), the re-

sulting integral can be split by the following transformation: Replace

R:p by the vector W Rp—(u /fnp Rn, with
L.t - (3.15)
f/n{_} /A, + ‘Q’b
Then the exponential terms transformas follows:
. 2 R Nz Z
v 0t PZ@‘ “470 heor 7L
(3.16)
(d /?d - /CP ,Qp,c = /?,A + /< W"‘?
The new constents and wave vectors are given by
2 42 2 2/ 2 (3.17)
— n ;5: —>
g /ﬁ) (3.18)
= Z 2\ 2 -
=(1- — 2 -
/pr ( ‘QP/Zf%p) ’gf //M/{W fm,,\/w/,c)/\?; (3.19)

> A
Carrying out the integration over de and the directions 4R, yields

Il -tk ¥ A Y4
X,W!; (lévp)=4n(zrr) ()7[ et }ZM(E?)GM\;(VW) (3.20)

It is now necessary to choose & form for the neutron redial wave

function in the remaining integral,

/dL 2
it
PR (3.21)

Gﬁ(%)‘fo u@(m}ﬂ@ (t.,r) €
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This will be teken as a square well wave function, with the dimension-

less reduced width 9?1 serving to normalize it,

iy () = (18°) 2 Qg Je(0) [Je(0n)  nea G2

(3/ﬁ3) % Oe fﬁ (KK’)/%@ (7(4/) My A (3.03)

The function h[(nrn) in (3.23) is defined in terms of the spher-

ical Hankel function (18, p.79),
()
Ly (x) = ~E Ay ix) (5.24)

For states of positive binding energy it is a real, positive function.
The reduced width @2 is defined in terms of the Wigner-Teichmann

reduced width (31) according to the usege in Ajzenberg and Lauritsen

(32), /
ZMt A o

Oy~ /‘37;" 7 (3.25)
The explicit use of an "inside" wave function (3.22) permits, as
the penetration parameters in (3.3) are varied, a continuous transi@ion
between the Born epproximation (complete transparency, QO and Qp > )
and a situation in which the capture is nearly all outside of the radius
a, similar to Butler's spproach. A steeper cutoff than (3.3) would be
desirablé in exploring this question. (ef. Appendix F, Section 2, and

remarks in Chepter 4, Section H.)
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The use of (3.22) and (3.23) splits (3.21) into an inner part (I‘n
< a) and an outer part (rp > a). The integrals cannot be performed as
they stand, so thet if numerical integration is to be avoided some

approximation is required. A convenient choice is:

iR L2
Inner: (jﬁ(@/'fm)f : W'A,«\, %(7@)8 Z%a/',{ (ar/up/fm)//j(%@ﬂ) (3.26)

r 'Z

Outer: Kﬁ(KVm) %;2{7%)6 ﬂ%g{pr %)/7\2 /Z\Pﬂ) (3.27)

A discussion of these approximestions, some numericael examples, and
' formulas for determining the effective wave numbers Ynp and gnp are con-
tained in Appendix C. The subscripts "np" on np and §np indicate their
dependence on dnP and therefore on the particular partial amplitude of
(3.10).

The approximetion (3.27) is suiteble only for bound states (real
k). The problem of stripping to virtual states would require a dif-
ferent treatment and is not considered. here.

The integrations are now straightforward and lead to the follow-
ing expressions, in which the derivatives of the cylindrical functions

heave been eliminated in favor of functions of order [-1:

) - oy 4
36;59&2 € 3 [ 4{/(—/ (‘fmfﬁv) (3.28)
/1«7702, -

_ ,7/3-/ (70t ]
9:;4-79@ r/z [%‘734) /{ (f”ﬁ’ﬁ)

Inner:
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A

32°0), ¢ z b A [f (n)
; a Jo-i (Eopa

S 05 # tapal® g

Outer: f ,/F 2)
+ i?a{\f (s j('fwﬂ)_]

The square bracket in (3.28) can be brought to the same form as

(3.29)

in (3.29) by the substitution.

ﬂ—/ (frwp&t) _ %[-l(’(wpﬁ) ‘
Vol Ujﬂ (s KpA 7, (s (3.30)

This represents the condition for metching square well wave functions
at the radius a, with the usuel derivatives eliminated. The wave num-

ber Kpp c€an be' found from the curves of Appendix G.

Both (3.28) and (3.29) are now expressible in terms of the tab-’

ulated Butler cross section (1k),

/

Oy () = Gy /n)/wd ‘X fz ()

(2 ta )[1+ (X +?2)//2$']

(3.31)

where

_ K -/ }2] %1’//7/ 2
&/7/- 19 %0/(4?) y %1/}7) (3.32)

Introducing the "outside," "inside,"

end Born emplitudes, 0,(x,y),
I,(x,y), and By(x,y), (the definitions of these amplitudes are given

in Appendix G, where their evaluation is discussed), (3.21) becomes
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4 7
Gl ) = (3765, )" 072 05" [ 1, (8 1)
(3.33)

+ O (topa, 3o at) ]

>
As a practical matter, the vector Tpp is very closely equal to
> > ->
Q = Kd—miKp/mf, the momentum transfer vector occurring in the Butler

theory. This stems from the fact that the n-p force range is much

smaller than the usual cutoff radius,

2 2
M >> (1 (5.34)

. A '
Henceforth, we will put tnp = q, and &'np = Q in the spherical harmonic.

ijm( Vnp) éppears as follows, with x = qa,

T () = anlem) 2 (002 ) 7 () -

--é%/%z.

-3
Zy/u By (x, xa)
(3.35)

- [9%/“-38-2 Wk éz/z/u [_12(7( Ko l) + O (7, 3. a/]
2 2
_ ép/ C 2% 75/2/ [_1}/;(7%),4 (3 d)]

1% 2

-3 42
+bmé,974y7,€ 2% 4 é/Q’CWZI/%x/ma)f-Q(/ M,,a)]}
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32 , / — zsi// 2 *# A
c477/277)/115, (3436’;)/2’6 27%}2%(47)

’ j//“jﬁia ( xa) ‘“[é@/ﬂ-j’f_jﬂjai,_
topt e 2 AT 70) 4 O (5 50)]
| -3 _ L 42 2
¢ bobpt, 072574 4 (% %,p4) + (%/%de)]

(3.36)

In (3.35) some of the redundant symbols have been eliminated by
the relations: fP = fnp3 fp =T =15 dy = Q3 4y =05 &5 = K3 Ky = K;
Yo = 7; and in the Born term, By = I, + Oy. The reduction from seven
amplitudes in (3.35) to five in (3.36) is the result of approximating
nﬁxnﬁwﬁ, gﬁwgme, The quentities y and & are computed (Appendix C)
2

from the average value d° = 21(ag +af) =44
p

npe The quantity k then

follows from y according to (3.30). This approximstion is accurate
when (3.34) holds and also Qi ~ Q§ . The same relations permit taking
the slowly varying exponentisls exp(-kg/efﬁp)z exp(-k2/2f§) ~ exp(-k2/
2u2) as a common fector in (3.36).

The symbols fg, fn, fp; do, dn, dps Y057ns 7ps Eos» En, Ep; end

KO’ 'K‘n’ K‘P’ are the a‘nalOgS Of fnp (5“15); dnp(B'l'?); 7np(5'26); gnp
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(3.27); and Knp (3.30) , but appropriate to the other partial amplitudes
occurring in (3.10) and therefore obtainable as stated following that
équation. Thé derivetion of Section C concerns explicitly the partial
amplitude Xﬁ? (Vhp) of (3.10), up to and including the sentence follow-

ing (3.34), while all four smplitudes are included in (3.35) and (3.36).

D. DIFFERENTIAL CROSS SECTION WITHOUT PROTON-TARGET INTERACTION

.If the proton-target term in (3.5) is temporarily ignored, the re-
sult is a "eutoff- proton" version of the Butler formula. This is use-
ful for estimeting reduced widths without the refinement of the addi-.
tionel proton-interaction terms of Chapter 4., For finding the capture
1-velue, the Butler formula (with the large radius) is simpler and usu-
ally perfectly adequate.

Because of (3.34), & single spherical harmonic occurs in (3.35)
and (3.36), so that there are no interference terms in the m-sum of
(3.9). In the following "summed" form of (3.9), all quantities are to
be evaluated in nuclear units, Appendix A, the cross section itself be-
ing in units of f2/sr:

nf 2Jp+l 3 A2 m+1

1 — ta® 07 -.014kqQ - .294(=—=)q3 1 (M

(mimg) # 20, +1 =" ¢ el ° 7 (Jm ]
(3.37)

sz(vgp) = 56»~

Notation: (All quentities in c.m. system except Eh.)
a = nuclear radius.

Egq = deuteron laboratory energy.
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Jy, Jp = target and final nuclear spins.

kps Bq

ki = 0.09567 m®Eq/(m+mg) 2.

proton and deuteron wave numbers.

m, mp, mgq = target, final nucleus, and deuteron masses,
Myps My = reduced masses,

Q = reaction Q-value.

q® = (t+1)k§ - 2tk§ cosg, = square of momentum transfer.

m_kp\® _afm w2 Q)
m+1 2\mn+l m+l Eg

- (M} = curly bracket in (3.35) or (3.36).

't2

The wave number:of the captured neutron is

k% = 0,04827m [Q+2.226]/(m+1).
The factor exp(-k°/u®) occurring in (3.36) has been re-written using .
the relation,

k> = |§§d-fpl2 = (m+1) ¢3/m + 0.02395q.

The cross section for the (p,d) pickup reaction can be found by

reciprocity, = .-

054(0) = 5%.12 (n®/(m2)®) t-* aségl e~0-0141Qg-0.2937(mtl) o2 1y)2

£2 /st ' (3.38)

In this formula, equivalent (d,p) quantities must be used. Thus m is
the target mass for the (d,p) reaction, or final nucleus mass for (p,d).
Q means de = ’de’ and E; is obtained from the incident proton lab-

oratory energy in the (p,d) reaction using

_ m+/ wmti  ,
Ey= - E,- ¢ (3.39)
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This permits using the formulas of the asbove tabulation as they are

written.

E. OUTLINE OF PROCEDURE

1. The energies, masses, and spins multiplying the curly bracket
in (3.37) are supposed known. The reduced width 9?1'15 to be deter-
mined by comparison with the absolute cross section.

2. If the penetration parameters Qp and Qp have been determined
by a (d,d) analysis at the same energy, as described in Chapter 5, then
only the nuclear radius a is adjustable. Otherwise, all three may be
vafied. The criterion for a correct choice is agreement in peak posi-
tion between theory and experiment. In what follows it is assumed thet
o = Qp, and by = by = L.

3. The numbers kg, kpy, t, &, and g2 (the latter as a function of
the scattering angle) can be found from the formulas in Section D. In
order to eliminate interpolation in x = ga in the stripping tables, the
cross section should be evaluated at even tenths in x, converting to
engle via cos @, = (t3+1)/2t - x2/2tk3e?.

Interpolation in y = ka can be partially avoided by teking a value

for the radius a that mekes y an even tenth.

L. With y = ka, enter Fig. G-2 (Appendix G, Section 2(a)) and

2

read out x5

» observing the translated ordinate scale. Then the inter-
nal wave number is y = x,/a.

5. Compute fZ, = n®+05 and a%p = Qﬁ+“?Q§/fip° Then y, dp, and

a determine Ynp via Appendix C, Section 2. Then use Ynp and a as in-
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puts to Appendix G, Section 2(b), to find Knpe

2

‘ 2
_a
6. Use d° = 2d

np’ 7» and a, to find ; via Appendix C, Section 2.

Thgn use ; and a &s inputs to Appehdix G, Section 2(b), to find k.

7. Use dp,, k, and a, to find &, from Appendix C, Section L.

8. Use 5, k, and a, to find E from Appendix C, Section L,

9. The five emplitudes in (3.36) cen now be computed as functions
of x as described in Appendix G, Section 1. Thislcompletes the specifi-

cation of the quentities occurring in the curly bracket of (3.36) and

(3.37).

F. THE BUTLER THEORY WITH A PROTON CUTOFF ADDED

A simpler formula than (3.36) results from grafting a proton cut-
off of the form (3.3b) onto the Butler theory with its sharp neutron
cutoff. Only two stripping amplitudes occur in the result, one of them
the Butler amplitude itself, so it displays directly the way in which
the exciged proton region makes itself felt. Equation (3.1) is unchenged,

but (3.2) becomes:

P= GM'@%(P;) Xiomg (1 T) Lgymy (£) Ha-a0) -pp(rp) (3.40)

where H(x) is the unit step function.

The procedure is the same as in Section C, the result being

¢n+/ ZJQv‘/ --;éz//Z
OJ[ (QP) = 713/ ’WI'/'Z. / \72,«-// /M (3o)-l-l)

thélz

JOtxg)- b€ (z;a,)]
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The wave number ¢ is determined by the analog to (3.27),

/ -2 2 /
zan, o .
hy (K1) € ~ Ly (%) 27 (g,a )/{1{5&) (3.42)
so that the inputs to Appendix C, Section 4, are k, a, and @2 = ugﬂg/
(W*+0d)~ oF, |
For the (p,d) reaction, the factors 7.313((m+1) /(m+2) ) 2t (235+1) /
(29,+1) in (3.41) are replaced by 10.96(m/(m+2))2t~1, equivalent (d,p)

quantities being understood.



CHAPTER IV

DEUTERON STRIPPING: THE PROTON-TARGET INTERACTION AMPLITUDE

A, SUMMARY AND CONCLUSIONS

In this chapter the (d,p) stripping amplitude due to the smoothed
interaction between the proton and the target nucleus will be evaluated.
In previous plane wave theories (1, 2, 5) this interaction was neglect-
ed, while in distorted wave theories (3,'l, 28) it is included in the
construction of the Greeéen's fqnction by adding to the outgoing proton
plane wave the scattered waves appropriate to the distorting potential
(34). The method employed here is to include the proton optical poten-
tial as a source term in the cutoff Born approximation, a com-
promise between the above two methods in respect to simplicity of treat-
ment aﬁd potentially attaineble accuracy. The introduction of a proton
cutoff is essential for obtaining quantitatively reasonable results
(Chapter 1, Section A).

Since the optical potential does not involve any reference to the
coordinates of the target nucleons, the resulting amplitude isAsubject
to the usual stripping selection rules,

In Section E it is shown that by approximeting the nuclear (non-
electrical) potential and the deuteron ground state by Gaﬁssian type
expressions (Appendix F), and using the Coulomb potential due to a

Caussian charge distribution, the integrals reduce to the one evaluated

37
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in the previous chapter, or are derivable from it. However, a great
simplification occurs if the neutron square well wave function (3.22)
and (3.23), is replaced by an harmonic oscillator eigenfunction., The
accuracy of such a procedure is discussed and the evaluation of the
integrals sketched in Section C.

A finel simplification occurs if the neutron cutoff function is
expended as in eq. (L.7). Explicit formulas for this caseare derived
in Section D, and summarized in Section E, where the results are also
specialized for cepture to the low single-particle states 1ls, lp, 14,
and 2s. An gpproximete, extremely simple formula for the polarization
is derived and discussed in Section F, while the last two Sections, G -
and H, concern the analysis of the reactions Be®(p,d)Be® and Be®(d,p)
Be'© .

B, PROTON-TARGET INTERACTION AMPLITUDE WITH A SQUARE WELL NEUTRON WAVEV
FUNCTTON

The integral whose value is required was glven in eq. (3.1l):

[T STy

Wii(o) Yo (Bo) Vip .y € (4.1)

In the present section it is assumed that the radial neutron function
is described by egs. (3.22) and (3.23). This integral can be evaluated
if the nuclear potentials (real and imaginary) in Vip and the deuteron
ground state are spproximated by series of terms of the form rgn exp
(-arg) and ri% exp(-brﬁp), while the Coulomb potential is that due to

a Gaussian charge distribution,
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5, \-% -Fun*
ﬁ(/,j):Zéa' (277‘) 26 Y0 (4.2)

with an r.m.s, charge radius <r2> = 3/5°,
Denoting the error function by ((x) = (2/58) [X e-t%dt, the latter

potential is .
ze> , /75
= —_— ¢ ,/2— ()4.3)
c k; 2

with the convenient integral representation,

2

A als
(o[ e[,

o

The basic integral is one with n =m = 0, Fmploying the coordinate
transformation (3.15) - (3.19) and trivial changes in notation, the re-
sult is the same as for the Vhp-amplitude of the preceding chapter. The
integrals with n and m ; 0 can then be obtained by differentiating this
result with respect to the parameters a and b. The Coulomb emplitude
can be gotten analogously by (numerically) integrating with respect to
the parameter a.

The complicated nature of the above procedure mekes it suiteble
only for machine computation.

C. PROTON-TARGET INTERACTION AMPLITUDE WITH AN OSCILLATOR NEUTRON WAVE.
FUNCTION

Much simpler expressions for the amplitude than those suggested
above can be obtained by using an harmonic oscillator eigenfunction

(Appendix D) in place of the previous square well function. This de-
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vice permits use of the generalized center-of-mass transformation (GCMT)
described in Appendix D to split the six-fold integral with coupled
variables into & short sum of independent, easily evaluated, three-fold
integrals.

The use of oscillator functions to rgpresent independent particle
motion in the nucleué isAso.widespread that it might be thought no jus-
tification was required. However, the stripping reaction is sensitive
to the tail of the captured particle wave function, and it 1s precisely
here that the oscillator is at its worst viz-a-viz the free particle
Hankel functions. - In particular, the oscillator functions would be a
poor choice in the Vhp-amplitude of the previous chapter, since the
charescteristic dependence on binding energy would be lost.

However, the proton-target interaction emplitudes of the present
chapter are less sensitive to the éxact shape of the neutron wave func-
tion. The reason for this is that they are smoother functions of angle °
than the Vhp-amplitude,_and more neerly isotropic. A change in the
neutron wave function which would alter the location of the Vhp-peak
has no such effect on the pr terms. It is only important to get the
magnitude. of the latter correctly and this cen be done by & suitable
choice of oscillator parameter.

Concerning the deuteron ground state wave function, the results
of Ref. (30) are expressible as a combination of three Caussians. A
fair epproximation to the Hulthén function can be had with two such

terms (Appendix F, Section 3). In the remainder of this chapter, the
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results will be given for a single term of this type,_expressed as the
1ls harmonic oscillator eigenfunction, vloo(pd,ﬁnp)ﬁ In the actual cal-
culations, pg is chosen so that the mean inter-particle distance agrees
with that in the Hulthéh function,cX(e 8T1P - e-PTmD), With b = 6.2a,
<Tpp> = 3.11f and py = .363F 1,

The basic epproximation is therefore the introduction of the os-
cillator function with normalization and parameter value left temporar-

ily unspecified:
A % -
AN Y, (R.) “N,(%43) "6ig Vot (P, R) (1.5)

The remeining steps are exact:
_>
(a) Combine vy ypm(py,R,) and exp(-%Qﬁrﬁ) according to
> —jaink j;vp Vit (5, F) (4.6)

Untom. (P, R) € = 4 Lt Vedon (I, o

(b) Subject the two oscillator functions kam(En:ﬁn) and V,qo

-
(pd,Rnp) to the generalized center-of-mass transformation to split off
. . > -> _->

the dependence on the relative coordinate, R, - Rnp = Rpo

The remaining integrals are independent and easily evalueted if
the potentials are approximated as suggested in Seection B, This com-
pletes the algebra for the partial amplitude xgém(V£p), end the others

may be found by setting one or both of @, and Qp equal to zero.

D. THE LOW PENETRATION APPROXIMATION: DERIVATION OF FORMULAS
Further simplification can be obtained by noting that the deuteron

penetration is usually low enough to permit the expansion, when b, = 1,
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(eq. (3.3a))
Q*pt

1

7(;\(/;"):/_6 %=2Lﬂ/j/,‘uz+ (k.7)

NI~

with retention of only the leading term. The rapid diminution of the
neutron radial wave function at large r, provides the justification for
(7).

As a preliminary step to the use of the GCMT, the factor ri and

the neutron radial function (Appendix D) are combined,

Nt/

02 Ropg (o, 1) =£ Cmg () Reg (po 1) (1.8)

While (4.8) is exact, it doubles the number of terms to be handled, so
that an approximate relation is more convenient. Temporarily inserting
the factor of ri occurring in the volume element dEn, (4.8) is replaced
by,

18 R (pm, 1n) = Mo 12 Rt (p, 1) (1.9)

The criterion for the choice of the two normalization constants N;
and N5 (which occur as a single number N,No) and the new oscillator
parameter p occurring in (4.5) and (4.9), can now be given. Taken to-

~gether, the equations (L4.5), (4.7), and (4.9) imply that the function
., 3 //]_ -/ 2 _t 2 2
(@)™ Gy 10 Whe () (1-€72 2 1) (4.10)
which in the previous chapter was given by,

W€ FER) o) fpm)  Faca o
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I/'MZ/:I—@ ZQWC‘“)%/Z (7(/"«)/%4{7(4) V> a (4.12)
is now to be approximated by the expression,

20NN 0.5 Rug (1) (k.13)

The simplest way to fix the unknown constants in (L4.13) is to
sketch the function (L4.11)-(L4.12) and then adjust (4.13) to agree with
it near the outermost peak. The peak height determines N;Np, while its
position determines p,. The relevent information concerning r2Rp,(p,r)
is in Appendix D, Section 2,

Using (4.13) in (4.1), combining R,,(p,r,) with Yfm(ﬁn) to form
v, (p,Ry), the total Vy -emplitude (i.e., the partial "mp" term of
(4.1) plus ‘the other three partial amplitudes (ef. eq. (3.10) with b,=

bp=l) tekes the form:

T () - - g@zfez(@@—@epf),zp. -
.1

VUl () ) Vsag (e, R ) R B,

~ X ~ 2.2
In (k.14), G = 305MaNa(3/a%)Z, and Ty, = (1-e-2%7D) Vyy

The GCM transformation is defined by:

C-B-B, R (R rpi R R

5

2 2 2,2/ 2 > AD. s AT D
pe = p* P =P P /pe Aen TRy AR A%, 1)
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The new wave vectors,

— -

Rt ~
Q=3 kit = K ~ 3Ky

2p pé /m+/}/)c
(L.16)
are associgted with the plane wave transformation,
_ - - = - = - =
Kkt = ko Boe = B5Rp + Qo Re (4.17)

The eigenfunctions in (L4.14) transform according to:
' - | - 06 o - =
U (R ) Uy (b, Rop ) =d%7 ’4/3 7 'Vaf(/’s )V (pk) (4.18)

where the four sets of oscillator quantum numbers have been abbreviated

as

Ao E/B 100=) N ke = ¢ ’VJ/M =& (L4.19)

> A
The five-fold integral over dRcdRp can be performed explicitly and

yields the final formula:
\ Y2
X (Ve) = =N uy 25 8y (5675/a°)
Net!, ¢, 4 Y/ g
) A e T /Vép)u (¢;) Uz P—'C,q)z)

ade f 7

(4.20)
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The remaining radial integrals in (4.20) are defined as:
7)/" - & )
T ()= 0/2(434) Kv) (/?,'7,)7/0,) rEdr (k.21)

These may be done numerically for eny potential shapes or, as in Appen-
dix E, by epproximating the potential by Gaussian type expressions and

using the Weber-Sonine formule (35, p.35 and Appendix E, eq. 2).

E. THE LOW PENETRATTION APPROXTMATION: SUMMARY OF FORMULAS
By expressing the single-particle smplitude B, eq. (3.6) as a

sum .of spherical harmonics of different arguments,

. N
¢ ¥ A
L _ L_Z/ W, Y (§;) (4.22)

the cross section and polarization formulas can be given in summed form.
The general formules for these quantities are: (25, 26, 23, p.88).

Differential Cross Section for Capture to & ‘State With Definite (-Value
and Mixed Jj-Values

= (5 r8] ) BT L 7 g4

8ﬂ2ﬁ4 A <2J_+/)[z,€+/) (L.23)

This equation refers to the usual situation with protons of different
f-value well separated in angle, so that only the mixing of j-values

need bﬁ,considered.
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Polarizetion for Capture to & State With Deflnite [-Value and Mixed
j-Values

2 Lo | #
R-2(6; ,+O; )-'[ej*" - QJ"‘:} z 67 (1.24)
20 3\ J-4 2+ ! ZJ—“" Z,;v /B‘ZMIL .

The usual definition of polarization P is the value of (L4.2L4) when the

z-axis of the coordinate system is oriented along the direction of the
> > >

polarizetion vector P. Since only the polar vectors Ky and Kb occur in
> > >

the matrix element, P is necessarily along the direction KEXKb’ This

comes out automatically when the sums in (L4.2L4) are carried out.

Explicit Formulas for the B-Sums

Im

The fact that B*" can be given the form (L.22), which is not ob-

vious from (4.20), permits the m-sums to be carried out:

N
P AR +2A>e2w (42.-43,)}

e 477— =1 L<\/‘~/

[ vh + ‘Q ’( / 2 $ g
T [B0) - M%Zw “REGIED ],  was

L<J =/

_ 2
A / .;Z 4/0 G
For the case [=0, these are simply 7 L . and zero' respec-
dari; -,
tively.
Iz

Summary of the Coefficients wj

The gcoefficient of Y?m(ﬁl) in (4.22), w{, can be given by an ex-
pression valid for all n- and f-values. This is simply eq. (3.35) or
(3.36) , omitting the factors izejl Y;m(a), where for the present sec-

tion it is convenient to put.



b7

->

Q1 (k.27)

>
Q
The coefficients m:{ for i > 1 require separate specification for the

different single-particle capture states. In the following,

G = 2n? (Y43) = nmpm, 2.7

~VA YA |
_[ = I ('/'LP) (see Appendix E) (L4.28)
-7 _ —? - . ‘ ,
624 = 4)2. + 6)3 ‘ ‘
n
'QV) = ,Z?V’,] [,bc 4 gl) = the harmonic oscillator radial

funetion of the indicated arguments, (Appendix D).

n=1l, [=0: ls-capture

There are three terms in the sum (4.22)., In view of the form which

(L.25) takes for £=0, it suffices to give the sgum, (afl’ is given above)

0
Wl Wl 4 = Wl - GR,I (4.29)

n=1, £=1: lp-capture

There are three terms in the sum (L4.22). (a)i is given above)

w, = - G(/D/pc) L IIO (4.30)

(A)j/ = —(-,('DOVPJR,O " (4.31)
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n=l1, p=2: 1ld-capture

There are four terms in the sum (L4.22). ( 3 1s given above)

iy
wi=-¢(% )‘32 [+ G(%C)nggfff (k.32)

®§=-G(P%Z)P'OIQ* @/%c)/zzgf R I (1.33)

gZ
wp = ~6(%)2 52_4;3 (1.34)

In order to go from the form involvihg vector-coupled first degree
hermonics (see Appendix D, Section 3) which facilitates the integration
in (L4.14), to the form (L4.22) involving only second degree harmonics,

the identity is used:

2
Cal Yo (B) v (&) = [T L .

dom bc

X?(B-;'C-vz}gm (@)—ézﬁm(é‘/-czyzﬂn{é‘)j (4.35)

This can be derived by expressing Ya;n( 2&) as the vector coupling of two
first degree harmonics, putting K = -]S + -5, and suitably grouping the

terms.

n=2, [=0: 2s-capture

There are four terms in the sum (4.22). (wg is given above).

Again, only the sum need be given:
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5&/50 = 5‘],0 + @(/D}Pcz) 'Z\)Lo I/O — G(’b‘f/pj)ﬁol‘zo

_ et (%) (4 G)R T (136

-~

As in the preceding case, a vector-coupling identity was employed:

, /10 A A 3 g2
Zcfmoa V,,,,,,/@)%_.,M/C}:- /—6_77'7‘ 5.C (L.37)

m

F. AN APPROXIMATE POLARIZATION FORMULA FOR lp-CAPTURE

Eq. (4.26) shows that the imeginary part of the optical potential
interferes ‘with the real emplitudes to preduce the polarization., An
interesting formula can be derived from (L4.26) by neglecting the real
amplitudes resulting from the proton-target interaction, since these
are small in comparison with the real neutron-proton interaction term
@l .

Calculetion shows that the contribution of w?a' to the polaerizetion
is much less than that of cn:2L « This 1is true for .two reasons., One 1is
that a% is smaller than aé s the other that ﬁl and 63 é.re nearly par-

allel, so that their cross product is small. For capture to & state

with definite j = 1 + 4 , the polarization is,

P ) ) %/M/Bifmll
- ' .38
2" 5@y 3 |gin|E 0

and sccording to the above epproximetions, B has the simple form,

BY" . A Vim (@)M‘EY;;(%) (4.39)
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In this équation, finite mass corrections have been neglected so that
aa\ﬂ ﬁa, and 61 ~ ngib. Also, the quantities a = w% and b = -iw;
are real and positive near the stripping peek. (11°(§gp) in (4.%0) is
negétive imeginary due to the absorptive potential.)

Using (L4.38) in (4.39), it is a simple matter to derive the follow-

ing formula:

— 4 A |
P=t —0—— 5 W‘Qp [__ﬁﬁ__:l " (1. 10)

3(2j+1) g, a2+ L*

In this equation, kp is the proton wave number, Obthe scattering angle,
and i a unit vector in the direction ﬁa g ib. Eq. (4.40) has a number
of consequences which appear to be borne out by the experimental re-
sults (12):

1. On the stripping peak, where a and b are positive, the sign

of the polarization is determined by the capture j-value, being * when

ol

J=14%

2. The polarization is a relative minimum on the stripping pesk,
where a/b is greatest and ab/(e2+b2) is least.

3. The polarization rises to a relative maximum as a and b ap-
proach equality, and ab/(a2+b2) approaches its maximum velue of é .

4, The polarization chané@% sign when either a or b changes sign,
thus giving information ebout the emplitudes rather than merely their
squares. (This bears on the shape of the absorption pattern, as dis-

cussed in the next section.,)
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5. The factors multiplyingvthe square bracket in (4,40) form an
envelope limiting the maximum excursions of P regardless of how the
stripping amplitudes & and b may vary.

The explenation of the dip in P on the stripping peesk and its
sign change were given earlier by Newns and Refai (36) on the basis of
qualitative arguments.

Because of the two terms of opposite signs oceurring in (4.32),
the correlation between the sign of the polarization end the j-value

for 2d-capture is not as definite as it was above. In addition,.the

distribution of polarization may exhibit more structure than above.

G. Be®(p,d)Be®( GROUND STATE) AT Ep = 12,0 AND 16.5 MEV (37)

The analysis of the Be9(d,d) reaction described in the next chap-
ter yields the cutoff parameters appropriate to 24 Mev deuterons in-
cident 6n Be®. In the same sequence of experiments (38), the angular
distribution of the beryllium pickup reaction, to which stripping the-
ory is applicable by reciprocity, was also measured., Since the absolute
cross section was determined, end the experimental date appear to show
a dip near zero degrees (so that the peek position is at least roughly
defined), it seemed worthwhile to neglect the fact that in this re-
action the deuterons "see" Be® rather than Be® and use the Be® cutoff
parameters,

The results of such a calculation are shown in Fig. 4-1. As can
be seen, the theory predicts no dip in the forward direction (nor does

the Butler formula—the theoretical curve of Fig. 6 in Ref. 38 is
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&ﬁparently in error). The ambiguity.in the small-angle experimental
dete mekes it difficult to determine a uﬁique fit, as the two ,curves
in Fig. 4-1 indicate. The second set of experimental points, teken at
16.5 Mev (39), suggest that the cross section would continue to rise
toward zero degrees if the experimental difficulties at‘small angles
could be overcome.

V The remarkeble tendency of the angular distribution to remain fixed
in angle as the deuteron energy varies, remarked j.n both Refs. 38
end 39, is explained qualitatively by the present theory as follows.
An increase in_energy tends to throw the pesk forward, purely kinemat-
ically. On the other hand, the decreasing cutoff radius throws it to
larger angles, and thé.effects spproximately cancel. At some higher
energy, when "complete" penetration is achieved, the shepe should change
i»apidly but this has not yet occurred at 31 Mev (L40).

The two theoretical curves in Fig, U-1 exhibit the qualitative fea-
tures expected from the present theory—smeaeller radii then in the Butler
theory and larger reduced widths. The two values of 62 indicated in
Fig. L4-1 correspond to the predictions of intermediste coupling theory
(41) in the jj- end LS-coupling limits, but there is no possibility of
distinguishing between them on the basis of the present results. (The
Ls-coupling feduced width was computed assuming that the ground state
of Be9.w§s pure 22P8/2[hl] (Ref. 42, while that of Be® was pure 11So[h],
(43), end using the p-shell, LS-coupling, coefficients of fractional

pérentagé of Ref. 4h4., The single-particle reduced width was obtained
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Fig. 4-1. Comparison of theory and experiment for the pickup
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Be? (p,d) Be8g .
Ep=12 Mev
Ed=14.2 Mev

a:=2.25f=112x8"3
62=.17 i

0 =1.87f=.94x8">
62=22 s

¢ 12Mev data
| 165 Mev data
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reaction Be9(p,d)Be® (ground state) at 12 Mev. Proton-
target interaction has been neglected.
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from Ref. 14. In jj-coupling, the Be® ground state was assumed to have
seniority one, Be® seniority zero. The c.f.p. for thid case are given
by an explicit formula (45).)

Because of the ambiguity in fitting the curve and the difference
in energy between this reaction and the one from which the cutoff par-
ameters were determined, the actual numbers are of only qualitative
significance. They do however show that the introduction of a proton
cutoff results in a decrease of nuclear radius, and increase of reduced
width compared to the Butler theory. For example, the latter theory
applied to the 16.5 Mev data (39) gives a radius of 3f, and 02 = 0.02L,
about a factor of ten lower than the intermediafe coupling theory val-
ues.

The theoretical curves of Fig. 4-1 were computed from eq. (3.36),

the proton-target interaction being neglected.

H. Be®(d,p)Bel© (GROUND STATE) AT Ey = 8.0 MEV (L6)

The deuteron cutoff parameters used in the previous section are
not applicable at 8 Mev because the incident wave penetrates much more
at the higher energy. The curves described in this section were drawn
after adjusting both the radius a and the cutoff parameter, Qn=Qp=Q.
The values used here are a = 4.0f and Q = 0.226f-1, the latter implying

that the incident wave falls to half intensity at either r, or = 6.9f.

Tp
The experimental points are from Holt and Marsham (47) at 8.0 Mev.

The absolute cross section was not measured, but in determing the re-
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duced width, a peak height of 0.40f2/ster was assumed determined by
interpolating between two absolute cross section measurements at 3.6
Mev (L48) and 14.5 Mev (32). This results in a value of about 2.5 for
the ratio to the single-particle square well reduced width. This may
be compared to the intermediate coupling theory value of approximetely
2.2 (49) and the Butler theory value of 0.2(27, p.20k).

The solid curve, labelled A in Fig. 4-2, is the prediction of the
present theory, including only the Vhp-amplitude (Chapter 3) and the
incoherent (absorptive proton-target potential amplitude, Chapter 4).
Curve D illustrates the "isotropic" nature of the latter contribution,
and the manner in which the Vpp-cross section "rides" on it. The
imaginary potential depth used here was 6.4 Mev, obtained by fitting
the ratio of the experimental cross sections at the peak and at zero
degrees. The agreement of this depth with those encountered in (p,p)
elastic scattering analyses is an indication of the overall consistency
of the present theory, although its similarity to the value obtained in
Chepter 5, Section E, is fortuitous.

The lack of a minimum in the theoretical curve A (following the
main peak) is due to the too-gradual cutoff embodied by (3.3). The
theoretical curve has a strong "Born approximetion component" which has
no node (5) and which dominates the overall cross section. To see that
this pehavior reflects the shape of the neutron cutoff, curve B is the

prediction of the formula given in Chapter 3, Section F, which has a
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Curve A: Stripping cross-section due
to the neutron-protoninteraction, and
the imaginary part of the proton
optical potential, smooth neutron and
proton cutoffs.

Tr Curve B: Same, sharp neutron cutoff.
Curve C: Same, Butler theory (for the
Vnp-term only).

6 Curve D: Same, due solely to the

imaginary potential.

4
g
%ster
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0 | | | 1 | | == L
(0] 10° 20° 30° 40° 50° 60° 70° |
Bcm

Fig. 4-2. Comparison of theory and experiment for the reaction
Be9(d,p)BelO (ground state) at 8 Mev. The theoretical
curves illustrate the effect of differently shaped cut-
off functions on the angular distribution.
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sharp neutron cutoff of the Butler type, plus & smooth proton cutoff
(3.3b). The height of this curve has been normalized to agree with
Curve A since despite 1ts incorrect shape near the minimum, the lafter
curve is the most reliable in &bsdiute height.

Finally, Curve C is a simple Butler curve, inyolving a sharp neu-
tron cutoff and no proton cutoff, normalized in height to CurvelA. Ev-
idently the difference in proton cutéffs between Curves B and C makes
little difference in the éhape of the angular distribution. (The heights
of Curves B and C before normalization are of course entirely different;)

The agreement among fhe three curves forward of the stripping peak
is striking, but expected, since this part of the curve is determined by
the stripping at large impact parameters, where the three matrix elements
.are essentially identical.

Figure 4-3 shows the Vﬁp-amplitudes corresponding to the cross sec-
tions in Fig. L4-2. These are labelled A,B, and C, with A supplying the
normalization. Curve D is that part 6f the absorptive potential amplitude
which is effective.in producing polarizatioh and the curves Py, P, and
P, show. the polarization resulting from the interference of Curve D with
‘each of A, B, and C, according to the simplified formula (4.40). The
rather small difference in angular distribution be£ween Curve A on the
one hand and Curves B and C on the other (Fig. 4-2) is greatly mag-
nified in the polarization curves. The latter are therefore sensitive

to the shape of the neutron cutoff function, and can provide information
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Fige 4-3. Stripping amplitudes and polarizations for the Be®
(d,p)Bel® (ground state) reaction at 8 Mev, illus-
trating the effect of differently shaped cutoff

functions.
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_about the degree of transparency of-thevnucleus in cases where the an-
gular distributions are ambiguous (50, 51, Fig. 11). A transition from
the "opaque nucleus" of the Butler theory, to the "transparent nucleus"
of the Born spproximation as the energy inereases, would not be unex-
pected, and could be easily analyzed with the present or similar for-
mulas.

The experimental points (52) are in reasonable agreement with either
curve Py or Pg,. The remaining discrepancies are in part due to the omis-
sion of the spin-orbit coupling between the proton and the nucleus., A
similar polarization curve, exhibiting the initial rise, the dip on the
stripping peak, and the subsequent repid sign change, is also exhibited
by the more extensive measurements on the Cla(d,p)cés reaction (53).

The close similarity between the carbon and beryllium date implies that
the present theory will be in agreement with the former also, and this
is borne out by preliminary.calculations (37).

The effect of the Coulomb potential is illustrated by Fig. L-L,
Curve A is the part of the cross section due solely to the Coulomb poten-
tial, curve B is the interference term between the Coulomb amplitude
and. the Vﬁp-amplitude, and curve C is the cross section due to both
terms, the real and,imagihary nuclear potential amplitudes having been
omitted. The effect of the Coulomb potential is reduced by the inclu-
sion of the real nuclear attraction. Thus, a Gaussian potential, Vb =
-30 exp(-O,hhrg) Mev reduces the interference term to that given by

curve D. The latter is negative at small angles, where the repulsive,



Curve A: Partial cross-section due tb
the Coulomb potential.

-2 Curve B: Coulomb-Vnp interference term,
Curve C: Cross-section due to Coulomb
plus Vnp.

-3 Curve D: Interference term when

- attractive nuclear potential is added.

Fig. 4-l4. Effect of the Coulomb and real nuclear potentials on
the stripping cross section for Be®(d,p)Bel®C at 8 Mev.
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iarge impact paresmeter Coulomb potential dominates. At about 25°,'the
attractive nuclear potential begins to déminate and the curve changes
signs.

Apart from the change in peak height in going from Curve A of Fig.
5-2 to Curve C of Fig. 4-L, the Coulomb potential has very little
effect on the peak shape or position. This is contrary to the effeét
sometimes seen in distorted wave calculations, that the Coulomb field
broadens the peak and shifts it to larger angles (3 , Figs. .7(a),7(%),.
10(a), 10)b); 54). The latter effect probably requires a stronger

Coulomb field or lower deuteron energy than in the present reaction.



CHAPTER V

FLASTIC SCATTERING OF DEUTERONS BY COMPLEX NUCLEI

A, SUMMARY AND CONCLUSIONS

In this chepter the cutoff Born epproximation will be applied to
the elastic scattering of deuterons. This is a logical spplication of
the formalism used in the preceding chepters for the (q,p) reaction and
permits in principle a determination of the cutoff parameters indend-
ently of the latter. Starting from the exact matrix element (5.1), use
of the cutoff Born.expression (3.2) leads to simple formulas for the
scattering amplitudes.

Section B discusses the approximations that are employed, while
Section C summarizes the final formulas. These are derived in Section
D. The Bes(d,d).reaction at éh Mev is analyzed in Section E and com-
pared with the eutoff Born approximation prediction of Be®(n,n) and (p,p)
at corresponding energies (i.e., one half Ej.)

The results of this chaﬁter represent an approximate method for
treating the (d,d) rgaction as a three-body problem. Exact potential
scattering analyses have been made for this reaction using a single
" optical potential and considering the deuteron as a particle .of mass
two, charge one (3, 55, 56)., The present method would appear to be more

directly related to the nucleon scattering formalism.
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If the optical potentials derived from elastic nucleon scattering
are used in the present (d,d) matrix element, then the absorptive potén—
- tial representing specifically deuteron dissociation is neglected (Chap-

ter 2, Section B). This effect can be approximately allowed for by re-
adjusting the penetration parsmeters. The Be®(d,d) andlysis shows (Sec-
tion E) that the deuteron cutoff océurs considerably further out (approx-
imately 1.2 to 1,5f) than in the corresponding nucleon reactions. This
appegrs to be a reason why plane wave theories enjoy some success for
deuteron induced reesctions at 5-10 Mev, when distortion effects are im-
portant in nucleon écattering at half these energies.

Consistent with the above remark is the fact that the theoretical
deuteron angular distribution (Fig. 5-3) fits the experimental data well
past the first minimum, whereas the nucleon curves (Figs. 5-1 and 5-2)
begin to diverge at that point. Since the theoretical formulas are
identical in physical content, this is evidence that the deuteron re-
action is closer to a "plane wave reaction'" than are the nucleon re-

actions at corresponding energies.

B. REDUCTION OF THE SCATTERING CROSS SECTION
The exact matrix element for elastic deuteron scattering may be

written in the form

A ‘ —'iﬁ?'é; * = *
A (6, K) = = e 0T @)y (mp) B, (4)
d g 5 . . (5.1)
VL'M t l/L/;) ﬁ_p[t/ A T, /%, 07,)0’/?,\ g/c-mdepda; axt

.

L=l
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In this equation the factors are, from left to right, the center-of-
mass wave function of the scattered deuterén; its internal wave func-
tion; the triplet spin function; the ground state of the target nucleus;
the total interactions between tafget nucleus and-neutron and target

and proton; and the exact wave function. The integration is extended’
over the coordinates of the neutron, the proton, and the target‘nucleons
"t," including all spins.

To simplify (5.1), the many-body interaqtions are replaced by optical

potentials,
A
2 (L'M.F%P)-_) Vm"'l.(/q\*' ‘/lb‘f‘ZI(/P‘f‘l/c

Py (5.2)
and @ is approximated by (35.2).

The optical potentials on the r.h.s. of (5.2) do not involve the -
target coordinates t so that, if we imagine the exact wave function
¥ to be expanded in the target eigenfunctions, only the term involving
the ground state fails to vanish by orthogonality.

If this reaction were being investigated from a more fundamental
viewpoint it would be necessary to take into account the excited state
contributions which‘vanish in this manner, and to discuss the validity

of the optical potential replacement (5.2) in the ground-state term.

The same points arise in the (d,p) problem and have been considered by
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Francis and Watson (4). Briefly, they argue that the excited state
contributions are negligible because an interaction strong enough to
excite the target nucleus will strongly dissociate the deuteron. The
neutron and proton then have to "find" each other (their quotation merks)
in order to undergo stripping. Here the process is elastic scattering
but the ideea is the same. They then show that the ground state com-
ponent of { satisfies an equation in which the many-body interactions
of (5.1) are replaced by an optical potential independent of t (their
eq. 16). This potential is in general non-local, so that the employ-
ment of spherically symmetric, local potentials as in (5.2)1is a rather
drastic gpproximation. It can be partially justified by the fact that
these same simple potentials appear to work well in the nucleon scatter-
ing case, where non-local potentials are also required in principle.

It is also assumed that the internal deuteron wave funection in V
can be teken as the undistorted ground state wave function, neglecting
the small D-admixture. Since the deuteron has only one bound state,
any "internal" distortion results in dissociation. The same argument
as before suggests that we mey neglect these dissociated deuterons and
in effect keep only the projection of the distorted wave function on the
ground state. In addition, unpubliéhed numerical estimates of distortion
effects suggest they are small (4,57)., It will be essential of course
to take account of the absorption which this dissociation represents,

and this is done by the cutoff factors in (3.2)
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The integrals involved may be carried out most simply if the deu-
teron ground state is given a Gaussian representation, This is teken
the seme as in Chapter L. (Section C).

Finaelly, and for the reason discussed in Chapter 3, Section A, spin-
dependent forces are neglected. Carrying out the final sum and initial
average over the square of (5.1) yields the differential cross section

in terms of a spatial integral.

T(@):/I/L (5.3)
X- - %/64'47@ L2 [ vvtn oisrebhr V] s
T gt o Latithr ki G

. (i,&”@’z’ﬁfﬁ)(l_ép g’i@l’/?z) dé:ar%-:

(5.4)

In this equation, 5 = E& - %}, the momentum transfer and my; is the re-
duced mass.

Using the methods in Section D, the integrals in (5.4) can be car-
ried out for any potentials having & Gaussian representation. For sim-
plicity, the results will be given in explicit form only for the simple

choices:

V’V‘:'%WZ'Z/Z«ZK«Z} (5.58)
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Um='i€(/,no 0:42’;»1/’/772{’2/0%2/‘%2; (5.5b)
Vp= = Vio 42 f'“f % | (5.6e)
Up=—3 € Yo G rinp § - 1 2 2 (369
VL =  equations (L.3) - (k4.k) (5.7)

The results involve only exponentials and the function F of Appen-

dix B, and are summarized in the next section,

C. SUMMARY OF DEUTERON SCATTERING FORMULAS
The real and imaginary potentials do not interfere with each other,

s0 that‘the differential cross section has the form,
- 2 2
T () = [Z0)+ T(y) + Z(4)] * [ X04)+ 4] 5.6

Each potential amplitude consists of four partial amplitudes (ef.(3.10))

J

x(vy) = Xb(Vh)-anﬁ(Vh)-prb(Vh)+bnprhP(Vﬁ) (5.9)



X(Vp) = Xo(Vp) -bpXn (Vi) -bypX (Vo) +by by Xy (V) (5.10)

There are three similar equations for X(V,), X(U,), and X(Uﬁ).

The Vp-amplitude

3
Let 0721 (mdt/2n‘fla) 811.E p3Vn°

2., A2
fip 2p” -+ QP

]

a2 2p2 + Ti Q - (2p 2)2/fn

np P
d121 = TI21 + Qn
2 2 2
dp = dnp - O
tnp = (bp® + 0B) o/(4p® + 20B)

o ~4(F+ )"
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The V,-amplitude

Let ap = (mgy/2dh®) 82 pSVpoo
?rzlp = 2p2 + Qi |
Tpp = 20% + 72 + 9 - (2p®)%/Tq,
T o= Gp - %
HS = T% + QS

Top = (Up™+0f) o/(hp +203)

The U,-amplitude

Let 0z = (mgt/2nh%) b2 p°eUnooi.
2 2 2 2
Cnp = dnp + op - Tn

2
g = &+ 0}

2 2 2

2
¢p

£ 2
Aoy #
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Then,

X (U.) =

(3- O:’Zj) o 23 *?,‘iz/ﬁz

3/20_:/)3'
- iy
) i (03 il et

-4 4
R -5 —W

g,’fj,,
2 2 /)
ﬁLP 4L44ﬁp

(Un) =
- G«?

The U,-~amplitude

_ 3
Let ap = (mgt/2mh) LnZ pseUboof
-2 2 2 2
Chp = dnp * % - Tp
_—2 -2 2 2
_2 2 2
p = % *

2
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The V,-amplitude

Iet a5 = -(mgy/2®°) 16 ze°p°.
| mip = Eip - -r12,
2 = - 2
a
pnp = ﬁnp/ [2m:[2]p(m121:p+72) ]2
2, 2 2 &=
op = 7a/[2mp(my+y7) ]2
_ 1
pp = Vi [205(0p+r7) 2
Then,
T, (%)= ‘)4
/’ ﬁ .
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D. DERIVATION OF THE SCATTERING AMPLITUDES

If the cutoff functions in ( 5.65 are multiplied out, the integral
splits into four partial amplitudes. The one containing both exponen-
tials, "291’11'1'1 e'éQP P, is denoted by indices "np," the one containing
only the neutron exponential by index "n," and the other two by "p" and
"0," the last-named term being just the Born approximation amplitude.
It is only necessary to eveluate the "np"-term since the others foilow

from it by setting the appropriate Q's equal to zero.

The Vp-amplitude

Mo Py 149/?0( ZJ[ZID'/‘ +((Z"+Z',.,2r J_‘@f 2]
L., (%) =2 )T% d/?ﬁd'?@ (511)

- > > o> 2 o
Replace the varisble Ry by Wpp=R,-2p Rp/(2p +0p) . This coordinate trans-

formation’ induces the identity

2p Vs +ﬂ:‘r/f+ ((12+7T, /rm ot 7[«13 (5.12)

2 2 2 .
where a2 o =2p° + 2 + 12 - (2p2)2/f§p and fpp =2p + 0p. In addi-

tion, the plene wave splits according to

e - —_>

—> — / )
G R = T Hn 3 G Wap (5.13)
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—>
_ 2 2) 3 2 2
vith L, = (4p+ (L, )@/(4/07;2,(277) A (5.14)
The integral (5.11) then separates into easily integrated factors,

L) - () 55 fo Bty idint g,

| = 2
L F 0 L A2
xﬁué? ? o “”w“”p/ww

7 o ‘
() BV o (e E )

When Qn or QP or both are set equal to zero in (5.15), it remains un-

altered in form but the constant dnp is replaced by dp, d,, or d,, re-

spectively, with. similar replacements for fn and t np*

The U,-amplitude

The "np" partial amplitude involving Uh(rn) can be obtained by a
coordinate transformation as in the previous paragraph or by differen-
tiating (5.15) with respect to Ti and suitably relabelling the poten-

tial parameters. The results have been summarized in Section C.

The V,- and U,-amplitudes

These may be obtained by interchanging the indices "n" and "p" in
the results for the Vu- and Up-amplitudes. Those quantities which are
not invariant under this exchange have been denoted by a bar in Section

CG
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The V,,-amplitude

Using the integral representation (L.L4) for the potential of a

Gaussian charge distribution, the "np" amplitude becomes

Z.,(%) /m/ 24/33226 /d"/ 4(70&
§ [otE e 12 4 (GEe 2o il

Introduce the same coordinate transformation as in the V,-amplitude,

(5.16)

but with n end p interchaenged and with x replacing T,. The integral

> >
over ddeWhp is the same as in that case and yields

3 4°
/3/_’#2627: o 272;;_

1/03 (m,? 1‘12)-3/28" fw/z/mﬁ;, +X%)

The remaining integral was evaluated in connection with the (d,p)

X, (%)= -

(5.17)

reaction (Appendix B). The results are summarized in Section C, the
Born term X,(V,) being obtained from the asymptotic form of F(x) given
in Appendix B,

Inspection of the Born approximation partial amplitude just men-
tioned shows thet it is simply the Rutherford amplitude for point charge
scattering multiplied by an exponentisl factor involving the finite
sizes of the nucleus and deuteron., The latter causes a gentle decrease
of the Born amplitude Xo(VéL below Rutherford as the scattering angle
increases. When the cutoff terms are added to give the complete Coulomb
amplitude X(Vé), this decrease is greetly enhenced, to the point that

X(Vé) may become positive and interfere constructively with the real
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nuclear amplitudes X(V,) and X(Vb)o This consequence of the cutoff the-
ory 1s rather different from Born approximetion, the extra oscillation
introduced by the cutoff being in close analogy to the different (d,p)
anguiar distributions predicted by the Born. epproximetion and the Butler
theory (Chapter L4, Section H).

As is well-known, the Born aepproximation for point charge scatter-
ing gives exactly the Rutherford cross section, when a suitable shield-
ing factor is used at large distances. The result for Xo(Vé) is in pre-
cise analogy to this result since it is obtained from Xb(Vé) in the :
limit as Qp approaches zero. The cutoff exponential exp(-%osrg) there-
fore provides the shielding factor necessary to get a finite result.

In the present theory, as in the point charge case, one has a built-
in agreement with experiment at very small angles, where the actual scat-
tering also approaches Rutherford. However, &t high velues of the Gou-
lomb parameter Ze2/fv the agreement is almost completely fortuitious,
 there being praetically no similerity between the plane incident wave,
cutoff or not, and the Coulomb wave function. This remark has been
slightly qualified since it is true that the reason this mathematical
accident occurs for the Coulomb field is & consequence of its long-
range, and the approximate validity of the Born epproximation et large

impact parameters clearly plays & role.
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E. ANALYSIS OF THE REACTIONS Be®(n,n), (p,p), AND (d,d)

If the neutron and proton optical potential parameters are con-
sidered known, then the formulas of Section C involve four adjustable
parameters, b,, bp, Qn, &and QP' As a trial procedure, b, and by can
be set equal to one, and Q, set equal to Qp- This reduces the problem
to the speéification (by trial and error) of & single parameter.

On the other hand, it might be thought thet the cutoff parameters
could themselves be determined from the corresponding nucleon scatter-
ing deta. According to Chaepter 2, these would be at epproximately half
the deuteron energy. The following paragraphs describe the results of
such a procedure, using date on Be®(n,n) at 14.7 Mev (58), Be®(p,p) at

12.0 Mev (38) and Be®(d,d) at 24.0 Mev (38).

Be®(n,n) at 14.7 Mev

Nekada, et E&f’(58) measured the elastic scattering of neutrons
from Bes, using as a source the (d,n) reaction on tritium. Because of
their scattering geometry, the incident neutron energy varied with the
angle of scattering. This was allowed for by employing the correct
(variable)(energy in the calculation of momentum-transfer versus scat-
tering angle. Any change in the optical parameters over the small en-
ergy spread involved was of course neglected. .

The total cross secticn.gs given by them was 151 + 3 f2. Using
the wave number appropriate to zero degrees, the optical theorem gave

[Im £(0°) ]® = 82.6 £2/ster, (for o, = 150 £2). The measured forward
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cross sectlon extrepolated from their Fig., 5 was 95 fg/ster in the lab-
oratory system, 76.9 center-of-mass. This agrees with the value of
about 77 f2/ster extraﬁolated from their c.m. plot using the theoretical
BJjorklund-Fernbach curve as a guide (59). Since this is smeller than
the value 82.6 given above, it is incompatible with the total cross .
section.

The value of the non-elastic cross section which they measured, 57
+ 6 £2, is higher than the value due to MacGregor, et al., (60) which
they quote, and also higher than Howerton's (61). Assuming therefore
that their velue of o was too high, the value 77 f2/ster was accepted
as the forward cross section. An isotropic component of 1.1 fa/éter,
determined from the height of the first experimental minimum, was sub-
tracted and regarded as an incoherent component (62, 63, p. 416). This
avoids the necessity for computing the compound nucleus contribution
(64) and is sufficiently accurate when the effect is as small as it is
here. This gave & coherent zero degree cross section 0o = 15.9 f2/ster.
In turn this implied a total cross section of 144 f2, assuming the
equality koy = hn( co)%, as is implied by the data.

A purely imaginary forward scattering emplitude, as is the case
here, implied a purely imaginary potential in the cutoff Born approx-
imation. The interpretation of this is not that the reel potential is
actually zero, but that it plays a negligible role in the forward scat-
tering, most probebly because it is concentrated at smaller radisl dis-

tances than the absorptive potential.
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The cutoff Born approximetion transition matrix element,

- - -5 =3

—y Kzt A/l"/er\ "'4 2 mz ngd
/8 ‘@&UM/A) et T (1-b, s ) 4R (5.18)

where U,(r,) is given by (5.5b), yields the differential cross section:

O, () = OST7 /V%a) 2[ /- %3_(,2) 9-—%-2

1o 2P ) omp ]
— b /3’; /1_ ”—"T‘i e (5.19)

The notation employed here is: mpt= reduced mass of neutron, Xi = ¢%/
20, 22 = (1 + 0/, o = [k - Kl® = 09567 (2BE) mygy(1-cos @),
and all quantities are to be expressed in nuclear units (Appendix A).

Since the Bjorklund-Fernbach potential radius (65) is too large to
fit this experiment.(as indicated in Fig., 3 of Ref. 58, the theoretical
curve goes through its first minimum at too small an angle), a radius
was used which reproduced the node position, although it is not clear
that this simple theory should still be accurate at an 80° scattering
angle.,

While the parameters are not uniquely determined, the set bp=1,
o= 0.619f1, Qp= 0.TOLE™%, Upo = 10.7 Mev, eppear reasonsble and fit
the forward scattering as indicated in Fig., 5-1. The imaginary poten-
tial peaks at 2.28f = 1.1(9)%, while the incident wave falls to half

its asymptotic intensity at 2.24Lf.
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100
Be® (n,n) 14.7 Mev

— O Experimental (Nakada, e.a
= Phys. Rev. 1/0 1439 (1958))

— = Theoretical
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Fig. 5-1. Comparison of theory and experiment for the reaction
Be®(n,n) at 1k.7 Mev.
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The logerithmic presentation in Fig. 5-1 emphasizes the disagree-
ment past the first minimum, but is helped somewhet by the isotropie
component mentioned earlier, which eliminates the true node possessed

by (5.19).

Be?(p,p) at 12.0 Mev

The data of R. G. Summers-Gill (38) were teken at nearly the neu-
tron energy of the previous section. The angular distribution was com-
puted using (arbitrarily) the same ratio Qp/op as in the neutron case,
but readjusting qp to fit the node position. This could be done with
the parameters by=1, o = 0.521f" 1, Qp = 0.590f"%, end Upo = 6.2 Mev,
resulting in the curve of Fig. 5-2.

The first minimum is at a smaller value of momentum transfer than
in the neutron case, suggesting that the beryllium nucleus appears
largér to a proton than to a neutron. This phenomenon mey be connected
with the difference between the electromagnetic radii of the neutron
and proton (66). The proton potential in this case pesks at 2.71f,
about O,4f further out then the neutron potential, while the helf inten-
sity point of the incident wave is at 2.7f, so that the proton wave
penetrates less than the neutron wave in the previous case. The lower
incident energy, the Coulomb repulsion, and the wider spread of the
ebsorptive potential all work in this direction, although the lower
value of U@o than Uho favors greater penetration. If Uﬁo were to be

adjusted upward to around 11 Mev, nearer the neutron value, the pen-
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Fig. 5-2. Comparison of theory and experiment for the reaction
: Be®(p,p) at 12 Mev.
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etration would be even further decreased. .(This would have a negligible
effect on the angular distribution, which depends on Ubo and.np only
through the combination Ubongo)

In computing the theoretical cross section it was assumed that in
this reaction the real nuclear potential could agein be neglected. This
is a weak application of "chdrge independence" gince the Coulomb repul-
sion tends to keep the proton away from the inner real potehtial, In
this situation it is only necessary to add (incoherently) the Coulomb
cross section to that due to the absorptive potential (5.19). For &
Gaussian charge distribution, (4.2) - (L.L4), the matrix element,

e (2o B 1-he 1) 2 F
P

(5.20)

yields the differential cross section,

8- [Z(v)]° (5.2

C()(/L

T(v)= - (zﬁ 272&)[8_9(77(

-2piby Zzﬁng_pw Y FG) /s

(5.22)
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The new symbols are:

0t 4o bre (14 03/y)”

= pz'g/iﬁy /ﬁ?}

F(x) is defined in Appendix B.
The rms radius <r> = 3.04 for beryllium was obtained from Table VI
of Ref. 66. The remarks concerning the Rutherford component of the V-

amplitude (Section D) apply to eq. (5.22) also.

Be®(d,d) at 24.0 Mev

The date of Summers-Gill (38) are at a suitable energy for compar-
ison with the above (n,n) and (p,p) reactions. If the parameters deter-
mined there are taken over unchanged, the (d,d) cross section is con-
siderably over-estimated. To obtain agreement, smeller value; of Q, énd
Qp may be employed, and interpreted as reflecting the additional aebsorp-
tion due to deuteron dissociation.

The curve of Fig. 5-3 was obtained using the same b, bp, Ons O »

Y

Uy and Ubo as in the previous reactions, but with Q = Qp = 0.39. The

incident wave falls to half intensity at 4.0f, about 1.5f further out
then in the (n,n) and (p,p) cases. The fact that the fit to the exper-
imental points in Fig. 5-3 appears to extend to larger values of momentum
transfer than in the nucleon cases may be due to this confinement of -the
reaction to larger separations where the neglect of distortion is better

Justified.
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Fig. 5-3. Comparison of theory and experiment for the reaction
Be9(d,d) at 24 Mev. Also shown are the Rutherford

cross section and the Coulomb (non-point charge)
~ cross section.



APPENDIX A

NUCLEAR UNITS

It is convenient to have a system of units which exploits the fact

016 =

that nuclear data are primarily given in atomic mess units (emu,
16), Mev, and fermis (10"13cm). Conversion of units is unnecessary if
the fundamental constants are evaluated in this system. Using the val-

ues given by Cohen, et al., (67),

1.20000 €2 = 1.44000

(a) proton charge: €

(b) velocity of light: c

30.51L46 c® = 931,141

6.46624  AZ = L1.8123

(c) Dirac unit of action: A

Various nuclear units in terms of familiar ones are:

(a) area: 10"%%cm = 10 mb.

(b) time: : 1.01786 x 10722 sec.
(¢) velocity: 0.982453 x 10° cm/sec.
(d) charge: 4.00257 x 1071 esu.
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 APPENDIX B

PROPERTIES OF THE FUNCTION F(x)
i, DEFINITION
-X2 X 2
F(x) =e fo et at. (B.1)

X
In terms of @ (x) = erf x = (2/r°) fox e-t2at,

1
F(x) = (B/21)e*® ¢ (1x), | (B.2)
The asymptotic séries begins with

Fx)~.:.|:_+_1_+._3....+.., B.
( ox Lx® 8x° (.3)

2. INTEGRAL EVALUATION

Il(a,b,m) = fob(xa-l-m)-!_% exp (- x:ﬁn]dx (B.L4)

Define c=bZ+m, g=b(me) -3 , and h=c™" + (2a)~ + gZ, then
Io( a,b,m) = (ma) -2 e a‘/""F‘( gaﬁ) .
Ii(a,b,m) = (ma)-3 e- 8/¢ [nF( ga®) —éga-é]
Io(a,b,m) = (ne)"3 e®/C[(n3a"2) F(ga®) +hea2(g%sda ) |
Is(a,b,m) = (ma) % e a/c [(h3-Lha” 2_a-3)F( ge.'%) -—éga’%( g* +g2¢~ 1

+g28- 1+ 5/ha2+3/2ac+1/c?) ]
86
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Z
Proof: Since I, = (-d/ds) I,, only I, need be evaluated. If F is ex-

panded in a power series and integrated term-by-term, the result is:

Oo ;(W

-4 x %) _
x e’ Flx Z/’,M%D ! (mt1) (Lemme)

In T,, expand the exponential end integrate term-by-term,

2§ S 2L )

m=o M. /P/I V:a

Rearranging the series with

Zoo Z% 7[/7,'7;/ .y //Mn/) V/

M,V =0

gives a product of two series:

N ,_7_Wwv //
IO'M Lo M__j/“, g Z //Z‘V-H) / [6 + _7)

The first series is an exponential, the second is given by the sbove

lemma, Simplifying the exponent leads to the stated result. In the
formulas for I,, Io, and I, the derivatives of F have been replaced

/ .
by expressions involving F itself. For example, Fitx)= (- ZX'/:K;)'

3, NUMERICAL TABULATION
The function F(x) is tabulated in Ref. (68) up to x=12, at inter-

vels of 0.01. A part of that table is reproduced here for convenience.
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TABLE OF F(x)
x F(x) x F(x) x F(x)
0.00 0.000 000 0.35 0.322 770 0.70 0.510 503
.01 .009 999 .36 .330 451 «TL .51% 286
.02 .019 995 <37 .338 010 .72 .515 926
.03 .029 981 .38 345 4L7 .73 .518 428
N <039 957 «39 .352 759 . Th .520 789
.05 049 917 4o .359 943 .75 .523 013
.06 .059 857 1 .366 999 .76 .525 100
.07 .069 771 42 <373 924 T .527 050
.08 .079 660 L3 .380 717 . .78 .528 866
.09 .089 516 Ll 387 375 .79 <530 549
.10 .099 336 A5 .393 899 .80 .5%2 101
.11 .109 117 L6 .400 285 .81 533 523
.12 .118 854 U7 406 533 .82 .534 816
.13 .128 545 .48 JA12 64 .83 <535 981
<1k .138 185 .49 .418 609 8L 537 021
.15 147 769 .50 b2k 436 .85 537 937
.16 <157 297 .51 430 120 .86 538 732
17 .166 762 .52 U435 662 .87 .539 Lo6
.18 176 162 .53 U441 059 .88 .539 960
.19 .185 Loz .5k J4k6 311 .89 540 399
.20 194 751 .55 451 418 +90 540 T2L4
.21 .203 933 .56 456 380 .91 .540 934
.22 .213 037 57 161 195 .92 541 034
.23 .222 058 .58 465 86L .93 541 025
2k .230 99% .59 470 386 .9k .540 910
.25 «239 839 .60 LTk 763 <95 .540 688
.26 .248 593 .61 1478 993 .96 .540 363
.27 257 253 .62 483 076 .97 .539 938
.28 .265 81h .63 .487 o013 .98 »539 414
.29 274 275 e .1490 803 .99 .538 793
.30 .282 631 .65 Lok LL8 1.00 .538 080
.31 .290 882 .66 L1497 okT 1.01 537 272
.32 .299 023 67 .501 303 1.02 .536 375
.33 <307 05k4 .68 .50k 513 1.03 .535 388
0.34 0,31k 970 0.69 0.507 580 1.04 0.534 317



X

1.05
1.06
1.07
1.08
1.09

1.10
1.11
1.12
1.13
1.1k

1.15
1.16
1.17
1.18
1.19

1.20
l.21
1.22
1.23
1,24

1.25
1.26
1.27
1.28
1.29

1.30
1.31
1.32
1.33
1.3k

1.35
1.36
1.37
1.38
1.39

F'x)

0.533 162
531 925
.530 609
.529 216
.527 T48

.526 207
.52k 595
.522 915

.521 169

-519 359

.517 487
515 555
.513 566
511 521
.509 423

507 273
.505 075
.502 829
.500 537
198 202

495 827
.493 L12
.490 960
488 472
485 950

183 397
.480 814
L478 203
475 566
472 9ok

470 219
467 513
L6k 787
L462 043
0.459 283

TABLE OF F(x) (concluded)

X

1.ko
1.k
1.k2
1.43
1.4k

1.45
1.46
1.47
1.48
1.49

1.50
1.51
1.52
1.53
1.54

1.55
1.56
1.57
1.58

1359 ’

1.60
1.61
1.62
1.63

1.6k

1.65
1.66
1.67
1.68
1.69

1.70
1.71
1.72
1.73
1.7

89

F(x)

0.456 507
453 718
-450 918
448 107
145 286

JAh2 458
1439 624
436 785
1433 92
1431 096

128 249
.4e5 ho1
122 555
1419 710
1416 869

L1k 032
U411 199
1408 373
405 554
o2 Th2

+399 9L0
2397 1L6

.394 364
«391 592
.388 832

.386 085
.383 351
=380 630
37T 925
375 234

«372 559
.369 900
.367 258
« 364 633
0.362 026

F(x)

0.359 436
.356 865
.354 313
.351 780
. 349 266

346 773
.34l 299
.341 846
.339 413
.337 OOL

.334k 609
«332 239
.329 891
327 563
.325 258

.322 974
«320 712
.318 471
.316 253
314 057

.311 883
«309 730
«307 600
.305 Lo1
«303 Los

«3013 4039
22992 9770
.2972 7683
.2952 TTT1
.2933 0025

.291% L4438
»2894 0998
.287h 9696
.2856 0519
0.2837 3456



APPENDIX C

THE APPROXIMATIONS (3.26) AND (3.27)

1. THE BESSEL FUNCTION APPROXIMATION (3.26): DERIVATION OF FORMULAS

In order to carry out the iﬁtegration over the region r, <eain
(3.21) most conveniently, the function JpCyry) exp(-3d®°r2) is replaced by
Ci,(Bry). The problem is to determine the normalization constant C
and the effective wave number B so as to meke this substitution reason-
ably accurate. (In this section and the following, d stands for any
of the quantities dpps Ay, dp, or d, defined by (3.17), (3.15), (3.3) amd
(3.10), while B stands for Tnps T Yps» OF 7oe Since d,=0 and y,=y,
these will not occur explicitly in the final formulas. The subscript
n on r, will also be dropped.)

Because of the factor r2 in the volume element of (3.21), the region
r ~ & will be the most important, so C is chosen to make the two expres-

sions equal at r = a. That is,

3p(yr) eBT & 5,(y8) 34787 5 (pr) /5,(pe). (c.1)

The constant B is then chosen so that the outermost extreme of the
l.h.s.and r.h.s. of (C.1l) have the same height. (The ls state is an
exception and is treated separately.) Since j,(yr) is an inside wave

function for a square well it will execute one or more loops inside the

90
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well and be decreasing in ﬁbsolute magnitude as it approaches r = a,
The 1l.h.s. of (C.l) will have the same qualitative behaviour, as will
the r.h.s., The criterion for B is that the loops nearest to r = a

(of the two sides of (C.l)) shall have the same height. The peaek loce-
- tions will be displaced from each otﬁer but this effect is small for
the values of d inveolved here.

The first step is to determine where the l.h.s. of (C.l) has its
outermost peek, say r = T. This can be done by simply plotting it and
reading off T, Alternatively one can set 1ts dériva.tive equal to zero
and iterate the resulting transcendental equation. An explicit formula
can be obtained by fitting a parabolea ‘l;o J l('yr) at the eppropriate pesk,
& straight line to exp( -—;—dzra) at the same point, and computing the peak
location of their product. The result is the following: Given &
straight line, f = A-Br, and a parsbola, g = C+Dr+Er2, the extrema of

fg are located at r = T, where

3BFT = (AE-BD) #* ~(AE-BD)“ + 3BE(AD-BC) (c.2)

The sign is chosen which gives the smeller value of T. This will be
the plus sign when the paresbola opens downward (E < 0), the minus sign
when it opens upward (E > 0). (This assumes B > 0, as is the case
here.) In the formulas of Section 2 the constants have all been de-

fined as positive numbers, with a suitable change in the signs of (C.2).
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The 1l.h.s. of (C.1l) can now be evalusted at its (epproximate) peak

and the equal peak height vondition written as
o o=y Eg2r2 ) 13282 o /s
Jp(yF)e Bl T = j (ya)e-Bd78” j,(pr')/j,(pe). (c.3)

Now Br' is by definition the nth peak position of,Jj¥) so that j 2
(Br') is a definite number, the height of j g &t this particular pesk.
Fg..(¢.3) imwdlves tte wlkonB only in the argument of j,(PBa), wﬁi-ch is it-
self determined by (C.3). The quantity Pe can therefore be found by
inverse interpolation in the NBS Tebles (69). Since the inverse func-
tions are multipl_e-va.lued., it is necessary to select the argument Ba
which corresponds to the state in questipn. In the formulas summary
of Section 2 this requirement’'is incorporated in the form of limits be-
tween which Be must lie.

The ls-state does not fit the preceding pattern since j o('yr) and
the 1l.h.s. of (C.1l) fall monotonically from unity at r = O to their
values at r = a, The point r = a is kept as one point of equality, so
that (C.1) still holds ,‘ but the .other point is teken arbitrarily as

r = a/2. This gives the equation,

Jo(ra/2)e2(a/e] = 5 (ye)e-B0%8% 5 (ga/2) /3 (Ba)  (C.1)

The ratio j,(Ba)/j,(Ba/2) is determined by (C.4), so that pa can

be found from & plot of j,(x)/J,(x/2), as described in the next section.
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2. THE BESSEL FUNCTION APPROXIMATION (3.26): SUMMARY OF FORMULAS

The quantum numbers (n,f) and the parameters d, a, and v are sup-
posed known. The following formulas determine B for the three lowest
oscillator shells. Analogous expressions for the higher single-particle

states are easily constructed according to the method of Section 1.

(a) n=1, £=0 (1ls).

2 2 '
Eveluate e->9d & /8jo(7a)/jo(7a/2).and with this as the value of

Jo(%)/ig(x/2), enter Fig. C-1 and read out x. Then B = x/a.

10

9.—

8

71—

6 —
_ Jo(x)

51— o (x/2)

41—

3_

2

J

o | | | | | |
o) 0.5 1.0 1.5 20 25 30

Fig. C-1. Plot of jo(x)/j (x/2).
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(b) s, i (1p).

Find T from

3BEF = (AE+BD) - ~/(AE+BD)2 - 3BE(AD+BC)

where A = (1+h.33502/,R) e-2. 16787/ 2
B = 2.082(a2/y)e"2-1672%/,2
C = 0.07280
D = 0.L4889y
E = 0,117hy"
Then

. N . 132(62.52) /, /.=
ji(pa) = 0.43623,(7e)e-2d°(a™-T") /5, (7).
From this, Ba can be found by inverse interpolation in the Bessel func-

tion tables (69). The correct value of Ba lies between 2.08 and 4.49.

(e) n=1, £=2 (14d). AP
Find T from the expression in the preceding paragreph, using the

values .
A = (1+11.173%/o) e=5-5854%/y

3.342(a% /) e-5-5854%/72

B =
C = 0.4861

D = 0,475y
E = 0.07099y°
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. Then

J2(pe) = 0.3068)2(7e) 3 A°(a°-F7) /5,(7)
" From this, pa can be found by inverse interpolaetion in the Bessel func-
tion tebles (69). The correct value of Pa lies between 3.34 and 5.76.
(d) n=2, =0 (28).

Find T from the expression in Section 2(b), using the values

A = (1+20.19d%/%) e-10.1082/72
B = 4L49L(a®/y) e~10.1032/y2
¢ =1.976 |
D = 0.9761y
E = 0,1086%"
Then
i () = -0.217230(7a)e'éd?(ag‘?2>/50(7f).

From this, Ba can be found by inverse interpolation. The correct vel-

ue is between 4.49 and 6.28.

3. THE HANKEL FUNCTION APPROXIMATION (5.27): DERIVATION OF FORMULAS

As in Section 1, d stands for the different dpp, dy, &tc., while &
stand for gnp, t,, etc. The approximation (3.27) replaces hz(nr)exp
(-é a%r®) vy Chy(tr), with C and ¢ to be determined. Since the function

h, has its maximum value at r = a, C is chosen to meke the two expres-

sions equal at that point,

1.2 2
hy(kr) 38 T ~ hy(ka)e-24°8% n,(¢r) /i, (ta) . (c.5)



96

The constant ¢ is then chosen so that (C.5) is an equality also at an-
other point, r = b; This is arbitrariiy taken as the point where the
l.h.s. of (C.5) has fallen to half its value at r = a.

The first step is to determine where the l.h.s. of (C.5) falls to

this 50% point. Since the Hankel functions have the form,
hy(x) = x-4-1py(x)e™* , (c.6)

where Py(x) is a polynomial of degree L, the equation for b is,

12,2 152.2
b~ 4-1Py(kb) e KP-3d7D7 éa‘l‘ng(na)e'Ka'Ed & =ev

(c.7)

The middle member of (C.7) determines v . Taking logarithms,
2a%% + kb + 1n [bﬂ'*-l/Pz.( kb) ] -v = 0. (c.8)

Since the logarithmic term is insensitive to the exact value of b this
transcendental equation can be solved iteratively as a quadratic equa-

tion for b, assuming the logarithm known:

bpyr = -(k/d3) +~/( /%)% + (2/a%) {v + 1n [b;4-1Py(kbp) 1)

(c.9)
One application of (C.9) using by = a + 0.5 usually suffices.
Writing (C.5) as an equality at r = D,
2 2
(k) ~2-1p,(kb) e KD-3d7D" - go(gp)-2-1p,(gb)e €0 ,  (C.10)

end dividing this equation into the similar one at r = a, yields
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e§<b'a)P,l(§a)/P (eb) = ok(b-a) +éd2(b2_32)P£ (ra)/P,(kb) = eﬂ(. )
C.1l1

The middle member determines n . Taking logarithms snd as before,

iterating on fhe slowly varying logarithmic term,

Ener = (P-8)7% (1 + In [Py(&by) /Py(£a) 1} . (c.12)

Eq. (C.13) of the following section provides a convenient starting
value,

E, = K +2d%(a+d) .

L. THE HANKEI, FUNCTION APPROXIMATION (3.27): SUMMARY OF FORMULAS
The quantum number [ and the paremeters d, a, and k are supposed
known. The following formulas determine ¢ for all s, p, and 4 levels,
there being no dependence on the radial quantum number‘ n, The general
fofmulas for higher [-states have been given in the previous section.
Suitable starting values for the b- and t-iterations are by =

a+0,5 and £, = k+3d3(a+b).

(a) £=0. ho(x) = x"te X, Po(x) =1,
v = ka + §d2a2 + In(2a)
bar = ~(k/a2) + N(W/aD)2 * (2/a) (v 12 o)
£ = k +2d%(b+a) (c.13)

No t-iteration is required, eq. (C.1l) being soluble in this case.
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(b) 2=l.
hy(x) = x"Z(l+x)e X, P1(x) = l+x.
v = ka +2d%a® + In[2a2/(1+ka) ]
bper = -(x/@%) +~)(n/§2)2 + (2/a2) (v+an[(1+xby) /217 .
n = k(b-a) +21d%(v>-a3) + fg.n[(l+na))(l+nb) 1.

€nty = (b‘a)-l{'fl + In[(l+§nb) /(l"'gna‘) 1.

(c) =2,
2( ) = X" (5 SX+X )e' o Pz( ) = 3+3x+x
ho(x x~3( 3+3x+x2 X X) = 3+3x+ 2.

v = ka + éd2a2 + In[283/(3+3ka+k2a2) | .

b = - 2 / 2p

n+1 (k/a2) +v(k/a2)2 + (2/d2)[v+1n[(3+3nbn+n 2) /b31}
_ n//Pnll .

n = k(b+a) + 3d2(b2-22) + In[(3+3ka+k2a2)/(3+3kb+k2b2) ]

Ensr = (P-2)7 {1+
n+1 (o-2) " {n+an[(3+3¢ b+£202) /(3+3¢ 8+t 202) 1) .
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Y= .8765 d2=1009 I
- 2 2
e i72d"r j'(Yr)

Q x

L, o POO
woo—-u
0

™M T Q

.7937j; (.9825r)
n=1=l

Fig. C-2. Some examples of the Bessel and Hankel
function approximations. Solid lines
are exact, dotted ones approximate.



APPENDIX D

HARMONIC OSCILLATOR WAVE FUNCTIONS

l. SUMMARY OF NOTATION
Eng(w) = %fw(2n+(-3) = energy eigenvalue in the state (n,Z).

l,m = orbital angular momentum and z-projection quantum numbers.

M = reduced mass.
n = radial quantum number. The lowest [-state is n = 1,
L 3
p = (My/#)2 = oscillator perameter.
> A
R, R, r = coordinate vector, unit vector, and radiel coordinate,

respectively.
Rpy(p,r) = harmonic oscillator radial wave function.
V(r) = -%M’mer2 = 1#2p4r2/M = potential energy.
thm(P’E) = an(P)r)Yzm(ﬁ) = harmonic osciilator wave function.
w = classical frequency.

Ylm(ﬁ) = normalized spherical harmonic. Y¥ = (-l)mYZ_m

2. RADIAL WAVE FUNCTIONS

Rig(p,r) = [p%2£+2/52(22+1) 11 TB(pr) Lexp(-Lp2r2).

Rzy(p,r) = [p52”+1(21+3)/ﬁ§(2141)::I%(pr)zfl-p2r2/(z+3/2)1. ’
- exp(-3p°r?).

Rag(p,r) = [p%22*3(21+3) (2145) /B(2psn):: B(pr) .

. [1-2p%r2/(4+3/2) +p*r®/(2+43/2) (145/2) ] exp(-2p®r®).

100
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2
Ry, (p,r) = %2 *(242n2) !:/né{(em) 1Y 120F (1-0;5043/2;0°r2)
(pr) zexp( -&p2r2)

The function ng(p,r) starts out at r = 0 like rz and goes through

e single peak at p®r2 = [. Ry, starts out similarly, goes through a

1
positive peak at p2r2 = £+7/L4-(2/+49/16)Z, vanishes at p2r2 = £+3/2,
1
and goes through a negative "pesk" at p®r® = f+7/b+(24+49/16)2. Ray
' 1
starts out the same way and has nodes at pZr? = [+5/2+(1+5/2)2, but its
peak positions must be found numerically. An exception is Rgp which
peaks at p2r2 = 0, 5/2, and 13/2.
The function r2R,y(p,r)(Chapter L, Section D), peaks at p3r2 = £+2,

1
while r®Rgy(p,r) peaks at p2r2 = f+11/h+[114/4 + 73/16]2. The nodes

are unaffected by the factor r2.

3. THE GENERALIZED CENTER-OF-MASS TRANSFORMATION
(a) Derivation
The Schr&dinger equation for two particles of equal mass, M;=Mo,

moving independently in the same potential well, wy=ws,

22
- kzm ?,ZL 3 wtn+ 3 Mt~ £ ] Yo (01
| -

remains separable in the center-of-mass system,

[" ;‘;4\?’?’ ‘f—-/;]?c + MWV‘ + 3 Mc, Z—' EJ SL;O (D'E)
c :

-> . o

-> > >
where R = Ri-Rz, Re = 2(Ry+Ra), M = My/2, M, = 2M,, W =W =w=w, -
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If an eigenfunction of (D.1l) is expanded in the solutions to (D.2),

V‘q.i(Ply—ﬁl)v%(P2y§2) = Z vq(p,ﬁ)vqc(pcﬁc)(qqclqlqa),

a, % (D.3)
then energy and angular momentum conservation make (D.3)a finite sum.
(The q's are sets.of three quantum numbers, q;=n;#,m;, g=nfm, etc. Also
p2=Mu/%, p§=Méwc/ﬁ). That the angular momentum quantum numbers should
transform "finitely" is easily seen from the fact that the spherical
harmonics are finite polynomials in the cartesian coordinates of the
particles, but the corresponding property for the radial quantum numbers
is not to be expected, and indeed only holds for the parabolic well.
This transformation was first used by Telmi(l5) in spectroscopic cal-
culations to replace the éonventional Slater method, and has since be-
come standerd in such calculations.

Tt is a trivial step to introduce unequal masses in (D.1l) with the
definitions Re=(MR;+MaRo)/(My+Ma), M=M;Mp/(Mi4Mp), Me=M;+Mz. Eq. (D.2)
is still separesble and (D.3) is still finite. It is essential however
that w;=ws.

Finally consider the generalization of (D.l) to unequal frequencies.
Under the c.m. transformation the kinetic energy separates but the poten-.
tial energy does not, so there is no analog of (D.2). Expansion (D.3)
is still possible but does not terminate. However there is a generaliza-
tion of.the c.m, transformation which will meke this expansion finite
even in this case, The simplest way to see that such a transformetion

ought to exist is to observe that the functions in (D.3) depend only on
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the products Myw; and Mowp. Thus already in the case of unequal masses
the‘products are unequal and there .ought to be a choice of new fre-
quencies which will preserve the finite structure of (D.3).

The essential element in the finiteness of (D.3) is not the sep-:
arability of the wave equation, although it was this consideration which
led Telmi (15) to the oscillator potential, but the simple way in which
the exponentials transform. The desired coordinate transformation must
preserve thié property but need not'separate the wave equation (and in-

deed does not). The exponential relation which is sought, namely
exp(-2pir?) exp(-3para) = exp(-2p3r®)exp(-ipard), (D.L)

demands . p3r24pBr3=p?rlipre, (D.5)
which can be induced by the generalized center-of-mass transformstion,
R=R - fe Re = (pfRy + pERo) /(2% + 12
(D.6)
p2 = p2p3/(p¥ + pB) P, = Di + D3
This transformation is obviously in close analogy to the c.m. trans-
formetion, The latter weights the particles according to their masses,
putting ﬁc closer to the less mobile (more massive) particle. (D.6) also
takes into account the loss of mobility due to the steeper well (higher
w-value). It is therefore a "center-of-rigidity" transformation.
The equetion,

2ny + 4 +2np + Lp =20+ [ + 20, + [, (D.T)
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which expresses energy conservation when the frequencies are equal, now
states that the "number of quanta" is preserved in (D.3). The resason

_ (D.?) holds in the general case is that with the infinite series part
of the wave functions split off by (D.4), the remaining finite polyno-
mials transform just as they did before.

Not all the values of n, f, ne, and [, allowed by (D.7) will ac-
tually occur in (D.3), & fact which further simplifies the expansion.
The additional restriction is due to conservation of angular momentum.
The values f; and [o can couple to total angular momenta from |£1 - ﬂgl
to Ly + [>. Therefore the admissible values of [ and [, must be able
to couple to some ?esultant in this same range. (The angular momentum
operators implied here are the generators of the infinitesimel rotations
in the new coordinates R and ﬁc')

The expansion (D.3) conseérves parity (the reflection eigenvalue
in the new coordinates)as a consequence of (D.7). The latter implies
that

(-l)£1+12 _ (_1)[+£c

b

so there is no further limitation of the sum on this account.

(b) Summary of Formulas

The following expressions are derived by writing out the 1l.h.s. of
(D.3) in each case in cartesian coordinates, introducing (D.6), and
returning to the spherical tensor notation. It is not necessary to
treat the different megnetic quantum number combinetions m mo indivia-

ually (as in Ref. (15)) if the spherical harmonics of degree greater
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than one are expressed in terms of vector coupled first degree harmon-
ies. The Clebsch-Gordan coefficients appearing (explicitly or implicit-
ly) in the following formulas arise from this source. (Only the spe-

cial cases required for eqg. (L4.18)with y = 100 are listed.)

I

1s: Vfoo(Plyﬁl)Vloo(szﬁz) leO(PC)ﬁc)Vloo(P)§)°

]

lp: Vflm(Pl:ﬁl)Vloo(Pz:ﬁa) (Pl/Pc)VTlm(Pc,ﬁc)leo(P,fa
+ (p2/Pe) Vioo(Pe s Re) VE1m(p, R)
1d: V§2m(Pl)§))leO(P2}§2) = (Pl/Pc)2V§2m(Pc;§c)V100(P}§)
> > 4 ' , o
+ (PZ/PC) 2Vloo(Pc :Rc) Vian(P;R) + 22(:9/Pc)z C}J;i: vtlk(PC) Rc)
. 2 k
V.)J(:]_Iﬂ-k (p) R) -

% > P > -
2s: v500(P1,R1) Vico(P2,R2) = (P1/Pe) “Vaoo(besBe) Vico(P,R)

> > L \ *
+ (p2/Pe) Vioo(Pe sRa) V20o(P,R) + 22(p/pc)>: CE28v¥ux(pe s R Wk, R

>
The notation used in the previous equations is as follows: p, R,

->
p,, and R, are defined in (D.6) ; the Clebsch-Qordan coefficient ngg ex~

c)
presses the coupling of A and B to a resultant C, with magnetic quantum
numbers written below and a dot indicating a suppressed gquantum number

whose value is fixed by a + b = c¢; the asterisk denotes complex con-

Jugate and has been omitted on the real s-functions.



APPENDIX E

RADTAT, INTEGRALS FOR THE PROTON-TARGET INTERACTION

As mentioned in connection with eqgs. (4.20) and (4.21), the radial

integrals

o) [ 13 @3) Rz 03) Vg () ety 20

may be done numerically or by use of Gaussian approximations to vlp and
the Weber-Sonine formula (35, p. 35). In this appendix the latter ap-
proach will be adopted for the three potentials (5.6a), (5.6b), and | -
(5.7). More general forms can be integrated using the above-mentioned

formula specialized to half-integral Bessel functions:

S, e the) e,

(E.2)
/Z +1
o M) ptided; £ gt Vi
2h+t+) 3 ' ’ 2p2
b [ (4+3)

For t even, the confluent hypergeometric function in (E.2) is a
finite polynomial, while for t odd it can be evaluated in terms of the

function F given in Appendix B. Thus,

X 2
1.2, x2? / ¢
.F,(zu)x)’zfléa(r (E.3)
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and the functions involving different parameters can be reached by
standard contiguity formulas.

The following are some special cases of (E.l), in which it is sup-
posed that |

2
__’/z: f’;b?'

/ 2 2
— 5 €T €
2\ %h 5 2 [T -3 < (E.4)
+(n) Ze fo e dx

Furthermore, because of the short range of the first two terms in (E.L),

it is convenient to use the expansion,

3%
z4p B

~
v

Thus, in (E.1l) the approximate form is used,

) 52 2 — 1722 2.2 ‘z‘/ﬁza
% FGG [~ 2 T Lelporhie
y (E.6)
-102p2 / i
t(1- ¢ 10@'70)(7% /2562/ e 2* Pz
0

Explicitly,

10 2,2 ":%’2:2’22
I3 (~Vp € )=



—_1 2 27 p 3 ?3/ ,
zfzpv(;;)% s L) e ey
'[ia} 2[ Yo € 20 )]

(E.8)

, ; 3 2 * - —
- l@zé ({ooU‘z _E_"‘_L (,5-_ 2%32 + 43 ) e 2(p*a?)
* 2(p*ra?)? TR (phed)?

"~y 52,2 ' —< 3,2
o Zi@a/’é (—‘7‘16)%{0_2@2@ 27 )J (E.10)

/ ’/Z yﬁ 2 4’ \
=-L el Tt T/ (35~ 1£%5 +_§3__)K
‘ 3(p+a?)?

PZ*_U-Z' (/327‘(7'2)?'

g5 07 B3 /20547

I°[e i FR ) hae [ et X g

(E.11)

= RZe)pYrk T, (45,0, P57 )

NT o~ 385r /2 vh = 2 p¥  ~d 222
I"[e %7 ()% 2 /o e 2 /OM] (E.12)

e ’
:/8/9 /3% Zf—zggf(%z/z s por f@f)
By setting O, = O in (E.11) and (E.12), the remaining integrals

in (E.3) can be obtained. The integrals I, and I, are given in Apen-

dix B.



‘APPENDIX F

CURVE FITTING WITH GAUSSIAN-TYPE FUNCTIONS

1. THE WOODS-SAXON FORM FACTOR (70)

The Woods-Saxon potential, V(r)

1

V6(1+e(r‘R)/a)'l, can be fit

as a one-parameter form factor,

i}
I

V(r) Vg = £(x) = (1+e¥-Y)-1, (F.1)

I

with vy =r/a, Y = R/a.
The a.pprox:i.ina.tion can be started with an exponential,
£y = e-E8%y2 (F.2)
This agrees with (F.l) at r.= O neglecting, as will be done through-
out, the small quantity e~Y rin compa.rison to unity. The constant g
may be determined by arbitrarily equating f and f A &t their 10% points.
For f this is found to be at y = Y+2.2, which determines g. The re-

sult is,

fp = expl[-2.146y%/(Y+2.2)2]. (F.3)

A plot of the first residual, f-f,, as a function of y/Y for sev-
eral Y-values shows that its principal maximum 1s at y/Y ~ 0.76, with
a h&lf-—width which is roﬁghly, A(y/Y) ~ .6_)4. If 'this is to be fitted
w:ith xPexp(-£x2) , using x = hy/Y, then the peak will be located cor-
rectly if by = 1,316, hs = 1.861, hg = 2.279, h, = 2.632, etc., the

subscriptbeing n., The half-widths of these approximating functions are s
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when divided by the corresponding h , A(y/Y) = 1.22, .88, .72, .63, etc.
This singles out n = L.
Finally, if the peak height of f-f, is plotted against Y it turns

out roughly linear. This gives the final form,

£-£, (1.43Y-2.48) (r/R) *exp[-3(2.632r/R)?].  (F.L)

This two-term approximation to f is illustrated in Fig. F-1 for R = 2.8,

a = 0.5.
0 I 2 3 49 5

o

10

Fig. F-1. Solid curve: Woods-Saxon form factor, R =
2.8, a = 0.5. Dashed curve: Eq. (F-1), exp
(-.141r2) +.09r* exp(-.Lhkr2),
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2. ALTERNATIVE FORMS FOR THE CUTOFF FUNCTION

(a) If the function f of (3.3) is squared, cubed, etc., it ex-
hibits a sharper rate of decrease, and the new integrals which arise
are identical in form to the ones already evaluated. Ther¢ are merely

more terms in the final amplitude, since

L L 02,2
(1-pe-20%r®)™ - i (1) () Fe-zk0r%,
k=0

(b) If a more rapidly decreasing function g is compared graph-
ically with f of (3.3), the difference is seen to be concentrated prin-

cipally in two single peak functions.

This leads to an expression of the form,

1n2..2
g = f + Arfle-20Pr2 | g le-3p°r

The integrals are all obtainable by parametric differentiation from
the ones aiready evaluated, but are rather lengthy to write down.

(c) A fairly simple device is to take b greater than one in (3.3).
The unphysical region of negative f in the center of the nucleus must

contribute negligibly to the value of the integral.
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3. THE DEUTERON WAVE FUNCTION

The single Gaussian form for the internal deuteron wave function
preceding eq. (L4.5), can be improved by using two or more Gaussians.
The following figure compares the Hulthén function with a two-term
approximation chosen by eye. Using the notation y(r) = (hrr)'-él'u(r) /r,
the Hultheh function is

1
ug(r) = [2ab(b+a)/(b-a)®)® (e-ar-e"PT), (F.7)
while the "double Gaussian' is

u(r) = .33rRyo(.83,r)+.78rRy4(.32,r). (F.8)
In eq. (F.7), & = .2317, b ~ Ta, while R0 in (F.8) is the oscillator

function of Appendix D.

u(r) Double Gaussian

Hulthén

r(fermis)

Fig, F-2. A two-term Gaussian approximation to the
Hulthen wave function. '



APPENDIX G
EVALUATION OF THE STRIPPING AMPLITUDES AND THE
SQUARE WELL BOUND STATE PROBLEM
1. THE BASIC STRIPPING AMPLITUDES

The result of integrating over the region r, > a in eq. (3.21), as
in the original Butler theory, is aparﬁ from constants, the "outside"
amplitude,

0p(x,y) = [Gp(9)3p(x) + xJp-2(x) 1/(x24y3) ,  (G.1)
where
Ge(y) = -1y hg.l)l(iy)/hgzl)(iy) =y by (y) /(). (G.2)

The quantities x and y define a square well bound state eigenvalue
problem, If y is held constant, then the numerator of (G.1l) is an
oscillatory function of x, similar to a slowly damped sine curve. (The
1=0 curve is an exception, and goes to a positive value at x=0.) Denot-

ing a node position by X, and y, it is seen that

Xojl-l(xo)/jl(xo) = =y hz-l(y)/hz(y), (G.3)

which is Jjust the condition satisfied by the inside and outside wave
numbers of a square well bound state of orbital angular momentum £.

The notation is defined in Fig. G-l. The first node (not counting x=0)
defines the lowest [l-state, to which the radial gquantum number n=1 may

be attached. For a given node, n, and given [-value, the node position
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X =X is a function of y and can be plotted as a single curve. This

is done in Fig. G-2, the square xi being more convenient.
The simplest way to compute the outside amplitude (G.1l) is not

from its definition but from the stripping tables (1lL).

I\
]
|
E
r=a
E=0 B A r--»
B=f?*%*/2m
E=B |- l—‘ NP S ——
v=hi(k?+y?) /2m
T=h%2/2m
E=V X

Fig. G-1l. Notation for the square well bound state
problem. The kinetic, binding, and poten-
tial energies are T, B, and -V, respective-
ly. The wave numbers y and k are positive
as are Xg=ya and y=ka. The reduced massis m.

0y(%,5) = % [1+0.008(x2+y2) | N ompp(X,7) (G.L)
The correct sign in (G.4) can be easily determined, since (G.l) starts

out with a positive loop at small x-values and therefore the positive
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root in (G.4) is required in this region of x. A sign change in (G.1)
occurs as every node, and since these are reflected as minima in O%AB’
it is only necessary to scan this function briefly to determine when
the negative sign should begin to occur in (G.k4).

The region r, < a in @5;2l)leads to the "inside"amplitude,

Ip(x,y) = (x2473) 0y(x,y)/(x3-x3), (G.5)

while the complete integration r, > O gives the Born amplitude,

I

By(x,y) (x5+77) 0y(x,¥y) /(x5-x5) (G.6)

I,(x,y) + 0y(x,y). (G.7)

The quantity x, is required in order to compute these functions,
and since y is known, it is easily found. The spectroscopic designa-
tion (n,f) is determined by the shell model description of the state
in question, the procedure for finding x, being given in Section 2-(a)
of this appendix.

In determining the effective wave number 7né(and,its variants) in
(3+26), the mefhod of approximation (Appendix C) is such that n is the
same for jz(yrn) and j£(7hprn)‘ Therefore the wave number kp, in (3.30)
can be found from n, £, Ynp? and a, as described in Section 2-(b).

The singular point in I; and B, at X=X, 1s only apparent, since the

numérator vanishes there to the same order and the ratio is finite.
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2, SOLVING THE SQUARE WELL EIGENVALUE PROBLEM

If it is assumed that the spectroscopic designétion of the state
(n,£) is known, then there are several forms which the eigenvalue prob-
lem-can take, depending on which paraméters are given. The forms of
interest in the‘present context are the following:
(a). Given the radius a and the binding energy B, find the inside wave
numﬁer Ve

Method: Compute y=ka = (2mBa2/52)% and enter Fig, G-2 at the
bottom. Read up to the (n,!) curve and find.xg at the left, remember-
ing to correct the ordinate scale as described in the caption, Then
the inside wave number is y=xy/a while the well depth is Vbﬁe(x§$y2)/
2meZ.
(b). Given the radius a and the inside wave number 7, find the outside
wave number,

Method: Compute xg = 7%a® and enter Fig. (-2 at the left, reading
out y at the bottem. Then k = y/a.

There are other variations of the elgenvalue problem which can be

solved in a similar manner. For example, given the radius a and the

depth V, find the binding energy B. Or, given the depth V and the bind

ing energy B, find the radius a. For these problems it is more conven-
ient to plot two other quantities as funetions of y, namely (x§+y2) and
Y/Xov Then the former problem is solved by entering the curve of

x2+y2) versus y with x3+y® = 2mVa2/#° and reading out y = ka., The
) )
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latter is solved by entering the y/x, curve with y/x, = [B/(V-B) ].é and
reeding out y. The trick here is that y/xo = k/y is independent of the
radius a and can be computed without its knowledge. The same device
-allows a straight forward determinsation of the correct radius to use in
the Butler formula (Ref. (14), p. 125), eliminating in most cases the
need for trial and error.

The functions x5+y~ and y/x, for the first four s,p, d, f, g, and

h states are available from the author on request.
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o 35(67)
‘nffbr square well eigenfunctions. 20 (57)
xfty t= 2mVvia®/h*
SI™ (The number in parenthesis following
the spectroscopic designation of a2srez)
each curve is to be added Yo the
ordinale scale.) 2pP(39)
8 e
15 (0)
1P (9)
10 (20)
1F (33)
o | | | | | |
(o) | 2 3 4 5 6

Fig. G-2. Plot of the quantity xg = 2mVa®/h>-k2a® as a function
of y = ka for various square well bound states.
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