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Summary. We consider the linear regression of outcome Y on regressors W and Z with some values of W missing, when our
main interest is the effect of Z on Y, controlling for W. Three common approaches to regression with missing covariates are (i)
complete-case analysis (CC), which discards the incomplete cases, and (ii) ignorable likelihood methods, which base inference
on the likelihood based on the observed data, assuming the missing data are missing at random (Rubin, 1976b), and (iii)
nonignorable modeling, which posits a joint distribution of the variables and missing data indicators. Another simple practical
approach that has not received much theoretical attention is to drop the regressor variables containing missing values from
the regression modeling (DV, for drop variables). DV does not lead to bias when either (i) the regression coefficient of W is
zero or (ii) W and Z are uncorrelated. We propose a pseudo-Bayesian approach for regression with missing covariates that
compromises between the CC and DV estimates, exploiting information in the incomplete cases when the data support DV
assumptions. We illustrate favorable properties of the method by simulation, and apply the proposed method to a liver cancer
study. Extension of the method to more than one missing covariate is also discussed.

Key words: Complete-case analysis; Drop variables analysis; Gibbs sampling; Nonignorable modeling; Shrinkage;
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1. Introduction
We consider multivariate regression with missing covariates,
with the structure of the data displayed in Figure 1. There is
a set of outcomes Y and two sets of regressor variables Z and
W, with Z and Y fully observed and W with missing values.
Here we assume W is a single variable, though generalization
to multivariate W is possible and discussed later. We denote
by (zi , wi , yi ) the values of (Z, W, Y) for observation i, and by
Rwi

the indicator for whether W is observed or missing. Our
main interest concerns one or more of the coefficients of the
regression of Y on Z, adjusting for W. The incomplete cases
have very little information for the coefficient of W (Little,
1992), and because our focus is on exploiting information in
the incomplete cases, we assume that this coefficient is not
the main parameter of interest. This kind of data structure is
common in health-related studies. For example, in a behav-
ioral intervention trial, the treatment assignment variable is
always observed, while other variables may be missing. In a
study of the effect of lead exposure on academic scores, blood
lead level is always observed but socioeconomic variables such
as Income might have missing values.

Reviews of regression with missing data include Little
(1993), Ibrahim, Lipsitz, and Chen (1999), Ibrahim, Chen,
and Lipsitz (2002), Ibrahim et al. (2005), and Chen et al.
(2008). Three common approaches are:

(i) Complete-case analysis (CC), which discards the incom-
plete cases;

(ii) Ignorable likelihood (IL) methods, which base inference
on the observed likelihood given a model for the distri-
bution of Y and W given Z that does not include a dis-
tribution for the missing data mechanism; examples of
IL methods include ignorable maximum likelihood, and
multiple imputation based on draws from the Bayesian
predictive distribution;

(iii) Nonignorable modeling, which derives inference from
the likelihood function based on a joint distribu-
tion of the variables and the missing data indicators.
Examples include generalized Tobit (type II) model
(Heckman, 1976; Amemiya, 1984) and pattern-
mixture models (Little, 1993, 1994; Little and Wang,
1996).

IL methods are valid under well-specified models when the
missing data are missing at random (MAR), which in this
context means that missingness of W can depend on Z and
Y but not on W. We focus here on situations where missing-
ness of W is thought to depend on the value of W, so that
IL methods are biased. One possibility is to apply a nonig-
norable modeling method, but such methods are vulnerable
to misspecification of the missing data mechanism, and suf-
fer from problems with identifying the parameters (see, e.g.,
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Pattern Observation, i iz  iw  iy  
iwR  

1 i  = 1,…,m √ √ √ 1 

2 i  = m +1,…,n √ x √ 0 

 Key: √ denotes observed, x denotes missing

Figure 1. Missing data structure in Section 1.

Little and Rubin, 2002, chapter 15). Also software for these
methods is not widely available.

A simple alternative is to apply CC in this setting. This has
the advantage of yielding valid inferences when missingness of
W depends on the covariates (Z, W) but not on the outcomes
Y (Little and Rubin, 2002, example 3.3). On the other hand,
it discards information in the incomplete cases, which might
be substantial if the fraction of cases with W missing is high.

Another simple approach, which has received less theoret-
ical attention but we suspect is common in practice, is to
simply drop the incomplete variable from the analysis (DV),
and estimate the regression of Y on Z using all the cases. It
is well known from regression theory with complete data that
omitting a covariate yields valid inferences when: (1) the omit-
ted covariate has no effect on the outcome; or (2) the missing
covariate is not associated with the fully observed regressors.
If neither of these conditions holds, then DV leads to biased
estimates. If the above effects are nonzero but small, DV is
still an attractive method, because it may be worth accepting
a small amount of bias in the regression estimates to retain
the information in the incomplete cases.

A pragmatic two-step approach is to apply CC first, and
then switch to DV if the coefficient of W in the CC analysis is
small, for example if it has a nonsignificant p-value. This can
be viewed as a simple case of variable selection with missing
data, which is considered more generally in Rubin (1976a).
However, this is an “all or nothing” approach, and in general
basing inferences on a preliminary statistical test is known
to be problematic. This article proposes a pseudo-Bayesian
(PB) data-driven compromise between CC and DV, based on
a prior distribution that assigns some weight to both analyses.

The rest of the article is organized as follows. Section 2
presents a motivating example using data from two Eastern
Cooperative Oncology Group clinical trials. Section 3 reviews
properties of CC and DV, in a slightly more general regres-
sion setting. In Section 4, we propose a PB shrinkage method
for regression with missing covariates, which compromises be-
tween CC and DV analysis, assigning more weight to DV when
the assumptions of that analysis are empirically justified, and
more weight to CC when they are not. Section 5 presents
some simulations that demonstrate attractive properties of
the proposed method, and in section 6 we apply the proposed
method to a liver cancer data set. Extensions to more than
one missing regressors are discussed in Section 7.

2. The Motivating Example: A Liver Cancer Study
To motivate our methodology, we consider data of 191 pa-
tients from Eastern Cooperative Oncology Group clinical tri-
als EST 2282 (Falkson, Cnaan, and Simson, 1990) and EST

Pattern Observation, i iz  iw  iy  
iwR  

1 i  = 1,…,m √ √ √  (1,...,1)wu =  

2 i  = m +1,…,n √ ? √ wu  

 Key: √ denotes observed, ? denotes missing at least one entry 

Figure 2. Missing data structure for Section 3.

1286 (Falkson et al., 1995). This dataset has been widely
used to illustrate different methods for handling incomplete
covariates in regression analysis or generalized linear mod-
els (Ibrahim, Chen, and Lipsitz, 1999; Huang, Chen, and
Ibrahim, 2005; Chen, Zeng, and Ibrahim, 2007; Das, Maiti,
and Pradhan, 2010).

We are primarily interested in the patient’s status as he/she
enters the trials. In particular, we are interested in how the
number of the cancerous liver nodes (CNTs) is predicted by
four baseline characteristics:

(1) Body mass index (BMI, in kg/m2);
(2) Age (in years);
(3) Jaundice (yes, no): the yellowish staining of the skin

and the whites of the eye; and
(4) Time since diagnosis of the disease (TSD, in weeks).

The effects of BMI, age, and jaundice are of more interest
to a physician because these could be potential risk factors for
liver cancer, but TSD is an important covariate that needs to
be adjusted for.

Like many other empirical studies, this dataset contains
missing values. TSD is missing for 17 patients (8.9%) while
other variables are fully observed. CC analysis suffers from
inefficiency and potential bias if the missingness of TSD de-
pends on the outcome. DV analysis uses all cases but makes
a strong assumption that exclusion of TSD does not bias the
estimates of the other regression coefficients. IL makes use of
the partial information in the incomplete case but assumes
the missing data are MAR (Rubin, 1976b; Little and Rubin,
2002). We propose a PB approach for this problem, which
compromises between the CC and DV estimates.

Before describing the PB approach, we first review more
precisely the assumptions underlying the CC and DV
methods.

3. Complete Case and Drop Variable Analyses
In this section, we consider the data with the structure in
Figure 2. Let {(zi , wi , yi ), i = 1, . . . n} denote n independent
observations on a (possibly multivariate) outcome variable Y
and two sets of covariates, Z and W, where Z, Y are fully ob-
served and W has missing values. Interest concerns the param-
eters φ of the distribution of Y given (Z, W), say p(yi |zi , wi , φ).

The rows of Figure 2 divide the cases into two patterns.
Pattern 1 (i = 1, . . . , m) consists of complete cases, for which
(zi , wi , yi ) are fully observed. Pattern 2 consists of cases where
at least one of the variables in wi is missing. The column Rwi

represents a vector of response indicators for wi , with entries
1 if a variable is observed and 0 if a variable is missing. For
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the complete cases, Rwi
= uw ≡ (1, . . . , 1), a vector of ones of

the same length as wi , indicating that all the entries in wi are
observed. For the incomplete cases in pattern 2, we write ūw ,
defined to mean that some entries in Rwi

are 0 and others are
1. The pattern of missing values will typically vary over the
individual rows in pattern 2, but we do not need to distinguish
them for the present discussion.

Our main interest is the effect of Z on Y, adjusting for W.
CC analysis bases inferences for φ on the complete observa-
tions in pattern 1. In a likelihood setting, the method bases
inference on the conditional likelihood corresponding to the
complete cases, namely:

Lcc(φ) = const.×
m∏
i=1

p (yi |wi , zi , Rw i
= uw ;φ), (1)

The key condition under which inference based on Lcc(φ) is
valid is that the probability that an observation is complete
does not depend on the outcomes, that is:

p(Rwi
= uw |zi , wi , yi , ψ))

= p(Rwi
= uw |zi , wi , ψ)) for all yi , (2)

Note that this condition is missing not at random
(MNAR)—missingness depends on the values of W that are
sometimes missing. CC analysis works in this case because
equation (2) implies that

p(yi |wi , zi , Rw i
= uw , φ) = p(yi |wi , zi , φ),

so the regression based on the complete cases is the regression
of interest, for the whole sample. Technically, inference based
on (1) can be considered a partial likelihood method (Little
and Zhang, 2011). The likelihood for a fully specified model
with parameters (φ, γ) can be written as

L(φ, γ|Z,Wobs, Yobs, Rw ) = Lcc(φ)Lrest(φ, γ),

and the component Lrest(φ, γ) is discarded. ML estimates
based on Lcc(φ) are consistent and asymptotically normal, but
are not necessarily fully efficient, because Lrest(φ, γ) may con-
tain information about the parameters of interest, φ. However,
recovering this information requires a model for the missing
data mechanism, which may be difficult to specify correctly,
and which is not needed for CC analysis.

Instead of dropping the incomplete cases, DV analysis re-
moves the incomplete variable from the regression model, as
would be sensible if βw , the regression coefficient of W, were
equal to zero. Writing φ = (βw , φz ), the method bases infer-
ence on the following likelihood:

LDV(φz ) = const.×
n∏
i=1

p [yi |zi , βw = (0, . . . , 0);φz ]. (3)

When W has no effect on the outcome Y, DV analysis is
better than CC, not only because it removes inefficiency in-
duced by estimating the coefficient of W, but also by retaining
the incomplete cases. The DV analysis also yields valid infer-
ences for the regression coefficient of Z even if βw �= (0, . . . , 0)
when W and Z are not associated. This fact will be exploited
in the proposed method, which we now describe.

4. Pseudo-Bayesian Shrinkage Method for Regression
with Missing Covariates

4.1 Motivation
In this section, we consider the data structure in Figure 1,
where the missing covariate W is univariate and the fully
observed Z could be multivariate. We are interested in the
regression of Y on Z, controlling for W, and assume the nor-
mal linear regression model:

(yi |wi , zi , βw , βz , σ
2) ∼ N (β0 + wiβw + ziβ

T
z ; σ2), i = 1, . . . , n.

The CC analysis is valid when the missingness of W does
not depend on the outcome Y, after conditioning on Z and W.
DV analysis is valid if either of the following two conditions
is met:

(1) βw = 0;
(2) ρwz∗ ≡ cov(W,Z∗) = 0, where Z∗ is a linear combination

of individual components of Z, with the weights being
the corresponding estimated regression coefficients in
the regression of Y on W and Z.

This suggests assigning βw a prior distribution that assigns
positive probability to 0, because this will recover informa-
tion in the incomplete cases when the posterior probability
that βw = 0 is high. This kind of prior has been proposed
for Bayesian variable selection problems. One example is the
“spike and slab” mixture prior, which puts a probability mass
on βw = 0(Mitchell and Beauchamp, 1988). Another example
is using a mixture of two normal distributions with zero mean
and different variances, a formulation proposed by George and
McCulloch (1993). In this article, we model βw using mixture
of a point mass at βw = 0 and a normal distribution with zero
mean and large variance.

4.2 Modeling
Introducing a latent variable J(= 0 or 1), we represent the
mixture distribution by

βw |J ∼ Jδ(0) + (1 − J)N
(
0, τ 2

w

)
, (4)

with δ(0) representing a point mass at 0, and

Pr(J = 0) = 1 − Pr(J = 1) = π0. (5)

When J = 0, βw ∼ N (0, τ 2
w ), and when J = 1, βw ≡ 0. We

set τ 2
w large so that if J = 0, βw has a flat prior as in a stan-

dard least-squares analysis. To incorporate (4) in the full prior
distribution, we use a multivariate normal prior

β|J ∼ N (0, DJ DJ ), (6)

with

DJ ≡ diag[1, (1 − J)τw , τz ]. (7)

We use the inverse gamma conjugate prior for the residual
variance σ2,

σ2|J ∼ IG(νJ /2, νJ λJ /2). (8)

The choices of νJ and λJ reflects the statistician’s prior
belief about the residual variances for whether the covariate
W is included in the model or not. In the absence of such prior
information, we choose νJ and λJ small so that the analyses
are mainly based on the likelihood.
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4.3 A Pragmatic Choice of π0

As we can see from Section 4.1, one condition for DV analysis
to be valid is that the correlation coefficient ρwz∗ between W
and Z∗ is zero. This indicates that: (1) if we believe that ρwz∗ =
0, then we can put a high prior probability on Pr(J = 1), and
(2) on the other hand, if |ρwz∗ | is large, we are more inclined to
include W and use the CC. So from a pragmatic perspective,
it is advantageous to choose π0 as an increasing function of
|ρwz∗ |. We found the following choice to work well in simulation
studies:

π0 = f (|ρwz∗ |) = |ρwz∗ |. (9)

To propagate the variation in posterior estimation of βz ,
we recommend using draws of ρwz∗ based on the Bayesian
posterior distribution, by modeling W and Z∗ as a bivariate
normal distribution using the complete-cases likelihood

L (μwz∗ ,Σwz∗) =
m∏
i=1

f (wi , z
∗
i |μwz∗ ,Σwz∗). (10)

4.4 Estimation
We obtain draws of the parameters from the posterior distri-
bution using the following Gibbs-like sampler. Let

β =
(
1, βw , βTz

)T
, XCC =

⎡
⎢⎢⎢⎢⎢⎣

1 w1 zT1

1 w2 zT2

. . . .

1 wm zTm

⎤
⎥⎥⎥⎥⎥⎦ ,

XDV =

⎡
⎢⎢⎢⎢⎢⎣

1 zT1

1 zT2

. . . .

1 zTn

⎤
⎥⎥⎥⎥⎥⎦ , YCC =

⎡
⎢⎢⎢⎢⎢⎣

Y1

Y2

. . .

Ym

⎤
⎥⎥⎥⎥⎥⎦ , YDV =

⎡
⎢⎢⎢⎢⎢⎣

Y1

Y2

. . .

Yn

⎤
⎥⎥⎥⎥⎥⎦ .

Also, let β̂DV,LS be the least-square estimate based on DV
analysis, and β̂CC,LS be the least-square estimate based on CC.
Accordingly, the estimated residual variances for DV and CC
analysis are denoted as σ̂2

DV,LS and σ̂2
CC,LS.

The chain is initialized at a starting value β0, σ2(0), and J 0.
A reasonable starting value for J 0 is 0, which is a complete-
case scenario, and therefore the corresponding starting values
for β0, σ2(0) are β̂CC,LS and σ̂CC,LS. First, βk and σ2(k )can be
sampled in the following way:

(1) If Jk−1 = 0,

βk =
[
βk0 , β

k
w ,
(
βkz
)T ]T

∼ N
[
ACC,J k −1 (σk−1)−2XT

CCXCCβ̂CC,LS, ACC,J k −1

]
, (11)

where ACC,J k −1 = [(σk−1)−2XT
CCXCC +D−1

J k −1D
−1
J k −1 ]−1 and

D−1
J = diag[1, τ−1

w , τ−1
z ]; and σ2(k ) is obtained by sampling

from

σ2(k ) ∼ f (σ2(k )|βk , Jk−1)

= IG

(
n + νJ k −1

2
,
|YCC −XCCβ

k |2 + νJ k −1λJ k −1

2

)
.

(12)

(2) If Jk−1 = 1,

βk = [βk0 , 0, (β
k
z )T ]T with[

βk0 ,
(
βkz
)T ]T

∼ N
[
ADV ,J k −1 (σ2(k−1))−1XT

DVXDVβ̂DV,LS, ADV,J k −1

]
,

(13)

where ADV,J k −1 = [(σ2(k−1))−1XT
DVXDV +D−1

J k −1D
−1
J k −1 ]−1 and

D−1
J = diag[1, τ−1

z ]; and σ2(k ) is obtained by sampling from

σ2(k ) ∼ f (σ2(k )|βk , Jk−1)

= IG

⎡
⎢⎢⎢⎣n + νJ k −1

2
,

∣∣∣∣YDV −XDV

(
βk0 ,
(
βkz
)T )T∣∣∣∣

2

+ νJ k −1λJ k −1

2

⎤
⎥⎥⎥⎦ .

(14)

Next, ρkw z ∗ is sampled based on the posterior covariance ma-
trix of the bivariate normal distribution formed by Z∗ and W
(using the complete cases).

The final step is to sample Jk , which is Bernoulli with
probability

Pr
(
Jk = 1|βk , σ2(k ), ρkw z ∗

)
=

r

r + s
, (15)

with r=f (βk |Jk =1)(1−|ρkw z ∗ |) and s=f (βk |Jk =0)|ρkw z ∗ |.
Note that, when Jk−1 = 0, the conditional distribution of

βk , σ2(k ) are based on the complete-case likelihood, which is a
partial likelihood. Because partial likelihood is not very prin-
cipled from a strict Bayesian perspective, we label the method
“pseudo-Bayes.” We demonstrate in simulations in the next
section that it leads to inferences with good frequentist prop-
erties.

4.5 Posterior Probability that J = 0, π1

The posterior probability of J = 0, π1, namely, the posterior
probability of including the incomplete variable W in the re-
gression model and using CC, is an important indicator in
the modeling. A small π1 tends to put more weight on DV,
whereas a large π1 puts more weight on CC.

5. Simulation Studies
In this section we describe simulations that illustrate the
properties of the PB approach in Section 4.

We simulate(w, z1, z2)i from normal distribution with mean
0, and covariance matrix(

1 ρ ρ
ρ 1 ρ
ρ ρ 1

)
,
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for i = 1, 2, . . . , 100. Y is related to Z and W by the linear
model

yi = 1 + awi + z1i + z2i + εi , εi
iid∼ N (0, 2.52).

Let Mwi
denote the missing data indicator for wi . Missing

values in W are generated based on the following four missing
data mechanisms:

(1) MCAR: Pr(Mwi
= 1|wi , z1i , z2i , yi ) = 0.25;

(2) MNAR: Pr(Mwi
= 1|wi , z1i , z2i , yi ) = expit(wi − 1);

(3) MAR1: Pr(Mwi
= 1|wi , z1i , z2i , yi ) =

expit(z1i + z2i − 1);
(4) MAR2: Pr(Mwi

= 1|wi , z1i , z2i , yi ) = expit(yi − 2).

where expit(·) is inverse logit function, expit(·) = exp(·)/
[1 + exp(·)]. Each missing data generation scheme results in
about 25% of the values of W being missing.

We simulate data for three different correlation coefficients
(ρ = 0, 0.3, 0.8) and two regression coefficients for W (a =
0, 1), yielding 24 scenarios.

Five methods are applied to estimate the regression coeffi-
cients:

(1) BD: estimates from the regression before deletion (BD),
as a benchmark method.

(2) IL: ignorable maximum likelihood assuming MAR;
(3) CC: Complete-case analysis;
(4) DV: dropping the missing covariate W; and
(5) PB: the proposed pseudo-Bayesian shrinkage method

between CC and DV.

We report the ratios of root mean square errors (RMSEs) of
IL, CC, DV, and PB method to the RMSE of BD, confidence
coverage probabilities, and empirical bias Z-score (which is
calculated using empirical bias/empirical standard error of
the mean) of the estimated regression coefficients from each
method, in Tables 1, 2, and 3. Results are based on 1000
repetitions for each simulation condition. Table 1 also reports
the posterior probabilities of including W.

We focus on the regression coefficients of z1 and z2. CC is
consistent for the first three missing data mechanisms because
missingness does not depend on the outcome, but biased for
the fourth missing data mechanism because missingness of W
is dependent on the outcome. There is some loss of informa-
tion because the incomplete cases are dropped from the anal-
ysis. IL is consistent and efficient for missing data mechanism
I, III, and IV because all are MAR. DV is valid when a =
0 or ρ = 0, and in these cases the PB estimates are close to
DV; when a �=0 and ρ �= 0, PB estimates yield a compromise
between CC and DV, with the posterior probability assigned
to CC estimates increasing as a and/or ρ move away from 0.
The method yields small RMSEs and good confidence cov-
erage compared to CC and DV in almost all scenarios. As
expected, IL performs well for the MAR mechanisms I, III
and IV but has larger RMSE than PB estimates when the
data are MNAR.

6. Application to a Liver Cancer Study
We now apply the proposed method to the liver cancer data
presented in Section 2. We regress the baseline number of
CNTs on four baseline characteristics: BMI, age in year, asso-
ciated jaundice (yes, no), and TSD of the disease (in weeks).

To be consistent with Chen et al. (2007), we use the same
transformation as they did. Square root transformations are
used on CNTs and TSD to achieve approximate normality.
The new continuous explanatory variables BMI, age, and
TSD1/2are then formed by dividing the original variables by
50, 70, and 18, respectively, to bound the covariates on the
interval of (0, 1). In Chen et al. (2007), TSD is assumed to
be MAR. However, it is likely that TSD is not MAR because
patients with longer TSD are less likely to recall the date of
diagnosis of liver cancer, which means missingness of TSD
depends on TSD itself.

The Pearson correlations between TSD and BMI, age, jaun-
dice are –0.020, 0.013, and 0.009, respectively. The correlation
between TSD and the linear combination of BMI, age, and
jaundice weighted by the regression coefficients using com-
plete cases is –0.002.

Table 4 shows the results of applying the PB shrinkage
method, CC and DV. We ran 10,000 iterations and obtain
draws of the posterior estimates of the regression coefficients.
The posterior probability of including TSD is 0.0153, indi-
cating that the PB method favors dropping TSD from the
regression and using full sample. This is not surprising, be-
cause the correlation between TSD and other covariates is
small, and the effect of TSD on the outcome CNTs is also
small.

For easier comparison, we calculate a pseudo p-value based
on t-distribution. The degree of freedom is calculated using
the following formula:

df = n × (1 − π̂1) − k − π̂1, (16)

where n is the full sample size, k is number of all regressors,
and π̂1 is the estimated posterior probability of including the
missing regressor.

As we can see from Table 4, both CC and PB methods show
that age and jaundice are related to the number of CNTs,
while BMI and TSD are not significant. However, the PB
method yields smaller standard error for the regression esti-
mate; therefore, the effect of age and jaundice are stronger
than CC. Because the posterior probability of keeping TSD
in the modeling is very small (π̂1 = 0.0153), the PB method
is very similar to the regression without TSD.

7. Discussion
We have described a PB shrinkage method for regression anal-
ysis with a missing covariate, which is a compromise between
CC and the analysis that drops the missing covariate. The
method recovers information in the incomplete cases by as-
signing the regression coefficient of the incomplete variable
a mixture prior of a normal distribution and a point mass
at zero. A Gibbs-like iterative sampling algorithm is used to
implement the method; convergence is fast.

The method is appropriate when missingness of the missing
covariate depends on the covariates but not the outcome. This
mechanism is potentially MNAR, and an attraction of the
proposed method is that it handles such cases without having
to model the specific form of the missing data mechanism.
The method also works when the missing data mechanism
for the covariate is MAR but independent of the outcome.
However in general IL methods are preferable in that case,
because they are asymptotically efficient; the IL also works
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well under slight violations of the MAR assumption (Little
and Zhang, 2011). The proposed PB shrinkage method does
yield biased estimates of the intercept and the regression co-
efficient of the incomplete covariate, W, as with any Bayesian
method that puts positive prior probability for this coefficient
on zero. Whether this bias is a serious limitation is debatable,
but here our focus is on the potential recovery of information
for the coefficient of Z, adjusting for W.

Our method can be generalized to the situation when wi

is a vector with dimension d, with components missing on
possibly different sets of cases. We assume that the missing-
ness of W is independent of the outcome. We assign to each
component of W an independent mixture distribution prior
as in Section 4.2. In this case, ρw 1z , . . . , ρw d z represents the
d correlation coefficients between W and Z∗, and draws of
the indicators J1, . . . , Jd for whether the corresponding coef-
ficients are zero are sampled in the estimation step. We sug-
gest sampling J1, . . . , Jd in a random order to get fast con-
vergence of the chain. For the jth component of W, YCC,j is
defined to be the vector of outcomes corresponding to CC,
while YDV,j is defined to be the vector of outcomes corre-
sponding to the complete cases when Wj is dropped from the
regression. XCC,j ,XDV,j ,β̂CC,j , and β̂DV,j are defined in a simi-
lar fashion.

The proposed method could be combined with existing
multiple imputation methods to handle more general prob-
lems where Z is also incomplete. In particular, when missing-
ness of covariates W is MNAR but does not depend on the
outcome, and missingness of Z is MAR, the method could
also be applied by assigning similar mixture priors to the re-
gression coefficients of W, while using multiple imputation via
chained equations (Raghunathan et al., 2001; IVEware, 2011;
van Buuren and Oudshoorn, 2000) to impute missing values
of Z.

There is a potential loss of efficiency of the PB approach
compared to full modeling of the data and missing-data mech-
anism. However, the proposed method avoids specifying a
model for the missing data indicators, which is vulnerable to
model misspecification. Future work will examine this trade-
off in more detail.
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