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Efficient designs of gene–environment
interaction studies: implications of
Hardy–Weinberg equilibrium and
gene–environment independence
Jinbo Chen,a*†‡ Guolian Kang,a‡ Tyler VanderWeele,b
Cuilin Zhangc and Bhramar Mukherjeed

It is important to investigate whether genetic susceptibility variants exercise the same effects in populations
that are differentially exposed to environmental risk factors. Here, we assess the power of four two-phase
case-control design strategies for assessing multiplicative gene–environment (G–E) interactions or for assessing
genetic or environmental effects in the presence of G–E interactions. We considered a di-allelic single nucleotide
polymorphism G and a binary environmental variable E under the constraints of G–E independence and
Hardy–Weinberg equilibrium and used the Wald statistic for all tests. We concluded that (i) for testing
G–E interactions or genetic effects in the presence of G–E interactions when data for E are fully available, it
is preferable to ascertain data for G in a subsample of cases with similar numbers of exposed and unexposed and
a random subsample of controls; and (ii) for testing G–E interactions or environmental effects in the presence
of G–E interactions when data for G are fully available, it is preferable to ascertain data for E in a subsample of
cases that has similar numbers for each genotype and a random subsample of controls. In addition, supplement-
ing external control data to an existing case-control sample leads to improved power for assessing effects of G or
E in the presence of G–E interactions. Copyright © 2012 John Wiley & Sons, Ltd.
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1. Introduction

Many genetic variants have recently been found to be associated with complex human phenotypes in
genome-wide association studies (GWAS). Capitalizing on these findings for personalized medicine
calls for investigations on the synergy between these genes and environmental risk factors. In the
‘post-GWAS’ era when genotype data for millions of genomic loci have been made available for
thousands of people, it is of great interest to consider how to best utilize this existing resource to achieve
improved power in G–E interaction studies. Similarly, it is important to consider how to expand case-
control studies that did not collect biological samples for cost-effective studies of G–E interactions. In
general, the two-phase design, which is a cost-effective option for studying expensive risk factors, has
recently been advocated for the study of G–E interactions [1]. In this design, data for either genetic
variants or environmental exposures are collected only on a judiciously selected subgroup of subjects.
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In this work, we consider two-phase case-control study designs for assessing multiplicative G–E inter-
actions. We also evaluate the efficiency of these designs for jointly testing genetic or environmental
main and G–E interaction effects, as these joint tests may lead to improved power for detecting genetic
variants or environmental risk factors in the presence of G–E interactions [2].

Efficient study designs must be discussed in conjunction with statistical methods for analysis.
Although the prospective likelihood method for analyzing case-control genetic association studies is
frequently applied [3], recent years have seen important advances in the development of statistically
efficient methods for assessing G–E interactions. To analyze binary genetic and environmental variables
in relation to a rare phenotype, under the constraint of G–E independence, the case-only method, which
ignores data from controls and estimates the G–E interaction odds ratio (OR) parameter as the OR for G–
E association in cases, is much more precise than the prospective case-control method [4]. This case-only
OR estimate is actually the maximum likelihood estimate (MLE) of the same parameter in a log-linear
model under the constraint of G–E independence in controls [5]. Chatterjee and Carroll [6] proposed to
exploit the G–E independence in the maximum likelihood analysis of case-control data under a logis-
tic regression model. Their method had much improved precision for estimating OR parameters that
quantify joint G–E effects. On the basis of these powerful methods, Mukherjee et al. [7] proposed prac-
tical sample size calculation methods for designing case-control G–E interaction studies. In this work,
we consider a di-allelic single nucleotide polymorphism (SNP) and a binary environmental exposure
for a rare phenotype and adopt a retrospective likelihood method for analysis. Our method constrains
the control population not only by the G–E independence but also by the Hardy–Weinberg equilibrium
(HWE) for the genotype variable. The analysis of two-phase designs coupled with this powerful method
of analysis yields novel insights into cost-effective designs of G–E interaction studies.

This paper is organized as follows. In Section 2, we provide closed-form formulas for OR parameter
estimates that quantify G–E main and interaction effects with standard case-control data. In Section 3,
we provide closed-form formulas for the analysis of two-phase case-control data by extending results in
Section 2. Using these formulas, we discuss the efficiency of four slightly different two-phase designs,
where data for eitherG or E are collected only on a subset of cases and controls or data forG or E from
additional controls are supplemented. In Section 4, we perform extensive simulation studies to assess
implications of the HWE constraint for testing OR association parameters with the standard case-control
data and assess the efficiency of various two-phase design sampling strategies. We discuss practical
implications of our findings in Section 5.

2. Maximum likelihood estimation with standard case-control data

Let E denote a binary environmental factor, G denote the count of the minor allele for a di-allelic
SNP, and Y denote the case-control status (YD 1: case; YD 0: control). Data for .G;E/ are collected
from n1 cases and n0 controls. We describe the association between Y and .G;E/ by a logistic
regression model

logit p .Y D 1jG;E/D ˇ0C ˇg f .G/C ˇeE C ˇIE � f .G/� ˇ0C f .G;EIˇ/ ; (1)

where f .G/ is a pre-specified function that reflects different numerical codings for G. Denote ˇ D�
ˇg ; ˇe; ˇI

�
. For example, f .G/ can be the count of the minor allele with f .G/ D G (log-additive

model), can be the presence or absence of the minor allele with f .G/D I.G>0/ (dominant model), or can
be an indicator function for the genotype with f .G/D .I.GD1/; I.GD2// (co-dominant model). The case-
control data for fitting model (1) is summarized in Table I, for which the standard retrospective likelihood
function can be written as

Qn1Cn0
iD1 p .Gi ; Ei jYi /. Following a result in Satten and Kupper [2], this

standard likelihood function can also be written as

n1Cn0Y
iD1

p .Gi ; Ei jYi D 0/

n1Y
jD1

ef.Gj ;Ej Iˇ/P
G;E

ef.G;E Iˇ/p .G;EjY D 0/
: (2)

Without any constraints, the nuisance probability p
�
Gj ; Ej jYj D 0

�
in the aforementioned likeli-

hood can be fully parameterized by five parameters. When the phenotype is rare, joint maximization of
ˇ and these 5 nuisance parameters leads to an estimate of ˇ that is identical to that obtained from stan-
dard prospective likelihood analysis. We assume G–E independence and HWE in the control population,
p .G;EjY D 0/D p .GjY D 0/ p .EjY D 0/ and p .GjY D 0/D 2I.GD1/pGa .1� pa/

2�G , where pa

Copyright © 2012 John Wiley & Sons, Ltd. Statist. Med. 2012, 31 2516–2530
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Table I. Case-control data for estimating odds ratio association parameters.

Y D 0 Y D 1

E D 0 E D 1 Total E D 0 E D 1 Total

G D 0 n000
a n001 n00C n100 n101 n10C

G D 1 n010 n011 n01C n110 n111 n11C
G D 2 n020 n021 n02C n120 n121 n12C
Total n0C0 n0C1 n0 n1C0 n1C1 n1

anijk D
P
i;j;k I .Y D i; G D j;E D k/.

denotes the minor allele frequency (MAF). Let pe denote p .E D 1jY D 0/. The retrospective likelihood
function can then be written as

L .ˇ; pe; pa/D
n1Cn0Y
iD1

2I.GiD1/pEie .1� pe/
1�Ei pGia .1� pa/

2�Gi

n1Y
jD1

ef.Gj ;Ej Iˇ/P
G;E

2I.GD1/ef.G;E Iˇ/pGa .1� pa/
2�G pEe .1� pe/

1�E
;

which we maximize to obtain the MLE of .ˇ; pa; pe/. We calculate the estimates in two steps. First,
simple algebra leads to solutions Ope D n0C1=n0 and

e
Ǒ
e D

n1C1n0C0

n1C0n0C1

P
G e

ˇgf.G/p .GjY D 0/P
G e
.ˇgCˇI /f.G/p .GjY D 0/

: (3)

Then we solve for Opa and OR estimates of genetic effects among the exposed and unexposed, eˇg and

eˇ
�
g D eˇgCˇI , from the following profile log-likelihood obtained by replacing .pa; eˇe / by

�
Ope; e

Ǒ
e

�
in the likelihood function L .ˇ; pe; pa/:

log L� D
n1Cn0X
iD1

logp .Gi jYi D 0/C
n1C0X
j0D1

ˇg f
�
Gj0

�
� n1C0 log

X
G

eˇgf.G/p .GjY D 0/

C

n1C1X
j1D1

�
ˇ�g
�

f
�
Gj1

�
� n1C1 log

X
G

e.ˇ
�
g /f.G/p .GjY D 0/:

The estimate e ǑI can then be obtained as e
Ǒ�
g =e

Ǒ
g . The estimate of the MAF, Opa D.n01CC 2n02C/ =

.2n0/, is the same regardless of the numerical coding adopted forG. In the following, we provide explicit

formulas for e Ǒg and e ǑI corresponding to different numerical codings forG, focusing on results for the

most widely used log-additive model for G. We also provide a formula for Oeˇe under the log-additive
model for G.

Estimation of odds ratio parameters under the log-additive model for G

Under the log-additive model for G, estimates
�
e
Ǒ
e ; e
Ǒ
g ; e

Ǒ
I

�
can be expressed explicitly as functions

of the cell counts in Table I:

e
Ǒ
e D

n1C0n0C0

n0C1n1C1

.n111C 2n101/
2

.n110C 2n100/
2
;

e
Ǒ
g D

1� Opa

Opa

n110C 2n120

n110C 2n100
;

e
Ǒ
I D

.n110C 2n100/ .n111C 2n121/

.n111C 2n101/ .n110C 2n120/
:
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We found that both G–E independence and HWE constraints are required to obtain these closed-
form formulas. That is, the HWE constraint does have an impact on the estimation of parameters that
characterize the joint G–E effect. In the these formulas, the MAF estimate Opa appeared only in Ǒg but
not in ǑI . Therefore, we may conjecture that the impact will be mainly on the estimation of genetic main

effect parameter ˇg but not much on the interaction parameter ˇI . In fact, e ǑI is the OR estimate based
on a case-only analysis as follows. First, create a contingency table for cases that cross-classifies E and
the two alleles, treating each chromosome as a subject and the environmental exposureE as the outcome

variable. Then e ǑI is the standard OR estimate from this 2�2 table. This result recalls the allelic OR for
analyzing standard case-control SNP data, which is valid only under certain conditions [8]. These con-
ditions, when applied to the current context, are as follows: (i) the log-additive model is the true model
for relating binary E and G in cases and( ii) the HWE constraint is valid in the population of unexposed
cases. Because the G–E independence and HWE in controls imply HWE among the unexposed .E D 0/,
these two conditions are guaranteed as long as the penetrance model (1) is correct.

Interestingly, e Ǒg and e
Ǒ�
g , and thus e ǑI , can also be obtained directly via a stratified analysis as

follows. That is, e Ǒg is the allelic OR based only on the unexposed cases and all n0 controls regard-

less of the exposure status, and e
Ǒ�
g is the allelic OR similarly based only on exposed cases and all

n0 controls. Note that the allelic OR within each stratum is the MLE based on a similar likelihood
as (2) where p .GjY D 0/ satisfies the HWE constraint. These observations reveal the impact of G–E
independence and HWE constraints: analysis that is stratified on E with the most efficient analysis
performed within each stratum results in the most efficient estimates of all association parameters. It

is straightforward to obtain the variance–covariance matrix for
�
Ǒ
e; Ǒg ; ǑI

�
using results for standard

multinomial distributions:

var
�
Ǒ
e

�
D

1

n0C0
C

1

n0C1
C

1

n1C0
C

1

n1C1
C

4n110

.n110C 2n100/
2
C

4n111

.n111C 2n101/
2
;

var
�
Ǒ
g

�
D

1

n110C 2n120
C

1

n110C 2n100
C

1

2n0 Opa.1� Opa/
;

var
�
Ǒ
I

�
D

1

n110C 2n100
C

1

n111C 2n121
C

1

n111C 2n101
C

1

n110C 2n120
;

cov
�
Ǒ
e; Ǒg

�
D

4n110n1C0

.n110C 2n100/
2 .n110C 2n120/

;

cov
�
Ǒ
e; ǑI

�
D�

4n110n1C0

.n110C 2n100/
2 .n110C 2n120/

�
4n111n1C1

.n111C 2n101/
2 .n111C 2n121/

;

cov
�
Ǒ
g ; ǑI

�
D�

1

n110C 2n120
�

1

n110C 2n100
:

Estimation under co-dominant and dominant codings for G

We focus on the estimation of ˇg and ˇI because e Ǒe cannot be simplified as that under the log-additive
coding. Similar to the log-additive model, closed-form estimates Ǒg and Ǒ�g can be obtained via efficient
stratified analysis. For the analysis of case-control SNP genotype data under co-dominant coding, the
MLEs for the two OR parameters that exploit the HWE in controls have the same forms as the standard
OR estimates based on 2 � 3 contingency tables but with the observed control counts replaced by the
expected numbers under HWE [9]. Let ˇg = .ˇ1; ˇ2/ be the logarithm of the two genetic main effect ORs

and ˇI D .ˇI1; ˇI2/ be the two interaction effects log ORs. Then e Ǒ1 ; e Ǒ2 and e
�
Ǒ
1C ǑI1

�
; e

�
Ǒ
2C ǑI2

�
are

obtained by applying the results of Chen and Chatterjee [9] directly to unexposed cases and all controls
and exposed cases and all controls, respectively. The closed-form formulas are as follows:

e
Ǒ
1 D

1� Opa

2 Opa

n110

n100
; e

Ǒ
2 D

.1� Opa/
2

Op2a

n120

n100
;

e
Ǒ
I1 D

n111n100

n110n101
; e

Ǒ
I2 D

n121n100

n120n101
:
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It appears that the HWE constraint indeed has an impact on the estimation of genetic main effects through

the estimated MAF Opa. But the estimated interaction OR parameters .e ǑI1 ; e ǑI2/ appeared to be the same
as those obtained under only the G–E independence constraint, which approach the true parameter val-
ues as the sample size increases. Therefore, the estimation of interaction ORs is robust with respect to
the HWE constraint under the co-dominant coding for G. Similar to the results under the log-additive

coding,
�
e
Ǒ
I1 ; e

Ǒ
I2

�
can be obtained on the basis of the case-only analysis using cases with G D 0 or

GD1 or cases withGD 0 orGD 2, respectively. The estimates of all OR parameters can also be obtained
by applying the results of Chen and Chatterjee [9] separately to the analysis of all controls together with

either exposed or unexposed cases. The variance–covariance matrix for
�
Ǒ
1; Ǒ2; ǑI1; ǑI2

�
, following

the Chen and Chatterjee [9] formula, is as follows:2
6666664

1
n100
C 1

n110
C 1

2n0

1
Opa.1� Opa/

1
n100
C 1

n0 Opa.1� Opa/
� 1
n110
� 1
n100

� 1
n100

1
n100
C 1

n120
C 2

n0

1
Opa.1� Opa/

� 1
n100

� 1
n120
� 1
n100P

iD0;1

P
jD0;1

1
n1ij

1
n100
C 1

n101P
iD0;2

P
jD0;1

1
n1ij

3
7777775
:

When dominant coding is adopted forG, the MLE of eˇI; e ǑIDn100.n111Cn121/=fn101 .n110Cn120/g
is the OR estimate from the case-only analysis with E being the binary outcome variable as obtained
under only the G–E independence constraint [5]. The estimate of the main effect eˇg under the additional
HWE constraint is different from that without the HWE constraint:

e
Ǒ
g D

.1� Opa/
2

Opa .2� Opa/

n110C n120

n100
:

The variance–covariance matrix for
�
e
Ǒ
g ; e

Ǒ
I

�
is

"
1

n100
C 1

n110Cn120
C 2 Opa

n0.1� Opa/.2 Opa� Op2a/
2 � 1

n100
� 1
n110Cn120

1
n100
C 1

n111Cn121
C 1

n101
C 1

n110Cn120

#
:

The estimation bias when gene–environment independence or Hardy–Weinberg equilibrium is violated

All the aforementioned estimates approach the true parameter values as the sample size increases when
the penetrance model (1) and both constraints are correct. It has been well recognized that deviation
from the G–E independence constraint can lead to intolerable biases in parameter estimates even when
the HWE constraint is not imposed [5, 10]. Here, it appears that the consistency of the main effect OR

estimates,
�
e
Ǒ
e ; e
Ǒ
g

�
, requires that the HWE hold. For the estimation of the interaction OR param-

eter ˇI , under the log-additive model, its consistency requires both G–E independence and HWE
constraints. But under other models, only G–E independence is required. The closed-form formulas
we provided facilitate explicit quantification of the magnitude of the bias. We will not further dis-
cuss the bias issue because the main interest of the current work is to provide guidelines on optimal
study designs. The power for different study designs assuming the aforementioned methods for analysis
is optimal when the two constraints hold, and the corresponding sample sizes similarly represent the
minimum required.

3. Two-phase case-control designs under gene–environment independence and
Hardy–Weinberg equilibrium

In the simplest two-phase case-control design for assessing joint G–E effects, data for either E or
G are available for all cases and controls, but that for the other one is available only on a selected
subset. Without imposing G–E independence or HWE constraints, the balanced design [11] – which
‘balances’ the numbers of phase II cases and controls, that is, those for whom both E and G are ascer-
tained, in strata defined by completely collected variables on cases and controls (‘phase I variable’) –

2520
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is nearly optimal for estimating the main and interaction effect parameters when analyzed by the max-
imum likelihood method [12]. Here, we consider four variants of the two-phase design: E is the phase
I variable and G is ascertained on a subset of cases and controls (Design I) selected with or with-
out referring to E; G is the phase I variable and E is ascertained on a subset of cases and controls
selected with or without referring to G (Design II); data on E are available on an external set of con-
trols (Supplemented Design I); and data on G are available on an external set of controls (Supplemented
Design II). The two supplemented designs are obviously special cases of Designs I and II, respectively.
Next, we focus on the log-additive coding for G, and results under other codings can be obtained in a
straightforward manner.

Qualitative results on the merits of four designs

The aforementioned results for the standard case-control data immediately suggests efficient two-phase
sampling strategies for the estimation and testing of genetic and environmental effects. First, consider
Design I where E is available for all cases and controls. Previously, only the data from cases are used in
interaction OR parameter estimates, where cases with E D 1 are used as ‘cases’ and cases with E D 0
are used as ‘controls’. To avoid confusion, we refer to cases with E D 1 as ‘c-cases’ and those with
E D 0 as ‘c-controls’ in the following. The accompanying association model is

logit p .E D 1jG/D ˛oC ˇI f .G/ ; (4)

where f .G/ is the same as that in model (1). Suppose that such a case-control study has been designed.
Intuitively, standard principles for designing a retrospective case-control study would apply here: a desir-
able design would balance the numbers of c-cases and c-controls to achieve optimal power. For analysis,
one can simply ignore the selective sampling and perform standard prospective analysis. The estimate of
ˇI would be valid, although the intercept parameter estimate is not a consistent estimate of ˛o [3]. The
most efficient estimate of ˇI is obtained by applying the retrospective likelihood method that exploits
the HWE [9] to the data from the sampled c-cases and c-controls. On the other hand, because of the
G–E independence in the control sample, stratification on E in controls would not help improve the pre-
cision for estimating any association parameters. Therefore, Design I that selects a balanced subsample
of exposed and unexposed cases and a random subsample of controls for ascertaining G is preferable
for the estimation and testing of genetic and environmental effects. Similarly, supplementing data for E
(Supplemented Design I) is not expected to help the estimation of ˇI , although it is expected to lead to
improved precision for estimating pe and ˇe .

For Design II, where G is available for all cases and controls, the case-only analysis with model (4)
using phase II cases yields valid estimates for both ˛o and ˇI , although the most efficient analysis
would also utilize data for G for cases not sampled into phase II. Similar to the previous arguments, a
balanced selection of cases withG D 0,G D 1, andG D 2 is expected to lead to improved efficiency for
estimating ˇI . In addition, data forG from additional controls (Supplemented Design II) would improve
the efficiency for estimating ˇg but not ˇI .

Estimation with Design I and Supplemented Design I

Let R be a binary variable taking values 1 or 0 depending on whether a subject is selected into phase II
or not. For Design I, we obtained the parameter estimates by maximizing the likelihood function

n1Y
hD1

p .Gh; EhjYh D 1/
Rh p .EhjYh D 1/

1�Rh

n0Y
kD1

p .Gk; EkjYk D 0/
Rk p .EkjYk D 0/

1�Rk :

We found that e Ǒe has the same form as (3) and Ope D n0C1=n0, the estimates obtained when .E;G/
is available for all n1 cases and n0 controls. For estimating

�
pa; ˇg ; ˇI

�
, we found that the same profile

likelihood as that for the afroementioned standard case-control design applies, except that only phase

II cases and controls who have both G and E measurements are used. Therefore, estimates
�
e
Ǒ
g ; e

Ǒ
I

�
and their variance–covariance matrix are largely the same as those for the standard case-control design
previously, except that each count in the formula is replaced by the corresponding one in the phase II

Copyright © 2012 John Wiley & Sons, Ltd. Statist. Med. 2012, 31 2516–2530
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data. Let m1 and m0 denote the respective number of phase II cases and controls and mijk has the same

meaning as nijk . Under the log-additive coding for G, formulas for e Ǒe and var
�
Ǒ
e

�
are as follows:

e
Ǒ
e D

n1C1n0C0

n0C1n1C0

m21C0 .m111C 2m101/
2

m21C1 .m110C 2m100/
2
;

var
�
Ǒ
e

�
D

1

n0C0
C

1

n0C1
C

1

n1C0
C

1

n1C1
C

4m110

.m110C 2m100/
2
C

4m111

.m111C 2m101/
2
:

In Supplemented Design I, where data on E are available for m additional controls, let ms1 and
ms0 be the number of supplemented controls with E D 1 and E D 0, respectively. We obtain
OpeD .n0C1Cm

s
1/=.n0Cm

s
1Cm

s
0/. Under the log-additive coding for G, the estimated main envi-

ronmental effect and its asymptotic variance are as follows:

e
Ǒ
e D

n1C0
�
n0C0Cm

s
0

�
n1C1

�
n0C1Cm

s
1

� .n111C 2n101/2
.n110C 2n100/

2
;

var
�
Ǒ
e

�
D

1

n0C0Cm
s
0

C
1

n0C1Cm
s
1

C
1

n1C0
C

1

n1C1
C

4n110

.n110C 2n100/
2
C

4n111

.n111C 2n101/
2
:

Estimates of other parameters remain the same as those in the standard case-control design.

Estimation with Design II and Supplemented Design II

Let R, m, and mijk be defined similarly as those for Design I. The likelihood function for Design II,
where the selection of cases and controls for collecting E may stratify on G, can be written as

n1Y
hD1

p .Gh; EhjYh D 1/
Rh p .GhjYh D 1/

1�Rh

n0Y
kD1

p .Gk; EkjYk D 0/
Rk p .GkjYk D 0/

1�Rk :

Contrary to Design I, one generally cannot have closed-form estimates for OR estimates. This
may seem counter-intuitive because E and G appear to be symmetric in their relationship to the
phenotype variable. But the distribution of the phase I variable G in Design II is constrained via the
HWE, and the phase I variable E in Design I was not constrained. This asymmetry in constraints leads
to the asymmetry in parameter estimates. In an important special case where data for both E and G are
collected for cases (but E is still available only for a subset of controls), the closed-form solutions exist
for all OR parameters. In this case, Ope Dm0C1=m0 and

e
Ǒ
e D

n1C0m0C0

n1C1m0C1

.n111C 2n101/
2

.n110C 2n100/
2
;

var
�
Ǒ
e

�
D

1

m0C0
C

1

m0C1
C

1

n1C0
C

1

n1C1
C

4n110

.n110C 2n100/
2
C

4n111

.n111C 2n101/
2
:

For Supplemented Design II, where G is collected from ms additional controls, the OR estimates and
variance–covariance matrix have the same form as those for the standard case-control design. But the
estimate of the MAF becomes Opa D

�
n01CC 2n02CCm

s
01C 2m

s
02

�
= .2 .n0Cm

s// where ms01; m
s
02

are the respective numbers of supplemented controls with genotypes 1 and 2.

4. Simulation studies

We conducted extensive simulation studies to evaluate the power of different study designs for testing
three hypotheses: (i) null G–E interaction effect, ˇI D 0; (ii) null genetic effect, ˇg D ˇI D 0; and
(iii) null environmental effect, ˇe D ˇI D 0. We assumed the log-additive model for G and used the
Wald statistic for all tests based on the closed-form estimates provided in the previous sections. First, we
assessed the impact of imposing the HWE constraint on the estimation efficiency and power for testing
different sets of association parameters under the standard case-control design. We considered the stan-
dard prospective method (‘Standard’), the method that imposed the G–E independence constraint but
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not the HWE constraint (‘GE-O’), and the method that imposed both the G–E independence and HWE
constraints (‘GE-HWE’). The comparison of these methods would shed light on the power improvement
engendered by the two constraints. Next, with GE-HWE as the method of analysis, we compared the effi-
ciency of four two-phase sampling strategies for testing these three hypotheses. We considered a range
of penetrance models in the form of (1) by varying the magnitude of the OR parameters. For example,
G may have an effect only in the presence of E, or E may have an effect only in the presence of G.
We first generated data for controls, assuming that E followed a Bernoulli distribution and SNP geno-
type data G satisfied the HWE. Then we generated .G;E/ for cases from the conditional distribution
p .G;EjY D 1/ where

p .G;EjY D 1/D
eˇg�GCˇe�ECˇI�G�Ep .GjY D 0/ p .EjY D 0/P
G;E e

ˇg�GCˇe�ECˇI�G�Ep .GjY D 0/ p .EjY D 0/
:

In all tests, we set the nominal level at 0:0001, assuming that 500 tests were performed. In practice, the
test of ˇg D ˇI D 0may be at a significance level different from that of ˇe D ˇI D 0. Here, we used the
same level mainly to facilitate power comparison. Tests with all three methods for all three hypotheses
had type I error rates that were close to the nominal level, as shown in Table II. We generated 5000
replicates for assessing the power of all tests.

Relative power of GE-HWE for the standard case-control design

Panels A and B in Figure 1 demonstrate the relative power of the three methods for testing ˇI D 0

and ˇg D ˇI D 0, where ˇg D 0 for Panel A and ˇg D ln .1:2/ for Panel B. For testing ˇI D 0,
the power of GE-HWE appeared to be similar to that of GE-O, and both are higher than the standard
method with the difference rising sharply with the magnitude of ˇI . For example, with ˇI D ln.1:5/, the
power difference was around 20%. But with ˇI D 1:8, the power difference was around 60%. For testing
ˇg D ˇI D 0, the power of GE-HWE and GE-O was very similar but much higher than the standard
method. For example, the power difference was around 60% at ˇI D ln .1:8/ and ˇg D 0 (Panel A) and
was around 20% at ˇI D ln .1:8/ and ˇg D ln .1:2/. (Panel B) These data indicate that imposing the
HWE constraint in addition to the G–E independence had limited influences on testing genetic effects or
G–E interactions under the log-additive model for G. Panels C and D display the results for the relative
power of the three methods for testing ˇI D 0 and ˇe D ˇI D 0. Regardless of the presence or absence
of the main effect of E (Panel C: ˇe D 0; Panel D: ˇe D In .1:5/), GE-HWE and GE-O have nearly
identical power for both tests, and both had higher power than the standard method. This indicates that
the HWE constraint hardly has any impact on the power for testing ˇe D ˇI D 0.

We quantified the relationship between all parameter values and the ratio of power for GE-
HWE to that for the standard method using simulation studies. We first obtained the relative
power for a wide range of parameter setups. Then we performed linear regression analysis using
the log relative power as the outcome variable and the true parameter values as explanatory vari-
ables. The estimated mean log relative power for testing ˇI D 0, ˇg D ˇI D 0, and ˇe D ˇI D 0 is

Table II. Type I error rates of GE-HWE at the nominal level 0:0001. We generated 100,000 replicates,
each with 500 cases and 500 controls for testing ˇg D ˇI D 0 or 300 cases and 300 controls for testing
ˇe D ˇI D 0. Displayed in the table is � log10 (type I error rate).

Testing ˇg D ˇI D 0 Testing ˇe D ˇI D 0

MAF eˇe Standard GE-O GE-HWE eˇg Standard GE-O GE-HWE

0.2 1 4.097 4.166 4.000 1 4.398 3.989 4.097
1.5 4.097 4.342 4.000 1.2 4.398 3.989 4.097
2 4.398 4.642 4.301 1.5 3.921 4.245 4.155

0.3 1 4.000 4.699 4.222 1 4.523 4.301 4.222
1.5 3.959 4.523 4.301 1.2 4.097 4.155 4.155
2 4.097 4.155 3.959 1.5 4.523 4.301 4.222

0.4 1 4.155 4.699 4.097 1 4.046 4.000 4.000
1.5 4.222 4.301 4.046 1.2 4.097 4.097 4.000
2 4.222 4.699 4.046 1.5 4.000 4.097 4.155

MAF, minor allele frequency.

Copyright © 2012 John Wiley & Sons, Ltd. Statist. Med. 2012, 31 2516–2530
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Figure 1. Power of the three methods under the standard case-control design. Panels A and B display the power
for testing ˇI D 0 or ˇg D ˇI D 0 in the absence (panel A) or presence (panel B) of the genetic main
effect

�
eˇg D 1:2

�
. Other parameters included pe D 0:3, pa D 0:3, and eˇI D 1:5. Each of the 1000 replicates

included 500 cases and 500 controls. Panels C and D display the power for testing ˇI D 0 or ˇe D ˇI D 0
in the absence (panel C) or presence (panel D) of the environmental main effect

�
eˇe D 1:5

�
. Other parameters

included pe D 0:3, pa D 0:3, and eˇg D 1:2. Each of the 1000 replicates included 300 cases and 300 controls.
The size of the test was set at 0.0001.

3:5� 1:1pa � 0:33pe C 0:43ˇg C 0:17ˇe � 2:88ˇI , 1:51� 0:44pa � 0:35pe � 0:57ˇg � 0:15ˇI , and
1:6� 0:5pa � 0:56pe C 0:02ˇg C 0:44ˇe � 0:30ˇI , respectively. Therefore, the magnitude of ˇI plays
a dominant role in the relative power for testing G–E interactions, but the magnitude of ˇg and ˇe plays
a greater role in testing genetic and environmental effects, respectively.

Table III presents the mean estimates, averaged estimated asymptotic variances, and empirical vari-
ances of the three methods, where the data were generated using the same parameter setup as that for
panels A and B in Figure 1. The mean estimates with GE-HWE appeared to be close to the true parameter
values. The averaged estimated asymptotic variances for all parameter estimates appeared to be close to
their empirical counterparts. The empirical variances of main effect parameters estimated with GE-HWE
were generally close to those of GE-O but smaller than those under the standard method. The empirical
variance of the interaction parameter estimate could be smaller by more than 60%.
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Table III. Performance of GE-HWE for estimation under gene–environment independence and
Hardy–Weinberg equilibrium.

Standard method GE-O GE-HWE

Panela Parameters Ǒ
b

var
�
Ǒ
�d

Ǒ
b

Ovar
�
Ǒ
�c
=var

�
Ǒ
�d

Ǒ
b

Ovar
�
Ǒ
�c
=var

�
Ǒ
�d

A ˇg D 0:182 0.181 0.016 0.181 0.015/0.013 0.181 0.013/0.013
ˇe D 0:405 0.401 0.037 0.403 0.028/0.028 0.403 0.028/0.028
ˇI D 0:405 0.413 0.042 0.408 0.017/0.018 0.407 0.017/0.018

B ˇg D 0 0.000 0.017 �0:001 0.016/0.015 �0:001 0.014/0.015
ˇe D 0:405 0.406 0.037 0.405 0.028/0.028 0.407 0.027/0.028
ˇI D 0:588 0.593 0.042 0.591 0.018/0.019 0.589 0.018/0.018

aParameters used were the same as the corresponding panel in Figure 1.
bThe averaged estimate based on 1000 replicates.
cThe averaged estimated asymptotic variance based on 1000 replicates.
dThe empirical variance based on 1000 replicates.

Power of Design I and Design II for testing ˇg D ˇI D 0 and ˇe D ˇI D 0

We investigated efficient two-phase design strategies for testing the genetic effect ˇg D ˇI D 0 and
environmental effect ˇe D ˇI D 0 using GE-HWE for analysis. In each replicate, we first generated
.Y;G;E/ for 1000 cases and 1000 controls. Then we created a two-phase sample by selecting an equal
proportion of cases and controls into phase II, and data for either G (Design I) or E (Design II) were
deleted for those unselected. For cases, we selected the phase II subset either randomly or following
a ‘balanced design’ strategy by stratifying on E in Design I or G in Design II. The balanced design
included all cases with E D 1 for a rare exposure in Design I, and it included as equal as possible num-
bers of cases with G D 0, G D 1, or G D 2 in Design II, respectively. With a small MAF, all cases with
G D 2 are selected. To further evaluate the impact of control selection on the efficiency of the design,
we considered two-phase designs with 300 phase II cases but a varying proportion of phase II controls
ranging from 30% to 100%.

Figure 2 displays the power of Design I for testing ˇg D ˇI D 0 and ˇe D ˇI D 0 as a function
of the proportion of phase II cases and/or controls. In general, the power under balanced sampling for
testing ˇg D ˇI D 0 was much higher than that under random sampling, with the power difference
becoming greater at smaller phase II case/control proportions and larger MAF (Panel A). But the differ-
ence between the two sampling strategies was small for testing ˇe D ˇI D 0 (Panel B). With a fixed
subset of phase II cases, the power for testing genetic and environmental effects is nearly identical under
both stratified and random sampling of controls (Panels C and D), and it increased with the proportion
of selected controls for testing ˇg D ˇI D 0 (Panel C) but remained constant for testing ˇe D ˇI D 0
(Panel D). These results suggest that sampling stratified on E in cases are generally preferred for testing
genetic effects or G–E interactions when data on E are available on all subjects. Parameter estimates
corresponding to Panel C are presented in Table IV.

Figure 3 displays the power of Design II for testing ˇg D ˇI D 0 and ˇe D ˇI D 0 as a function
of the proportion of phase II cases and controls. In general, for testing ˇg D ˇI D 0, the difference
between the two sampling strategies appeared to be small (Panel A), and the power remained constant
with a varying proportion of phase II controls (Panel C) when the subset of phase II cases is fixed. On
the other hand, the power under balanced sampling for testing ˇe D ˇI D 0 was much higher than
that under random sampling, with the power difference getting greater at smaller phase II case/control
proportions and larger prevalence of E (Panel B). The power under both balanced and random sampling
of controls when the subset of phase II cases was fixed slightly increased with the proportion of selected
controls (Panel D). These results suggest that sampling stratified on G in cases for ascertaining data for
E is generally preferred for assessing environmental effects.

Power of Supplemented Designs I and II

Figure 4 displays the power of Supplemented Design I for testing ˇe D ˇI D 0 as a function of the
number of supplemented controls m at different values of pe . The magnitude of power increase due to
the supplement of additional control data for E increased with ˇe , ˇI , and pe , particularly when m was

Copyright © 2012 John Wiley & Sons, Ltd. Statist. Med. 2012, 31 2516–2530
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Figure 2. Power of GE-HWE under Design I when phase II subjects were selected randomly or by stratifying
on E. Phase I included 1000 cases and 1000 controls, and the significance level was set at 0.0001. Panels A
and B present the power when an equal number of cases and controls were selected into phase II. Panels C
and D present the power when 300 cases were selected into phase II by stratifying on E and varying numbers
of controls were selected either randomly or also by stratifying on E. Other parameters included pe D 0:15,

eˇg D 1:2, eˇe D 1:2, and eˇI D 1:5.

less than 500. For example, with pa D 0:2, pe D 0:15, ˇgD ln .1:2/, and ˇeDˇI D ln .1:5/ (Panel A),
supplementing E from 500 and 2000 additional controls to data from 500 cases and 500 controls led to
around 20% and 40% increases in power, respectively. But with ˇe reduced to ln .1:2/, the respective
increases were only around 5% and 10%. The power of Supplemented Design I for testing ˇI D 0 and
ˇg D ˇI D 0 remained constant regardless of the number of supplemented controls (data not shown).

Figure 5 displays the power of Supplemented Design II for testing ˇg D ˇI D 0 as a function of
m, the number of additional controls with data on G. Similar to Supplemented Design I, the power
increase at a given m appeared to be larger with increasing ˇg . For example, with pa D 0:2, pe D 0:15,
ˇg D ln .1:2/, and ˇI D ln .1:5/ (Panel A), supplementing G from 500 and 2000 controls to 300 cases
and 300 controls led to 10% and 24% increases in power, respectively. But with pa D 0:2, pe D 0:15,
ˇg D ln .1:2/, and ˇI D ln .1:3/, the respective increases were only 7% and 16%. In the absence of
a genetic main effect

�
ˇg D 0

�
, the respective increases became negligible. The increase also became

sharper with a greater pa. Not surprisingly, the power of Supplemented Design II for testing ˇI D 0

and ˇe D ˇI D 0 remained nearly constant regardless of the number of supplemented controls (data
not shown).
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Figure 3. Power of GE-HWE under Design II when phase II subjects were selected randomly or by stratify-
ing on G. Phase I included 1000 cases and 1000 controls, and the significance level was set at 0.0001. Panels
A and B present the power when an equal number of cases and controls were selected into phase II. Panels C
and D present the power when 300 cases were selected into phase II by stratifying on G and varying numbers
of controls were selected either randomly or also by stratifying on G. Other parameters included eˇg D 1:2,

eˇe D 1:2, eˇI D 1:5, and pa D 0:2.

5. Discussion

We assessed the efficiency of two-phase case-control designs for evaluating genetic and environmen-
tal effects when the control population is constrained by G–E independence and HWE. A balanced
selection of the exposed and unexposed cases appears to be a nearly optimal strategy for testing G–E
interactions when data for cases cannot be completely ascertained. Random sampling of controls suffices
in the sense that stratified sampling in controls does not lead to improved power for association analysis.
Supplementing data for G or E from additional controls generally does not help improve the power for
testing G–E interactions. For testing genetic effects in the presence of G–E interactions, supplement-
ing data for G from additional controls is helpful, particularly when the genetic effect is moderate or
large. Similarly, supplementing data for E from additional controls is helpful for assessing environmen-
tal effects in the presence of G–E interactions, and the power increase becomes higher with increased
environmental effects. Although we considered a binary environmental variable in this work, we expect
that our conclusions hold when the environmental variable is continuous.
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Figure 4. Power of GE-HWE for testing ˇe D ˇI D 0 under Supplemented Design I, where data for .G;E/ for
300 cases and 300 controls were supplemented by data for E from varying numbers of controls. The significance
level was set at 0.0001. The odds ratio for the genetic main effect was eˇg D 1:2, and the minor allele frequency

was pa D 0:2.

Figure 5. Power of GE-HWE for testing ˇg D ˇI D 0 under Supplemented Design II where data for .G;E/ for
500 cases and 500 controls were supplemented by data for G from varying numbers of controls. The significance
level was set at 0.0001. The odds ratio for the environmental main effect was eˇe D 1:5, and the minor allele

frequency was pe D 0:15.

We obtained closed-form formulas for OR association parameter estimates assuming a di-allelic SNP
and a binary environmental variable. Regardless of the numerical coding adopted for the SNP geno-
type, we found that the estimation of the G–E interaction OR parameter requires only the data of cases.
In particular, the allelic OR estimate in the case-only G–E interaction analysis is the MLE under the
log-additive coding for the SNP genotype. Thus, our results generalized the case-only analysis with a

Copyright © 2012 John Wiley & Sons, Ltd. Statist. Med. 2012, 31 2516–2530
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binary genotype variable to a broader range of numerical coding schemes. For testing genetic effects
or environmental effects in the presence of G–E interactions, incorporating the HWE constraint leads
to improved power, although the HWE constraint hardly has any effect on the power for testing G–E
interaction effects beyond that required to obtain closed-form estimates under log-additive coding.

In this work, we assumed that the same numerical coding for the genotype variable was adopted in
the main and multiplicative interaction effects. If the specification of the main effects is incorrect, the
test for interaction would be invalid. In practice, one may base a test for interaction on a model where
co-dominant coding is adopted for the main effect of G. Then a valid test is guaranteed under the null
hypothesis of no interaction. We did not consider this approach in this paper, mainly because we did
not find closed-form estimates for OR parameters and because our conclusions for two-phase designs
appeared to hold under this model.
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