

ENERGY & MATERIALS

Supporting Information

© Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2012

Hydrothermal Reaction Kinetics and Pathways of Phenylalanine Alone and in Binary Mixtures

Shujauddin Changi, Minghan Zhu, and Phillip E. Savage*^[a]

cssc_201200146_sm_miscellaneous_information.pdf

Table 1: Conversion and yields of phenylalanine and phenylethylamine in presence of different additives at 250 °C and 30 min batch holding times

Salt	C _{salt} (mol/L)	Ionic Strength (mol/L)	Phenylalanine Conversion	Phenylethylamine Yield	Carbon Balance (%)
None	-	_	0.33 ± 0.03	0.20 ± 0.04	88 ± 8
NaCl	0.069	0.069	0.46 ± 0.02	0.14 ± 0.01	66 ± 1
NaNO ₃	0.047	0.047	0.55 ± 0.03	0.17 ± 0.01	60 ± 2
Na ₂ SO ₄	0.028	0.085	0.46 ± 0.03	0.13 ± 0.02	65 ± 1
КСІ	0.054	0.054	0.38 ± 0.06	0.11 ± 0.01	70 ± 4
K ₂ HPO ₄	0.023	0.069	0.57 ± 0.04	0.11 ± 0.01	53 ± 4
H ₃ BO ₃	0.065	0.387	0.46 ± 0.02	0.10 ± 0.01	62 ± 2

Table 2: C	conversion	and yields	of	products	for	phenylalanine	in	HTW	at
different ir	nitial concer	ntrations		-					

Temp (°C)	Initial Loading (ppm)	Time (min)	Phenylalanine Conversion	Phenylethylamine Yield	Styrene Yield	Carbon Balance (%)
		30	0.38	0.22	0	84
		60	0.53	0.27	0	73
	4000	90	0.60	0.33	0	74
		120	0.64	0.42	0.01	79
250		150	0.77	0.37	0.02	62
		30	0.34	0.24	0	90
		60	0.48	0.35	0	88
	22000	90	0.59	0.39	0.01	81
		120	0.66	0.40	0.01	75
		150	0.70	0.39	0.02	73
		10	0.98	0.58	0.04	63
		20	0.98	0.44	0.22	68
	4000	30	0.99	0.43	0.23	68
		40	0.98	0.39	0.27	69
350		60	1.00	0.13	0.35	48
		10	1.00	0.71	0.08	78
		20	1.00	0.40	0.21	60
	22000	30	1.00	0.32	0.26	57
		40	1.00	0.24	0.27	50
		60	1.00	0.12	0.43	53

Table 3: Effect of ethyl oleate on yields of products (based on phenylalanine) for binary mixture at 350 °C and different batch holding times

Molar Ratio EO:Phe	Time (min)	Phenylethylamine Yield	Styrene Yield	Phenylethanol Yield	Phenylacet - aldehyde Yield	Overall Carbon Balance (%)
	10	0.51 ± 0.02	0.14 ± 0.02	0.012 ± 0.003	0.0006 ± 0.0003	74 ± 5
	20	0.35± 0.01	0.30 ± 0.03	0.030 ± 0.005	0.0013 ± 0.0009	75 ± 1
0.2	30	0.28 ± 0.05	0.35 ± 0.06	0.037 ± 0.009	0.0013 ± 0.0005	71 ± 1
	40	0.18	0.43	0.047	0.0015	68
	60	0.07	0.47	0.055	0.0024	60
	10	0.36 ± 0.02	0.19 ±0.04	0.026 ± 0.002	0.0014 ± 0.0004	81 ± 3
	20	0.24 ± 0.02	0.31 ± 0.02	0.039 ± 0.001	0.0017 ± 0.0007	78 ± 2
1.0	30	0.16 ± 0.02	0.34 ± 0.03	0.044 ± 0.001	0.0016 ± 0.001	73 ± 7
	40	0.16	0.41	0.054	0.0017	52
	60	0.07	0.39	0.060	0.0031	74
	10	0.30 ± 0.04	0.18 ± 0.03	0.027 ± 0.002	0.014 ± 0.0006	82 ± 5
	20	0.16 ± 0.01	0.33 ± 0.02	0.044 ± 0.004	0.013 ± 0.013	79 ± 1
5.0	30	0.13 ± 0.01	0.37 ± 0.01	0.051 ± 0.003	0.016 ± 0.014	77 ± 5
	40	0.08	0.38	0.054	0.024	81
	60	0.05	0.41	0.068	0.037	77

Table 4: Effect of phenylalanine on yields of products and conversion of ethyl oleate (based on limiting reactant) for binary mixture at 350 °C and different batch holding times

Molar Ratio Phe:EO	Time (min)	ODM Yield	EODM Yield	PEODM Yield	Oleic Acid Yield	Ethyl Oleate Conversion
	10	0.021 ± 0.002	0.007 ± 0.002	0.164 ± 0.054	0.67 ± 0.03	0.81 ± 0.05
	20	0.022 ± 0.003	0.023 ± 0.002	0.161 ± 0.012	0.83 ± 0.01	0.99 ± 0.003
0.2	30	0.024 ± 0.002	0.026 ± 0.002	0.142 ± 0.024	0.82 ± 0.05	0.99 ± 0.005
	40	0.030	0.032	0.122	0.89	1.00
	60	0.032	0.032	0.071	0.84	1.00
	10	0.008 ± 0.002	0.007 ± 0.003	0.149 ± 0.011	0.76 ± 0.02	0.96 ± 0.02
	20	0.013 ± 0.001	0.015 ± 0.003	0.156 ± 0.010	0.73 ± 0.01	0.99 ± 0.003
1.0	30	0.019 ± 0.002	0.014 ± 0.003	0.117 ± 0.017	0.72 ± 0.06	0.99 ± 0.003
	40	0.026	0.021	0.139	0.86	0.99
	60	0.031	0.014	0.055	0.82	1.00
	10	0.011 ± 0.003	0.026 ± 0.002	0.142 ± 0.033	0.78 ± 0.13	0.96 ± 0.003
	20	0.020 ± 0.002	0.024 ± 0.007	0.235 ± 0.018	0.67 ± 0.02	0.99 ± 0.004
5.0	30	0.020 ± 0.006	0.021 ± 0.004	0.224 ± 0.031	0.62 ± 0.04	0.99 ± 0.006
	40	0.031	0.019	0.152	0.62	0.98
	60	0.032	0.024	0.087	0.63	1.00

Table 5: Molar yield of oleic acid and conversion of ethyl oleate at 350 °C and different batch holding times

Time (min)	Oleic Acid Yield	Ethyl Oleate Conversion	Carbon Balance (%)
10	0.31 ± 0.04	0.45 ± 0.02	81 ± 3
20	0.78 ± 0.07	0.98 ± 0.01	85 ± 8
30	0.79 ± 0.04	0.99 ± 0.01	83 ± 4
40	0.81	1.00	80
60	0.73	1.00	73

Figure 1: GC-MS chromatogram for binary mixture of phenylalanine and ethyl oleate (1.0 : 1.0) at 350 °C and 30 minutes

Table 6: Chemical names and structure of labels for GC-MS chromatogram for binary mixture of phenylalanine and ethyl oleate (1 : 1) at 350 °C and 30 min

Peak No.	Chemical Name	Structure
1	Styrene	
2	Phenylacetaldehyde	C)~~o
3	1-phenylethanol	OH
4	Phenylethylamine	NH ₂
5	2-phenylethanol	ОН
6	1,3-diphenylbutane	
7	Oleic Acid	ОЦ
8	9-octadecenamide	0 NH ₂
9	N-ethyl-9-octadecenamide	O NH
10	N-phenylethyl-9-octadecenamide	

Figure 2: Comparison of experimental (discrete points) and model (smooth curves) results for a) Phenylethylamine, b) Styrene, c) Phenylethanol, and d) N-Phenylethyl-9-Octadecenamide for binary mixture with ethyl oleate to phenylalanine molar ratios of 0.2 : 1.0, + 1.0 : 1.0, and - 5.0 : 1.0, at 350 °C and different batch holding times.

Possible Reactions Pathways for Formation of Amides

