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ABSTRACT

Regularized Statistical Methods for Data of Grouped or Dynamic Nature

by

Yun Li

Co-Chairs: Naisyin Wang and Ji Zhu

This dissertation consists of two parts. In the first part, one new convex regularized

variable selection method is proposed for high-dimensional grouped data. Existing

group variable selection methods via convex penalties, such as Yuan and Lin (2006)

and Zhao et al. (2009), have the limitation of selecting variables in an “all-in-all-out”

fashion and lack of selection flexibility within a group. In Chapter II, we propose a

new group variable selection method via convex penalties that not only removes unim-

portant groups effectively, but also keeps the flexibility of selecting variables within an

important group. Both the efficient numerical algorithm and high-dimensional theo-

retical estimation bounds are provided. Simulation results indicate that the proposed

method works well in terms of both variable selection and prediction accuracy.

In the second part of the dissertation, we develop the parameter estimation meth-

ods for the dynamic ordinary differential equations (ODEs). Ramsay et al. (2007)

proposed a popular parameter cascading method that tries to strike a balance be-

tween the data and the ODE structure via a “loss + penalty” framework. In Chapter

III, we investigate this method in detail and take an alternative view through vari-

ance evaluation on it. We found, through both theoretical evaluation and numerical

x



experiments, that the penalty term in Ramsay et al. (2007) could unnecessarily in-

crease estimation variation. Consequently, we propose a simpler alternative structure

for parameter cascading that achieves the minimum variation. We also provide theo-

retical explanations behind the observed phenomenon and report numerical findings

on both simulations and one real dynamic data set.

In Chapter IV, we consider the estimation problem with time-varying ODE pa-

rameters. This is often necessary when there are unknown sources of disturbances

that lead to deviations from the standard constant-parameter ODE system. To keep

the structure of the parameters simple, we propose a novel regularization method for

estimating time-varying ODE parameters. Our numerical studies suggest that the

proposed approach works better than competing methods. We also provide finite-

sample estimation error bounds under certain regularity conditions. The real-data

applications of the proposed method lead to satisfactory and meaningful results.

xi



CHAPTER I

Introduction and Literature Review

1.1 High-Dimensional Regularization Method

In many important statistical applications, the number of variables or parameters

p is often much larger than the number of observations n. For example, the image

data in radiology and biomedical science have only far fewer measurements of interest

comparing with the unknown number of pixels in the images. Also, high-dimensional

data often arise in genomics. In gene expression studies, due to the high cost of

expression measurement, the number of observations is relatively low, typically, about

tens to hundreds, while the total number of human gene assayed is commonly in

thousands to ten thousands. This is the so-called large-p-small-n problem.

In statistical regression problems, it is of interest to recover the important pre-

dictors or the true signals relative to the response from the predictors with high-

dimensional structure. In 1999, the Lasso method (Tibishirani, 1999) with the L1

regularization penalty on the the loss function was proposed. Fan and Li (2001)

provided the theoretical oracle properties for the Lasso method in the finite sample

size (n is fixed) setting. The oracle properties when n is diverging was discussed in

Fan and Peng (2004), but the p/n is still o(1), and it is not for high-dimensional set-

ting. Candes and Tao (2005) suggested the Danzig selector method and provided the

high-dimensional properties for the corresponding method. They claimed that if the
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defined S-restricted isometry constant δS and S, S ′-restricted orthogonality constants

θS,S′ of the data design matrix X satisfy certain inequalities, the estimation error

bound between the estimated regression coefficient β̂ and the true coefficient β is of

the log p/n rate. That means that the Danzig selector works well when p grows almost

at the exponential rate of n. To answer the question whether the Lasso method works

well under the high-dimensional setting, Bickel et al. (2009) found that the Lasso

method can provide the similar estimation error bound with the same rate of log p/n

under certain eigenvalue restricted assumptions related to the design matrix X. They

also pointed out the Danzig selector also works well for high-dimensional data under

similar eigenvalue restricted assumptions of X and these assumptions are more easier

to check comparing the restricted assumptions in Candes and Tao (2005). Simul-

taneously, Zhang and Huang (2008) obtained the same high-dimensional properties

with the so-called sparse Riesz condition (SRC) of X. In addition to the estimation

bounds, the high-dimensional sparse selection consistency for the the Lasso method

was discussed in Meinshausen and Buhlmann (2006) and Meinshausen and Yu (2009)

under some assumptions, such as, the irrepresentable condition.

In many situations, the conditional expectation of the response given the predic-

tors may not be exactly linear. The Lasso and Danzig selector method for the linear

regression needs to be extended to non-parametric regression. The non-parametric

COSSO model was discussed in Lin and Zhang (2006). Meier et al. (2009) sug-

gested one additive regression model and discussed the high-dimensional properties

for it. The similar model, which is called SpAM, is also discussed in Ravikumar et al.

(2008). In addition to statistical regression problems, the L1 regularization method

also applied to the graphical model (Yuan and Lin, 2007), and the high-dimensional

properties of the precision matrix estimation were discussed in Lam and Fan (2009).

In many multiple regression problems predictors can be naturally grouped. For

example, in the genomic studies, genes can be grouped with some certain pathway in-

2



formation. The group structures sometimes can help to find the important variables

related to the response. The traditional Lasso method does not involve the group

structure information. Instead of L1 regularization penalty, Yuan and Lin (2006)

proposed the group Lasso with the
√
L2 penalty to penalize the loss function. The

group Lasso method considers the group structure information in the penalty term,

and performs better than the Lasso method for the grouped data. In Nardi and

Rinaldo (2008), the high-dimensional properties for the group Lasso were discussed.

In order to consider both group and within-group structure, Huang et al. (2009)

and Zhou and Zhu (2010) proposed the
√
L1 regularization method, which has su-

perior performance in group and individual variable selection comparing the group

Lasso and the Lasso for particular grouped data, which has both group and within-

group structure. The high-dimensional theory has not yet been discussed for this

regularization method. In Chapter 2, we design one new regularization method for

the grouped data and discuss the high-dimensional properties for the corresponding

method. The new method also can overcome some numerical issue comparing with

the
√
L1 regularization method.

1.2 Statistical Estimation Methods for Dynamic Systems

Most of the dynamic processes in engineering, biology and many other areas can

often be modeled through ordinary differential equations (ODEs). For example, bi-

ologists use the FitzHugh-Nagumo ODE model (FitzHugh, 1961 and Nagumo et.

al.,1962) to describe the behavior of spike potential in the giant axon of squid neu-

rons. The Lotka-Volterra model (Lotka 1910 and Volterra 1926) is often used to

model the dynamics of ecological systems with predator-prey interactions, competi-

tion, disease, and mutualism. Also, the Lotka-Volterra equations have a long history

of use in economic theory. There exist parameters in the ODE models. Given the

observation data contaminated with noises, how to estimate the parameters are of

3



interest to both mathematicians and statisticians. Mathematicians developed the

classical discretization schemes such as Euler or Runge-Kutta schemes in estimation

algorithms based on the non-linear least squares method, for example, Hemker (1972)

and Bard (1974). Statistician used the non-parametric estimation methods, for ex-

ample, spline estimation methods (Varah, 1982 and Liang and Wu, 2008) and kernel

estimation methods (Brunel, 2008), to estimate the ODE dynamic trajectories, and

then the parameters are estimated followed by the non-linear least squares method.

Recently, one promising statistical estimation method is proposed by Ramsay et al.

(2008). In the so-called parameter cascading method, the function relationships be-

tween the ODE state components and system parameters are first constructed based

on the basis function expansion or collocation methods. Then through applying the

non-linear least squares method, one can precisely obtain the parameters of ODE

dynamic systems.

In most of research works, the parameters are only considered as constants and do

not change over time. But the dynamic systems are often delicate and sensible to the

outer perturbations. For example, for the Lotka-Volterra model in the ecological stud-

ies, earthquakes or some unusual nature phenomena may break the balances and lead

the parameters to change over time. Statistical estimation of time-varying parame-

ters is very attracting. Chen and Wu (2008) applied the local polynomial estimation

methods for the ODE trajectories and then estimated the time-varying parameters.

Cao et al. (2011) applied the parameter cascading method with smoothing penalty to

estimate the time-varying parameters. Actually the time-varying parameters some-

times have interpretable structures. For example, during some time the ODE system

is balanced and the parameters keep constants over these time, and after some outer

perturbation interferes, the balance is broken and then the parameters start to change

over time. After a period of time, the ODE system may draw back to balance and

then the parameters go back to constants again. Smoothing penalty may not work

4



well to detect the structures of the time-varying parameters. Statistical estimation

has not been discussed for the case when parameters vary over time with certain

structures. We will discuss one regularization estimation methods in Chapter IV for

this situation. Since the basis expansion method is applied in our estimation method,

the high-dimensional regularization theory shows that the number of basis can be

much larger than the number of observations in the obtained estimation error bounds

under certain assumptions.

1.3 Organization of the Chapters

The dissertation is organized as follows. Chapter II studies the estimation prob-

lems for high-dimensional grouped data. One new regularization penalty is proposed

and the complete algorithm for numerically solving the optimization problem is pro-

vided. We also demonstrate the high-dimensional properties for the corresponding

method, and analyze one brain cancer real data using the new method. Chapter III

and IV develop new statistical estimation methods for parameters in the dynamic

systems controlled by ODEs. In Chapter III, we only consider the situation that the

parameters of ODEs keep constants over time, and design one improved parameter

cascading method to estimate the parameters and also the initial values of the ODE

system. The estimation standard errors are reduced comparing with the existing

method. One regularization method to estimate the time-varying parameter curves is

discussed on Chapter IV. The estimation error bounds are obtained for both the pa-

rameter curves and the initial values. The asymptotic converge rates are also derived

under certain conditions.
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CHAPTER II

Convex Regularization Method for

High-Dimensional Grouped Variable Selection

2.1 Introduction

Variable selection through optimizing a penalized log-likelihood function has been

an active research area in the past decade. Most of the literature focuses on cases

that the prediction variables do not form any group structure in a regression model.

But in practice, the predictors are often naturally grouped. For example, in genomic

studies, genes can be grouped in biological pathways that are related to phenotypes.

Therefore it is of interest to study gene selection problems by taking into account

group structures.

To address the variable selection problem when there are natural groups, Yuan

and Lin (2006) proposed the group lasso method that penalizes the L2-norm of the

coefficients within each group, and Zhao et al. (2009) proposed to use the L∞-

norm penalty. Both methods are known to be able to remove unimportant groups

effectively. One limitation of these two methods is that they select variables in an “all-

in-all-out” fashion, i.e., when one variable in a group is selected, all other variables in

the same group are also selected. This, however, may not be the case in practice, i.e.,

when a group of variables as a whole is important, the effects of some variables within
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this group may not be important. For example, in genomic studies, when a biological

pathway is related to a certain phenotype, it does not necessarily mean that all genes

in the pathway are related to the phenotype. Thus it is desirable to effectively remove

unimportant groups while at the same time, be able to identify important variables

within important groups.

To achieve this goal, Huang et al. (2009) proposed a group bridge approach, and

Wang et al. (2009) and Zhou and Zhu (2010) independently investigated a hierar-

chical lasso approach that reduces to a special case of Huang et al. (2009). These

methods can achieve the oracle property in the sense of Fan and Li (2001) and Fan

and Peng (2004). Comparing with the methods by Yuan and Lin (2006) and Zhao et

al. (2009), one drawback is that the objective functions are non-convex, which can

cause numerical issues in practical computation; on a related matter, furthermore,

the numerically obtained local optimum may not enjoy the theoretical optimal prop-

erties. To overcome this drawback, we propose a new group variable selection method

in this paper. The new method has a convex objective function and can perform vari-

able selection at both the group and within-group levels. We thoroughly investigate

the new method both numerically and theoretically, and apply it to a glioblastoma

microarray gene expression study conducted by Horvath et al. (2006).

This chapter is organized as follows. In Section 2.2, we propose the new regu-

larization method and a corresponding algorithm. In Section 2.3, we develop non-

asymptotic oracle inequalities in the high-dimensional setting where the number of

prediction variables is allowed to be larger than the sample size. Simulation results

are presented in Section 2.4. In Section 2.5, we apply the proposed method to a

glioblastoma gene microarray study. Finally we conclude this chapter in Section 2.6.
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2.2 Method

Consider a linear regression model with n observations:

Yi = β1Xi1 + · · ·+ βpXip + εi, i = 1, · · · , n, (2.1)

where Xi1, · · · , Xip are predictors, Yi is the response variable, β1, · · · , βp are corre-

sponding regression coefficients, and εi is the error term. We assume that all predic-

tion variables and the response variable are centered, so we do not need to consider

the intercept term in (2.1).

In this paper, we assume the prediction variables are naturally grouped. Specifi-

cally, we assume that the prediction variables can be divided into K groups, and the

kth group contains pk variables. Thus the linear model (2.1) can be rewritten as

Yi =
K∑
k=1

pk∑
j=1

βkjXi,kj + εi, i = 1, · · · , n, (2.2)

where Xi,kj denotes jth variable in the kth group of the ith observation.

To select variables at the group level, Yuan and Lin (2006) proposed the group

lasso method that penalizes the L2-norm of the coefficients within each group:

min
βkj

1

2

n∑
i=1

(Yi −
K∑
k=1

pk∑
j=1

βkjXi,kj)
2 + λ

K∑
k=1

√
pk(β2

k1 + · · ·+ β2
kpk

), (2.3)

while Zhao et al. (2009) proposed to use the L∞-norm penalty and minimize

1

2

n∑
i=1

(Yi −
K∑
k=1

pk∑
j=1

βkjXi,kj)
2 + λ

K∑
k=1

max{|βk1|, · · · , |βkpk |}. (2.4)

Both methods are known to be able to remove unimportant groups effectively, but

neither removes unimportant variables within an important group.

In order to also remove unimportant variables within important groups, Wang et

8



al. (2009) and Zhou and Zhu (2010) considered a hierarchically penalized approach

that reparametrizes βkj = ξkθkj and minimizes

min
ξk,θkj

1

2

n∑
i=1

(Yi −
K∑
k=1

pk∑
j=1

ξkθkjXi,kj)
2 + λξ

K∑
k=1

ξk + λθ

K∑
k=1

pk∑
j=1

|θkj|, (2.5)

where ξk ≥ 0. It can be shown that the minimization problem in (2.5) is equivalent

to the more general group bridge approach of Huang et al. (2009) with γ = 0.5:

min
βkj

1

2

n∑
i=1

(Yi −
K∑
k=1

pk∑
j=1

βkjXi,kj)
2 + λ

K∑
k=1

(|βk1|+ · · ·+ |βkpk |)γ. (2.6)

In general, it is required 0 < γ < 1.

Due to the singularity of the group bridge penalty, the above method is able

to effectively remove unimportant groups. Furthermore, due to the singularity of

the absolute value, the above method is also able to remove unimportant variables

within identified important groups. However, one drawback of (2.6), compared with

(2.3) and (2.4), is the non-convexity of the objective function in (2.6). This can

cause a numerical issue in the sense that convergence to the global minimum is not

guaranteed. Thus, theoretical optimal properties can not be guaranteed either for the

numerically obtained local minimizer.

2.2.1 A convex penalty for grouped variable selection

To achieve the goal of both group and within-group variable selection and also to

overcome the non-convex drawback, we propose a mixture of the weighted L2-norm

and L1-norm penalties:

min
βkj

1

2

n∑
i=1

(Yi −
K∑
k=1

pk∑
j=1

βkjXi,kj)
2 + λ2

K∑
k=1

√
ωk(β2

k1 + · · ·+ β2
kpk

) + λ1

K∑
k=1

pk∑
j=1

|βkj|,

(2.7)
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where λ1 > 0 and λ2 > 0 are tuning parameters and ωk is a weight coefficient.

The L2-norm and L1-norm play different roles here: the L2-norm penalty effectively

removes unimportant groups while L1-norm can remove unimportant variables within

identified important groups. Furthermore, it can be easily verified that the objective

function (2.7) is strictly convex.

To gain some insight with the method, we first show how it works under orthonor-

mal design, i.e., XTX = Ip. It is straightforward to obtain the following result, thus

details are omitted.

Proposition II.1. Assume that XTX = Ip. Let Xkj denote the vector of length-n for

the jth variable in the kth group. Let β̂olskj = XT
kjY and β̂lassokj = (β̂olskj − λ1)+sgn(β̂olskj )

be the ordinary least square solution and lasso solution, respectively. Denote β̂olsk =

(β̂olsk1 , · · · , β̂olskpk)
T and β̂lassok = (β̂lassok1 , · · · , β̂lassokpk

)T . Let β̂kj denote the solution of (2.7)

and β̂k = (β̂k1, · · · , β̂kpk)T , then we have

β̂k =


(

1− λ2
√
ωk

‖β̂lassok ‖2

)
+
β̂lassok , if β̂lassok 6= 0,

0, if β̂lassok = 0.
(2.8)

From the above proposition, we can see that the solution to (2.7) in the orthonor-

mal setting can be viewed as being obtained by a two stage method. It first shrinks

β̂olskj by a soft-thresholding at λ1. Then it further shrinks the weighted L2-norm of

the coefficient vector of each group by a soft-thresholding at λ2. It turns out that

unimportant groups are effectively removed in the second step, and some variables

within identified important groups may have already been removed in the first step.

From solution (2.8) we can also see that if ωk = 1 for all k, then since groups with

small numbers of coefficients tend to have small ‖β̂lassok ‖2, their coefficients tend to

be shrunk to zero more easily relative to larger groups even if they are important

groups. This is not a desirable feature. Therefore, ωk can be chosen to compensate
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for that. In the rest of the paper, we choose ωk = pk, the length of each group.

2.2.2 Algorithm

When the design matrix is not orthonormal, analytical solution of (2.7) in general

does not exist. In this subsection, we develop a shooting algorithm (Fu 1998, Friedman

et al. 2007) for solving (2.7). The shooting algorithm is essentially a “coordinate

descent” algorithm. That is, in each iteration we fix all but one coefficient, say βkj,

at their current values, then optimize (2.7) to solve for βkj. Since this optimization

only involves one parameter, it is often easy to achieve a solution. The algorithm can

be formulated as follows:

1. (Standardization) Standardize each variable such that

n∑
i=1

Yi = 0,
n∑
i=1

Xi,kj = 0, and
n∑
i=1

X2
i,kj = 1. (2.9)

2. (Initialization) Initialize β
(0)
kj with some plausible values, and set m = 1.

3. (Update βkj) Fix βk′j′ at β
(m−1)
k′j′ , k′ 6= k or j′ 6= j, and solve for βkj. With a

little algebra, we obtain the following. If β
(m−1)
kj′ = 0 for j′ 6= j, then

β
(m)
kj =

(
|S(m−1)
kj | − (λ1 + λ2

√
pk)
)

+

XT
kjXkj

sgn(S
(m−1)
kj ), (2.10)

where S
(m−1)
kj = XT

kj(Y − Xβ
(m−1)
−kj ) and β

(m−1)
−kj is the same as the coefficient

vector β(m−1) except that the kjth element is equal to 0; else if β
(m−1)
kj′ 6= 0 for

some j′ 6= j, then

β
(m)
kj =

(
|S(m−1)
kj | − λ1

)
+

XT
kjXkj + λ2

√
pk

(
β

(m)2
kj +

∑
j′ 6=j β

(m−1)2
kj′

)−1/2
sgn(S

(m−1)
kj ). (2.11)
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Note that both sides of (2.11) involve β
(m)
kj , thus the solution β

(m)
kj can be

achieved by iterating between the two sides of (2.11).

4. If ‖β(m) − β(m−1)‖2 is less than a pre-specified tolerance value, then stop the

algorithm. Otherwise, let m← m+ 1 and go back to Step 3.

In practice, one often needs to optimize (2.7) over a large number of (λ1, λ2)

pairs. One strategy of increasing computing efficiency is to start with very large

(λ1, λ2) and initialize β
(0)
kj = 0, and gradually reduce the values of λ1 and λ2. When

(λ1, λ2) become smaller, one can initialize β
(0)
kj using β̂kj at previous values of (λ1,

λ2). In our numerical experiments, we found this is very effective in reducing the

computational cost.

2.2.3 Tuning parameters

There are several commonly used tuning parameter selection methods, such as

cross-validation, generalized cross-validation (GCV), AIC and BIC, where

GCV =
‖Y −Xβ̂‖2

2

n(1− df/n)2
,

AIC = log(‖Y −Xβ̂‖2
2/n) + 2df/n,

BIC = log(‖Y −Xβ̂‖2
2/n) + log n · df/n.

Yang (2005) noted that AIC and GCV are more suitable if the selected model is used

for prediction, while for the purpose of variable selection, BIC is more appropriate.

Note that the above criteria all depend on df , the degree of freedom of the selected

model. Here we develop two ways to approximate df . The first one is based on

Karuch-Kuhn-Tucker conditions, and the second one is based on the Stein’s identity.

For the first one, let β̂ be the minimizer of (2.7). The Karuch-Kuhn-Tucker

12



conditions imply

XT
kj(Y −Xβ̂) = λ2

√
pkβ̂kj√∑pk
j=1 β̂

2
kj

+ λ1sgn(β̂kj), ∀β̂kj 6= 0. (2.12)

Denote A = {kj : β̂kj 6= 0}. Let β̂A be a vector containing non-zero β̂ and XA be the

corresponding design matrix. Then since sgn(β̂kj) = β̂kj/|β̂kj|, we have

Ŷ = XAβ̂A = XA(XT
AXA +W )−1XT

AY, (2.13)

where W is a diagonal matrix with elements:

λ2
√
pk√∑pk

j=1 β̂
2
kj

+
λ1

|β̂kj|
, kj ∈ A.

Mimicking the ridge regression, the number of effective parameters, df , can be ap-

proximated by

df(λ1, λ2) = Tr(XA(XT
AXA +W )−1XT

A). (2.14)

This approximation is similar to that in Tibshirani (1996) and Fu (1998) for lasso.

For the second method, we consider the orthonormal design setting, i.e., XTX =

Ip, and employ the Stein identity df =
∑n

i=1 cov(Ŷi, Yi)/σ
2 = E(

∑n
i=1 ∂Ŷi/∂Yi). With

a little algebra, we can obtain

df =
K∑
k=1

I(‖β̂lassok ‖2 > λ2
√
pk)

+
K∑
k=1

I(‖β̂lassok ‖2 6= 0)

(
1−

λ2
√
pk

‖β̂lassok ‖2

)
+

(
pk∑
j=1

I(β̂lassokj 6= 0)− 1

)
.(2.15)

If λ2 = 0, (2.15) reduces to |A|, which is what is proposed in Zou et al. (2007). If
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λ1 = 0, (2.15) becomes

df =
K∑
k=1

I(‖β̂olsk ‖2 > λ2
√
pk) +

K∑
k=1

(
1−

λ2
√
pk

‖β̂olsk ‖2

)
+

(pk − 1), (2.16)

which is the same as what is given in Yuan and Lin (2006).

Note that (2.14) tends to be smaller than (2.15). For example, when λ2 = 0, df

in (2.14) is less than or equal to |A|. This implies that (2.14) may underestimate

the effective number of parameters. Indeed in our simulation studies, we found that

(2.15) performs better than (2.14).

2.3 Non-asymptotic properties

In this section, we study non-asymptotic properties of (2.7). We are interested in

estimating methods that work well even when the number of predictors is much larger

than the number of observations, i.e., p � n, since this situation may arise in many

practical applications. Meinshausen and Buhlmann (2006), Zhang and Huang (2008)

and Meinshausen and Yu (2009) showed that the lasso method works well under high

dimensional settings. Bickel et al. (2009) proved that both the lasso and the Danzig

selector have similar oracle bounds in the case p� n. Naidi and Rinaldo (2008) used

the similar idea of Bickel et al. (2009) to show that the bounds of group lasso has the

same rate as lasso if the tuning parameters for the two methods have the same rate.

We will extend the argument of Bickel et al. (2009) to show that similar bounds also

hold for our proposed method.

Denote the true coefficient vector as β∗. Suppose we have K groups and each

group has the same number of coefficients L for notational simplicity. Therefore ωk

can be omitted. For every β ∈ Rp, p = KL, we denote βk = (βk1, · · · , βkL)T , the
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coefficient vector for the k-th group. Denote

‖β‖2 =
K∑
k=1

‖βk‖2, |β|1 =
K∑
k=1

|βk| =
K∑
k=1

L∑
j=1

|βkj|.

We rewrite our problem as follows:

min
βkj

1

n

n∑
i=1

(Yi −
K∑
k=1

L∑
j=1

βkjXi,kj)
2 + 2λ2‖β‖2 + 2λ1|β|1. (2.17)

Let

M(β) =
∑

kj,1≤k≤K,1≤j≤L

I(βkj 6= 0) = |J(β)| and

MG(β) =
∑

k,1≤k≤K

I(‖βk‖ 6= 0) = |JG(β)|,

respectively denote the number of non-zero coefficients and the number of groups with

a non-zero coefficient norm, where I(·) is the indicator function, J(β) = {kj : βkj 6= 0}

and JG(β) = {k : ‖βk‖ 6= 0}. Both |J | and |JG| denote the cardinalities of the

corresponding sets. The value of M(β) measures the sparsity of the coefficient vector

β, and so does MG(β) at the group level.

For a vector ∆ ∈ Rp and a subset J ⊂ {1, · · · , p}, we denote by ∆J the vector

in Rp with the same coordinates as ∆ on J and zero coordinates on the complement

J c of J . For JG ⊂ {1, · · · , K}, we also denote by ∆JG the vector with the same

coordinates as ∆ on JG groups and zero coordinates on the complement J cG of JG.

Let M(β∗) = r and MG(β∗) = s. We make the following assumption that is

similar to Bickel et al. (2009).

Assumption II.2. RE(r, s, ρ): Assume K groups with L variables in each group.

For a vector ∆ ∈ Rp satisfying |∆Jc |+2ρ‖∆JcG
‖2 ≤ 3|∆J |+2ρ‖∆JG‖2 for |J | ≤ r and
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|JG| ≤ s, where ρ ≥ 0, we assume

κ(r, s, ρ) , min
J,JG,∆ 6=0

‖X∆‖√
n‖∆J‖

> 0,

κG(r, s, ρ) , min
J,JG,∆ 6=0

‖X∆‖√
n‖∆JG‖

> 0. (2.18)

Theorem II.3. Consider model (2.2). Assume that the random variables ε1, · · · , εn

are independent and follow a normal distribution with mean zero and variance σ2, and

all diagonal elements of the matrix XTX/n are equal to 1. Suppose MG(β∗) = s and

M(β∗) = r. Furthermore, suppose Assumption RE(r, s, ρ) holds with κG = κG(r, s, ρ)

and κ = κ(r, s, ρ), and let φmax be the largest eigenvalue of the matrix XTX/n. Let

λ2 = ρλ1 = 2ρAσ

√
log p

n
,

and A >
√

2. Then with probability at least 1− p1−A2/2, for β̂ that minimizes (2.17),

we have

1

n
‖X(β̂ − β∗)‖2

2 ≤ 64A2σ2 · log p

n

(
ρ
√
s

κG
+

√
r

κ

)2

, (2.19)

‖β̂ − β∗‖2 ≤
32Aσ

2ρ+ 1
·
√

log p

n

(
ρ
√
s

κG
+

√
r

κ

)2

, (2.20)

M(β̂) ≤ 64φmax

(
ρ
√
s

κG
+

√
r

κ

)2

. (2.21)

If Assumption RE(2r, 2s, ρ) also holds, then with the same probability we have

‖β̂ − β∗‖2 ≤
32
√

2Aσ

2ρ
√
s+
√
r
·
√

log p

n

(
ρ
√
s

κG(2r, 2s, ρ)
+

√
r

κ(2r, 2s, ρ)

)2

. (2.22)

The proof is given in Appendix A. The theorem tells us that the method (2.7) is

rate-consistent in model selection. The rate is the same as the lasso rate (Bickel et

al., 2009) and the group lasso rate (Naidi and Rinaldo, 2008). Therefore, even if the
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exact sparsity pattern may not be fully recovered, the estimator can still be a good

approximation to the truth. This theorem also suggests that it might be easier to

achieve the estimation consistency than the variable selection consistency.

Since our new method includes the lasso penalty term, the conditions are relaxed

comparing with those in Naidi and Rinaldo (2008). In their proof for the group lasso

method, a tail probability bound for the chi-square distribution with the degree of

freedom equal to the length of group L is applied. This bound will diverge as the

length of a group diverges. Thus in order to achieve convergence in probability, they

needed the condition that L cannot diverge faster than log p/n. This condition is

relaxed in our theorem due to the lasso penalty in (2.7).

2.4 Simulation studies

In this section we compare our method (2.7) with lasso (Tibshirani, 1996) and

group lasso (Yuan and Lin, 2006) using several simulation studies. To compensate

for the possible over-shrinkage caused by the double-penalty in (2.7), following Zou

and Hastie (2005), we propose to adjust β̂kj after optimizing (2.7). Specifically, based

on Proposition 2.1, we propose to adjust β̂kj as follows:

β̂adj.k =


‖β̂lassokj ‖2

‖β̂lassok ‖2−λ2
√
pk
β̂kj, if ‖β̂lassok ‖2 > λ2

√
pk,

β̂kj, otherwise.
(2.23)

We consider two simulation set-ups. Each set-up includes two different cases: one

is “all-in-all-out”, i.e., if a group is important all variables in the group are important,

and the other is “not-all-in-all-out”. In Simulation I, all groups are of the same length,

while in Simulation II, different groups may have different numbers of covariates.

Simulation I

There are 8 groups and each group consists of 6 covariates. We first generate
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independent random variables R1,1, · · · , R1,6, R2,1, · · · , R8,6 from N(0, 1) and corre-

lated random variables Z1, · · · , Z8 from N(0, 1) with an AR(1) covariance structure,

i.e., Cov(Zk, Zk′) = ρ|k−k
′| for 1 ≤ k, k′ ≤ 8. Then we construct the covariate vector

(X1,1, · · · , X8,6) as follows:

Xkj = (Zk +Rkj)/
√

2, 1 ≤ k ≤ 8, 1 ≤ j ≤ 6.

Thus variables within the same group are correlated, and variables belonging to dif-

ferent groups are also correlated when ρ 6= 0. In the “all-in-all-out” case, we set β∗

as

β∗ = (1, 1.5, 2, 2.5, 3, 3.5︸ ︷︷ ︸
6

, 2, 2, 2, 2, 2, 2︸ ︷︷ ︸
6

, 0, · · · , 0︸ ︷︷ ︸
6×6

)T ,

and in the “not-all-in-all-out” case, we set β∗ as

β∗ = (1, 0, 2, 0, 3, 0︸ ︷︷ ︸
6

, 2, 0, 2, 0, 2, 0︸ ︷︷ ︸
6

, 0, · · · , 0︸ ︷︷ ︸
6×6

)T .

Simulation II

There are also 8 groups. Each of the first four groups has 8 variables and each

of the remaining four groups has 4 variables. Similar to Simulation I, we also gener-

ate independent random variables R1,1, · · · , R8,4 from N(0, 1) and correlated random

variables Z1, · · · , Z8 from N(0, 1) with an AR(1) structure, i.e., Cov(Zk, Zk′) = ρ|k−k
′|

for 1 ≤ k, k′ ≤ 8. Then we construct the covariates as follows:

Xkj = (Zk +Rkj)/
√

2, 1 ≤ k ≤ 8, 1 ≤ j ≤ 8 for k ≤ 4, 1 ≤ j ≤ 4 for k > 4.

In the “all-in-all-out” case, we set β∗ as

β∗ = (1, 1.5, 2, 2.5, 1, 1.5, 2, 2.5︸ ︷︷ ︸
8

, 0, · · · , 0︸ ︷︷ ︸
3×8

, 1, 1, 2, 2︸ ︷︷ ︸
4

, 0, · · · , 0︸ ︷︷ ︸
3×4

)T ,
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and in the “not-all-in-all-out” case, we set β∗ as

β∗ = (1, 0, 2, 0, 1, 0, 2, 0︸ ︷︷ ︸
8

, 0, · · · , 0︸ ︷︷ ︸
3×8

, 1, 0, 0, 2︸ ︷︷ ︸
4

, 0, · · · , 0︸ ︷︷ ︸
3×4

)T .

For each of the above settings, we consider two different values of ρ: ρ = 0.5 and

0.8, and we generate the response variable Y by

Y =
K∑
k=1

pk∑
j=1

β∗kjXkj + ε,

where ε ∼ N(0, σ2). We set the value of σ such that the signal-to-noise ratio is equal

to 1, which is quite low and mimics the real scenario.

We consider two training sample sizes: n = 100 and n = 200, and we apply three

methods to select tuning parameters: GCV, AIC and BIC. For the final selected

models, we compare the sensitivity and specificity that are defined as

sensitivity =
#{j : β̂j 6= 0 and β∗j 6= 0}

#{j : β∗j 6= 0}
,

specificity =
#{j : β̂j = 0 and β∗j = 0}

#{j : β∗j = 0}
.

We also compute the prediction error (PE) on a separate test set with sample size

1000. We repeat 100 times for each setting, and report the average results in Figures

2.1-2.4.

We note that the GCV and AIC have similar performance, so we only report the

results of GCV. We also notice that BIC tends to work better than GCV in terms

of model selection, and GCV tends to work better than BIC in terms of prediction.

Therefore, we only report the results of BIC for sensitivity and specificity, and the

results of GCV in terms of prediction error.

Figures 2.1 and 2.2 show that the group lasso tends to achieve high specificity
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in the “all-in-all-out” case. This indicates that group lasso is effective in removing

unimportant groups. Compared with group lasso, for which the setting of “all-in-all-

out” is in favor of, our methods (both L1 +L2 and adjusted L1 +L2) sacrifice a little

in terms of specificity, but gain a lot in sensitivity. The setting of “not-all-in-all-out”,

however, is not in favor of group lasso, and our methods, especially adjusted L1 +L2,

perform better than group lasso in terms of both sensitivity and specificity. The

difference is more prominent in the setting where the sample size is relatively small

(n = 100). Comparing the new methods with lasso, it seems that the new methods

always dominate lasso in terms of both sensitivity and specificity in both settings.

Figures 2.3 and 2.4 show that our methods perform better than both lasso and

group lasso in terms of the prediction error, where the adjusted L1 +L2 performs the

best in most cases. The inferiority of group lasso is more prominent in Simulation II

than in Simulation I.
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Figure 2.1: Simulation I. Comparison of variable selection. White box: sensitivity;
red box: 1-specificity.
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Figure 2.2: Simulation II. Comparison of variable selection. White box: sensitivity;
red box: 1-specificity.
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Figure 2.3: Simulation I. Comparison of prediction error.
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Figure 2.4: Simulation II. Comparison of prediction error.

24



2.5 Data example

Glioblastoma is the most common primary malignant brain tumor of adults and

one of the most lethal of all cancers. Patients with this disease have a median survival

of 15 months from the time of diagnosis despite surgery, radiation and chemotherapy.

In this section, we apply our method to a glioblastoma microarray gene expression

study conducted by Horvath et al. (2006). Global gene expression data from n=120

clinical tumor samples are obtained by high-density Affymetrix arrays, and each sam-

ple contains expression values of 8,000 genes. Among the 120 patients, 9 were alive

at the last followup. In our analysis, these 9 censored subjects are excluded. We take

the logarithm of survival time of 111 patients in days as the response variable.

Horvath et al. (2006) found 3,600 most connected genes from the original 8,000

genes and constructed a weighted brain cancer network. Starting with those 3,600

genes, we first assessed each of the 3,600 genes by running simple linear regression

on the data set, and reduced the number of genes to 1,000 using the p-values. This

type of univariate screening process was justified in theory by Fan and Lv (2008). We

then used the gene group information on the GSEA (gene set enrichment analysis)

website (http://www.broadinstitu- te.org/gsea/) to construct group structures among

the genes. Two kinds of gene group sets were used in our analysis. One is the gene

pathway (PW), and the other is the gene ontology (GO). The genes associated with

the same PW or GO set are considered as one group. Among the 1,000 genes that

passed the initial screening, we identified 799 genes in gene pathway groups and 508

genes in gene ontology groups.

One noticeable phenomenon is that some genes belong to two or more groups, i.e.,

different groups may have overlapping genes. We make a small modification to the

penalty in (2.7) to accommodate for overlapping groups. Specifically, we consider the
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criterion

min
βkj

1

2

n∑
i=1

(Yi −
K∑
k=1

pk∑
j=1

βkjXi,kj)
2 + λ2

K∑
k=1

√
pk

(
β2
k1

nk1

+ · · ·+
β2
kpk

nkpk

)
+ λ1

K∑
k=1

pk∑
j=1

|βkj|,(2.24)

where nkj is the number of groups that contain the kj-th variable Xkj. The algorithm

proposed in Section 2.2.2 can also be revised accordingly. The change is straightfor-

ward; we omit the details here.

We randomly split the samples into the training and test sets 100 times; for each

split, two-thirds of the samples were used for training and the rest were for testing.

For each split, we applied two methods, our proposed method and lasso. Tuning

parameters were chosen using five-fold cross-validation.

We first compare the prediction accuracy of the two methods (Table 2.1). Over

the 100 random splits, our proposed method has an average prediction error of 0.774

(when using PW groups) and 0.748 (when using GO groups), which is respectively

smaller than 0.798 and 0.786 of lasso. This is consistent with what we have observed

in simulation studies.

Next, we compare gene selection of the two methods. From Table 2.2, we can

see that when using GO groups (the top half of Table 2.2), 12 genes were selected

more than 80 times out of the 100 random splits by our method, while 10 genes were

selected by lasso, and the 10 genes selected by lasso are a subset of the 12 genes

selected by our method. The results are similar when we use other thresholds, such

as 70, 60 and 50 for the number of times of a gene being selected, i.e., our method

tends to select more genes than lasso and the genes selected by lasso tend to be a

subset of the genes selected by our method. The pattern remains the same when the

PW groups are used (the bottom half of Table 2.2).

We have also looked at the individual genes that were selected in Table 2.1. For

example, both our method and lasso selected CSF1R with high frequency (more than
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80%). It is known that CSF1R is expressed in glioblastoma cell-lines and in operative

specimens of human glioblastoma (Alterman and Stanley, 1994). There are also genes

that were selected by our method with high frequency but not by lasso, while in the

literature believed to be associated with glioblastoma, e.g. GPNMB and GADD45B.

Kuan et al. (2006) and Tse et al. (2006) pointed out that GPNMB is a cell-surface

proteoglycan expressed by melanoma and glioblastoma cells. Le Mercier et al. (2008)

found that decreasing Galectin-1 expression, which also impairs the expression level

of GADD45B, in human orthotopic glioblastoma xenografts significantly increases the

survival time of glioblastoma tumor-bearing mice.

These results indicate that our method is more powerful than lasso in identifying

important genes, which is again consistent with what we have observed in simulation

studies.

Group structure Our method Lasso
Gene pathway 0.774(0.267) 0.798(0.276)
Gene ontology 0.748(0.189) 0.786(0.202)

Table 2.1: Comparison of prediction error with two different group structures

Gene ontology
Threshold Our method Lasso Common genes

80% 12 10 10
70% 26 18 17
60% 53 25 25
50% 78 50 48

Gene pathway
Threshold Our method Lasso Common genes

80% 8 8 6
70% 24 18 16
60% 57 35 30
50% 126 63 62

Table 2.2: Comparison of the number of selected genes with different selection fre-
quency threshold
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2.6 Summary

In this chapter, we have proposed a new method with convex penalties for group

variable selection. The new method keeps the advantage of group lasso in terms

of effectively removing unimportant groups, while at the same time also enjoys the

flexibility of removing unimportant variables within identified important groups. We

have developed an efficient shooting algorithm for solving the corresponding optimiza-

tion problem, and we have also established non-asymptotic error bounds for the new

method, in which the number of prediction variables is allowed to be much larger than

the sample size. Numerical results indicate that the proposed new method works well

in terms of both prediction accuracy and variable selection, especially when variables

in a group are associated with the response in a “not-all-in-all-out” fashion.
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CHAPTER III

Parameter Estimation for Ordinary Differential

Equations

3.1 Introduction

In physics, engineering, economics and biological sciences, dynamics systems are

often described by ordinary differential equations (ODEs). We consider an ODE

model,

dX(t)

dt
= F{X(t), θ},

where X(t) = {X1(t), · · · , Xm(t)}T is the true unobserved state vector to describe the

dynamic system, θ = (θ1, · · · , θd)T denotes the unknown parameters to be estimated,

and F (·) = {F1(·), · · · , Fm(·)}T gives a known functional structure. In practice, not

all Xi(t) can be observed and the ones that can be observed may be observed with

an additive error εi(t). Consequently, we model the observed Y (t) as

Yi(t) = Xi(t) + εi(t), for i = 1, · · · , mo,

where mo ≤ m and mo indicates the number of observable components; εi(t) is

assumed to be independent identically distributed mean-zero error at time t. Note

that we do not assume the errors are correlated here. One scenario that we will
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discuss in details is the model mis-specification. It would be difficult to distinguish

between two possibilities: the model structures being mis-specified versus part of the

errors are of time series nature.

It is important to precisely estimate parameters θ in a dynamics system. There

is a long history in parameter estimation for ODE models. Hemker (1972) and Bard

(1974) rely on the non-linear least squares (NLS) method and the standard numer-

ical ODE solver, such as the Runge-Kutta algorithm, estimating θ∗. Varah (1982)

further adopts the spline smoothing techique. Recently, Ramsay et al. (2007) pro-

posed a promising strategy for ODE parameter estimation based on a “collocation”

method and penalized NLS algorithm. Hereafter, we refer to this nominal work as

RHCC. RHCC proposed a parameter-cascades and profiling procedure that estimates

the ODE curves via basis function expansions and spline smoothing. Their method

enables the use of analytical gradient and Hessian in the NLS procedure. The authors

incorporated a penalized optimization procedure within their parameter-cascades es-

timation method. Even though the tuning parameter(s) selection could be computa-

tionally burdensome, the authors aim to use this step to strike a balance between the

goodness of fit to the observed data and fidelity to the ODE structure.

Liang and Wu (2008) adopted a local polynomial smoothing approach to the

estimation of ODE curves and their corresponding first derivatives and proposed an

alternative. They plugged-in the estimates into the optimization procedure to obtain

the estimates of ODE parameters. The advantage of this approach is that it does not

require iterations nor the selection of tuning parameter(s). A potential drawback of

this approach though, particularly when the number of observations is small, is that

the quality of the final estimation is determined by the qualities and convergence

rates of the nonparametric estimates. Consequently, they did not fully utilize the

ODE structure in variation reduction.

One main concern of RHCC is the labor-intensive step of tuning parameter selec-
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tion in the penalized optimization component. After some theoretical and numerical

investigations, we found that this tuning parameter selection step is not only compu-

tationally burdensome, it can also inflate estimation variation. We thus propose to

eliminate this step. Since we do not need to select the tuning parameter, our method

is fast, stable and free of some potential drawbacks due to an imperfectly selected

tuning parameter. Consequently, it has a great potential to be extended to more

complex setup when further regularization is necessary. In our numerical simulation

studies, we used cubic B-splines as the basis functions in all approaches. We found

that, in comparison to RHCC, the simplified approach is much less sensitive to the

number of knots used in the B-spline fitting. This phenomenon is the opposite to

that of penalized splines in which the penalty term reduces the sensitivities toward

the number of knots used.

These intriguing numerical findings lead us to investigate the structure of the

inner step on the quality of final estimates. The rest of this chapter is organized

as follows. In Section 3.2, we outline the study framework and conduct analytical

investigations on relationships between estimation variation and the structure of inner

step of the RHCC procedure. Based on our investigations, we propose a specific

version of RHCC procedure with modifications. The consistency and the asymptotic

normality properties of the proposed estimators are provided in Section 3.3. In Section

3.4, we compare our method with the original RHCC by simulation studies. We first

study the FitzHugh-Nagumo model, and then investigate the compartment models,

which are frequently used in modeling the dynamics in ecosystems. A predator-prey

dynamic model for lynx and hare is studied in Section 3.5. Finally we conclude this

chapter with some remarks in Section 3.6.
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3.2 Estimation Method and Variance Comparisons

We consider the following setup, which is as given in RHCC with some slight

modifications. Let φi(t) denote the basis functions for the i-th component curve,

Xi(t), of the ODE dynamic system and assume that Xi(t) can be approximated by

X̂i(t) through a basis function expansion:

X̂i(t) =

Ki∑
k=1

cikφik(t) = cT
i φi(t). (3.1)

Typically, one chooses B-spline basis or Fourier basis functions. The ODE curves

are controlled by ODE parameters and initial values. Often, the initial values play

an important role. Differing from the regular setup in RHCC, we include the initial

values as part of the parameters and estimate them simultaneously with the rest of

the ODE parameters. That is, we let θ∗ = {θT, XT(0)}T.

The procedure includes two steps:

• Inner Step: Given λ and θ∗, and being subject to X̂(0) = X(0), the inner step

finds

ĉ(θ∗, λ) = arg max
c

m∑
i=1

Ji(c, λ);

Ji(c, λ) =

∫
wi`i(Yi − X̂i)− PENi(X̂i|λi); (3.2)

PENi(X̂i|λi) = λi

∫ {
dX̂i/dt− Fi(X̂, θ)

}2

dt,

where X̂i(t) is defined in (3.1); `i(·) is the log-likelihood function of εi, and wi’s

are adjusted normalizing weights with the purpose of making the numerical

magnitudes of different components comparable. When X(0) is given and B-

splines basis functions are chosen to expand X(t), we carry out the constraint of

X̂(0) = X(0) by simply fixing the first element in ĉi, ĉi,1 to fulfill the constrain.
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• Outer Step: The outer step carried out a profile estimation by finding

θ̂∗ = arg max
θ∗

m∑
i=1

wi`i[Yi − X̂i{t; ĉ(θ∗, λ)}]

where ĉ(θ∗, λ) is obtained in the inner step. If the observation errors are nor-

mally distributed, we can replace `i with the (−1)× L2-norm square.

The tunning parameter, λi, controls a trade-off between goodness-of-fit to the

data and the utilization of the ODE structure. Ramsay et. al (2007) stated that the

first term in (3.2), namely the log-likelihood term in the inner step, would help the

estimations when the ODE system is mis-specified. Our numerical experiences in §4

leads us to evaluate the problem from an alternative view. When the number of Y

is small, the dominating variation in estimating X(t) and θ could result from this

term of fitting to Y in (3.2). When an additional penalty term is needed for various

regularization purposes, this added variation in the inner step frequently leads to less

stable procedures. We focus on having a scaler Y with normally distributed errors

and let α = λ−1, so that α = 0 corresponds to the case that the inner step (3.2)

contains no elements from Y . Below, for all values of λ, we use two simple models,

linear and compartmental models, to illustrate how the variances in RHCC estimator

decrease with α. When α belongs to a neighborhood of 0, we are able to show that,

asymptotically, the smallest variation of θ̂∗ is achieved when α = 0. Adopting a large

λ, or equivalently a small α, is recommended in all publications using the RHCC

procedure. Consequently, this is a scenario that is of interest the most. Additional

numerical evidences for finite samples are provided in §3.4 through simulation studies.

Linear Model: We consider the ODE equation dX(t)/dt = a and let Y be observed

with normal errors with mean 0 and standard deviation σ. We show that the variance

of the estimator â satifies the following proposition.

Proposition III.1. Let â denote the estimator given in §2 with the tuning parameter
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λ = α−1 and the inner steps gives

X̂a = arg min
Xa

α‖Y −Xa(t)‖2 +

∫ (
dXa

dt
− a
)2

dt.

Then variance of â is a non-decreasing function of α.

A sketch proof of this proposition is given in the Appendix B. From the above

proposition, we know that the variance of the estimator with (3.2) as the inner step is

minimized when α = 0. That is, the inner step does not contains the term involving

Y .

Compartmental Model: The simple one-component model fulfills the ODE equa-

tion dX(t)/dt = aX(t). Let â denote the estimator with the inner step being,

X̂a = arg min
Xa

α‖Y −Xa(t)‖2 +

∫ (
dXa

dt
− aX

)2

dt.

The close-form expression for the exact variance of â cannot be easily derived. In

the Appendix B, for any given α, we derived an approximation of the variance of â.

We then evaluate the relationship between α and this variance; Figure 3.1 illustrates

these relationships for three values of a. We again observe that the variance of â is a

non-decreasing function of α. In Section 4, we extend the variance investigation by

simulating from a two-compartment model and allow the assumed model to be either

correctly or incorrectly specified.

General Model, Small α: The variance properties described above hold for any

given α ≥ 0. The problem of most interest is when λ is large or equivalently when

α is close to zero. Under this scenario, we can obtain a general approximation for

asymptotic variance of θ̂∗ when the inner step of the procedure is given by

X̂a = arg min
Xa

α‖Y −Xa(t)‖2 +

∫ {
dΦ

dt
c− F (Φc, θ∗)

}2

dt.
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Figure 3.1: The relationship between the variance of estimated parameter, â, and the
values of α at different choices of a; a = 0.3, 0.35 and 0.4, respectively.

We show that the variance of the estimator θ̂∗ satifies the following proposition.

Proposition III.2. When α is close to zero and θ̂∗− θ∗ goes to zero as n goes to ∞,

the asymptotic variance of θ̂∗ is minimized when α = 0.

A sketch proof of this proposition is given in the Appendix B. What we did

was to put the asymptotic expansion into a particular structure so that we could

borrow strength from the semiparametric efficiency theory to show that any additional

terms corresponding to a non-zero α would cause extra variation. In particular,

by not having any response Y from the log-likelihood term in the inner step, the

RHCC procedure with an infinite λ actually reaches the most efficient solution for

the given model. On the other hand, when α is non-zero, through it, a set of additional

terms that involve the derivatives of spline coefficients, c, with respect to θ∗ and α,

or the derivatives of L2 distance between dX/dt and the assumed ODE structure

with respect to spline coefficients, c, could all contribute to the inflated variation.

This theoretical observation is reflected by the additional variation that is associated

with choices of the number of basis functions in spline fitting for non-zero α. This

phenomenon differs from what is consistently observed in penalized spline literature,

in which the additional penalty term reduces the sensitivity to the number of basis
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functions. We illustrate this numerically in §3.4.

3.3 Asymptotic Properties

Hereafter, we refer to the modified RHCC approach, which does not contain

the log-likelihood term in the inner step but includes the initial values as part of

the parameters, as the proposed approach. It is an approach that has potential

to further incorporate additional regularization term. In this section, we denote

θ∗ = {θT, XT(0)}T(∈ (Θ × Γ)) and report asymptotical properties of the estimator

θ̂∗n. We show that the proposed estimator is consistent and asymptotically normal.

To ease the presentation, we assume that all components in X(t) are observed at the

same time points, Tj, j = 1, · · · , n; Tj are independent random variables on [0, T ]

that have a distribution Q and density q. We also assume that random vectors,

(ε11, · · · , εmo1, T1), · · · , (ε1n, · · · , εmon, Tn) are independent, identically distributed,

where εij = εi(Tj). Further, we denote, by τ (n), the knots (0 = t
(n)
1 ≤ · · · t(n)

kn
= T ),

and, by Bn, the space spanned by cubic spline functions corresponding to τ (n). Pre-

cisely, for a given θ∗, we find, in the inner step, X̂ni(θ
∗, t) = vi(t) among vi(t) ∈ Bn

such that vi(0) = Xi(0) and X̂n(θ∗, t) minimizes the objective function in (3.2). We

then obtain θ̂∗n in the outer step. Qi and Zhao (2010) reported asymptotic properties

of the RHCC estimators with non-zero α under certain conditions. Our Lemmas and

Theorems follow the structure of those in Qi and Zhao (2010), and the proofs can be

carried out analogously, taking into account the differences in the inner steps. The

proofs are thus omitted, but they can be obtained from the first author.

Under the main assumptions given in the Appendix B, we have the following

results.

Lemma III.3. Under Assumption B2, for any compact set Θ0 of Θ and any compact
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subset Γ0 of Γ, we have, for all i,

lim
n→∞

sup
θ∗∈Θ0×Γ0

inf
vi∈Bn,vi(0)=Xi(0)

‖Xi(θ
∗, t)− vi(t)‖∞ ∨

∥∥∥∥dXi

dt
(θ∗, t)− dvi

dt
(t)

∥∥∥∥
∞

= 0,

where a ∨ b means max(a, b) for any real numbers a and b.

Further, denote

rn = max
i

{
sup

θ∗∈Θ0×Γ0

inf
vi∈Bn,vi(0)=Xi(0)

‖Xi(θ
∗, t)− vi(t)‖∞ ∨

∥∥∥∥dXi

dt
(θ∗, t)− dvi

dt
(t)

∥∥∥∥
∞

}
.

Lemma III.4. Under Assumptions B.1-B.4, suppose
∑m

i=1wi = m, then for any

compact subset Θ0 of Θ and any compact subset Γ0 of Γ, we have, for all i and large

enough n,

sup
θ∗∈Θ0×Γ0

wi‖X̂ni(θ
∗, t)−Xi(θ

∗, t)‖∞ ≤ mT
√

4m(8K2 + 2)rne
mKT , (3.3)

where K is a constant depending only on the set Θ0 × Γ0 and the function F .

Theorem III.5. Suppose that Assumptions B1, B2, B3 and B5 hold and that θ̂∗n is

uniformly tight. Denote the true parameter vector as θ∗0. Then the estimator θ̂∗n is

consistent, i.e., θ̂∗n → θ∗0 in probability.

Theorem III.6. Suppose that Assumptions B1, B2, B3 and B6 hold and that θ̂∗n

is uniformly tight. Let `(Y (t), X(θ∗, t)) =
∑m

i=1wi`i(Yi(t), Xi(θ
∗, t)) be the weighted

log-likelihood function of the observed error at (Y (t), X(θ∗, t)) with weight wi for the

i-th component (Yi(t), Xi(θ
∗, t)). Suppose that rn = op(1/n) and Vθ∗0 is non-singular,

where

Vθ∗0 = Eθ∗0

{
m∑
i=1

wi

[
∂`i
∂Xi

{Yi(t), Xi(θ
∗
0, t)}

∂2Xi

∂θ∗∂θ∗T
(θ∗0, t)

+
∂2`i
∂2Xi

{Yi(t), Xi(θ
∗
0, t)}

∂Xi

∂θ∗
(θ∗0, t)

∂Xi

∂θ∗T
(θ∗0, t)

]}
. (3.4)
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Then
√
n(θ̂∗ − θ∗0) is asymptotically normal with mean zero and the asymptotic co-

variance matrix is given by

V −1
θ∗0
Eθ∗0

{
m∑
i=1

wi

([
∂`i
∂Xi

{Yi(t), Xi(θ
∗
0, t)}

]2 [
∂Xi

∂θ∗
(θ∗0, t)

]T [
∂Xi

∂θ∗
(θ∗0, t)

])}
V −1
θ∗0
.

The definition of uniform tightness is given as in Qi and Zhou (2010) and is re-

stated in the Appendix. The consistency and normality results mainly rely on Lemma

III.4, which shows the approximate rate for the B-spline approximation to the true

ODE curves for any given θ∗. In the RHCC with a non-zero α = λ−1
n , the rate for

the equivalent step is

[
Op

(
1√
λn

)√
T +mT

√
4m(8K2 + 2)rn

]
emKT . (3.5)

When the log-likelihood term exists in the inner step, the convergence rate is deter-

mined by the balance betweem 1/
√
λn and the rate of rn. In numerical studies, we

can control or reduce the rn rate by choosing a larger number of knots. However, as

long as one needs to choose λn in the inner step, as having been emphasized in the

literature, this task needs to be carried out carefully. For some choices of λn, the total

rate in (3.5) might not be improved by using more knots. The proposed method will

have less of this concern since the rate (4.9) is only determined by rn.

3.4 Simulation Study

In this section, we apply the proposed method to two simulated ODE dynamic sys-

tems and compare the results with those of RHCC with different choices of λn. Both

ODE systems in the simulations have been used in ample of scientific applications.

EXAMPLE 1. In the first simulation, we consider the FitzHugh-Nagumo ODE

model (FitzHugh, 1961; and Nagumo et al., 1962). This model was developed to
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simplify the Hodgkin-Huxley model (1952) for the behavior of spike potential in the

giant axon of squid neurons. The ODEs are

dV

dt
= c

(
V − V 3

3
+R

)
,

dR

dt
= −1

c
(V − a+ bR), (3.6)

where V describes the voltage across an axon membrane, R is the recovery variable

summarizing outward currents, and a, b, c are parameters in the dynamic system.

We let a = 0.2, b = 0.2 and c = 3.0, respectively, and generate V and R from

(4.12) with initial conditions V (0) = −1.0 and R(0) = 1.0. We let errors for both V

and R be from the normal distribution with standard deviation σ = 2 and simulate

201 pairs of them in the time interval (t ∈)[0, 20]. We place 201 knots in the range

of [0, 20] with equal distance between two consecutive knots. The cubic B-splines are

used to approximate the ODE curves.

We consider two ways to calculate the estimated values for Xi(t) (i = 1, · · · ,m),

which are V (t) and R(t) in this example. First, we use the B-spline estimates, X̂i,

in the inner step corresponding to the final estimate of θ∗, θ̂∗. As an alternative, we

use the ODE solution to equations (4.12) with θ∗ = θ̂∗. We denote these solutions by

Xi,θ̂∗ , i = 1, 2. In general, for an m-component ODE system, we define

MSE1 =
1

mn

m∑
i=1

wi‖X̂i(ti)−Xi(ti)‖2,

MSE2 =
1

mn

m∑
i=1

wi‖Xi,θ̂∗(ti)−Xi(ti)‖2. (3.7)

We note that the lower the value of MSE1 is, the more precise are the estimated

values of ODE components, while the lower the value of MSE2 is, the more precise

are the estimated values of the ODE parameters and initial values. We also compare

the mean square errors for the estimated first derivatives of the ODE components.

39



They are analogously defined as

DMSE1 =
1

mn

m∑
i=1

wi‖X̂ ′i(ti)−X ′i(ti)‖2,

DMSE2 =
1

mn

m∑
i=1

wi‖X ′i,θ̂∗(ti)−X
′
i(ti)‖2. (3.8)

We also compare the estimated ODE parameters and initial values produced by

the proposed and RHCC methods, respectively. For the RHCC method, the following

tuning parameter selection method was proposed in Ramsay et al. (2007):

λselected1 = arg min
λ

m∑
i=1

wi‖X̂i(ti)−Xi,θ̂∗(ti)‖
2. (3.9)

It is a common practice to use this selection criterion to find a sufficiently large but

not too large λ that obtains a local minimum. We further consider the following

alternative that minimizes the weighted squared prediction error (PE) defined as:

λselected2 = arg min
λ

m∑
i=1

wi‖Yi(ti)−Xi,θ̂∗(ti)‖
2. (3.10)

Both crieria were used throughout the numerical investigations for RHCC.

We repeat the simulation 100 times and report in Table 3.1 the results for the

estimated ODE parameters and initial values, MSEs for the estimated V (t) and R(t)

and DMSEs for the estimated derivatives. Based on the above tuning parameter

selection criterion, the average logarithm of the tuning parameter in RHCC method

is around 6.4 through the tuning parameter selection (3.9), and around 4.1 through

(3.10). In this example, using a λ much larger than 104.1 increases the estimation

variation. As we can see (from the bottom half of Table 3.1), in terms of MSE

and DMSE, the proposed method performs better than RHCC. Within the RHCC

results under two different tuning parameter selections, the selection criterion (3.9)

tends to have smaller MSE and DMSE results. In terms of parameters and initial
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values estimation, the outcomes for RHCC with the best selected λ and those for

the proposed method are roughly comparable, though the variances of the estimated

ODE parameters and initial values obtained by the proposed method are smaller than

the ones obtained by the RHCC method.

We further investigate this ODE system in the first mis-specified scenario. We

assume that the ODE parameters a, b and c are perturbed shortly during the time

range [0, 20] but remain constants for the rest of the range. Precisely, the parameters

are,

a = 0.2I(0 ≤ t ≤ 3) +
0.2

9
[18− (t− 6)2]I(3 < t ≤ 9) + 0.2I(9 < t ≤ 20),

b = 0.2I(0 ≤ t ≤ 11) +
0.2

9
[18− (t− 14)2]I(11 < t ≤ 17) + 0.2I(17 < t ≤ 20),

c = 3.0I(0 ≤ t ≤ 7) +
1.5

9
[9 + (t− 10)2]I(10 < t ≤ 13) + 3.0I(13 < t ≤ 20),

where I is the indicator function. We let initial values, observed times, observation

errors and choices of knots to be the same as those in the above correctly specified

setting. The outcomes over 100 simulations are reported in Table 3.2. The true ODE

parameters and the average estimates using the proposed and the RHCC methods

are given in Figure 3.2. We note that the MSE results are similar for the proposed

and RHCC methods and the estimation qualities of the ODE parameters are also

comparable.
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Estimated Parameters
a b c V (0) R(0)

True 0.2 0.2 3.0 -1.0 1.0
Proposed 0.201(0.090) 0.182(0.305) 2.879(0.167) -0.936(0.336) 1.002(0.299)
RHCC1 0.193(0.083) 0.225(0.339) 2.843(0.196) -0.924(0.369) 0.898(0.343)
RHCC2 0.202(0.094) 0.177(0.314) 2.875(0.170) -0.890(0.366) 0.962(0.350)

MSE and DMSE
MSE1 MSE2 DMSE1 DMSE2

Proposed 0.0096 0.0096 0.0558 0.0558
RHCC1 0.0138 0.0139 0.0700 0.0701
RHCC2 0.0123 0.0110 0.0612 0.0602

Table 3.1: Simulation results for Example 1. 1The tuning parameter is selected using
the criterion (3.9) ; 2The tuning parameter is selected using the criterion
(3.10). Top half of the table: Monte Carlo means and Monte Carlo stan-
dard deviations (inside the parentheses) for estimated ODE parameters
and initial values for the proposed and RHCC methods. Bottom half of
the table: MSE and DMSE values, calculated by (3.7) and (3.8), for the
proposed and RHCC methods.

Estimated Parameters
a b c V (0) R(0)

True - - - -1.0 1.0
Proposed 0.162(0.097) 0.264(0.255) 2.305(0.148) -1.678(0.628) 1.422(0.499)
RHCC1 0.154(0.095) 0.295(0.281) 2.282(0.162) -1.419(0.732) 1.204(0.612)
RHCC2 0.158(0.098) 0.271(0.258) 2.298(0.158) -1.486(0.653) 1.336(0.570)

MSE and DMSE
MSE1 MSE2 DMSE1 DMSE2

Proposed 0.0227 0.0227 0.0893 0.0899
RHCC1 0.0262 0.0262 0.0944 0.0945
RHCC2 0.0236 0.0242 0.0881 0.0920

Table 3.2: Simulation results for Example 1 with an incorrectly specified model. En-
tries are as in Table 1.
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Figure 3.2: The ODE parameters and their estimates for Example 1 when model is
incorrectly specified. Solid lines: the true non-constant ODE parameters;
Dashed lines: the estimates by the proposed method; Dotted lines: the
estimates by the RHCC method with the tuning parameter selected using
(3.10).
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EXAMPLE 2. In the second example, we use dynamic compartment models devel-

oped to model dynamic behavior of pollutants in ecosystems (Bulter, 1978; Neely,

1980; Dickson et al., 1982) or to describe biogeochemical cycles in an ecosystem

(Hutzinger, 1985). The simplest possible compartment model is obtained by assum-

ing the function vector F in Section 3.1 is linear, and the general ODEs for this

compartment model are as follows,

dXi(t)

dt
=

m∑
i′=1

ki′iXi′(t) + F0i, for i = 1, · · · , m,

where ki′i and F0i are parameters in this model. We write the above equations in

a matrix notation as, dX/dt = AX + B, where A and B are parameter matrix

functions of ki′i and F0i. Since the function vector F is linear, the system has an

analytic solution and the parameter estimation can be carried out by the least square

method without relying on the algorithms discussed in this paper. We consider it

here for illustrative purposes and we can also easily study the performances of the

procedures when the model is mis-specified. In this simulation, we will consider a

two-compartment dynamic model with the corresponding ODEs being

dX1

dt
= k11X1 + k12X2, and

dX2

dt
= k22X2, (3.11)

where k11, k12 and k22 are parameters. The parameter k12 describes the interaction

between the two compartments of the system. If it is zero, there is no interaction

inside the system, and the true ODE can be written as

dX1

dt
= k11X1, and

dX2

dt
= k22X2. (3.12)

First we consider the scenario that the ODEs are correctly specified. We generated

data from the ODE (3.11) with the true parameter values k11 = 0.3, k12 = 0.2 and
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k22 = 0.2. We set both initial values, X1(0) and X2(0), to be one. The observation

errors of X1 and X2 are added as: YX`,j = X`(tj) + ε`j, ` = 1, 2, where ε1j and

ε2j are independent standard normal random variables with mean 0 and standard

deviation one. We simulated 201 pairs of observations from the two compartments in

the time interval [0,10] on equally-distanced grids. The ODE curves were estimated

by the cubic B-splines with knots at each time point tj. We used the reciprocals

of the variance taken over the simulated observed data as the weight wi for the i-th

component. The simulations were performed over 500 repetitions. Besides comparing

the estimated ODE parameters and initial values for different estimation approaches,

we also compare the mean square errors (MSE) for the estimated values of each ODE

component.

For RHCC, the best performance on Example 2 is observed at the upper limit

of the tuning parameter value allowed by the software (λ = 1012). This choice is

suggested by both (3.9) and (3.10). In comparisons to the outcomes of RHCC with

this tuning parameter, we found that our method performs similarly to RHCC; the

relative differences in means of estimated parameters and the associated Monte Carlo

standard deviations (MCSD) are 4% or less (not shown) with the proposed method

having slightly smaller MCSD’s. From (4.9) and (3.5), if λn is very large, the two

rates are similar and dominated by the rate of rn, which is controlled by the knots,

which explains the similarities. The MSE results for the proposed method are also

slightly better than those for the RHCC method, with the MSE and DMSE for the

two methods being (×103) 1.217 versus 1.222 and 1.946 versus 2.179 respectively.

The two formulae in (3.7) and (3.8) produce identical values for MSE and DMSE for

both methods.

To investigate the performance of the RHCC method with other values of the

tuning parameter, we artificially set λ to be numbers smaller than 1012, and produce

boxplots for the estimated ODE parameters and initial values over 500 repetitions.
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The results are given in Figure 3.3. As expected, the variance of the estimates is

larger for a smaller λ, and so are the values of MSE (not shown).

We then study how the estimation results are affected by the number of knots in

this simulation. Recall that the number of knots is denoted by kn. Let the distance

between two consecutive knots be 10/(kn − 1) for the whole rage of [0, 10], and let

(kn−1) vary from 20 to 80. Other settings are maintained exactly the same as before.

We plot the means of the estimated ODE parameters and initial values in Figure 3.4.

It can be seen that for moderate values of kn, the proposed method is much less

sensitive to the number of knots than the RHCC method.

To further investigate the performance of our method and the RHCC method

in a mis-specified ODE system, we simulate the data from the compartment model

with a non-zero interaction term, k12, in (3.11) but perform the parameter estimation

assuming (3.12). In (3.11), we fix k11 = 0.3 and k22 = 0.2 throughout. We then

let k12 vary among 0.1, 0.3 and 0.5, respectively, to generate 201 pairs of X1 and

X2 with initial values X1(0) = 1 and X2(0) = 1. We maintain other settings the

same as before. For RHCC, the best λ remains to be 1012. The Monte Carlo means

and standard deviations for the estimated parameters and the two pairs of MSE and

DMSE values are reported in Table 3. The proposed and RHCC methods perform

similarly, with the Monte Carlo standard deviations, MSEs and DMSEs for the RHCC

being slightly larger than those for the proposed method when k12 = 0.1 and 0.3, and

being slightly smaller when k12 = 0.5.

We observe, in this example, that regardless the assumed model being correctly

specified or not, the proposed method either performs similarly to RHCC with the

“best” choice of λ or outperforms it for other choices of λ. The asymptotic results

seem to hold well in finite sample scenarios. Furthermore, the proposed method

eliminates additional computational efforts to select λ.
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Figure 3.3: Boxplots for the estimated ODE parameters and initial values. For the
RHCC method, different values of the tuning parameter λ are used as the
label in the X-axis; while the proposed method is indexed by “new”.
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Estimated Parameters
k11 k22 x1(0) x2(0)

True 0.3 0.2 1.0 1.0
k12 = 0.1 Proposed 0.3333(0.0037) 0.1998(0.0092) 1.1797(0.0381) 1.0030(0.0722)

RHCC 0.3332(0.0039) 0.2000(0.0096) 1.1816(0.0404) 1.0030(0.0777)
k12 = 0.3 Proposed 0.3588(0.0022) 0.2004(0.0089) 1.6325(0.0314) 0.9982(0.0711)

RHCC 0.3592(0.0022) 0.2001(0.0093) 1.6286(0.0317) 1.0012(0.0751)
k12 = 0.5 Proposed 0.3700(0.0016) 0.2005(0.0097) 2.1061(0.0302) 0.9984(0.0773)

RHCC 0.3698(0.0016) 0.2006(0.0094) 2.1093(0.0300) 0.9954(0.0741)

MSE and DMSE
MSE1 MSE2 DMSE1 DMSE2

(×102) (×102) (×104) (×104)
k12 = 0.1 Proposed 0.13 0.13 2.885 2.885

RHCC 0.14 0.14 3.011 3.011
k12 = 0.3 Proposed 0.15 0.15 4.728 4.728

RHCC 0.16 0.16 4.976 4.976
k12 = 0.5 Proposed 0.18 0.18 6.602 6.602

RHCC 0.17 0.17 6.364 6.364

Table 3.3: Simulation results for Example 2 with an incorrectly specified model. En-
tries are as in Table 1.
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3.5 Analysis of Lynx and Hare Data

The numbers of trapped lynx and snowshoe hares from North Canada between

1900 and 1920 were collected by the Hudson Bay company (Odum 1953); the observed

data should reflect their relative populations. In this section, we apply the proposed

and RHCC methods and fit this data set with the Lotka-Volterra dynamic model

(Lotka 1910 and Volterra 1926), which is the most commonly used predator-prey

model for two species. The model has two components, described by the following

ODEs:

dH

dt
= aH − bHL, dL

dt
= −cL+ dHL,

where a, b, c and d are parameters. For the lynx-hare data set, H represents the

evolution function of the number of snowshoe hares and L for the number of lynx.

The starting values (needed for numerical optimization) of H(0), L(0) and the ODE

parameters a, b, c and d were obtained by replacing H, L and their derivatives by the

corresponding spline estimates and then using the given structures to solve for them.

We use cubic spline basis with 201 knots for both methods.

For RHCC, unlike in simulation studies, criteria (3.9) and (3.10) suggested very

different values for λ. The criterion (3.10) suggested λ = 105 for this data set. With

this λ, the RHCC method practically obtained almost identical results as those of

the proposed method. On the other hand, the criterion (3.9) suggested λ = 1012.

This λ led to estimated curves that deviate from the data points, particularly in

the areas that are near the peaks. The estimated H and L curves by RHCC with

λ = 105 and 1012, and by the proposed method are provided in Figure 3.5. The

outcomes for the estimated ODE parameters and initial values are summarized in

Table 3.4. A bootstrap analysis by re-sampling residuals 100 times were used to

calculate estimated standard errors, and they are reported inside the parentheses

besides the corresponding estimates. Table 4 also shows how the results of RHCC
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vary with λ. The proposed method and RHCC with λ = 105, selected using the

criterion (3.10), give the best result.

To study the effects due to the number of knots, in Figure 3.6, we plot the values

of weighted PE against kn − 1, where kn is the number of knots. The two curves

correspond to the proposed method and RHCC with λ = 105. The PE values for the

RHCC method with λ = 1012 vary between values of 30 to 40 and are not plotted.

Similar as being observed in simulation studies, both methods benefit from using a

large number of knots and the proposed method is much less sensitive to the number

of knots than RHCC.
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Figure 3.5: Estimated H(·) and L(·) for the hare-lynx data set. Solid lines: the
proposed method and the RHCC method with λ = 105; dotted lines: the
RHCC method with λ = 1012.
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a b c d H(0) L(0)
Proposed 0.4823 0.0248 0.9177 0.0273 35.4007 3.9377

(0.0322) (0.0014) (0.0593) (0.0017) (1.4274) (0.4434)
RHCC 0.4206 0.0207 0.8630 0.0242 40.2292 11.6887

λ = 1012 (0.3132) (0.0166) (0.6687) (0.0180) (7.0825) (4.4004)
RHCC 0.4831 0.0248 0.9142 0.0272 35.2253 4.1158
λ = 108 (0.0352) (0.0015) (0.0614) (0.0017) (1.6173) (0.4935)
RHCC 0.4823 0.0248 0.9177 0.0273 35.3990 3.9372
λ = 105 (0.0322) (0.0014) (0.0593) (0.0017) (1.4275) (0.4434)
RHCC 0.4980 0.0253 0.9163 0.0272 34.5163 3.8239
λ = 102 (0.0347) (0.0014) (0.0602) (0.0017) (1.7254) (0.5186)
RHCC 0.5664 0.0267 0.9657 0.0273 31.2388 4.5909
λ = 101 (0.1615) (0.0068) (0.3598) (0.0079) (6.4145) (2.8393)

Table 3.4: The estimated ODE parameters and initial values by the proposed method
and by RHCC with different values of λ. The corresponding bootstrap
standard errors are given inside the parentheses.
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3.6 Concluding Remarks

We investigated the role played by the penalized estimation component in the

inner-step of the parameter-cascades estimation method of RHCC in finding ODE

solutions. We found that an alternative approach, which still utilizes “collocation”

and parameter-cascades estimation but leaves out the part involving the response Y ,

could result solutions with less variation yet still can be computed without a numerical

ODE solver. Conceptually, the inner-step of the proposed approach finds the best

approximation under a semiparametric model from all elements in the linear space

spanned by cubic B-spline basis functions. When this approximation can be achieved

with a very high precision, it is as if one can estimate the nonparametric component

in a semiparametric model with a negligible convergence rate, the consequence is

equivalent to knowing the nonparametric component. The problem under study then

becomes a parametric one and the solutions tend to be less variable and more stable.

This is what we have observed in the numerical investigations. Additional advantages

of the proposed method include that it is much faster and easier to compute and it

is also less sensitive toward the number of knots used to construct the cubic B-spline

basis functions. The proposed procedure and the properties we develop here will be

useful when other penalty term(s) are imposed for different regularization purposes.
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CHAPTER IV

Regularized Semiparametric Estimation for

Ordinary Differential Equations

4.1 Introduction

In Engineering, physics and bio-medical science fields, dynamic systems are often

modeled through a set of ordinary differential equations (ODEs). Most ODE dynamic

systems are fully determined by the parameters and initial values. They usually have

nonlinear structures and no trivial analytic solutions. Given the parameters and initial

values, there exist various numerical methods to solve nonlinear ODEs, including the

well known family of Runge-Kutta methods. In reality, the parameters of the ODE

system are often unknown and need to be estimated using the observation data.

Suppose that an ODE dynamic model has the following general structure:

dX

dt
= F{X(t), θ, t} (4.1)

whereX(t) = {X1(t), · · · , Xm(t)}T is the state vector to describe the dynamic system,

θ = (θ1, · · · , θd)T denotes the unknown parameters to be estimated, and F (·) =

{F1(·), · · · , Fm(·)}T is a known force functional structure, which is usually highly

non-linear. Instead of directly observing the true state vector X(t), the surrogate
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Y (t) is observed at discrete time grids by assuming

Yij = Yj(tij) = Xj(tij) + εij, i = 1, . . . , nj; j = 1, . . . ,m. (4.2)

Over a long period of time, the parameters θ were assumed as constants. Currently

in the statistics literature, there are two main categories of estimation procedure

to solve an ODE system. For a two-stage method, one estimates the ODE curves

and their first derivatives in stage-one by a nonparametric smoothing approach, and

then, in the second stage, finds the parameter estimates through the classical least-

square optimization with X(t) and dX(t)/dt replaced by the nonparametric estimates

obtained from the first stage. Varah (1982) estimated X(t) and dX(t)/dt using a

spline smoothing technique in stage-one. Recently, Liang and Wu (2008) extended

the work of Varah (1982) by using the local polynomial estimation as the smoothing

approach and they further provided statistical properties of the estimator. The use of

non-parametric kernel estimation method was proposed and studied in Brunel (2008).

These approaches are easily implemented and can perform very well with moderate to

large data sets with densely observed data points. However, if the level of observation

noise is relatively high and/or the sample size is small, the two-stage method may not

obtain sufficiently precise estimates of dX(t)/dt in the first stage and consequently

the estimation of parameters in the second stage also suffer.

The second category of methods are built on profile estimation. The approach

was introduced by Ramsay, et al. (2007), and it has been referred to as a parameter

cascade method. Instead of estimating the ODE curves directly from the data, one

first constructs the ODE curves as functions of given parameters in the inner step.

These estimated functions were then included into the outer step which optimizes

an objective function. In Ramsay, et al. (2007) and the follow-up papers, a penalty

term is included in the inner step with the intention of balancing the goodness of fit
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between the observations and the assumed ODE system and the faithfulness toward

the assumed system.

Recently, the variation of the approach was investigated in Li, et al. (2011). Their

theoretical and numerical findings all suggest that, for variation reduction purpose,

one should remove the additional penalty term in the inner step. The resulting simple

estimator is the most efficient one for the larger family of estimators considered by

Ramsay et al (2007). By considering the ODE initial values as part of parameters

and reconstructing the optimization criterion in the inner step, the parameter cascade

method gives smaller estimation standard errors and the outcomes are much less

affected by certain decision within the nonparametric estimation in the inner step,

such as the choice of B-spline knots.

In reality, the parameters θ may not always remain constants as the systems

evolute with time. In Chen and Wu (2008), they noticed the ODE parameters in the

HIV/AIDS dynamics could vary with time and they applied a two-stage method to

estimate the time-varying ODE coefficients. In this paper, we consider a modeling

approach that will retain the interpretation advantages of a parametric ODE system,

while accommodates potential disturbances that cause the ODE parameters to vary

over time. For example, the Lotka-Volterra dynamic model is widely used to study

the population evolution of predator and prey in the ecological science. When the

two components are dynamically balanced with each other, the parameters of the

model are constants. When certain unpredictable human factors or unusual natural

phenomena strike, such as earthquake, forest fire or environmentally unsound logging

practice, the system may break the balance and the parameter values vary. After

a short perturbation due to unusual factors, another balance system may be re-

established and the parameters would again be constants. The estimation methods

by treating parameters as constants will not be suitable for this situation. Assuming

time varying coefficients through out the observation time may result loosing the
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understandings of the system provided by the constant parameters.

With this setup in mind, we propose a regularized parameter cascade method

to estimate the time-varying parameters for ODEs. The main parameter estimation

method is based on Chapter III. The variation reduction therein enables a feasible

and stable estimation procedure. An equivalent regularization penalty was adopted

in James, et al. (2009) to estimate the coefficient function in a linear functional

regression model. We assume that there exist time regions that parameters of the

ODE system are constants. By adding the penalties in the outer step of a parameter-

cascade method, the true parameter structures can be recovered and the estimation

variation can be reduced dramatically in comparison to the methods without regu-

larization penalties. We also show that, with probability tending to one and under

certain conditions, the distances between estimated ODE curves by the proposed

method and the true are bounded at a certain rate as the sample size grows.

The rest of this chapter is organized as follows. In Section 4.2, we propose the

estimation method and discuss various important issues in the algorithm including

the corresponding degree of freedom and the choice of penalty parameter. The non-

asymptotic bounds on the errors of our estimator are presented in Section 4.3. In

Section 4.4, we compare our method with other approaches by simulation studies. The

two models we investigate are FitzHugh-Nagumo model and Lotka-Volterra model.

In Section 4.5, we use the proposed method to analyze a lynx-hare dynamic data set

and a measles incidence dynamic data set collected in Ontario Canada. Finally we

conclude the paper with a short discussion in Section 4.6.

4.2 Estimation Procedure

In this section, we propose a penalized estimation algorithm and address issues

arise in the selection of the penalty tuning parameter.
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4.2.1 Algorithm

Letting θ`(t), ` = 1, . . . , d denote the time-varing coefficients in an ODE system,

and considering a p-dimensional basis ψ(t) = {ψ1(t), ψ2(t), . . . , ψp(t)}T , we consider

the following model that allows imperfect fitting:

θ`(t) = ψ(t)Tη` + ep,`(t) = ξ`(t) + ep,`(t), ` = 1, . . . , d

where η` is the coefficient vector of the basis expansion, and ep,`(t) represents the

deviation of ξ`(t) from the true curve θ`(t). We also denote the space spanned by

such a set of basis functions by Lψ,p; ξ`(·) ∈ Lψ,p. A common choice ψ(t) is the system

of B-spline basis Functions, which is what we used. Throughout, we use the notation

of η = (ηT1 , . . . , η
T
d )T and θ(·) = {θ1(·), . . . , θd(·)}T .

For the j-th component of ODE curves, we have

X̂j(t) = φ(t)T cj, j = 1, . . . ,m

where φ(t) = {φ1(t), . . . , φq(t)}T is a q-dimensional basis vector and cj is the coeffi-

cient vector. Denote c = (cT1 , . . . , c
T
m)T . Assuming the observation errors are iid nor-

mally distributed and denoting the initial values vector asX[0] = {X1(0), . . . , Xm(0)}T ,

we let η∗ = (X[0]T , ηT )T . Following the parameter estimation method in Chapter III

and further regularizing the negative log-likelihood in the outer step, we propose a

two-step algorithm as follows.

• Inner step: Given {θ(·), X[0]} or given η∗, we solve the ODE with time-varying

coefficient by using the following criteria:

ĉ(η∗) = arg min
c

∫ m∑
j=1

wj

[
dX̂j

dt
− Fj{X̂, θ(·), t}

]2

dt subject to X̂[0] = X[0],

(4.3)

58



where wj’s are adjusted normalizing weights with the purpose of making the

numerical magnitudes of different components comparable. In this step, we

construct the estimated function ĉ given η∗, which will be adopted into the

outer step as follows.

• Outer step: We can estimate η∗ by minimizing a penalized least square:

η̂∗ = arg min
η∗

m∑
j=1

nj∑
i=1

wj{Yij − X̂j(η
∗, tij)}2 +

d∑
`=1

λ`

T∫
0

|θ′`(τ)|dτ, (4.4)

where Yij and tij are the i-th observed value and time respectively for the j-

th ODE component, X̂j is a function of η∗ and estimated from the inner step

and λ` is the tuning parameter for the `-th coefficient curve. With the first

derivative of the time-varying coefficients regularized by penalties in the outer

step, we aim at “identifying” the regions where each coefficient curve remains

a constant, respectively. When λ` → ∞ sufficiently fast, θ`(t) ≡ θ`, which is a

constant across the whole study range.

The minimization problem in the inner step can be fastly solved with a non-

linear least square step by providing the corresponding derivatives or gradients. As

in Ramsay, et al. (2007), by applying the implicit function theorem we obtain the

derivatives ∂ĉ/∂η and ∂ĉ/∂X[0], which can be used to construct the non-linear least

square gradient in the outer step. Without having to handle the penalties for θ(·)

and the associating additional variation in the inner step of Ramsay, et al. (2007),

the minimization problem in the outer step can be easily solved. Note that our

approach also provide a balance between goodness of fit between the observations

and the assumed parametric ODE system and the fidelity toward that ODE system

by allowing part of θ(t) to be time-varying. Suppose we use K equally spaced points,

τ1, · · · , τK = T , between 0 and T to approximate the integral in the penalty and

rewrite the penalty as
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Pλ(θ) =
d∑
`=1

λ`5τ

K∑
k=1

|θ′`(τk)|, (4.5)

where 5τ is the distance between two neighbor points τk and τk+1. We can absorb

5τ into the tuning parameter λ` in numerical calculation and use the local quadratic

approximation in Fan and Li (2001) to approximate the absolute functions in the

above penalty. Lastly we can carry out the minimization problem in the outer step

via non-linear least square. In practice, we use the same λ` to reduce computation

cost. One can take large enough p to expand the ODE curves, but very large p may

inflate estimation variation. For a given number of observations, the optimal value of

p can be determined by the estimation rate from the following theoretical discussion.

To penalize the derivative of ODE curve over the whole time range, K can be much

larger than p.

4.2.2 Penalty Tuning Parameter Selection

The tuning parameter selection is commonly done using criteria such as Bayesian

Information Criterion (BIC), Akaki Inofrmation Crierion (AIC) or generalized cross

validation (GCV) methods, provided that the degree of freedom can be obtained. For

an estimator µ̂, the conventional definition of the degree of freedom is

df =
n∑
i=1

cov(µ̂i, yi)/σ
2.

Efron et. al. (2004) proposed a bootstrap procedure and Shen and Ye (2002), a data

perturbation method, to estimate the degree of freedom associating with µ̂. Even

though these procedures can be calculated in a straightforward fashion, they are

computationally demanding. To reduce the computation cost, we design an approx-

imation to calculate the degree of freedom by mimicking how it is estimated in the

ridge regression.
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Denote Y j = (Y1j, · · · , Ynjj)T and X̂j = {X̂j(t1j), . . . , X̂j(tnjj)}T = Φjcj with Φj

= {φ(t1j), · · · , φ(tnjj)}T being an nj × q matrix. In (4.4), by conducting a first order

Taylor’s expansion at the estimated η̂∗, we rewrtie the first term, the L2-norm square,

as
m∑
j=1

wj ‖Y j −Φj ĉj|η̂∗ −Zj(η
∗ − η̂∗)‖2

where Zj = Φj
∂ĉj
∂η∗

∣∣∣
η̂∗

. With η∗ being the argument that we intend to maximize, the

above approximation gives the regular least square component in the ridge regression.

We then put the penalty term into the ridge structure. By applying a local quadratic

approximation at η̂∗, following by a second order Taylor’s expansion at a part of η̂∗,

namely η̂`, we approximate Pλ(θ) in (4.5), or equivalently the second term in (4.4),

by

d∑
`=1

λ`

K∑
k=1

[
|θ̂′`(τk)|+ sgn{θ̂′`(τk)}ψ′(τk)T (η` − η̂`) + (η` − η̂`)T

ψ′(τk)ψ
′T (τk)

2|θ̂′`(τk)|
(η` − η̂`)

]
.

Recall that η∗ = (X[0]T , ηT )T and write

D = diag

λ1

K∑
k=1

ψ′(τk)ψ
′T (τk)

2|θ̂′1(τk)|
, · · · , λd

K∑
k=1

ψ′(τk)ψ
′T (τk)

2|θ̂′d(τk)|
, 0, · · · , 0︸ ︷︷ ︸

m


Z =

(
ZT

1 , · · · , ZT
m

)T
Zw =

(
w1Z

T
1 , · · · , wmZT

m

)T
Mimicking the degree of freedom calculation within the ridge regression framework,

we estimate the degree of freedom in ours by

df = Tr
[
Z(ZTZw + D)−1Zw

]
.

Let V be the vector consisting of the diagonal elements of Z(ZTZw + D)−1Zw and
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denote the degree of freedom within each ODE component by dfj, j = 1, . . . ,m, then

dfj =
∑n1+···+nj

i=n1+···+nj−1+1 V i. Our numerical investigation shows that similar outcomes

are obtained when estimating the degree of freedom either by bootstrap or by the

above approximation. The gain in using the approximation is its computation speed.

With the estimated degree of freedom, we select the tuning parameters using the

following selection criteria:

BIC =
m∑
j=1

wj

(
‖Y j − X̂j‖2

σ̂2
j

+ log nj · dfj

)
,

AIC =
m∑
j=1

wj

(
‖Y j − X̂j‖2

σ̂2
j

+ 2 · dfj

)
,

GCV =
m∑
j=1

wj

(
‖Y j − X̂j‖2

σ̂2
j (nj − dfj)2

)
,

where σ̂j can be estimated through non-penalized method in the outer step.

4.3 Theoretical Results

In this section we study some non-asymptotic bounds of our proposed estimation

method. We also derive convergence rates for our estimators under certain regularity

conditions. The proofs are given in the Appendix. To clearly present the fundamental

concepts, we focus on the scenario that there is only one time-varying coefficient; that

is, d = 1, and the ODE system (4.1) has one X with m = 1. The total time range is

also scaled to [0, 1] in the proof; that is, T = 1.

Recall that we use an element in Lψ,p, space expanded by the basis functions ψ(τ),

to approximate the ODE coefficient curve θ(τ). In a vector format, we have, with

each element of ξ(τ) ∈ Lψ,p,

θ(τ) = ψ(τ)Tη + ep(τ) = ξ(τ) + ep(τ). (4.6)
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In this approximation, we let ωp = ‖θ− ξ‖∞ = ‖ep‖∞, where ‖ · ‖∞ is the supremum

norm.

With 0 < τ1 < τ2 < · · · < τK = 1 forming a grid of K evenly spaced points

between 0 and 1, we let A = {5ψ(τ1),5ψ(τ2), · · · ,5ψ(τK)}T , where 5ψ(τk) =

K{ψ(τk) − ψ(τk−1)}. Letting γk = K{ξ(τk) − ξ(τk−1)} and approximating the first

derivative θ′(τk) by γk, we have

γ = Aη, (4.7)

where γ = (γ1, γ2, . . . , γK)T . For exposition simplicity in our theoretical development

and observing the connection between the coefficient functions and their derivatives,

hereafter, we let K = p; consequently, A is a p× p square matrix. For certain choices

of ψ, for example B-splines, A is also invertible. Denote γ∗ = (X[0], γT )T . Using ξ to

approximate the non-parametric curve θ and replacing ξ equivalently by γ, we write

the estimated ODE curve X̂ in the inner step as X̂(γ∗, t) or X̂(ξ,X[0], t). That is,

given the approximation of θ, ξ, and initial value X[0], X̂(ξ,X[0], t) is the solution of

(4.1).

To further simplify the setup, we first approximate the integral of the penalty

with the K = p evenly spaced points. We then rewrite the outer criterion (4.4) as

γ̂∗ = arg min
γ∗

1

n
‖Y − X̂(γ∗, t)‖2 +

λ

p
‖γ‖1, (4.8)

where ‖γ‖1 =
∑p

k=1 |γk|, Y = (Y1, Y2, . . . , Yn)T and t = (t1, t2, . . . , tn)T .

We need the following assumptions for our theoretical outcomes.

(C1) Given ξ(τ), we assume that the force function F in the ODE system equation

(4.1) satisfies

|F (x, ξ, ·)− F (y, ξ, ·)| ≤ c1|x− y|.

In the inner step, We use an element in a q-dimensional functional space to approxi-

mate the ODE curve. We add Assumption A2 to warrant the estimation precision.
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(C2) For any ξ, there exist an element, X[q](t), in a q-dimensional functional space,

Lφ,q, such that the ODE curve X(ξ,X[0], t) can be approximated by a function X[q](t)

and that

‖X[q](·)−X(ξ,X[0], ·)‖∞ ≤ rq,∥∥∥∥dX[q]

dt
(·)− dX

dt
(ξ,X[0], ·)

∥∥∥∥
∞
≤ rq,

where the rate of rq is determined by the number of basis function, q, or the choice of

knots when B-spline basis are applied to approximate the ODE curve. If cubic splines

are used to approximate the ODE curve, the assumption A2 can be easily satisfied

based on Theorem 1 in Hall (1968). We now introduce Lemma ??.

Lemma IV.1. Under Assumptions C1-C2, considering that X̂(ξ,X[0], ·) is estimated

using the inner criterion (4.3), we have, given ξ and X[0],

‖X̂(ξ,X[0], ·)−X(ξ,X[0], ·)‖∞ ≤ c2rq, (4.9)

where c2 is a constant that is a function of c1 in Assumption C1.

From this lemma, we note that, given parameter γ∗, the ODE curve can be esti-

mated with a high precision. The precision rate is only determined by the estimation

rate rq in Assumption C2.

To ensure the estimation uniqueness in the inner step, i.e., the estimated ODE

curve is uniquely determined by the vector of γ∗, and vice versa, we assume

(C3) There exist CUk (t) and CLk (t), k = 1, . . . , p+ 1, such that for given γ∗ and γ†, the

estimated ODE curve satisfies

p+1∑
k=1

CLk (t)|γ∗k − γ
†
k| ≤ |X̂(γ∗, t)− X̂(γ†, t)| ≤

p+1∑
k=1

CUk (t)|γ∗k − γ
†
k| (4.10)

with probability one. Furthermore, given initial value X[0] and two coefficient func-
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tions, θ1 and θ2, we assume that the ODE curves satisfy |X(θ1, X[0], t)−X(θ2, X[0], t)| ≤

c3‖θ1 − θ2‖∞.

Let MU and ML be matrices with elements (MU)ik = CUk (ti) and (ML)ik =

CLk (ti), i = 1, . . . , n and k = 1, . . . , p + 1. Denote JF = {2, . . . , p + 1} and J(γ) =

{k ∈ JF : γk 6= 0}, and |J | denotes the cardinality of J . For a vector ∆ ∈ Rp+1 and a

subset J ⊂ JF , we let ∆J have the same coordinates as ∆ on J and zero coordinates

on the rest of the entries. We also let ∆∗J have the same coordinate as ∆ on the

kth entry, k ∈ J
⋃
{1}, and zero coordinates elsewhere. Similar to the restrictive

eigenvalue assumption in Bickel, et al. (2009), the matrix ML satisfies the following

assumption.

(C4)

κ ≡ min
J⊆JF :|J |≤s

min
∆ 6=0:‖∆JF ‖1≤4‖∆∗J‖1

‖ML∆‖√
n‖∆∗J‖

> 0, (4.11)

where 1 ≤ s ≤ p.

Define K1 =
∨p+1
k=2 ‖MU

·k‖
∨

(4−1‖MU
·1‖) and K2 =

∨p+1
k=1(‖MU

·k‖1/n) where a∨ b =

max(a, b), and MU
·k denotes the k-th column of MU . Denote αp(τ) = ‖ψ(τ)TA−1‖

and ωp,q = c2rq + c3ωp.

Theorem IV.2. For the true ODE parameter curve θ0(·), we denote the approximated

curve in Lψ,p and the coefficient vector by ξ0(·) and γ∗0 = (X0[0], γT0 )T . Define

Sp = |J(γ0)|. Let Yi = X(θ0, X[0], ti) + εi = X̂(γ∗0 , ti) + ζi; ζi = εi + ei. Assume

εi ∼ N(0, σ2
ε) and let

λ

2p
= aσεK1

√
log(p+ 1)

n
+ 2K2ωp,q,

and a > 2
√

2. Then, under Assumptions C1-C4 and for all n ≥ 1, with probability at
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least 1− (p+ 1)1−a2/8 we have

|X̂0[0]−X0[0]| ≤ 4aσεK1

κ2

√
(Sp + 1) log(p+ 1)

n
+

8K2

√
Sp + 1

κ2
ωp,q,

|θ̂0(τ)− θ0(τ)| ≤ 16αp(τ)aσεK1(Sp + 1)

κ2

√
log(p+ 1)

n
+

32αp(τ)K2(Sp + 1)

κ2
ωp,q + ωp.

In addition, if ωp,q = o[{log(p + 1)/n}1/2] so that approximately ζi ∼ N(0, σ2
ε) then

we have the following error bounds:

|X̂0[0]−X0[0]| ≤ 4aσεK1

κ2

√
(Sp + 1) log(p+ 1)

n
,

|θ̂0(τ)− θ0(τ)| ≤ 16αp(τ)aσεK1(Sp + 1)

κ2

√
log(p+ 1)

n
.

The proof of the above theorem is given in Appendix C. From the conclusions

in the above theorem, if, under certain conditions, αp(τ) and κ remain bounded

as n and p diverge, the bounds are proportional to {log(p + 1)/n}1/2 + ωp,q + ωp,

where the latter two terms declines to zero as p and q grow to ∞. Hence, the non-

asymptotic results hold under that high-dimensional scenario when p � n. Further,

as in the case when θ(t) ≡ θ which is time invariant, we can safely use a very large

q in approximation X(t). This is because there is no bias-variance tradeoff in that

estimation.

With additional Assumptions C5-C9 below, we can use the bounds presented

in Theorem IV.2 to derive asymptotic convergence rates for X̂[0] and θ̂0(τ). Their

validity is mostly controlled by the choice of ψ(τ) and A.

(C5) There exists a constant S < ∞ such that Sp ≤ S for all p; further, K1 and K2

are both bounded.

(C6) There exists a constant ν > 0 such that (p+ 1)νrq and (p+ 1)νωp are bounded.

Then (p+ 1)νωp,q is also bounded.

(C7) For a given τ , there exists bτ < ν such that (p+ 1)−bταp(τ) is bounded for all n
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and p.

(C8) There exists µ < ν such that (p+ 1)−µ supτ αp(τ) is bounded for all n and p.

(C9) κ is bounded away from zero for large enough n, where n → ∞, p → ∞ and

p/n→ 0.

Corollary IV.3. With Assumptions A5-A9, if we let p grow at the rate of n1/(2ν),

the estimators X̂[0] and θ̂(τ) in Theorem IV.2 satisfy the following converging rate

with probability tending to one:

|X̂[0]−X0[0]| = O

(√
log n

n

)
,

|θ̂(τ)− θ0(τ)| = O

( √
log n

n1/2−bτ/(2ν)

)
,

sup
τ
|θ̂(τ)− θ0(τ)| = O

( √
log n

n1/2−µ/(2ν)

)
.

Furthermore, if ζi ∼ N(0, σ2
ε) and we let p grow at the rate of n1/(2ν+2bτ ), the converg-

ing rate of θ̂(τ) becomes

|X̂[0]−X0[0]| = O

(√
log n

n

)

|θ̂(τ)− θ0(τ)| = O

( √
log n

nν/(2ν+2bτ )

)
,

with probability tending to one while the converging rate of X̂[0] stays same. If we let

p grow at the rate of n1/(2ν+2µ), we have the following supremum converging rate for

θ̂:

sup
τ
|θ̂(τ)− θ0(τ)| = O

( √
log n

nν/(2ν+2µ)

)
.

We provide the proof of the above corollary in Appendix C for the completeness.

From these results, one can easily find that the converge rate for X̂[0] is slightly better

than the non-parametric estimator θ̂(τ) in all cases.
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4.4 Simulation Study

In this section, we apply the proposed method to two simulated ODE dynamic

systems; both have wide scientific applications.

Exmaple 1. We first study the FitzHugh-Nagumo ODE model. This model was

invented by FitzHugh (1961) and Nagumo et al. (1962) to simply the Hodgkin-

Huxley model (1952), which was used to study the behavior of spike potential in the

giant axon of squid neurons. The ODE equations are

dV

dt
= c

(
V − V 3

3
+R

)
,
dR

dt
= −1

c
(V − a+ bR), (4.12)

where V describes the voltage across an axon membrane, R is the recovery variable

summarizing outward currents, and a, b, c are ODE coefficient parameters in the

dynamic system. In this simulation study, we let the parameters a, b and c in (4.12)

vary over time according to the following settings:

a = 0.2I(0 ≤ t ≤ 3) +
1

45
[18− (t− 6)2]I(3 < t ≤ 9) + 0.2I(9 < t ≤ 20),

b = 0.2I(0 ≤ t ≤ 11) +
1

45
[18− (t− 14)2]I(11 < t ≤ 17) + 0.2I(17 < t ≤ 20),

c = 3.0I(0 ≤ t ≤ 7) +
1

6
[9 + (t− 10)2]I(10 < t ≤ 13) + 3.0I(13 < t ≤ 20),

where I(·) is the indicator function.

The observations of V and R from (4.12) are simulated with initial values V (0) =

−1.0 and R(0) = 1.0. We generate 201 pairs of V and R with the observation

errors from N(0, 0.52) on equally-distanced grids in [0.20]. The cubic B-splines with

knots placed at each observation time are used to approximate the ODE curves.

We use the cubic B-splines with 21 equally spaced knots for estimating the ODE

coefficient curves. In the penalty term, the 201 τk ’s with an equal distance between

two consecutive points are used to approximate the integral.
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For each simulated data, we consider four estimation methods, Method I-IV.

Method I is the proposed method that regularizes the outer-step criteria. Method

II is the varying-coefficient estimation method without the regularization penalties.

In Method III, the parametric model with constant parameters are considered. In

addition to these three method, we also compare the results with Method IV in which

the true constant regions of parameters are known. In true constant regions, the pa-

rameters are estimated as constant values, and cubic B-splines are only applied in

non-constant regions. Method IV can only be carried out in the simulation study.

For Method I, we also compare the results using, respectively, BIC, AIC and GCV

criteria for tuning parameter selection.

Denote the true ODE coefficient curves by θ0
` (τ), ` = 1, . . . , d. We let F ` = {τ :

θ0
`
′(τ) = 0} and F c

` = {τ : θ0
`
′(τ) 6= 0}. In the example, θ0 are a, b and c. Let |F `|

and |F c
`| be the lengths of the regions of F ` and F c

` respectively. The following mean

integrated square errors (MISE) are used to compare different methods

MISEF ` = E

∫
F `

[θ̂`(τ)− θ0
` (τ)]2dτ, MISEF c`

= E

∫
F c`

[θ̂`(τ)− θ0
` (τ)]2dτ.

The MISE is reported using the sample mean over 100 repetitions. Denote the stan-

dard error of the estimator θ̂` at τ as SEθ̂`
(τ) and define the average estimation

standard errors (AVSE) as

AVSEF ` = |F `|−1

∫
F `

SEθ̂`
(τ)dτ, AVSEF c`

= |F c
`|−1

∫
F c`

SEθ̂`
(τ)dτ.

For the estimation of the ODE curves Xj(t), which are V (t) and R(t) in this simula-

tion, we also compare the MISE and AVSE for estimated Xj and they are defined as
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follows:

MISEXj = E

T∫
0

[X̂j(t)−Xj(t)]
2dt, AVSEXj = T−1

T∫
0

SEX̂j
(t)dt,

where X̂j is the the estimated curve of the j-th ODE component Xj and SEX̂j
(t)

denotes the standard error of X̂j at time t.

The MISE results over 100 repetitions for both the parameter curves and the ODE

curves are reported in the top half of Table 1. The AVSE results are also compared

in the bottom half of Table 1. The average estimated parameter curves are plotted

with the true cures in Figure 1. From the MISE results, our method performs the

best among the four methods considered. For Method I, the BIC results are slightly

better than those of AIC and GCV. The parameter curves are constant over most

of time and BIC reduces the model complexity in terms of first derivatives much

more than the other two. The performance of Method II is worst among all methods,

specially for the MISE results of a and b. For c, Method II performs slightly better,

particularly in the region of F c
c. This observation implies that the parameter c is more

sensitive to the structure of the FitzHugh-Nagumo dynamic system and is easier to

be estimated than a and b. It further suggests that c can not be estimated as a

constant over all time, as also indicated by the MISE results of Method III. In the

comparisons of AVSE results among all four methods, because the penalties reduce

the model complexity, our proposed Method I has comparable standard errors with

Method III, in which only five parameters, i.e., constant a, b, c and two initial values,

need to be estimated. Even though it seems that Method IV outperforms Method

III in Figure 1, the MISE results within the constant regions of F a and F b suggest

otherwise. The reason is that Method III gains by the smaller estimation standard

errors. From Fig. 1, we can find that in the non-constant time regions F c
a, F

c
b and

F c
c. The proposed Method I over-shrinks the bump and valley, specially at the points

70



where the true first derivatives are zero. The reason is due to the penalties of the

first derivative for the parameter curves. From the estimation results of ODE curves

V and R, Method I with BIC achieves the smallest MISE results and the smallest

AVSE results, and Method III performs the worst.
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Figure 4.1: Estimated parameter cures plotted with true curves in the FitzHugh-
Nagumo model. Left half of the figure: Method I (solid); Method III
(dash-dot); Method VI (dashed); True (dotted). Right of the figure:
Method II (solid); True (dotted).
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MISE results
F a F c

a F b F c
b F c F c

c V R
BIC 0.0022 0.0096 0.0036 0.0106 0.0045 0.0166 0.0717 0.0112
AIC 0.0126 0.0160 0.0433 0.0174 0.0100 0.0292 0.1028 0.0274
GCV 0.0093 0.0151 0.0311 0.0159 0.0091 0.0275 0.1000 0.0245

Method II 273.8949 27.1258 742.8140 18.5210 126.0361 0.9516 0.1262 0.0569
Method III 0.0238 0.1894 0.0920 0.1125 4.3427 2.3924 2.7103 0.7336
Method IV 0.2749 0.5590 0.5189 1.4269 0.6427 0.9301 0.1158 0.0498

AVSE results
F a F c

a F b F c
b F c F c

c V R
BIC 0.0143 0.0193 0.0195 0.0243 0.0161 0.0191 0.0341 0.0197
AIC 0.0298 0.0311 0.0453 0.0347 0.0159 0.0391 0.0459 0.0325
GCV 0.0265 0.0301 0.0390 0.0313 0.0142 0.0361 0.0446 0.0305

Method II 3.7451 4.4388 9.4972 3.0448 1.2656 0.5976 0.0570 0.0474
Method III 0.0262 0.0262 0.0738 0.0738 0.0370 0.0370 0.0614 0.0418
Method IV 0.2494 0.3318 0.3093 0.6889 0.3204 0.5639 0.0568 0.0485

Table 4.1: The average MISE and AVSE results of the four different estimation meth-
ods over 100 repetitions in the FitzHugh-Nagumo model.
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Exmaple 2. In the second example, the well known Lotka-Volterra dynamic model

(Lotka 1910 and Volterra 1926) are studied. This model, also known as predator-

prey model, has wide applications in modeling the dynamics of ecological systems

with predator-prey interactions, competition and disease dispersion. The model has

two components H and L, described by the following ODEs:

dH

dt
= aH − bHL, dL

dt
= −c+ dHL,

where a, b, c and d are the ODE parameters, and they are given by the following

equations in the simulation:

a = 0.5I(0 ≤ t ≤ 6) +
1

30
[2.4− (t− 9)2]I(6 < t ≤ 12) + 0.5I(12 < t ≤ 20),

b = 0.25I(0 ≤ t < 3) +
1

90
[13.5 + (t− 6)2]I((3 < t ≤ 9) + 0.25I((9 < t ≤ 20),

c = 1.0I(0 ≤ t < 11) +
1

45
[36 + (t− 14)2]I(11 < t ≤ 17) + 1.0I(17 < t ≤ 20),

d = 0.3I(0 ≤ t ≤ 6) +
1

45
[22.5− (t− 9)2]I(6 < t ≤ 12) + 0.3I(12 < t ≤ 20).(4.13)

We generate 101 pairs of observations still on equally-distanced grid with the

initial values H(0) = 3.5 and L(0) = 0.5. The observation errors are from N(0, 1).

Knots are placed at each observed time point and the corresponding cubic B-splines

are used to approximate the two ODE curves. The setting of cubic B-splines and the

grid for approximation of the penalty integral are the same as those in Example 1.

Performances of Method I - IV are also investigated for this simulation example.

The MISE and AVSE results over 100 time simulations are shown in Table 4.2, and the

average estimation parameter curves are plotted in Figure 4.2. From Figure 4.2, the

estimation results of Method II are not so much as erratic as the estimation results of a

and b in the previous example. It means that the parameters in this example are easier

to be estimated, compared to those in the previous FitzHugh-Nagumo ODE model.
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The average estimated parameter curves are very close to the true curves for both

Method I and Method IV. From MISE and AVSE results in Table 4.2, our propose

Method I still performs best among the four methods. Different from the results of

the previous example, the MISE and AVSE results of Method III are unanimously

worse than other Methods because Method III barely fits the data simulated using

our parameter setting (4.13). From the very large MISE and AVSE results of H and

L obtained from Method III in Table 4.2, we can also find this reason.

75



0 5 10 15 20

0.
2

0.
4

0.
6

0.
8

1.
0

t

a

0 5 10 15 20

0.
2

0.
4

0.
6

0.
8

1.
0

t

a

0 5 10 15 20

0.
15

0.
20

0.
25

0.
30

t

b

0 5 10 15 20

0.
15

0.
20

0.
25

0.
30

t

b

0 5 10 15 20

0.
7

0.
8

0.
9

1.
0

1.
1

1.
2

1.
3

1.
4

t

c

0 5 10 15 20

0.
7

0.
8

0.
9

1.
0

1.
1

1.
2

1.
3

1.
4

t

c

0 5 10 15 20

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

t

d

0 5 10 15 20

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

t

d

Figure 4.2: Estimated parameter cures plotted with true curves in the Lotka-Volterra
model. Lines are as in Fig. 1.
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4.5 Analysis of Ecology and Epidemiological Data Sets

1. Hare and lynx data: We first apply our proposed method to a lynx-hare data set

with a predator-prey dynamic model. The numbers of trapped lynx and snowshoe

hares of North Canada were collected from 1900 to 1920 (Odum 1953). The observed

data should reflect the relative populations of lynx and hare in the study region.

The dynamic ODE model follows as Lotka-Volterra dynamic model (4.13) with H

and L representing the evolution function of the number of snowshoe hares and lynx

respectively. The cubic B-splines with 201 equally-spaced knots are used to estimate

the ODE curves of H(t) and L(t). The parameter curves of a, b, c and d are estimated

with the cubic B-splines but only with 8 equally-spaced knots due to the limited

number of observation.

We use the BIC criterion to regularize the ODE coefficient curves, and plot them

together with the estimated curves by non-regularized method (Method II) and that of

a constant fitting (Method III) in Figure 4.3. With the data set only containing 21 pair

observations, we almost fail to obtain any structure information for ODE parameters

by Method II. With the penalties, Method I gives us improved structural information

over that of Method II: the estimated parameter a stays almost constant over the

whole observation time period; the estimated parameter b is basically a constant

from 1900 to 1905, then starts to increase and later stabilizes into a slightly larger

constant around 1912; the estimated parameter c stays constant over the whole time

period; the estimated parameter d varies quite a bit and has not reached a constant-

stage across the whole time, but it stills has much smaller variation in comparison to

the estimated d curve of Method II.

From Figure 4.4, both Method I and II fit better at the first peaks of H and L

dynamics. Method III performs worse than the other two at the the middle valleys of

H and L. Looking at the tails of H(t) and L(t), we conclude that Method I performs

the best among all three methods. A bootstrap analysis was conducted for a variation
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comparison. The result, which is not reported here, shows that standard errors of

our regularized method are comparable to those of Method III, and are much smaller

than that standard errors of Method II.
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Figure 4.3: Estimated parameter cures for the lynx-hare data set through the Lotka-
Volterra model. Left half of the figure: Method I (solid); Method III
(dashed); Right half of the figure: Method II (solid).
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2. Canadian Measles Incidence Dynamic data: In the second data example, we apply

our method to analyze a Canadian Measles incidence dynamic data set. The data

consists of weekly measles incidence reports for the province of Ontario, Canada,

from 1939 through 1965. A scatter plot of the data is given in Hooker, et al. (2011).

Following their analysis, the data can be modeled through the so called SEI dynamic

equations:

Ṡ = ρ(t)− β(t)

(
I

p(t)
+ v

)
S,

Ė = β(t)

(
I

p(t)
+ v

)
S − σE,

İ = p(t)σE − γI,

where S is the susceptible class, E is the exposed (infected with the disease but not

infectious) class and I is the infectious class. S increases with a recruitment rate ρ(t)

and moves into E with a rate of β(t)(I/p(t) + v). E transforms into I with the rate

σp(t) as I recovers with the rate γ. In this data set only I, the measles infectious class,

is observed. The other two state variable S and E are unobserved. The parameters

are ρ(t), β(t), p(t)(= p0 + p1(t − 1952)), v, σ and γ. ρ(t) is interpolated from the

monthly birth rate data at a five-year lag. σ is known to be around 8 days, i.e.,

σ = 365/8. γ is roughly estimated by the five day mean infectious period and equals

to 365/5. Only the parameters β(t), p0, p1 and v need to be estimated from the data.

The structure of β(t) within each year has been studied in Bauch and Earn (2003),

which consists of a high-level component at the summer season and a low-level one

during the rest of the year. Adopting this yearly structure, we further use the proposed

method to find the long-term pattern of β(t). Following Hooker, et al. (2011), we let

β(t) = α(t) + θ(t) (4.14)
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where θ(t) is a cyclic function that describes the same within-year pattern across

all years, which is subject to the constrain
∫ 1

0
θ(t)dt = 0, and α(t) is the general

coefficient function that describes the long-term time trend. We use the cyclic cubic

B-splines with knots on each month to expand θ(t) while using the regular cubic

B-splines with knots on each year for approximating α(t). We only regularize α(t) to

find the long-term yearly pattern.

We compare our results with two other methods: the varying-coefficient approach

without regularization penalty and a set of short-term constant-fit conducted every

two years. In latter, we assume α(t) = c for two neighboring years and only fit the

data within that two years and repeat this process for about 25 times from 1939 to

1963. In Figure 4.5, the regularized and non-regularized α(t) are plotted with the

two-year constant fitting, all in log scale. We find that the regularized α(t) is larger at

the early years and deceases gradually to a constant after 1958. This means the rate

at which the susceptible class moving into the exposed class decreases in the long-term

pattern and gradually becomes stabilized. This pattern of α(t) could be due to an

introduction of measles vaccine around 1954. After the measles vaccine took effect,

α(t) could be modeled as a constant and β(t) only contains the seasonal pattern.

To give a simple illustration, we also plot the fitting results for I in Figure 4.5 from

1952 to 1954. In term of the prediction error, the two-year constant fitting approach

perform the best but it is not straight forward to learn the pattern from this modeling

strategy. Our regularized method performs slightly better than the non-regularized

approach.
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Figure 4.5: Left: estimated α(t) for regularized method (solid) and non-regularized
method (dotted); circles are for the two-year constant fitting. Right:
estimated I(t) for 1952-1954; regularized method (solid), non-regularized
method (dotted) and two-year constant fitting (dashed).

84



4.6 Discussion

We proposed a regularized parameter estimation method for the ODE dynamic

system. If the ODE coefficient curve has parts of derivatives being 0, i.e., constant

in some regions in time, the regularized approach in general performs much better

than the ordinary non-regularized method. Under this situation, one can also utilize

the parametric ODE structure with new independent errors to predict the range of

new observations in the near future. To this end, prediction can be conducted, as in

the stochastic scenario, by heavily relying on the assumed the model being correct

and possessing a parametric structure. The penalties not only help in recovering the

parametric structure, but also play a role of smoothing and on reducing the estimation

variation. From our theoretical study, the nonparametric curves obtain estimation

bounds as functions of {log p}1/2 under certain regularity conditions. This indicates

that a large p may not cause much harm in prediction accuracy for the purposed

method.
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APPENDIX A

Convex Regularization Method for

High-Dimensional Grouped Variable Selection

We first prove the following lemma before the proof of Theorem II.3

Lemma A.1. Consider the model (2.2). Assume that the random variables ε1, · · · , εn

are i.i.d. normal with mean zero and variance σ2, and all diagonal elements of the

matrix XTX/n are equal to 1. Suppose MG(β∗) = s and M(β∗) = r. Let

λ2 = ρλ1 = 2ρAσ

√
log p

n
,

and A >
√

2. Then with probability at least 1 − p1−A2/2, for any solution β̂ of mini-

mization problem (2.17) and all β ∈ Rp we have

1

n
‖X(β̂ − β∗)‖2 + 2λ2

K∑
k=1

‖β̂k − βk‖+ λ1|β̂ − β|

≤ 1

n
‖X(β − β∗)‖2 + 4λ2

∑
k∈JG(β)

‖β̂k − βk‖+ 4λ1

∑
kj∈J(β)

|β̂kj − βkj|,(A.1)

M(β̂) ≤ 4

λ2
1n

2
‖XTX(β̂ − β∗)‖2. (A.2)

87



Proof ∀β ∈ Rp, we have

1

n
‖Xβ̂ − y‖2 + 2λ2

K∑
k=1

‖β̂k‖+ 2λ1|β̂| ≤
1

n
‖Xβ − y‖2 + 2λ2

K∑
k=1

‖βk‖+ 2λ1|β|. (A.3)

By using y = Xβ∗ + ε, the above inequality is equivalent to

1

n
‖X(β̂−β∗)‖2 ≤ 1

n
‖X(β−β∗)‖2+

2

n
εTX(β̂−β)+2λ2

K∑
k=1

(‖βk‖−‖β̂k‖)+2λ1(|β|−|β̂|).

(A.4)

Note that

εTX(β̂ − β) ≤ |XT ε|∞|β̂ − β|1, (A.5)

where |XT ε|∞ = max1≤k≤K,1≤j≤L |
∑n

i=1Xi,kjεi|. We consider the random event

A =

{
2

n
|XT ε|∞ ≤ λ

}
. (A.6)

Since all diagonal elements of the matrix XTX/n are equal to 1, the following random

variables

Vkj =
1

σ
√
n

n∑
i=1

Xi,kjεi 1 ≤ k ≤ K, 1 ≤ j ≤ L, (A.7)

are i.i.d. standard normal. Using this fact we can obtain the following probability

equalities for any kj

Pr(|
n∑
i=1

Xi,kjεi)| ≥
λ1n

2
) = Pr(|Z| ≥ λ1

√
n

2σ
), (A.8)

where Z is the standard normal random variable. By applying the tail bound on the

normal distribution and plugging in λ1 = 2Aσ
√

log p
n

, we have the probability upper
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bound for the event Ac:

Pr(Ac) ≤ p · Pr(|Z| ≥ λ1

√
n

2σ
),

≤ p1−A2/2. (A.9)

Following (A.4), on the event A, we have

1

n
‖X(β̂ − β∗)‖2 + 2λ2

K∑
k=1

‖β̂k − βk‖+ λ|β̂ − β|

≤ 1

n
‖X(β − β∗)‖2 + 2λ2

K∑
k=1

(‖β̂k − βk‖+ ‖βk‖ − ‖β̂k‖) + 2λ1(|β̂ − β|+ |β| − |β̂|),

≤ 1

n
‖X(β − β∗)‖2 + 4λ2

∑
k∈JG(β)

‖β̂k − βk‖+ 4λ1

∑
kj∈J(β)

|β̂kj − βkj|. (A.10)

This is the first inequality in this lemma. To prove the second one, we first state the

KKT conditions on the convex analysis of model (2.17):


1
n
(XT (Y −Xβ̂))kj = λ2

β̂kj

‖β̂k‖ + λ1sgn(β̂kj) ∀β̂kj 6= 0,

1
n
|(XT (Y −Xβ̂))kj| ≤ λ1 + λ2 ∀β̂kj = 0.

(A.11)

Then we prove the inequality for the sparsity of β̂, M(β̂). From KKT condition and

the definition of A, it is not difficult to find that

λ1 ≤
1

n
|(XT (Y −Xβ̂))kj| ≤

1

n
|(XTX(β̂ − β∗))kj|+

1

2
λ1 if β̂kj 6= 0. (A.12)

Therefore, we have

M(β̂) ≤ 4

λ2
1n

2

∑
kj∈J(β̂)

|(XTX(β̂ − β∗))kj|2 ≤
4

λ2
1n

2
‖XTX(β̂ − β∗)‖2.

This completes the proof of the lemma.
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Proof of Theorem II.3 The proof will follow the basic idea of Bickel et al. (2009)

for the lasso method. Since the penalty in our method includes both L1 and L2 norms,

the KKT conditions and many of the technical details will be different from that of

lasso.

Let J = J(β∗) and JG = JG(β∗). By (A.1) in Lemma 2, with β = β∗, we have, on

the event A, that

1

n
‖X(β̂ − β∗)‖2 ≤ 4λ2

∑
k∈JG

‖β̂k − βk∗‖+ 4λ1

∑
kj∈J

|β̂kj − β∗kj|,

≤ 4λ2

√
s‖(β̂ − β∗)JG‖+ 4λ1

√
r‖(β̂ − β∗)J‖. (A.13)

Moreover by the same inequality, we have

2λ2

K∑
k=1

‖β̂k − βk∗‖+ λ1|β̂ − β∗| ≤ 4λ2

∑
k∈JG

‖β̂k − βk∗‖+ 4λ1

∑
kj∈J

|β̂kj − β∗kj|,

which is equivalent to

2λ2

∑
k∈JcG

‖β̂k − βk∗‖+ λ1

∑
kj∈Jc

|β̂kj − β∗kj| ≤ 2λ2

∑
k∈JG

‖β̂k − βk∗‖+ 3λ1

∑
kj∈J

|β̂kj − β∗kj|.

This is the condition in Assumption 3.1 at ∆ = β̂−β∗ since λ2/λ1 = ρ. Thus, by the

assumption, we have

‖(β̂ − β∗)JG‖ ≤
‖X(β̂ − β∗)‖

κG
√
n

,

‖(β̂ − β∗)J‖ ≤
‖X(β̂ − β∗)‖

κ
√
n

. (A.14)

Plugging the above inequalities into (A.13), we have

1

n
‖X(β̂ − β∗)‖2 ≤ 16λ2

1

(
ρ
√
s

κG
+

√
r

κ

)2

. (A.15)
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Also by noting that

2ρ
K∑
k=1

‖β̂k − β∗k‖+ |β̂ − β∗| ≤ 4ρ
√
s‖(β̂ − β∗)JG‖+ 4

√
r‖(β̂ − β∗)J‖,

and ‖β̂ − β∗‖2,1 ≤ |β̂ − β∗|, we have

‖β̂ − β∗‖2,1 ≤
16λ1

2ρ+ 1

(
ρ
√
s

κG
+

√
r

κ

)2

. (A.16)

By plugging the value of λ1 into (A.15) and (A.16), we prove (2.19) and (2.20).

From (A.2) in Lemma 6.1, we obtain:

M(β̂) ≤ 4

λ2
1n

2
‖XTX(β̂ − β∗)‖2 ≤ 4φmax

λ2
1n
‖X(β̂ − β∗)‖2.

By plugging the bound of ‖X(β̂ − β∗)‖2 into the above inequality, we have (2.21).

Finally, we need to prove (2.22). For the sake of notational simplicity, we let

∆ = β̂ − β∗ and let J ′G be the set of indices in J cG corresponding to s maximal in

absolute value norms ‖∆k‖, and write JG,2s = JG ∪ J ′G. Also similarly, let J ′ be the

set of indices in J c corresponding to r maximal in absolute value |∆kj|, and write

J2r = J ∪ J ′. Note that |JG,2s| ≤ 2s and |J2r| ≤ 2r. Denote ‖∆(l)
JcG
‖ and ‖∆(l)

Jc‖ as the

l-th largest value in the sets {‖∆k‖ : k ∈ J cG} and {‖∆kj‖ : kj ∈ J c}, respectively.

We have

‖∆(l)
JcG
‖ ≤

∑
k∈JcG

‖∆k‖/l = ‖∆JcG
‖2,1/l,

‖∆(l)
Jc‖ ≤

∑
kj∈Jc

|∆kj|/l = |∆Jc|/l. (A.17)
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Then we obtain

‖∆JcG,2s
‖2 =

∑
k∈JcG,2s

‖∆k‖2 ≤
∞∑

l=s+1

‖∆JcG
‖2

2,1

l2
≤
‖∆JcG

‖2
2,1

s
,

‖∆Jc2r
‖2 =

∑
kj∈Jc2r

|∆kj|2 ≤
∞∑

l=r+1

|∆Jc |2

l2
≤ |∆Jc |2

r
, (A.18)

by the assumption RE(r, s, ρ), which implies that

2ρ
√
s‖∆JcG,2s

‖+
√
r‖∆Jc2r

‖ ≤ 2ρ‖∆JG‖2,1 + 3|∆J |,

≤ 2ρ
√
s‖∆JG‖+ 3

√
r‖∆J‖,

≤ 2ρ
√
s‖∆JG,2s‖+ 3

√
r‖∆J2r‖. (A.19)

Since

‖∆‖ ≤ ‖∆JcG,2s
‖+ ‖∆JG,2s‖ and

‖∆‖ ≤ ‖∆Jc2r
‖+ ‖∆J2r‖, (A.20)

we have

‖∆‖ ≤ 4ρ
√
s

2ρ
√
s+
√
r
‖∆JG,2s‖+

4
√
r

2ρ
√
s+
√
r
‖∆J2r‖. (A.21)

In addition, the condition in the assumption RE(r, s, ρ) implies the following condition

for the assumption RE(2r, 2s, ρ):

|∆Jc2r
|+ 2ρ‖∆JcG,2s

‖2,1 ≤ 3|∆J2r |+ 2ρ‖∆JG,2s‖2,1.
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Similar to (A.15), we have the following upper bound

1

n
‖X(β̂ − β∗)‖2 ≤ 16λ2

1

(
ρ
√

2s

κG(2r, 2s, ρ)
+

√
2r

κ(2r, 2s, ρ)

)2

. (A.22)

Then by the additional assumption RE(2r, 2s, ρ), we can obtain the upper bounds

for ‖∆JG,2s‖ and ‖∆J2r‖, and then from (A.21), we have (2.22). This completes the

proof. �
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APPENDIX B

Parameter Estimation for Ordinary Differential

Equations

Proof OF Proposition III.1

Recall that α = λ−1. Replacing X by X̂a = Φc, we let

J(c) = J(c, λ) = α‖y − Φc‖2 +

∫ (
dΦ

dt
c− a

)2

dt.

From ∂J(c)/∂c = 0, we obtain ĉ = (αΦTΦ+
∫

Φ′TΦ′dt)−1(αΦTy+a
∫

Φ′Tdt). Plugging

ĉ into H(a) = ‖Y − X̂a‖2 and by letting ∂H(a)/∂a = 0, we find â = (bT b)−1bT (I −

αD)y, where

b = b(α) = Φ(αΦTΦ+

∫
Φ′TΦ′dt)−1

∫
Φ′Tdt, and D = D(α) = Φ(αΦTΦ+

∫
Φ′TΦ′dt)−1ΦT .

Suppose var(y) = σ2, we have

var(â) =
bT (I − αD)2b

(bT b)2
σ2.

For a matrix M ,

∂M−1

∂α
= −M−1∂M

∂α
M−1.
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Consequently,

∂

∂α
var(â) = 4

bTDαb

(bT b)3
bT (I − αD)

(
I − bT b

bTDb
D

)
(I − αD)bσ2.

With αD = Φ(ΦTΦ + α−1
∫

Φ′TΦ′dt)−1ΦT , the eigenvalues of αD satisfy 0 ≤ λp ≤

λp−1 ≤ · · · ≤ λ1 ≤ 1. Denote by γi, δi, i = 1, · · · , p, the eigenvalues of I − αD and

I − bT b
bTDb

D respectively. Then we have

0 ≤ γ1 ≤ γ2 ≤ · · · ≤ γp ≤ 1; δ1 ≤ δ2 ≤ · · · ≤ δp.

According to the same non-descending order, the two sets of eigenvalues share the

same set of eigenvectors v1, v2, · · · , vp. Since

bT
(
I − bT b

bTDb
D

)
b = 0,

we have

bT
p∑
i=1

δiviv
T
i b =

p∑
i=1

δi(b
T
i vi)

2 = 0.

Suppose δ1 ≤ · · · ≤ δm ≤ 0 ≤ δm+1 ≤ · · · ≤ δp, we have

m∑
i=1

(−δi)(bTvi)2 =

p∑
j=m+1

δi(b
Tvi)

2.
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Therefore,

bT (I − αD)

(
I − bT b

bTDb
D

)
(I − αD)b

= bT
p∑
i=1

γiviv
T
i

p∑
j=1

δjvjv
T
j

p∑
k=1

γkvkv
T
k b

= bT
p∑
i=1

γ2
i δiviv

T
i b

=

p∑
i=1

γ2
i δi(b

Tvi)
2

≥ −γ2
m+1

m∑
i=1

(−δi)(bTvi)2 + γ2
m+1

p∑
i=m+1

δi(b
Tvi)

2 = 0.

This completes the proof.

Derivation of variance approximation for the one-component compartmental model:

Let

J(c) = α‖y − Φc‖2 +

∫ (
dΦ

dt
c− aΦc

)2

dt.

From ∂J(c)/∂c = 0, we obtain ĉ = αM−1(a, α)ΦTy, where

M(a, α) = αΦTΦ +

∫
(Φ′ − aΦ)T (Φ′ − aΦ)dt.

Plugging ĉ into H(a) = ‖y − X̂a‖2 and by letting ∂H(a)/∂a = 0, we find

yT (I − αΦM−1ΦT )ΦM−1(2a

∫
ΦTΦdt−

∫
ΦTΦ′dt−

∫
Φ′TΦdt)M−1ΦTy = 0.

Let

G(a, α) = yTΛ(a, α)y,

where Λ(a, α) = (I − αΦM−1ΦT )ΦM−1(2a
∫

ΦTΦdt−
∫

ΦTΦ′dt−
∫

Φ′TΦdt)M−1ΦT .

Perform Taylor expansion on G(a, α) around a = a0, the true value of parameter a,
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then

0 = G(â, α) = G(a0, α) +
∂G

∂a

∣∣∣
a0

(â− a0) +Op(â− a0)2.

We can approximate â as follows:

â ≈ a0 −
(
∂G(a0, α)

∂a

)−1

G(a0, α) = a0 −
yTΛ(a0, α)y

yT ∂Λ(a0,α)
∂a

y
.

Then the variance of estimator â can be approximated as

var(â) = var

(
yTΛ(a0, α)y

yT ∂Λ(a0,α)
∂a

y

)
.

Using the realization of Y being normally distributed with the standard deviation

σ = 2 and sample size n = 201, we calculated the values that were used to produce

Figure 1.

Proof of Proposition III.2

Let

J(c|α) = α‖y − Φc‖2 +

∫ {
dΦ

dt
c− F (Φc, θ∗)

}2

dt,

and let ĉ(θ∗, α) be the argument c that minimizes J(c|α) for given θ∗ and α. From

∂J(c|α)/∂cT = 0, we have ĉ(θ∗, α) solves

{
αΦTΦc+ 1/2

∂J(c|α = 0)

∂cT

}∣∣∣∣
c=ĉ(θ∗,α)

= αΦTy. (B.1)

Let ĉθ∗(θ
∗, α) and ĉα(θ∗, α) denote the partial derivatives of ĉ(θ∗, α) with respect to α

and θ∗ respectively; and equivalently denote other partial derivatives; also let Jcc(c|0)

denote ∂2J(c|0)/∂cT∂c. Direct derivations following taking derivatives of both sides

of (B.1) show that (i) ĉθ∗(θ
∗, α) is free of the response Y , and (ii)

{
αΦTΦ + 1/2Jcc(c|0)

}
ĉα(θ∗, α) = ΦT{y − Φĉα(θ∗, α)}. (B.2)
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Hereafter, we need to assume that θ̂∗− θ∗ and α goes to zero. The derivations in the

previous materials apply to all positive α and not just the ones near zero. Plugging

ĉ(θ∗, α) into H{c(θ∗)} = ‖y − X̂θ∗‖2, letting ∂H{c(θ∗)}/∂θ∗T = 0, and deriving a

Taylor series expansion on α at zero and θ̂∗ at θ∗, we obtain

0 = G(θ̂∗, α) =
{
G(θ∗, 0) +Gθ∗(θ

∗, α)(θ̂∗ − θ∗) +Gα(θ̂∗, 0)α
}
{1 + op(1)},

where

G(θ∗, α) =
∂ĉT (θ∗, α)

∂θ∗
∂H(c)

∂cT
|c=ĉ(θ∗,α) = −2ĉTθ∗(θ

∗, α)ΦT{y − Φĉ(θ∗, α)}. (B.3)

Thus, by noting Gθ∗ is continuous at α near zero, we have

(θ̂∗ − θ∗) ≈ G−1
θ∗ (θ∗, 0)

{
G(θ∗, 0) + αGα(θ̂∗, 0)

}
. (B.4)

Denoting
{
αΦTΦ + 1/2Jcc(c|0)

}
in (B.2) by Mcα, assuming its inverse exists and

deriving the structure of Gα(θ̂∗, 0) using (B.3), we express {G(θ∗, 0) + αGα(θ̂∗, 0)} in

(B.4) as

−2d(Φ, ĉ, θ∗, α){y − Φĉ(θ∗, 0)}, where (B.5)

d(Φ, ĉ, θ∗, α) = ĉTθ∗Φ
T + α

{
ĉTθ∗α + ĉTθ∗Φ

TΦM−1
cα

}
ΦT . (B.6)

Further, by a direct application of semiparametric efficiency theory, it is well known

that the most efficient expression for d(Φ, ĉ, θ∗, α) in (B.5) is ∂Φĉ(θ∗, 0)/∂θ∗, which

is obtained when α is exact zero in (B.6). This efficiency statement does not require

the errors to be normaly distributed. The smallest variance of θ̂∗ in (B.4) is obtained

when α = 0 or equivalently by dropping the log-likelihood term in the inner step.

Assumptions for asymptotic properties:
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Assumption B1. The density q(t) of Q on [0, T ] is bounded by two positive numbers

u, l, i.e., u ≤ q(t) ≤ l.

Assumption B2. For F , each component Fi, i = 1, · · · ,m, ∈ C3(Rm × [0, T ] × Θ).

For each θ and initial values X(0), there exists a unique solution X(θ∗, t) of the (1.1)

on [0, T ] and for any θ∗ 6= θ∗
′
, we have X(θ∗, t) 6= X(θ∗

′
, t).

Assumption B3. In Θ× Γ, define

M(θ∗) = Eθ∗0

[
m∑
i=1

wi`i(Yi(t), Xi(θ
∗, t))

]
, θ∗ ∈ (Θ× Γ)

where `i(Yi(t), Xi(θ
∗, t)) is the negative log-likelihood of the each i-th component

observation (Yi, Xi) at time t. We assume that M(θ∗) is continuous and has a unique

maximum at θ∗0

Assumption B4. For all i, `i(y, x) is a function in C(R× R). If the random variable

Yi is not bounded, we assume that for any compact set Λ ⊂ R,

lim inf
|y|→∞

[
−1 + infx∈Λ `i(y, x)

supx∈Λ `i(y, x)

]
> 0

Assumption B5. For all i, `i(y, x) is a function in C1(R× R) with

Eθ∗0

[∣∣∣∣∂`i∂x
(Yi(t), Xi(θ

∗
0, t))

∣∣∣∣] <∞
If Yi is not bounded, we assume that for any compact set Λ ⊂ R,

lim inf
|y|→∞

[
−1 + infx∈Λ `i(y, x)

supx∈Λ `i(y, x)

]
> 0 and lim inf

|y|→∞

[
1 + infx∈Λ |∂`i/∂x(y, x)|

supx∈Λ |∂`i/∂x(y, x)|

]
> 0.

Assumption B6. For all i, `i(y, x) is a function in C2(R× R) with

Eθ∗0

[∣∣∣∣∂`i∂x
(Yi, Xi(θ

∗
0, T ))

∣∣∣∣2
]
<∞ and Eθ∗0

[∣∣∣∣∂2`i
∂x2

(Yi, Xi(θ
∗
0, T ))

∣∣∣∣] <∞
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If Yi is not bounded, we assume that for any compact set Λ ⊂ R,

lim inf
|y|→∞

[
−1 + infx∈Λ `i(y, x)

supx∈Λ `i(y, x)

]
> 0, lim inf

|y|→∞

[
1 + infx∈Λ |∂`i/∂x(y, x)|

supx∈Λ |∂`i/∂x(y, x)|

]
> 0.

and

lim inf
|y|→∞

[
1 + infx∈Λ |∂2`i/∂x

2(y, x)|
supx∈Λ |∂2`i/∂x2(y, x)|

]
> 0.

Proof of Lemma III.4: Note that on the compact set Θ0 × Γ0, continuous functions

Fi are bounded and so are the functions vi in Bn. Since Fi has continuous partial

derivatives, we can find a positive constant K on the bounded compact set, such that

|Fi(X, t, θ)− Fi(X ′, t, θ)| ≤ K
m∑
j=1

wj|Xj −X ′j|.

Define

J = J(X, θ) =
m∑
i=1

wi

∫ (
dXi

dt
− Fi(X, t, θ)

)2

dt

Given any θ∗ ∈ Θ0 × Γ0, and suppose v = (v1, · · · , vm)T ∈ Bm
n . From the definition

of X̂ni(θ
∗, ·), we have

J(X̂n, θ) ≤ J(v, θ)

≤
m∑
i=1

wi

∫
(
dvi
dt
− Fi(v, t, θ))2dt

=
m∑
i=1

wi

∫
(
dvi
dt
− dXi

dt
+ Fi(X, t, θ)− Fi(v, t, θ))2dt

≤
m∑
i=1

2wi

∫
(
dvi
dt
− dXi

dt
)2dt+ 2wi

∫
(Fi(X, t, θ)− Fi(v, t, θ))2dt

≤ 2
m∑
i=1

wi

∫
(
dvi
dt
− dXi

dt
)2dt+ 8K2wi

∫
(vi −Xi)

2dt by (C.1)

≤ 2T (
m∑
i=1

wi‖
dvi
dt
− dXi

dt
‖2
∞ + 4K2wi(‖vi −Xi‖2

∞)

≤ 4mT (8K2 + 2)r2
n, by the definition of rn.
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By the definition of J , we have

sup
θ∗∈Θ0×Γ0

wi

∫
(
dX̂ni

dt
− Fi(X̂n, t, θ))

2dt ≤ 4mT (8K2 + 2)r2
n.

Therefore,

sup
θ∗∈Θ0×Γ0

wi‖X̂ni −Xi(0)−
t∫

0

Fi(X̂n, s, θ)ds‖∞ ≤ T
√

4m(8K2 + 2)rn

Define

Ani(θ
∗, t) ≡ wi

X̂ni −Xi(0)−
t∫

0

Fi(X̂n, s, θ)ds


= wi

(X̂ni −Xi)−
t∫

0

(Fi(X̂n, s, θ)− Fi(X, s, θ))ds


Then

wi|X̂ni −Xi| ≤ wi

t∫
0

|Fi(X̂n, s, θ)− Fi(X, s, θ)|ds+ |Ani(θ∗, t)|

≤ wiK
m∑
j=1

t∫
0

wj|X̂nj −Xj|ds+ sup
θ∗∈Θ0×Γ0

‖An(θ∗, ·)‖∞

By summing the above inequality over i, we have

m∑
i=i

wi|X̂ni −Xi| ≤ mK

t∫
0

m∑
j=1

wj|X̂nj −Xj|ds+
m∑
i=1

sup
θ∗∈Θ0×Γ0

‖Ani(θ∗, ·)‖∞

By using Gronwall’s inequality, we have

m∑
i=i

wi|X̂ni −Xi| ≤
m∑
i=1

sup
θ∗∈Θ0×Γ0

‖Ani(θ∗, ·)‖∞emKT
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By the infinity norm bounds of Ani, we have

sup
θ∗∈Θ0×Γ0

m∑
i=1

wi‖X̂ni −Xi‖∞ ≤ mT
√

4m(8K2 + 2)rne
mKT

This completes the proof.

Proof of Theorems III.5 and III.6: The outer step in the proposed approach is the

same as that of the RHCC method in Qi and Zhao (2010). When rn = op(1/n), the

upper-bound given in Lemma III.4 ensures that for all θ∗, the differences between

X(θ∗, t) and its estimates bear a negligible rate. This is equivalent to what Qi and

Zhao have established for the inner-step of the RHCC estimates. Consequently, one

can follow the exact steps in the proofs of Theorem 3.2 and 3.3 in Qi and Zhao (3.3)

to prove the consistency and normality for the proposed estimator θ̂∗n. �
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APPENDIX C

Regularized Semiparametric Estimation for

Ordinary Differential Equations

Proof of Lemma IV.1: The proof of this lemma mainly follows that of Theorem 3.1

in Qi and Zhao (2010) in which θ(t) is a constant. From Assumption C3, we have

|F (x, ξ, t)− F (x′, ξ, t)| ≤ c1|x− x′|. (C.1)

Define

J = J(X, ξ) =

∫ {
dX

dt
− F (X, ξ, t)

}2

dt

Suppose that v ∈ Lφ,q is an estimator of X. From the definition of X̂(·), we have

J(X̂, ξ) ≤ J(v, ξ)

≤
∫

(
dv

dt
− dX

dt
+ F (X, ξ, t)− F (v, ξ, t))2dt

≤ 2

∫
(
dv

dt
− dX

dt
)2dt+ 2

∫
(F (X, ξ, t)− F (v, ξ, t))2dt

≤ 2

∫
(
dv

dt
− dX

dt
)2dt+ 2c2

1

∫
(v −X)2dt by (C.1)

≤ 2T (‖dv
dt
− dX

dt
‖2
∞ + c2

1(‖v −X‖2
∞)

≤ 2T (c2
1 + 1)r2

q , by the definition of rq.
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By the definition of J , we have

∫
(
dX̂

dt
− F (X̂, ξ, t))2dt ≤ 2T (c2

1 + 1)r2
q .

Hence using the same derivations behind Equation (1.3) in Qi and Zhao (2010), we

have

‖X̂ −X[0]−
t∫

0

F (X̂, ξ, s)ds‖∞ ≤ T
√

2(c2
1 + 1)rq

Define

A(ξ,X[0], t) ≡ X̂ −X[0]−
t∫

0

F (X̂, ξ, s)ds

= (X̂ −X)−
t∫

0

{F (X̂, ξ, s)− F (X, ξ, s)}ds

Then

|X̂ −X| ≤
t∫

0

|F (X̂, ξ, s)− F (X, ξ, s)|ds+ |A(ξ,X[0], t)|

≤ c1

t∫
0

|X̂ −X|ds+ ‖A(ξ,X[0], ·)‖∞

By using Gronwall’s inequality, we have

|X̂ −X| ≤ ‖A(ξ,X[0], ·)‖∞ec1T

From the infinity norm bound of A, we have

‖X̂ −X‖∞ ≤
{
T
√

2(c2
1 + 1)ec1T

}
rq
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This completes the proof of Lemma IV.1.

Proof of Theorem IV.2: Denote λ/p = 2r. From the optimization criteria (4.8),

for any γ∗, we have

1

n
‖Y − X̂(γ̂∗, t)‖2 + 2r‖γ̂‖1 ≤

1

n
‖Y − X̂(γ∗, t)‖2 + 2r‖γ‖1

Write Yi = X̂(γ∗0 , ti) + ζi = X̂(γ∗0 , ti) + εi + ei where

|ei| =
∣∣∣{X(γ∗0 , ti)− X̂(γ∗0 , ti)}+ {X(θ0, X0[0], ti)−X(γ∗0 , ti)}

∣∣∣ ≤ c2rq + c3ωp = ωp,q.

from Lemma IV.1 and Assumption C3.

Using the expression of Yi = X̂(γ∗0 , ti) + ζi and applying Assumption C3, we have

1

n
‖X̂(γ∗0 , t)− X̂(γ̂∗, t)‖2 + 2r‖γ̂‖1 ≤

1

n
‖X̂(γ∗0 , t)− X̂(γ∗, t)‖2 + 2r‖γ‖1

+
2

n

n∑
i=1

ζi{X̂(γ̂∗, ti)− X̂(γ∗, ti)}

≤ 1

n
‖X̂(γ∗0 , t)− X̂(γ∗, t)‖2 + 2r‖γ‖1

+
2

n

p+1∑
k=1

n∑
i=1

CUk (ti)|ζi||γ̂∗k − γ∗k|.

Define the random variable Ṽk = n−1
∑n

i=1 CUk (ti)ζi and Vk = n−1
∑n

i=1 CUk (ti)εi, 1 ≤

k ≤ p+ 1, and the event

A =

p⋂
k=2

{|Vk| ≤ r/2−K2ωp,q}
⋂
{|V1| ≤ 2r −K2ωp,q},

where K2 =
∨p+1
k=1(|MU

·k|1/n). On the event A we have |Ṽ1| ≤ 2r and |Ṽk| ≤ r/2 for

2 ≤ k ≤ p+ 1. Using a bound on the tails of normal distribution, As in Bickel, et al.
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(2009), we have that the probability of the complementary event Ac satisfies

P (Ac) ≤
p+1∑
k=2

P{
√
n|Vk| >

√
n(r/2−K2ωp,q)}+ P{

√
n|V1| >

√
n(2r − ωp,q)}

≤
p+1∑
k=2

exp

{
−n(r − 2K2ωp,q)

2

8σ2
ε‖MU

·k‖2
n

}
+ exp

{
−n(2r −K2ωp,q)

2

2σ2
ε‖MU

·1‖2
n

}
≤ (p+ 1) exp

{
−n(r − 2K2ωp,q)

2

8σ2
εK

2
1

}
= (p+ 1)1−a

2

8 ,

where K1 =
∨p+1
k=2 ‖MU

·k‖n
∨

(4−1‖MU
·1‖n) and r = aσεK1

√
log(p+ 1)/n + 2K2ωp,q.

Then on the event A we have

1

n
‖X̂(γ∗0 , t)−X̂(γ̂∗, t)‖2 ≤ 1

n
‖X̂(γ∗0 , t)−X̂(γ∗, t)‖2+4r|X̂[0]−X[0]|+r‖γ̂−γ‖1+2r‖γ‖1−2r‖γ̂‖1.

Denote δ = γ∗0− γ̂∗. Applying Assumption C3 and adding the term r‖γ̂−γ‖1 to both

sides of the inequality above yields, on A,

1

n
|δ|TMLTML|δ|+ r|γ̂ − γ|1 ≤

1

n
‖X̂(γ∗0 , t)− X̂(γ∗, t)‖2 + 4r|X̂[0]−X[0]|+ 4r

∑
k∈J(γ)

|γ̂k − γk|

≤ 1

n
‖X̂(γ∗0 , t)− X̂(γ∗, t)‖2 +

4r
√
S(γ) + 1

√
|X̂[0]−X[0]|2 +

∑
k∈J(γ)

|γ̂k − γk|2

where S(γ) = |J(γ)|. Taking γ∗ = γ∗0 and denoting J0 = J(γ0), we have ‖δJF‖1 ≤

4‖δ∗J0‖1 where δ∗J0 is defined following the rule of notation given right before Assump-

tion C4. Under Assumption C4 we have

κ2‖δ∗J0‖
2 ≤ 4r

√
Sp + 1‖δ∗J0‖,

Therefore,

|X̂[0]−X0[0]| ≤ ‖δ∗J0‖ ≤
4r
√
Sp + 1

κ2
,
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and

‖γ̂0 − γ0‖ ≤ ‖γ̂0 − γ0‖1 = ‖δJF‖1 ≤ 4
√
Sp + 1‖δ∗J0‖ ≤

16r(Sp + 1)

κ2
.

Since θ̂(τ) = ψ(τ)T η̂ = ψ(τ)TA−1γ̂ and θ0(τ) = ψ(τ)TA−1γ0 +ep(τ), then we have

|θ̂0(τ)− θ0(τ)| ≤ |ψ(τ)TA−1γ̂0 − ψ(τ)TA−1γ0|+ |ep(τ)|

≤ ‖ψ(τ)TA−1‖ · ‖γ̂0 − γ0‖+ |ep(τ)|

≤ 16αn,p(τ)r(Sp + 1)

κ2
+ ωp.

Furthermore, if ζi ∼ N(0, σ2
ε), simply consider the event

A′ =
p⋂

k=2

{|Ṽk| ≤ r/2}
⋂
{|Ṽ1| ≤ 2r}.

If r = aσεK1

√
log(p+ 1)/n, we have P (A′c) ≤ (p+1)1−a2/8. Then the rest of the proof

will follow the same structure as above. This completes the proof of Theorem IV.2.

Proof of Corollary IV.3: Replacing Sp with S < ∞ by (C5), with probability

converging to one as p→∞, we have

|θ̂(τ)− θ∗(τ)| ≤
(p+ 1)bτ

√
log(p+ 1)√
n

16aσεK1(S + 1)

κ2
(p+ 1)−bταn,p(τ)

+
ωp(p+ 1)ν

(p+ 1)ν−bτ

{
(p+ 1)−bτ +

32(p+ 1)−bταn,p(τ)K2(S + 1)

κ2

(p+ 1)νωp,q
(p+ 1)νωp

}
=

√
log n

n1/2−bτ/(2ν)
K

where K equals

(
p+ 1

n1/2ν

)bτ √ log(p+ 1)

log n

16aσεK1(S + 1)

κ2
(p+ 1)−bταn,p(τ)

+

(
p+ 1

n1/2ν

)bτ−ν ωp(p+ 1)ν√
log n

{
(p+ 1)−bτ +

32(p+ 1)−bταn,p(τ)K2(S + 1)

κ2

(p+ 1)νωp,q
(p+ 1)νωp

}
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Because of p = O(n1/2ν) we have (p+1)/n1/2ν and log(p+1)/ log n bounded. ωp(p+1)ν

and ωp,q(p+1)ν are bounded by (C6) and (p+1)−bταn,p(τ) is bounded by (C7). Also κ

is bounded away from zero from (C9). Hence we have |θ̂(τ)− θ∗(τ)| = O(
√

logn
n1/2−bτ /(2ν) ).

With the addition of the assumption (C8) through exactly the same argument one

can prove supτ |θ̂(τ) − θ∗(τ)| = O(
√

logn
n1/2−µ/(2ν) ). For the initial values, one can easily

have |X̂[0]−X0[0]| = O(
√

logn
n

).

If ζi ∼ N(0, σ2
ζ ), we have

|θ̂(τ)− θ∗(τ)| ≤
√

log n

nν/(2ν+2bτ )
K

where K equals

(
p+ 1

n1/(2ν+2bτ )

)bτ √ log(p+ 1)

log n

16aσζK1(S + 1)

κ2
(p+ 1)−bταn,p(τ) +

(
p+ 1

n1/(2ν+2bτ )

)−ν
ωp(p+ 1)ν√

log n

Following same arguments, we have |θ̂(τ) − θ∗(τ)| = O(
√

logn
nν/(2ν+2bτ )

). In the same way

we have supτ |θ̂(τ)− θ∗(τ)| = O(
√

logn
nν/(2ν+2µ) ).
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