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ABSTRACT

Control of a Bipedal Robot Walker on Rough Terrain

by

Hae Won Park

Chair: Jessy W. Grizzle

Bipedal locomotion has attracted attention for its potential ability, superior when com-

pared to wheeled locomotion, to overcome rough terrain. Even though numerous studies

have been done with the goal of realizing this ability in practice, significant restrictions still

remain. Currently, bipedal robots can only accommodate unplanned obstacles that are less

than 6% of leg length and ground height variations exceeding a few centimeters must be

known a priori.

This dissertation is directed toward addressing these restrictions by pursuing a novel

control design to allow MABEL, a new robot testbed with a compliant transmission, to

accommodate unknown terrain with ground variations equaling 15% to 20% of leg length.

In pursuit of this goal, first, the dynamics of MABEL are identified, and as a result, two

mathematical models, one for control design and the other for controller verification, are

derived. These models are used extensively in the design of a set of feedback controllers

that can each accommodate a specific type of terrain variation. Next, a finite-state machine

is designed that manages transitions among controllers for flat-ground walking, stepping-

up, stepping-down, and a trip reflex. The design of each control mode and the transition

conditions among them are conducted through a combination of constrained nonlinear opti-

mization and heuristics based on how humans deal with obstacles. The finite-state machine

xii



is experimentally evaluated and results in MABEL (blindly) accommodating various types

of platforms, including ascent of a 12.5 cm high stair, stepping-off from an 18.5 cm high

platform, and walking over a platform with multiple ascending and descending steps.
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CHAPTER I

Introduction

Bipedal locomotion has attracted attention for its potential ability, superior when com-

pared to wheeled locomotion, to overcome rough terrain or environments with discontinuous

supports [88]. Thousands of years after the invention of the wheel, though wheel-based lo-

comotion has been developed to the point that it provides fast dependable mass transporta-

tion, it lacks locomotion ability when navigating unstructured natural environments such

as unpaved terrains, rocky mountains, and terrains with discontinuous supports [4, 37, 36].

Furthermore, structural environments designed to help humans move inside buildings or

residences, including stairs with significant height and steep angles, and small doors sized

for humans, can be challenging obstacles to wheeled locomotion because the environments

are not designed for it [4]. While wheeled locomotion has difficulties in navigating these nat-

ural and man-made obstacles, humans have excellent ability to accommodate them. Despite

hundreds of encounters with such obstacles in everyday life, humans rarely make mistakes

leading to falls.

The W-Prize shown in Fig. 1.1 will award $ 200,000 for the first bipedal robot able to

traverse the course within a specified time and a given energy budget [2, 67]. The course

is composed of a size-limiting arch representing doors in a building or home, irregularly

spaced discontinuous supports typical of stepping stones across a stream, and a stair case

with steps of height at least 25 cm and width of less than 40 cm, which is slightly larger

than a standard-sized stair case1. In addition, the course includes a now-you-see-it-now-you-

1The 1996 Council of American Building Officials (CABO) and the 2000 International Code Council
recommendations call for unit runs to be not less than 10 inches and unit rises not more than 7 3/4 inches.
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Figure 1.1: Course diagram for the W-prize. Courtesy of W-Prize organization [2].

don’t ditch representing a surprise step off a curb. This obstacle is designed to require that

a robot’s gait not be overly dependent on vision and other external sensing for overcoming

obstacles. The closed-loop system consisting of the robot and feedback control system must

be robust to unplanned variations in ground height.

While important progress is being made through studies of walking over uneven ground,

significant restrictions remain that prevent bipedal robot walkers from being used in prac-

tice. Existing bipedal robots can only accommodate unplanned obstacles that are less than

6% of leg length [46, 48, 121, 89, 63, 50], a value that is unrealistically small when compared

to common obstacles in everyday life, such as the height of steps in a building [7, 27] or

the curb height of a sidewalk on a city street. Ground height variations exceeding a few

centimeters must be known a priori and require carefully planned maneuvers to overcome

them. Requirements of a priori information of the ground height variations can be a signif-

icant drawback in cases when clear vision is not possible. Rescue operations in smoke-filled

buildings or underground are typical examples of such cases.

This thesis is directed toward addressing the limitations of current bipedal robot research

on locomotion over rough terrain by pursuing the following goal: demonstrating control

solutions which allow a bipedal robot to walk over rough terrain with significant ground

height variation (exceeding 20% of leg length) without any priori information or vision
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feedback. The research includes fundamental theory in gait control as well as experimental

verification on MABEL, a novel planar bipedal robot described in Chapter II.

Before beginning our study of walking over rough terrain, various types of rough terrain

are classified and approaches to accommodate certain types of terrain are introduced.

1.1 Classification of Terrain

In real-world environments, a bipedal robot will encounter various kinds of terrain.

Here, we classify terrain according to several criteria and analyze some of the difficulties in

accommodating each type of terrain.

Known or Unknown Terrain: First, terrains can be categorized into known or

unknown terrain depending on whether a priori information about the terrain profile is

available or not. The degree of availability of terrain profile information usually yields dis-

tinguishably different controller performance for walking over rough terrain. When terrain

profile information is accurately provided ahead of time, a bipedal robot can plan its walk-

ing gait in order to manage the upcoming ground variations. By changing or modifying its

gait in advance, large disturbances such as stairs of considerable height can be accommo-

dated successfully [69, 3, 56, 112, 42]. Provided with one-step ahead terrain information,

a compass walker could walk drastically more steps until it falls on stochastically varying

terrain than a corresponding blind walker [12].

However, in order to obtain information on terrain profiles beforehand, one or more

sensors, such as a camera [69] or a range finder [56], need to be employed, and their sig-

nals need to be properly extracted to obtain correct and useful terrain profile information.

Acquiring terrain profiles correctly and reliably in real time, within a reasonable sampling

interval, is a very challenging task. Vision signal processing is a computationally heavy task

and the quality of the processed information is highly dependent on the environment. How

the gait modifications should be done as a function of the obtained information is another

non trivial task to be solved. Furthermore, in extreme hazardous situations where it would

be highly desirable to replace a human rescuer with a bipedal robot, such as smoke-filled

environments due to fire, clear vision is not possible at all.
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(a) (b)

(c) (d)

Figure 1.2: Classification of terrain into: (a) Slopes (b) Stairs (c) Randomly-varying (d)
Structured.

In cases where terrain profile information is not available beforehand, bipedal robots

cannot preplan to handle the obstacles. Instead, the variation in ground height should be

accommodated by intrinsic robustness of the robot plus feedback controller [113, 28]. This

has been approached through feedback design using robustness metrics [46, 48, 12, 11, 10],

and the application of a carefully chosen reflex policy based on obtained dimension of the

obstacle after the robot bumped into, or stepped off or onto it [50, 8, 16, 86, 122, 123]. The

latter case utilizes calculated ground height variation using joint angles and length of the

links [50, 86, 16] only, or in tandem with measured signals from a mechanism specifically

designed for detection of ground variations [122, 123].

Slope or Stair: Terrain can be also classified into slopes or stairs according to its

geometric shape, as shown in Figure 1.2.

To walk up or down a slope in a stable manner, the gradient of the slope has been

estimated by the relative elevation between stance and swing leg for a walker with both

point feet and non trivial feet [50, 86, 16, 125]. Another approach involves measuring foot

inclination for a walker with non trivial feet [122, 123]. Using the measured gradient of the

slope, these references apply simple adaptive strategies2 to the walking gait, and in this

manner, slopes with inclination up to 23 deg have been accommodated.

On the other hand, accommodating a stair is a more demanding task for a bipedal

robot. Without a priori information about a vertical obstacle, a robot can trip over it,

and eventually fall. Therefore, most of research on stair climbing is focused on the case

when a priori information about the terrain is available [42, 112, 69, 3]; using a priori

2For example, in the research conducted in [86], desired hip height is adjusted based on simple geometric
consideration in response to ground inclination.
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terrain information, a robot’s footholds and swing leg trajectory are carefully adjusted and

controlled so that the robot avoids tripping over stair steps. A few studies have been

conducted on unknown ground profiles, where a reflex strategy has been designed and

employed in order to handle tripping over obstacles, and the ensuing step of the robot is

planed for the safe continuation of the walking gait [8, 93].

Descending stairs can also destabilize a robot by speed increase or excessive knee bending

due to large impacts with the walking surface. In this sense, a step-down test is usually

considered as a robustness test for bipedal walking controller design [46, 48, 112, 89], and

several approaches have been proposed to increase the maximum manageable depth of step-

down. A reflexive strategy in response to a step-down disturbance has also been proposed

when the robot has the ability to detect the step-down disturbance [50].

Structured or Randomly-varying Terrain: The terrain in natural environments is

often complex and random (see Figure 1.2). On the other hand, human living environments,

such as a building or a city street, typically consist of structured elements including flat

ground with a few millimeters of height variation, vertical steps, and sloped surfaces (see

Figure 1.2). While human-engineered terrain mainly consists of flat surfaces with small

height variations, surface variations with considerable height, including stairs and slopes,

are occasionally interspersed with flat surfaces.

Randomly-varying terrain has been modeled with a stochastic discrete-transition map [12,

57, 10] or as a discrete nonlinear system with exogenous inputs [70, 96]. An approximately-

optimal controller has been designed to maximize the mean first-passage time until the

biped falls [12], and a disturbance-attenuation controller has been designed to reduce the

effects of the ground-variation disturbance on a particular regulated output [70, 96]. In

order to make the problem mathematically tractable, simplifying assumptions are usually

made, such as the robot is neither tripping nor scuffing against the ground [12, 57, 10], as

well as slipping of the stance foot is not allowed. To make the problem even simpler, the

nonlinear system is linearized around an operating point or a periodic orbit so that the rich

theoretical framework available for linear systems can be applied [96].

When only occasional changes in ground height are encountered, a totally different

framework can be employed for controller design. An encounter with a structured dis-
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turbance is usually followed by a few steps on flat ground before the robot comes across

another disturbance. A set of reflex-based controllers that steer the robot’s perturbed state

back into the basin of attraction of the controller has been designed for various kinds of

disturbances [61, 50, 8, 118]. The key point is that a few steps of walking on flat ground

between disturbances may be enough to return the robot’s motion to a nominal gait.

1.2 Classification of Controller Design to Accommodate Rough Terrain

As noted during our classification of terrain, a very broad spectrum of ideas and ap-

proaches has been suggested in the literature to accommodate rough terrain. Here, we

group various approaches that are relevant to this thesis work.

Switching Control Design: Controller design involves the development of a library

of controllers as well as switching conditions managing transitions between the controllers.

The switching condition can be based on the detection of a disturbance or based on detecting

significant deviation of the robot’s states from a nominal operating point. The library of

controllers has been based on intuition or empirical knowledge [8, 50, 86, 16], or by using

various optimization techniques [6, 61, 118].

Robustness Metric: Various robustness metrics have been proposed by a number

of researchers [57, 46, 87, 103, 30, 29, 31, 119, 44]. Controller design is conducted by

focusing on the improvement of the proposed robustness metric. Several approaches based

on parameter sweeps [48, 47] or dynamic programming [10] have been suggested to improve

the robustness metric.

Analytical Methods: Controller is designed by the use of a common set of mathemat-

ical tools. Some of the commonly used methods are aperiodic gait design by a sequence of

virtual constraints obtained using hybrid zero dynamics [124], passivity-based control and

controlled symmetries [38, 97], stabilization of transversal dynamics [63], and linear matrix

inequalities [96].

Machine Learning or Dynamic Programming: Control actions are tuned by a ma-

chine learning algorithm [71, 45, 109, 113, 92, 90] or dynamic programming [118, 101, 70]

to yield increased rewards or cost function value. This control design is usually computa-
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Figure 1.3: MABEL, an experimental testbed for bipedal locomotion. Courtesy of IEEE
Control Systems Magazine and Catharine June (EECS Dept.).

tionally costly, and not suitable for unstable systems or systems with many states.

Biomimetic Control Design: A controller is designed based on mechanics and prin-

ciples of human walking. Motion capture data of humans climbing up and down stairs, and

uneven ground are used to design virtual constraints [83, 78]. A control design that mimics

human muscle reflexes is proposed in [33], and yields stable walking on sloped surfaces.

1.3 Control Design for Walking over Rough Terrain with MABEL

This thesis work is aimed toward control design that allows MABEL, shown in Fig-

ure 1.3, to accommodate unknown structured terrain with obstacles consisting of slopes

and vertical steps. In pursuit of this goal, the dynamics of MABEL are identified in the

first part of the thesis. Two mathematical models, one for control design and the other

for controller verification, are carefully derived, and their unknown parameters are iden-

tified through modular and sequential identification procedures. The first model, termed
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the “simplified design model”, captures MABEL’s natural compliance from its designed-in

physical springs as well as its drivetrain dynamics. The second model, termed the “detailed

model”, additionally captures unexpected compliance due to cable stretch in the transmis-

sion mechanism as well as a model of the laboratory surface on which MABEL walks. In

the second part of the thesis, an extension of the framework of switching control that was

initiated in [124] is explored to design a controller which allows MABEL to accommodate

unexpected large ground variations without prior knowledge of ground profiles. The control

design focuses on accommodating various types of obstacles including step-down, step-up,

and tripping while utilizing MABEL’s compliance and natural dynamics. The simplified

design model is extensively used to design the controller through an iterative optimiza-

tion process. Modifications to the controller are subsequently made by hand account for

discrepancies between the simplified design model and the detailed model. The designed

controller’s performance is demonstrated through a set of experimental results conducted

on various types of ground profiles.

1.4 Organizations of Dissertation

Chapter II overviews the planar bipedal robot MABEL, with emphasis on its mechanical

structure, actuation, and sensing. The key feature in MABEL’s mechanism is the use of a

cable-based differential transmission designed to realize two novel features: unique actuated

coordinates; and a large spring in series with DC motors actuating the knee joints. The

reasoning behind the two novel features is addressed, and how these features are realized

by the cable differential mechanism is explained. Two mathematical models for the robot

are derived and identified in Chapters III and IV. The simplified design model is a six

degree of freedom hybrid model consisting of a continuous stance phase, an instantaneous

double support phase, and a switching surface that manages transitions between them.

Based on the assumption of a pinned connection between the stance toe and the ground,

zero stretch in the cables, and no deflection in the spring of the swing leg, the continuous

stance dynamics is derived using Lagrange’s method. The instantaneous double support

phase is derived by modeling the impact of the swing toe with the ground as an inelastic
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contact between two rigid bodies. The transition map which takes pre-impact states to

post-impact states is obtained using the principles of virtual work and conservation of

generalized momentum. A detailed model that is appropriate for controller verification is

derived next. By representing cable stretch as a spring-damper, incorporating the boom

dynamics to account for asymmetry side-to-side, and representing the contact between robot

and ground as being comprised of compliant elements and a LuGre friction model [13] [80],

the detailed model is obtained and the accuracy of the model is significantly improved over

that of the simplified design model. These models will be used extensively throughout the

dissertation.

Chapters V, VI, and VII provide control designs which allow MABEL to accommodate

terrains with significant variations in heights. First, the step-down problem is addressed

in Chapter V. Preliminary experimental work on the step-down test [73] revealed that a

baseline feedback controller designed for walking on flat ground overreacts when correcting

the forward pitching motion of the torso, causing a second, very rapid, forward pitching

motion of the torso. Because the angle of the swing leg was controlled relative to the

torso, the swing leg rotated forward rapidly as well and impacted the ground with sufficient

force to break the leg. A new controller is designed to attenuate torso oscillation after the

step-down event. This controller is triggered when the calculated depth of the step-down

exceeds a threshold value, replacing the baseline controller for one step. A dramatic increase

in performance is obtained: MABEL stepping off 20.32 cm platform without falling.

Chapter VI explains the design of controllers for accommodating step-up and tripping

events. A novel switch mechanism is designed and installed on the front of the robot’s shin

to detect impacts with vertical obstacles. Based on the on-off signal from the designed

switch along with the robot’s state measured by joint encoders, a detected impact is cat-

egorized into early or late tripping, and a corresponding controller is activated to handle

the event. In Chapter VII, the set of reflexive controllers designed in Chapters V and VI

is combined in a finite-state machine. The finite-state machine leads to impressive experi-

mental results including blindly walking over obstacles with 12.5 cm increase in height and

18.5 cm decrease in depth. Limitations of the controller and future directions of research

are given in Chapter VIII.
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Appendix A presents novel mechanisms which have been designed and installed on MA-

BEL as part of this thesis work. Appendices B, C, and D explain how motor-torque bias

is estimated, how pulley inertias are lumped, and how stable hopping is achieved in the

process of the system identification. Modification on virtual compliance to account for dy-

namic asymmetry of side-to-side due to motion constraints posed by the boom are provided

in Appendix E. Appendix F presents modification of the swing leg virtual constraints for

elevating swing leg rapidly, which is activated in response to early tripping over obstacle.

Appendix G displays sequential screen captures taken from the videos of the experiments

conducted in Chapters VI and VII. Appendix H addresses an outer-loop discrete-event-

based control design which focuses on attenuating influences of randomly-varying ground

variations on the output to be regulated.
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CHAPTER II

Mechanism Overview

In this chapter, we briefly introduce MABEL, the platform used to test feedback con-

trollers developed in this dissertation.

MABEL’s body consists of five links, namely, a torso, two thighs, and two shins. As

shown in Figure 2.1, the legs are terminated in point feet. All actuators are located in the

torso, so that the legs are kept as light as possible1. The hip of the robot is attached to a

boom, as shown in Figure 2.2. The robot’s motion is therefore tangent to a sphere centered

at the pivot point of the boom on the central tower. The boom is 2.25 m long, and while

the resulting walking motion of the robot is circular, it approximates the motion of a planar

biped walking along a straight line.

Unlike most bipedal robots, the actuated degrees of freedom of each leg do not corre-

spond to the knee and the hip angles as in a conventional biped. Instead, as shown in figures

2.3 and 2.5, for each leg, a collection of differentials is used to connect two motors to the hip

and knee joints in such a way that one motor controls the angle of the virtual leg defined by

the line connecting the hip to the toe, while the second motor is connected in series with a

spring to control the length of the virtual leg. Conventional bipedal robot coordinates and

MABEL’s actuated coordinates, which are depicted in Figure 2.5, are related by

qLA =
1

2
(qTh + qSh) (2.1)

1Light legs enable rapid swing leg motion. Rapid swing leg motion is required for fast gaits [100], and
for rapid-elevation of the swing leg, which in Chapter VI, is activated in response to tripping over obstacles.
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Figure 2.1: MABEL’s general morphology and powertrain. (a) MABEL is shown with the
switch in front of the shin that is used to detect contact with obstacles. The robot is planar,
with a boom providing stabilization in the frontal plane. The robot weighs 65 kg and is
1 m at the hip. (b) The virtual compliant leg created by the drivetrain through a set of
differentials.

and

qLS =
1

2
(qTh − qSh) , (2.2)

where LA stands for leg angle, LS stands for leg shape, Th stands for thigh, and Sh stands

for shin.

The springs in MABEL isolate the leg-shape motors from the impact forces at leg touch-

down. In addition, the springs store energy during the compression phase of a running gait,

when the support leg must decelerate the downward motion of the robot’s center of mass.

The energy stored in the spring can then be used to redirect the center of mass upwards for

the subsequent flight phase, propelling the robot off the ground. As explained in [54, 41, 53],

both of these properties, shock isolation and energy storage, enhance the energy efficiency

of running and reduce the actuator power requirements. Similar advantages are also present
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Figure 2.2: Approximate planar motion. The boom constrains MABEL’s motion to the
surface of a sphere centered at the attachment point of the boom to the central tower. The
boom is approximately 2.25 m long. The central tower is supported on a slip ring through
which power and digital communication lines, such as E-stop and ethernet, are passed.
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Figure 2.3: Robot and transmission mechanism. (a) Links comprising MABEL. Csp, T, Csh,
Th, and Sh denote CSpring, Torso, CShin, Thigh, and Shin, respectively. (b) The transmission
mechanism consists of spring, thigh, and shin differentials. The spring differential realizes a
serial connection between the leg-shape motor and the spring. The thigh differential moves
the thigh link in the leg, while the shin differential moves the shin link. The gear ratios are
described in figures 2.6 and 2.7.
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in walking on flat ground, but to a lesser extent compared to running on uneven terrain,

due to the lower forces at leg impact and the reduced vertical travel of the center of mass.

The robotics literature strongly suggests that shock isolation and compliance are useful for

walking on uneven terrain [19, 20, 49, 43, 72, 91, 106].

2.1 Transmission

The transmission mechanism for each half of MABEL consists of three cable differentials,

labeled the spring, thigh, and shin differentials, and a spring, as shown in Figure 2.3(b). The

thigh and shin differentials translate shin angle and thigh angle into leg shape and leg angle.

Thus, the electric motors control the leg angle and leg shape. The spring differential forms a

series connection between a spring and the motor for leg shape so that the resulting system

behaves approximately like a pogo stick. In order to keep the legs light, the motors and

(a) (b)

Figure 2.4: Two versions of a differential mechanism. (a) shows a conventional gear differ-
ential, while (b) shows a cable differential. Each differential consists of three components,
labeled A, B, and C, connected by an internal, unobserved, idler D. In (a), A, B, and D
are gears, while in (b), they are pulleys. In both (a) and (b), C is a link. The kinematic
equations for a differential are given by (qA + qB)/2 = qC and (qA − qB)/2 = qD, assum-
ing equal gear ratios, where qA, qB, qC , and qD denote the angular displacements of the
components.

differentials are mounted in the torso. Instead of the gear differentials depicted in Figure 2.4,

cable differentials are used to achieve low friction and backlash. Although cable differentials

and gear differentials have different assemblies, they work in the same manner. Each consists
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of three components, labeled A, B, and C, connected by an internal, unobserved, idler D.

When the gear ratios are all equal, the components A and B are constrained such that the

average motion of the two is equal to the motion of the component C. Consequently, A and

B can move in opposite directions if C is held stationary, and the motion of C is half of A

if B is held stationary. In other words, (qA + qB)/2 = qC and (qA − qB)/2 = qD, where qA,

qB, qC , and qD denote the angular displacements of the components.

In MABEL’s transmission mechanism, A and B are inputs to the differential, while C

is an output. In the following, AShin, BShin and CShin refer to the components A, B, and

C of the shin differential and likewise for the remaining two differentials. CThigh and CShin

in Figure 2.3(b) are attached to the thigh and shin links, respectively. The pulleys BThigh

and BShin are both connected to the leg-angle motor. The pulleys AThigh and AShin are

connected to the pulley CSpring, which is the output pulley of the spring differential. The

spring on each side of the robot is implemented with two fiberglass plates connected in

parallel to the differentials through cables, as shown in Figure 2.1. Due to the cables, the

springs are unilateral, meaning they can compress but not extend; this aspect is discussed

below.

Figures 2.6 and 2.7 illustrate how this transmission works when one of the coordinates

qLA or qLS is actuated, while the other coordinate is held fixed. The path from spring

displacement to rotation in qLS is similar. The net motion in qLS from the leg-shape motor

and the spring is the sum of the individual motions.

If we assume that the cables do not stretch, then the leg angles qLA and qLS are related

to the corresponding motor angles and the angle of the pulley BSpring by

qLA =
1

γLA→mLA

qmLA (2.3)

and

qLS =
1

γLS→mLS

qmLS +
1

γLS→Bsp

qBsp, (2.4)

where γLS→mLS = 31.42, γLA→mLA = −23.53, and γLS→Bsp = 5.18 are the gear ratios from LS

to mLS, from LA to mLA, and from LS to Bsp. The calculated angles qLS and qLA are also

15



(a) (b)

Figure 2.5: Actuated coordinates. (a) shows a more conventional choice of actuated coor-
dinates. The actuated coordinates on MABEL, shown in (b), correspond to controlling the
length and orientation of the virtual prismatic leg indicated by the dashed line connecting
the toe to the hip. The counterclockwise direction is positive.

logged during the experiments.

2.2 Variable names

To name the variables appearing in the robot, we use the index set

I = {mLSL, mLAL, mLSR, mLAR}, (2.5)

where the subscripts L and R mean left and right, mLS means motor leg shape, and mLA

means motor leg angle; see Figure 2.3(b). For the links, we define the index set

L = {T,Csp,Th, Sh,Csh,Boom}, (2.6)

where T, Csp, Th, Sh, Csh, and Boom represent Torso, CSpring, Thigh, Shin, CShin, and

Boom, respectively, as depicted in Figure 2.3(a). For the transmission mechanism, we define
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Figure 2.6: Leg-angle actuation. (a) Torque from the leg-angle motor is transmitted to qLA
as defined in Figure 2.5 through one step-down pulley and two differentials, namely, Thigh
and Shin. (b) uses gear differentials to depict the actuation of qLA, with the indicated gear
ratios.
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Figure 2.7: Leg-shape actuation. (a) Torque from the leg-shape motor is transmitted to
qLS as defined in Figure 2.5 through one step-down pulley and three differentials, namely,
Spring, Thigh, and Shin. (b) uses gear differentials to depict the actuation of qLS, with the
indicated gear ratios.
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the index set

T = {Asp,Bsp,Dsp,Ath,Bth,Dth,Ash,

Bsh,Dsh,mLSsd,mLAsd,mLS,mLA},

(2.7)

where A, B, and D correspond to the components of the differentials in Figure 2.3(b), and

sp, th, sh, and sd denote spring, thigh, shin, and step down, respectively, as depicted in

Figure 2.3. Throughout this article, the notation for coordinates and torques in Table 2.1

is used.

Table 2.1: Notation for MABEL’s coordinates and torques. The subscripts L and R denote
the left leg and right leg, respectively.

qLSL,R
leg-shape angle

qmLSL,R
motor leg-shape angle

qLAL,R
leg-angle angle

qmLAL,R
motor leg-angle angle

qBspL,R
pulley-BSpring angle

τmLSL,R
leg-shape motor torque

τmLAL,R
leg-angle motor torque

τBspL,R
pulley-BSpring torque

2.3 Sensors

MABEL is equipped with encoders and contact switches, but not force sensors2. On

each side of the robot, magnetic encoders for measuring joint angles are present on the

pulleys mLA, mLS, Dth, Bsp, and mLAsd, as well as the knee joint. From the geometry

of the legs, the leg-shape angle qLS is one half of the knee joint angle. Each encoder has a

resolution of 2048 counts per revolution, and thus 0.1758 deg/count.

The angle of the thigh with respect to the torso is measured by an encoder that has 2048

counts per revolution and a 19.8:1 gear ratio, for a total of 40,550.4 counts per revolution,

and thus 0.008878 deg/count. The angle of the torso with respect to the vertical is measured

by an encoder that has 2048 counts per revolution and a 3:1 gear ratio, for a total of 6144

2The feedback control designs developed in this thesis do not utilize any type of force measurement.
Position and velocity of joint angles are utilized to calculate control torque, and contact switches are used
to detect swing leg impacts with the ground. Force sensors were initially used on Rabbit [14], but were not
able to withstand the impulsive forces of ground impacts. On MABEL, the springs in the leg-shape motors
can be used to estimate the ground reaction force in the direction of the virtual leg.
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(a) (b)

Figure 2.8: Switches installed on MABEL. (a) Contact switch on the front on the shin, (b)
Contact switch on the bottom of the toe.

counts per revolution, and thus 0.05859 deg/count. The pitch angle of the boom is measured

by an encoder with 2048 counts per revolution and a 17.6:1 gear ratio, for a total of 36,044.8

counts per revolution, and thus 0.09988 deg/count. The rotation angle of the central tower

is measured by an encoder with 40,000 counts per revolution and a 7.3987:1 gear ratio, for

a total of 295,948 counts per revolution, and thus 0.001216 deg/count.

As depicted in Figure 2.8, MABEL is equipped with contact switches installed on the

bottom of the toe and the front of the shin. The contact switches installed on the bottom

of the toe are used for detecting impacts with the ground, whereas the contact switches

installed on the front of the shin are used for detecting contact with vertical obstacles.

Additional contact switches are installed at the hard stops on various pulleys to detect

excessive rotation within MABEL’s workspace. If a contact switch on a hard stop closes,

power to the robot is immediately turned off by the computer.

Because MABEL does not have velocity sensors, angular velocities must be estimated

by numerically differentiating position signals. For real-time applications, such as feedback

control, causal methods for numerical differentiation are required [18, 66]. For offline appli-

cations, such as parameter identification, acausal or smoothing algorithms can be employed
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[105]. We use the spline interpolation method of [23], which can be used in a causal or

acausal manner.

2.4 Embedded Computer and Data Acquisition

The onboard computer is a 1.3-GHz Intel Celeron M CPU running a QNX real-time

operating system. The RHexLib library, originally developed for the robot RHex [91], is

used for implementing control-algorithm modules as well as for logging data over the network

data and communicating with the robot. A user interface for monitoring the robot’s state

on a secondary Linux-based system uses utilities provided by RHexLib.

Digital and analog IO are handled with compactPCI data-acquisition cards from Acro-

mag. A custom-built compactPCI module houses the interface circuitry between the Acro-

mag data-acquisition cards and the sensors on the robot.

The sample period of the embedded controller is set at 1 ms. Though a 1.5 ms sam-

ple period is probably adequate, the power to the robot is automatically shut off by a

watchdog timer if any controller update cycle exceeds 1 ms. Data acquisition and logging

consume approximately 0.5 ms of each sample period, leaving 0.5 ms for control compu-

tations and signal processing. PD-based controllers can be implemented in the available

processing time without special programming considerations. For controllers based on in-

verse dynamics, such as those reported in [100], the real-time calculations are performed in

approximately 0.11 ms with a public-domain C++-template library from Boost [1], which

provides standard matrix-algebra operations.
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CHAPTER III

Mathematical Model

Two models of MABEL have been developed and identified in [100, 77]. This section

briefly summarizes a simplified design model that is appropriate for control design and a

more detailed model appropriate for controller verification.

These two models will be used extensively in Chapters V, VI, and VII. The simplified

design model will be used for controller design via iterative optimization because it can be

simulated twenty times faster than the detailed model. The detailed model will be used to

verify controller performance.

3.1 Simplified Design Model

The hybrid model consists of a continuous-time stance phase and an instantaneous dou-

ble support phase. The overall dynamic model is derived with the method of Lagrange [59].

3.1.1 Stance Phase

For modeling the stance phase, the stance toe is assumed to act as a passive pivot joint

(no slip, no rebound and no actuation). The springs in the transmission are appropriately

chosen to support the entire weight of the robot, and hence are stiff. Consequently, it is

assumed that the spring on the swing leg does not deflect, that is, qBspsw ≡ 0.

With these assumptions, the generalized coordinates are taken as,

qs := (qLAst ; qmLSst ; qBspst ; qLAsw ; qmLSsw ; qT) ∈ Qs, (3.1)
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Figure 3.1: The virtual Compliant leg and powertrain of MABEL. (a) The virtual compliant
leg created by the drivetrain through a set of differentials. (b) MABEL’s powertrain (same
for each leg), all housed in the torso. Two motors and a spring are connected to the
traditional hip and knee joints via three differentials, which are connected such that the
actuated variables are leg angle and leg shape, see Figure 3.1a, and so that the spring is in
series with the leg-shape motor. The differentials are realized with pulleys and cables.

where Qs is a simply-connected, subset of S
6, and as in Figure 3.1a and Figure 3.1b,

qLAst , qmLSst , and qBspst are the leg angle, leg-shape motor position, and angle of the pulley

Bspring (a pulley which is connected to the free end of the spring as shown in Figure 3.1b,

and therefore corresponds to spring deflection) of the stance leg, respectively; qLAsw and

qmLSsw are the leg angle and leg-shape motor position of the swing leg, respectively; qT is

the angle of torso with respect to the vertical.

The Lagrangian for the stance dynamics, Ls : TQs → R is defined by

Ls = Ks − Vs, (3.2)

where, Ks : TQs → R, and Vs : Qs → R are the total kinetic and potential energies of

the mechanism respectively. The total kinetic energy is obtained by summing the kinetic

energy of the linkage, Klink
s , the kinetic energy of the stance and swing leg transmissions,
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Ktransst
s ,Ktranssw

s , and the kinetic energy of the boom, Kboom
s .

Ks (qs, q̇s) = Klink
s (qs, q̇s) +Ktransst

s (qs, q̇s) +Ktranssw
s (qs, q̇s) +Kboom

s (qs, q̇s) . (3.3)

The linkage model is standard; the boom is modeled as in [114, p. 94]. Physically, the boom

constraints the robot to move on the surface of a sphere, and a full 3D model would be

required to accurately model the robot and boom system. However, we assume the motion

to be planar, and only consider the effects due to mass and inertia of the boom. This will

introduce some discrepancies between simulation and experimental results. The symbolic

expressions for the transmission model are available online at [40].

Similar notation is used for the potential energy,

Vs (qs) = V link
s (qs) + Vtransst

s (qs) + Vtranssw
s (qs) + Vboom

s . (3.4)

Due to its unilateral nature, the spring is not included in the potential energy of the trans-

mission; only the mass of the motors and pulleys is included. The unilateral spring is

considered as an external input to the system.

With the above considerations, the robot dynamics for stance phase can be determined

through Lagrange’s equations

d

dt

∂Ls

∂q̇s
−

∂Ls

∂qs
= Γs, (3.5)

where, Γs is the vector of generalized forces acting on the robot, and can be written as,

Γs = Bsu+ Eext (qs)Fext +Bfricτfric (qs, q̇s) +Bspτsp (qs, q̇s) , (3.6)

where the matrices Bs, Eext, Bfric, and Bsp are derived from the principle of virtual work

and define how the actuator torques u, the external forces Fext at the leg, the joint friction

forces τfric, and the spring torques τsp enter the model respectively.

Applying Lagrange’s equations (3.5), with the kinetic and potential energies defined by

23



(3.3), (3.4), respectively, results in the second-order dynamical model

Ds (qs) q̈s + Cs (qs, q̇s) q̇s +Gs (qs) = Γs (3.7)

for the stance dynamics of MABEL. Here, Ds is the inertia matrix, the matrix Cs contains

Coriolis and centrifugal terms, and Gs is the gravity vector.

The state-variable form of the stance-phase dynamics, with state vector xs := (qs; q̇s) ∈

TQs, can be expressed as,

ẋs :=







q̇s

−D−1M






+







0

D−1B






(3.8)

:= f(xs) + g(xs)u, (3.9)

where, f and g are the drift and input vector fields, and M := C(qs, q̇s)q̇s + G(qs) −

Bfricτfric(qs, q̇s)−Bspτsp(qs, q̇s).

3.1.2 Double Support Phase

An impact occurs when the swing leg touches the ground, modeled here as an inelastic

contact between two rigid bodies. It is assumed that there is neither rebound nor slip at

impact and the post-transition spring position on the new swing leg is non-deflected. In

addition to modeling the impact of the leg with the ground and the associated discontinuity

in the generalized velocities of the robot [51], the transition map accounts for the assumption

that the spring on the swing leg is at its rest length, and for the relabeling of robot’s

coordinates so that only one stance model is necessary [100].

Mathematically, the impact occurs when the solution of (3.8) intersects the switching

surface

S :=
{

xs ∈ TQs

∣

∣pvtoesw(qs) = 0
}

, (3.10)

where pvtoesw(qs) is vertical position of the swing toe.

When impact occurs, the method of [52] provides a (static) map that takes the state
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variables just before impact to their values just after impact,

x+s = ∆(x−s ). (3.11)

3.1.3 Modification for Ground Variations

In this thesis work, the switching surface in (3.10), is modified to account for a change

in ground height at impact,

SH :=
{

xs ∈ TQs

∣

∣pvtoesw(qs) = H,H ∈ R
}

, (3.12)

where H is the height of the platform. With this definition, the original switching surface

with a platform height of zero is denoted by S0.

3.1.4 Hybrid Model of Walking

Together, the stance-phase dynamics (3.8) and reset map (3.11) form a nonlinear system

with impulse effects











ẋs = f(xs) + g(xs)u xs /∈ SH

x+s = ∆(x−s ) xs ∈ SH .
(3.13)

More details about the development of the impact map and the hybrid model for MABEL

are presented in [100].

3.2 Detailed Model

The simplified design model does not fully reflect experimental reality due to the fol-

lowing reasons: cable stretch in the robot’s drivetrain; asymmetry due to the boom radius

not being large enough; the fact that the simplified impact model assumes an instantaneous

double support phase, whereas, in experiments, the double support phase lasts approxi-

mately 20 ms. More details are provided in [41], [100] and [77]. By representing cable

stretch as a spring-damper, and incorporating the boom dynamics to account for asym-

metry side-to-side and a ground model comprised of compliant ground and LuGre friction
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model [13, 80] into the mathematical model, the accuracy of the model is significantly im-

proved. However, because of the complexity of this model, simulations of the detailed model

take 20 times longer than the simplified design model. Hence, this model is not appropriate

for optimization processes which may require thousands of simulations.

Therefore, to take advantage of each model’s strengths, which are low computational

effort for the simplified design model and high accuracy for the detailed model, iterative con-

troller design is conducted on the simplified design model, and then the designed controller

is tested on the detailed model, before implementing it on the robot.

The overall dynamic model is derived with the method of Lagrange [59]. When com-

puting the Lagrangian, it is convenient to consider the spring torques, the cable-stretch

torques, the ground reaction forces and the joint-friction torques as external inputs to the

model. The generalized coordinates of the detailed model are taken as

qd := (qLAL
; qmLAL

; qLSL ; qmLSL ; qBspL ; qLAR
; qmLAR

; qLSR ; qmLSR ; qBspR ; qTor; p
h
hip; p

v
hip) ∈ Qh,

(3.14)

where Qd is a simply-connected, subset of S11×R
2, and, as in Figure 3.1a and Figure 3.1b,

qLA, qmLA, qLS, and qmLS are the leg angle, leg-angle motor position, leg shape, and leg-

shape motor position, respectively, qTor is the angle of the torso with respect to the vertical,

and phhip and pvhip are the horizontal and vertical positions of the hip in the sagittal plane.

Subsubscript L and R denote the left and right leg, respectively. This choice of the general-

ized coordinates is also in agreement with the set of measured encoder signals available on

MABEL and therefore, real hardware can be easily substituted for the detailed model once

controller validation is completed. The model is can be expressed in second-order form as

Dd (qd) q̈d + Cd (qd, q̇d) q̇d +Gd (qd) = Γd, (3.15)
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where the vector of generalized forces and torques Γd acting on the robot is given by

Γd = Bdu+Bfricτfric (qd, q̇d) +BspτBsp (qd, q̇d)+

∂ptoe
∂qd

T

F +Bcableτcable (qd, q̇d) .

(3.16)

Here, ptoe is the position vector of the two leg ends, F is the ground reaction forces on the

two legs, and the matrices Bd, Bfric, Bsp, and Bcable, which are derived from the principle

of virtual work, define how the actuator torques τ , the joint friction torques τfric, the spring

torques τBsp, and the cable-stretch torques τcable enter the model, respectively.

In the detailed model, the robot’s state with relabeling with stance and swing can be

obtained by,











x̂d = x̂d x̂d /∈ SH
d

x̂d = ∆d(x̂d) x̂d ∈ SH
d

, (3.17)

where ∆d is the relabeling matrix for detailed model1, and Sd
H is the switching surface which

is given by,

SH
d :=

{

x̂d ∈ TQd

∣

∣pvtoesw,d(x̂d) = H,H ∈ R, s ≥ searly
}

, (3.18)

where pvtoesw,d(x̂d) is the vertical position of the swing toe, and s is a monotonically increasing

scalar-valued function of the gait, taking values in [0, 1] (a formal definition is given in (5.4))

and represents, roughly speaking, the relative position of the robot with respect to the

desired end of the step. searly is the threshold value for the declaration of impact and

the swapping of stance and swing legs which follows the declaration of the impact. The

minimum value of s for allowing the declaration of impact is set to avoid premature swapping

of the legs.

1The derivation of the relabeling matrix is trivial and not addressed in this thesis.
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3.2.1 Nonlinear Spring

The model for the unilateral spring is augmented with terms to represent the hard stop,

yielding

τBsp =















































−KBqBsp −KdBq̇Bsp, qBsp > 0,

−KBqBsp −Kd1q
3
Bsp −Kvd1q̇Bsp, qBsp ≤ 0 and q̇Bsp ≥ 0,

−KBqBsp −Kd1q
3
Bsp −Kvd1q̇Bsp

−Kvd2

√

|q̇Bsp|sgn(q̇Bsp), qBsp ≤ 0 and q̇Bsp < 0,

(3.19)

where KB and KdB corresponds to the spring constants and damping constants, respec-

tively, and where the remaining parameters, Kvd1, Kd1, and Kvd2 corresponds to damping

constant, and nonlinear spring and damping constants of hard stop. When qBsp > 0, the

spring is deflected and the model is a linear spring-damper. When qBsp ≤ 0, the pulley

is against the hard stop, a stiff damper. This model captures the unilateral nature of

MABEL’s built-in compliance.

3.2.2 Cable Stretch

Experiments reported in [100] show that the cables used in the differentials of MABEL

stretch a significant amount under loads typical of bipedal walking. This compliance breaks

the relations in (2.3) and (2.4). Consequently, qLA and qmLA are independent degrees of

freedom, as are qLS, qmLS, and qBsp.

We take into account the stretching of the cables with a spring-damper model. First,

the relations (2.3) and (2.4) are expressed in the form of the constraint

c (q) =







qmLA − γLA→mLAqLA

qmLS − γLS→mLSqLS + (γLS→mLS/γLS→Bsp)qBsp






, (3.20)

where q is the vector of generalized coordinates for the robot dynamics and c (q) ≡ 0

corresponds to no cable stretch. Because the cable-stretch torques act on these constraints,

the principle of virtual work yields the input matrix Bcable for the cable-stretch torques,
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given by

Bcable =
∂c

∂q

T

. (3.21)

Note that we are representing the forces generated in the cables as equivalent torques acting

in series with the pulleys in the differentials. We furthermore assume that the cable-stretch

torques can be modeled as a linear spring-damper. Therefore, for each side of the robot,

the torque from the cable stretch is modeled as

τcable (q, q̇) = KC c (q) +KdC c (q̇) , (3.22)

where KC is a 2× 2 diagonal matrix of spring coefficients, and KdC is a 2× 2 diagonal

matrix of damping coefficients. The spring and damping coefficients of the cables are

identified in the next section.

3.2.3 Compliant Ground

The ground reaction forces at the leg ends are based on the compliant ground model in

[65, 13], using the modifications presented in [80].

Figure 3.2 illustrates robot’s leg penetrating the ground, where ptoe and vtoe are the

position and velocity of foot respectively. From the ptoe and vtoe along with terrain profile,

the penetrating depth zG, penetrating velocity żG, and relative velocity of the contacting

surfaces v can be calculated by trivial geometry analysis. Then, the normal force Fn and

tangential force Ft acting on the end of each leg are determined by

Fn = −λa
v|zG|

nżG − λb
v|zG|

nsgn(żG)
√

|żG|+ k|zG|
n, (3.23)

Ft = µ(d, v)|Fn|, (3.24)

where

ḋ = v − |v|
σh0
αh0

d, (3.25)

µ(d, v) = σh0d+ σh1ḋ+ αh2v, (3.26)
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Figure 3.2: Illustration of robot’s leg penetrating the ground. ptoe and vtoe are the position
and velocity of swing foot respectively, v is the relative velocity of the contacting surfaces,
and zG and żG are the penetration depth and its velocity.

when the relative penetration depth zG of a leg into the ground is positive, and are zero

otherwise. The normal force Fn corresponds to a nonlinear spring-damper, with damping

coefficient λa
v and spring stiffness kv. According to [65], the exponent n, which depends

on the shapes of the surfaces that are in contact, equals 1.5 when the leg end is spherical,

which is roughly the case for MABEL. The signed-square-root term on penetration velocity,

with coefficient λb
v, induces finite-time convergence of the ground penetration depth when

the robot is standing still.

The tangential force Ft is in the form of a friction model with variable coefficient of

friction µ determined by the LuGre model [13]. The LuGre model represents the interface

between the two contacting surfaces as bristles, modeled by springs and dampers, which, if

the applied tangential force is sufficient, are deflecting and slipping. The average deflection

d of the bristles is the internal state of the friction model, v is the relative velocity of the

contacting surfaces, σh1 is the damping coefficient, and αh2 is the coefficient of viscous

friction. The stiffness of the spring is σh0 and the coefficient of static friction is αh0.

3.3 Change of Coordinates Between Two Models

In order to verify a controller designed on the basis of the simplified design model by

simulating it on the detailed model, the initial condition of the detailed model simulation
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should be obtained from the initial condition of the simulation data from the simplified

design model . Assume that the detailed model simulation starts with left leg being the

stance leg and the right leg being the swing leg. The subscripts L and R in (3.14) can then

be replaced with st and sw, as shown in (3.1). The coordinates of the detailed model are

then given by

q̂d := (qLAst ; qmLAst ; qLSst ; qmLSst ; qBspst ; qLAsw ; qmLAsw ; qLSsw ; qmLSsw ; qBspsw ; qTor; p
h
hip; p

v
hip).

(3.27)

Because the states qmLAst,sw , qLSst,sw , p
h,v
hip, and qBspsw are in (3.27), but not in (3.1), these

states should be reconstructed from the states in (3.1). By the same token, the associated

velocity states also need to be reconstructed. The reconstruction of the absent states is

done as follows:

qmLAst,sw = γLA→mLAqLAst,sw

qBspsw = 0

qLSst,sw =
1

γLS→mLS

qmLSst,sw +
1

γLS→Bsp

qBspst,sw

phhip = fh
hip (qs)

pvhip = fv
hip (qs)

q̇mLAst,sw = γLA→mLAq̇LAst,sw

q̇Bspsw = 0

q̇LSst,sw =
1

γLS→mLS

q̇mLSst,sw +
1

γLS→Bsp

q̇Bspst,sw

ṗhhip =
∂fh

hip

∂qs
q̇s

ṗvhip =
∂fv

hip

∂qs
q̇s, (3.28)

where fh
hip and fv

hip are functions calculating the horizontal and vertical positions of the hip.

On the other hand, only the states in (3.1) and their associated velocities will be used in
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control implementation because controller is being designed on the simplified design model.

Therefore, states which are in (3.27), but not in (3.1) will not be used and are neglected

in the control design. Although those absent states are neglected in the calculation of the

control input, the robustness of the proposed controller will compensate for the neglected

states, and, furthermore, the designed controller will be verified on the detailed model before

experimental deployment.
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CHAPTER IV

Parameter Identification

The primary objective of this chapter is to identify the parameters that appear in the

dynamic models of MABEL that were introduced in Chapter III. The parameters we seek to

identify include inertias, center-of-mass locations, spring constants, motor torque constants,

friction coefficients, and power-amplifier biases.

4.1 Literature Survey

The problem of parameter identification for robot models is well studied in the literature

[59, 105, 5, 32]. Most results are based on the analysis of the input-output behavior of the

robot during a planned motion, where the parameter values are obtained by minimizing

the difference between a function of the measured robot variables and the output of the

model. An illustration of this approach is presented in [105] for identifying parameters in

industrial manipulators. The standard rigid-body model is rewritten in the parametric form

τ = φ(q, q̇, q̈)θ, which is linear in the unknown parameters, where q, q̇, q̈ are the position,

velocities, and accelerations of the joints, τ is the vector of joint torques, θ is the unknown

parameter vector, and φ is the regressor matrix. Optimization is used to define trajectories

that enhance the condition number of φ, and these trajectories are then executed on the

robot. Weighted least-squares estimation is applied to estimate the parameters, which in

turn are validated by torque prediction. This approach requires acceleration, which must

be estimated numerically from measured position.

An alternative approach explored in [5] uses force- and torque-sensor measurements to
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avoid the need to estimate acceleration. The robot model is represented in Newton-Euler

form, and a six-element wrench at the robot’s wrist is expressed in a form that is linear in

the unknown parameters. Force and torque at the wrist are measured directly through force

and torque sensors, and parameter estimation is accomplished from this data without the

need for acceleration measurements. Another class of methods [32] uses an energy-based

model that uses velocity and position variables, but does not require acceleration. This

method, however, relies on the integration of the input torques and the joint velocities to

compute energy, which is problematic if the torque estimates are corrupted by an unknown

bias.

4.2 Challenges

Parameter identification for MABEL is a challenging task for several reasons. First,

MABEL has position encoders at the motors and joints, as well as contact switches at the

leg ends, but lacks force and torque sensors. We thus use commanded motor torques as

inputs and motor and joint position encoders as outputs in order to extract model param-

eters. Due to the quantization error of the encoders, it is difficult to estimate acceleration

by numerically differentiating encoder signals. Hence, we estimate parameters without cal-

culating acceleration from position data. Second, the actuator characteristics are poorly

known. The motors used in MABEL are brushless direct current (BLDC) motors, which

are custom manufactured on demand. Due to the small production numbers, the rotor

inertias and torque constants may differ by 20% from the values supplied by the manufac-

turer. Figure 4.1 shows typical joint-excitation experimental data and predicted data from

simulation with the motor torque constant and rotor inertias supplied by the manufacturer.

We can observe that magnitudes of the two signals are clearly different. After obtaining the

rotor inertias and torque constants from the identification process, simulation was able to

predict experimental data with better accuracy as shown in Figure 4.7. These parameters

must therefore be included in the identification procedure.

In combination with power amplifiers from a second manufacturer, the motors exhibit

some directional bias. Complicating matters further, this bias varies among individual
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Figure 4.1: Experimental data and simulation data with the motor torque constant and
rotor inertias supplied by the manufacturer. The joint positions for the simulation are
indicated by solid red lines, while the joint positions for the experiments are indicated by
dotted blue lines.

amplifier-motor pairs. Consequently, the amplifier bias must be considered in the identifi-

cation process. A third issue affecting parameter identification is that the choice of exciting

trajectory is restricted due to limitations of MABEL’s work space. For example, a constant-

velocity experiment for estimating friction coefficients is not feasible because the maximum

range of rotation of each joint is less than 180 deg. Finally, because MABEL has many

degrees of freedom, actuating all of them at once would require estimating 62 parameters

simultaneously. For this reason, we take advantage of the modular nature of the robot

to design experiments that allow us to sequentially build the model element by element,

estimating only a few parameters at each stage of the process.

4.3 Parameter Identification Procedure

CAD packages provide estimates of the masses of the links and pulleys comprising

MABEL, their lengths and radii, centers of mass, and moments of inertia. If we also

account for the location and mass distribution of items not normally represented in a CAD

drawing, such as ball bearing shape and density, the length and density of pulley cables,

electrical wiring, onboard power electronics, and actuators and sensors, then the mechanical

parameters of the robot can be estimated. Consequently, one goal of the identification

procedure is to validate these estimates by comparing predicted responses to experimental
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Table 4.1: Parameters to be identified, where i ∈ I, ℓ ∈ L, and t ∈ T . The subscripts L
and R denote the left leg and right leg, respectively.

Differentials and Motors

Ki motor torque constant
Jrotor,i inertia of the rotor
Jt inertia of the transmission pulleys
µi friction coefficient
bi motor bias

Thigh and Shin (Leg)

mℓ mass of the link ℓ
Jℓ inertia of the link ℓ
mℓrx,ℓ center of mass in x-direction of the

link ℓ multiplied by mass of the link ℓ
mℓry,ℓ center of mass in y-direction of the

link ℓ multiplied by mass of the link ℓ

Compliance (Spring)

KBL,R
spring stiffness

KdBL,R
spring damping coefficient

KC,i cable stretch stiffness
KdC,i cable stretch damping coefficient

data.

In addition, model parameters for which reliable estimates are not available from CAD

drawings include motor torque constants, rotor inertias, spring stiffness, and pre-load. Fi-

nally, friction parameters cannot be estimated by a CAD program and must be determined

experimentally. The parameters to be identified are shown in Table 4.1.

4.3.1 Steps in the Identification Process

The first phase of the identification process focuses on estimating the actuator parame-

ters and the friction parameters in the transmission, as well as validating the pulley inertia

estimates provided by the CAD program. The torque constant KT and rotor inertia Jrotor

of each motor are also determined by analyzing the motors in series with a chain of known

inertias formed by selectively coupling the pulleys that form the three differentials, as shown

in Figures 2.6 and 2.7. Because the pulleys are connected by low-stretch steel cables to form

a one-degree-of-freedom system, various paths in the transmission mechanism can be mod-

eled by lumping the moments of inertia of the pulleys. This lumped moment of inertia can
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be calculated by the CAD model and added to the rotor inertia of the motor. In addition,

this lumped moment of inertia can be obtained from experiments. These data can be used

to estimate motor torque constants, rotor inertias, viscous friction, and motor torque biases.

Next, the legs are coupled to the transmission to validate the actuation-transmission

model in conjunction with the center of mass and moments of inertias of the links con-

stituting the thigh and shin, as provided by the CAD model. For these experiments, the

compliance is removed from the system by locking the orientation of the pulley BSpring;

the torso is held in a fixed position as well. Following this experiment, the torso’s inertial

parameters are estimated for validation.

Compliances are determined last. Two sources of compliance are present in the robot.

One source is the unilateral, fiberglass spring designed into the transmission. The other

source, which is unplanned, arises from stretching of the cables between the pulleys. The

compliance of the unilateral spring is obtained from static experiments, and the compliance

due to cable stretch is estimated from dynamic experiments that apply high torques to the

robot.

4.3.2 Experimental Setup for the Motor, Differential, and Leg Parameters

The first phase of the identification process uses the setup depicted in Figure 4.2. The

torso is fixed relative to the world frame, and the legs can freely move. The position of

the pulley BSpring is fixed as well, removing compliance for the initial identification phase.

Torque commands are recorded and sent to the amplifiers. In turn, the amplifiers regulate

the currents in the motor windings, thereby setting the motor torque values. The rotation of

the motors is transmitted to the thigh and shin links through the transmission differentials

as shown in Figures 2.6, 2.7, and 4.2.

The leg angles qLA and qLS are related to the corresponding motor angles and the angle

of the pulley BSpring by (2.3) and (2.4), and the calculated angles qLS and qLA are also

logged during the experiments.

The relations (2.3) and (2.4) hold under the assumption that the cables do not stretch,

which is the approximation made here, because no external loads are applied to the legs

or the pulleys. When the robot is walking, the transmission system is heavily loaded due
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Figure 4.2: Experimental setup for parameter identification. Motor commands are logged
as the input, while the encoder signals for the motor angles, the pulleys CThigh and DThigh,
and the knee-joint angle are saved as outputs.

to the weight of the robot, and cable stretching occurs. This behavior is observed by the

violation of the relations (2.3) and (2.4). Cable stretch is taken into account in the last step

of the identification process.

It is typical for power amplifiers to exhibit a small bias in the commanded current, which

in turn causes bias in the motor torques. Before beginning system identification, these

biases are estimated and compensated for each motor following the procedure described in

Appendix B.

4.4 Transmission Identification

For system identification, the fact that the differentials in the transmission are realized

by a series of cables and pulleys is an advantage because we can select how many pulleys

are actuated by disconnecting cables. For each pulley combination, the lumped moment

of inertia can be computed. Therefore, if the electrical dynamics of the motor and power

amplifiers are neglected, the lumped pulley system can be modeled as the first-order system

Jlumpedω̇ + µlumpedω = u, (4.1)
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where Jlumped is the lumped moment of inertia, µlumped is the lumped friction coefficient, ω

is the angular velocity of the motor, and u is the commanded motor torque. By identifying

Jlumped and µlumped for three different combinations of pulleys plus motor, it is possible

to determine KT and Jrotor, as well as confirm the lumped pulley inertia predicted by the

CAD model. For each side of the robot, the three pulley combinations of Figure 4.3(a) are

used for the leg-angle path, while the three pulley combinations of Figure 4.3(b) are used

for the leg-shape path.

4.4.1 Motor Torque Correction Factor and Inertia Correction Factor

The leg-angle-identification experiments are performed successively on the leg-angle mo-

tor in combination with one, three, and five pulleys as shown in Figure 4.3(a). The leg-

shape-identification experiments are performed successively on the leg-shape motor in com-

bination with one, three, and five pulleys as shown in Figure 4.3(b). The lumped moments

of inertia of each combination, including the contributions of the cables, can be obtained by

using (C.6) and (C.7) of Appendix C. The lumped moments of inertia of each combination,

including the contributions of the cables can be expressed as

Ji = Jrotor + Jpulley,i + Jcable,i, i = 1, 2, 3, (4.2)

where i denotes experiment number, Jrotor is the inertia of the motor rotor, Jpulley,i is the

lumped moment of inertia of the pulley combination for experiment i, which is obtained by

combining the pulley inertias shown in Table 4.2 with the gear ratios between the pulleys

taken into account, and Jcable,i is the lumped cable moment of inertia calculated from the

mass of the cable per unit length and the length of the cable, with gear ratios taken into

account.

Letting Jrotor,man denote the value of the rotor inertia supplied by the manufacturer, we

define the scale factor αrotor by

αrotor =
Jrotor

Jrotor,man
, (4.3)

which we seek to estimate. In a similar manner, we define the scale factor αtorque for the
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Figure 4.3: Pulley choices for identifying the transmission parameters. (a) qLA path and (b)
qLS path. The various pulley combinations are formed by selectively disconnecting cables in
the transmission. If the inertias of the pulleys are known, then two pulley combinations are
sufficient to identify the inertia of the motor rotor and the torque constant. By adding a
third pulley combination, the pulley inertias provided by the CAD program can be validated.
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Table 4.2: Moments of inertia of the pulleys in the transmission as obtained from the CAD
model.

Pulley
Moment of inertia
(kg-m2)

JmLS 9.0144e-4

JmLA 4.4928e-4

JAth 1.6680e-3

JBth 2.2181e-3

JDth 1.0826e-3

JAsh 1.6974e-3

JBsh 2.2181e-3

JDsh 2.0542e-3

JAsp 2.3464e-3

JBsp 1.8686e-3

JDsp 1.9313e-3

JmLSsd 2.7117e-3

JmLAsd 1.0950e-3

motor by

αtorque =
KT

KT,man
, (4.4)

where KT,man is the value of the motor torque constant supplied by the manufacturer and

KT is the true motor torque constant. In each experiment, the commanded motor torque

is calculated by multiplying the current commanded by the power amplifier by KT,man. As

illustrated in Figure 4.4, it follows that the transfer function from the commanded motor

torque to the measured motor angular velocity is a scalar multiple of (4.1). Hence, the

moment of inertia from the experiments is related to the moment of inertia of (4.2) by

Jexp,i = αtorque(αrotorJrotor,man + Jpulley,i + Jcable,i), i = 1, 2, 3, (4.5)

where Jexp,i is the lumped moment of inertia estimated on the basis of the ith experiment.

Three moment of inertia estimates, denoted by Jexp,1, Jexp,2, and Jexp,3 respectively, are

obtained from each of the leg-shape and leg-angle experiments. Arranging the equations
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Figure 4.4: Transfer function from the the amplifier command input to the motor encoder
signal output. The parameter αtorque is the correction factor for the motor torque constant
supplied by the manufacturer. The measured transfer function is 1/ [αtorque(Jis+ µi)]. The
Matlab System Identification Toolbox is used to estimate the first-order transfer function
from the measured data.
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for each set of experiments in matrix form gives

Ψ = Γ







αtorqueαrotor

αtorque






, (4.6)

where

Ψ =













Jexp,1

Jexp,2

Jexp,3













, Γ =













Jrotor,man Jpulley,1 + Jcable,1

Jrotor,man Jpulley,2 + Jcable,2

Jrotor,man Jpulley,3 + Jcable,3













.

The estimates of αtorque and αrotor are then obtained by least squares fit







αtorqueαrotor

αtorque






, (ΓTΓ)−1ΓTΨ. (4.7)

4.4.2 Experimental Results

Inputs for identification are designed as follows. Starting from 0.5 Hz, the input fre-

quency is increased in 17 steps to 50 Hz. To allow the system response to reach steady state,

each frequency is held constant for 10 periods until changing to the next higher frequency.

At each frequency increment, the magnitude is also incremented to prevent the measured

motor angular velocity from becoming too small. Figure 4.5 illustrates the input signal and

corresponding system response. The Matlab System Identification Toolbox is used to iden-

tify the transfer function (4.1). Table 4.3 shows the results obtained from the experiments.

On the basis of the values in Table 4.3, αtorque and αrotor are calculated by (4.7). The

estimated values are listed in Table 4.4, along with the motor biases. The scale factors

αrotor indicate that the actual rotor inertias of the leg-shape motors are within 7% of the

manufacturer’s reported values, while the rotor inertias of the leg-angle motors are 25%

less than the manufacturer’s reported values. The scale factors αtorque of the leg-angle
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Figure 4.5: Illustrative input and output for system identification. The input is a modified
chirp signal, that is, a sinusoid with time-varying frequency and magnitude. Each frequency
is held constant until the system reaches steady state.

Table 4.3: Identified experimental moments of inertia and friction coefficients for the trans-
mission mechanism.

i=1 i=2 i=3

mLSL
Jexp,i (kg-m

2) 8.819e-4 1.099e-3 1.112e-4
µexp,i (N-m-s/rad) 5.655e-3 6.518e-3 7.142e-3

mLAL
Jexp,i (kg-m

2) 5.514e-4 7.223e-4 7.436e-4
µexp,i (N-m-s/rad) 2.332e-3 4.365e-3 3.858e-3

mLSR
Jexp,i (kg-m

2) 1.104e-3 1.360e-3 1.431e-3
µexp,i (N-m-s/rad) 6.545e-3 9.811e-3 9.879e-3

mLAR
Jexp,i (kg-m

2) 5.217e-4 6.900e-4 7.328e-4
µexp,i (N-m-s/rad) 1.718e-3 4.048e-3 4.703e-3

Table 4.4: Motor parameters. The rotor inertias Jrotor,man and torque constants KT,man

are provided by the manufacturer. The correction factors αrotor and αtorque as well as the
motor biases b are estimated from experimental data.

mLSL mLAL mLSR mLAR

Jrotor,man (kg-m2) 8.755e-4 4.880e-4 8.755e-4 4.880e-4

KT,man (N-m/A) 1.516 0.577 1.516 0.577

αrotor 0.934 0.741 0.930 0.763

αtorque 0.995 1.332 1.287 1.269

b (N-m) -0.1076 -0.04652 0.02995 -0.001672
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motors on the left and right sides of the robot differ by less than 5%. For the leg-shape

motors, the large difference in the scale factors αtorque is expected. In particular, motors

of different characteristics for the left and right sides of the robot was necessary when one

of the motors failed early in the construction process and was replaced with a motor from

a previous prototype. We also note that motor biases, which range in magnitude from

0.002 to 0.107 N-m, are small in comparison to the torques that are expected in walking

experiments, which can exceed 2 N-m for leg angle and 8 N-m for leg shape [100].

For the remainder of this chapter, the motor torque constant is computed by

KT = αtorqueKT,man.

4.5 Leg and Torso Parameters

4.5.1 Thigh and Shin Links

The thigh and shin links of the legs are actuated by the torque transmitted through

the transmission, as shown in Figures 2.3(b) and 4.2. The total mass, center of mass, and

inertia of each link are assumed known from the CAD model; their values are given in

Table 4.5. The values of the motor torque constants and rotor inertias estimated for the

transmission are assumed. Friction coefficients may differ from the values estimated for the

transmission, however, because the hip and knee joints are now actuated. In this section,

the torso continues to be fixed relative to the world frame and the position of the pulley

BSpring is fixed as well, removing compliance from the picture.

With the torso fixed, the left and right sides of the robot are, in principle, decoupled;

in practice, some coupling of vibration from one side to the other occurs because the test

stand is not perfectly rigid, but this coupling is ignored.

4.5.1.1 Mathematical Model

Because we assume rigid connections between qLA and qmLA, and between qLS and qmLS

in the leg identification, the appropriate set of generalized coordinates for the dynamics of

the combined leg and transmission systems is qg = [qmLSL , qmLAL
, qmLSR , qmLAR

].
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Table 4.5: Mass, center of mass, and moment of inertia of the links obtained from the CAD
model. The center of mass coordinates rx and ry for the robot are defined in Figure 2.3(a),
while the moment of inertia is defined about the joint that passes through the origin of the
corresponding link in Figure 2.3(a). For the boom, the coordinate ry is measured from the
central tower to the robot, while the coordinate rx is zero.

Link
Mass Center of Mass Moment of inertia Length
(kg) [rx, ry] (m) (kg-m2) (m)

Spring (Csp) 1.8987 [0.0009406, 0.1181] 0.04377 -

Torso (T) 40.8953 [0.01229, 0.18337] 2.3727 -

Cshin (Csh) 1.6987 [0.0004345, 0.08684] 0.03223 -

Thigh (Th) 3.2818 [0.0003110, 0.1978] 0.1986 0.5

Shin (Sh) 1.5007 [0.0009671, 0.1570] 0.08813 0.5

Boom 7.2575 [0.0, 1.48494153] 20.4951 2.25

In the following, Q ⊂ I in (2.5) represents coordinates of I that are actuated in a given

experiment and will be called the actuated index set. Similarly, let P ⊂ I be the complement

of Q; its elements correspond to the mechanically locked coordinates of P, referred to as

the locked index set. For example, suppose that only the mLSL and mLAL motor angles are

actuated and the other coordinates are mechanically locked, then Q = {mLSL,mLAL} and

P = { mLSR, mLAR}. We also define the set of coordinates qQ =
[

qq1 , . . . , qqnQ

]

, where

q1, . . . , qnQ ∈ Q, and nQ is the number of elements in the set Q, and qP =
[

qp1 , . . . , qpnP

]

,

where p1, . . . , pnP ∈ P, and nP is the number of elements in the set P.

The parameters to be validated from the CAD model are grouped in a vector θ =

[m I rx ry], see Figure 2.3a, where m, I, rx and ry are mass, inertia, center of mass

position in x, and in y, respectively (the values from the CAD model are presented in Table

4.5), and let α = [αmLSL , αmLAL
, αmLSR , αmLAR

] from Table 4.4. The total kinetic energy

for the actuated index set Q is

KQ (qg, q̇g θ, α) =KThigh (qg, q̇g, θ, α) |qP=q∗
P

+KShin (qg, q̇g, θ, α) |qP=q∗
P

+Ktrans (qg, q̇g, θ, α) |qP=q∗
P

(4.8)

where, KThigh, KShin, and Ktrans are the kinetic energies of the thigh, the shin and the

transmission, respectively, and q∗P are the locked joint position angles for qP . Symbolic

46



expressions for the transmission model are available online at [40]. The total potential

energy for the actuated index set Q is

VQ (qg, q̇g θ, α) =VThigh (qg, q̇g, θ, α) |qP=q∗
P

+VShin (qg, q̇g, θ, α) |qP=q∗
P

+VTrans (qg, q̇g, θ, α) |qP=q∗
P
.

(4.9)

The Lagrangian is then

LQ = KQ − VQ. (4.10)

With the total kinetic energy and potential energy obtained from (4.8) and (4.9), the dy-

namics can be determined through Lagrange’s equations:

d

dt

∂LQ

∂q̇Q
−

∂LQ

∂qQ
= ΓQ, (4.11)

where ΓQ is the vector of generalized forces acting on the robot, and can be written as:

ΓQ = Inq×nqKTQ
uQ − Fµq̇Q, (4.12)

where Inq×nq is the identity matrix of size nq, KTQ
= diag[1/KT,q1 · · · 1/KT,qnp ], uQ =

[τq1+bq1 · · · τqnp +bqnp ], and Fµ = diag[µq1 · · ·µqnp ], and where KT,q1···np are from Table 4.4.

The bq1 , . . . , bqnp are the motor biases1. The motor biases can be obtained from Table 4.4

for the SISO experiment; for the MIMO experiment, however, they are obtained as part of

the optimization process explained in next. The friction coefficients are µq1 , . . . , µqnp , and

the procedure to obtain them will also be explained in next.

The dynamic model for each side can be written in the form

D(θ, αrotor, q)q̈ + C(θ, αrotor, q, q̇)q̇ +G(θ, αrotor, q) = ΓQ, (4.13)

where D(θ, αrotor, q), C(θ, αrotor, q, q̇), and G(θ, αrotor, q) are the inertia matrix, Coriolis

1Because the legs are relatively light, small torque biases lead to significant errors in the modeled effects
of gravity. When the robot is in actual operation and supporting the heavy torso, the effects of these small
torque biases will be negligible.
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matrix, and gravity vector, respectively. Moreover, θ is the vector of mechanical parameters

from the CAD model, the rotor inertia correction factors αrotor are from Table 4.4, and the

vector ΓQ of generalized forces acting on the robot, consisting of motor torque and viscous

friction, is given by

ΓQ = umLA + umLS − µmLAq̇mLA − µmLSq̇mLS. (4.14)

The friction coefficients µmLA and µmLS are to be estimated.

Two types of experiment are performed, SISO and MIMO. Each experiment is performed

on one leg at a time. In the SISO experiments, one degree of freedom is actuated and

logged, either qmLS or qmLA, while the other degree of freedom is mechanically locked. In

the MIMO experiment, both qmLS and qmLA are actuated and recorded. The objective of

the SISO experiments is to estimate the friction parameters in (4.14). The objective of the

MIMO experiment is to validate the model (4.13), with the parameters obtained from the

SISO experiment.

The commanded motor torque is a modified chirp signal plus a constant offset, similar

to the transmission identification experiments. The magnitude and offset of the input signal

must be selected to keep the links within the robot’s work space.

With all the parameters in the model (4.13) specified, the response of the system excited

by the input used in the experiments can be simulated, as shown in Figure 4.6. The friction

parameters µ are estimated by minimizing the cost function

J(µ) =
√

∑

(yexp − ysim(µ)), (4.15)

where yexp is the vector of experimentally measured data, ysim is the vector of simulated

data, and µ is the vector of viscous-friction coefficients. As shown in Table 4.6, the values

of µ estimated in this manner are larger than the values from the transmission experiments,

but not greatly different from those values. In the MIMO simulations, we observe that

variations in the assumed actuator bias of 0.1 N-m, which can be ignored when the legs

are supporting the robot, can cause large deviations in the system response when the legs
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Figure 4.6: Simulation and validation procedures for leg identification. Identical input
sequences are applied to the simulation model and MABEL. The simulation model uses the
motor parameters estimated from the transmission identification along with the mass-inertia
parameters calculated from the CAD program, while torque bias and friction coefficients
are free variables used to fit the simulation data to the experimental data. In the validation
step, a new input sequence is used and the motor bias is re-estimated, while all remaining
parameters are held constant.

Table 4.6: Estimates of friction coefficients µ and motor biases b obtained by minimizing
the costs in (4.15) and (4.16), respectively.

i = mLSL i = mLAL i = mLSR i = mLAR

µi (N-m-s/rad) 9.844e-3 4.316e-3 9.027e-3 4.615e-3

bi (N-m) -8.417e-3 2.597e-2 -1.446e-2 -2.461e-3
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are not supporting the robot. Therefore, for the MIMO simulations, in place of the bias

values estimated from the transmission identification, we use the values that minimize the

cost function

J(b) =
√

∑

(yexp − ysim(b)), (4.16)

where yexp is the vector of experimentally measured data, ysim is the vector of simulated

data, and b is the bias vector.

The comparisons between simulated and experimental results are presented in Fig-

ures 4.7 and 4.8. All figures show qLS and qLA computed from qmLS and qmLA, because

the body coordinates qLS and qLA are easier to interpret than the motor positions. It is

emphasized that the parameters are either from the transmission identification experiments

or the CAD model, with two exceptions, namely, friction is estimated in the SISO experi-

ments from (4.15) and used in the MIMO experiments; in the MIMO experiments, motor

biases are tuned by (4.16).

The comparison of the MIMO experimental and simulation results is made further in

Figures 4.9 and 4.10, where the phase portraits of qLA versus qLS with respect to each

frequency component are plotted, for each side of the robot. We can observe that simulation

results closely match the experimental results.
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Figure 4.7: SISO simulation and experimental data. The joint positions for the simulation
are indicated by solid red lines, while the joint positions for the experiments are indicated
by dotted blue lines. These data are obtained from the procedure in Figure 4.6. The RMS
errors are 0.77, 1.1, 0.76, and 0.69 deg, respectively.
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In the SISO experiments, the RMS error varies from 0.69 to 1.1 deg, while for the MIMO

experiments, the RMS error varies from 0.72 to 1.42 deg. These errors may arise from

several sources. For example, the linear viscous-friction terms in (4.14), namely µmLA q̇mLA

and µmLS q̇mLS, do not take into account stick-slip behavior in the low-velocity region.

Furthermore, electrical wiring is not included in calculating inertial parameters. In addition,

motor bias changes slightly for each experimental trial. Finally, cable stretch is assumed to

be negligible.

4.5.2 Torso

The torso represents approximately 41 kg of the total 65-kg mass of the robot. Con-

sequently, the mass and inertia of the torso strongly affect the dynamics of the robot. In

principle, the inertia and mass distribution of the torso can be validated by locking the

legs in a fixed position, and using the leg-angle motors to oscillate the torso. Attempts at

executing this experiment in the test stand failed, since movement of the torso is always

translated to the legs.

Therefore, instead of dynamic identification of the torso, static balancing experiments

are used to validate the CAD model estimates. In the first experiments, the robot is not

constrained. Using local PD controllers, we command a posture where the right leg is

extended more than the left leg. The robot is then balanced by hand on the right leg.

The balance of the robot is maintained with minimal fingertip pressure from one of the

experimenters. Once the robot is in a balanced posture, the joint position data are recorded.

Many different postures are balanced and logged. From the logged data, we calculate the

center of mass position of the robot including the horizonal boom, and we verify that the

calculated center of mass is located over the supporting toe.

In a second set of experiments, the position of the hip joint is fixed, with the legs hanging

below the robot and above the floor, and with the robot unpowered. The torso is balanced

by hand in the upright position. We then calculate the center of mass position of the robot

without the boom, and check that the center of mass is aligned over the hip joint.

We use 10 different postures for the first experiment and 7 different postures for the

second experiment. Figure 4.11(a) displays the horizontal distance between the center
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Figure 4.8: MIMO simulation and experimental data. The joint positions for the simulation
are indicated by solid red lines, while the joint positions for the experiments are indicated
by dotted blue lines. These data are obtained from the procedure in Figure 4.6. The RMS
errors are 1.0, 1.42, 1.14, and 0.72 deg, respectively.
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Figure 4.9: MIMO phase plot of qLAL
vs qLSL

simulations (solid red line) and experiments
(dotted blue line). All data are measured in radians.
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Figure 4.10: MIMO phase plot of qLAR
vs qLSR

simulations (solid red line) and experiments
(dotted blue line). All data are measured in radians.
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Figure 4.11: Errors in the estimated horizontal position of the center of mass. (a) In these
experiments, the robot is manually balanced on one leg, in which case the center of mass
of the robot plus the boom must be over the toe. The CAD model provides an estimate of
the center of mass. The graph depicts the difference in the measured horizonal component
of the center of mass and the CAD-model estimate for ten postures of the robot. The
maximum difference is less than 6 mm. (b) In these experiments, the cartesian position of
the hip is clamped to a fixed position, with the legs extended below the robot and off the
floor. The torso is then balanced in an upright position, providing the horizontal position
of the center of mass of the torso. This plot depicts the measured error with respect to the
CAD-model estimate for seven trials of the experiment.

of mass and the supporting toe for the first experiment, and Figure 4.11(b) shows the

horizontal distance between the center of mass and the hip for the second experiment. We

observe that the maximum error is 6 mm, which is negligible in view of the size of the

robot and considering that the experiments are performed with manual balancing. These

experiments do not provide information on the vertical position of the center of mass.

4.6 Compliance

The stiffness KB of the springs in (3.19) that are in series with the leg-shape actuators is

estimated by means of static experiments using the calculated spring torques and measured

spring deflections in this section. The remaining parameters KdB, Kd1, Kvd1, and Kvd2

in (3.19) will be estimated in Section 4.7.
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Figure 4.12: Experimental setup for measuring spring stiffness and pre-load. Pulley Asp is
locked in place by commanding the leg-shape motor to a fixed orientation. Consequently,
the torque due to gravity τgravity must be balanced by the torque from the spring τBsp. The
resulting spring deflection qBsp is measured and recorded.

The magnitude of the joint torques used in these experiments is more representative of

the torques used in walking [100]. Under these greater loads, the cables in the differentials

stretch. This compliance has been modeled in Section 3.2.2, and the spring and damping

coefficients of the cables are identified in Section 4.7.

The series compliance in the drivetrain is now estimated by means of static, constant-

torque experiments, performed by balancing the robot on one leg at a time. The setup

is illustrated in Figure 4.12. In these experiments, the torso is no longer locked in place

relative to the world frame; it is free. The actuators on one side of the robot are disabled,

with the leg on that side folded and tied to the torso. On the other side, a PD-controller is

used to maintain the leg angle at 180 deg, which is straight down. A second PD-controller

is used to set the nominal leg shape. An experimenter balances the robot in place with the

toe resting on a scale placed on the floor; the experimenter adjusts the overall angle of the

robot so that it is exactly balanced on the toe, as when verifying the center of mass of the

torso.

With the setup shown in Figure 4.12, the scale is measuring the combined weight of the
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robot and the boom. By the design of the differential, when the leg-shape motor holds the

pulley ASpring in a fixed orientation, the torque at the pulley CSpring is exactly balanced by

the torque at the pulley BSpring. The torque τgravity at CSpring, shown in Figure 4.12, is the

weight of the robot transmitted through the thigh and shin differentials; its magnitude is

given by

|τgravity| =

∣

∣

∣

∣

1

2
Wrobot sin(qLS)

∣

∣

∣

∣

, (4.17)

where Wrobot is the weight of the robot measured by the scale at the bottom of the foot.

The absolute value is used because spring stiffness is positive. The torque τBsp at the pulley

BSpring, shown in Figure 4.12, is due to the deflection of the spring and is given by

τBsp = KBqBsp, (4.18)

where KB is the spring stiffness. The spring deflection qBsp is measured by an encoder

installed in the pulley BSpring. The torques τgravity and τBsp, which are related by the

differential mechanism, satisfy

|τgravity| = 2.59 |τBsp| . (4.19)

Combining (4.17), (4.18), and (4.19), the spring stiffness is obtained as

KB =
1

5.18

∣

∣

∣

∣

Wrobot sin(qLS)

qBsp

∣

∣

∣

∣

. (4.20)

The design of the experiment is completed by varying qLS over a range of values, here

taken to be from 10 deg to 30 deg. We emphasize that KB determined by means of (4.20)

does not depend on the estimated leg-shape motor torque. Indeed, because the spring and

motor are connected in series, the torques must balance at the spring differential.

Figure 4.13 shows the results of performing the above experiments on each leg. Prior

to the experiments, it is not obvious if a linear model of the spring deflection would be

adequate because the spring folds around the curved torso as shown in Figure 4.14. From

the data, we observe that the spring behavior is nearly linear, and that the spring constants
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for the left and right sides are consistent.

4.7 Two-Legged Hopping for Final Model Identification and Validation

This section uses a hopping gait to complete the identification of, and subsequently

validate, the overall dynamic model of MABEL. While hopping per se is not an objective,

the large motor torques employed to launch the robot in the air, in combination with the

large ground contact forces at landing, make hopping a convenient means for exciting all

of the dynamic modes that are expected to be present when the robot is running on flat

ground or walking on uneven ground. Two-legged hopping is chosen over hopping on one

leg to simplify the task of obtaining stable hopping.

4.7.1 Parameters for Cable Stretch, Hard Stop, and Ground Models

A heuristic controller for a hopping gait is given in Appendix D. Because the cable

stretch coefficients are not yet identified, the hopping controller is hand tuned on an ap-

proximate simulation model that assumes the cables are rigid; the approximate model also

uses the ground reaction parameters from [80]. The tuning process adjusts PD-controller

gains and setpoints in the various phases of the gait, with the goal of obtaining sustained

hopping. When the controller is implemented on MABEL, steady-state hopping is not

achieved, even after extensive trial-and-error tuning in the laboratory. Five hops is typical

before the robot falls.

Even though sustained hopping is not achieved, the data from the experiments can be

used to identify the parameters in the hard-stop model, the cable stretch model, and the

compliant-ground-contact model. The parameter fitting is accomplished with a combination

of hand adjustment and nonlinear least squares. The resulting parameters are given in

Table 4.7. Figures 4.15, 4.16, and 4.17 compare the result of the experiment (dotted blue

line) and the simulation model (solid red line) using the parameters in the TABLE 4.7.

Excellent agreement was obtained.
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Figure 4.13: Measurements of torque τBsp versus displacement qBsp obtained from the ex-
perimental setup of Figure 4.12. The data in (a) are fit by τBspL = 115.1qBspL + 2.214.
The fit shows that, on the left side of the robot, the spring stiffness is 115.1 N-m per rad
and the pre-load offset is 2.214 N-m. On the right side of the robot, the data in (b) are fit
by τBspR = 111.7qBspR + 5.377, showing that the spring stiffness is 111.7 N-m per rad and
the pre-load offset is 5.377 N-m. The estimated values of spring stiffness and pre-load are
consistent on the left and right sides of the robot.

Figure 4.14: MABEL’s unilateral springs. The cable, hard stops, and pulley BSpring are also
shown. The spring, fabricated from fiberglass plates, is activated when the pulley BSpring

rotates and pulls the cable, wrapping the fiberglass plates around the front and back of the
torso. The cable cannot push the spring, and hence the spring is unilateral. A rest position
is enforced by a hard stop, formed by a stiff spring-damper.
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Figure 4.15: Identification data from the intimal hopping experiment. Joint position (in
deg) and hip position (in m): simulation (solid red line) and experiment (dotted blue line).
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Table 4.7: Parameters estimated from the dynamic hopping experiment.

Spring Model

KdB (N-m-s/rad) 1.5 Kvd1 (N-m-s/rad) 1000
Kd1 (N-m/rad3) 100 Kvd2 (N-m/(rad/s)0.5) 50

Cable Stretch Model

i = mLSL i = mLAL i = mLSR i = mLAR

KC,i (N-m/rad) 2.9565 3.5000 2.9565 3.8094
KdC,i (N-m-s/rad) 0.0402 0.0889 0.0804 0.3556

Ground Model

λa
v (N/m1.5/(m/s)) 3.0e6 σh0 (N/m) 260.0

λb
v (N/m

1.5/(m/s)0.5) 4.5e6 σh1 (N-s/m) 2.25

n 1.5 αh0 (N) 1.71

k (N/m1.5) 4.38e7 αh2 (N-s/m) 0.54

1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3
−5

0

5

10

1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3
−10

0

10

1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3
−10

0

10

1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3
−40

−20

0

20

τ m
L
A

L
τ m

L
A

R
τ m

L
S
L

τ m
L
S
R

time (Sec)

Figure 4.16: Identification data from the intimal hopping experiment. Joint torque (in Nm):
simulation (solid red line) and experiment (dotted blue line).
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Figure 4.17: Identification data from the intimal hopping experiment. Cable stretch (in
deg): simulation (solid red line) and experiment (dotted blue line).
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4.7.2 Hopping Experiments for Validation

When the nominal hopping controller is simulated on the identified model, the closed-

loop system is found to be unstable. Event-based updates to the torso angle are therefore

added to achieve stability, as explained in “How Hopping is Achieved.” The controller is

then applied to MABEL, resulting in 92 hops before the test is deliberately terminated.

The data are presented next.
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Figure 4.18: Validation data from the second hopping experiment. The joint positions for
the simulation are indicated by solid red lines, while the joint positions for the experiment
are indicated by dotted blue lines. Though the hopping controller is not based on trajectory
tracking, the variables shown are indirectly regulated by the feedback controller, which may
be responsible for the close correspondence between the modeled and measured data.

Figures 4.18 - 4.21 compare typical experimental results against the simulation results
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Figure 4.19: Validation data from the second hopping experiment. The joint and hip po-
sitions for the simulation are indicated by solid red lines, while the joint and hip positions
for the experiment are indicated by dotted blue lines. For these variables, the close corre-
spondence between the modeled and the measured data supports the model.
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Figure 4.20: Validation data from the second hopping experiment. The motor torques for
the simulation are indicated by solid red lines, while the motor torques for the experiment
are indicated by dotted blue lines. The ability to predict torque is an accepted measure of
fit for models of mechanical systems.
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Figure 4.21: Validation data from the second hopping experiment. Cable stretch for the
simulation is indicated by solid red lines, while cable stretch for the experiment is indicated
by dotted blue lines. When the gear ratios are taken into account, 100 deg of cable stretch
results in 4.25 deg of displacement in qLA and 3.18 deg of displacement in qLS.
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for the 31st and 32nd hops. Figures 4.18 and 4.19 depict joint position angles. It is observed

that the period of the experimental data is longer than that of the simulation results by

approximately 30 ms. Because the hopping controller regulates four outputs computed from

qT, qLAL
, qLAR

, qmLSL , and qmLSR , it could be argued that the closeness of the simulated and

experimental values is a reflection of the controller. However, the spring compressions qBspL

and qBspR , as well as the horizontal and vertical hip positions phhip and pvhip, are unregulated,

and Figure 4.19 shows that these variables are captured by the model.

Figure 4.20 depicts joint torques. The simulation predicts the joint torques observed in

the experiment with an RMS error of 1.0 N-m. The ability to predict torque is an accepted

measure of fit for models of mechanical systems [105, 104, 79, 111, 60].

Figure 4.21 compares the measured and simulated cable stretch, in degrees of motor

rotation. Up to 200 deg of cable stretch is observed. The maximum error in the mod-

eled response occurs in the right leg angle. The predicted ground reaction forces are not

compared to experimental data because MABEL is not equipped with force sensors.

4.8 Conclusions

Parameter identification of MABEL, a 5-link bipedal robot with a compliant transmis-

sion, has been studied. For each side of the robot, the transmission is composed of three

cable differentials that connect two motors to the hip and knee joints in such a way that

one motor controls the angle of the virtual leg consisting of the line connecting the hip to

the toe, while the length of the virtual leg is controlled by a second motor connected in

series with a spring. The springs serve both to isolate the rotor inertia of the leg-shape

motors from the impact forces at leg touchdown and to subsequently store energy when the

support leg must decelerate the downward motion of the robot’s center of mass.

The robot is equipped with 14 encoders to measure motor, pulley, and joint angles, as

well as contact switches at the ends of the legs to detect impact with the ground. Neither

force sensors, torque sensors, nor accelerometers are available. To circumvent these lim-

itations, the identification procedure took advantage of the modular nature of the robot.

By selectively disconnecting cables in the transmission, various elements can be isolated for
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individual study, simplifying the parameter identification process.

MABEL has two kinds of compliance. One is the unilateral, fiberglass springs designed

into the transmission. The other source of compliance is unplanned and arises from the

stretching of the cables between the pulleys. The compliance of the unilateral spring was

obtained by means of static loading experiments. The compliance from cable stretch was

estimated from short-duration hopping experiments. From the same data set, the param-

eters for a compliant ground model were also roughly estimated. The experiments lasted

only a few hops because we were unable to stabilize the hopping gait without a model; trial

and error in the laboratory did not work.

The utility of the model was illustrated by using it to redesign the hopping controller.

When the redesigned controller was implemented on the robot, 92 hops were made, at which

point the experiment was terminated. The utility of the model will be further illustrated

in subsequent chapters.
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CHAPTER V

Control Design for Accommodating Large Step-down

Disturbances

In this chapter, we propose a new control policy which allows MABEL to step off

platforms that are at 20 cm high, without falling. The robot is provided information on

neither where the step down occurs, nor by how much.

The remainder of the chapter is organized as follows. Section 5.1 provides the design

of a baseline controller reported in [100] and an initial step-down experiment. A switching

controller is designed in Section 5.2 and the proposed controller is verified on a detailed

simulation model in Section 5.3. Experimental result of the new controller are provided in

Section 5.4. Conclusions and future directions are given in Section 5.5.

5.1 Baseline Controller

5.1.1 Feedback Design

MABEL’s baseline feedback controller is designed using the method of virtual constraints

[116]. The particular controller used here has been reported in [100, 98]. The method of

virtual constraints begins with the choice of outputs which depend on only configuration

variables and take the form

y = h(qs) = h0(qs)− hd (s(qs), α) . (5.1)

70



In the baseline controller, the controlled variables are

h0(qs) =



















qmLSst

qLAsw

qmLSsw

qTor



















(5.2)

and hd (s(qs), α) is a vector representing the desired evolution of the controlled variables

as a function of s(qs), replacing time in a standard tracking controller. The function s(qs)

is designed to be strictly monotonically increasing over the course of a step. If a feedback

can be found such that the output y is driven asymptotically to zero, then the solutions of

the closed-loop system asymptotically satisfy h(qs) = 0, which has the form of a holonomic

constraint on a mechanical system (for more information about virtual constraints, see [22]).

In the baseline controller, the desired evolution of the controlled variables in (5.2) is

specified by the functions hdmLSst
, hdLAsw

, hdmLSsw
, and hdTor, respectively, and assembled as

hd (s, α) =



















hdmLSst
(s, α)

hdLAsw
(s, α)

hdmLSsw
(s, α)

hdTor (s, α)



















, (5.3)

where α is a vector of real numbers parameterizing the virtual constraints. Furthermore, s

is selected as

s(qs) =























θ(qs)−θ+

θ−−θ+
, θ+ < θ(qs) < θ−

1, θ(qs) ≥ θ−

0, θ(qs) ≤ θ+

(5.4)

where θ is the absolute angle formed by the virtual compliant leg relative to the ground,

that is,

θ(qs) = π − qLAst − qTor, (5.5)

and θ+ and θ− are the values of θ (qs) at the beginning and end of a step, respectively.
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How to construct the functions in hd (s, α) from Bézier polynomials and how to choose

the parameters to create a periodic walking gait in the closed-loop system are explained

in [116] and [100]. The main idea is to select α to minimize a cost function representing

energy supplied by the actuators, normalized by step length, with the minimization subject

to boundary conditions that specify a periodic solution, actuator magnitude and power

limitations, friction limits in the ground contact model, swing-leg clearance, and desired

walking speed.

In principle, the virtual constraints can be implemented on the robot by any feedback

capable of driving y to zero. In the experiments described below, we use the feedforward-

plus-PID-controller,

uF−PD(xs) = u∗ (s(qs), α)−KP y −KDẏ −KI

∫

ydy, (5.6)

where u∗ (s(qs), α) is the nominal torque along the periodic orbit determined from the

parameter-optimization problem when designing the virtual constraints, and y is defined in

(5.1). The asymptotic stability of the periodic orbit under this feedback law is verified on

the model with a Poincaré map, as explained in [116] and [100].

The above process results in the virtual constraints depicted in Figure 5.1. These con-

straints correspond to the nominal walking gait presented in [100], with average walking

speed of approximately 1.0 m/s. Here, we modify the nominal virtual constraints so that

the end of the swing leg at mid-stance can clear a 2 cm obstacle, allowing the robot to step

onto a platform before stepping off it. Henceforth, we call this the baseline controller.

5.1.2 Baseline Step-down Performance

As reported in [77], using the control law (5.6) and the virtual constraints of Figure 5.1,

MABEL can accommodate a 2.0 inch (5.08 cm) step-down disturbance. The experiment

was conducted as follows. MABEL was put in motion, walking on an initially flat floor.

At the end of each lap, MABEL walked up a stair-stepped ramp1, and then stepped off

1The ramp and platform are constructed from sheets of plywood that are 0.5 inch and 1.0 inch thick.
This explains the use of non-SI units. Figure 5.2 illustrates how the ramp and platform are constructed from
a combination of 0.5 inch and 1.0 inch (2.54 cm) thick sheets of plywood.
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Figure 5.1: Virtual constraints of the baseline controller.

the platform. The height of the platform was increased by 0.5 inches each lap until the

robot fell when the platform height was increased to 2.5 inch (6.35 cm). MABEL fell after

stepping off the 2.5 inch platform because the leg broke on the ensuing step; the video is

available at [73].

Figure 5.3 shows the torso angle data; it can be seen that the feedback system overreacts

when correcting the forward-pitching motion of the torso, causing a second, very rapid,

forward-pitching motion of the torso. Because the angle of the swing leg was controlled

relative to the torso, the swing leg rotated forward rapidly as well and impacted the ground

with sufficient force to break the leg. Though not reported in [77], the experiment was

repeated several times, with the same result, namely, a broken leg following a 2.5 inch

step-down.
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Figure 5.2: Plywood boards used to form a stair-stepped platform. By combining boards
that are 1 inch (2.54 cm) and 0.5 inch (1.27 cm) thick, platforms of a desired height are
assembled.

Further analysis of experimental data was carried out in [77] to study the impact forces

that caused the leg to break. Using the impact model of [52], the contact intensity IF at

the leg end was estimated from the experimental data. IF has units of N · s and represents,

roughly speaking, the integral of the contact force over the duration of the contact event.

Figure 5.4 shows the estimated contact intensity when walking on flat ground and when

stepping off several raised platforms. The data indicate that, upon stepping off the 2.5 inch

platform, the impact intensity of the second step 47 (N · s) was more than three times as

intense as the impact intensity 13 (N · s) of walking on flat ground.

Work presented in [77] went on to show how to design a switching controller that resulted

in MABEL stepping off a 3.5 inch (8.89 cm) platform without falling. The controller

reported there used the same form of the virtual constraints shown in (5.1) and (5.3), with

the virtual constraints of Figure 5.1 specially designed to reduce torso pitching. In the

next section, a switching controller is proposed that will result in a dramatic increase in

performance: MABEL stepping off an 8.0 inch (20.32 cm) platform without falling.
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Figure 5.3: Experimental and data of the torso angle when stepping down from the 2.5 inch
platform. The forward direction is counterclockwise, and hence corresponds to decreasing
angles. The blue circles show when the swing leg impacts the ground. The torso undergoes
a large oscillation as a result of the disturbance at step-down.

5.2 A Switching Controller Based on Virtual Compliance

5.2.1 Overview of Basic Controller

The baseline step-down experiments showed that MABEL fell on the second step of a

large step-down, and not at the moment of step-down itself. The cause of the fall is the torso

pitching forward too rapidly after leg impact with the ground. To attenuate the amount of

torso pitching following a large step-down, we adopt the idea of a switching controller from

[124].

The height of the platform, or equivalently, the depth of the step down, can be immedi-

ately computed at impact from the lengths of the robot’s legs and the angles of its joints. If

the calculated height of the platform is greater than a threshold scalar value ∆H which is
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Figure 5.4: Impact intensity calculated from the baseline step-down experiments. Only the
vertical component is displayed. The green bar shows the average impact intensity when
walking on flat ground; the bars show ± one standard deviation. The blue bar shows the
impact intensity upon step-down, while the red bar shows impact intensity for the ensuing
step. The larger impact intensity on the step following the 2.5 inch (6.35 cm) step-down
leads to a mechanical fuse activating in the shin, which separates the leg into two pieces.

being set to 3 cm in this Chapter, the baseline controller is replaced for one step with a con-

troller whose purpose is to attenuate pitching of the torso from the step-down disturbance.

Then, at the beginning of the very next step, the baseline controller is re-applied.

5.2.2 Active Force Control

The new controller, called a ‘active force control’, imposes virtual holonomic constraints

on only three variables, qLAsw , qmLSsw , and qT, instead of four variables, as in the baseline

controller. In particular, the system input corresponding to the stance motor leg shape

is left free and not used for imposing a virtual constraint. Recall that this motor is in

series with a physical spring in the drivetrain, as shown in Figure 3.1b. Following an idea
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developed in [98, 99] for bipedal running on MABEL, we use the torque input of this motor

to create an additional virtual compliant element by defining the feedback,

umLSst (x) = −kvc (qmLSst − qmLSvr)− kvd (q̇mLSst) . (5.7)

This feedback essentially turns the leg shape motor into a shock absorber with stiffness kvc,

damping kvd, and rest position qmLSvr . As will be seen, this method of creating a virtual

compliant element serves to maintain good ground contact forces (friction cone is respected

and normal component is positive) during large step-down experiments.

In principle, each of the virtual constraints for the three controlled variables qLAsw , qmLSsw ,

and qT can be redesigned in the active force control. We found that the baseline virtual

constraints could be retained for the swing leg angle and shape; it was only necessary to

redesign the virtual constraint for the torso. When redesigning the virtual constraint for the

torso, the first and last coefficients of the Bézier polynomials from the baseline controller are

retained; the coefficients between them, denoted hereafter by αT, will be selected through

optimization.

The design parameters that are to be chosen through optimization are grouped into a

vector denoted

ΘSD := [αT, kvc, kvd, qmLSvr ]
T . (5.8)

In general, as in [115], a suite of parameters could be pre-computed for a discrete set of

platform heights, such as {5 cm, 10 cm, 15 cm, 20 cm}, and the controller would then

select an appropriate parameter vector, or the baseline controller, based on the estimate of

platform height made at step-down. We found, however, that when the virtual compliant

element in (5.7) is used, a step-down controller designed for 20 cm can accommodate step-

downs of 3 cm to 20 cm, and the baseline controller can accommodate variations in ground

height from a 2 cm rise to a 3 cm step-down, without the controller being provided a priori

information on the amount of ground height variation. This finding obviously leads to a

very simple switching policy.

77



t0 t1 t2
Figure 5.5: Design of step-down controller. Time t0 corresponds to the end of the last step
on the platform; t1 is the end of the step-down; and t2 is the end of the ensuing step.

We next describe how the parameter vector in (5.8) is selected via optimization.

5.2.3 Optimization Process for Step-down Controller

The optimization process is based on the simplified design model introduced in Sec-

tion 3.1, with the switching surface in (3.10), modified as in (3.12) to account for a change

in ground height at impact.

Assume the robot is on the periodic orbit corresponding to the baseline controller, and

hence is walking on flat ground. As in Figure 5.5, let t0 be time that step-down is initiated,

let t1 be the time the swing leg impacts the ground, and let t2 be the end of the next step,

assuming it occurs. The robot is operating under the baseline controller over the interval

[t0, t1), and under the step-down controller over the interval [t1, t2]. Once the step-down

height H is specified, xs(t1), the state of the robot at time t1, is known. A numerical

optimization problem is posed so that the trajectory under the step-down controller can be

continued in such a way that the robot will not fall. In principle, the optimization could

consider several steps, but only one step is considered here.

Objective: Select Θ in (5.8) to minimize peak-to-peak amplitude of torso oscillation as
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defined by,

JΘSD := max
t∈[t1,t2]

{qT(t)} − min
t∈[t1,t2]

{qT(t)}, (5.9)

where qT(t) is trajectory of the torso angle. The cost function JΘ is optimized subject to

the following constraints:

(a) positive horizontal swing toe position at the end of the step,

ph2(t2) > 0; (5.10)

(b) bound on the ratio of tangential to normal ground reaction forces experienced by the

stance leg end,

max
t∈[t1,t2]

{

F T
1 (t)

FN
1 (t)

}

< µs; (5.11)

(c) minimum normal ground reaction force experienced by the stance leg end,

min
t∈[t1,t2]

{FN
1 (t)} > C, for some C > 0; (5.12)

(d) avoid premature impact,

s(t2) > 1− δ, where δ ≪ 1 (5.13)

(e) upper bound on the magnitude of torso angular velocity

max
t

{|q̇T(t)|} < γq̇T , for some γq̇T > 0. (5.14)

The optimization is conducted over a transient phase of the gait, and thus constraints

are not required to impose periodicity of an orbit. We have observed that solutions to the

above optimization problem tend to steer the robot so that the configuration variables at

time t2 are near their values on the periodic orbit. We conjecture that this is because the
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controller.

two virtual constraints for the swing leg, as well as the ending value for the torso virtual

constraint, are inherited from the baseline periodic orbit.

MATLAB’s constrained optimization routine fmincon is used to perform the numerical

search outlined above. Setting H = −0.2 m, corresponding to a 20 cm step-down, γq̇T =

250 deg/sec, C = 200 N, δ = 0.05, and µs = 0.5, yields the parameter vector

ΘSD =[0.1417, − 0.2338, − 0.7765, − 0.0529, 2.1088, 0.1297, 2.7028]T . (5.15)

Figure 5.6 shows the torso virtual constraint resulting from the optimization.

The resulting switching controller is then applied to the simplified design model with a

20 cm step-down. The torso trajectory is shown in Figure 5.7. It is observed that the torso

oscillates approximately 11 deg during the step following the step-down (red solid line) and

then quickly converges to its nominal trajectory. On the other hand, under the baseline

controller (red dashed line), the torso noticeably overshoots when returning to the nominal

lean angle. Figure 5.8 shows the normal ground reaction force and pulley Bspring angle,

which are important indicators of ground contact condition.

Before implementing the controller on the robot, it is evaluated on the detailed model

explained in Chapter III. As mentioned in Chapter III, the validation model takes into

account more aspects of the physical robot, but it is too unwieldy for controller design

when optimization is involved.
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Figure 5.7: Simulated torso trajectory with optimal parameter vector ΘSD on the simplified
design model for a step-down height of 20 cm. The switching controller is shown with a
solid line, while a dashed line represents the baseline controller. Red line indicates the step
following step-down.

5.3 Controller Verification on Detailed Model

As explained in Chapter 3.2, the model used for control design does not fully reflect

experimental reality due to the following reasons: cable stretch in the robot’s drivetrain;

asymmetry due to the boom radius not being large enough; the simplified impact model

assumes an instantaneous double support phase, whereas, in experiments, the double sup-

port phase lasts approximately 20 ms. By including cable stretch as a spring-damper, the

boom dynamics to account for asymmetry side-to-side, and a ground model comprised of

compliant ground and LuGre friction model [13, 80] in the mathematical model, the ac-

curacy of the model is significantly improved. However, because of the complexity of this

model, simulations of the detailed model take 20 times longer than the simplified design

model. Hence, this model is not appropriate for optimization processes which may require

thousands of simulations.

Therefore, to take advantage of each model’s strengths, low computational effort for the

simple-design model and high accuracy for the detailed model, iterative controller design

is conducted on the simple model first, and then the designed controller is tested on the

detailed model, before implementing it on the robot.

As part of implementing the proposed controller on the detailed model, two modifica-

tions are made to account for the cable stretch which is the most critical reason for model
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Figure 5.8: Simulation with optimal parameter vector ΘSD on the simplified design model
for a step-down height of 20 cm. The switching controller is shown with a solid line, while
a dashed line represents the baseline controller.

discrepancy: (A) the coefficients of the virtual compliance in (5.7) are modified so that the

series connection of the compliance due to the cable stretch and the virtual compliance has

the effective compliance specified by the optimization process (see [98] and Appendix E

for detail); (B) the swing leg height is increased according to the platform height calcu-

lated at impact to prevent foot scuffing; (C) in addition, a one-step transition phase is

added between the step-down and baseline controller in order to connect the two phases

smoothly. With these modifications to the proposed controller, the simulation results in

MABEL successfully stepping off a 20 cm platform.

Figure 5.9 shows qT and qBspst . Despite the significant torso oscillation after step-down,

the calculated impact intensity 20.1 N · s from the 20 cm step-down simulation data is less

than half of the impact intensity 46.5 N · s observed in the 6.35 cm step-down under the

baseline controller (see Figure 5.4). Furthermore, it is observed that the torso oscillation

damps out rapidly over the ensuing steps and the vertical ground reaction force is positive.
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5.4 Experiment

The switching controller is now evaluated on the robot. In the experiment, MABEL

starts walking on a flat floor, walks up a ramp to a 17.78 cm platform and steps off, and

completes a second lap before being stopped by a researcher. With the robot stopped, the

platform is increased to 20.32 cm. The robot was then put back in motion, walked 19 steps,

and stepped off the platform without falling.

Experimental data from the 20.32 cm step-down are shown in Figures 5.10 and 5.11.

Following the step-down, the amplitude of torso oscillation is approximately 15 deg, while

the detailed model predicted a value of 13.5 deg. Remarkably, with the switching controller,

the torso oscillates less after the 20.32 cm step-down than it does after the 2.5 inch (5.08

cm) step-down test when using the baseline controller, even though the platform is more

than three times as high. In addition, the calculated impact intensity at the second step is

23.8 N · s, which is also smaller than the value of the 2.5 inch (5.08 cm) step-down test.

The spring deflection peaks at slightly over 40 deg just after step-down and reaches zero

for a short interval of time at the end of the step, as shown in Figure 5.10. Two steps after

the step-down event, the torso and and spring deflection are indistinguishable from steady-

state walking on flat ground, showing that the gait induced by the switching controller is

smoothly steered to the gait of the baseline controller.

Snapshots from video capture and a stick figure illustration of the experiment are shown

in Figure 5.11. This data also demonstrate that the walking gait converges quickly to its

steady-state characteristics following the step-down event. The video is available at [74].

5.5 Conclusion

A switching controller has been designed to handle blind step-downs of considerable

height. Experimentation with this controller showed MABEL stepping off a 20 cm platform.

The next chapter will focus on stepping onto a platform without prior knowledge of its

location or height.
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Figure 5.9: Step-down Simulation data from the detailed model. Solid red line represents
the step following step-off.
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Figure 5.10: Experimental data for the the 20.32 cm step-down. The step-down occurs at
0.224 (s). The following step is marked as a red line.
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Figure 5.11: Experimental data for the 20.32 cm step-down: snapshot and stick-figure.
Snapshots from video capture are shown in (a), while (b) shows a stick-figure illustration
of the two steps following the step-down disturbance. The video is available at [74].
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CHAPTER VI

Control Design for Accommodating Large Step-up

Disturbances and for Tripping Recovery

As revealed in the successful 20 cm step-down experiments in Chapter V, by activating

the specifically designed step-down controller in response to a step-down disturbance, MA-

BEL could not only keep the vertical ground reaction force positive, causing the stance toe

to stay in contact with the ground, but also reduce torso oscillation by a significant amount,

thereby attenuating the impact force on the swing toe at the end of the ensuing step of a

step-down event.

Motivated by this experimental result, in this chapter, we seek a controller for accom-

modating large step-up disturbance, using active force control as explained in Chapter V,

which replaces stance knee control with a virtual compliant element. A similar optimization

process is posed to select parameters of the virtual compliant element for accommodating

step-up disturbances: stiffness kvc, damping kvd, and rest position qmLSvr . The control

design will result in MABEL waking up of stairs with considerable height without falling.

In addition, a reflexive strategy to take care of tripping over obstacles is also sought in

this chapter. As discussed in Chapter I, when robot is walking over unknown ground con-

sisting of vertical steps, the robot’s swing leg may strike vertical stairs or have a premature

impact with the ground, unexpectedly, and eventually fall. Therefore, a reflexive strategy

is required to respond and recover from tripping if the robot is to accommodate terrains

with vertical obstacles without a priori information.

We look now for inspiration from biomechanical studies. It is shown in [24, 25] that
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tSU0 tSU1 tSU2
Figure 6.1: Design of step-up controller. Time tSU0 corresponds to the end of the last step
on the level ground; tSU1 is the start of the step-up; and tSU2 is the end of the step-up.

humans accommodate a tripping disturbance by changing their gait strategy. Cutaneous

receptors are stimulated to detect when the trajectory of the swing foot during walking is

obstructed, and a response which ensures the removal of the limb from the obstruction, as

well as the safe continuation of the locomotor pattern is activated to deal with the detected

obstacle.

In MABEL, this idea of a reflex strategy in response to tripping perturbations can be

implemented in the context of a switching-control design. Tripping over obstacles can be

detected by using the signal of the switch located in front of the shin and at the end of toe,

replacing cutaneous receptors in humans.

6.1 Design of Step-up Controller

The step-up controller is activated in response to an impact with an obstacle that is

higher than a threshold scalar value ∆H, which is set to 5 cm in this chapter. In the design

of the step-up controller, we found that the baseline virtual constraints for the torso could

be retained; only the virtual compliance and the virtual constraints for the swing leg need

to be redesigned.

Because the legs are relatively light, the effects of swing leg movement on the robot’s

overall dynamics is far less dominant than the effects of the torso and stance leg. For this
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reason, only the parameters in the stance leg’s virtual compliance, namely stiffness kvc,

damping kvd, and rest position qmLSvr , are obtained by solving a constrained optimization

problem. After the parameters of the virtual compliance are obtained, the virtual con-

straints for the swing leg shape and angle are designed by hand. In particular, the virtual

constraints for the swing leg are designed so that knee is bent rapidly by repositioning the

swing motor leg shape, and the swing leg is also moved backward at the beginning of the

gait by repositioning the swing leg angle to avoids re-striking the obstacle during step-up.

Subsequently, both the optimized virtual compliance parameters and the hand-tuned vir-

tual constraints for the swing leg shape and angle are verified to satisfy the constraints of

the constrained optimization problem with the optimization cost not being changed signif-

icantly.

The optimization parameters are assembled as,

ΘSU := [kvc, kvd, qmLSvr ]
T , (6.1)

and the optimization problem for the selection of Θ is posed as follows. Assume the robot

is on the periodic orbit corresponding to the baseline controller, and hence is walking on

flat ground. As displayed in Figure 6.1, let tSU0 be the time that the robot is at the end

of the last step on flat ground, let tSU1 be the time step-up starts, and let tSU2 be the end

of the step-up. The robot is operating under the baseline controller with the modification

on the virtual constraints for the swing leg over the interval [tSU0 , tSU1 ). In this modified

baseline controller, the virtual constraints for the swing leg are modified so that robot can

clear a 10 cm obstacle. Over the interval [tSU1 , tSU2 ], the robot is operating under the step-up

controller. Once the step-up heightH is specified, xs(t
SU
1 ), the state of the robot at time tSU1 ,

is known. A numerical optimization problem is posed so that the trajectory under the step-

up controller can be continued in such a way that the robot will not fall. While retaining

the same objective function and constraints as in (5.9), (5.10), (5.10), (5.11), (5.12), (5.13),

and (5.14), one additional constraint is added in this optimization problem,

qLSst(t
SU
2 ) < 5 deg. (6.2)
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This constraint enforces that the robot ends the step-up with the stance leg shape nearly

straight, which avoids starting the next step with a crouched configuration. Setting H =

0.1 m, corresponding to a 10 cm step-up, δ = 0.07, γq̇T = 180 deg/sec, C = 200 N, and

µs = 0.5, yields the parameter vector

ΘSU =[1.2198, 0.1417, 2.7027]T . (6.3)

Hand-tuned virtual constraints for the swing leg angle αLAsw , and swing leg shape αmLSsw

are given by,

αLAsw = [2.9894, 2.4625, 3.2327, 3.2277, 3.5248, 3.4748]

αmLSsw = [2.3232, 6.3703, 30.0000, 30.0000, 15.0000, 3.8979] (6.4)

A simulation using the simplified design model is then performed for both the step-up

controller with the optimized ΘSU and the baseline controller. The results are shown in

Figure 6.2. There is no notable difference in the torso angle between the baseline controller

and step-up controller because the virtual constraints for the torso were identical. However,

ground reaction force and spring deflection are improved by the step-up controller while

the baseline controller fails to control those values to remain positive. Figure 6.3 shows

the position of the swing foot throughout the step. The gray colored region represents the

vertical obstacle. We can observe that swing foot does not touch the vertical step during

step-up.

6.2 Tripping-reflex controller

In this section, a tripping-reflex controller (TR) is designed. Tripping occurs when the

robot’s swing foot experiences unexpected impacts. The impacts can arise due to obstacles,

as shown in Figure 6.4a and 6.4c, or due to inadequate foot height, as shown in Figure 6.4b.

The required response varies with the nature of the impact and it is thus important that

the robot has adequate sensing to differentiate among the cases shown in Figure 6.4. For

this purpose, MABEL has contact switches on the front of each lower shin, as shown in

90



0 0.1 0.2 0.3 0.4 0.5 0.6
−14

−12

−10

−8

−6

 

 

0 0.1 0.2 0.3 0.4 0.5 0.6
0

500

1000

1500

2000

0 0.1 0.2 0.3 0.4 0.5 0.6
0

20

40

60

time (s)

T
or
so

A
n
gl
e
(d
eg
)

G
ro
u
n
d
R
ea
ct
io
n
F
or
ce

(N
)

S
p
ri
n
g
D
efl
ec
ti
on

(d
eg
)

Step-up Ctrl.
Baseline Ctrl.

Figure 6.2: Simulation data with optimal parameter vector ΘSU from the simplified design
model for a step-up height of 10 cm. The step-up controller is shown with a solid line, while
a dashed line represents the baseline controller.
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Figure 6.3: Horizontal position phtoesw and vertical position pvtoesw of swing foot throughout
the step. Grey colored region illustrates the vertical obstacle.

Figure 2.8, in addition to the traditional contact switches on the end of each leg.

It is suggested that humans adopt two different strategies for recovery from tripping,

depending on whether it occurred in the early or late swing phase [24, 25]. A strategy of

rapidly elevating the swing limb is activated in response to early tripping while a lowering

strategy is used in response to late tripping. Similar strategies are applied here.

6.2.1 Reflexive Strategy for Late Tripping

Late tripping can be defined mathematically with respect to the robot’s state and contact

switch signals. If the frontal surface of the swing foot hits the obstacle (swsh = 1) with the

step being close to the end (s(qs) ≥ searly) as well as the absolute swing leg angle being

advanced sufficiently (qabsLAsw
:= qLAsw + qT ≥ qearly) to yield the next step starting with a

value of s(qs) close to 0, then tripping is classified as late tripping. Mathematically, it is

equivalent that the robot’s state enters the set which is given by,

SRL :=
{

xs ∈ TQs

∣

∣

∣
s(qs) ≥ searly, q

abs
LAsw

≥ qearly, swsh = 1
}

. (6.5)

In response to late tripping, the rapid-lowering (RL) strategy of the swing leg is applied.

The controller is not changed until the swing foot touches the ground. Because all of the
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s (qs) < searly or qabsLAsw
< qearly,

swsh = 1

(a)

s (qs) < searly or qabsLAsw
< qearly,

swtoe = 1

(b)

s (q) ≥ searly,

qabsLAsw
≥ qearly,

swsh = 1

(c)

Figure 6.4: Various situations of tripping. The red line with an arrow at the end illustrates
an example swing foot trajectory in response to the tripping event. (a) Early tripping
over obstacles. (b) Premature (i.e., early) contact with the ground. (c) Late tripping over
obstacles.

walking gaits used in this thesis are designed to lower the swing foot near the end of the

gait to initiate leg swapping, the swing leg will be lowered making contact with the ground,

and, at the ensuing step, a recovery controller focusing on rejecting the tripping disturbance

of the previous step is applied. The parameter value in the recovery controller is chosen by

optimization, and the detailed optimization process is explained next.

Design of the Recovery Controller

The design of the recovery controller involves selecting the following parameters, which

are grouped into a vector denoted by,

ΘRC := [ α̃T, kvc, kvd, qmLSvr ]
T , (6.6)

where α̃T are coefficients of the Bézier polynomials for the torso virtual constraints except
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10 cm

Figure 6.5: Design of recovery controller. At time tRC
0 , the robot has tripped over obstacles.

Over [tRC
0 , tRC

1 ), controller is kept unchanged, and swing leg lowered to make an impact
with the ground at tRC

1 . Then, recovery controller (RC) will be applied at the ensuing step.
The end time of the ensuing step depends on the shape and dimension of the obstacles.
In scenario a, the robot has tripped over an wide obstacle, and the swing foot makes the
contact on top of the obstacles at tRC

2a . Whereas, in scenario b, the robot has tripped over a
thin obstacle, so swing foot crosses over the obstacle and has the impact with the ground.

for the last coefficient (The last coefficient of the torso virtual constraint for the baseline

controller is retained in order to provide a smooth transition to the baseline phase), and

kvc, kvd, and qmLSvr are stiffness, damping, and rest position of the virtual compliance,

respectively. Parameter values in (6.6) are obtained through iterative optimization. The

optimization process is based on the simplified design model as in the design process of the

step-down and step-up controllers.

Assume that the robot has tripped over an obstacle as shown in Figure. 6.5. Let tRC
0 be

the time that the robot trips over the obstacle, let tRC
1 be the time the swing leg impacts

the ground, and let tRC
2 be the end of next step. Over the interval [tRC

0 , tRC
1 ), the baseline

controller is applied, whereas over interval [tRC
1 , tRC

2 ], the recovery controller is applied. Be-

cause the swing foot slips down along the wall of the obstacle over the interval [trc0 , t
RC
1 )

while the stance foot is on the ground, the trajectory cannot be simulated using the sim-

plified design model, which cannot account for double-support dynamics. Therefore, the

detailed model is used for the simulation of this slip behavior during double support, and

the value of the robot’s state at tRC
1 after the impact with the ground, xs

(

tRC
1

)

, is acquired
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from the detailed model simulation data.

Taking xs
(

tRC
1

)

as an initial condition, the ensuing step can be obtained by simulation

of the simplified design model, but the time at the end of the step varies depending on the

sizes of the obstacles as shown in Figure 6.5. In this optimization problem, the following

two scenarios are considered. In the scenario a, the robot has tripped over a 10 cm high

obstacle and the swing foot is supported on the top of the obstacle at the end of the step.

We can define tRC
2a to be the time when the swing foot touches the top of the obstacle. In

the scenario b, we assume that the robot has tripped over an obstacle with a very small

width, and the swing foot touches the ground at the end of the step. We can define tRC
2b to

be the time when the swing foot touches the ground as shown in Figure 6.5.

The same cost function and constraints as used in Section 5.2 to obtain the step-down

controller are also used here, with the following additional constraints:

(a) magnitude of torso angular velocity at the end of the step,

∣

∣q̇T(t
RC
2b )

∣

∣ < γq̇T,rc
, (6.7)

in order to attenuate torso movement in preparation for impact,

(b) torso angle at the end of the step bounded below by some constant γqT,rca
,

qT(t
RC
2b ) > γqT,rc

, (6.8)

to keep the torso from pitching forward too much at the end of the step,

(c) torso angular velocity at tRC
2a ,

q̇T(t
RC
2a ) ≤ 0, (6.9)

so that the torso has enough forward pitching velocity just before impact in order not

to fall backward after impact with a 10 cm high obstacle.

Numerical optimization with the setting of δ = 0.1, γq̇T = 240 deg/sec, C = 300 N,

µs = 0.6, γq̇LAsw,RC
= −340 deg/sec, γq̇T,RC

= 115deg/sec, γqT = −10 deg, yields the
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parameter vector,

ΘRC = [−0.0910,−0.1702, 0.0655,−0.2912,−0.1901, 1.2421, 0.3, 2.7]T . (6.10)

After the virtual constraints for the torso and the parameters in the virtual compliance

have been chosen through optimization, the virtual constraints for the swing leg are tuned

by hand. The followings are considered for tuning the virtual constraints:

(a) swing leg angle is monotonically increasing in the middle of the gait,

min
{

q̇LAsw(t)
∣

∣sRC
1 ≤ s(qs) < sRC

2

}

> 0; (6.11)

(b) swing leg angle velocity is bounded below by some negative value γq̇LAsw
< 0 in the

beginning of the step,

min
{

q̇LAsw

∣

∣s(qs) < sRC
1

}

> γq̇LAsw
, (6.12)

in order to keep the swing leg from going backward too far;

(c) swing toe vertical position over interval s(qs) ∈ [sRC
1 , sRC

2 ] should be higher than 10 cm

in order to keep the swing leg from scuffing with the ground before s(qs) reaches s
RC
2 ,

min
{

ph2(qs)
∣

∣sRC
1 < s(qs) < sRC

2

}

> 0.1; (6.13)

(d) swing leg shape at tRC
2b ,

20 deg < qLSsw(t
RC
2b ) < 26 deg, (6.14)

so that the knee is neither too bent nor too straight just before impact with a 10 cm

high obstacle.

Figure 6.6 displays results from the simplified design model simulation from tRC
1 to tRC

2b

of the recovery controller with optimized ΘRC and the baseline controller. By using the
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Figure 6.6: Simulation data with optimal parameter vector ΘRC from the simplified design
model for a trip recovery. The recovery controller is shown with a solid line, while a dashed
line represents the baseline controller.
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recovery controller, torso oscillation is not only reduced by approximately factor of 3, but

also both ground reaction force and spring deflection remain positive during the recovery

phase. Time tRC
2a is indicated by the vertical black dotted line. It is observed that at time

tRC
2a , torso is pitching forward, satisfying constraint (6.9).

6.2.2 Reflexive Strategy for Early Tripping

Early tripping can be defined mathematically with respect to the robot’s state and

contact switch signals. Referring to Figure 6.4, impact with the ground (swtoe = 1) or an

obstacle (swsh = 1) is defined to be early tripping if it occurs in the middle of the gait

(s(qs) < searly) or with swing leg not advanced adequately (absolute swing leg angle being

less than some value, that is, qabsLAsw
:= qLAsw + qT < qearly). Mathematically, it is equivalent

that the robot’s state enters the following set:

SRE :=
{

xs ∈ TQs

∣

∣

∣
s(qs) < searly or qabsLAsw

(qs) < qearly

}

∩

{

(swsh, swtoe) ∈ {0, 1}2 |swsh = 1 or swtoe = 1
}

. (6.15)

In response to early tripping, the rapid-elevation (RE) strategy of the swing leg is

activated. Rapid-elevation strategy of the swing leg is accomplished by rapidly bending the

swing knee by repositioning the leg shape motor of the swing leg. This is done through the

appropriate choice of hd,vmLSsw
(θ(qs), αv) in (5.3), so that the swing leg will clear a 10 cm

obstacle. The details are given in Appendix F. The purpose of the elevation strategy of the

swing leg is to place the swing foot on top of the obstacle, and allow the robot to continue

the walking gait. Once the swing foot is on top of the obstacle, the robot can continue the

walking by applying step-up controller at the ensuing step.

If the swing foot gets stuck on the vertical step and fails to be placed on top of the

obstacle at the end of the step in spite of application of the rapid-elevation of the swing

leg, the recovery controller which is designed in Section 6.2.1 will be applied at the ensuing

step in order to have a safe continuation of the walking gait. Failure of rapid-elevation

strategy of the swing leg can be detected by checking the calculated height of the swing

foot at the end of the gait, denoted by pvtoesw(qs), and how much the swing foot advanced
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S(RE,RC)
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Figure 6.7: Finite-state machine of tripping-reflex controller

horizontally over [trc0 , t
RC
1 ), denoted by δphtoesw ; if the swing foot gets stuck on the vertical

step, the swing foot will not be able to advanced forward (δphtoesw ≈ 0) and will make an

impact with the ground instead of on top of the obstacle (
∣

∣pvtoesw(qs)
∣

∣ ≤ ∆H). Combining

all of these conditions yields the following set given by,

S(RE,RC) :=
{

xs ∈ SH
∣

∣

∣
s(qs) ≥ searly, qabsLAsw

(qs) ≥ qearly,
∣

∣pvtoesw(qs)
∣

∣ ≤ ∆H,
∣

∣

∣
δphtoesw

∣

∣

∣
< cfail

}

,

(6.16)

where cfail ≈ 0 is a scalar constant.

The tripping-reflex controller is summarized in Figure 6.7 including rapid-lowering and

rapid-elevation of the swing leg in response to late and early tripping, and activation of the

recovery controller after the failure of rapid-elevation of the swing leg strategy.
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6.3 Controller Verification of Detailed Model

The proposed controllers, the step-up controller and the tripping-reflex strategies for

late and early tripping (rapid-lowering of the swing leg and rapid-elevation of the swing

leg), are verified on the detailed model. With the modifications explained in Section 5.3

to the proposed controller, the simulation results in MABEL successfully accommodating a

10.0 cm vertical step. Here, three different scenarios are considered to verify the performance

of both the step-up controller and the tripping-reflex strategies, simultaneously. In the first

two scenarios, the robot trips over the vertical step in late and early swing phase, while,

in the last scenario, the rapid elevation of the swing leg in response to early tripping has

failed, and recovery control is applied at the ensuing step. Figures 6.8, 6.9, and 6.10 show

simulation data of the three scenarios. In each scenario, the robot successfully stepped onto

the 10.0 cm platform. Neither large torso oscillation nor excessive unloading of the spring

is observed. (see Figures 6.8a, 6.9a, and 6.10a)

6.4 Experiment

The step-up controller, and the tripping-reflex strategy are now evaluated on the robot.

A platform with height of 10.5 cm and length 1.9 m is constructed. In this experiment,

MABEL stepped upon the platform with a height of 10.5 cm (more than 10% of its leg

length), walked three steps on level ground on top of the platform, and stepped off the

platform; see Figure 7.7. Two laps were completed before the robot was stopped by a

researcher. On the first lap, MABEL’s swing foot struck the platform at a late point of

the step, so the rapid-lowering controller was activated in response to the late perturbation

(see Figure 6.12(a)). On the other hand, on the second lap, the rapid-elevation controller is

triggered in response to the early perturbation as can be seen in Figure 6.12(b). By using

either controller, MABEL could successfully step upon and walk for 3 steps across a 10.5 cm

platform. We verified that MABEL could ascend a platform with a height of up to 12.5 cm,

which is 12.5% of leg length (screen capture of the video of the experiment is provided in

Appendix G.).

We observe that the rapid-elevation controller is unnecessarily activated from 1.8 sec to
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Figure 6.8: Simulation data of the first scenario (Recovery from Late Tripping). (a) Torso
and spring deflection (b) Stick figure illustration. Black circle at the toe indicates stance
toe while black lines indicate swing toe trajectories.

1.4 sec on the first lap. This unnecessary activation of the rapid-elevation controller were

caused by a malfunction of the contact switches1.

1This wrong activation of switches is caused by the vibration of switch covers that have non-negligible
mass and inertia. During the gentle maneuvers, of MABEL, vibration of switch covers was not a problem
because it had been efficiently damped out by the spring installed on the switch covers. However, very
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Figure 6.9: Simulation data of the second scenario (Recovery from Early Tripping). (a)
Torso and spring deflection (b) Stick figure illustration. Black circle at the toe indicates
stance toe while black lines indicate swing toe trajectories.

dynamic maneuvers such as walking over obstacles with considerable height, can cause an unexpected closing
of contact switches due to the vibration of the switch. This small issue on the contact switches can be easily
solved by a redesign of the contact switch mechanism, such as adding more damping on the springs.
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Figure 6.10: Simulation data of the third scenario (Failure of swing elevation). (a) Torso
and spring deflection (b) Stick figure illustration. Black circle at the toe indicates stance
toe while black lines indicate swing toe trajectories.

6.5 Conclusion

A step-up controller and tripping-reflex strategy have been designed to deal with blind

step-ups of considerable height. Experimentation with this controller showed MABEL step-

ping onto a 12.5 cm platform. Our next work will focus on the proper combination of these

103



two step-up and step-down controllers to provide considerable robustness to uneven terrain.
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Figure 6.11: Experimental data of step-up of 10.5 cm platform. In stick figure illustration,
black circle at the toe indicates stance toe. Torso angle (top), s (middle), and types of
controllers (bottom) applied are shown next, respectively. In these figures, blue hollow
circle and black dashed line indicate the end of the step. RW, SU, TR-RE, TR-RL, TR-RC
refer walking on flat ground, step-up, rapid-elevation of the swing leg, rapid-lowering of the
swing, and recovery, respectively. (a) First Lap (b) Second Lap
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(a)

(b)

Figure 6.12: Stick figure illustration of experimental data of step-up and step-down for
a 10.5 cm platform. Black circle at the toe indicates stance toe. (a) On the first lap,
the rapid-lowering controller is activated in response to late tripping while (b) the rapid-
elevation controller is triggered in response to early tripping on the second lap.
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CHAPTER VII

A Finite-state Machine for Traversing Unexpected Large and

Rapid Ground Height Variations

This chapter presents a finite-state machine that manages transitions among controllers

for flat-ground walking, stepping-down, stepping-up, and a trip-reflex. If the robot com-

pletes a step, the depth of a step-down or height of a step-up can be immediately estimated

at impact from the lengths of the legs and the angles of the robot’s joints. The change in

height can be used to invoke a proper control response. On the other hand, if the swing leg

impacts an obstacle during a step, or has a premature impact with the ground, a trip reflex

is triggered on the basis of specially designed contact switches on the robot’s shins, contact

switches on the end of each leg, and the current configuration of the robot. The design of

each control mode was done in Chapters V and VI. Here, the transition conditions among

them are presented. The control policy allows MABEL to traverse various ground profiles,

including ascent of a stair with a height of 12.5 cm (12.5% of the leg length), step-down from

a platform with a height of 18.5 cm (18.5% of the leg length)1, and walking over constructed

platforms which consist of steps with heights of 10.5 cm and 8.0 cm (see Figure 7.1), without

falling. The robot is provided information on neither where a disturbance occurs, nor how

extensive it is.

1In Chapter V, the implementation of a simple switching control policy with only step-down and baseline
controllers enabled MABEL to step off an 8 inch (20.32 cm) platform. The 8 inch (20.32 cm) step-down test
was not tried with the finite-state machine designed in this chapter. Instead, a step-down from an 18.5 cm
high platform, which is only 2 cm less than the 20.32 cm platform, was tried and successfully accommodated
by the finite-state machine.
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Figure 7.1: MABEL is traversing the platform with 10.5 cm and 8 cm steps.

7.1 The Regular-walking Controller

In Chapters V and VI, stiffness values of the virtual compliant element for step-down

and step-up disturbances are chosen to be 1.2198 and 2.1088 respectively by optimization.

These values for the stiffness of virtual compliant element, higher stiffness for step-down

disturbances and lower stiffness for step-up disturbances, are well aligned with the values

of effective stiffness used by humans when accommodating significant step-down and step-

up disturbances. In particular, it is found that humans adjust the stiffness of the stance

leg in response to ground variations in height during running [39, 68]. The adjustment

is characterized by an increase in leg stiffness in preparation for a step-down disturbance

and a reduction in response to a step-up disturbance compared to the leg stiffness used for

running over flat ground. In MABEL, this idea of a reflex strategy in response to ground-

height variations was implemented in the context of switching-control design through active

force control. Changes in the effective leg stiffness were easily made by varying the values

of stiffness kvc , damping kvd , and rest position qmLSvr in the virtual compliant element of

the active force control.

Motivated by this similarity in strategies between MABEL and humans, we now extend
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the use of active force control to walking over flat ground. This extension also agrees with

the observation in [95] that the human’s stance knee essentially shows the dynamic behavior

of a spring-damper system when walking on the flat ground.

Therefore, the baseline controller introduced in Section 5.1 is modified to include active

force control by replacing the motor leg shape control with a virtual compliance as in

Section 5.2.2. We use this modified baseline controller for the walking on flat ground

hereafter. The parameter values for the virtual compliance are iteratively found thorough

simulations, and given by,

αRW
vc := [1.8, 0.1297, 2.7]T . (7.1)

7.2 Categorization of Walking

The design process of the finite-state machine begins with the definition of four different

types of stance phase with respect to perturbations in ground height, or disturbances from

tripping over obstacles: regular-walking phase (RW), step-down phase (SD), step-up phase

(SU), and tripping phase (TR) (see Figure 7.2). Hereafter, we denote phases by elements

of the following index set,

W := {RW, SD, SU,TR} . (7.2)

The decisions to transition among phases will be made on the basis of a change in walking

surface height, which can be immediately computed at impact from the length of the robot’s

legs and the angles of its joints, along with the values of the contact switches. Therefore,

switching surfaces which implement the transitions among phases must be designed as shown

in Figure 7.2.

Firstly, the transition to RW takes place when the impact with the ground (xs ∈ SH)

occurs close to the end of the gait (s(qs) ≥ searly) as well as when the magnitude of the

height of the swing toe at the moment of the impact is less than some scalar threshold

value ∆H, which is set to 0.05m in this chapter (
∣

∣pvtoesw(qs)
∣

∣ ≤ ∆H). Mathematically, it is
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Figure 7.2: Phases and associated switching surfaces of switching control design.

equivalent that the robot’s states enter the following switching surface,

SRW :=
{

xs ∈ SH
∣

∣

∣

∣pvtoesw(qs)
∣

∣ ≤ ∆H, s(qs) ≥ searly
}

. (7.3)

The transition to SD or SU occurs when the impact with the ground occurs close to

the end of the gait (s(qs) ≥ searly), along with the height of the swing toe at the moment

of the impact being less than −∆H or larger than ∆H respectively. Mathematically, it

is equivalent that robot’s state enters the switching surface SSD for detecting step-down
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disturbances

SSD :=
{

xs ∈ SH
∣

∣pvtoesw(qs) < −∆H,∆H ∈ R, s(qs) ≥ searly
}

, (7.4)

or the following switching surface for detecting step-up disturbances

SSU :=
{

xs ∈ SH
∣

∣pvtoesw(qs) > ∆H,∆H ∈ R, s(qs) ≥ searly
}

. (7.5)

Lastly, the transition to TR arises when the swing leg trips over obstacles or touches

the ground unexpectedly. Tripping can be detected by checking both contact switch signals

installed on the front and bottom of the shin of the swing leg along with the robot’s states.

The mathematical definition of the switching surface for the tripping phase is given as

STR := SRL ∪ SRE, where SRL is switching surface for detecting late tripping as defined

in (6.5) and SRE is switching surface for detecting early tripping as defined in (6.15).

For each phase w ∈ W , the following four controllers are applied: regular-walking

controller, step-down controller designed in Chapter V, and step-up controller and tripping-

reflex controllers designed in Chapter VI. Furthermore, a finite-state machine to manage

the transitions among phases is introduced as shown in Figure 7.2. Switching between the

controllers takes place at the moment when transition between phases occurs.

7.3 Controller Evaluation on the Detailed Model

Before experimental deployment, the finite-state machine will be simulated on the de-

tailed model. Certain straightforward modifications to the regular-walking, step-down,

step-up, and tripping-reflex controllers are required due to discrepancies between the sim-

plified and detailed models. Initial simulations will reveal one additional modification that

needs to be performed. After these changes to the controllers, the performance of the finite-

state machine will be evaluated when the controllers are sequentially composed in response

to the disturbances in ground height.

111



7.3.1 Minor Modification of Controllers for Detailed Model Implementation

As part of implementing the proposed controllers on the detailed model, the following

modifications are made to compensate for the gap between the simplified design model and

the detailed model.

7.3.1.1 Modification for Cable Stretch

The most critical reason for model discrepancy is cable stretch. To account for the

stretching of the cables, the coefficients of the virtual compliance kvc in regular-walking,

step-down, step-up, and tripping-reflex controller are modified as in [98, 99] so that the

series connection of the compliance due to the cable stretch and the virtual compliance

has the effective compliance specified by the optimization process. The details are given in

Appendix E.

7.3.1.2 Modification for Asymmetry

In the experimental setup, due to the boom, the robot’s hip position is constrained to lie

on the surface of a sphere, rather than a plane. The hip width (distance between the legs)

being 10% of the length of the boom causes the robot to weigh 10% more when supported on

the inner leg (almost 70 N) than when supported on the outer leg. This causes inner-outer

asymmetry in the walking gait [100]. To account for this asymmetry, the virtual compliance

is made an additional 10% stiffer on the inside leg.

7.3.1.3 Modification for Avoiding Foot Scuffing

As discussed in Sections 6.1 and 6.2, the step-up and tripping-reflex controllers use the

virtual constraints for the swing leg with a modification allowing the swing leg height to be

increased in order to keep the swing foot from scuffing the ground. Similar modifications

are required for step-down and regular-walking controllers.

(a) Step-down Controller: When MABEL steps off platforms, the higher impact force causes

an additional bend in the stance knee at the ensuing step of the step-down event. The

higher the platform which MABEL steps off is, the greater the bend in the stance knee
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Figure 7.3: Simulation data of a step with the stance knee being excessively bent at the start.
The dashed line shows simulation result without modification on the virtual compliance,
and the solid line illustrates simulation result with modification. The small circles on the
plot indicate the end of the step.

caused. To deal with this additional bend, the virtual constraint for the swing motor

leg shape is increased according to the platform height calculated at impact.

(b) Regular-walking Controller: In the regular-walking phase, foot scuffing can also occur

when a step starts with the stance knee being overly bent. Therefore, an event-based

control is introduced so that the virtual constraint for the swing motor leg shape is

increased according to how much more the stance knee is bent from some reference

value. In particular, if the stance leg shape angle is larger than 10 deg at the start of

the gait, the desired swing motor leg shape is then modified by increasing the middle

two Bézier coefficients of the swing leg shape proportional to the difference between the

stance leg shape angle and 10 deg.

7.3.2 Additional Modification of the Virtual Compliance

The initial simulation of the controller showed that when the stance knee angle, which

is two times the leg shape angle, is bent more than 60 deg at impact, the spring compresses

further and subsequently decompresses very rapidly, causing the stance leg to loose contact

with the ground. Figure 7.3 shows typical spring behavior when a step begins with the stance

knee being excessively bent. The dashed line indicates the controller without modification.

We can observe that the spring compresses further and then rapidly decompresses, and
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RW → RE → RW → RE → RW

(a) Small Ramp

RW → RL → RC → SU → RW

(b) Stair

RW → RE → RW → RE → RW

(c) Small Bump

RW → SD → RW

(d) Step-down

RW → RE → SU → RE → RC → SU → SU → RW

(e) Two Consecutive Stairs

RW → RE → SU → RE → RC → SU → RW → SD → RE → RW

(f) Step-up and Step-down of Two Consecutive Stairs

Figure 7.4: Finite-state machine simulation on various ground profiles. Black circle at the
toe indicates stance toe. The states of the finite-state machine are given above each stick
figure illustration.
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finally reaches zero over the interval from 150 msec to 350msec, causing the robot to lose

contact with the ground.

This rapid change on the spring deflection is caused by the large amount of bend in the

stance knee and the mechanical structure of the transmission mechanism. As in (5.7), the

virtual compliance generates a control torque proportional to the deviation of the stance

motor leg shape angle from the reference point. When a step begins with the stance knee

being extremely bent, deviation from the reference point will be very large, creating large

torque in the virtual compliance. Because virtual compliance and the physical spring are

connected serially thorough the transmission mechanism, the spring will experience the

same amount of torque as that which has been created by the virtual compliance. This

large torque at the spring leads to rapid compression and decompression of the spring,

causing loss of ground contact in the stance foot. In order to account for this problem, we

soften the virtual compliance by the amount by which the stance knee is additionally bent

from the nominal value. The solid line in Figure 7.3 illustrates spring deflection after the

modification. With the modification, the spring compresses and decompresses gently, and

does not reach zero.

7.3.3 Simulation of the finite-state machine

With these modifications to the proposed controller, the simulation results show MABEL

successfully traversing various ground profiles representing large obstacles without priori

information; in particular, vision feedback is not used. Figure 7.4 shows a stick figure

illustration of the simulation results. The sequential composition of the controllers used

in order to traverse the terrain is given above each stick figure. It is observed that the

robot’s configuration converges to the nominal configuration within a few steps after each

disturbance event, and, in response to various disturbance events, appropriate switching

between controllers occurs.

Figure 7.5 is a detailed illustration of Figure 7.4e. It is noted that different sequences

are used at the first stair (RE → SU) and the second stair (RE → RC → SU). This is

because, at the second step, the robot fails to place the swing toe on top of the stair (see

Figure 7.5e) while, at the first stair, the robot was able to do so by using the rapid-elevation
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controller (see Figure 7.5c).

7.4 Experiment

The proposed controller is now evaluated on the robot. In the experiments, walking over

various types of platforms is tested to verify various executions of the finite-state machine.

7.4.1 Small Bump with Height of 7 cm

As a first test of the tripping-reflex controller, a small bump higher than the maximum

vertical position of the swing foot was placed in the middle of MABEL’s walking path.

As shown in Figure 7.6, in response to tripping over this small bump, the tripping-reflex

controller was activated, and modification of the swing foot trajectory was made successfully,

thereby providing clearance of the bump.

7.4.2 Step-up and Step-down of 10.5 cm platform

In this experiment, MABEL walked up a platform with a height of 10.5 cm (more than

10% of its leg length), walked three steps on level ground on top of the platform, and

stepped off from the platform; see Figure 7.7. Two laps were completed before the robot

was stopped by a researcher. Figure 7.7 shows experimental results.

7.4.3 Consecutive Two Step-up and One Large Step-down of 18.5 cm platform

For the next experiment, we built a platform with two stair-steps, one with a height of

10.5 cm and the other with a height of 8 cm as shown in Figure 7.8. MABEL walked up

two consecutive risers, took two steps of level walking on top of the platform, and stepped

off from the platform with one step (18.5 cm step-down, which is 18.5% of the leg length),

while skipping a stair-step placed between the top of the platform and the ground. The

bottom graph of Figure 7.8b shows the horizontal hip velocity. In the graph, the horizontal

hip velocity at the end of the two stair ascents is 0.9 m/sec (see the blue circle at 1.295 sec

in the hip velocity graphs.) which is negligibly different from 0.93 m/sec of the average

flat-walking hip velocity measured at the end of the step. After step-down from the 18.5 cm
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high platform, hip velocity at the end of step was increased to 1.8 m/sec (see the blue circle

at 3.148 sec), but reduced to 1.12 m/sec rapidly at the ensuing step. From these analyses

of the hip velocity, it is observed that hip velocity is successfully regulated by the proposed

controller in response to large step-up and step-down disturbances.

The rapid-elevation controller in the middle of the step-down phase is activated from

2.919 sec to 3.148 sec because the swing foot struck a stair between the top of the platform

and the ground during a step-down event.

A similar experiment was conducted on the same platform, but MABEL took two steps

during the step-down as shown in Figure 7.9. Therefore, the step-down controller was

activated twice in a row in this case.

7.4.4 One Step-up, One Regular-walking Step, and One Step-down of 10.5 cm

Platform

In this experiment, MABEL stepped upon a 10.5 cm platform, took one step on the top

of the platform, and stepped off the platform as shown in Figure 7.10. Figure 7.11 shows

a stick figure illustration of the step-down phase in Figure 7.11a and the ensuing step in

Figure 7.11b, along with torso angle, spring deflection, and the types of controllers applied

during the experiment in Figure 7.11c. As shown in Figure 7.11, tripping over the ground

occurred at the end of the step. In response to the tripping event, the rapid-elevation

controller was applied (see 0.411 sec of Figure 7.11c), but the swing foot could not clear

the ground. Therefore, the recovery controller was triggered at the ensuing step instead of

the regular-walking controller. This clearly shows use of the transition from rapid-elevation

phase to recovery phase as shown in Figure 6.7.

7.4.5 Discussion on the Experiments

Although MABEL was able to accommodate various combinations of terrain as ex-

plained above, several tests conducted on certain combinations of disturbances showed lim-

itations in the finite-state machine. For example, MABEL always failed to accommodate

a platform with consecutive step-up and step-down disturbances although experiments on

this type of ground variations were repeated several times. Similar results were obtained
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by other experiments on a platform with consecutive step-down and step-up disturbances.

Typical examples of platforms are shown in Figure 7.12. It can be conjectured that the

reason for these failures is that the robot’s state after the step-up or step-down disturbance

is not in the “basin of attraction” of the ensuing step-down or step-up controller. Quan-

tifying these basins of attraction and redesigning the step-up or step-down controllers are

extremely challenging tasks.

7.5 Conclusion

A finite-state machine has been designed to handle various kinds of disturbances in-

cluding blind step-downs and step-ups of considerable height, and tripping over obstacles.

The proposed finite-state machine consists of a regular-walking controller for walking on

flat ground and three different controllers, which are a step-down, step-up, and tripping-

reflex controller, whose objectives are the safe continuation of walking in response to a large

disturbance in ground height and tripping over obstacles.

Each of the controllers employs active force control at the stance knee, with the feature

of being able to easily vary its stiffness and damping. When optimization was used to

tune the stance-knee stiffness of the regular-walking, step-down, and step-up controllers, a

pattern similar to that observed in humans was found: a virtual compliant element for the

step-down controller is stiffer than for the regular walking controller, and a softer virtual

compliant element was found for the step-up controller.

The tripping-reflex controller is designed to behave in different manners with respect to

early or late tripping: A rapid elevating strategy of the swing leg is activated in response to

early tripping while a rapid lowering strategy is used in response to late tripping. This rapid

lowering strategy is followed by a recovery phase which is designed to reject the previous

step’s disturbance.

Experimentation with this controller showed MABEL traversing various kinds of ob-

stacles including 12.5 cm blind step-ups, and 18.5 cm blind step-downs, as well as various

combinations of step-ups and step-downs. Limitations on the results will be discussed in

Chapter VIII.
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(b) (c)

(d)

(e)

(f)
(g)

(a) RW → RE → SU → RE → RC → SU

(b) RW (c) RW → RE (d) SU

(e) SU → RE (f) RC (g) SU

Figure 7.5: Example of simulated sequential composition of controllers. Black circle at the
toe indicates stance toe. Robot climbs two unknown stair-steps in this simulation. Black
lines indicate swing toe trajectories. (b) Robot starts with regular-walking (c), and has
tripped over the first stair, so transition to rapid-elevation occurs. (d) Robot safely places
swing toe on top of the first stair, and (e) step-up controller is applied to climb up the first
stair. (e) Robot trips over the second stair, and transition to rapid-elevation takes place
again, but fails to clear the swing toe at this time. (f) Therefore, recovery controller is
applied in order to recover from tripping and safely places swing toe on top of the second
stair, (g), and then, step-up controller is activated in response to the second stair-step.

119



(a)

0 0.2 0.4 0.6 0.8 1 1.2 1.4
−20

−10

0

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.5

1

s

0 0.2 0.4 0.6 0.8 1 1.2 1.4
time (sec)

T
or
so

A
n
gl
e
(d
eg
)

TR-RC
TR-RL
TR-RE

SU
SD
RW

(b)

Figure 7.6: Experimental data of walking over a 7 cm bump. (a) Stick figure illustration of
the experimental data with a black circle indicating the stance toe. (b) Torso angle (top),
s (middle), and types of controllers (bottom) applied are shown, respectively. Blue hollow
circle and vertical gray dashed line mark the end of the step.
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Figure 7.7: Experimental data of step-up and step-down of 10.5 cm platform. In stick figure
illustration, black circle at the toe indicates stance toe. Torso angle (top), s (middle), and
types of controllers (bottom) applied are shown next, respectively. In these figures, blue
hollow circle and black dashed line indicate the end of the step. RW, SD, SU, TR-RE,
TR-RL, TR-RC refer walking on flat ground, step-down, step-up, rapid-elevation of the
swing leg, rapid-lowering of the swing, and recovery, respectively. (a) First Lap (b) Second
Lap
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Figure 7.8: Experimental data of consecutive two step-up and one large step-down of 18.5 cm
platform. (a) Stick figure illustration. Black circle at the toe indicates stance toe. (b) Torso
angle, spring deflection, types of controllers applied, and horizontal hip velocity are shown,
respectively. Blue hollow circle and black dashed line display end of the step.
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Figure 7.9: Experimental data of two step-ups and two step-downs. Black circle at the toe
indicates stance toe.

Figure 7.10: Experimental data of one step-up, one regular-walking step, and one step-down
of 10.5 cm platform. Steps in black dashed square is redisplayed in Figure 7.11.
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Figure 7.11: Experimental data of one step-up, one regular-walking step, and one step-down
of 10.5 cm platform (step-down part). In this figure, only step-down and ensuing step are
shown. Stick figure illustration of (a) step-down, and (b) ensuing step. Black circle at
the toe and black solid line indicate stance toe and a trajectory of swing toe, respectively.
Premature impact with the ground is observed during the step-down. (c) Torso angle,
spring deflection, and types of controllers used in the experiments. Blue hollow circle and
vertical dashed black line illustrate at the end of the step.
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Figure 7.12: Typical examples of terrain causing the robot to fall.
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CHAPTER VIII

Concluding Remarks

8.1 Summary of New Contributions

The key results of the thesis are summarized.

(a) Precise Mathematical Model for Controller Verification: The six degree of freedom

mathematical model which was derived in [100] does not fully reflect experimental real-

ity. As a result, controllers designed on the basis of the model have resulted in walking

speeds that are faster than predicted by the dynamic model. Also, the experimentally

realized cost of mechanical transport value is approximately three times the designed

value [100]. To close the gap between the model and experimental reality, a more de-

tailed model was developed in Chapter III and identified in Chapter IV. The more

detailed model includes: (a) a compliant ground model that includes a sophisticated

friction model; (b) stretchy cables; and (c) boom dynamics. As depicted in Figure 8.1,

the identification process was modular and began with the cable-driven transmission

mechanism of the robot. A complete dynamic model of the robot was constructed us-

ing the parameters identified in the modular process. The overall model of the robot

was validated through a hopping experiment that excited all of the dynamics of the

model. The developed and identified detailed model was able to predict dynamics of

a set of the hopping experiments with great accuracy. Since its development, all of

the control designs implemented on the robot have been verified first on the detailed

model. Subsequent experimental results have largely corresponded to those predicted

by the model. For example, in this thesis work, the identified model was extensively
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Figure 8.1: System identification process.

used in Chapters V, VI, and VII to verify performance of controllers for stepping-down,

stepping-up, and a trip-reflex, and a finite-state machine managing transitions among

them.

(b) Traversing Large Unexpected Ground Variations: A feedback controller that allows

MABEL to traverse terrain that presents large unexpected increases and decreases in

height was designed. The robot was provided information on neither where the change

in terrain height occurs, nor by how much. Before proceeding with the controller de-

sign for large unexpected ground variations, the robustness of the baseline controller

was evaluated with a preliminary step-down test. In the experiment, MABEL was able

to accommodate a 5.08 cm step-down disturbance, but fell after stepping off a 6.35 cm

platform because the leg broke on the ensuing step. Analysis on the experimental data

revealed that excessive oscillation of the torso caused the swing leg to strike the ground

with sufficient force to break the leg. Therefore, in Chapter V, a specific controller was

designed to attenuate torso oscillation after stepping-down. A new controller, called

active force control, was introduced which uses the torque input of the leg shape motor

to create an additional virtual compliant element by feedback, and optimization was

then employed to obtain controller design parameters. The controller was activated

when calculated swing foot height at impact was less than some threshold value. Im-
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plementation of the controller allowed MABEL to step off an 20.32 cm platform without

falling. Drawing on this remarkable experimental result, controllers for stepping-up and

a trip reflex were also sought in Chapter VI. In Chapter VII, a finite-state machine was

designed that managed transitions among controllers for flat-ground walking, stepping-

up, stepping-down, and a trip reflex. If the robot completes a step, the depth of a

step-down or height of a step-up would be immediately estimated at impact from the

lengths of the legs and the angles of the robot’s joints. The change in height was used

to invoke a proper control response. On the other hand, if the swing leg impacted

an obstacle during a step, or had a premature impact with the ground, a trip reflex

was triggered on the basis of specially designed contact switches (see Figure A.1c) on

the robot’s shins, contact switches on the end of each leg, and the current configu-

ration of the robot. The designed controller yielded experimental results of MABEL

(blindly) accommodating various types of platforms, including ascent of a 12.5 cm high

stair, stepping-off an 18.5 cm high platform, and walking over a platform with multi-

ple ascending and descending steps. These experimental results surpassed one of the

requirements of the W-Prize (see Chapter I), specifically, the robustness-test called the

“now-you-see-it-now-you-don’t ditch”, that no other bipedal robot has satisfied.

8.2 Perspectives on Future Work

Although the proposed finite-state machine shows good performance on various terrain

profiles, the following issues still remain unresolved.

(a) Stability Analysis A stability analysis on the finite-state machine was not carried out in

this thesis. In fact, it is not even clear what “stability” means in this context. Because

of non periodicity of gaits induced by the variations in ground height, a Poincaré map

cannot be constructed for the closed-loop system. As considered in [84], a Poincaré map

can be defined for specific periodic sequences of events, and stability of the associated

periodic orbit then determined by the Poincaré map. However, the stability analysis

based on the constructed Poincaré map is only valid for those specific sequences and

exactly identical terrain profiles. Unfortunately, small changes in the terrain profiles

128



can result in a totally different sequence of controllers, which breaks the Poincaré map

construction. Therefore, it is impossible to analyze all of the possible combinations of

phases and terrain profiles via Poincaré maps.

One way to design a set of controllers equipped with a finite-state machine with guar-

anteed stability was shown in [124]. However, the method requires two things: (a) each

controller induces to an asymptotically stable periodic orbit, and (b) the computation of

the basin of attraction for each controller, which takes a tremendous amount of time for

a complex system. Although many computational approaches for estimating the basin

of attraction of nonlinear systems were introduced recently in [107, 108, 64], they still

lack practicality for a complex large degree-of-freedom system to the best knowledge of

the author.

(b) Analytical Selection of Switching Surface The switching surface plays an important

role in the proposed controller because, based on the switching surface, switching from

one controller to another controller occurs. For the proposed controllers, the switching

surfaces were selected by hand tuning of threshold functions. For example, the step-

up or step-down controller is activated when the calculated height of the swing toe at

the impact is greater or less than the hand-tuned value, respectively. The tripping-

reflex controller is also activated by comparing threshold functions which are a function

of s(q) or the absolute swing leg angle to hand-tuned values (see (6.15) and (6.5) in

Section 6.2). Instead of obtaining these threshold values by hand-tuning, the values

can be obtained in a more analytical way, such as an iterative simulation study or

optimization technique. Furthermore, the threshold-values of the scalar function of the

robot’s state could be outcomes of the finite-state machine for more adaptability to the

states of the robot or the environment.

(c) Analytical Selection of Virtual Compliance The set of parameters of the virtual com-

pliance for each controllers is locally modified with respect to the additional bend in

the stance knee as discussed in Section 7.3. It would be interesting to explore a more

systematic modification of the virtual compliance through event-based LQR design as

in [81, 99].
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(d) Design of Swing Leg Control

In order to avoid the leg scuffing the ground as well as provide a good beginning pose

for the stance leg at the ensuing step, the swing leg profile should be planned carefully.

In the proposed controller, virtual constraints for the swing leg are imposed on the

motor leg shape and leg angle. Therefore, if there is an additional bend at the stance

knee or excessive torso pitching, then the swing leg may not have enough leg clearance

to finish the step as planned. As a partial solution to this problem, we can impose

virtual constraints to the vertical and horizontal position of the swing toe, respectively.

Then swing leg vertical and horizontal position should be regulated even though there

is an additional bend at the stance knee or excessive torso pitching. However, this is

only a partial solution for the following reasons. Firstly, if torso tracking is poor and

there is a great deal of oscillation (this large torso oscillation is observed in baseline

controller step-down experiment as discussed in Section 5.1.), this large oscillating error

will be translated to the swing leg control because the position of the swing toe is also

a function of torso angle. Therefore, this oscillating error can cause oscillation in the

torques in the actuators for the swing leg. Secondly, if the desired swing toe position is

outside of the workspace of the swing leg, then singularity occurs.

(e) Sequential Composition of Local Feedback Policies The proposed controller can be con-

sidered a sequential composition of planned motions which are obtained through offline

optimization, taking the robot’s state into the region of attraction of the regular-walking

controller in response to a large deviation due to the disturbance. One candidates to

solve this kind of problem can be sequential composition of local feedback policies as

suggested in [9, 108]. We can define sets of the deviated robot’s state due to various

kinds of typical disturbances, including ground variations in height, slipping, and trip-

ping over obstacles. For the defined sets of state deviations, we can build a sequence

of local feedback controllers which steer the state from the defined sets to the region of

attraction of the regular-walking controller. However, this technique is computation-

ally unpleasant, especially for a large degree-of-freedom complex nonlinear system, and

sensitive to sensor noise or delay when experimentally implemented [94]. Furthermore,
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the issue of how to choose subsets of the robot’s state which represent disturbed states

due to the various kinds of disturbances is not a trivial problem.

(f) Robust Control Design The video in [75] shows limited controller performance to at-

tenuate the influence of the ground height variations on the robot’s speed. To improve

controller performance in the face of such disturbances, an outer-loop discrete-event-

based control design can be layered onto the baseline controller. Because variations in

ground height affect the robot stride-to-stride, the controller design problem for walking

over uneven ground can be viewed as a disturbance attenuation problem of a discrete

system if we update the parameters in the controller stride-to-stride. The following

robust optimal control problem can be posed to solve such a problem: design a discrete

update law of control parameters uk, such as parameters in the virtual compliance or

parameters in the virtual constraints, to bound or minimize certain desired output y(qk)

which is a function of the robot’s state, such as, the magnitude of the deviated state

from the fixed point or difference in the horizontal average velocity from the fixed point

average velocity, in response to an unknown disturbance wk, that is, variations in ground

height. Here, qk is the robot’s state sampled stride-to-stride. Various techniques can be

employed to design a robust controller, including robust dynamic programming, robust

model predictive control, H∞ control, and a game theory approach. Appendix H shows

preliminary simulation result on the design of robust outer-loop discrete-event-based

control design. A robust control design for improving MABEL’s walking performance

in the presence of persistent random variations in step height is proposed. Modification

is made on the torso control. H∞ methods and Quasilinear Control Theory (QLC)

[17] were employed to attenuate the effects of the disturbance with input saturation

considered. In simulation, the controller design leads to greater success of walking on

randomly varying ground.
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APPENDIX A

Novel Mechanical Design

Novel mechanisms which have been designed and installed on MABEL in the course of

this thesis work are summarized here.

Novel Design of Rotation Limiter

For mechanical protection, a rotation limiter for MABEL’s torso was designed, fabri-

cated, and implemented. The motors and most of the pulleys forming the differentials are

inside the torso, so the robot’s center of mass is above the hip. Therefore, the robot tends

to fall head first. Consequently, if the control activity fails to stabilize the robot, the torso

impacts the ground which could potentially damage many parts. To prevent this, torso ro-

tation needs to be limited over some specified range. The rotation limiter has a mechanism

which behaves like a cam and a cam follower to convert rotational impact to linear impact.

The converted linear impact is then absorbed by compressing a rubber-based material, and

gently stops the rotation of the robot beyond the designed range. Figure A.1a shows where

the rotation limiter is installed and how it works.

Passive Feet

Hardware modifications were carried out on MABEL to replace the shins on both legs

with a different pair of shins that terminate in passive feet enclosed in a pair of regular

running sneakers (see Figure A.1b). After a minimal modification to the nominal walking
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(a)

(b) (c)

Figure A.1: Novel Mechanical Design (a) Rotation Limiter (b) Passive feet (c) Switch
detecting impacts with obstacles.

controller, MABEL walked with passive feet, exhibiting the classic heel-strike and toe-off

typical of human walking. The video is available at [76].
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APPENDIX B

How to Estimate Motor-Torque Bias

In normal operation of the robot, the commanded motor torques may vary from -10 to

10 N-m or higher, in which case a bias of 0.1 N-m in the commanded torque is insignificant.

We are using the pulleys comprising the differentials as a known load when identifying

the motor characteristics. Because the pulleys have low inertia as shown in Table 4.2, the

commanded motor torques are approximately 1 N-m, in which case a torque bias of 0.1 N-m

is significant.

For each parameter estimation experiment, the motor-torque biases are estimated and

removed by the following procedure. First, in order to minimize the effect of friction from

the remaining pulleys, each motor pulley is isolated by disconnecting the cable between the

motor and the rest of the transmission. Each motor is actuated with a zero-mean sinusoidal

torque command. An amplifier bias is expected to cause the motor position to drift slowly,

as shown in Figure B.1. Differentiating the measured motor position gives the angular

velocity, as shown in Figure B.2.

The transfer function between the torque input and the angular velocity can be modeled

as a first-order system, similar to (4.1), with an additional step input. Identification of

the bias is therefore accomplished with the two-input first-order autoregressive model [62,

pp. 71-73]

yk = a1yk−1 + b1u1,k−1 + b2u2,k−1, (B.1)
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Figure B.1: Amplifier bias. A zero-mean command input to the amplifier produces a motor
position output that slowly drifts with time, showing that the amplifier is biased. The drift
is independent of the input amplitude and frequency.
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Figure B.2: Differentiated output. The mean value of the differentiated signal, which is
given by the dashed line, is nonzero.
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where y is the motor angular velocity, u1 is the commanded motor torque, and u2 is a

sequence of 1’s. Rearranging (B.1) gives

yk = a1yk−1 + b1(u1,k−1 + b2/b1). (B.2)

The bias is removed by subtracting b2/b1 from the commanded motor torque.
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APPENDIX C

Inertia Lumping

Consider the kth pulley in a serial connection of the pulleys shown in Figure C.1. The

input and output radius of the kth pulley are denoted by rk,i and rk,o, respectively, as shown

in Figure C.1. While the input and output radius of a standard pulley are identical, the

input and output radius of a step-down pulley are different.

L

,ρk kl

, ,=k o k ir r

1 1,ρ
− −k kl

L

(a) Standard Pulley

,k ir

,k or
L

1 1,ρ
− −k kl

,ρk kl

L

(b) Step-down Pulley

Figure C.1: Types of pulleys. (a) Standard pulley: input radius and output radius are
identical. (b) Step-down pulley: input radius and output radius are different, and the ratio
of the radii is the gear ratio.

The moment of inertia of the kth pulley seen from the k − 1th pulley is obtained by

Jk−1
k =

r2k−1,o

r2k,i
Jk, (C.1)

where Jk is the kth pulley’s moment of inertia. The kth cable inertia seen from the k − 1th

cable can also be derived:

Jk−1
cable,k =

r2k−1,o

r2k,i
Jcable,k (C.2)
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Jcable,k = r2k,iρklk, (C.3)

where ρk is the density of the kth cable, and lk is the length of the kth cable. By applying

(C.1) and (C.2) consecutively from kth to 0th, the kth pulley and cable inertia as seen from

the 0th pulley (the motor pulley) can be obtained as follows:

J0
k =

r20,o
r21,i

. . .
r2k−2,o

r2k−1,i

r2k−1,o

r2k,i
Jk
k , (C.4)

J0
cable,k =

r20,o
r21,i

. . .
r2k−2,o

r2k−1,i

r2k−1,o

r2k,i
Jk
cable,k. (C.5)

The lumped moment of inertia of the pulley combination is obtained by summing up all

of the pulley and cable moments of inertia as viewed from the 0th pulley:

Jpulley =

N
∑

k=1

J0
k =

N
∑

k=1

r20,o
r21,i

. . .
r2k−2,o

r2k−1,i

r2k−1,o

r2k,i
Jk
k (C.6)

Jcable =
N−1
∑

k=1

J0
cable,k =

N−1
∑

k=1

r20,o
r21,i

. . .
r2k−2,o

r2k−1,i

r2k−1,o

r2k,i
Jk
cable,k, (C.7)

where N is the total number of the pulleys. This lumped moment of inertia of the pulley

combination is substituted into (4.1), which gives the transfer function from the motor

torque to the motor angle.
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APPENDIX D

Details of Hopping Controller

A hopping gait is used to complete the identification of, and subsequently validate, the

overall dynamic model of MABEL. A heuristic controller for two-legged hopping is formed

by decomposing a hopping gait into its elementary phases, as illustrated in Figure D.1. For

each phase X ∈ {I, II, III, IVa, IVb,V} of Figure D.1, the controlled variables are

h :=



















qLAL

qmLSL

qLAR

qmLSR



















, (D.1)

while the reference command hrefX changes in each phase as given in (D.3)-(D.15) below.

The PD controller

u = Kp

(

hrefX − h
)

+Kd

(

−ḣ
)

(D.2)

is used, where Kp is a 4×4 diagonal matrix of proportional gains and Kd is a 4×4 diagonal

matrix of derivative gains. In the simulation model, h in (D.2) is quantized to the same

level as the encoders on the robot, and ḣ is obtained by numerical differentiation. The

control inputs are updated with a sampling time of 1 ms, which equals the sampling time

used on the robot.

Phase I, Flight
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Flight

Touchdown

Kickoff
Left-liftoff

Right-liftoff

Retract

SI→II

SII→III

SIII→IVb

SIII→IVa

SIII→VSIVa→V
SIVb→V

SV→I

Figure D.1: Hopping controller phases and transitions. From phase III, three possible
transitions can occur because which leg first comes off the ground cannot be predicted.
According to which leg comes off the ground, the controller selects phase IVa, IVb, or V as
the next phase.

The flight phase is characterized by the absence of contact with the ground. Because

the robot is in the air and there is nothing to push against, the reference commands

hrefI =



















π − 0.5δLA − hdTor

γLS→mLSh
d
LSL

π + 0.5δLA − hdTor

γLS→mLSh
d
LSR



















, (D.3)

SI→II : {ptoeL = 0, ptoeR = 0}, (D.4)

focus on the robot’s relative pose rather than the absolute orientation of a link with respect

to a world frame. While the flight-phase controller runs until both legs are in contact with

the ground, the time between one leg and the other impacting the ground is less than 20 ms,

and hence for most of this phase the robot is in the air.

Constant setpoints are chosen for the controlled variables (D.1). Specifically, the com-

mands qLAL
= π − 0.5δLA − hdTor and qLAR

= π + 0.5δLA − hdTor regulate the relative angle

between the legs to a desired value of δLA and orient the legs with respect to a nominal torso
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angle of hdTor. The commands qmLSL = γLS→mLSh
d
LSL

and qmLSR = γLS→mLSh
d
LSR

regulate the

lengths of the left and right legs to nominal values hdLSL and hdLSR , respectively; equivalently,

these commands can be thought of as setting the knee angles at appropriate values for ab-

sorbing the subsequent impact. The gear ratios γLS→mLS and γLS→mLS are present because

the controlled variables are motor positions.

Phase II, Touchdown

With both legs firmly on the ground, the reference command becomes

hrefII =



















qTor + qLAR
− hdTor − δLA

γLS→mLSh
d
LSL

qTor + qLAR
− hdTor

γLS→mLSh
d
LSR



















, (D.5)

SII→III : {|ṗvhip| < 0.0225}. (D.6)

The leg-angle motors are now used to regulate the absolute orientation of the torso to hdTor

and the relative angle between the legs to δLA. The leg-shape motor positions qmLSL and

qmLSR continue to be commanded to constant values so that the springs absorb the impact

energy. The transition to the kickoff phase occurs when the vertical velocity of the center

of mass approaches zero.

Phase III, Kickoff

When the vertical component of the center of mass velocity approaches zero, the refer-

ence command is changed to

hrefIII =



















qTor + qLAR
− hdTor − δLA

γLS→mLSh
d
LSL

− γLS→mLSδ
−
LSL

qTor + qLAR
− hdTor

γLS→mLSh
d
LSR

− γLS→mLSδ
−
LSR



















, (D.7)

SIII→IVa : {ptoeL > 0, ptoeR ≤ 0}, (D.8)

SIII→IVb
: {ptoeL ≤ 0, ptoeR > 0}, (D.9)

SIII→V : {ptoeL > 0, ptoeR > 0}. (D.10)
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To propel the robot off the ground, the legs are extended by δ−LSL for the left leg and δ−LSR

for the right leg. The remaining commands are unchanged. From phase III, three possible

transitions can occur because which leg comes off the ground first cannot be predicted,

and, with a 1-ms update rate, it is possible that both legs are observed to leave the ground

simultaneously. According to leg liftoff order, the controller chooses phase IVa, IVb, or V

as the next phase.

Phase IVa, Left-liftoff

When the left leg lifts off the ground while the right leg remains in contact with the

ground, the reference command becomes

hrefIVa =



















H1h
ref
III (t∗III)

γLS→mLSh
d
LSL

+ γLS→mLSδ
+
LSL

H3h
ref
III (t∗III)

γLS→mLSh
d
LSR

− γLS→mLSδ
−
LSR



















, (D.11)

SIVa→V : {ptoeR > 0}, (D.12)

where H1 = [1 0 0 0], H3 = [0 0 1 0], and t∗III is the time when the transition from phase III

occurs. The left leg starts to retract by δ+LSL to provide clearance. The leg-angle positions

are held at their values from the end of phase III.

Phase IVb, Right-liftoff

When the right leg lifts off the ground while the left leg remains in contact with the

ground, the reference command becomes

hrefIVb =



















H1h
ref
III (t∗III)

γLS→mLSh
d
LSL

− γLS→mLSδ
−
LSL

H3h
ref
III (t∗III)

γLS→mLSh
d
LSR

+ γLS→mLSδ
+
LSR



















, (D.13)

SIVb→V : {ptoeL > 0}. (D.14)

The notation is as in phase IVa. The right leg starts to retract by δ+LSR to provide clearance.

The leg-angle positions are held at their values from the end of phase III.
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Phase V, Retract

Once both legs lift off the ground, the retraction phase is held for 50 ms, after which

the controller passes to the flight phase. The reference command is

hrefV =



















H1h
ref
III (t∗III)

γLS→mLSh
d
LSL

+ γLS→mLSδ
+
LSL

H3h
ref
III (t∗III)

γLS→mLSh
d
LSR

+ γLS→mLSδ
+
LSR



















, (D.15)

SV→I : {t = t#V + 0.05}, (D.16)

where t#V is the time when the transition to phase V occurs. Otherwise, the notation is as

in phase IVa. The leg-angle positions are held at their values from the end of phase III.

Both legs are retracted to provide clearance.

Parameter Values

Applying the above controller to the identified model, a periodic solution is found with

the controller parameter values

δLA = 0.524 rad (30 deg), hdTor = 0.140 rad (8 deg),

hdLSL = 0.209 rad (12 deg), hdLSR = 0.209 rad (12 deg),

δ−LSL = 0.087 rad (5 deg), δ−LSR = 0.227 rad (13 deg),

δ+LSL = 0.087 rad (5 deg), δ+LSR = 0.087 rad (5 deg),

with the robot’s horizontal position over one hop translated backward by 0.27 m, which

corresponds to δφd
h = −0.273 rad = −6.9 deg of rotation as measured by the encoder on

the central tower.

Simulation shows that the periodic motion is unstable. The orbit is stabilized with an

event-based controller that updates the commanded torso angle hdTor based on the distance
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traveled horizontally during one hop, namely,

φh[k] = φh (tI→II) ,

δhdTor[k] = KTor(φh[k]− φh[k − 1]− δφd
h),

hdTor[k] = hd0Tor + δhdTor[k],

where k is the hopping count, tI→II is the time when the transition from phase I to phase II

occurs, and KTor is a gain. If MABEL travels less than δφd
h during the previous hop, the

torso is leaned backward from the nominal value hd0Tor, and vice versa if the robot travels

more than δφd
h.

A few hours of parameter tuning with the simulation model resulted in a stabilizing

controller, while days of trial and error in the laboratory were unsuccessful.
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APPENDIX E

Modification on Virtual Compliance and Calculation of

Effective Stiffness

MABEL has three sources of compliance: physical springs installed on the torso, virtual

compliance created by the leg shape motor, and compliance due to cable stretch. Because

the cable stretch is not included in the simplified design model, the stiffness of virtual

compliance k∗vc designed from optimization on the simplified design model needs to be

modified to take into account the effect of the cable stretch. This modification is based

on the fact that the cable stretch and the virtual compliance form a series connection, and

consequently, we can multiply k∗vc by some correction factor γvc so that the series connection

realizes the desired compliance k∗vc, namely,

1

k∗vc
=

1

γvck∗vc
+

1

kcable
, (E.1)

where kcable is the spring constant of the cable stretch seen at the motor leg shape angle.

For the designed stiffness value of the regular-walking controller k∗,RWvc = 1.8, γvc = 2.5

is obtained from (E.1), and we use this correction factor for the step-up, step-down, and

recovery controllers as well as to make the controller structure simpler.
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Similarly, effective stiffness keff which is the series summation of three sources of com-

pliance can be calculated as follows:

1

keff
=

1

kBsp
+

1

γvck∗vc
+

1

kcable
, (E.2)

where kBsp is the spring constant of physical spring, seen at the motor leg shape angle.
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APPENDIX F

Swing Leg Modification for Rapid-Elevation of Swing Leg

As discussed in Section 6.2, the swing leg is elevated rapidly when the robot trips

over obstacles in early swing. First, the length of the swing leg is decreased by 15 cm by

repositioning the motor leg shape angle (see Figure F.1a). In Figure F.1a, χ is the current

leg shape angle, and χ′ is the leg shape angle corresponding to 15 cm-decreased leg length.

χ′ can be calculated from the geometric relationship between those two angles, and is given

by,

χ′ = arccos (cos(χ)− 0.15) (F.1)

Multiplying gear ratio γLS→mLS from LS to mLS to χ′ yields the desired motor leg shape

angle which is given by,

χ′
qmLS

= γLS→mLSχ
′ (F.2)

Using this desired motor leg shape angle and value of s(q) at the moment of tripping denoted

by s0, we can modify coefficients αmLSsw of Bézier polynomial hdmLSsw
(s, αmLSsw) in (5.3)

so that the value of modified Bézier polynomial evaluated at s0 equals to the calculated

desired motor leg shape angle, χ′
qmLS

.

Because the fifth order Bézier polynomial is used in MABEL, αmLSsw can be written

as [α1, α2, α3, α4, α5, α6]. When s0 > 0.5, we modify only the middle two coefficients, α3
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χ
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Figure F.1: Rapid-elevation of the swing leg. (a) Swing leg is rapidly elevated by reposi-
tioning leg shape from χ to χ′. (b) Example of modification on the desired trajectory of the
motor leg shape. Blue lines with circle indicate modified desired trajectory for the motor
leg shape. Graph on top: when s(q) > s0, Graph on bottom: when s(q) ≤ s0

and α4, by setting two coefficients to the same value c ∈ R while the first and last two

coefficients are retained (See top graph of Figure F.1b). Whereas, when s0 ≤ 0.5, α2 and

α3 are set to c, and α4 is set to 0.6c so that the swing knee in the middle of gait (s(q) ≈ 0.5)

is not bent too much (See bottom graph of Figure F.1b).

Then, let Bézier coefficient with this modification be α̃. We further define α̂ :=

[α1, α2, 0, 0, α5, α6] (α̂ := [α1, 0, 0, 0, α5, α6] for s0 ≤ 0.5) and 1̂ := [0, 0, 1, 1, 0, 0] (1̂ :=

[0, 1, 1, 0.6, 0, 0] for s0 ≤ 0.5). By using α̂ and 1̂, we can rewrite the value of the modified

Bézier polynomial evaluated at s0 which has to be modified to have the same value as χ′
qmLS

as,

hdmLSsw (s0, α̃) ≡ hdmLSsw (s0, α̂) + c hdmLSsw

(

s0, 1̂
)

= χ′
qmLS

. (F.3)
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Rearranging (F.3) gives the value of c

c =
χ′
qmLS

− hdmLSsw
(s0, α̂)

hdmLSsw

(

s0, 1̂
) . (F.4)

Thus, by setting the middle coefficients α3 and α4 to c (α2 and α3 to c, and α4 to 0.6c for

s0 ≤ 0.5) obtained from (F.4), hdmLSsw
(s0, α̃) becomes χ′

qmLS
. Because last two coefficients

kept the same value as αmLSsw , this modified Bézier polynomial will smoothly join with

original Bézier polynomial.

Note that the value of hdmLSsw

(

s0, 1̂
)

becomes 0 at s0 = 0, thereby, causing infinite value

of c. Therefore, in order to avoid this problem, we set c = 30 for s0 < 0.15.
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APPENDIX G

Screen Captures of the Experimental Videos

Figure G.1: Snapshot: experiment of step-up of 12.5 cm platform. Snapshots are at an
interval of 100 msec. The snapshots progress temporally from left to right and from top to
bottom.

151



Figure G.2: Snapshot: experiment of step-up and step-down of 10.5 cm platform. Snapshots
are at an interval of 200 msec. The snapshots progress temporally from left to right and
from top to bottom.
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Figure G.3: Snapshot: experiment of two consecutive step-up and one step-down of 18.5 cm
platform. Snapshots are at an interval of 200 msec. The snapshots progress temporally from
left to right and from top to bottom.
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Figure G.4: Snapshot: experiment of step-up, regular-walking, and step-down of 10.5 cm
platform. Snapshots are at interval of 200 msec. The snapshots progress temporally from
left to right and from top to bottom.

Figure G.5: Snapshot of small bump experiment. Snapshots are at interval of 100 msec.
The snapshots progress temporally from left to right and from top to bottom.
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APPENDIX H

Control Design for Accommodating Random Variations in

Ground Heights

The control designs introduced in Chapter VII allow MABEL to accommodate an abrupt

20 cm decrease and a 12.5 cm increase in ground height. In the experiments conducted with

the finite-state machine, MABEL walks over level ground or a slowly increasing ramp for

several steps and then walks over a few (2 - 4) obstacles representing considerable decreases

and increases (≥ 7 cm) in ground height. After accommodating these obstacles, MABEL

again walks over flat ground for several steps or a slowly increasing ramp, and finishes the

lap. The ground profiles tested in these experiments can be classified as large occasional

disturbances, and the feedback control based on finite-state machine design has shown that

it performs well in rejecting these disturbances when the robot has a few steps on level

ground in between obstacles.

However, when MABEL walks over continuously randomly varying ground, the con-

troller performance cannot be guaranteed. As discussed in Chapter VIII, the controller has

limitations on consecutive disturbances because only one step is considered and optimized

in controller design. Further, since the controller has been designed assuming large dis-

turbances, the resulting controller can overreact to small ground variations, and thereby

degrade the robot’s performance.

In this Appendix, an outer-loop discrete-event-based controller for accommodating small

randomly varying disturbances is designed. The designed outer-loop controller is layered on
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top of the baseline controller, resulting in a better success rate of traversing random rough

terrain in the detailed model simulations.

The remainder of this appendix is organized as follows: Section H.1 introduces the

preliminary test results of the finite-state machine on randomly varying ground and discusses

the main reason of failure. Section H.2 derives a linear time-invariant discrete-time model

with exogenous input from the Poincaré map. Using the derived linear time-invariant

discrete-time model, an outer-loop discrete event based control is designed, and discussed

in Section H.3 with consideration of input saturation. The designed controller is tested in

the detailed model to verify controller performance on random rough terrain. Section H.6

provides concluding remarks and future directions.

H.1 Performance of Finite-state Machine on Randomly Varying Ground

The performance of the finite-state machine on randomly varying ground is tested ex-

perimentally. Figure H.1 shows a snapshot taken from the experiment’s video. In the

experiment, MABEL was put in motion, walking on an initially flat floor. Boards with

thickness of 1 inch (2.54 cm) and 2.5 inch (6.35 cm) were added randomly at every lap by

two researchers. Four and half laps were completed before MABEL fell backward. The

video is available at [75].

Figure H.2 shows MABEL’s hip velocity. When MABEL stepped onto an obstacle at

332.7 sec (the last solid blue circle), the robot’s speed decreased to 0.2 m/sec. This drastic

decrease in speed is caused by an increase in potential energy, which decreases kinetic energy.

Hence, MABEL’s speed became too slow to allow MABEL to complete its step.

H.2 Problem Statement

As revealed in the first walking test on randomly varying ground, the main reason of

failure is the controller’s inability to regulate speed. Hence, an additional controller whose

purpose is to attenuate the influence of disturbances in ground variations on the robot’s

speed is designed and will be discussed in the following sections. Before proceeding to a

discussion of the design of additional controllers, we first refer to findings from biomechanical
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Figure H.1: MABEL is traversing randomly placed platforms.

studies.

A number of studies have shown that humans change gait patterns in response to velocity

changes [102, 110]. For example, research studies in [102] have shown that humans change

coordination patterns with respect to changes in walking speed, especially with motions of

the trunk and head. The experiments performed in [110] also revealed that the relative

phase as well as the range of trunk and pelvis rotation are changed as a function of walking

speed. Drawing on these observations from human walking experiments, we will modify
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Figure H.2: Experimental data of randomly varying platform. Horizontal hip velocity is
shown. The solid blue circles and black dashed lines display the end of the step. MABEL
stepped upon the platform at 332.7sec (the last solid blue circle).
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dk
wk

Figure H.3: Ground variation in height. wk represents ground variation in the current step,
and dk represents ground variation from the previous step.

the trajectory of the torso, which is MABEL’s counterpart of a human’s trunk, as a means

of changing and regulating gait speed in response to ground variation in height. These

observations are aligned with MABEL’s morphology because MABEL’s torso represents

approximately 65% of its weight, thereby heavily influencing MABEL’s walking speed.

H.2.1 Ground Variation in Height: Step-to-step Disturbance

Ground variations in height affect the system dynamics only when the swing toe impacts

with the ground. When the swing toe touches uneven ground with variations in height,

MABEL’s state after impact will vary from the fixed point value, and will affect the system

throughout the step. Figure H.3 shows an illustration of a robot traversing uneven ground.

dk := wk−1 ∈ W is the previous step height and wk ∈ W is the current step height, where

W := [−λ, λ] and k represents step number. The ground variation from the previous step

dk changes the robot’s post-impact state, which is denoted by x+k , thereby affecting the gait

throughout the step, and also changing the robot’s state at the end of the step. Along with

the change in the robot’s state at the end of the step, the current step’s ground variation

wk will affect the ensuing step’s post-impact state, which will be denoted by x+k+1.
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H.2.2 Step-to-step Updates of Virtual Constraints

The virtual constraints for the regular-walking controller can be expressed by,

y = h(qs) = H0qs − hd(s, α∗) (H.1)

where H0qs are the controlled variables and given by,

H0qs =













qLAsw

qmLSsw

qT













, (H.2)

and hd(s, α∗) are the desired trajectories of the virtual constraints and assembled as,

hd (s, α∗) =













hdLAsw
(s, α)

hdmLSsw
(s, α)

hdTor (s, α)













, (H.3)

where α∗ is the value of the Bézier coefficients corresponding to regular-walking.

In response to step-to-step disturbances, the virtual constraints are updated to atten-

uate the disturbances. These step-to-step updates on the virtual constraints are done by

introducing control polynomials hctrl
(

s, αctrl
k

)

which are parametrized by Bézier coefficients

αctrl
k that are updated step-to-step. This is obtained by modifying the virtual constraints

at impact for each step k

yk := hk(qs) = H0q − h∗(s, α
∗)− hctrl(s, αctrl (k)) (H.4)

The output consists of the previous output (H.1), and an additional term hctrl. The ad-

ditional term hctrl consists of a set of fifth-order Bézier polynomials which are assembled

159



as,

hctrl
(

s, αctrl (k)
)

:=













hctrlLAsw
(s)

hctrlmLSsw
(s)

hctrlTor (s)













, (H.5)

and parametrized by Bézier coefficients αctrl (k) which are in the form of,

αctrl (k)
(

α1 (k) , α2 (k)
)

:= α1 (k)













−1 −1 0 0 0 0

0 0 0 0 0 0

1 1 0 0 0 0













+ α2 (k)













0 0 −0.3 −0.7 1 1

0 0 0 0 0 0

0 0 0.3 0.7 1 1













,

(H.6)

where α1 (k) and α2 (k) are the scalar variables which will be updated by the event-based

controller at impact. This choice of Bézier coefficients leads to the virtual constraints of

the torso and swing leg angle being modified in the opposite direction from each other by

the same amount, keeping the virtual constraints on the absolute swing leg angle, which is

simply the summation of torso angle and swing leg angle, unchanged, while the modification

of the torso virtual constraint is made by updating α1 (k) and α2 (k).

As shown in Figure H.4(a), the scalar constant α1 (k) mainly modifies the torso virtual

constraints at the beginning of the step. The reason for this modification is to facilitate

the virtual constraints that effectively attenuate the rapid initial pitching of the torso due

to the variations in ground height. As we have shown in the design of the step-down

controller, the initial pitching forward of the torso due to the large step-down disturbance

could be attenuated by setting the desired value further away from the pitching direction

(see Figure 5.6 for step-down virtual constraints). We also have observed that MABEL’s

speed decreased when the robot steps onto the platform, as shown in the video of the first

attempt at walking over rough ground [73]. This decrease in speed can be compensated by

repositioning the center of mass of the robot. Because, for MABEL, the torso represents

over 65% of the mass of the robot, we can easily move the position of the center of mass

forward by leaning the torso forward at the beginning of the step. This change in torso
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Figure H.4: Example of modified output. (a) α1 (k) 6= 0, α2 (k) = 0 (b) α1 (k) = 0, α2 (k) 6=
0 (c) α1 (k) 6= 0, α2 (k) 6= 0

angle can be made by updating α1 (k).

Furthermore, α2 (k) particularly changes the position of the torso at the end of the step

(See Figure H.4(b)). Because the torso is heavy and the center of mass is not aligned with

the hip joint, the pre-impact torso position heavily influences the speed of the ensuing step.

When impact occurs with the torso being more forward than the nominal value, MABEL

gains speed, and vice versa. Therefore, changing the pre-impact torso position provides

essential control authority to regulate the speed.

The scalar constants α1 (k) and α2 (k) are assembled as u (k) ∈ U ,

u (k) :=







α1 (k)

α2 (k)






. (H.7)

We also define v (k) := u (k − 1) ∈ U which is merely the previous step’s u (k) for later use.
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The step-to-step modification on the torso virtual constraint introduced in this section

will be used as a control authority to attenuate step-to-step disturbances. In order to update

uk for each step, an outer-loop discrete event-based controller Γu is designed, as discussed

in the following sections.

H.2.3 Poincaré Map and Its Linearization

An outer-loop discrete event-based control design was proposed to stabilize planar hop-

ping in [82], 3D walking in [15], or running in [98]. While the main purpose of these event-

based control designs is to stabilize the periodic orbit, an outer-loop discrete event-based

controller will be designed here to attenuate the influence of ground height disturbance to

the robot’s speed with stability.

H.2.3.1 Construction of Discrete Nonlinear System

The full-order Poincaré map for the detailed model is considered for the design of the

Γu robust outer-loop event-based controller. Unlike the design of the event-based controller

performed in [82], [15], and [98], both step-to-step variations in the ground height of

the current and previous step, which are w (k) and d (k) affects x (k + 1). Similar to the

design of the speed controller performed in [117], previous control disturbance v (k) as well

as current control input u (k) are considered for the construction of the Poincaré map.

Therefore, the Poincaré map is defined as Pu(k),v(k),w(k),d(k) : Su(k),v(k),w(k),d(k)×U2×W2 →

Su(k+1),v(k+1),w(k+1),d(k+1), with Su(k),v(k),w(k),d(k) := S
w(k)
d , such that

x+d (k + 1) = P
(

x+d (k) , u (k) , v (k) , w (k) , d (k)
)

, (H.8)

and thus, the following multi-input, single-output dynamic system with an exogenous input

wk can be defined as,

x+d (k + 1) = P
(

x+d (k) , u (k) , v (k) , w (k) , d (k)
)

v (k + 1) = u (k) (H.9)

162



d (k + 1) = w (k)

η (k) = h
(

x+d (k) , u (k) , v (k) , w (k) , d (k)
)

,

where output η (k) ∈ R is the value to be regulated, and given by,

η (k) := θ̇+ +
1

2
q̇+Tor. (H.10)

The reason for this choice of η (k) is as follows: hip velocity is an important value to be

regulated so the robot does not fall back when stepping on the platform as shown in the

experimental results in Section H.1. θ̇+ roughly represents hip velocity at the beginning

of the gait when multiplied by the leg length of 1 m, thereby becoming the first term

of the η (k). Furthermore, step-down experimental results in Section 5.1 show that large

torso oscillation induced by the step-down event was the main reason for the failure of that

experiment. Therefore, in order to regulate torso angular velocity at the beginning of the

gait which can be the main source of large torso oscillation throughout the step when not

properly regulated, torso angular velocity q̇+Tor is added to θ̇+ with a weight factor of 1
2 .

Let ξ (k) :=
(

x+d (k)− x+d
∗
v (k) , d (k)

)

and y (k) := η (k) − η∗, where x+d
∗
and η∗ cor-

respond to the fixed point value. Then, rewriting the dynamic system in H.9 above with

respect to ξ (k) and y (k) yields the following standard nonlinear discrete system with control

input u (k), exogenous input w (k), and controlled output y (k),

ξ (k + 1) = P̄ (ξ (k) , u (k) , w (k))

y (k) = h̄ (ξ (k) , u (k) , w (k)) (H.11)

Because the analytical expression for P̄ does not exist in most cases, P̄ needs to be approx-

imated. In this dissertation, P̄ will be approximated by a linear function of the states.
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H.2.3.2 Linearization of Nonlinear Discrete System

Among a choice of many mathematical ways for linearizing a general nonlinear system,

we use linear regression methods to linearize the system1. The linearization problem is to

estimate the matrices of the system,

ξ (k + 1) = Aξ (k) +Bu (k) +Bww (k)

y (k) = Cξ (k) +Du (k) + Ew (k) , (H.12)

given the data set of ξ (k + 1), ξ (k), u (k), w (k), and y (k). In order to obtain sufficiently

rich data sets, we performed a significant number of separated two-step simulations with

randomly perturbed states ξ (k), input u (k), and exogenous inputs w (k). We then define fat

matrices with n columns, where n represents the total number of simulations, and Xk+1,

Xk, Uk, and Wk by horizontally concatenating each simulation’s data ξT (k + 1), ξT (k),

uT (k) and wT (k), respectively. Because y (k) is defined by the simple linear combination

of ξ (k), estimation of C, D, and E is a trivial problem. Then, the matrices A, B, and Bw

are minimizers of the following quadratic cost,

J :=

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

Xk+1 −

[

A B Bw

]













Xk

Uk

Wk













∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

2

, (H.13)

and obtained by,

[

A B Bw

]

≈ Xk+1













Xk

Uk

Wk













+

(H.14)

where V + denotes the Moore-Penrose pseudoinverse of V .

The controller will be designed on multi-input, single-output linear time-invariant sys-

tem (H.12) with coefficient matrices obtained from (H.14).

1This method was suggested to us by Dr. Shai Revzen, University of Pennsylvania.
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H.3 Controller Design

Controller design which attenuates the influence of the exogenous input w on the output

y while achieving closed-loop stability for the system (H.12) will be studied in this section.

The disturbance attenuation problem can be described as being one where the H∞ norm

of system (H.12) which is denoted as ‖Twy‖∞, where Twy represents the transfer function

from the disturbance w to the output y, satisfies the following inequality,

‖Twy‖∞ ≤ γ (H.15)

for some prescribed disturbance attenuation level γ. For a linear time-invariant system, the

inequality (H.15) holds if and only if the following inequality holds [58],

‖y‖L2

‖w‖L2

≤ γ for ‖w‖L2
6= 0. (H.16)

The inequality (H.16) will be used to verify simulation results.

Control input u which allows inequality (H.15) is sought here, and we seek a controller

in the form of linear state feedback u (k) = Kξ (k), where K is the gain matrix. The

closed-loop system with linear state feedback becomes,

ξ (k + 1) = Aξ (k) +BKξ (k) +Bww (k)

y (k) = Cξ (k) +Du (k) + Ew (k) , (H.17)

In consideration of the reasons set forth below, control input u (k) will be saturated with

some saturation level ν.

(a) The linearized system (H.17) is valid for only a small domain around the fixed point.

A Large value of control input u (k) will degrade the accuracy of the linearized model

to predict the original system (H.11).

(b) A large u (k) causes abrupt changes of the original virtual constraints. These abrupt

changes easily cause large tracking errors, and actuator saturation.
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With a saturated u (k), the system (H.17) becomes,

ξ (k + 1) = Aξ (k) +Bsatν (Kξk (k)) +Bww (k)

y (k) = Cξ (k) , (H.18)

We employed techniques of quasilinear control (QLC) theory that have been developed

through a number of research studies in the literature [34, 35, 26, 55] and summarized

in [17] to design a controller on the system (H.18). The stochastically linearized version of

the system (H.17) is,

ξ̂ (k + 1) = (A+BNK) ξ̂k +Bww (k)

ŷ (k) = Cξ̂ (k) , (H.19)

where

N =









erf

(

ν√
2σû1

)

0

0 erf

(

ν√
2σû2

)









, (H.20)

and







σ2
û1

σ2
û2






= ‖Twu‖

2 σ2
w = KPKTσ2

w, (H.21)

where P is the symmetric positive-definite matrix which satisfies,

(A+BNK)P (A+BNK)T − P +BwBw
T = 0 (H.22)

Using Theorem 4 of [21], we can easily show that ‖Twy‖∞ of system (H.19) is less than
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γ if there exists symmetric positive definite matrix Q such that



















Q AQ+BL Bw 0

(·)T Q 0 QTCT

(·)T (·)T I 0

(·)T (·)T (·)T γ2I



















> 0, (H.23)

where L = NKQ. In addition, control gain K which satisfies (H.23) can be found using

the following theorem.

Theorem H.1. Consider system (H.19) subject to (H.19)-(H.22). Then there exists K

such that ‖Twy‖∞ is less than γ if there exists L ∈ R
2×nξ and positive symmetric matrix P̄

such that,



















P̄ AP̄ +BL Bw 0

(·)T P̄ 0 P̄ TCT

(·)T (·)T I 0

(·)T (·)T (·)T γ2I



















> 0, (H.24)







2ν2

πσ2
w

L

(·)T P̄






> 0, (H.25)













P̄ AP̄ +BL Bw

(·)T P̄ 0

(·)T (·)T I













> 0. (H.26)

Proof. By Theorem 4.3. of [17], (H.20), (H.21), and (H.22) has a solution N > 0 if and only

if equalities (H.25) and (H.26) holds. Furthermore, equality (H.24) provides ‖Twy‖∞ < γ

by Theorem 4 of [21].

Using this theorem, we can minimize the disturbance attenuation level γ for a given
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saturation level ν. We calculated the minimum achievable γ, γmin, for saturation level

ν ∈ [0.114, 11.43] deg. Figure H.5 shows the obtained γmin and corresponding ν. It is

clearly seen that γmin is a decreasing function of ν, so there is a trade-off between γmin

and ν. Furthermore, the lower bound on γmin is obtained with 9 degrees of saturation level

ν. Therefore, ν cannot be made lower than the lower bound value even though saturation

level is raised more than 9 degress. It is also observed that γmin rapidly decreases down

to the value of 5.14 degress, but, below that value, the decreasing ratio of γmin becomes

constant. Therefore, we set the saturation level ν at the value of 5.14 degrees where the

benefit provided by increasing saturation level is maximized while decent attenuation level

γmin of 3.3 can be achieved. Based on the value of saturation level ν and corresponding

γmin, control gain is calculated using Theorem H.1.

Given the obtained control gain, we simulated the system (H.18) with random distur-

bances w(k) ∈ W. Figure H.6a shows ratios between the L2 norm of y and w. We can

observe that the closed-loop system has the ratio less than the desired attenuation level

γ (black dashed line), thereby satisfying the inequality (H.16), while the open-loop sys-

tem does not. Figure H.6b displays control efforts to attenuate the disturbance. Although

the control inputs were occasionally saturated with the saturation level ν, the controller

successfully achieved desired disturbance attenuation performance by satisfying the desired

attenuation level as shown in Figure H.6a. For purposes of verification, we carried out 500

simulations with different sequences of disturbances, and the results are shown in Figure H.7.

We can observe that the desired disturbance level is achieved for all 500 simulations.

H.4 Controller Verification on Detailed Model

The outer-loop discrete event-based control design is now evaluated in the detailed

model. The performances of the controller with and without the outer-loop update are

not compared using the disturbance attenuation ratio here. Instead, we directly compare

how many times the robot completed or failed to traverse a large number of terrain profiles

with or without a discrete event-based control design. 150 test runs are performed in

the simulation using controllers with and without outer-loop controller. Each test-run is
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Figure H.6: Simulation results of the linearized system (H.18). (a) The ratio between L2

norm of w and y. (b) Control input u in deg.

conducted as follows: MABEL starts at a fixed point, walking on an initially flat floor.

Rough terrain with ground variations in height are placed in front of MABEL. The terrain

profiles consists of 12 steps with heights and depths from 1.5 cm to 5 cm and lengths from

35 cm to 65 cm as illustrated in Figure H.8. After 12 steps of random ground variations,

the terrain becomes flat again. We then check whether the robot failed or completed to

traverse given rough terrain, and, if it failed, the reason for the failure is further categorized

into the following three groups: {Falling Back, Tripping, Slipping}.

Figure H.9 shows the simulation results. MABEL failed to complete 38% of test-runs

without the outer-loop control design. On the other hand, the controller with the outer-
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loop control design was able to reduce the failure rate to 19% (see Figure H.9a). As shown

in Figures H.9b, H.9c, and H.9d, the failure rate due to falling back is reduced to 6% by

applying a discrete event-based control design, and the failure rate due to the tripping also

decreased to 10%. However, more failures are caused by slipping. These failures due to

slipping typically occur when the swing toe strikes the ground while the torso is leaning

backward with a considerable velocity. Because the heavy torso rapidly leans backward,

most of the robot’s weight will be acting on the rear toe which is the stance toe, and normal

component of the ground reaction force on the front toe, which is the swing toe striking

the ground, will become very small at the moment of impact. Eventually, this small normal

ground reaction force on the swing toe causes slippage between the front toe and the ground

at the moment of impact. In particular, this slippage between the swing toe and the ground

occurs when step-down disturbance is followed by a step-up event: the outer loop controller

makes the torso lean backward to decrease the robot’s speed, and early impact then occurs

by encountering the step-up disturbance while the torso is leaning backward rapidly.

H.5 Addition of a Tripping Reflex Controller

An outer-loop controller focusing on attenuation of influence of disturbance has been

designed and added onto the baseline controller. This section discusses the addition of

a rapid-elevation strategy of the swing leg of the tripping reflex controller introduced in

Chapter VI to further decrease the failure rate. We expect that the failure rate due to
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Figure H.8: Example terrain of test-run.

tripping significantly decreases by addition of rapid-elevation strategy of the swing leg.

Using the same ground profiles as were used in the previous section, 150 simulations are

conducted in the detailed model with the controller equipped with rapid-elevation of the

swing leg . Figure H.10 illustrates the simulation results. The failure rate further decreased

to 13% as shown in Figure H.10a. Remarkably, no failures are caused by tripping (see

Figure H.10b), which shows excellent performance of the swing leg elevation strategy to

reflex tripping. However, failures due to falling back increased by 3% compared to the

Baseline+Outer loop case. Two thirds of this increase in failures due to falling back occurred

when the robot walked over the terrain profiles which caused the tripping in Baseline+Outer

loop case simulation. A closer look at the simulation data revealed that in those cases, the

robot fell back after successfully stepping onto the obstacles by the use of the rapid-elevation

strategy of the swing leg. To remedy these failures, we can try to increase saturation level

ν, especially after swing leg rapid elevation, allowing the torso to learn further forward, or

decrease the step width to allow the robot to gain speed after stepping onto the platforms.

H.6 Conclusion

This chapter has presented an outer-loop discrete event based control design for atten-

uation of disturbance effect on the output. A discrete time linear time-invariant system

is obtained by linearizing the Poincaré map with respect to the fixed point. Techniques

of quasilinear control are employed to design a controller which attenuates the effects of

disturbances on the output with the desired level on the linearized model. Application of

the outer-loop control design has resulted in a lower failure rate of traversing, given 150
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(c) (d)

Figure H.9: Simulation data from the detailed model. (a) Total failure rate (b) Failure rate
due to falling back (c) Pie chart of baseline controller (d) Pie chart of baseline + outer loop
controller

terrain platforms. The failure rate was able to be further reduced by adding the rapid swing

leg elevation strategy developed in Chapter VI for a reflex of tripping.

Though only 6% of total test-runs failed due to falling back in the simulation of the

baseline + outer loop controller, research conducted in [87, 85, 120] provides hints that

another decrease in failure rate due to falling back is possible. The idea of a capture

point [87, 85] or foot placement estimator [120] provides a means to stop and stabilize a

bipedal robot at a standing balance pose on one foot or two feet in response to an external
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(a) (b)

(c) (d)

Figure H.10: Simulation data including swing leg elevation strategy from the detailed model.
(a) Total failure rate (b) Failure rate due to tripping (c) Failure rate due to the falling back
(d) Pie chart of baseline + outer loop controller + swing leg elevation

perturbation or sudden velocity change. These ideas can be also used to maintain the robot

in a static pose when falling backward. From the static pose, gait can be re-initiated and

continued.
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