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Kaplan Meier (ŜKM(t)) and IPCW-adjusted MI (ŜMIW (t)) under
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QT (t)) under three sce-
narios. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.3 Quality-adjusted restricted mean model for 715 breast cancer pa-
tients using PO and MI methods with µTOX = 0.5, and µREL = 0.5.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

vii



LIST OF APPENDICES

Appendix

A. Appendix for Chapter II . . . . . . . . . . . . . . . . . . . . . . . . . 80

B. Appendix for Chapter IV . . . . . . . . . . . . . . . . . . . . . . . . . 82

viii



CHAPTER I

INTRODUCTION

Dependent censoring is a common issue in survival and quality-adjusted sur-

vival analysis. This thesis develops pseudo-observation and multiple imputation ap-

proaches for analysis of these types of data, and illustrates them in both simulations

and data examples. Our motivating survival analysis example takes place in the

lung allocation setting, where more urgent patients are removed for transplant. Our

motivating quality-adjusted survival analysis example takes place when a quality-of-

life function is applied to follow-up in breast cancer patients, inducing dependent

censoring on the quality-of-life timescale.

In both examples we consider the restricted mean event time as the expected

event time when restricted to τ , a time window of interest. When censoring is non-

informative, the restricted mean can be estimated nonparametrically by the area

under the Kaplan-Meier survival curve. In cases when additional covariate infor-

mation is available, one can model the hazards using a Cox proportional hazards

model, and estimate each individual’s restricted mean by integrating their Cox sur-

vival curves. A more direct model links the restricted mean to a linear function

of covariates. One advantage of this type of model is that needed assumptions are

on the scale of the mean rather than the hazard of the distribution, which is what

1



2

we are accustomed to in non-censored regression settings. However, in both of our

examples, dependent censoring needs to be addressed.

We consider various approaches for estimation of restricted means when censoring

is dependent: (1) an inverse-weighted pseudo-observation (PO) approach described

in Chapter II; (2) a multiple imputation approach for dependently censored out-

comes, described in Chapter III for survival and in Chapter IV for quality-adjusted

survival; (3) integration of inverse-weighted Cox survival curves, where this last exist-

ing approach provides a basis of comparison when survival is modeled on the hazard

scale.

Appropriate inverse weights vary according to whether one is modeling survival or

quality-adjusted survival outcomes. In the survival setting, inverse weights have been

studied by Robins and Rotinitzky (1992), Robins (1993), Robins and Finkelstein

(2000), Satten, Data, and Robins (2001), Scharfstein et al. (2001) and others in

various settings. In Chapter II we summarize how these weights may be calculated

for use in either Cox or restricted mean models. When quality-adjusted survival is

being modeled, Zhao and Tsiatis (1997) modified the concept of inverse weights on

the quality-adjusted time scale. We summarize their inverse weighting approach in

Chapter IV as an integral component of our multiple imputation strategy in that

setting.

When censoring is not dependent, Andersen, Hansen, and Klein (2004) defined a

PO for individual i, as n
∫ τ

0
Ŝ(t)dt − (n − 1)

∫ τ

0
Ŝ−i(t)dt, where Ŝ(t) is the Kaplan-

Meier estimate of the survival probability at time t, Ŝ−i(t) is its leave-one-out ver-

sion for subject i, i = 1, . . . , n, and n is the total number of subjects. They model

the τ -restricted mean E[min(τ, T )] as a function of covariates using these pseudo-

observations as the dependent variables, since each PO has the same conditional
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expectation as the uncensored event time being modeled. Using this approach, re-

stricted mean regression parameters can be obtained using standard software without

going through complicated variance calculations. Estimated restricted mean struc-

tures can be described to practitioners so that they may calculate and interpret them

without having to understand what a baseline hazard is. However Kaplan-Meier es-

timates used in Andersen et al.’s pseudo-observations are subject to bias due to

dependent censoring. In Chapter II we develop a PO approach on the log scale that

adjusts for dependent censoring bias via inverse weights, which is more appropriate

for modeling restricted means in the lung allocation setting. We compare weighted

and unweighted PO approaches and assess performance of these with respect to the

lung transplant data.

In contrast to PO methods, which are mainly about modeling the restricted

mean, multiple imputation (MI) allows creation of complete data sets that can be

used for a variety of standard analyses. In the missing data literature, censoring

has been viewed as missing data that can be multiply imputed. Several authors

have based imputation methods on the inverse transform relationship, T = S−1(U),

where U is a uniform random variable (Taylor, Murray and Hsu (2002), Hsu, Taylor,

Murray, and Commenges (2006), Liu, Murray, and Tsodikov (2011)). The key to

sampling either survival or quality-adjusted survival outcomes, based on this inverse

transform approach, is obtaining a relevant estimate of S(t) within an appropriate

risk set. We provide more details on imputation of survival outcomes using inverse

weighted survival estimates in Chapter III. Quality-adjusted survival estimates are

used as part of the imputation procedure in Chapter IV. Inverse weighted imputation

approaches are compared with inverse weighed PO approaches throughout the thesis

via simulations and examples mentioned earlier.



CHAPTER II

PSEUDO OBSERVATIONS FOR

DEPENDENTLY CENSORED SURVIVAL DATA

2.1 Introduction

To appreciate the statistical aspects of lung transplant candidate data, some

background is required. To get a lung transplant in the United States, candidates

register with the Organ Procurement and Transplantation Network (OPTN) to ob-

tain placement on a lung waiting list. When these transplants were infrequent, a

first come, first served policy seemed equitable to those waiting for transplant. But

as the demand increased, so did the average waiting time to transplant, and an in-

creasing number of end-stage lung disease patients died while waiting for an organ

offer. Published in 1998 and enacted in 2000, a Final Rule, crafted by the Health

Resources and Services Administration of the U.S. Department of Health and Hu-

man Services, dictated, among other things, that a more equitable organ allocation

algorithm needed to be created and maintained based on objective medical data [8].

In the case of patients waiting for a lung transplant, a statistical algorithm (lung

allocation score or LAS) for ranking patients was implemented on May 4, 2005 [9].

The LAS includes measures of the net benefit of the transplant to the candidate as

well as the candidate’s clinical urgency over the upcoming year. The measure for

4
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net transplant benefit is calculated by subtracting the patient’s estimated number of

days lived on the waiting list without a transplant over the next year (i.e. transplant

urgency) from the estimated number of days lived during the first year following

transplantation (i.e. post-transplant survival measure). This is an individual mea-

sure of transplant benefit rather than a collective measure of transplant benefit that’s

sometimes obtained through use of a time dependent covariate for transplant, as in

analyses done for the original Stanford heart transplant study [7].

Figure 2.1 shows estimated patient specific urgency by anticipated transplant ben-

efit for a group of lung candidates actively listed between 9/1/2006 and 9/30/2008.

It was recognized that ordering patients based on urgency alone, i.e., from left to

right in Figure 2.1, might prioritize patients with little or no transplant benefit.

Whereas ordering patients solely based on higher benefit, i.e., from top to bottom of

Figure 2.1, would likely result in many deaths of urgent patients who would not live

until an organ offer. In the end a compromise was reached so that both benefit and

urgency were taken into consideration, i.e., allocation according to the diagonal line

moving from top left to bottom right of Figure 2.1. The LAS takes the difference

between the net transplant benefit and the transplant urgency, with the final score

normalized to produce a range from 0 to 100.

Estimates for both urgency and benefit depend on accurate estimation of waitlist

days lived during the year following listing. Patients’ risk factors measured at listing

include diagnosis, age, body mass index (BMI), diabetes, assistance with activities of

daily living (ADL), six-minute walk distance (6MWD), forced vital capacity (FVC),

oxygen (O2) requirement at rest, pulmonary artery (PA) systolic pressure, partial

pressure of carbon dioxide in the blood (PCO2), continuous mechanical ventilation,

creatinine, and cardiac index. For estimating days lived in the year following trans-
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Figure 2.1: Scatterplots of estimated days lived in 1-year on the waiting list versus
estimated 1-year transplant benefit (transplant benefit = estimated post-transplant
days lived in next year minus estimated waiting list days lived in a year without
transplant) at time of listing for n=3701 patients. Allocation follows according to
the movement of the diagonal line from the top left to the bottom right. Patients
marked as 1, 2, and 3 are the first patients to be offered a lung transplant.

plant, risk factors used in the LAS include diagnosis, age, assistance with ADL,

6MWD, FVC, continuous mechanical ventilation, cardiac index, O2 requirement at

rest, and creatinine. More details on statistical methodology will be given shortly.

The LAS has been largely successful since its implementation. The number of

deaths on the waiting list and waiting time for transplant have decreased. As opposed

to 512 waitlist deaths in 2004, there were only 266 deaths in 2008, in spite of more

urgent patients being listed in 2008 [38]. Listing behavior of end-stage lung patients

has changed dramatically since LAS implementation. With no advantage to accruing
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waiting time in the new allocation score, the number of patients actively listed for

transplant decreased from 2,163 candidates at the end of 2004 to 1,089 patients at

the end of 2008 [38]. That is, patients not yet ready to accept an organ offer began

to remove themselves from the active candidate pool and delay entering the pool

until further progression of disease. As a consequence, the median waiting time has

dropped from 792 days in 2004 to 200 days or less after the LAS was used [38]. As

successful as the LAS has been, national policy dictates that the algorithm must be

continually updated to reflect more recent cohorts of patients, and this is occurring

right now in a post-LAS implementation cohort.

The estimated number of days lived during a year in the calculation of LAS is

sometimes called the restricted mean life. When estimated nonparametrically, under

independent censoring, it is typically defined using the area under a Kaplan-Meier

survival curve [21] for the time period of interest (0 to 1 year). In the original

development of the LAS, a Cox proportional hazards model [6] was used to estimate

each individual’s survival curve, and the area under the first year of the survival

curve was used to estimate the restricted mean life. We feel that a more appropriate

model would target the restricted mean more directly, rather than modeling the

hazard ratio. Not only would regression parameters be more directly linked to the

restricted mean of interest, but increased transparency of how scores for the LAS are

produced would be welcomed by patients and physicians following allocation scores.

One modeling strategy for the restricted mean was introduced by Andersen,

Hansen, and Klein [1]. First pseudo observations are generated that have the same

conditional mean of interest for regression modeling as the original individual level

data. The advantage of creating pseudo observations in the first modeling step is

that they can be modeled using traditional uncensored linear models. Pseudo obser-
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vations (PO) for mean restricted life, as defined by Andersen, Hansen, and Klein, are

created using marginal estimates of restricted mean life, i.e., α̂0 = Ê[min(τ, T )] =

∫ τ

0
P̂ (T > t)dt, where T denotes the failure time, τ is the upper limit of a time

window of interest and P̂ (T > t) is the KM estimate. Then the pseudo observation

for each individual, also known from jackknife methodology, is calculated as

(2.1) nα̂0 − (n− 1)α̂−i
0 ,

where α̂−i
0 =

∫ τ

0
P̂−i(T > t)dt with P̂−i(T > t) the KM estimate based on data

leaving out patient i.

The intuition behind pseudo observations given in (2.1) is that any nonparametric

estimator of α0 = E[min(τ, T )] is also implicitly an estimator of

(2.2) EZ [E[min(τ, T )|Z]],

where Z is a vector of covariates, and the inner expectation is of interest in re-

gression modeling. In the case where the outermost expectation is viewed with re-

spect to the empirical distribution of Z, with α̃0 = 1
n

∑n

i=1 E[min(τ, T )|Zi], pseudo

observations take the form nα̃0 − (n − 1)α̃−i
0 = n[ 1

n

∑n

i=1 E[min(τ, T )|Zi]] − (n −

1)[ 1
n−1

∑n

j=1,j 6=i E[min(τ, T )|Zj]] = E[min(τ, T )|Zi], the quantity of interest in re-

gression modeling. Andersen, Hansen, and Klein make the case that α̂0 and α̃0

are both consistent for α0, hence pseudo observations based on (2.1), which are

estimable from censored data, can be used to estimate regression parameters pre-

dicting E[min(τ, T )|Zi] using readily available linear models. That is, models based

on individual specific pseudo observations in (2.1), i = 1, ..., n will have regression

parameters similar to a model fit to min(τ, T ) values, i = 1, ..., n, if these values

were available (uncensored). Graw et al. [11] formalize this argument and verify

appropriate asymptotics of parametric estimates.
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Any modeling strategy for estimating restricted means requires taking into ac-

count an especially interesting dependent censoring issue when updating the LAS to a

more current cohort of patients. By removing more urgent patients from the waiting

list to get transplanted (via the LAS), our resulting analysis dataset is dependently

censored in direct relationship to daily changing LAS of individual patients. In con-

sidering a restricted mean model approach, KM estimates used in creating pseudo

observations are especially subject to dependent censoring bias. Inverse probabil-

ity of censoring weighted (IPCW) methods, such as those discussed by Robins and

Finkelstein [27], Robins [26], Robins and Rotnitzky [28], Satten, Datta, and Robins

[30], Scharfstein, Robins, Eddings, and Rotnitzky [32] among others have been suc-

cessful in counteracting this type of bias and can be used to consistently estimate

ST (t) = P (T > t), cumulative hazard functions and other quantities of interest.

In this chapter we propose to estimate transplant urgency and benefit by using

a pseudo observation approach to estimate one year restricted mean life separately

in waitlist and post-transplant cohorts. Our approach will modify each waitlist

restricted mean pseudo observation by including IPCW-based survival estimates in

place of KM estimates to account for dependent censoring linked to time-dependent

LAS of patients. One-year transplant benefit will be estimated for each patient using

a restricted mean model estimate of days lived in a year following transplant minus

a separate restricted mean model estimate of days lived in a year following listing

without transplant.

The rest of this chapter is structured as follows: in Section 2.2, we formally de-

scribe the mean structure for restricted life given covariates, an appropriate pseudo

observation approach to fit this mean structure, and the IPCW implementation of

pseudo observations required to account for censoring via time-dependent LAS. Sec-
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tion 2.3 briefly shows simulation studies that ensure our overall analysis approach in

the presence of dependent censoring is sound in finite sample populations. In Section

2.4 we present a restricted mean model for lung waitlist candidates and separately

for post-transplant recipients to be used in constructing an LAS for each patient.

Results on estimated days of life without transplant in a 1-year period (urgency) are

given as well as estimated days gained from transplant over the following 1-year pe-

riod (benefit). Estimated LAS are also displayed for lung transplant candidates using

the new methodology. Results are also given using estimates of restricted means for

lung candidates based on integrating both traditional and IPCW-adjusted Cox PH

model survival curves. Discussion follows in Section 2.5.

2.2 Estimating restricted mean life using IPCW PO

2.2.1 Mean structure for restricted mean life

The mean structure for the restricted mean life is

(2.3) E[log{min(τ, T )}] = βTZ,

where τ is fixed and within the range of the observed data. When there is no cen-

soring, uncensored data applied to model (2.3) becomes a standard linear model on

log{min(τ, T )}. However when censoring is present and informative, using observed

data will lead to biased results.

Andersen, Hansen, and Klein [1] formulated pseudo observations using (2.1) and

then fit model (2.3) to the resulting pseudo observations using standard linear mod-

els. An equally appropriate approach would be to fit the model of the restricted

mean using a log link. We have found that the intercept estimator is somewhat

improved upon creating pseudo observations based on the transformed random vari-

able log{min(τ, T )}. That is, instead of creating pseudo observations based on
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α̂0 = Ê[min(τ, T )] =
∫ τ

0
Ŝ(t)dt and log transforming the pseudo values, we will

create pseudo observations based on marginal estimates of δ̂0 = Ê[log{min(τ, T )}].

Let Y = log{min(τ, T )}, ranging from −∞ to log τ . Assume for the moment the sim-

plest form of model (2.3), where E[Y ] = δ0, i.e., the marginal mean of log{min(τ, T )}

that doesn’t depend on any covariates. We may derive the mean of Y as follows.

E(Y ) = δ0 = E[log{min(τ, T )}] =

∫ ∞

0

log[min(τ, T )]dFT (t)

=

∫ τ

0

log t dFT (t) +

∫ ∞

τ

log τ dFT (t)

=

∫ τ

0

log t d(1− ST (t)) + log τ(1− FT (τ))

= −

∫ τ

0

log t dST (t) + log τ · ST (τ).(2.4)

2.2.2 Pseudo observation approach

From Section 2.2.1 equation (2.4), the marginal mean of log{min(τ, T )} can be

estimated via

(2.5) δ̂0 = Ê(Y ) = −

∫ τ

0

log t dP̂ (T > t) + log τ · P̂ (T > τ)

where P̂ (T > t) is some marginal survival estimate on the original time scale. In the

context of dependent censoring, we will describe a consistent estimate for ST (t) in

Section 2.2.3, ŜW
T (t), that uses an inverse weight approach and show that its use in

(2.5) gives a consistent estimate of δ0.

Arguments justifying the use of pseudo observations in fitting (2.3) proceed simi-

larly to the original justification made for the pseudo observation approach. That is,

any estimator of δ0 is implicitly an estimator of EZ [E[log{min(τ, T )}|Z]]. When the

outermost expectation is viewed with respect to the empirical distribution of Z with

δ̃0 = 1
n

∑n

j=1 E[log{min(τ, T )}|Zj] and δ̃−i
0 = 1

n−1

∑n

j=1,j 6=i E[log{min(τ, T )}|Zj],

pseudo observations, nδ̃0− (n−1)δ̃−i
0 reduce to E[log{min(τ, T )}|Zi], which matches



12

in expectation the quantity we wish to model. Although both δ̃0 and δ̂0 are consis-

tent for δ0, the latter gives the most useful form for estimating δ0 based on censored

survival data. So similar to the strategy employed on the scale of α0, we base our

inference on pseudo observations, nδ̂0− (n− 1)δ̂−i
0 , where δ̂−i

0 is estimated from (2.5)

leaving out individual i.

Once pseudo observations, PO = (PO1,PO2, ...,POn) are obtained, the re-

gression model (2.3) can be estimated using PO as the response. Our parameter

estimates become β̂ = (ZTZ)−1ZTPO with estimated covariance matrix V̂ (β̂) =

σ̂2(ZTZ)−1, where σ̂2 is computed in the usual way as (PO−Zβ)T (PO−Zβ)/(n−p)

for p parameters in the model. These results can be estimated from nearly any sta-

tistical software package once POi, i = 1, ..., n are obtained.

2.2.3 IPCW estimates of survival probability

In the case of dependent censoring care needs to be taken in estimating ST (t). Of

all the potential methods for consistently modeling marginal survival in the presence

of dependent censoring, methods based on inverse probability censoring weights used

by Robins and his coauthors are perhaps the easiest to apply when there are many

time-dependent measures over time, so we selected that approach for estimating S(t)

for the lung allocation data.

First one estimates the censoring survival function at any fixed time t, denoted

by K̂V

i (t) = P (Ci > t|V̄i(t)), where Ci is the censoring time for patient i, and

V̄i(t) = {Vi(u); 0 ≤ u ≤ t} is the patient’s recorded history up to time t of a vector

of possibly time dependent covariates, Vi, that predict the censoring time Ci. In

the case of the lung allocation data, Ci is the time a patient is removed from the

lung waitlist for transplant, and V̄i(t) consists of patient lung allocation scores used
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to rank patients for transplant from time 0 (listing time) to time t as well as a few

additional predictors including race, gender, blood type, height, and active waiting

status. In calculating the contribution of a subject at risk at time t, the subject

is given a weight inversely proportional to his estimated probability of remaining

uncensored until time t with a history of V̄i(t), i.e.

Ŵi(t) = 1/K̂V

i (t).

The Cox model for censoring survival is often used in inverse weighting ap-

proaches because of its flexibility in modeling time-dependent covariates. Since time-

dependent LAS is an issue in our case, this is the approach we adopt as well. A Cox

model for the censoring hazard is given by

(2.6) λQ{t|V̄(t)} = λQ0(t)exp{γ
′V(t)},

In the case of the lung waitlist data γ′V(t) becomes γ1 LAS(t)+γ2 race+γ3 gender+γ4

blood type +γ5 height + γ6 I(active waiting status). Then a consistent estimate of

the probability that subject i gets censored after time t, KV
i (t), becomes

K̂V
i (t) = exp{−

n
∑

k=1

∫ t

0

eγ̂
′
Vi(u)dNQk

(u)
∑n

j=1 Yj(u)eγ̂
′Vj(u)

},

where NQi
= I(Xi ≤ u, δi = 0) is the observable counting process for censoring

(transplant), with Xi the observed event time and δi the censoring indicator, and

Yi(u) = I(Xi ≥ u) is the risk indicator for subject i at time u. The subject specific

weight then becomes

Ŵi(t) = 1/K̂V
i (t) = exp{

n
∑

k=1

∫ t

0

eγ̂
′
Vi(u)dNQk

(u)
∑n

j=1 Yj(u)eγ̂
′Vj(u)

}.

An IPCW version of Nelson-Aalen estimator for cumulative hazard, Λ(t), is calcu-

lated using

Λ̂W (t) =
n

∑

i=1

∫ t

0

dNTi
(u) · Ŵi(u)

∑n

j=1 Yj(u) · Ŵj(u)
,
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where NTi
(u) = I(Xi ≤ u, δi = 1) is the observable counting process for death. Then

the survival probability is estimated with ŜW
T (t) = exp{−Λ̂W (t)}. The adjusted

pseudo observations described in Section 2.2.2 use P̂ (T > t) = ŜW
T (t) in equation

2.5. Product-integral versions of inverse weighted survival functions such as those

described by Satten and Datta [29] would also be appropriate for use as an alternative

to ŜW
T (t).

Proof of consistency of ŜW
T (t) = exp(−Λ̂W (t)) for ST (t) proceeds from consistency

of Λ̂W (t) for Λ(t), a property that was studied extensively by Robins [26] and Robins

and Finkelstein [27]. Conditions required for this consistency to hold are that (a)

λQ(t|V̄ (t)) follows the form given in equation (2.6) and that (b) λQ(t|V̄ (t), T, T >

t) = λQ(t|V̄ (t), T > t). Consistency of Ê(Y ), used in creating pseudo observations

in this chapter, follows from noting that
∫ τ

0
log t dŜW

T (t) in (2.5) can be written as

lim
m→∞

m
∑

j=1

log tj M ŜW
T (tj)

p
→ lim

m→∞

m
∑

j=1

log tj M ST (tj) =

∫ τ

0

log t dST (t).

2.3 Simulation Study

To validate the method used in analyzing the lung candidate waitlist data sub-

jected to dependent censoring, we conducted a simulation study comparing parame-

ter estimates of model (2.3) using linear regression when (a) log[min(τ, T )] is uncen-

sored; (b) log[min(τ, T )] is subject to censoring and is replaced by log-transformed

pseudo observations defined by (2.1); (c) log[min(τ, T )] is subject to censoring and

is replaced by IPCW adjusted pseudo observations.

In each simulation, we perform the following procedures:

Step 1: We simulate Z0 from a Bernoulli(0.5) distribution, Z1 from Bernoulli(0.5),

and Z2 from Uniform(0,1), where Z0 is a binary covariate measured at time 0, Z1

is the time-dependent covariate measured at time t1 = 0.2, and Z2 is a continuous
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time-independent covariate.

Step 2: Failure times, Ti, are simulated from piecewise exponential distributions, i.e.

Ti ∼ exp(λz0) before time t1, and Ti ∼ exp(λz0z1), after time t1, where λ0 = 0.3

and λ1 = 0.2 are fixed, λ00, λ01, λ10 and λ11 are solved so that the mean structure

E[log{min(τ, T )}] = β0 + β1Z0 + β2Z2 is satisfied for a pre-specified β = (β0, β1, β2).

That is, although Ti is influenced by the time dependent covariate, Z1, the restricted

mean of interest is captured by baseline predictors Z0 and Z2. More details for these

calculations are given in the appendix.

Step 3: Dependent censoring times Ci are also generated from piecewise exponential

distributions. The hazard rates are obtained based on the Cox model λC(t|Z̄(t)) =

λC
0 (t) exp{γ0Z0 + γ1I[Z0 = 0, Z1 = 1, t > t1] + γ2I[Z0 = 1, Z1 = 0, t > t1] + γ3I[Z0 =

1, Z1 = 1, t > t1] + γ4Z2}, where λC
0 (t) = 0.15 for t ≤ t1 and λC

0 (t) = 0.4 for t > t1,

γ0 = 0.3, γ1 = −1.4, γ2 = 0.5, γ3 = −1.5, and γ4 = 1. So Z0, Z2 and time-dependent

Z1 influence censoring.

For each scenario of β, 1000 simulations are run with τ = 5 yrs and either n = 150

or n = 300 patients. Results for the scenario with β0 = 0.8, β1 = β2 = 0 are located

in part 1) of Table 2.1. In this case the true baseline covariate effects on survival are

zero, but dependent censoring is being driven by the time dependent covariate. The

unadjusted PO method gives more biased estimates for all the parameters, especially

for β0 and β1. The IPCW adjusted POmethod reduces bias substantially and also has

smaller standard error after adjusting for dependent censoring. When both baseline

covariates are equal to 0.5, the PO method underestimates the time lived during the

5-year period by 14 months on average while the IPCW PO method is off by only

2 months over the 5-year period. Empirical standard deviations were comparable to

standard errors averaged across simulations with the exception of the intercept term
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for the traditional PO method. Coverage for the traditional PO intercept was 66.7%,

in spite of its much wider confidence interval width, due to the increased bias and

underestimated variability for that term.

Simulation results for the scenario with β0 = 1, β1 = −0.8, β2 = −0.5, i.e., non-

zero baseline covariate effects, are located in part 2) of Table 2.1. Again, bias is

higher for β0 and β1 using the traditional PO, but in this case the value for β2 is

largely unaffected by the dependent censoring. The adjusted PO method has both

smaller bias and smaller standard error for β0 and β1. The overall degree of bias

for estimating the time lived during the 5 year period was smaller in this scenario,

with the traditional PO method off by approximately 4-5 months of life lived and

the IPCW PO method off by 1 month over the 5 year period for a patient with

z0 = z2 = 0.5.

Parameter estimates were similar for cases with n = 150 and n = 300. We were

unable to explore larger sample sizes due to limitations in computing speed, so it is

not clear at what sample size remaining bias with the IPCW PO method vanishes.

Across a grid of possible covariate values for these two scenarios, the bias for the

IPCW PO method did not exceed 3.6 months over the 5 years of follow-up. But bias

as high as 16 months was seen using the unadjusted PO method.

2.4 Example

This section is organized into 3 components. Section 2.4.1 summarizes analyses

for the lung waitlist candidates, section 2.4.2 summarizes analyses for the post-

transplant cohort and section 2.4.3 interprets these analyses in terms of urgency,

benefit, and lung allocation scores calculated for the waitlist patient cohort. Results

are typically reported by the 4 defined diagnosis groups A, B, C, and D. Diagnosis
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group A is obstructive lung disease, primarily chronic obstructive pulmonary disease

(COPD). Group B consists of pulmonary vascular diseases, primarily idiopathic pul-

monary arterial hypertension (iPAH). Group C consists of cystic fibrosis (CF), as

well as immunodeficiency disorders. Group D is restrictive lung disease, primarily

interstitial pulmonary fibrosis (IPF). All lung waitlist patients are classified into one

of these 4 diagnosis groups by the OPTN Thoracic Committee for the purpose of es-

timating diagnosis group influence on urgency and benefit and to model interactions

across diagnosis groups. A few diagnoses, such as Bronchiectasis, are given a param-

eter to distinguish their estimated days of life from that of their overall diagnosis

group. These parameters have historically not been significantly different from those

of their overall diagnosis group, and yet patient advocates have actively pursued the

ability to estimate urgency and benefit more specifically for their patients to the

extent that enough data are available to do so.

2.4.1 Lung candidate analysis

The waitlist candidate data contain 3701 lung candidates aged 12+ who were

newly listed on the lung waitlist during 9/1/2006-9/30/2008. Censoring within 1-year

of listing only occurs when a candidate is transplanted, which was the case with 2698

(73%) of the candidates. By diagnosis group, 923 (70%) of 1317 group A candidates,

67 (58%) of 116 group B candidates, 294 (69%) of 428 group C candidates, and 1414

(77%) of 1840 group D candidates were transplanted. Historically of the four groups,

diagnosis group D has had the poorest waitlist survival and, with the LAS based in

part on urgency, this group also currently experiences the shortest time to transplant.

The median time to transplant for group D is only 71 days, as opposed to 170 days

for group A, 221 days for group B and 126 days for group C. Baseline characteristics
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by primary diagnosis group are shown in Table 2.2. At listing, group D patients

typically have very high severity and poor physiologic reserve. In contrast, group

A patients have historically had much lower urgency for transplant as measured by

survival. These patients are often seeking a transplant based on improving quality

of life as opposed to lengthening life.

The P(censoring occurs after time t| candidate’s history up to and including

t) is used to calculate an inverse weight used in consistent estimation of survival

curves and adjusted POs as described in Sections 2.2.2 and 2.2.3. In particular, a

time-dependent Cox model for time to censoring is used that includes patients’ daily

updated LAS, gender, race, blood type, status (active, inactive, offlist), and height,

as given in equation (2.6). Parameter estimates from the Cox model on the censoring

hazard are summarized in Table 2.3. Probability of transplant is strongly influenced

by current LAS values. Although one might expect the probability of transplant

to increase monotonically as current LAS increases, in fact the higher transplant

priority is tempered by a lower chance of surviving until an organ becomes available

for those with the very highest LAS values. This feature is reflected in the parameter

estimates shown.

To estimate lung candidate urgency, we fit model (2.3) using both IPCW ad-

justed pseudo observations and traditional pseudo observations. For comparison,

restricted means for lung candidates were estimated by integrating traditional and

IPCW-adjusted Cox-model based survival curves [6]. Predictors included in all lung

candidate models are the same as those proposed by the OPTN Thoracic Com-

mittee in modeling waitlist survival for this cohort [25]. All predictors have been

vetted extensively by the Thoracic Committee as being worthy of inclusion in the

algorithm based on statistical and/or clinical validity based on either the current
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Table 2.3: Proportional hazards censoring model; 3701 candidates. Inverse weights
based on this model are capped at 20.

Parameter Hazard Ratio 95% CI p-value
Characteristic at Listing
Female (vs. Male) 0.72 (0.63, 0.82) < .0001

Race: Black (vs. White) 0.81 (0.68, 0.95) 0.0116
Race: Other (vs. White) 0.91 (0.77, 1.08) 0.3016

Height: < 5′3′′ (vs. > 5′9′′) 0.54 (0.45, 0.65) < .0001
Height: 5′3′′ to 5′6′′ (vs. > 5′9′′) 0.73 (0.62, 0.86) 0.0001
Height: 5′6′′ to 5′9′′ (vs. > 5′9′′) 0.80 (0.71, 0.90) 0.0001

Blood type: B (vs. A) 1.06 (0.91, 1.23) 0.4801
Blood type: O (vs. A) 0.92 (0.84, 1.02) 0.1118
Blood type: AB (vs. A) 1.07 (0.85, 1.33) 0.5669

Time Dependent Patient Condition and Listing Status
LAS=0 (vs. LAS> 0) 0.16 (0.02, 1.18) 0.0728
LAS: linear spline for 30+ 1.12a (1.06, 1.19) < .0001
LAS: linear spline for 35+ 0.98b (0.91, 1.06) 0.6779
LAS: linear spline for 40+ 0.95c (0.91, 0.99) 0.0070
LAS: linear spline for 60+ 0.97d (0.95, 0.98) < .0001

Inactive Status (vs. Active) 0.00 (0, > 1000) 0.8780
Off the Waitlist (vs. Active) 0.00 (0, > 1000) 0.9410

aHR corresponding to one unit increase for LAS 30+ relative to those with 0 < LAS < 30
bHR corresponding to spline term for LAS 35+, giving HR due to one unit increase in

LAS in the range 35 ≤ LAS < 40 of 1.12 ∗ 0.98 = 1.10 relative to 0 < LAS < 30.
cHR corresponding to spline term for LAS 40+, giving HR due to one unit increase in

LAS in the range 40 ≤ LAS < 60 of 1.12 ∗ 0.98 ∗ 0.95 = 1.04 relative to 0 < LAS < 30.
dHR corresponding to spline term for LAS 60+, giving HR due to one unit increase in

LAS in the range LAS ≥ 60 of 1.12 ∗ 0.98 ∗ 0.95 ∗ 0.97 = 1.01 relative to 0 < LAS < 30.

or a prior waitlist cohort studied. In some cases, statistically insignificant parame-

ters are maintained as placeholders with the expectation that statistical significance

will reassert itself in future cohorts; age, assistance with ADL, PA systolic, PCO2

and creatinine fall into this category. With many fewer waitlist deaths available for

modeling purposes after LAS implementation, loss of statistical power has also been

cited as an argument for maintaining a predictor in the LAS that has previously

been shown to be statistically significant.
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Parameter estimates for fitting model (2.3) to patients awaiting transplant are

shown in Table 2.4. Risk factors, eβ̂ act multiplicatively on the number of days

lived in a year. For instance the estimated number of days lived is 102.15 × 0.11 ×

1.0725 × 0.49 × 1.073 × 1.255.5 × 0.872 × 0.600.8 = 63 days based on IPCW PO and

301.71 × 0.40 × 1.0325 × 0.92 × 1.043 × 1.065.5 × 0.922 × 0.910.8 = 283 days based

on traditional PO for a 55 year old diagnosis group D patient, who has a BMI of

25, has diabetes, requires assistance with ADL, walks 300 feet in six minutes, has

55% predicted FVC, requires 2L/min of O2 at rest, is not on a ventilator, has a

stable creatinine of 0.8mg/dl, has no partial pressure of CO2 in their blood and has

a cardiac index > 2L/min/min2. So the unadjusted PO overestimates the number

of days lived in the next year without transplant by 220 days for this very urgent

group D patient. Estimated KM and IPCW survival curves used in PO calculations

are shown in Figure 2.2; overestimation of days lived using the traditional PO model

stems from the overestimation of survival by the KM method.

Traditional and IPCW-adjusted Cox model hazard ratios estimated from the lung

candidate data are shown in Table 2.5. The difference in area under the baseline

survival curves over a year for the two methods was 11 days, with a more favorable

survival profile without adjustment. Integrating a survival curve estimated from

a traditional Cox proportional hazards model for this patient yields an estimated

number of days lived of 330, which exceeds the estimate based on the unadjusted

PO model. The IPCW-adjusted Cox model estimates a restricted mean of 301 for

the same patient. Since bias due to dependent censoring has been accounted for in

both IPCW PO method and the IPCW Cox method, different modeling restrictions

account for the observed differences in estimation. Additional information on urgency

estimates based on different modeling paradigms is given in Section 2.4.3 below.
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Figure 2.2: Waitlist survival probabilities estimated using KM and IPCW.

2.4.2 Lung recipient analysis

The post-transplant data contain 4784 patients aged 12+ who received a lung

transplant between 5/4/2005 and 9/3/2008. One-year event rates from the time

of transplant are perfectly known, i.e., no censoring, with 816 (17%) deaths within

that first year. Results from fitting model (2.3) in the uncensored case are shown

in Table 2.6. For the same group D waitlist patient described in section 2.4.1, the
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estimated days lived in the first year following transplant is 254 days based on the

model in Table 2.6. Recall that the estimated days gained in the first year following

transplant is calculated using the estimated days lived one year post-transplant as

in Section 2.4.2 minus the estimated days lived one year without transplant as in

Section 2.4.1. So the IPCW PO method estimates 254−63 = 191 days gained during

the first year after a transplant for this patient. All other methods indicate days of

life lost if transplanted. The IPCW Cox method, the traditional PO method, and

the unadjusted Cox method give 254− 301 = −47 days, 254− 283 = −29 days, and

254− 330 = −76 days, respectively.

2.4.3 Urgency, Benefit, and Lung Allocation Scores

Figure 2.3 shows boxplots of estimated transplant urgency for the 3701 waitlisted

patients by diagnosis group, the two PO modeling paradigms laid out in Table 2.4 and

the two Cox modeling paradigms in Table 2.5. By adjusting for dependent censoring,

pseudo observations based on IPCW weighted survival curves estimated a higher

urgency in Group D patients, which better matches group D survival experience

seen before organ allocation took urgency into account (i.e., before LAS-induced

dependent censoring was introduced). The integrated IPCW Cox survival curves

also show more urgency than the integrated Cox survival curves that don’t take into

account dependent censoring. The interquartile range for urgency estimates based

on integrated Cox PH survival curves is decidedly more narrow than the range of

estimated restricted means based on model 2.3 for either the PO or the IPCW PO

methods. In addition the Cox modeling approaches tend to estimate many more

days lived without transplant compared to the PO methods.

Transplant benefit calculations similar to those done for the hypothetical group
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Table 2.6: Lung post-transplant results for model (2.3) for 4784 transplant recipients
(no censored data).

eβ̂ a 95% CI p-value

(Intercept) 344.42 (303.36, 391.03) < 0.0001

Diagnosis Group (ref=Group A, primarily COPD)
Group B (primarily iPAH) 0.65 (0.52, 0.81) 0.0002
Group C (primarily CF) 0.92 (0.82, 1.04) 0.1713
Group D (primarily IPF) 0.84 (0.73, 0.96) 0.0107

Diagnosis b

Bronchiectasis 0.96 (0.78, 1.17) 0.6796
Eisenmenger 0.32 (0.11, 0.91) 0.0331
Lymphangioleiomyomatosis 1.24 (0.89, 1.74) 0.2060
Obliterativebronchiolitis 1.25 (0.93, 1.69) 0.1437
Pulmonary Fibrosis other 1.01 (0.89, 1.15) 0.8734
Sarcoidosis and PA mean > 30mm/Hg 0.90 (0.74, 1.08) 0.2561
Sarcoidosis and PA mean ≤ 30mm/Hg 1.00 (0.79, 1.26) 0.9927

Physiologic Reserve
Age > 45 spline c (yrs) 0.99 (0.99, 1.00) 0.0139
No Assistance with ADL d 1.02 (0.94, 1.11) 0.6648
Six minute walk (per 100ft) 1.01 (1.01, 1.02) 0.0002

Severity
Creatinine at transplant (mg/dl) 0.89 (0.83, 0.96) 0.0017
FVC for Dgn Groups B, D (per 10% predicted) 1.01 (0.99, 1.03) 0.4567
Continuous Mechanical Ventilation at transplant 0.72 (0.63, 0.83) < 0.0001
Cardiac Index < 2.0(L/min/min2) 0.86 (0.74, 1.00) 0.0496
O2 at rest for Dgn Group A (L/min) 0.97 (0.96, 0.99) 0.0063
O2 at rest for Dgn Group B, C, D (L/min) 0.99 (0.98, 1.00) 0.2129
Change in Creatinine ≥ 150% 0.78 (0.65, 0.95) 0.0132

aFor risk factors, eβ̂ acts multiplicatively on the number of days lived in a year.
bThese diagnoses were grouped into larger diagnosis groups (A, B, C, D) by the OPTN Thoracic

Committee for purpose of modeling risk factors that may vary by diagnosis group. Bronchiectasis,
Lymphangioleiomyomatosis, and Sarcoidosid and PA mean ≤ 30mm/Hg share risk factor param-
eters with diagnosis group A, Eisenmenger with group B, Obliterativebron-chiolitis, Pulmonary
Fibrosis other, and Sarcoidosis and PA mean > 30mm/Hg with group D.

cage> 45 spline: the maximum of 0 and age-45.
dADL: activities of daily living.

D waitlist patient described in sections 2.4.1 and 2.4.2 were done for all 3701 patients

in our waitlist cohort. Figure 2.4 shows boxplots of estimated transplant benefit by

diagnosis group using IPCW PO, traditional PO, integrated IPCW Cox PH sur-
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Figure 2.3: Urgency by Diagnosis Group.

vival and integrated Cox PH survival for this cohort. In each case the lung recipient

model used model (2.3) applied to the original (perfectly observed) data for this

setting. Patient transplant benefit calculations incorporating the IPCW PO model

for urgency identified more benefit in Group D patients than when using any other

modeling paradigm. Use of integrated IPCW Cox survival curves also exhibit more

estimated benefits than use of integrated Cox survival curves not adjusting for de-

pendent censoring. However, benefit estimates remain low, with tight interquartile

ranges, when compared to either of the PO methods.

Figure 2.5a shows scatter plots of LAS calculated using IPCW PO versus tra-

ditional PO by diagnosis group, with a 45◦ line superimposed on the plot. For

each diagnosis group, the LAS scores change substantially when taking into account
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Figure 2.4: Estimated transplant benefit at time of listing by diagnosis group and
PO estimation method for 3701 lung transplant candidates.

dependent censoring. When looking at the top 100 ranked patients based on their

IPCWPO derived LAS, their scores estimated using traditional PO methods dropped

by approximately 16 points on average (0.8 standard deviations of the estimated LAS

distribution) when not adjusting for dependent censoring. Similarly scores dropped

by approximately 36 points on average using the traditional Cox model integrated

waitlist survival curves. Model paradigm selection and adjustment for dependent

censoring have a serious impact on time to transplant for those top priority candi-

dates identified using IPCW PO methodology. Figure 2.5b shows a scatter plot of

LAS values when calculated using the IPCW PO method vs. using integrated IPCW

Cox survival curves for waitlist urgency. Circled values represent patients who would
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move from having a low allocation priority using proportional hazards assumptions

to a very high allocation priority using model (2.3). Only 30 patients are ranked in

the top 100 scores regardless of the IPCW PO method used, IPCOW PO or IPCW

Cox integrated survival curves.

2.5 Discussion

We present new methodology for estimating restricted means in the presence of

dependent censoring captured by longitudinal covariates. Upon estimation of ST (t)

using inverse weight methodology, remaining inference becomes very straight forward

using our suggested approach. In particular, it is not necessary to program compli-

cated variances of inverse weighted estimates, since the pseudo observation approach

merges nicely into use of more standard software package for regression in evaluat-

ing parameter estimates. Hence this approach can realistically be implemented by

statistical practitioners.

Statistical input into properly modeling components of the LAS in the US has

high impact on perhaps 1000 patients at any given time, as the rate of new list-

ings and waitlist removals seems to balance at that level. The success of devising

and maintaining an intelligent and practical allocation system for urgent patients

introduces a uniquely interesting set of statistical issues. Defining 1-year transplant

urgency and benefit at the individual level can be achieved successfully using our

described methodology, even when subjected to dependent censoring by transplant

for more urgent patients. Hence the LAS can be updated now and in the future

using the most recent cohort of patients with minimal bias.

When applied to the lung candidate data, the IPCW PO method gives a broader

range of urgency estimates than when estimating urgency based on integrated IPCW
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Cox model survival curves. This in turn leads to a broader range of LAS values with

which to prioritize the candidates. Our feeling is that parameterization on the scale

of the restricted mean leads to more appropriate urgency estimates than parame-

terization based on constant hazard ratios over time, particularly after viewing the

range of scores from using different modeling paradigms in Figure 2.5b.

Availability of this methodology also opens up the important possibility of adding

new predictors to the LAS, as these are identified as relevant by the transplant com-

munity and collected on OPTN lung transplant candidates. The LAS is the first

organ allocation system to explicitly order patients by both estimated urgency and

transplant benefit, although liver allocation introduced an urgency score in prior-

itizing patients around the same time the LAS was developed. No OPTN organ

allocation committees have yet updated their algorithms with adjustment for depen-

dent censoring in more recent cohorts of patients. Hence this type of analysis could

be applied to other allocation settings with similar dependent censoring issues as

well.
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(a)

(b)

Figure 2.5: LAS at listing calculated using IPCW PO, PO and Cox PH model by
diagnosis group for 3701 lung candidates.



CHAPTER III

MULTIPLE IMPUTATION FOR

DEPENDENTLY CENSORED SURVIVAL DATA

3.1 Introduction

In Chapter II, we use the IPCW PO method to estimate transplant urgency

and benefit, one of the most important goals of the lung allocation setting. However,

compared to the adjusted PO method, MI offers additional advantages. First, instead

of being restricted to a single analysis, MI lends itself to survival estimation, two-

sample testing, and estimation of restricted means, all within a framework that

allows quick and accurate estimation of variability terms. In addition, work by

several authors, including Hsu et al. (2002), Liu et al. (2010), and Faucett et al.

(2002), has indicated that efficiency and bias reduction can be achieved using MI

methods. In particular, Liu et al. (2010) found efficiency gains using an MI-based

restricted mean model when compared to a PO-based restricted mean model. In this

chapter we continue our analysis of the lung allocation data by developing an MI

approach based on restricted mean models that takes into account time-dependent

lung allocation scores that induce dependent censoring.

In survival analysis censored observations are one type of missing data, and can

thus be imputed via MI. Several authors have suggested approaches for imputation

33
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of such outcomes. Wei and Tanner (1991) applied MI to the analysis of censored

regression data, using two general algorithms for the analysis of missing-data prob-

lems: the iterative Poor Man’s Data Augmentation algorithm and the Asymptotic

Data Augmentation algorithm. Faucett, Schenker, and Taylor (2002) used auxil-

iary variables to recover information from censored observations based on MI with a

joint model of a hierarchical change-point model and a time-dependent proportional

hazards model. Taylor, Murray and Hsu (2002) proposed nonparametric multiple-

imputation methods to handle missing event times for censored observations. Hsu

et al. (2006) then proposed an MI method to estimate that uses their nonpara-

metric imputation strategy within risk sets based on similarity of hazards for event

times and censoring times. Liu et al. (2010) adopted an MI strategy where risk sets

used to select imputes come from a restricted mean model. However their algorithm

only accounts for dependent censoring via predictors known at time zero. In the

lung transplant setting, the LAS changes across time as a patient progresses, and is

highly linked to both a patient’s survival times and censoring time. Therefore, it is

important to adjust for not only the baseline LAS, but also the changing LAS across

time.

In this chapter we propose a multiple imputation algorithm that adjusts for de-

pendent censoring when imputing the censored observations. This algorithm uses a

restricted mean model described in Section 2.2.1 when building risk sets. We check

the performance of the algorithm through simulation studies. The setting of the sim-

ulations is exactly the same as described in Section 2.3 so that comparisons can be

made between the IPCW adjusted PO method and our IPCW adjusted MI method.

We will also apply the IPCW MI method to the lung transplant patient data, i.e.

estimate transplant urgency and benefit by using a multiple imputation approach.
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The rest of the chapter is structured as follows: in Section 3.2, we mainly describe

the MI method. Section 3.3 shows the performance of our IPCW MI method in sim-

ulation studies under the same settings as those conducted in Section 2.3. Section

3.4 provides an analysis of the lung transplant data using MI methods and Section

3.5 provides a brief discussion of the chapter.

3.2 Multiple Imputation Methodology

3.2.1 Background and Notation

Let T denote the failure time, C be the corresponding censoring time, T ∗ =

min(τ, T ), Z be some covariates affecting T ∗, and V̄ (t) = {V (u); 0 ≤ u ≤ t} be

the recorded history up to time t of a vector of possibly time dependent covariates

V that predict the censoring time C. The choice of τ = 1 year is of interest in the

lung allocation example; otherwise it may be any value where P (C > τ) > 0. If C

is less than T ∗, then we would not be able to observe the restricted failure time. Let

X = min(T ∗, C) denote the observable random variable, and ∆ = I(T ∗ ≤ C) be

the failure indicator variable. In cases where V influences T ∗ through C, we have

dependent censoring and traditional survival analyses are no longer unbiased. In

the remainder of the chapter, use of the subscript, i, denotes the previously defined

random variable associated with individual i, i = 1, 2, ..., n.

Imputation approaches often select imputes from an appropriate model (paramet-

ric) or risk set (semi-parametric). When the risk set is selected solely based on being

at risk at time Ci, Taylor et al. (2002) give an imputation strategy that corresponds

to the Kaplan-Meier estimate in expectation. The idea mimics the inverse transform

method often used to simulate outcomes from a particular distribution. Recall the
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inverse transform method result that for U ∼ Uniform(0,1), S−1
T (U) will follow the

distribution of T when ST (t) is the survival function for T . For a person censored at

Ci, Taylor et al. sample T |T > Ci based on an estimate of S−1
T |T>Ci

(U) that employs

the conditional Kaplan-Meier estimate among those at risk at Ci, ŜT |T>Ci
(t). In

particular, the sampled T is the smallest time that satisfies ŜT |T>Ci
(T ) ≤ U , which

always corresponds to an observed failure time occurring beyond Ci. The proba-

bility a particular T is sampled is equal to the size of the drop in the conditional

Kaplan-Meier curve at T .

In the case where censoring is dependent this imputation strategy is biased, since

the Kaplan-Meier estimate does not adequately stand in for ST |T>Ci
(t) in the inverse

transform relationship. Selecting a risk set for a patient censored at Ci based upon

T > Ci and additional covariate information can substantially reduce bias. In a

follow-up paper Hsu et al. (2006) introduced further constraints, Ri, on the risk set

members, requiring similar Cox model hazards to the patient censored at Ci so that

the impute is based upon an estimate of S−1
T |T>Ci,Ri

(U).

We introduce several useful modifications to the inverse transform strategy for

imputation to accommodate features of the lung candidate data. First, instead of

using a Kaplan-Meier based estimate, we estimate S−1
T ∗|T ∗>Ci,Ri

(U) using an IPCW

strategy that incorporates time-dependent LAS values after Ci, adjusting for addi-

tional dependent censoring within the risk set. We review inverse weight methodol-

ogy for this purpose in section 3.2.2. In section 3.2.3, we describe how our risk set

is chosen. Part of this selection is based on a τ -restricted mean model that decom-

poses log T ∗ into a piece depending on a linear predictor βTZ and a residual term

ε. This model conveniently provides residuals for each observed failure time that

we use subsequently in the imputation procedure described in section 3.2.4. That is,
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once T ∗ is sampled from the modified inverse transform imputation approach, we use

the restricted mean model residual corresponding to the sampled T ∗ and the linear

predictor βTZi from the censored individual to create the final impute, rather than

using T ∗ directly. A similar strategy of selecting residuals from a linear model was

considered by by Schenker and Taylor (1996) within a complete case risk set as well

as by Liu et al. (2011). The goal of sampling residuals is to base the variability of

the impute on the selected failure time while using a mean failure time attributed

to the patient censored at Ci, i.e., the mean predicted from the censored patient’s

particular risk factors.

3.2.2 IPCW estimate of survival

A popular method to account for dependent censoring is to estimate S(t) using

ŜW (t) = e−Λ̂W (t), where Λ̂W (t) is as described by Robins and Finkelstein (2000) and

obtained as follows.

Each subject at time t is given a weight, Wi(t), inversely proportional to his or

her probability of getting censored after time t, KV
i (t). That is,

Wi(t) = 1/KV
i (t) = 1/P (Ci > t|V̄i(t)).

A common strategy, which we also employ, is to estimate the censoring probabilities

using a Cox model with time-dependent covariates,

(3.1) λQ{t|V̄ (t)} = λQ0
(t)exp{γ′V (t)}.

In the case of the lung candidate data, time-dependent covariates in V (t) include

the LAS at time t as well as active or inactive waiting status at t. Time inde-

pendent predictors in V (t) include race, gender, blood type and height at listing.

Let NQi
(u) = I(Xi ≤ u,∆i = 0) be the observable counting process for censoring,
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NT ∗
i
(u) = I(Xi ≤ u,∆i = 1) be the observable counting process for death, and

Yi(u) = I(Xi ≥ u) be the at risk indicator for subject i at time u. Then a consistent

estimate of KV
i (t) is

K̂V
i (t) = exp{−

n
∑

k=1

∫ t

0

eγ̂
′Vi(u)dNQk

(u)
∑n

j=1 Yj(u)eγ̂
′Vj(u)

},

the subject specific weight becomes

Ŵi(t) = 1/K̂V
i (t) = exp{

n
∑

k=1

∫ t

0

eγ̂
′Vi(u)dNQk

(u)
∑n

j=1 Yj(u)eγ̂
′Vj(u)

},

and an IPCW estimator for Λ(t) is calculated using

Λ̂W (t) =
n

∑

i=1

∫ t

0

dNT ∗
i
(u) · Ŵi(u)

∑n

j=1 Yj(u) · Ŵj(u)
.

Although we estimate S(t) using ŜW (t) = e−Λ̂W (t), alternative inverse weight survival

estimates developed by Satten et al. (2001) would also be appropriate. A conditional

survival estimate among those in a risk set restricted to those with T ∗ > Ci who also

satisfy constraint, Ri, is given by

ŜW
T ∗|T ∗>Ci,Ri

(t) =
ŜW
T ∗|Ri

(t)

ŜW
T ∗|Ri

(Ci)
=

e
−Λ̂W

T∗|Ri
(t)

e
−Λ̂W

T∗|Ri
(Ci)

,

where ŜW
T ∗|Ri

(t) and Λ̂W
T ∗|Ri

(t) are IPCW estimates calculated within the risk set.

Additional details of risk set selection are in the following section.

3.2.3 Risk set selection for individual i censored at Ci < τ

The first risk set requirement is that members have T ∗ > Ci so that imputes

don’t contradict previously observed survival for patient i up to Ci. The majority of

this section describes how to define an additional constraint based on incorporating

information from covariates, Zi as well as longitudinal information pertaining to

survival in Vi(t). Although it is often possible to select individuals based on a
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limited number of risk factors, the presence of many covariates related to survival

makes grouping based on a model with a linear predictor more attractive. In the

censored data setting, with typically finite follow-up, a common regression model is

the restricted mean model

(3.2) E[log T ∗] = βTZ,

where Z is a vector of time-independent predictors. In the case of the lung candidate

data, an individual’s LAS urgency component may be estimated according to their

risk factors when T ∗ = min(1, T ).

When there is no censoring, standard linear model software is available to fit

model (3.2). When censoring is dependent, Xiang and Murray (2012) developed

an IPCW modified pseudo observation approach for obtaining estimates β̂POW

for

model (3.2).

In addition to requiring T ∗ > Ci for those in lung candidate i’s risk set, we employ

the constraint, Ri, that (a) β̂
POWTZ be within a window of β̂POWTZi, where Zi is

the vector of predictors for the individual censored at Ci. This ensures a risk set with

similar urgency to individual i at listing. We further impose the constraint that (b)

members of the risk set share the same diagnosis group (categorical component of

Zi) with (c) similar LAS values at time Ci to individual i (longitudinal component

of Vi(t) pertaining to urgency as well as transplant).

3.2.4 Multiple imputation (MI) of censored observations

The detailed steps of the algorithm is as follows.

Step 1: For each individual i censored at Ci, we select an appropriate risk set as

described in section 3.2.3.
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Step 2: Within this risk set, we then calculate the conditional survival probabil-

ities ŜW
T ∗|T ∗>Ci,Ri

as described in section 3.2.2.

Step 3: Generate U , a Uniform(0,1) random variable, and identify the observed

restricted failure time T ∗
j , where T ∗

j is the smallest restricted failure time T ∗ that

satisfies ŜW
T ∗|T ∗>Ci,Ri

(T ∗) ≤ U .

Step 4: Identify the residual εj from the model log T ∗
j = β̂POWTZj + εj corre-

sponding to the T ∗
j value selected in Step 3.

Step 5: If T ∗
j = τ , we impute T ∗

i by τ ; otherwise we add the residual of the jth

subject, εj, to Ê[log(T ∗
i )] = β̂POWTZi, and use this as the imputed value for log(T ∗

i ).

If the imputed log(T ∗
i ) < log(Ci) then repeat from step 3 until the imputed value is

greater than log(Ci).

Step 6: Repeat steps 1-5 until all the censored observations from the observed

data set are imputed.

Step 7: Repeat steps 1-6 M times so that we have M completed versions of the

observed dataset.

Once M completed data sets are obtained, we may perform analyses using the

formulaic approach given by Rubin and Little (1987). We summarize two analyses

below that are used in sections 3.2.5 and 3.2.6.

3.2.5 Restricted mean model analysis on completed datasets

For each complete dataset, fit model (3.2) with respect to the covariates Z =

(Z1, Z2, . . . , Zk) to get the parameter estimates β̂m = (β̂m0, β̂m1, . . . , β̂mk) with asso-

ciated variance matrix Ŵm, m = 1, 2, ...,M .

Our final vector of estimated MI coefficients for the restricted mean model that

adjusts for dependent censoring is β̂MIW =
∑M

m=1 β̂m/M . The variability associ-
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ated with the parameter estimates are composed of two parts, the average within-

imputation variance W̄M =
∑M

m=1 Ŵm/M , and the between-imputation variance

BM =
∑

(β̂m − β̂MIW )2/(M − 1). The variance of β̂MIW is then V = W̄M + (1 −

M−1)BM .

3.2.6 Marginal survival analysis on completed datasets

For each complete dataset, we calculate the sample proportions corresponding

to the survival estimates Ŝ1(t), Ŝ2(t), ..., ŜM(t), and their sample proportion vari-

ances V̂1(t), V̂2(t), ..., V̂M(t), where V̂m(t) = Ŝm(t)(1 − Ŝm(t))/n, m = 1, 2, ...,M .

Our final MI survival estimate that adjusts for dependent censoring is ŜMIW (t) =

∑M

m=1 Ŝm(t)/M with estimated variance

V̂ MIW (t) = M−1

M
∑

m=1

V̂m(t) + (1 +M−1)
M
∑

m=1

[Ŝm(t)− ŜMIW (t)]2/(M − 1).

3.3 Simulation Study

To study our multiple imputation method in finite sample sizes, we conducted a

simulation study where a time-dependent variable influences censoring and survival

and the mean structure follows (3.2) with T ∗ = min(5, T ). Parameter estimates

for (3.2) are calculated in cases when (a) log T ∗ is uncensored; (b) log T ∗ is subject

to censoring and is replaced by log-transformed pseudo observations defined by An-

dersen, Hansen and Klein (2004); (c) log T ∗ is subject to censoring and is replaced by

IPCW pseudo observations as described by Xiang and Murray (2012) and (d) log T ∗

is subject to censoring and is imputed as described in Section 3.2.4.

The multiple imputation approach allows for more possible analyses than merely

fitting model (3.2), hence as an example of an additional analysis of interest, the

strategy in (d) for computing point estimates for survival is compared to the Kaplan-
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Meier estimate.

In each simulation, we perform the following:

Step 1: We generate Z0 from a Bernoulli(0.5), Z1 from a Bernoulli(0.5), and Z2

from a Uniform(0,1), where Z0 and Z2 are measured at time 0 and Z1 is a time-

dependent covariate measured at time t1 = 0.2.

Step 2: Failure times, T , are generated from piecewise exponential distributions,

i.e. T has a constant hazard λz0 before time t1 that changes to λz0z1 after time

t1, where λ0 = 0.3, λ1 = 0.2, λ01 = 0.1, λ11 = 0.5 are fixed and λ00 and λ10 are

solved so that the mean structure E[log T ∗] = β0+β1Z0+β2Z2 is satisfied for a pre-

specified β = (β0, β1, β2). That is, although T ∗ is influenced by the time dependent

covariate, Z1, the restricted mean of interest is captured by baseline predictors Z0

and Z2. Further details on solving for parameters that satisfy the mean structure can

be found in the appendix of Xiang and Murray (2012), where a similar simulation

strategy is used.

Step 3: Piecewise constant hazards leading to dependent censoring times, C, are

based on the Cox model λC(t|Z̄(t)) = λC
0 (t) exp{γ0Z0+γ1I[Z0 = 0, Z1 = 1, t > t1]+

γ2I[Z0 = 1, Z1 = 0, t > t1] + γ3I[Z0 = 1, Z1 = 1, t > t1] + γ4Z2}, where λC
0 (t) = 0.15

for t ≤ t1 and λC
0 (t) = 0.4 for t > t1, γ0 = 0.3, γ1 = −1.4, γ2 = 0.5, γ3 = −1.5,

and γ4 = 1. This causes censoring to be influenced by both the first and the second

covariates in the mean structure, Z0 and Z2. And Z1, while not directly influencing

the form of the mean structure, is very much tied to both the time-to-event and

censoring mechanisms.

In interpreting results, it is useful to consider the degree of bias. We consider two

scenarios: β = (β0 = 0.8, β1 = β2 = 0) (i.e., true baseline covariate effects are zero)

and β = (β0 = 1, β1 = −0.8, β2 = −0.5) (i.e., non-zero baseline covariate effects). In
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the first scenario modest bias is produced overall with censored individuals, approx-

imately 50%, tending to have longer times-to-event. In the second scenario, overall

bias is reduced from scenario 1 with censored individuals, approximately 36%, tend-

ing to have shorter times-to-event. Methods that ignore potential bias based on any

covariates (i.e., unadjusted PO method, Kaplan-Meier) will suffer in both scenarios

1 and 2. For each scenario, 1000 simulations are run with n = 150 subjects.

We begin by summarizing results under scenario 1. Results for fitting model

(3.2) under scenario 1 (β0 = 0.8, β1 = β2 = 0) are located in part (A) of Table 3.1.

The PO method that doesn’t adjust for dependent censoring gives biased estimates

for all parameters, with bias(β̂PO
0 ) > bias(β̂PO

1 ) > bias(β̂PO
2 ). Parameter estimates,

β̂POW

, using the IPCW-adjusted PO method, labeled POW , have comparably small

bias, with a slight tendency to underestimate β0. The IPCW adjusted MI method,

labeled MIW , overall has the best track record of removing bias, particularly for the

intercept term.

Recall that in setting (1), censored individuals tend to have longer times-to-event

so that methods struggling with bias will tend to underestimate restricted lifetimes.

In the case with no censoring, i.e. no bias, the proportion of times model (3.2) esti-

mates a lower restricted lifetime than the true time-to-event is 31%. This percentage

increases as bias from estimation of model (3.2) increases. The proportion of times

that estimated restricted means undershoot the observed times-to-event is highest

for PO (55%), followed by POW , and MIW (34%, and 31% respectively).

For an individual with Z0 = 1 and Z2 = 0.5, the PO and POW methods under-

estimate the time lived during the 5-year period by 16 months and 1.5 months on

average while the MIW method is off by less than 1 day over the 5-year period.

Empirical standard deviations are comparable to standard errors averaged across
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simulations with the exception of the intercept term for the PO method. We also

investigated a version of the MIW method that incorporated a bootstrap step, as

this sometimes improves variance estimation in MI procedures. However, no tangible

improvement in variance estimation was observed from adding this extra step to the

procedure (data not shown).

In addition to fitting model (3.2), the MIW procedure can perform other tradi-

tional analyses of interest. For instance, the MIW approach gives nearly unbiased

estimates for survival for all t shown in Table 3.2 part (A) for scenario 1. This

table gives marginal survival probability estimates at years 1, 2, 3, 4 and 5. An

analysis based on an uncensored version of the data is given as well as analysis for

the censored version of the data using Kaplan-Meier survival. At 5 years, the KM

underestimates 5-year survival by 7%.

Recall that in scenario (2), (β0 = 1, β1 = −0.8, β2 = −0.5), censored patients

tended to have shorter times-to-event. The only method that does not properly

adjust for dependent censoring captured by baseline covariates, PO, once again

gives strong bias for β0 and β1 (see Table 3.1 (B)). For the remaining procedures

(POW ,MIW ), the magnitude of bias is minimal. The overall degree of bias for es-

timating the time lived during the 5 year period is approximately 4 months for the

PO method, 1 month for the POW method, and 1 day for the MIW method over

the 5 year period for a patient with Z0 = 1, Z2 = 0.5. Table 3.2(B) shows that bias

in survival estimates based on KM as opposed to MIW , does not exceed a roughly

5% overestimate of S(t) in this case.
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Table 3.2: Comparison of survival estimates using uncensored observations
(ŜUncen(t)), Kaplan Meier (ŜKM(t)) and IPCW-adjusted MI (ŜMIW (t)) under two
scenarios.

t S(t) ŜUncen(t) ŜKM (t) ŜMIW (t)

(A) Covariate effects are zero

1 0.806
0.806 0.798 0.805

[0.000, 0.032, 0.033] a [-0.008, 0.035,0.037] [-0.001, 0.033, 0.036]

2 0.664
0.671 0.645 0.672

[0.007, 0.038, 0.039] [-0.019, 0.046, 0.047] [0.008, 0.041, 0.046]

3 0.569
0.574 0.531 0.576

[0.005, 0.040, 0.040] [-0.038, 0.052, 0.053] [0.007, 0.043, 0.054]

4 0.501
0.501 0.442 0.501

[0.000, 0.041, 0.040] [-0.059, 0.056, 0.055] [0.000, 0.044, 0.065]

5 0.450
0.445 0.377 0.446

[-0.005, 0.040, 0.040] [-0.073, 0.058, 0.058] [-0.004, 0.043, 0.073]

(B) Covariate effects are non-zero

1 0.648
0.645 0.667 0.647

[-0.003, 0.039, 0.037] [0.019, 0.042, 0.041] [-0.001, 0.041, 0.043]

2 0.458
0.456 0.495 0.457

[-0.002, 0.041, 0.039] [0.037, 0.047, 0.045] [-0.001, 0.043, 0.048]

3 0.350
0.346 0.391 0.346

[-0.004, 0.039, 0.038] [0.041, 0.048, 0.047] [-0.004, 0.041, 0.047]

4 0.279
0.275 0.322 0.279

[-0.003, 0.036, 0.036] [0.043, 0.048, 0.048] [0.000, 0.039, 0.048]

5 0.230
0.227 0.273 0.234

[-0.003, 0.034, 0.034] [0.043, 0.048, 0.049] [0.004, 0.037, 0.049]

a[bias, average standard error based on individual analysis, empirical standard deviation
of parameter estimates across 1000 simulations]
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3.4 Example

We now return to the OPTN lung transplant setting. Several analyses are of

interest. For instance, physicians treating patients typically want to know the sur-

vival distribution of listed lung candidates as they await transplantation. Transplant

urgency and benefit by individual risk factors are also of interest, and lung allocation

scores based on these.

3.4.1 Lung candidate analysis and urgency

Our lung waitlist cohort consists of 3701 candidates aged 12 or older. During

the first year after listing, the censoring percentage is 73% overall, with differing

rates by diagnosis. Group D, made up of interstitial pulmonary fibrosis (IPF) and

other restrictive lung disease, has the highest censoring percentage (77%), followed

by Group A (primarily obstructive pulmonary disease, 70% censoring), Group C

(cystic fibrosis, 69% censoring) and Group B (primarily idiopathic pulmonary arterial

hypertension, 58% censoring).

Inverse weights used in our MI procedure are based on a time-dependent Cox

model for time to transplant including patients’ daily updated LAS, sex, race, blood

type, status (active, inactive, offlist), and height, as given in equation (3.1). Param-

eter estimates are displayed in 2.3. Although one might suppose that the probability

of transplant should increase monotonically with higher LAS value, the parameter

estimates from Table 2.2 suggest otherwise, likely because patients with high LAS

values are also more likely to die before an organ offer manifests.

The imputation risk set for the ith censored candidate is found by choosing can-

didates at risk at time Ci who have a similar LAS value at Ci and are in the same

diagnosis group as the censored patient i. The risk set is further restricted to hav-
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ing a similar urgency estimate based on β̂POW

as shown in the second column of

Table 3.3. The predictors used in this model precisely match those proposed by the

OPTN Thoracic Committee (OPTN Thoracic Organ Transplantation meeting min-

utes March 23, 2010); some predictors are included based on significant association

with survival seen in previously studied cohorts.

Ten imputed datasets were built from the MI procedure outlined in section 3.2.4.

Estimates, β̂MIW , based on the imputed datasets are shown in the rightmost column

of Table 3.3. Differences seen in parameter estimates using the POW and MIW

methods are typically minor with the exception of the intercept term, which is lower

using the POW method than the MIW method. This pattern was also observed to

some degree in the simulation section, where the MIW method was seen to estimate

the true intercept with less bias.

Parameters in the restricted mean model act multiplicatively on the number of

days lived in a year. For instance the estimated number of days lived is 467.34 ×

0.78 × 1.0125 × 1.01 × 1.023 × 0.922 × 0.9950 × 0.860.8 = 227 days based on MIW ,

and 102.15× 0.57× 1.0725× 1.08× 1.073× 0.872× 0.600.8 = 210 days based on POW

for a 55 year old diagnosis group C patient, who has a BMI of 25, has no diabetes,

requires no assistance with ADL, walks 300 feet in six minutes, requires 2L/min of

O2 at rest, has PCO2 of 50mmHg, is not on a ventilator, has a stable creatinine of

0.8mg/dl and has a cardiac index > 2L/min/min2.

The POW method seems to estimate less waitlist days lived in a year compared to

the MIW method. For comparison we also include urgency estimates built from an

integrated IPCW Cox model (Robins and Rotnitzky (1992), Robins (1993)), where
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the partial likelihood score function incorporating censoring weights becomes

U (β) =
n

∑

i=1

Wi(Xi)∆i{Zi(Xi)−

∑n

i=1Wi(Xi)Yi(Xi)e
βZi(Xi)

∑n

i=1 Wi(Xi)Yi(Xi)eβZi(Xi)Zi(Xi)
}.

Parameter estimates for the IPCW Cox model are located in Table 2.5. Boxplots of

patient urgency by diagnosis group are located in Figure 3.1a. Although all three

methods account for dependent censoring, differences in urgency are seen based on

method used. Methods based on restricted mean models seem to give a broader

range of estimates than urgency estimated via integrated IPCW Cox-model hazards.

The IPCW Cox urgency estimates also tend to give the highest number of days lived

during first year of listing.

A few model diagnostics were performed to assess the value of the different meth-

ods used. For instance, for censored candidates we would hope to predict a larger

number of days lived than the observed censoring time for an individual. POW ur-

gency estimates undershoot their observed censoring times 35% of the time, while

the proportions are 20% and 16% for the IPCW Cox and MIW methods, respec-

tively. Among observed failures, the sum of squared residuals between the observed

(restricted) failure times (urgencies) and the predicted days lived during the first

year of listing is smallest (10,501,085) for the MIW based estimates, followed by the

IPCW Cox urgency estimates (15,373,491) and the POW estimates (17,921,077). We

also look at the concordance index (Harrell et al. 1982; Harrell, Lee, and Mark 1996),

which is the percent of times that a model predicts two pairs of data (Xi,∆i), (Xj,∆j)

in the correct order, where the correct ordering is observable. The numbers are

80%, 77%, and 79% for the MIW , POW and IPCW Cox methods, respectively.

Marginal survival analysis shows lower survival curve estimates in group D using

MIW versus the KM (Figure 3.2). This group also experiences the shortest average
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(a)

(b)

(c) (d) Legend

Figure 3.1: Estimated transplant urgency, benefit, and LAS at time of listing by
diagnosis group and estimation method for 3701 lung transplant candidates. High
LAS values get earliest lung offers.
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times to transplant (71 days for group D, versus 126 days for group C, 170 days for

group A, and 221 days for group B (Yusen et al. 2010)).

Figure 3.2: Survival Curves for Group D patients using KM and MIW .

3.4.2 Lung recipient analysis, transplant benefit, and LAS

Recall that transplant benefit is calculated by subtracting the estimated days

lived without transplant in a year (candidate urgency) from the estimated days lived

in a year following transplant. Our lung transplant cohort consists of 4784 patients
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aged 12 or older. All patients were followed for at least one year from the time of

transplant, i.e., no censoring of the 1-year restricted mean, with 816 (17%) deaths

within that first year. Results from fitting model (3.2) in this uncensored case are

shown in Table 2.6. For the same group C waitlist patient described in section 4.1,

the estimated days lived in the first year following transplant is 266 days based on the

model in Table 2.6. So the POW method estimates 266 - 210 = 56 days gained during

the first year after a transplant for this patient, while the MIW method estimates a

gain of of 266 - 227 = 39 days during that year.

Figure 3.1b shows boxplots of estimated transplant benefit for all 3701 patients

in our waitlist cohort by diagnosis group using MIW , POW and IPCW Cox meth-

ods. Patient transplant benefit calculations incorporating the POW method tend to

estimate higher benefit, going along with their lower estimates of waitlist days lived

without transplant. LAS values using the MIW , POW and IPCW Cox methods are

shown in Figure 3.1c.

3.5 Discussion

The LAS system has been successful in prioritizing candidates for a lung trans-

plant, however, the fact that more urgent patients are more likely to be selected

for transplant has led to a statistical issue of dependent censoring. Hence all anal-

yses based on the waitlist cohort must have some adjustment to avoid bias. We

provide a useful approach for creating multiply imputed datasets that adjust for

dependent censoring. Availability of these completed datasets, along with standard

ways of combining results from complete case analyses, allows convenient and quick

additional analyses to be conducted as they arise.

Simulations indicate that marginal estimates of survival and estimates of re-
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stricted means, both very commonly explored in the lung candidate cohort, perform

well using the imputation strategy proposed. Our example also indicates improved

model prediction over both an existing POW approach and an IPCW Cox approach.

Our analyses indicate that the choice of modeling paradigm strongly influences

LAS values and therefore a patient’s chances of receiving an organ offer in time. Use

of the IPCW Cox method gives a more narrow distribution of LAS values, while

MIW and POW approaches give a broader range of scores. The POW approach

seems to inflate LAS scores somewhat compared to the others.

The LAS affects roughly 1000 lung candidates at any one time. The ability

to update the score appropriately is critical in providing fairness to candidates as

concomitant care continues to evolve and new markers are discovered that are worthy

of inclusion in the LAS algorithm. Our MIW approach can successfully navigate

dependent censoring issues on the lung waitlist and is also appropriate in other

settings where longitudinal factors influence dropout as well as survival over time.
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CHAPTER IV

MULTIPLE IMPUTATION FOR

QUALITY-ADJUSTED SURVIVAL DATA

4.1 Introduction

Quality-adjusted lifetime (QAL) analysis is of interest in settings where there is

a trade-off between survival benefit and QAL benefit in recommending a therapy.

A common example occurs in breast cancer research, where initial investments in

radiation and/or chemotherapy early on can reap rewards of longer life down the line.

Patients first experience treatment toxicity (TOX), then go through a disease-free

period known as time without symptoms or toxicity (TWiST) and finally experience

a period of cancer relapse (REL), if not precluded by death. Such is the case in

the IBCSG Ludwig Trial V clinical trial of adjuvant chemoendocrine therapy for

stage II breast cancer patients. The study compares a short regimen of perioperative

systemic treatment versus a prolonged adjuvant therapy regimen. Longer therapy

was hypothesized to prolong lifetime, but at the cost of a longer TOX period. A

natural, patient-oriented, question is whether the gains in survival are worth the

extra time spent enduring the unpleasant side effects of treatment.

Quality-adjusted survival analysis takes patients’ quality of life (QOL) into con-

sideration when assessing a time-to-event. Utility scores ranging from 0 to 1 assign

55
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partial credit for time spent in different health states. Smaller utility scores imply

less preference for a health state, with 0 credit being the harshest penalty for quality

of life in a state; indicating either a death state or a life state worth giving up entirely

rather than enduring for a moment. When data are uncensored, a quality-adjusted

survival time is constructed by summing the utility scores times the length of their

associated health states. The resulting QAL, QT , is always less than or equal to the

unadjusted lifetime, T . In this way both quantity and quality of life are considered

in an analysis of the combined endpoint.

When there is no censoring, one may estimate the distribution ofQT using sample

proportions and E(QT ) using a standard sample mean. Multivariate regression on

QT is also available using standard software for generalized linear models. However

in the more common case where follow-up is incomplete, Gelber, Gelman and Gold-

hirsch (1989) documented dependent censoring problems associated with shrinking

the time scale via QOL utilities as described above. A very nice summary of this

type of bias is given by Glasziou, Simes and Gelber (1990). Briefly, those with longer

follow-up times on the standard lifetime scale accumulate quality-adjusted survival

more easily on the shifted quality-adjusted lifetime scale. For example, it is easier to

observe an individual accumulating a single QAL year when followed for 10 years as

opposed to one year. Overestimation of restricted means and other QAL summary

measures often occurs when no adjustment is made.

Numerous authors have developed QAL analyses, appropriate in the presence of

censoring, that pertain to the distribution of QAL, its restricted mean or regres-

sion models linked to parameters of its distribution. Many of the earliest contri-

butions to this area built upon restricted mean QAL as envisioned by Gelber and

Goldhirsch with their various coauthors. They introduce the quality adjusted end-
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points, TWiST (1986, 1987, 1989), and later Q-TWiST (Quality-Adjusted Time

Without Symptoms or Toxicity, 1989). When estimating restricted mean QAL using

a Q-TWiST oriented method, one first estimates restricted means for lifetime spent

within partitioned health states (unadjusted for quality-of-life). When health tran-

sitions are based on ordered times-to-event, such as time to end of toxicity, TTOX ,

time to relapse, TREL and time to death, TOS, one may estimate health state spe-

cific restricted means by taking differences between estimated survival curves based

on these events. Marginal restricted mean QAL estimates are then obtained by

summing state-specific restricted mean lifetimes weighted by their associated utility

scores. Glasziou, Simes, and Gelber (1990) constructed Q-TWiST styled estimators

using differences between integrated Kaplan-Meier curves to estimate restricted mean

lifetimes within partitioned health states and then performed two-sample treatment

difference tests for different choices of utility scores. Cole, Gelber, and Goldhirsch

(1993) used a Q-TWiST approach where restricted mean lifetimes in each state were

estimated via integrated multivariate Cox survival curves, allowing for covariate in-

fluence in estimation. Cole, Gelber and Anderson (1994) suggested a semi-Markov

stochastic process representation of transitions between partitioned health states and

estimated restricted mean lifetimes within each health state using a parametric accel-

erated failure time regression approach. Gelber, Cole, Gelber and Goldhirsch (1995)

give a nice review of many of the Q-TWiST oriented approaches mentioned above.

Many additional authors over the years have applied and broadened Q-TWiST fla-

vored, utility weighted combinations of restricted mean lifetimes within partitioned

health states and this approach to estimating restricted mean QAL continues to be

popular.

An important contribution to quality-of-life adjusted censored survival method-
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ology literature was Zhao and Tsiatis’ method for consistently estimating the dis-

tribution of QT , where an inverse weight approach modified for the censored QAL

setting is used to account for the dependent censoring bias observed by previous au-

thors (Zhao and Tsiatis 1997, 1999). In addition to being able to graphically display

and make inference on estimated survival functions for QT , estimation of restricted

mean QAL reduced to integrating Zhao and Tsiatis’ estimate rather than estimat-

ing, weighting and summing restricted mean lifetimes separately for each partitioned

health state as had been the standard practice using variations of Q-TWiST. In

follow-up papers, Zhao and Tsiatis proposed a broader class of estimators for re-

stricted mean QAL (2000) and developed two-sample tests (2001), again working on

the QT timescale. Since their initial work, more authors have moved toward using

similar inverse weight approaches that allow estimation, testing and regression di-

rectly on censored QT outcomes rather than estimation, testing and regression within

separate health states. Among authors working along these lines, Bang and Tsiatis

(2002) developed regression models for median QAL, Wang and Zhao (2007) devel-

oped regression models for restricted mean QAL using weighted estimating equations

and Andrei and Murray (2007) proposed regression models for restricted mean QAL

using a pseudo observation (PO) approach.

When a practitioner desires a particular type of QAL analysis, a literature search

can often turn up something appropriate. An email to the authors may result in

obtaining useful software, or software close to what is required with modification.

In cases where a literature search does not provide a satisfactory answer, however,

one is left to develop needed methodology and software without much assistance.

An alternative to obtaining or developing software for each specific type of desired

analysis in the QAL setting is to create uncensored versions of the QAL outcomes,
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QT , via a multiple imputation approach and take advantage of the extensive library

of available software that may be applied to uncensored outcomes.

In the censored survival setting, multiple imputation approaches have been suc-

cessfully developed by many authors including Wei and Tanner (1991), Taylor, Mur-

ray and Hsu (2002), Faucett Schenker, and Taylor (2002), Hsu, Taylor, and Murray

(2006) and Liu, Murray, and Tsodikov (2011). But to date, we are not aware of

any methods that extend the advantages of the multiple imputation approach to the

censored QAL setting.

In this chapter we describe a multiple imputation approach appropriate for use

with censored QAL outcomes. We incorporate two strategies that have been success-

ful when censoring is dependent in the censored survival setting: (1) definition of a

risk set of patients similar to the censored patient being imputed and (2) estimation

of an appropriate inverse-transform relationship for sampling particular failure times

from the risk set when imputing the censored outcome. Zhao and Tsiatis’ estimates

of the distribution of QT within these risk sets are useful toward this goal. We

also employ a restricted mean QAL model that defines QT failure times in terms of

an estimated restricted mean and a residual as part of a technique to calibrate an

impute based on the observed covariates of the censored individual.

The rest of the chapter is structured as follows: in section 2, we describe our

MI method in more detail. Section 3 gives finite sample results of analyses based

on multiply imputed data sets. An analysis of data from the International Breast

Cancer Study Group Ludwig Trial V appears in section 4. Discussion follows in

section 5.
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4.2 Multiple Imputation Methodology

In section 4.2.1, notation and definitions related to quality-adjusted lifetimes are

given. An inverse transform method of selecting imputes from a particular distri-

bution is then reviewed in section 4.2.2. In the context of quality adjusted survival

analysis, this inverse transform imputation method will require Zhao and Tsiatis’

consistent estimator for the distribution of the quality-adjusted life, which we review

in section 4.2.3. Risk set selection constraining imputes to those with similar quality-

adjusted restricted means is summarized in section 4.2.4. Steps for building complete

datasets via multiple imputation are listed in section 4.2.5 using tools from earlier

sections. Finally, a review of how to summarize inference based on the completed

datasets, now in the context of quality-adjusted survival analysis, is given in sections

4.2.6 and 4.2.7.

4.2.1 Background and Notation

We borrow notation for quality-adjusted outcomes from Zhao and Tsiatis (1997),

as well as working assumptions. Assume that continuous lifetime, T , is subject to

independent right-censoring by continuously-distributed variable, C. The observed

follow-up time is X =min{T,C}, with censoring indicator, ∆ = I(T ≤ C). Also

assume a constant L > 0 such that the support of T is included in [0, L] and P (C >

L) > 0. Individual health history is captured by a continuous-time stochastic process

V (·) with states 0, 1, ..., S, where a deterministic utility function Q(·) assigns to each

health state a value between 0 and 1. A score of 0 on this scale corresponds to a

quality of life equivalent to (or worse than) death and a score of 1 is interpreted as

QOL in the absence of disease. In addition, assume a p-dimensional baseline covariate

vector Z collected on every individual. Throughout the chapter, the subscript, i,
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attached to a previously defined quantity indicates that it corresponds to the ith

individual in the sample. Altogether, the observed data are D = [Xi,∆i, {Vi(t); 0 ≤

t ≤ Xi},Zi], for i ∈ {1, ..., n}.

QOL-adjusted lifetime is defined as QT =
∫ T

0
Q{V (t)}dt so that, instead of the

full accumulated length of life in each state, a person receives different levels of partial

credit for enduring states of life of less than perfect quality. Similarly, the censoring

random variable on the quality-adjusted lifetime scale is QC =
∫ C

0
Q{V (t)}dt, which

measures the amount of quality-adjusted lifetime accrued by time C. The observed

quality-adjusted follow-up time is QX =
∫ X

0
Q{V (t)}dt =min{QT,QC}.

In many clinical trials, a pre-specified timeframe, say [0, τ ], is of interest where

τ ≤ L. When the number of quality-adjusted days lived during a study period

is of interest we may choose τ ≈ L; in other contexts a τ = 1-year or τ = 5-

year summary measure may be desired. When QT is restricted by τ , we define

QT ∗ =
∫ T∧τ

0
Q{V (t)}dt, and QX∗ =

∫ X∧τ

0
Q{V (t)}dt. In general, the τ -restricted

mean QOL-adjusted lifetime is defined as µQ(τ) =
∫ τ

0
P (QT ∗ > q)dq.

4.2.2 Inverse transform imputation strategy

The following inverse transform approach for selecting imputes has been used

in traditional censored survival analysis literature (Taylor, Murray and Hsu (2002),

Hsu et al. (2006), Liu, Murray and Tsodikov (2011)) but has never been discussed

in the context of quality-adjusted survival. We build from the result that for any

random variable U ∼ Uniform(0, 1), S−1
QT ∗(U) will follow the distribution of QT ∗,

where SQT ∗(t) = P (QT ∗ > t).

For an individual censored at Ci < τ , we wish to sample from the distribution

of QT ∗ given QT ∗ > QCi. Additional constraints, Ri, involving Zi are discussed
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later in section 4.2.4, so that in total, we wish to sample from the distribution of

QT ∗|QT ∗ > QCi, Ri.

The inverse transform result described above suggests sampling QT ∗ based on an

estimate of S−1
QT ∗|QT ∗>QCi,Ri

(U). In the following section we provide details on how to

construct a Zhao and Tsiatis consistent estimate of SQT ∗|QT ∗>QCi,Ri
(t), ŜQT ∗|QT ∗>QCi,Ri

(t),

within the subset of individuals satisfying the constraint, Ri. The sampled QT ∗

based on the inverse transform approach is the smallest restricted quality-adjusted

failure time that satisfies ŜQT ∗|QT ∗>QCi,Ri
(QT ∗) ≤ U . The sampled QT ∗ is always

one of the observed QT ∗ values occurring after QCi that also satisfies the constraint,

Ri. The probability of QT ∗ being sampled corresponds to the size of the drop in

ŜQT ∗|QT ∗>QCi,Ri
(t) at QT ∗.

4.2.3 A consistent estimator for the distribution of quality-adjusted
survival time

In developing an unbiased estimator for the distribution of quality-adjusted life-

time, Zhao and Tsiatis (1997) defined Di(x) as the time it would take on the tra-

ditional time scale to know whether or not the ith individual accumulates at least

x units of quality- adjusted lifetime on the quality-adjusted timescale. That is,

Di(x) = inf [s :
∫ s

0
Q{Vi(t)}dt ≥ x] ∧min(Ti, τ). Use of Di(x) is convenient for re-

lating outcomes on the traditional timescale, such as Ci, to outcomes on the quality-

adjusted timescale, such as QT ∗ or QX∗. An indicator function for being able to

observe whether t units of quality-adjusted lifetime are accumulated on the quality-

adjusted timescale becomes I{Ci > Di(t)}. Zhao and Tsiatis then define a consistent

(inverse-weighted) estimator for the survival function of QT ∗ as

(4.1) ŜQT ∗(t) = n−1

n
∑

i=1

I{Ci > Di(t)}

Ĝ{Di(t)}
I{QX∗

i > t},
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where Ĝ(·) is the Kaplan-Meier estimator for the censoring time C, based on data

{(Xi,∆i), i = 1, ..., n}. Using members of the risk set defined for individual i cen-

sored at Ci, as described in the following section, we estimate ŜQT ∗|QT ∗>QCi,Ri
(t) by

applying the same approach in equation (4.1) to this group of individuals.

4.2.4 Risk set selection for an individual censored at Ci < τ

The idea behind risk sets in imputation literature is that within such a set, failure

times are more homogeneous, improving the quality of imputes when selected from

members of the set. First, we require members of the risk set to have QT ∗ > QCi,

so that the imputed quality-adjusted failure time will be larger than individual i’s

already accumulated quality-adjusted lifetime at Ci. We also propose using covariate

information to gather individuals with similar estimated quality-adjusted survival via

a restricted mean model

(4.2) E[log(QT ∗)|Z] = βTZ,

where β = (β1, ..., βp) is a p-dimensional parameter. That is, in addition to requiring

QT ∗ > QCi, an additional constraint, Ri, for belonging to the risk set is to require

β̂TZ to be similar to β̂TZi for the patient censored at Ci. This is the primary com-

ponent of the constraint, Ri, although for a particularly predictive covariate within

(4.2), it may be attractive to impose a further restriction that links membership in

the risk set to having this characteristic in common with individual i. One may

also consider constraining a risk set membership to those with similar V (Ci) to the

patient censored at Ci, provided that the sample size of the study is large enough to

support this additional restriction. In the Appendix we briefly describe how to ob-

tain estimates of β, β̂PO, from a quality-adjusted restricted mean model (4.2) using

pseudo-observations similar in flavor to those used by Andrei and Murray (2007).
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We modify their pseudo-observations so that they are constructed on the logQT ∗

scale rather than the QT ∗ scale. Once β̂PO estimates are obtained, we use β̂POZi

to define a constraint, Ri, used in imputing QT ∗ for individual i.

4.2.5 MI algorithm

Step 1: For each individual censored at Ci, we select an appropriate risk set as

described in section 4.2.4.

Step 2: Within this risk set, we then calculate ŜQT ∗|QT ∗>QCi,Ri
(t) as described in

section 4.2.3.

Step 3: Generate a Uniform(0, 1) random variable, U , and identify the value, QT ∗
j ,

that is the smallest quality-adjusted failure time satisfying ŜQT ∗|QT ∗>QCi,Ri
(QT ∗

j ) ≤

U .

Step 4: Identify the residual εj from the model log(QT ∗
j ) = β̂POT

Zj + εj correspond-

ing to the observed QT ∗
j value selected in Step 3.

Step 5: If QT ∗
j = τ , we impute QT ∗

i by τ ; otherwise we add the residual of the

jth subject, εj, to Ê[log(QT ∗
i )] = β̂POT

Zi, and use this as the imputed value for

log(QT ∗
i ). If the imputed log(QT ∗

i ) < log(QCi) then repeat from step 3 until the

imputed value is greater than log(QCi).

Step 6: Repeat steps 1-5 until all the censored observations from the observed data

set are imputed.

Step 7: Repeat steps 1-6 M times so that we have M completed versions of the

observed dataset.

Once M completed data sets are obtained, we may perform analyses using the

formulaic approach given by Rubin and Little (1987). We summarize two analyses

below that are used in sections 4.2.6 and 4.2.7.
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4.2.6 Quality-adjusted restricted mean model analysis on completed data-
sets

For each complete dataset, m = 1, 2, ...,M , obtain the parameter estimates β̂m =

(β̂m0, β̂m1, . . . , β̂mp) with associated estimated variance matrix Ŵm for the covariates

Z = (Z1, Z2, . . . , Zp) based on model (4.2).

The final MI estimates combining the M vectors of coefficient estimates for the

quality-adjusted restricted mean model is β̂MI =
∑M

m=1 β̂m/M . The estimated vari-

ability associated with the parameter estimates are composed of two parts, the av-

erage within-imputation variance estimate W̄M =
∑M

m=1 Ŵm/M , and the between-

imputation variance estimateBM =
∑

(β̂m−β̂MI)2/(M−1). The estimated variance

of β̂MI is then V = W̄M + (1−M−1)BM .

4.2.7 Marginal quality-adjusted survival analysis on completed datasets

For each complete dataset, m = 1, 2, ...,M , we calculate the quality-adjusted

survival estimate ŜQT (m)(t) as the sample proportion of individuals in data set m

with QT ∗ > t. Its estimated variance becomes V̂m(t) = ŜQT (m)(t)(1− ŜQT (m)(t))/n.

Our final MI survival estimate that adjusts for dependent censoring is ŜMI
QT (t) =

∑M

m=1 ŜQT (m)(t)/M with estimated variance V̂ MI(t) = M−1
∑M

m=1 V̂m(t) + (1 +

M−1)
∑M

m=1 [ŜQT (m)(t)− ŜMI
QT (t)]

2/(M − 1).

4.3 Simulation Studies

To access finite sample performance of our MI method in estimating the marginal

distribution of QT ∗ and parameters from multivariate restricted mean QAL models

as in equation (4.2), we have conducted simulations under three scenarios with n =

150 where accrual of QAL over τ = 2 years is of interest. The utility function

Q(s) = s/100, where s ∈ S = 0, 1, ..., 100, is used in all settings. We summarize



66

results based on 1000 simulations per scenario. In each simulation, we perform the

following:

Step 1: Independently generate Z1 from a Bernoulli(0.5) distribution and Z2 from

a Uniform(0,1) distribution.

Step 2: Generate failure times, Ti, from Exponential(λi) distributions, i = 1, . . . , 150

where the parameters λi depend on individual i′s covariates so that the mean struc-

ture E[log(QT ∗)] = β0 + β1Z1 + β2Z2 is satisfied. Algebraic details for calculation of

λi are given in the Appendix.

Step 3: Generate censoring times, C, from an Exponential(1) distribution for

scenarios 1 and 2. In scenario 3, we generate Ci based on individual i’s Z2i covariate

using an Exponential{2(1−Z2i)}. The resulting censoring percentages range between

40− 50% for the 3 settings.

Step 4: Generate the health state process, V (t), for the 3 different settings as

follows.

In the first scenario, the health process remains in the best state for all patients,

i.e., V (t) = 100 for all t. Therefore, QT ∗ reduces to min(T , 2 years). In the second

scenario, patient i’s health process depends on their death time Ti via

Vi(t) =
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In scenario 3, patient i’s health state process depends on both Ti and their co-
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variates:

Vi(t) =
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4
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In each scenario, we compare parameter estimates from fitting model (4.2) using

(i) QAL pseudo-observations as defined in the Appendix, and (ii) our MI approach.

The results for scenario 1 are shown in Table 4.1(A), where all individuals have

perfect health and are assigned utility score of 1 all the time. There is, therefore, no

induced informative censoring involved. The two methods, PO and MI, have similar

performance in terms of bias and standard errors. In the second scenario {Table

4.1(B)}, results using PO and MI are similar except for the intercept term, where

the MI method is less biased than the PO method. Recall that in the third scenario,

censoring depends on Z2 so that larger Z2 values allow larger follow-up times. The

PO estimate for β2 seems slightly underestimated in this case. Although the PO
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method adjusts for dependent censoring caused by shifting the the QAL timescale,

it does not adjust for dependent censoring associated with covariate Z2. Since the

MI method uses information on estimated restricted means when defining risk sets,

the MI estimate for β2 is less affected by the censoring pattern.

Marginal quality-adjusted survival estimates, calculated using MI as described

in section 4.2.7, are given in Table 4.2. For comparison we also give Kaplan-Meier

estimates for the distribution of QT that are susceptible to overestimating quality-

adjusted survival. In scenario 1, the Kaplan-Meier method does not have to contend

with dependent censoring and remains the nonparametric maximum likelihood es-

timator in this case. Point estimates based on the MI method are reasonably close

to the correct probabilities, but the Kaplan-Meier clearly remains the preferred esti-

mate in this case. In scenario 2, Kaplan-Meier estimates are known to have positive

bias, and moderate overestimates of quality-adjusted survival are seen. The MI es-

timates in this case outperform the Kaplan-Meier. Interestingly, in scenario 3 the

direction of bias caused by Z2 (censored patients have longer QAL) seems to coun-

teract the Kaplan-Meier’s tendency to overestimate QAL survival, so both MI and

Kaplan-Meier estimates perform well in this case, although this behavior for the Ka-

plan Meier does not generally hold. We also calculated Zhao and Tsiatis’s survival

estimates and found good performance in all but the final scenario, where point esti-

mates for quality-adjusted survival slightly underestimate the truth due to dependent

censoring from Z2.

4.4 IBCSG Ludwig Trial V Example

We apply our imputation method to a subset of 715 premenopausal breast cancer

patients from the IBCSG Ludwig Trial V who were randomized to one course of
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Table 4.1: Comparison of estimates fitting model (4.2) using pseudo observation
(PO), and multiple imputations (MI) under three scenarios.

Parameters PO MI

(A) Scenario 1: 40.3% censoring

β0 = −1
-0.957 -1.005

[0.043, 0.231, 0.241] a [-0.005, 0.234, 0.264]

β1 = 1
0.973 1.003

[-0.027, 0.207, 0.204] [0.003, 0.209, 0.223]

β2 = −1
-0.962 -0.994

[0.038, 0.359, 0.366] [0.006, 0.363, 0.413]

(B) Scenario 2: 48.8% censoring

β0 = −1
-0.821 -1.005

[0.179, 0.235, 0.290] [-0.005, 0.231, 0.252]

β1 = 1
1.037 1.032

[0.037, 0.209, 0.207] [0.032, 0.206, 0.233]

β2 = −1
-1.055 -0.985

[-0.055, 0.364, 0.376] [0.015, 0.356, 0.399]

(C) Scenario 3: 43.1% censoring

β0 = −1
-0.990 -1.005

[0.010, 0.228, 0.246] [-0.005, 0.236, 0.274]

β1 = 1
0.966 1.027

[0.034, 0.203, 0.196] [0.027, 0.208, 0.219]

β2 = −1
-0.904 -0.969

[0.096, 0.353, 0.368] [0.031, 0.359, 0.404]

a[bias, average standard error based on individual analysis, empirical stan-
dard deviation of parameter estimates across 1000 simulations]
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Table 4.2: Comparison of quality-adjusted survival estimates using, Kaplan Meier
(ŜKM

QT (t)) and multiple imputation (ŜMIW

QT (t)) under three scenarios.

t SQT (t) ŜKM
QT (t) ŜMI

QT (t)

(A) Scenario 1

0.5 0.470
0.471 0.470

[0.001, 0.047,0.049] a [0.000, 0.044, 0.049]

1 0.263
0.264 0.262

[0.001, 0.048, 0.047] [-0.001, 0.040, 0.048]

1.5 0.162
0.163 0.161

[0.001, 0.048, 0.048] [-0.001, 0.034, 0.049]

2− 0.105
0.108 0

[0.003, 0.047, 0.047] [-0.105, 0, 0]

(B) Scenario 2

0.5 0.490
0.518 0.483

[0.028, 0.047,0.050] [-0.007, 0.044, 0.055]

1 0.290
0.343 0.269

[0.053, 0.054, 0.056] [-0.021, 0.041, 0.055]

1.5 0.172
0.236 0.159

[0.064, 0.062, 0.064] [-0.013, 0.034, 0.053]

2− 0.022
0.055 0

[0.033, 0.058, 0.043] [-0.022, 0, 0]

(C) Scenario 3

0.5 0.480
0.477 0.483

[-0.003, 0.048,0.049] [0.003, 0.045, 0.051]

1 0.277
0.266 0.276

[-0.011, 0.051, 0.053] [-0.001, 0.042, 0.059]

1.5 0.172
0.157 0.168

[-0.015, 0.050, 0.054] [-0.004, 0.034, 0.062]

2− 0.000
0.025 0

[0.025, 0.039, 0.024] [0.000, 0, 0]

a[bias, average standard error based on individual analysis, empirical
standard deviation of parameter estimates across 1000 simulations]
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perioperative systemic treatment (short duration) or 6 to 7 courses of prolonged

adjuvant therapy (long duration). As mentioned in the introduction, the course of

breast cancer may be summarized by three states: TOX, TWiST, and REL. Let

TTOX be the duration of TOX, which occurs from the beginning of study until the

end of the treatment, TTWiST be the length of TWiST, and TREL be the time a

person lives after disease recurrence (REL). The quality-adjusted lifetime is then

QT = µTOXTTOX + TTWiST + µRELTREL, where µTOX and µREL are utility scores

for the toxicity and the relapse periods, ranging between 0 and 1. Here we use

µTOX = 0.5 as employed by Gelber et al. (1991).

A thorough analysis of QAL includes estimation of QAL survival in the two

treatment groups and multivariate analysis studying the influence of patient risk

profile on restricted mean QAL. We evaluate QAL that would be accumulated over

a 5 year period and its relationship with age, estrogen-receptor (ER) status (positive

or negative/unknown), tumor size measured in centimeters (greater than 2cm or

not), and node group. Sensitivity analyses are done to address the effect of µREL.

In the case where µREL is taken to be 0.5, the PO component of Table 4.3 was

used to construct risk sets for imputation as described in section 4.2.4. The resulting

MI algorithm, summarized in section 4.2.5, produced the long and short duration

treatment quality-adjusted survival curve estimates displayed in Figure 4.1.

Quality-adjusted survival curves can be a bit tricky to interpret when one is used

to interpreting unadjusted survival curves. Each point on the quality-adjusted sur-

vival curve needs to be interpreted in terms of the amount of QAL accrued over

5 years. For instance, the overlap in quality-adjusted survival curves at month 22

indicates that slightly over 80% of patients in either treatment group is able to accu-

mulate at least 22 months of quality-adjusted survival time over the five year period.
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However it is not possible to know from the curves, without further information, how

much follow-up time it took the short duration treatment group to accrue 22 months

of QAL compared to the long duration group. In fact, since the long duration treat-

ment was exposed to toxicity for 5-6 months longer it is likely that patients on that

treatment arm had to be followed for another 5-6 more months before accruing those

22 months of QAL.

The QAL benefit associated with the long duration treatment is shown when

larger percentages of those patients are able to accrue the higher QAL times between

22 and about 54-55 months. This happens because the time to relapse is delayed

in these patients. Only 27.6% of long-duration patients have relapsed at 5 years as

opposed to 38.9% of the short duration therapy patients. However, since the long

duration patients had roughly 6-7 total courses of toxic therapy, that final 5 months

or so of QAL between 55 and 60 months is very difficult to accrue, causing the

quality-adjusted survival curve to drop precipitously at around 55 months. Hence

this final drop in quality-adjusted survival is not due to a sudden disadvantage in

either QOL or survival at 55 months, but is caused by the extra months of toxicity

experienced at the beginning of the trial.

Our analysis continues with MI results for the restricted mean QAL analysis

in Table 4.3, again assuming µREL = 0.5. Parameter estimates are very similar

using both the MI and the PO methods. To estimate a restricted mean based on

individual risk factors from the table, one multiplies the exponentiated parameter

estimates raised to the power of the covariate value. For instance, using the MI model

results, a 40 year old premenopausal woman with negative ER status, 10 positive

nodes, a 3 cm diameter tumor in the long-duration treatment therapy will accrue

32.39 ∗ 1.074 ∗ 0.84 ∗ 0.61 ∗ 1.1 = 24 QAL months over the 5 year period, whereas
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on the short duration therapy this same patient would accrue 22 QAL months over

the 5 year period. So the extra QAL gained for an extremely ill patient like this is

merely 2 months when selecting the long-duration treatment and the extra time on

toxicity. However, a patient projected to live 54 QAL months on the short duration

treatment would accrue 54*1.10=59.4 QAL months on the long duration treatment,

a gain of 5.4 QAL months that might be worth the extra time in toxicity.

Figure 4.1: Quality-adjusted survival by treatment group for 715 breast cancer pa-
tients, with µREL = 0.5, and µTOX = 0.5.
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The choice of treatment regimen is also affected by the choice of the µREL utility

score for the relapse period, which shifts the QAL values for the study and alters

the fitted restricted mean model parameters. Figure 4.2a shows how the treatment

effect parameter changes as a function of µREL, where the vertical dashed line at

µREL = 0.5 corresponds to the estimated treatment parameter seen in Table 4.3.

So for those who have little tolerance for the QOL during relapse, small µREL, the

argument for enduring the long duration therapy becomes slightly more persuasive.

And for those who weight time spent in relapse with a higher µREL, the treatment

effect loses statistical significance and treatment choices become more ambivalent

in terms of QAL gains. Figures 4.2b, 4.3a, 4.3b, 4.3c and 4.3d show changes in

estimated parameters for age, number of positive nodes, tumor size and ER status

as functions of µREL.

4.5 Discussion

Quality-adjusted survival estimates play a key role in computation for both the

PO method and the MI method discussed in this work. However, interpretation

of point estimates for quality-adjusted survival on the quality-adjusted time scale

can be difficult when making comparisons. For instance when calculating 1-year

quality-adjusted survival, a subgroup experiencing perfect health with no mortality

will accrue 1-year of QAL over a single year of traditional follow-up time while a

subgroup consistently experiencing 50% QOL with no mortality will require 2-years

of traditional follow-up time to accrue 1 year of QAL. Without any deaths and with

at least 2 years of traditional follow-up, both subgroups will have SQT ∗(1 year)=1,

looking comparable at this quality-adjusted time point even though the experience of

the subgroups differ. Summary statistics computed over a common traditional follow-
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(a)

(b)

Figure 4.2: Treatment and age coefficient estimates adjusting for other covariates
using MI.
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(a) (b)

(c) (d)

Figure 4.3: Node group, tumor size, and estrogen receptor status coefficient estimates
adjusting for other covariates using MI.
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up time, such as restricted mean QAL or quantiles of restricted QAL, continue to be

the most interpretable ways of comparing QAL experiences of groups. Techniques

requiring proportional hazards have not risen in popularity for QAL settings since, as

in the breast cancer example, hazards for treatment regimens with different lengths

of toxicity tend to eventually cross.

We studied our MI approach for producing restricted mean parameters for model

(4.2) as well as quality-adjusted survival estimates. However, these datasets may also

be used for other analyses as well. One need only locate software in the more common

case where there is no censoring, obtain desired estimates and their variances, and

combine results using standard approaches as in sections 4.2.6 and 4.2.7.

In our work, we have observed that PO methods for QAL data have difficulty

in estimating intercepts in the restricted mean framework. This problem seems

to be somewhat improved by constructing pseudo observations on the log scale,

but remains an issue to watch for when using those methods, particularly when

there is a large proportion of censoring. Liu et al. (2011) and Xiang and Murray

(2012) also reported a slight underestimation of the intercept when using pseudo

observations and inverse weighted pseudo observations in restricted mean models.

Our MI approach takes advantage of the simplicity of PO regression when grouping

individuals into risk sets; risk set selection is essentially unaffected by intercept issues.

Our MI procedure has an improved fit for the intercept compared to the PO method,

giving better restricted mean estimates. In addition, our simulation results indicate

that dependent censoring caused by a baseline covariate is accounted for well using

the MI approach. This is consistent to what Liu et al. (2011) noted when using a

MI method for restricted mean analysis on the traditional time scale.
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APPENDIX A

Appendix for Chapter II

In Section 2.3, we simulate settings when dependent censoring affects estimation of

(2.3) unless adjustments are made via the IPCW PO method. The survival function

for piecewise exponential failure times used in Section 2.3 is

ST (t) =











e−λZ0
t 0 ≤ t ≤ t1

e−λZ0
t1e−λZ0Z1

(t−t1) t > t1 ,

with pdf

fT (t) =











λZ0
· e−λZ0

t 0 ≤ t ≤ t1

λZ0Z1
· e−(λZ0

−λZ0Z1
)t1 · e−λZ0Z1

t t > t1 .

In Section 2.3 step 2, parameters λ0 = 0.3, λ1 = 0.2, λ01 = 0.1 and λ11 = 0.5 are

fixed. The remaining parameters λ00 and λ10 are chosen to satisfy (2.3) as described

below. Recall that Z1 is measured at time t1 = 0.2 and that τ = 5. Also Z0 and Z1

are generated from independent Bernoulli(0.5).

E[log{min(τ, T )}]

=E
[

E[log{min(τ, T )}|Z1]
]

=
∑

z1

P (Z1 = z1)E[log{min(τ, T )}|Z1 = z1]

=0.5E[log{min(τ, T )}|Z1 = 0] + 0.5E[log{min(τ, T )}|Z1 = 1]
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When Z0 = 0, we have

E[log{min(τ, T )}]

=0.5[(

∫ t1

0

log t · λ0e
−λ0tdt+

∫ τ

t1

log t · λ00 · e
−(λ0−λ00)t1 · e−λ00tdt

+ log τ · e−λ0t1 · e−λ00(τ−t1)] + 0.5[(

∫ t1

0

log t · λ0e
−λ0tdt

+

∫ τ

t1

log t · λ01 · e
−(λ0−λ01)t1 · e−λ01tdt+ log τ · e−λ0t1 · e−λ01(τ−t1)]

=β0 + β2Z2

We solve the above equation for λ00. Similarly when Z0 = 1 we solve the following

equation for λ10.

E[log{min(τ, T )}]

=0.5[(

∫ t1

0

log t · λ1e
−λ1tdt+

∫ τ

t1

log t · λ10 · e
−(λ1−λ10)t1 · e−λ10tdt

+ log τ · e−λ1t1 · e−λ10(τ−t1)] + 0.5[(

∫ t1

0

log t · λ1e
−λ1tdt

+

∫ τ

t1

log t · λ11 · e
−(λ1−λ11)t1 · e−λ11tdt+ log τ · e−λ1t1 · e−λ11(τ−t1)])

=β0 + β1 + β2Z2

The resulting parameters λ00 and λ10 vary according to values of Z2 for patient

i, i = 1, ..., n.
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APPENDIX B

Appendix for Chapter IV

In section 4.3 we simulate failure times T from exponential distributions with hazard

rates λ based on the quality-adjusted restricted mean model (4.2). λ is solved to

satisfy the following equation, where Vj = V (t), t ∈ [(j − 1)t/4, jt/4].

E[logQT ∗]

=E[log{min(τ, T ) ·
4

∑

j=1

Q{Vj}/4}]

=

∫ τ

0

log t · λe−λtdt+

∫ ∞

τ

log τ · λe−λtdt+ log
4

∑

j=1

Q{Vj}/4

=

∫ τ

0

log t · λe−λtdt+ log τ · e−λτ + log
4

∑

j=1

Q{Vj}/4

=β0 + β1Z1 + β2Z2
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