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Süleyman Demirel

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Business Administration)

in The University of Michigan
2012

Doctoral Committee:

Professor Izak Duenyas, Co-Chair
Professor Roman Kapuscinski, Co-Chair
Professor Yavuz A. Bozer
Professor Thomas J. Schriber
Assistant Professor Volodymyr O. Babich, Georgetown University



“Everything about yesterday has gone with yesterday.
Today, it is needed to say new things.”

– Rumi –
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Abstract

Effective supply chain management is essential to operational efficiency and busi-

ness performance. When managing a supply chain, practitioners must carefully con-

sider a range of issues, including inventory levels, capacity, and strategic partnerships.

Although some elements of the supply chain can be planned, others cannot, including

disruptions to the production process.

This dissertation examines various aspects of supply chain management taking

into account the critical elements of real-world dynamics of both internal and ex-

ternal disruptions. Such elements include disruptions to internal resources producing

multiple products on dedicated and shared resources, as well as disruptions to external

suppliers of manufacturers.

In the first essay, we explore the effect of internal disruptions that manifest them-

selves through capacity uncertainty and study their effect on the production and

inventory policies of a firm that produces multiple products in multiple stages. Fo-

cusing on a two-product case, we derive the optimal production and inventory policies

and propose heuristic policies for the case of more than two products.

In the second essay, we explore the effects of external disruptions on a firm’s

supply chain strategy and its inventory policy. This essay carefully disentangles the

active role suppliers play in defining the parameters of contracts and its effect on the

firm’s resulting sourcing practices. The main insight we provide is that with endoge-

nously determined wholesale prices, the manufacturer does not necessarily benefit

from flexible sourcing, whereas the suppliers may benefit.
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Chapter 1

Introduction

Since the turn of millennium, managerial effort dedicated to understanding and pro-

tecting against disruptions has been unprecedented. However, most of the existing lit-

erature has omitted some of the critical elements of reality. This dissertation examines

various aspects of supply chain management taking into account the critical elements

of real-world dynamics of both internal and external disruptions. Such elements in-

clude disruptions to internal resources producing multiple products on dedicated and

shared resources, as well as disruptions to external suppliers of manufacturers.

The existing literature has mainly focused on single-item production systems and

often omitted the possibility of supply or capacity shortages, causing production

disruptions. The primary motivation to analyze single-product models is that it is

often possible to decompose anN -product problem intoN independent single-product

problems (Veinott 1966). For some real-world situations, however, applications of

such models are limited. Instead, these cases serve as building blocks to analyze more

complicated scenarios. Take the example of a firm producing multiple products using

dedicated and shared resources, facing capacity uncertainties. In such circumstances,

managing product stock is not independent across products; thus, analyzing an N -

product problem is necessary.

Another element that the existing literature often omitted was decentralized de-

cision making, even when only a single product is considered. Modern supply chains
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involve multiple decision makers making decisions in tandem that transform raw ma-

terials into deliverable products for customers in multiple stages. To optimize the flow

of materials along a supply chain and increase economic efficiency, numerous supply

contracts have been analyzed, particularly in the last two decades (Cachon, 2003).

Such analyses constitute the foundations of supply chain management. Early models

that addressed supply contracts, however, assumed only one supplier and one buyer,

with the more powerful player determining the contract’s terms. More recent studies

have explored the effect of vertical competition in determining the contractual terms.

This dissertation studies various aspects of supply chain management, incorporat-

ing the elements described above. Essay 1 explores the effect of internal disruptions

that manifest themselves through capacity uncertainty, and studies the effect of those

internal disruptions on the production and inventory policies of a firm that produces

multiple products in multiple stages. Essay 2 explores the effects of external dis-

ruptions on a firm’s supply chain strategy and inventory policy, taking into account

the critical elements of real-world dynamics, such as the active role suppliers play in

defining the parameters of contracts. It studies the effect of contracts on the strate-

gic behavior of suppliers and resulting sourcing practices. Table 1.1 summarizes the

modeling elements that are incorporated in each of the two essays.

Table 1.1: Model Elements Included in the Essays
Supply Multiple Competitive

Disruption Products Setting
Essay 1 (Production Policies) X X x
Essay 2 (Supply Contracts) X x X

1.1. Essay 1: “Production and Inventory Control for a Make-to-Stock /
Calibrate-to-Order System with Dedicated and Shared Resources”

The impact of random capacity shortages on a firm’s performance is magnified

when production occurs in multiple stages, with one stage requiring the output of

a previous stage before it can start producing. Many internal disruptions can be

2



interpreted as capacity uncertainty. With uncertain capacity, however, buffering and

scheduling decisions often become non-obvious. Consider a company that manufac-

tures and stocks various tools, which are later customized or calibrated based on

specific orders. The firm must answer numerous questions: How much stock of the

different tools should the firm produce and hold? How does the firm schedule the

calibration of tools, given the uncertainties of production, calibration, and demand

for the end products? To reflect the reality of the motivating situation, the tools are

produced on dedicated lines, whereas calibration occurs using a shared resource. In

Essay 1, we study this problem using a multiproduct inventory model for a two-stage

production process with embedded capacity uncertainties at each stage.

We first analyze the case of two products. Due to capacity uncertainty of the

shared resource, not only do the total quantities of planned production quantities

matter, but the sequence in which the products are processed is also important. We

thus characterize how the shared resource can be allocated and show that the optimal

policy keeps the ending inventories as close to a so-called “target path” as possible.

Due to capacity uncertainty on the dedicated lines, the firm’s optimal production

policy depends on the initial inventories. Notably, various structural properties of

the optimal production policy can be described.

Through a numerical study, we characterize several interesting properties of the

optimal production policy and demonstrate that using shared and uncertain capacity

leads to counter-intuitive insights. For example, when products share limited capacity

in the downstream stage, it might be optimal to stock more of the products with larger

dedicated capacity or with less capacity variability. This is contrary to strategies for

single-product inventory models, in which stocks are lower with larger capacity or

with less variable capacity.

When a firm is making more than two products, a dynamic programming for-

mulation is not computationally feasible. To overcome this shortcoming, we develop
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effective heuristic policies and subsequently test their performance. We find that the

heuristic policies perform increasingly well as the number of products increases.

1.2. Essay 2: “Strategic Behavior of Suppliers in the Face of Production
Disruptions”

With the globalization of operations and supply chains, firms are prone to dis-

ruption risks more than ever. Many articles in the business press, as well as our

discussions with practitioners, indicate that adopting mitigation strategies to counter

the negative impact of various disruptions is a top business priority. For example,

Cisco and IBM are exploring and evaluating flexible sourcing through the use of

backup suppliers. Others consider strategies of buffering through inventory. The op-

erations management literature examines many of these strategies. It usually assumes,

however, that the manufacturer is the sole decision maker and supplier behavior is

exogenous. In such an environment, conventional wisdom suggests–and many models

confirm–that a manufacturer cannot be worse off by having backup suppliers. In Es-

say 2, we consider suppliers as active decision makers that are aware of their strengths

and weaknesses. Specifically, we develop a game-theoretical model for a multi-period

sourcing setting with a manufacturer as the buyer, and two alternative suppliers who

compete for manufacturer’s business. In this essay’s model, one of the suppliers is

reliable, whereas the other is not, and the disruptions can last multiple periods. The

suppliers compete by offering wholesale prices, and the manufacturer decides from

which supplier (including possibly both) to buy and whether to protect itself from

disruptions by carrying some inventory. The objective of Essay 2 is to evaluate the

costs and benefits associated with flexible sourcing and to understand which strategy

is appropriate given the manufacturer’s situation. Although the initial model assumes

that only one supplier is unreliable, we extend the results to a case in which both

suppliers are unreliable.

To evaluate strategic supplier behavior, we consider two pricing games in which
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the suppliers compete. In the single-wholesale price game, each supplier announces

a single (wholesale) price. In the contingent-pricing game, the reliable supplier offers

wholesale prices contingent on whether it will serve as the primary or backup supplier.

The unreliable supplier offers two wholesale prices: one for on-time deliveries, the

other for late deliveries. A lower wholesale price for late deliveries can be viewed as

equivalent to a penalty in the form of a supplier rebate or a charge-back, which are

commonly observed in practice. With this model, we find that the single-wholesale

price game leads to a conflict of incentives in terms of the roles suppliers want to

play and the amount of business for which they contract, formally confirmed as non-

existence of pure-strategy Nash equilibria in most practical situations. In contrast,

the contingent-pricing game corresponds to a more intuitive relationship and has a

unique pure-strategy Nash equilibrium. Except for cases that provide one of the

suppliers with significant cost advantages, the manufacturer adopts flexible sourcing

by using the (less expensive) unreliable supplier and the (more expensive) reliable

supplier.

The economic benefits of this strategy, however, are less obvious. As noted, the

conventional wisdom is that the manufacturer should never be worse off by having

backup suppliers. With endogenously determined wholesale prices, however, the man-

ufacturer does not necessarily benefit from the existence of a backup supplier; in fact,

he is typically worse off. Thus, an up-front commitment to sole-sourcing and using

simple wholesale price contracts may be beneficial rather than creating the opportu-

nity for one supplier to serve as a backup through more flexible contracts. Interest-

ingly, suppliers may benefit from flexible sourcing even though the manufacturer does

not: the reliable supplier always benefits from maintaining backup capacity, whereas

the unreliable supplier might benefit in some situations from the reliable supplier’s

backup capacity, despite reduced business volume. From a system perspective, a flex-

ible sourcing strategy may degrade the supply chain’s performance, thus requiring
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the need to coordinate among supply chain partners.

To extend our work, we analyze a capacity investment problem for a reliable

supplier and show that the reliable supplier always prefers to offer no or full back-up

capacity rather than partial availability. Furthermore, as a major extension and to

complement the original model, we consider the case of two unreliable suppliers and

identify the conditions under which one of the suppliers can be treated as perfectly

reliable.
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Chapter 2

Production and Inventory Control for a Make-to-Stock /
Calibrate-to-Order System with Dedicated and Shared

Resources

2.1. Introduction

Consider a firm that produces multiple products on dedicated production lines

(stage 1). These products must be customized or calibrated (hereafter, “calibrated”)

after an order is received using a shared resource that is common to all products

(stage 2). The firm stocks the products that are not yet calibrated and completes

calibration after an order is received. The availability of products is crucial to the

firm’s performance, because it may translate into stock-outs and customers may not

tolerate delays. A major challenge at both stages is that the dedicated production

lines and the shared resource for calibration face capacity limitations. The capacity of

calibration is finite and it is also uncertain, due to factors such as machine downtime,

quality problems, and so on. Similarly, the capacity of the dedicated production lines

is uncertain. To manage the production-inventory system efficiently requires that

the producing and calibrating individual products is coordinated by simultaneously

taking into account demand and capacity uncertainties.

The decision problem described above is common in some manufacturing and ser-

vice firms. Consider the example of an oilfield services company that produces tools

on dedicated production lines that are used to deliver services to oil companies. The

tools are made to stock on dedicated production lines that the company maintains for
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tool production. Final testing, calibration, and quality inspections, however, are per-

formed using a shared resource that calibrates each tool to satisfy specific customer

requests based on the application for which the tool is intended. Tool availability,

therefore, is crucial to the firm, as the firm must respond to customer requests imme-

diately. The oilfield services company receives orders from oil companies operating

rigs where each day of delay on a rig could cause million-dollar losses. It is common

for an oil company to call with a special service request and provide a deadline by

which the service has to be conducted on the rig. If the oilfield services provider could

not provide service on time (due to delays caused by tool availability or problems with

calibration, etc.), then the order would immediately be given to a competing firm.

The oilfield services firm described could start producing the equipment needed for

the service (stage 1 in our setting) prior to receiving the order. Final calibration and

customization, however, would have to wait until the actual order was received. The

non-standard nature of the tools means that the processing times for both produc-

tion and calibration are inherently variable, which introduces capacity uncertainties

at both stages, further complicating the production system. This specific setting mo-

tivated us to formulate this problem. To date, this issue has not been addressed in

the literature.

We model the problem above as a multi-period production and inventory system.

To gain insight into the optimal policy, we consider a case with two products. For the

case of more than two products, we propose heuristic policies based on the results for

two products. The decision maker’s objective is to minimize the expected discounted

inventory holding and penalty costs over a planning horizon by appropriately choosing

production quantities and allocating the scarce shared resource to meet demands in

every period.

For both stages, producing and calibrating the product, we model capacity uncer-

tainties following an approach used by Ciarallo et al. (1994), Duenyas et al. (1997)
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and Hu et al. (2008), in which maximum production quantity (capacity) is a random

variable and its value is realized after production decisions are made. The realized

capacity determines how much of the planned production can be accomplished. To

the best of our knowledge, to date no published papers have dealt with capacity un-

certainties when multiple products use the same resource (the calibration stage in

our setting). Due to the common resource, not only the total planned production

quantities are important but also the sequence in which the products are calibrated

using the shared resource.

In this model, we assume that the dedicated production lines also face capacity

uncertainties. We find that the optimal production quantities of stage-1 products

depend on the initial inventories of both products, which differs from the commonly

used independent base-stock policies. This is because the second stage of production

is shared, leading to co-dependence of production quantities in the first stage. We

analytically characterize the structural properties of the optimal production policy.

We also conduct a numerical study to analyze how the limited capacity of the second

stage influences production in the first stage. We also show how qualitative insights

for finite shared capacity differ from the case of infinite shared capacity. The case of

infinite shared capacity is a special case in which each product follows an indepen-

dent base-stock policy. We find that the presence of finite shared capacity results in

counter-intuitive qualitative insights. For example, when shared capacity is infinite,

the inventory target for the product with stochastically larger dedicated capacity is

lower than the other product (all other things being equal), whereas when the shared

capacity is finite, this relationship may be reversed: it may be optimal to set higher

inventory targets for the product with stochastically larger dedicated capacity.

Although the optimal policy can be characterized easily when the manufacturer

makes only two products, the optimal policy structure is complicated for the case with

more than two products. Therefore, we consider two implementable heuristics and
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evaluate their performance. The first heuristic follows base-stock policy for production

and ignores the finite shared capacity. In the second heuristic, we take the finite shared

capacity into account and observe that the heuristic performs significantly better.

Using the properties of the optimal policy for two products, we extend our heuristics

to multiple products and find that the performance of the heuristics improves as the

number of products increases. Thus, our structural results are useful in developing

heuristics that can be used in practice.

The remainder of the present paper is organized as follows. Section 2.2 reviews the

related literature. Section 2.3 describes the model. Section 2.4 establishes the optimal

policy structure for production and calibration. Section 2.5 presents the analytical

results for the sensitivity of the optimal policy. Section 2.6 numerically examines

the effect of the shared capacity on inventory levels and explores the ways various

product characteristics, such as capacity, reliability of dedicated production lines,

demand levels, and demand variability affect the optimal policy. Section 2.7 presents

heuristic policies and explores heuristic performance under various settings. Finally,

Section 2.8 concludes with a discussion of further research directions. Mathematical

proofs appear in Appendix 2.9, and Appendix 2.10 provides an extension for our

model that considers infinite-horizon and Markov-modulated settings.

2.2. Literature Review

Mathematical inventory theory has grown rapidly in the last century and has

been extended to managing complex supply chains. Whereas the theory of inventory

is considered mature at present, most of it focuses on single-item production systems;

indeed, little is known about systems that produce multiple items. As Veinott (1966)

points out, the primary motivation for analyzing single-product models is that it

is often possible to decompose an N -product problem into N independent single-

product problems. Such decomposition, however, is not possible if the products share

common resources that are limited. In the present paper, we examine systems that

10



produce multiple products that share limited capacity.

Evans (1967) first noted that independent management of inventories of multiple

products may prove ineffective in the presence of a joint capacity constraint. Evans

(1967) considers the classical newsvendor problem with lost sales in multiple peri-

ods, in which a production facility makes two products to stock and operates under

limited capacity (henceforth referred to as Evans’ model). He finds that the optimal

production is a function of the existing inventories of both products and identifies

switching curves that characterize the mode of operation. Thus, using an indepen-

dent base-stock policy for each product is suboptimal. Nahmias and Schmidt (1984)

considers the single-period version of Evans’ model and examines the performance of

several heuristics. A more recent paper by DeCroix and Arreola-Risa (1998) extends

Evans’ model to multiple products (N ≥ 2) and provides an infinite-horizon frame-

work and heuristic solutions. Bashyam et al. (1995) also considers Evans’ model and

uses perturbation analysis to compute near-optimal solutions. Shaoxiang (2004) al-

lows for the general convex single-period cost function and finds that the structure of

the optimal policy remains consistent both in the finite-horizon and infinite-horizon

settings. De Vericourt et al. (2000) analyzes Evans’ setting in continuous time, in

which a single-machine dynamically allocates capacity to one of two queues for dif-

ferent products. They establish switching curves for optimal production, which are

the continuous-time counterparts of the switching curves in Evans’ original setting.

All the studies cited above consider production at a single facility. More often than

not, however, production occurs in multiple stages, which may be operated by a single

facility or by independent entities in a supply chain. Clark and Scarf (1960) pioneer

models dealing with multiple stages of production. Limited production capacity in

multiple stages is considered in Parker and Kapuscinski (2004) and Janakiraman and

Muckstadt (2009). They, however, assume that the manufacturer is making only one

product and benefits from reliable capacity. Van Mieghem and Rudi (2002) considers
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a class of models called newsvendor networks, that involve multiple products, multiple

processing, and storage units. Their primary focus is on models that feature a single-

period setting with reliable capacity. They also investigate dynamic settings with

either a single product and single processing unit with capacity constraint or a network

of multiple processing units with no capacity constraint.

The majority of papers dealing with multiple products belong to the literature on

assemble-to-order production systems. Such studies investigate inventory decisions

for components used to make final products or simply analyze the effect of shared

resources. We refer the reader to Song and Zipkin (2003) for an excellent review of

the control of assemble-to-order systems. In the most general setting, a final product

may require one or more components. Although not optimal, base-stock policies are

typically studied for such systems, because the optimal policy requires knowledge of

the current inventories of all components, and finding the optimal policy is compu-

tationally prohibitive. Numerous papers deal with the effect of shared resources. For

example, Dayanik et al. (2003) studies the effectiveness of several performance bounds

for an assemble-to-order system with capacitated component production. Plambeck

and Ward (2007) shows that independent control of components is optimal for a class

of assemble-to-order systems with expediting.

In addition to assuming base-stock policies, papers dealing with assemble-to-order

production systems typically assume that products can be made instantaneously if all

the components are available, that is, shared capacity is infinite. An exception is Fu

et al. (2006), who considers a single-period, single-product assemble-to-order system

in which the assembler faces finite assembly capacity.

For systems featuring assembly processes using shared capacity on multiple prod-

ucts, the optimal inventory policy is complicated further. The control of such systems

requires some form of capacity allocation (such as the one analyzed in the present

paper) to deal with cases when demand cannot be satisfied fully. Bish et al. (2005)
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analyzes a two-plant, two-product setting examining the possibility that each plant

can produce either one or both of the products to order. Both the components’ sup-

pliers and the plants are capacitated. The authors study various capacity allocation

schemes, such as allocating capacity to the nearest demands, to the highest-margin

demands, or to a plant’s primary product. Muriel et al. (2006) studies a similar

problem and notes that the capacity allocation policies significantly influence the

performance of flexible systems. These studies, however, assume reliable capacity

and analyze the performance of commonly used heuristics rather than the optimal

policy.

Aviv and Federgruen (2001) analyzes a two-stage system with cyclic demand in

which the first stage produces a common intermediate product and operates under

limited capacity, whereas the second stage produces the final product. The second

stage has infinite shared capacity, and only the final products are kept in stock. The

problem is solved using a lower bound approximation and the performance of the

heuristic is tested. Atali and Ozer (2005) extends Aviv and Federgruen (2001) for

Markov-modulated demand and production smoothing constraints.

All the studies cited above consider finite and deterministic capacity. Ciarallo et al.

(1994) is the first paper to consider uncertain capacity. Unlike classical yield models,

the uncertain capacity models treat capacity as a random variable that truncates

planned production independently of planned production quantity. Ciarallo et al.

(1994) shows that base-stock policies are optimal for the classical newsvendor problem

with uncertain capacity. In the same spirit, Hu et al. (2008) consider the capacity

uncertainty of two different facilities, with the possibility of inventory transshipment

across locations. They find that base-stock policies are no longer optimal; indeed, the

optimal inventory target in one location depends on the existing inventories of both

locations.

None of the above papers study the effect of capacity uncertainties when a firm
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produces multiple products. When manufacturing multiple products, the actual pro-

duction depends not only on the planned production of each product and the realized

capacity, but also on the sequence in which the products are produced. If, for exam-

ple, one of the products is prioritized (scheduled first), it is less influenced by capacity

uncertainty, whereas the product with the lower priority is more exposed to capacity

uncertainty. For the calibration stage in the model we propose here, we derive optimal

scheduling decisions and identify conditions under which a priority-based schedule or

a mixed schedule is optimal. In addition, we derive inventory policies for dedicated

production lines with uncertain capacities.

2.3. The Model

Consider a firm producing two products on dedicated production lines (stage 1)

that are then calibrated and customized on a shared resource (stage 2) based on

customer specifications. Both the dedicated production lines and the shared resource

face capacity uncertainties. The firm stocks inventory of the products after stage

1 and carries out stage 2 according to customers’ order. Figure 2.1 illustrates our

setting.

In our model, we adopt a periodic-review framework. The sequence of events is

as follows. In the beginning of period t, the firm observes the inventories of stage-1

products, denoted by x = (x1, x2) and raises inventories up to y = (y1, y2), with y ≥ x.

We label y as inventory targets, as they are not necessarily achieved due to capacity

uncertainties. We model the capacity uncertainty of a given production process i as

a random variable Ki. Consequently, the inventory of product i is yi ∧ (xi +Ki) after

capacity is realized, where a ∧ b = min(a, b). To distinguish between the inventory

targets and realized inventories after production, we denote by ỹ = y ∧ (x + K),

where K = (K1, K2) in vector notation. Stage 1 finishes production before customer

demands are observed.

Next, the firm observes customer demands ε = (ε1, ε2) and receives corresponding
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Figure 2.1: Model Setup
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specifications for individual orders. At this point, all the uncertainties within period

t are resolved except for the uncertain capacity of the flexible shared resource. In

the absence of such information, the firm creates a processing schedule based on

the existing inventory of products and demands that are realized. Without loss of

generality, we assume that each product uses one unit of capacity of the shared

resource. The more general case with different capacity requirements can be handled

with slight changes in the analysis, but does not provide any additional insights.

We describe how a processing schedule is created using an example. Assume that

the firm schedules calibration of 10 units of product 1 first and 10 units of product 2

thereafter. If the capacity of the shared resource turns out to be 16, then calibrating

10 units of product 1 and 6 units of product 2 can be accomplished in the current

period. If, however, the firm schedules the resource evenly (i.e., sequences products as

Product 1, Product 2, Product 1, etc.), then 16 units of the shared resource capacity

results in processing 8 units of product 1 and 8 units of product 2. Thus, sequencing

the products is an integral part of our problem.

As with almost all inventory models, we assume that the demands are continuous

random variables and producing fractional quantities is allowed. With continuous

variables, it is natural to view the calibration process as a purely continuous flow
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system with infinitely divisible products.

It is convenient to represent the scheduling decision using two functions, s1(κ)

and s2(κ), where si(κ) is the cumulative number of product i that is processed, when

the realized capacity is κ. Consequently, si(κ) of product-i customers are satisfied

in the current period. To illustrate the scheduling functions, consider the continuous

version of the above example. When the firm schedules calibrating 10 units of product

1 first and 10 units of product 2 thereafter, we have s1(κ) = min(10, κ) and s2(κ) =

min(10, (κ − 10)+). Such representation allows for processing fractional quantities.

For example, if κ = 11.5, s1(11.5) = 10 and s2(11.5) = 1.5. The function si(κ) is non-

decreasing in κ and s1(κ)+s2(κ) ≤ κ for any realized κ. Throughout the remainder of

the present paper, we refer to si(κ) as the processing schedule (or simply, “schedule”)

of product i. To formalize our discussion, we need to present the following definition.

Definition 2.1 (Priority Scheduling for Calibration). Denote by θi = min(ỹi, εi) the

maximum units of product i that can be calibrated in the current period given the

realized inventory and the demand for product i. We say that product i is prioritized

if the shared resource processes θi units of product i first, followed by θ3−i units of

product 3− i. Define s̄i(κ) := min(θi, κ) as the processing schedule for product i

if product i is prioritized. Similarly, define si(κ) := min
{
θi, (κ − θ3−i)

+
}

as the

processing schedule for product i if product 3− i is prioritized.

Obviously, si(κ) ≤ s̄i(κ) for each realization of κ and for all ỹ and ε, see Figures

2.2(a)-(b). Priority schedules are two extremes in process scheduling that bound

the feasible schedules. Any feasible schedule si(κ) is a continuous, non-decreasing

function with si(κ) ≤ s(κ) ≤ s̄i(κ), where s1(κ) + s2(κ) has a rate of increase less

than or equal to 1. That is, the resource can process at most one unit using a

unit of capacity, ensuring that s1(κ) + s2(κ) ≤ κ for all κ. We express the required

monotonicity properties in terms of (right-sided) derivatives, s′i(κ) ≥ 0 for i = 1, 2 and

s′1(κ) + s′2(κ) ≤ 1. Figure 2.2(c) illustrates a feasible processing schedule for product
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Figure 2.2: Scheduling Policies for Product i
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i. Initially, no processing takes place for product i. Later, product i is processed at a

rate less than 1, that is, it is processed along with product 3− i. After all of products

3 − i are used or all of product 3 − i customers are satisfied, product i is processed

at a rate of 1, that is, the shared resource processes product i only. Eventually, no

more products are processed because demand is fully satisfied.

At the end of the period, the costs are accounted as follows. For any unused

product i, a holding cost of hi is incurred. We assume that unsatisfied customers are

lost immediately.

We use a finite-horizon, dynamic-programming formulation to represent the firm’s

decision problem. Denote by Vt(x) the firm’s optimal cost when starting inventory in

period t is x = (x1, x2). The decision problem consists of two phases that correspond

to production stages. In phase 1, inventory targets y = (y1, y2) are set for stage 1

and then the capacities of the dedicated production lines and end-customer demands

are observed. Then, in phase 2, the firm creates processing schedules for stage 2. We
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denote by Ct(ỹ, ε) the intermediate cost function for starting phase 2 of period t with

inventory levels ỹ = (ỹ1, ỹ2) and demands ε = (ε1, ε2). The decisions in phase 2 are

represented through functions s1(κ) and s2(κ), as defined previously. We denote by

s(κ) = (s1(κ), s2(κ)) the vector of scheduling functions. The formulation is given by

the following set of equations along with a zero terminal cost function, VT+1(x) = 0.

Phase One : Vt(x) = min
y≥x

EK,εCt(y ∧ (x+K), ε), (2.1)

Phase Two : Ct(ỹ, ε) = min
si(.)

{
Eκ{h[ỹ − s(κ)] + p[ε− s(κ)]

+βVt+1(ỹ − s(κ))} (2.2)

s.t si(κ) ≤ si(κ) ≤ s̄i(κ), (2.3)

s′1(κ) + s′2(κ) ≤ 1, (2.4)

s′i(κ) ≥ 0 ; ∀κ ≥ 0, i = 1, 2
}

(2.5)

The processing schedule lies between the two extremes of the priority schedules (con-

dition (2.3)). The resource cannot process more than its capacity (condition (2.4)).

Finally, si(.) is a weakly increasing function of κ (condition (2.5)). The analysis that

follows allows for non-stationary demand and capacity distributions, while assuming

stationary costs. For the case of non-stationary cost parameters, our results continue

to hold provided that pti + hti ≥ βpt+1
i for each i = 1, 2 and t = 1, 2, · · · , T , which is

often the case. For brevity, period index is omitted when it does not lead to confusion.

2.4. Optimal Policy

In this section, we derive by induction the optimal policy for the dynamic program

formulated in Section 2.3. Assuming that the inductional assumptions hold in period

t+1 and onward, we solve for the scheduling policy in phase 2 for a given realization of

demands and inventory levels in period t. Then, we solve for the production problem
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in phase 1 in period t. Eventually, we prove that the inductional assumptions are

preserved. We need the following definition to state the inductional assumption.

Definition 2.2. Denote by ∆ the derivative operator. A function f : Rn → R is said

to satisfy the second-order properties in variables (xi, xj) if ∆xixif(x) ≥ ∆xixjf(x) ≥ 0

and ∆xjxjf(x) ≥ ∆xixjf(x) ≥ 0 for all x ∈ Rn.

Second-order properties imply both the joint convexity and supermodularity in

the variables of interest. We make the following inductional assumptions for period

t.

A1
t+1: The optimal cost function Vt+1(x) satisfies the second-order properties in (x1, x2).

A2
t+1: pi + hi + β∆xiVt+1(x) ≥ 0 for i = 1, 2.

A2
t+1 implies that it is optimal to satisfy a product-i order in the current period

t if there is sufficient inventory of stage-1 product and sufficient processing capacity

for stage 2, as opposed to rejecting the customer (by incurring pi) and holding the

inventory for future use (by incurring hi).
1 Clearly, the inductional assumptions A1

T+1

and A2
T+1 hold only trivially. We assume that A1

t+1 and A2
t+1 hold and will prove

that A1
t and A2

t also hold.

2.4.1 Scheduling Policy – Stage 2

In this section, we analyze the optimal policy in stage 2, that is, the schedul-

ing problem, (s1(κ), s2(κ)). As it turns out, the optimal scheduling policy is best

described in terms of the remaining inventories (z1(κ), z2(κ)) as a function of real-

ized shared capacity. When the realized capacity is κ, si(κ) units will be withdrawn

and the remaining inventory of stage-1 product will become zi(κ) := ỹi − si(κ). A

trajectory is defined as the path that the remaining inventories of stage-1 products,

1This condition may be violated with non-stationary costs. For example, when the penalty cost
in the next period is significantly higher, it may, in fact, be optimal to ration inventory for the next
period.
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(z1, z2), follow as calibration takes place until (ε1, ε2) units of stage-2 products are

produced. The optimal scheduling problem can be fully expressed as finding the

optimal trajectory to follow. Figure 2.3 illustrates three trajectories (solid, arrowed

curves). In Figure 2.3(a), calibration of product 1 is prioritized. Similarly, in Figure

2.3(b), product 2 is prioritized. Figure 2.3(c) illustrates a feasible trajectory in which

neither product is prioritized.

Figure 2.3: Illustration of Trajectories
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+

C

(c) A feasible trajectory

All the trajectories illustrated in Figure 2.3 terminate at (ỹ − ε)+. Since the

choice of the trajectory is made before the actual capacity is known, and the actual

capacity may be smaller than needed, some customers may not be satisfied, and

some stage-1 products may be carried to the next period. For example, for the same

realization of capacity level, trajectory in Figure 2.3(a) terminates at point A, while
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trajectories in Figures 2.3(b)-(c) terminate at points B and C, respectively. The

trajectory determines which customers will be satisfied and which of the products

will be carried to the next period.

As illustrated in Figure 2.3, the same capacity realization leads to three different

outcomes, A, B, and C, with the same sum of the remaining inventories expressed as

z1(κ) + z2(κ) = ỹ1 + ỹ2 − κ. This is an important observation for determining the

optimal trajectory. The structure of the policy is characterized in relation to a target

path, which we describe next. Define γ = p + h. The firm’s cost-to-go as a function

of the realized capacity is

Jt(κ|ỹ, ε, s(.)) := h(ỹ − s(κ)) + p(ε− s(κ)) + βVt+1(ỹ − s(κ))

= p(ε− ỹ)︸ ︷︷ ︸
Treated as constant

in stage 2

+ γz(κ) + βVt+1(z(κ))︸ ︷︷ ︸
Function of trajectory

(2.6)

Definition 2.3 (Target Path). For all ω ≥ 0, we define ζ(ω) = (ζ1(ω), ζ2(ω)) =

arg minz≥0

{
γz + βVt+1(z) | z1 + z2 = ω

}
. The “ target path” is defined as Z =⋃

ω≥0 ζ(ω).

To obtain the target path, we minimize the firm’s cost for a given sum, ω, of

the ending inventory levels to carry to the next period, while ignoring feasibility

constraints, and repeat the same procedure for each value of ω. Our objective is to

choose a trajectory before observing the exact value of the capacity level. As it turns

out, the optimal trajectory is one that moves along a path of ending inventories that

minimizes the costs for every realization of capacity. Theorem 2.1 shows that such a

path is one that comes as close to the target path as possible. We note that the target

path is independent of the initial state (i.e., realized inventories and demands), as

well as the capacity distribution of the shared resource in the current period. Denote

by x|[a,b] = arg minx′∈[a,b] |x−x′|. In other words, x|[a,b] is the closest point to x in the
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interval [a, b].

Theorem 2.1 (Optimal Scheduling Policy). (a) The functions ζi(ω) satisfy ζ1(ω) +

ζ2(ω) = ω and 0 ≤ ζ ′i(ω) ≤ 1. (b) Let z∗i (κ) = ζi(ỹ1 + ỹ2 − κ)|[ỹi−s̄i(κ),ỹi−si(κ)]

for i = 1, 2. The optimal trajectory is given by
⋃
κ≥0 z

∗(κ), leading to the optimal

scheduling functions, s∗i (κ) = [ỹi − ζi(ỹ1 + ỹ2 − κ)]|[si(κ),s̄i(κ)] for i = 1, 2. (c) The

optimal trajectory and the scheduling functions are independent of the current-period

capacity distribution of the shared stage 2 resource. (d) Ct(ỹ, ε) = EκJt(κ|ỹ, ε, s∗(.)).

For Theorem 2.1, we can also provide a more intuitive description. Figure 2.4

illustrates the optimal trajectory (solid, arrowed curves) for three different starting

configurations. The target path Z is shown as a dotted curve. In Figure 2.4(a), the

starting inventories are initially off the target path; hence, we move toward the target

path in the most direct manner. Then, we move along the target path provided it is

feasible to do so. Finally, we move toward the final destination, (ỹ − ε)+. In Figures

2.4(b)-(c), prioritizing the calibration of one of the products turns out to be optimal.

In Figure 2.4(b), getting closer to the target path is possible by calibrating product

1 only. However, all product 1 demand is satisfied before we reach the target path;

therefore, we move toward the final destination by calibrating product 2 only. A

similar interpretation applies for Figure 2.4(c). The optimal trajectory moves along a

path of ending inventories that minimizes the costs for every realization of capacity,

leading to part (c) of Theorem 2.1.

As a special case, we consider a symmetric setting with two products that have the

same holding and penalty costs, as well as identical demand and dedicated capacity

distributions.

Corollary 2.1 (Identical Products). Due to symmetry, we have ζ1(ω) = ζ2(ω) = ω
2

.

The target path corresponds to the 45-degree line (z1 = z2), implying that the shared

resource will process both products at an equal rate along the target path.
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Figure 2.4: Optimal Trajectory of the Remaining Inventories
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The intuition is straightforward. Although we are indifferent between satisfying

demand 1 and 2, we are not indifferent in terms of the remaining inventory of stage-1

products for the next period. To illustrate the policy stated in Corollary 2.1, consider

(ỹ1, ỹ2) = (6, 8) and (ε1, ε2) = (4, 8). Figure 2.5 shows the optimal trajectory. If the

products were processed in discrete units, the sequence of calibration would be given

by [2-2]-[1-2-1-2-1-2-1-2]-[2-2].

Considering our motivating example, the oilfield services company for which we

worked was processing orders in a FIFO manner, without accounting for inventories

and capacity. What we find here is that the sequence in which the service requests

should be fulfilled depends on the inventory of the tools and the number of requests

in each service category.
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Figure 2.5: Identical Products Case, (ỹ1, ỹ2) = (6, 8) and (ε1, ε2) = (4, 8)
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The next proposition characterizes the properties of the intermediate cost function

and shows that the second-order properties are preserved, which is an intermediate

step for our inductional procedure.

Proposition 2.1. The intermediate cost function Ct(ỹ, ε) satisfies the second-order

properties in (ỹ1, ỹ2) (Definition 2.2). Also, ∆ỹiCt(ỹ, ε) ≥ −pi for i = 1, 2.

2.4.2 Production Policy – Stage 1

We now analyze the optimal production policy. At the beginning of the period, the

firm observes the starting inventories for stage-1 products, x = (x1, x2) and sets pro-

duction targets for each product, y = (y1, y2). After making the production decisions,

the capacities K = (K1, K2) for stage-1 products are realized and the inventories of

stage 1 products, ỹ = y∧(x+K), are observed. Denote by Gt(ỹ) := EεCt(ỹ, ε) the ex-

pected cost-to-go, assuming the inventories of products are known, but the demands

are not yet realized. It is convenient to express the optimal cost function as

Vt(x) = min
y≥x

EKGt(y ∧ (x+K)) (2.7)

The optimal production policy is obtained by assuming that the scheduling pol-

icy of stage 2 will be created optimally, as captured by the function Gt(ỹ). Let
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us define functions ȳ1(y2) and ȳ2(y1) as ȳ1(y2) = arg miny1≥0Gt(y) and ȳ2(y1) =

arg miny2≥0Gt(y). If there are multiple minima, we take the smallest one. Let (y0
1, y

0
2)

be the global minimizer of Gt(y), where ȳ1(y0
2) = y0

1 and ȳ2(y0
1) = y0

2. In the following

theorem, we characterize the optimal production policy.

Theorem 2.2 (Optimal Production Policy). (a) ȳi(x3−i) is a non-increasing function

of x3−i with dȳi(x3−i)
dx3−i

≥ −1 (i = 1, 2). (b) Denote by y∗(x) the optimal inventory

targets for starting inventories x = (x1, x2). An optimal production policy exists that

satisfies the following.

i) If x1 ≥ ȳ1(x2) and x2 ≥ ȳ2(x1) (Region 1), then, it is not optimal to produce,

y∗(x) = x.

ii) If xi < ȳi(x3−i) and x3−i ≥ ȳ3−i(xi) (Regions 2 and 3), y∗i (x) = ȳi(x3−i) and

y∗3−i(x) = x3−i.

iii) Let x1 ≤ ȳ1(x2) and x2 ≤ ȳ2(x1) (Region 4). Define ŷ(x) = {y | EK2∆y1Gt(y1, y2∧

(x2 + K2)) = 0, EK1∆y2Gt(y1 ∧ (x1 + K1), y2) = 0}. If ŷ(x) is a feasible tar-

get (that is, ŷ(x) ≥ x), then the optimal inventory target is y∗(x) = ŷ(x).

Furthermore, ȳi(y
∗
3−i(x)) ≤ y∗i (x) ≤ ȳi(x3−i) for each i = 1, 2. If, however,

ŷi(x) ≥ xi and ŷ3−i(x) < x3−i for some i, then it is optimal to set targets as

y∗i (x) = ȳi(x3−i) and y∗3−i(x) = x3−i.

Figure 2.6 illustrates the properties of the optimal production policy described

in Theorem 2.2. Figure 2.6(a) shows the optimal production policies in Regions 1

through 3. The arrows represent the optimal targets. For example, in Region 2,

product 2 is not produced, whereas the product 1 target is set so that inventory

reaches the curve ȳ1(x2). Figures 2.6(b)-(c) illustrate the area in which optimal

targets are located for different initial states in Region 4.
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Figure 2.6: Optimal Production Policies
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x2 = ȳ2(x1)

Produce nothing

Region 2

Region 1

Region 3

(a) Optimal Targets in Regions 1–3

x1

x2 x1 = ȳ1(x2)

x2 = ȳ2(x1)

Region 4

(b) Optimal Targets in Region 4

x1

x2 x1 = ȳ1(x2)
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Table 2.1 includes an example problem and shows the optimal targets for various

starting inventory levels. Figure 2.7 shows the curves and the regions that charac-

terize the optimal policy for this example. In this example, (y0
1, y

0
2) = (11, 11) is the

minimizer of the function Gt(y). If the starting inventories exceed 11, we do not pro-

duce any of the products. When the starting inventories are close enough to (11, 11),

the optimal target is (11, 11). If, however, both starting inventories are small, for

example, (x1, x2) = (0, 0), we set a target of (12, 12). The objective is to achieve a

higher production on one of the dedicated production lines in case the other dedi-

cated production line realizes low capacity. With this policy, we are more likely to

carry sufficient inventories so that the capacity of the shared resource is not wasted
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in stage 2. When one of the products has sufficient inventories, we do not produce

that product, and the target of the other product does not exceed 11. For example,

when x2 = 12, the product 1 target is 11 regardless of x1. If x2 = 13, we set a smaller

target for product 1, equal to 10. Note that although the products are symmetric,

the optimal targets are not necessarily equal (i.e., y∗1(x) 6= y∗2(x)). For example, when

(x1, x2) = (6, 0), we have y∗(x) = (12, 11). Interestingly, a higher target is set for

the product that has a higher inventory. This is the case because having high initial

inventory makes it more likely to achieve higher targets.

Figure 2.7: Illustration of the Regions
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(11,11)

Region 2
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The optimal production policy depends on the initial inventories of the stage-

1 products. In addition, unlike stage 2, in which the optimal policy is decoupled

from the current-period capacity distribution of the shared resource, the optimal

production policy in stage 1 depends on the current-period capacity distributions for

the two products. This is the case because the production of one product (hence,

its capacity) influences the production of the other product. The sensitivity of the

optimal policy to the current-period capacities will be explored in more detail in

Section 2.5. The next proposition explores the dependence of the targets on the

starting inventories and shows that the optimal targets satisfy certain monotonicity

properties in the starting inventories.
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Table 2.1: Example – Optimal Targets

13 (10,∼) (10,∼) (10,∼) (10,∼) (10,∼) (10,∼) (10,∼)
12 (11,∼) (11,∼) (11,∼) (11,∼) (11,∼) (11,∼) (11,∼)
11 (11,12) (11,12) (11,12) (11,12) (11,12) (11,12) (11,12)
10 (11,12) (11,12) (11,12) (11,12) (11,12) (11,12) (11,12)
9 (11,12) (11,12) (11,12) (11,12) (11,12) (11,12) (11,12)
8 (11,12) (11,12) (11,12) (11,12) (11,12) (11,12) (11,12)
7 (11,12) (11,12) (11,12) (11,12) (11,12) (11,12) (11,12)
6 (11,12) (11,12) (11,12) (11,12) (11,12) (11,12) (12,11)
5 (11,12) (11,12) (11,12) (11,12) (11,12) (11,12) (12,11)
4 (12,12) (12,12) (12,12) (12,12) (12,12) (12,11) (12,11)
3 (12,12) (12,12) (12,12) (12,12) (12,12) (12,11) (12,11)
2 (12,12) (12,12) (12,12) (12,12) (12,12) (12,11) (12,11)
1 (12,12) (12,12) (12,12) (12,12) (12,12) (12,11) (12,11)
0 (12,12) (12,12) (12,12) (12,12) (12,12) (12,11) (12,11)

(x1, x2) 0 1 2 3 4 5 6

13 (10,∼) (10,∼) (10,∼) (∼,∼) (∼,∼) (∼,∼) (∼,∼)
12 (11,∼) (11,∼) (11,∼) (11,∼) (∼,∼) (∼,∼) (∼,∼)
11 (11,12) (11,∼) (11,∼) (11,∼) (∼,∼) (∼,∼) (∼,∼)
10 (11,12) (11,11) (11,11) (11,11) (∼,11) (∼,11) (∼,∼)
9 (11,12) (11,11) (11,11) (11,11) (∼,11) (∼,11) (∼,10)
8 (11,12) (11,11) (11,11) (11,11) (∼,11) (∼,11) (∼,10)
7 (11,12) (12,11) (12,11) (12,11) (12,11) (∼,11) (∼,10)
6 (12,11) (12,11) (12,11) (12,11) (12,11) (∼,11) (∼,10)
5 (12,11) (12,11) (12,11) (12,11) (12,11) (∼,11) (∼,10)
4 (12,11) (12,11) (12,11) (12,11) (12,11) (∼,11) (∼,10)
3 (12,11) (12,11) (12,11) (12,11) (12,11) (∼,11) (∼,10)
2 (12,11) (12,11) (12,11) (12,11) (12,11) (∼,11) (∼,10)
1 (12,11) (12,11) (12,11) (12,11) (12,11) (∼,11) (∼,10)
0 (12,11) (12,11) (12,11) (12,11) (12,11) (∼,11) (∼,10)

(x1, x2) 7 8 9 10 11 12 13

Note. Optimal targets are shown for a 50-period problem. The notation “∼” indicates that the
product is not produced. The products are symmetric with costs pi/(pi + hi) = 0.95, the average
demand is 6, the average dedicated capacity for each product is 7, and the average capacity of
the shared resource is 13. All distributions are triangular. Demand variability is 0.4, capacity
variabilities are all 0.8.
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Proposition 2.2. The optimal inventory targets satisfy the following monotonicity

properties in the starting inventories: for each i = 1, 2, (i) 0 ≤ ∂y∗i (x)

∂xi
≤ 1, (ii)

−1 ≤ ∂y∗i (x)

∂x3−i
≤ 0, (iii)

∂y∗i (x)

∂xi
− ∂y∗i (x)

∂x3−i
≤ 1.

The optimal targets are increasing in their own inventory and decreasing in the

other product’s inventory. Figure 2.8 illustrates the monotonicity properties of the

targets in x1 for a given value of x2. If x2 is increased slightly, then the curve repre-

senting the product 1 target would shift downward, whereas the curve representing

the product 2 target would shift upward.

Figure 2.8: Monotonicity of Targets
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The monotonicity properties we derived in Proposition 2.2 are also vital in com-

pleting the inductional step in the next proposition.

Proposition 2.3. The optimal cost function Vt(x) satisfies the second-order proper-

ties in (x1, x2) (Definition 2.2). In addition, pi + hi + β∆xiVt(x) ≥ 0 for i = 1, 2.

With Proposition 2.3, the optimal policy structure is established for the most

general case in which the capacities of the dedicated production lines and the shared

resource are uncertain. Theorems 2.1 and 2.2 characterize the optimal production

policy and the optimal scheduling policy fully. Although we established the optimal

policy assuming a finite-horizon setting and independent distributions across periods,
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we can relax these assumptions. In Appendix 2.10, we address infinite-horizon and

Markov-modulated settings. Furthermore, we describe the optimal policy structure

for special cases of the original model.

Only One Dedicated Production Line with Uncertain Capacity. Assume

that dedicated production line 1 has infinite capacity, and dedicated production line 2

faces uncertain capacity. Due to infinite capacity assumption, Theorem 2.2 simplifies

and first-order conditions no longer depend on x1. In this case, the production targets

for each product are only functions of the initial inventory x2 in Region 4.

Capacitated Dedicated Production Lines with No Uncertainty. Assume

that dedicated production line i has a certain finite capacity, Ki. Recall that (y0
1, y

0
2)

is the global minimizer of Gt(y). Define τi(xi) =
(

(xi + Ki) ∧ y0
i

)
∨ xi. We describe

the optimal policy in relation to τi(xi).

Proposition 2.4. If the dedicated production line i has a deterministic capacity Ki

for i = 1, 2, then the inventory target for product i depends on the initial inventory

of the other product only and is given by ȳi(τ3−i(x3−i)). The optimal targets satisfy

−1 ≤ ȳi(τ3−i(x3−i))
x3−i

≤ 0 for each i.

Proposition 2.4 provides a simpler characterization for the optimal production

policy when the dedicated production lines face deterministic capacity. The optimal

target of a product does not depend on its own inventory, while it is decreasing in

the inventory of the other product. In addition, if each of the dedicated production

lines has infinite capacity, then a base-stock policy (y0
1, y

0
2) is optimal, provided as

well that the initial state is below the base-stocks.

Uncapacitated Stage 2. Assume that the shared capacity has infinite capacity.

The setting with uncapacitated stage 2 reduces to two independent, single-product

settings, which Ciarallo et al. (1994) has studied. The inventory policy for each

product is a base-stock policy. The scheduling policy is thus irrelevant, because any

schedule can be completed due to infinite capacity.
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2.5. Sensitivity of Optimal Policy

In Section 2.4, we analyzed the optimal policy and found that the optimal schedul-

ing policy is independent of the shared capacity distribution in the current-period,

whereas the production policy depends on the distribution of the dedicated capacities.

In this section, we explore the sensitivity of the optimal policy (including the produc-

tion policy and the scheduling policy) with respect to the current-period parameters,

such as dedicated capacities and shared capacity, as well as demand levels and cost

coefficients. Below, we use “increase” and “decrease” in the non-strict sense. For

random variables, such as capacity and demand, “increased” means stochastic domi-

nance.

2.5.1 Sensitivity to Capacity

We first examine the sensitivity of the optimal policy to the dedicated capacities.

Because the scheduling decisions are based on realizing the dedicated capacities and

demands, changing the capacity uncertainty of the dedicated production lines in the

current period does not influence the scheduling policy. It does, however, impact the

production policies for both products.

Proposition 2.5. If the capacity of dedicated production line 1 (2) is stochastically

increased in the current period t, then the inventory target for product 1 (2) increases,

while the inventory target for product 2 (1) decreases.

Note that this is different from inventory target for a one-product, one-stage case.

It is known (Ciarallo et al., 1994, Hu et al., 2008) that for one stage system, the current

period target is independent of variability of capacity. The difference results from

the shared capacity. When the capacity of dedicated production line 1 is increased,

achieving the product 1 target becomes more likely, leading to an increase in the

product 1 target and a decrease in the product 2 target. This is similar in spirit

to the effect of increasing the starting inventory of product 1, which increases the
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product 1 target and decreases the product 2 target (see Table 2.1 and Proposition

2.2). Next, we explore how the optimal policy changes as the capacity of the shared

resource changes.

Proposition 2.6. If the shared capacity is stochastically increased in the current

period t, the sum of the inventory targets increases. If the capacities of the dedicated

production lines and the shared resource are deterministic and the shared capacity is

increased, inventory targets increase for both products.

While Proposition 2.6 shows that individual targets increase when the determin-

istic shared capacity is increased, similar behavior is observed with uncertain shared

capacity. Numerical evidence suggests that in the case of uncertain shared capacity,

not only the sum of targets increases, but both targets also increase. The interesting

result here is that an increase in capacity can lead to increase in inventory, which

initially appears to be counter-intuitive. The intuition, however, can be explained

as follows. If the capacity of the shared resource is increased, the firm has a higher

potential to satisfy demand; hence, the inventory targets increase for products. Con-

sider two extreme cases. If shared capacity is close to zero, little opportunity exists

to satisfy demand, even if inventories are sufficient to meet all the demand. Thus,

the shared resource is the bottleneck and maintaining significant inventories is not a

useful strategy. On the other hand, if the shared capacity is plentiful, the potential

exists to satisfy demand; hence, maintaining more inventories is beneficial.

2.5.2 Sensitivity to Demand and Cost Parameters

Next, we examine the sensitivity of the optimal policy to the demand levels and the

cost parameters (holding and penalty costs). The scheduling policy is not affected by

a change in current-period demand distribution. We characterize how the inventory

targets change as the demand distribution changes.

Proposition 2.7. Assume that the dedicated capacities are finite and certain. If the
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demand for product 1 (2) is stochastically increased in the current period t, then the

product 1 (2) target increases, while the product 2 (1) target decreases.

The fact that increasing product 1 demand increases the product 1 target and

decreases the product 2 target is expected, because we do not want to starve the

shared resource. Having more inventory of the product with the higher demand

achieves this objective. Next, we analyze the sensitivity to the cost parameters. The

cost parameters impact both the production policy and the scheduling policy. The

results are shown for the most general case when both the dedicated capacities and

the shared capacity are uncertain.

Consider two production schedules, s(κ) and ŝ(κ). We say that the schedule s(κ)

produces (calibrates) more of product i and less of product 3− i than does schedule

ŝ(κ), if si(κ) ≤ ŝi(κ) for each κ.

Proposition 2.8. (i) If the penalty cost for product 1 (2) is increased in the cur-

rent period t, then the product 1 (2) target increases, whereas the product 2 (1)

target decreases. In addition, we produce (calibrate) more of product 1 (2) and

less of product 2 (1) using the shared resource.

(ii) If the holding cost for product 1 (2) is increased in the current period t, then

the product 1 (2) target decreases, whereas the product 2 (1) target increases.

In addition, we calibrate less of product 1 (2) and more of product 2 (1) using

the shared resource.

2.6. Effect of Product Asymmetries on Inventory Policy

Assume that one of the dedicated production lines has lower capacity. Everything

else being equal, do we hold more inventory of the product with higher capacity or the

product with lower capacity? Similarly, assume that one of the dedicated production

lines has more reliable (less uncertain) capacity. Everything else being equal, do

we hold more inventory of the product with more reliable capacity or the product
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with less reliable capacity? These questions can be repeated for demand levels and

demand variability. Based on the conventional wisdom of the single-product, single-

stage inventory models, we may expect that we should hold more inventory of the

product that has lower or less reliable capacity. Similarly, we might expect that

we should hold more inventory of the product with larger demand or more demand

variability. Does our intuition hold when we have two stages of production, in which

stage 2 is shared?

The short answer for these questions is that it depends on the level of shared

capacity. Our intuition holds, for example, when stage 2 has infinite capacity, in which

case our problem reduces to two independent, single-product settings. Surprisingly,

we find that our intuition may not hold with finite shared capacity for stage 2, and

that the actual result may be the opposite of what simple intuition might suggest.

To address the above questions, we consider symmetric settings across products

(i.e., identical demand and capacity distributions, penalty and holding costs) and as-

sume an asymmetric setting only in the dimension of interest (i.e., dedicated capacity

levels, reliability of the dedicated production lines, demand levels, and demand vari-

ability). In all of the numerical studies that follow, we solve a 100-period problem

with stationary parameters.

Base Case: Consider a base case that assumes identical configurations across

products with pi = 10, hi = 1.5, E[εi] = 20, cv(εi) = 0.4 (i.e., coefficient of variation),

E[Ki] = 20, cv(Ki) = 0.4 for i = 1, 2. Stage 2 has no capacity uncertainty, cv(κ) = 0.

The random variables (capacity and demand distributions) are modeled as a two-point

mass with equal probabilities.

The following cases are defined relative to the base case.

• Effect of Asymmetric Dedicated Capacity: We first explore how the level of

dedicated capacity and its reliability affect the optimal inventory policy. Figure 2.9

shows two numerical examples. In the first example (a), product 1 has less dedicated
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capacity than product 2. In the second example (b), product 1 has less reliable

dedicated capacity than product 2. The inventory targets for each product are shown

for initial inventories (0, 0) as a function of the shared capacity level.

Figure 2.9: Effect of Asymmetric Dedicated Capacity on Inventory Targets
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(a) Effect of Capacity Levels
(K1 = 12, K2 = 20, w.p.1)
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(b) Effect of Capacity Reliability
(cv(K1) = 0.8, cv(K2) = 0.1)

Considering first the effect of capacity level, we clearly observe three behaviors

corresponding to the tightness of the shared capacity. Dedicated capacity is irrelevant

for very tight shared capacity: target levels are equal and add up to the shared

capacity level. With low shared capacity, demand cannot be fully satisfied anyway;

hence, targets are low and the likelihood of achieving those targets is high for both

35



products. Thus, no need exists for an extra inventory buffer. When shared capacity is

increased, product 2 has a higher target. A higher target for the product with a higher

dedicated capacity allows us to avoid starving the scarce shared capacity. This is the

case because producing product 2 can be ramped up more quickly in the face of large

demands, resulting in better utilization of the shared resource. Eventually, if shared

capacity is sufficiently large, it becomes possible to better satisfy demands. Stocking

more units of the product with a lower dedicated capacity is needed, because inventory

can be depleted when demand is large, and it takes several periods to recover. Similar

patterns of (a) equal targets, (b) more inventory for the “more favorable” product,

and (c) more inventory for the “less favorable” product are observed for asymmetric

capacity reliability.

• Effect of Asymmetric Demand: We next explore how the demand level and

its variability affect the optimal inventory policy. Figure 2.10 shows two numerical

examples. In the first example (a), product 1 has larger demand than product 2. In

the second example (b), product 1 has more demand variability than product 2.

With higher product 1 demand and high shared capacity, the target for product

1 is significantly higher in order to buffer it from uncertain dedicated capacity and

to satisfy the demand. When shared capacity is low, however, we do not buffer too

much more of product 1, because the likelihood of starving the shared resource will

be low in any case. Considering the effect of demand variability, we observe a similar

pattern as above. Demand variability is irrelevant for very tight shared capacity. In

the middle range of the shared capacity, the product with less variable demand has a

higher inventory target. Because shared capacity is still scarce, stocking the product

with a highly uncertain demand may result in under-utilization of the shared resource.

This risk is avoided by stocking product with more predictable demand. Finally, if

shared capacity is sufficiently large, stocking more units of the product with higher

demand variability allows the company to satisfy more demand.
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Figure 2.10: Effect of Asymmetric Demand on Inventory Targets
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(a) Effect of Demand Levels
(E(ε1) = 25, E(ε2) = 20, σ(ε1) = σ(ε2) = 8)
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(b) Effect of Demand Variability
(cv(ε1) = 0.4, cv(ε2) = 0, cv(K1) = cv(K2) = 0)

2.7. Heuristic Policy

While the optimal policy is easy to explain, the case of multiple products suf-

fers from the curse of dimensionality. As the state space or the sample space of

the random variables grows, the dynamic-programming formulation becomes com-

putationally challenging. In this section, therefore, we propose two implementable

heuristic policies, a straw policy and a fixed-rate scheduling policy and report on their

performance.

Straw Policy (Heuristic S): A straw policy follows a base-stock policy for
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production, in which base stocks are obtained by ignoring the shared capacity. With

the shared capacity ignored, the problem is reduced to solving two independent,

single-product problems (the single-product version of the problem is analyzed in

Ciarallo et al. (1994)). After the base stocks are obtained, calibrating the product

with a higher penalty cost is prioritized.

Fixed-Rate Scheduling Policy (Heuristic F): This heuristic also follows a

base-stock policy for production, but does not ignore the shared capacity in setting

the base-stock levels for the calibration stage. We thus propose an easy-to-implement

scheduling policy. We approximate the target path by a linear trajectory and schedule

the processing of products at a fixed rate that is proportional to base stocks along

the target path. When the starting inventories are off the approximated target path,

we move toward it in the most direct manner, as is the case in the optimal policy.

Note that our fixed-rate scheduling policy is optimal for the identical products case,

as stated in Corollary 2.1. For two products, let y∗1 and y∗2 be the base stocks for

products 1 and 2. Let αi :=
y∗i

y∗1+y∗2
and ζi(k) := αik for i = 1, 2. Heuristic F is then

given by si(κ) = [yi − αi(y1 + y2 − κ)]|[si(κ),s̄i(κ)]. To obtain the base stocks under

this policy, we use a simulation-based optimization model. The heuristic for stage 2

is optimal in the symmetric settings, and the base stocks for all products are equal.

The only difference is that the inventory targets in the optimal policy depend on the

initial inventories; this is not captured by Heuristic F.

To evaluate the heuristic’s performance, we start with the case of two products

for which the optimal policy is available. Then, we consider the case of more than

two products, each having dedicated resources and all using a common shared re-

source. Given the base-stock levels for each product, implementing the two heuristics

is straightforward. Obtaining the base-stock levels, however, involves optimization in

n-dimensions. To obtain the base-stock level for a given product, we aggregate all
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remaining products and search for the best base-stocks for a two-product model.2 We

compare the heuristic’s performance to a lower bound on the optimal costs, obtained

by relaxing the shared-capacity constraint. The gap we report is an upper bound on

the actual optimality gap, except for a three-product case analyzed separately, for

which the optimal costs are obtained computationally. We evaluate the effect of the

number of products on the performance of the heuristics and show that the heuristics

perform better as the number of products is increased.

2.7.1 Performance of the Heuristics

We first illustrate how the shared capacity influences the heuristic performance.3

Using the same numerical example used in Figure 2.9(b), which considered asym-

metric products with different dedicated capacity reliability, Figure 2.11 shows the

performance of the heuristics.

Figure 2.11: Heuristic Performance for Two Products
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2To aggregate the products, we pool the demands and dedicated capacities of the products and
use holding and penalty costs obtained by a weighted average of the costs of individual products.
The weight for a product is the ratio of the average demand for that product and the average demand
for all products being aggregated.

3To evaluate the heuristic performance for a problem instance, we first derive the optimal policy
using the dynamic programming formulation for a horizon of T = 100 periods. The straw base stocks
also depend on time horizon, and we find them for T = 100. To obtain the fixed-rate scheduling
policy, we simulate the system for N = 10, 000 periods for a given set of base stocks. We then
search for the best base stocks using the same sample path for all simulations. Next, we simulate
the system using the optimal policy and each of the heuristics for 10,000 periods along 10 sample
paths.
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For Heuristic S, the optimality gap is high (around 30%) when the shared capacity

is low. This is expected, because the straw policy ignores the shared capacity. Heuris-

tic F results in much lower optimality gaps. For moderately high shared capacity,

the optimality gap is up to 5%. For lower capacity, Heuristic F is near-optimal. We

observe a similar pattern with the other numerical examples in Section 2.6.

To evaluate the performance of the heuristics further, we ran several test studies.

We considered both symmetric settings (identical costs, demands, and dedicated ca-

pacities) and asymmetric settings. To create a test bed, we varied the parameters in

multiple dimensions. Table 2.2 summarizes the parameters used for the symmetric

settings,4 and Table 2.3 summarizes the parameters used for asymmetric settings.5

Table 2.2: Parameters for the Test Cases (Symmetric Settings)
Capacity Utilization 80%, 90%, 96%, 100%
Capacity Variability 0.25, 0.50, 0.75, 1
Uncapacitated Service Levels 80%, 90%, 95%
Demand Variability 0.25, 0.50, 0.75, 1

Note. We fixed the average demand to 24 and chose the average capacities to control for the
utilization of each resource (dedicated production line i’s utilization is E[εi]/E[Ki], and shared
resource utilization is E[ε1 + ε2]/E[κ]). The holding and penalty costs are chosen to control for
uncapacitated optimal service levels, pi/(pi + hi).

Table 2.3: Parameters for the Test Cases (Asymmetric Settings)
Capacity Utilization 75%, 80%, 85%, 90%, 95%
Penalty Cost 40, 60, 80, 100, 120
Holding Cost 0.4, 0.6, 0.8, 1.0, 1.2
Average Demand 100, 120, 140, 160, 180

Note. Demand and dedicated capacities are exponentially distributed, whereas the shared capacity
is Erlang−n.

Table 2.4 reports the performance of both heuristics for symmetric systems. Clearly,

Heuristic F performs extremely well in symmetric settings, and it outperforms Heuris-

4Capacity utilization and variability are the same for production, but could differ for the calibra-
tion stage. A total of 3,072 test cases are considered (3 configurations for costs, 4 for demands, 16
for stage 1, and 16 for stage 2).

5To evaluate the heuristic performance, we randomly generate 1,000 problem instances and report
the average gap across all instances.
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tic S. The numerical evidence also suggests that the performance of the straw policy

is similar for the two-product case and the three-product case, whereas the fixed-rate

scheduling policy results in lower optimality gaps for the three-product case compared

to two-product case.

Table 2.4: Performance of the Heuristics (Symmetric Settings)
Two Products Three Products

Optimality Gap Heuristic S Heuristic F Heuristic S Heuristic F
Average 7.28% 0.05% 6.94% 0.01%

99th Percentile 16.89% 0.59% 15.77% 0.18%

Next, we consider the case of more than three products and investigate the effect

of the number of products on the heuristics’ performance. When we compare per-

formance for different numbers of products, we keep the average shared capacity per

product constant; therefore, utilization of the shared resource remains the same when

we modify the number of products. Figure 2.12 illustrates the heuristic performance

for the test cases we consider. Recall that we are comparing our heuristics to a lower

bound on costs. In all cases, the fixed-rate scheduling policy performs better than the

straw policy. As the number of products is increased along with proportional capacity

increase, however, the performance of both heuristics improves and the optimality gap

rapidly converges to zero. Although the gap is initially very high, we expect that the

actual gap between the heuristics and the optimal cost is much smaller based on our

findings from the two-product case. Thus, the bound on the gap may be significantly

inflated when the number of products is small.

When the number of products is increased and the shared capacity per product

remains fixed, more opportunity emerges to reap the benefits of capacity pooling

for the calibration stage. Given that the total shared capacity is large relative to the

demand for a single product, our conclusion is that the shared capacity is less relevant

when the number of products is high. In such situations, the shared capacity can be
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Figure 2.12: Comparison of Heuristic Performance to a Lower Bound on Optimal
Cost
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treated as infinite and can be ignored. If the number of products is small and the

capacity is tight, however, ignoring the shared capacity will result in poor outcomes.

2.8. Conclusions and Further Research

In this essay, we have considered optimal production and inventory control for

a make-to-stock/calibrate-to-order system with dedicated resources for each product

in stage 1 and a common resource that all products share in stage 2. We fully

characterized the optimal policy for the case of two products and proposed heuristic

policies for the case of multiple products based on the optimal policy structure for

two products. We numerically explored the effect of product asymmetries on the

optimal policy, showing that depending on shared capacity level, three different modes

of behavior are present. We also showed numerically that the performance of the

heuristics is near-optimal when the number of products is sufficiently large and the

shared capacity is large relative to the demand for individual products.

Our model and assumptions are driven by our work with an oilfield services com-

pany that made tools in advance but had to calibrate/customize them right before

use in a short time or faced lost sales. An interesting extension of our problem would

be to consider backlogging. Incorporating demand backlogging, however, causes ex-
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plosion of the state space. Not only do we need to track inventories in our state

description, but we also we need to keep track of the number of backlogged customers

for each product. This departs from the classical inventory models in which inventory

position, defined as inventory-on-hand minus backlogs, is sufficient as a state variable.

Due to shared capacity in our model, positive inventories and positive backlogs may

coexist. Hence, inventory position alone is insufficient to describe the state of the

system. This is an interesting case for future research.

Furthermore, in our setting, the calibrated tools could not be held in stock first

because the calibration depended on the actual use (e.g., a tool used at a different

depth needed to be calibrated differently) and the type of use information would

only be revealed when the demand arrived. Another interesting extension for other

environments might be to consider a case in which the firm may be able to keep

inventory of products in stage 2 as well.

2.9. Appendix: Mathematical Proofs

Proof of Theorem 2.1. Consider first the case when the shared capacity in

period t is deterministic and equals κ. Clearly, only production quantities s1(κ) and

s2(κ) matter – the trajectory of production (i.e., scheduling) is irrelevant. To reflect

this, we refer to the scheduling problem with deterministic capacity in the current

period as capacity allocation problem. We denote by Jt(ỹ, ε, κ) the intermediate cost

function. Defining zi = ỹi − si(κ) as the stage-1 product i inventory carried to the

next period, the capacity allocation problem reduces to the following:

Jt(ỹ, ε, κ) = min
(z1,z2)

{
hz + p[ε− ỹ + z] + βVt+1(z) (2.8)

s.t si(κ) ≤ ỹi − zi ≤ s̄i(κ), i = 1, 2 (2.9)

(ỹ1 − z1) + (ỹ2 − z2) ≤ κ
}

(2.10)

43



The decision problem is expressed in terms of the inventory to carry over to the next

period. (2.8) replaces (2.2), (2.9) replaces (2.3), and (2.10) replaces (2.4) and (2.5)

in the original formulation (the trajectory of production is ignored). The optimal

solution should satisfy the following condition.

Optimality Condition: If the shared capacity is not binding, min(ỹ1, ε1)+min(ỹ2, ε2) ≤

κ, then si(κ) = min(ỹi, εi), implying si(κ) = si(κ) = s̄i(κ) and zi = (ỹi − εi)
+.

Otherwise, all the shared capacity must be utilized, s1(κ) + s2(κ) = κ, implying

that z1 + z2 = ỹ1 + ỹ2 − κ.

Due to A2
t+1, i.e., pi + hi + β∆xiVt+1(z) ≥ 0, the function minimized in (2.8) is

non-decreasing in z1 and z2, hence the optimality condition is justified. Recall that

γ = p + h. When the shared capacity is binding, we replace z2 = ỹ1 + ỹ2 − κ − z1,

leading to optimization in single variable.

Jt(ỹ, ε, κ) = p(ε− ỹ) + γ2(ỹ1 + ỹ2 − κ)

+ min
z1

{
(γ1 − γ2)z1 + βVt+1(z1, ỹ1 + ỹ2 − κ− z1) (2.11)

s.t ỹ1 − s̄1(κ) ≤ z1 ≤ ỹ1 − s1(κ)
}

Define ft(z1, ω) := (γ1 − γ2)z1 + βVt+1(z1, ω − z1) as the function to be mini-

mized in (2.11). Since Vt+1(x) is jointly convex, ft(z1, ω) is convex in z1 for z1 ∈

[0, ω] and for any ω ≥ 0. To obtain the optimal capacity allocation, let ζ1(ω) =

arg min0≤z1≤ω ft(z1, ω). In case of multiple optimal solutions, we choose the small-

est one. As a consequence, the optimal capacity allocation satisfies z1 = ζ1(ỹ1 +

ỹ2 − κ)|[ỹ1−s̄1(κ),ỹ1−s1(κ)]. Defining ζ2(ω) = ω − ζ1(ω) and by a symmetric argu-

ment, we also have z2 = ζ2(ỹ1 + ỹ2 − κ)|[ỹ2−s̄2(κ),ỹ2−s2(κ)], which implies si(κ) =

{ỹi − ζi(ỹ1 + ỹ2 − κ)}|[si(κ),s̄i(κ)] for each i = 1, 2. Before proceeding to the case

with stochastic shared capacity, we show that 0 ≤ ζ ′i(ω) ≤ 1. First, note that due to
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the optimality we have:

∂ft(z1, ω)

∂z1

∣∣∣∣
z1=ζ1(ω)

= 0 = (γ1 − γ2) + β∆x1Vt+1(ζ1(ω), ζ2(ω))

−β∆x2Vt+1(ζ1(ω), ζ2(ω)) (2.12)

To evaluate ζ ′1(ω), we take the derivative of both sides of (2.12) and obtain

ζ ′1(ω) =
(∆x2x2 −∆x1x2)Vt+1(ζ1(ω), ζ2(ω))

(∆x1x1 + ∆x2x2 − 2∆x1x2)Vt+1(ζ1(ω), ζ2(ω))
(2.13)

0 ≤ ζ ′1(ω) ≤ 1 follows due to the inductional assumptions on Vt+1(x). Since

ζ2(ω) = ω − ζ1(ω), we immediately have 0 ≤ ζ ′2(ω) ≤ 1 and ζ ′1(ω) + ζ ′2(ω) = 1.

Next, consider stochastic shared capacity. First, we relax (2.3) and (2.4), that

is, we ignore s′1(κ) + s′2(κ) ≤ 1 and s′i(κ) ≥ 0. Since choice of si(κ) for a given κ

is now decoupled from any other capacity κ′ 6= κ, the problem reduces to indepen-

dently minimizing the objective function for each realization of κ, which becomes the

deterministic capacity case. Thus, the solution to the relaxed problem is given by

si(κ) =
{
ỹi − ζi(ỹ1 + ỹ2 − κ)

}
|[si(κ),s̄i(κ)], which satisfies ignored conditions (2.3) and

(2.4), hence, it is feasible for the original problem with stochastic shared capacity.

(2.3) follows from ζ ′1(ω)+ζ ′2(ω) = 1 and (2.4) follows from 0 ≤ ζ ′i(ω) ≤ 1. Hence, si(κ)

is indeed optimal for the original problem with stochastic shared capacity. Clearly,

the optimal schedule is independent of the distribution of the current-period shared

capacity. As a consequence of the optimal policy, we have Ct(ỹ, ε) = EκJt(ỹ, ε, κ):

the firm incurs Jt(ỹ, ε, κ) for each realization of κ. �

Proof of Proposition 2.1. From the proof of Theorem 2.1, we have Ct(ỹ, ε) =

EκJt(ỹ, ε, κ). It is sufficient to show that the derivatives of Jt(ỹ, ε, κ) satisfy the desired

properties, as expectation operator preserves them. It is useful to first establish the

convexity of Jt(ỹ, ε, κ). An equivalent formulation for the capacity allocation problem

45



expresses all constraints as linear in the state and decision variables.

Jt(ỹ, ε, κ) = min
(z1,z2)

{
hz + p[ε− ỹ + z] + βVt+1(z) (2.14)

s.t 0 ≤ zi ≤ ỹi i = 1, 2 (2.15)

ỹi − zi ≤ εi i = 1, 2 (2.16)

z1 + z2 ≥ ỹ1 + ỹ2 − κ
}

(2.17)

Function minimized in (2.14) is convex due to inductional assumptions, the set

of constraints, (2.15)–(2.17) is convex due to linearity. Hence, convexity of Jt(ỹ, ε, κ)

follows from Heyman and Sobel (1984), Property B–4, page 525. Next, we investigate

the properties of Jt(ỹ, ε, κ). Due to stationarity of holding and penalty costs, it is

always beneficial to satisfy demand, if there exists sufficient capacity. This simplifies

the analysis below.

Case 1: ε1 + ε2 ≤ κ. If the total demand does not exceed the available shared

capacity, then the demands are satisfied subject to the availability of the inventories

of stage-1 products, and the cost that is incurred for any (ỹ1, ỹ2) is Jt(ỹ, ε, κ) =

h(ỹ − ε)+ + p(ε− ỹ)+ + βVt+1(ỹ − ε)+.

First, we analyze the first-order derivatives. By Theorem 23.1 of Rockafellar

(1997), the one-sided directional partial derivatives of the convex function Jt(ỹ, ε, κ)

exist. Therefore, whenever the first-order derivatives are not continuous, we use the

right-hand derivatives below.

∆ỹiJt(ỹ, ε, κ) = [hi + β∆xiVt+1(ỹ − ε)+]1ỹi≥εi − pi1ỹi<εi

≥ −pi1ỹi≥εi − pi1ỹi<εi = −pi

Second, we analyze the second-order derivatives. The function Jt(ỹ, ε, κ) obviously

preserves all the second-order properties that the function Vt+1(x) has. This can be
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verified in a straightforward way through considering four subregions, ỹi ≥ (<)εi. For

example, for ỹi ≥ εi for i = 1, 2, second-order properties hold as ∆ỹiỹiJt(ỹ, ε, κ) =

β∆xixiVt+1(ỹ − ε) ≥ β∆x1x2Vt+1(ỹ − ε) = ∆ỹ1ỹ2Jt(ỹ, ε, κ) ≥ 0. Other subregions can

be analyzed similarly. We also need to verify these properties on the boundaries,

ỹ1 = ε1 and ỹ2 = ε2. Observe that the first-order derivatives are not continuous on

the boundaries. Denoting by ∆+ the right-hand derivative operator, we instead show

that the following properties hold on the boundaries.

(i) ∆+
ỹi
Jt(ỹ, ε, κ) is (weakly) increasing in ỹ1 and ỹ2.

(ii) ∆+
ỹ1
Jt(ỹ, ε, κ)−∆+

ỹ2
Jt(ỹ, ε, κ) is (weakly) increasing in ỹ1 and (weakly) decreasing

in ỹ2.

Property (i) replicates ∆ỹiỹiJt(ỹ, ε, κ) ≥ 0 and ∆ỹ1ỹ2Jt(ỹ, ε, κ) ≥ 0, and Property (ii)

replicates ∆ỹiỹiJt(ỹ, ε, κ) ≥ ∆ỹ1ỹ2Jt(ỹ, ε, κ). These properties are sufficient for the

preservation of the second-order properties over the boundaries. (For further details,

see Shaoxiang, 2004, Proposition 1.)

For conciseness, denote by J(ỹ1, ỹ2) = Jt(ỹ, ε, κ) and z = (ỹ − ε)+. We have

∆+
ỹi
J(ỹ1, ỹ2) = [hi + β∆xiVt+1(z)]1ỹi≥εi − pi1ỹi<εi . ∆+

ỹ1
J(ỹ1, ỹ2) is increasing ỹ1, since

−p1 ≤ h1 + β∆x1(0, z2) on the boundary ỹ1 = ε1, due to A2
t+1. ∆+

ỹ1
J(ỹ1, ỹ2) is

increasing in ỹ2 for ỹ1 < ε1, as ∆+
ỹ1
J(ỹ1, ỹ2) = −p1 is constant. Let ỹ1 ≥ ε1. In

this case, ∆+
ỹ1
J(ỹ1, ỹ2) = h1 + β∆x1(ỹ1 − ε1, 0) for ỹ2 < ε2 and ∆+

ỹ1
J(ỹ1, ỹ2) = h1 +

β∆x1(ỹ1 − ε1, ỹ2 − ε) for ỹ2 ≥ ε2 is increasing in ỹ2 since ∆x1x2Vt+1(x) ≥ 0. Similarly,

we can show that ∆+
ỹ2
J(ỹ1, ỹ2) is increasing in ỹ1 and ỹ2, which completes property

(i).

Next, we prove property (ii).

∆+
ỹ1
J(ỹ1, ỹ2)−∆+

ỹ2
J(ỹ1, ỹ2) = [h1 + β∆x1Vt+1(z)]1ỹ1≥ε1 − p11ỹ1<ε1

−[h2 + β∆x2Vt+1(z)]1ỹ2≥ε2 + p21ỹ2<ε2
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First, consider the boundary ỹ1 = ε1 with ỹ2 < ε2. ∆+
ỹ1
J(ỹ1, ỹ2) −∆+

ỹ2
J(ỹ1, ỹ2) is

increasing in ỹ1, since over the boundary of ỹ1 = ε1, we have −p1 ≤ h1 + β∆x1(0, 0),

and decreasing in ỹ2, since −p2 ≤ h2 +β∆x2(0, 0) over the boundary of ỹ2 = ε2. Next,

consider the boundary of ỹ1 = ε1 with ỹ2 ≥ ε2. In this case, ∆+
ỹ1
J(ỹ1, ỹ2)−∆+

ỹ2
J(ỹ1, ỹ2)

is increasing in ỹ1 and decreasing in ỹ2, since ∆x1Vt+1(ỹ − ε) − ∆x2Vt+1(ỹ − ε) is

increasing in ỹ1 and decreasing in ỹ2 due to the inductional assumptions. The other

case that considers the boundary of ỹ2 = ε2 can be handled similarly.

Case 2: ε1 + ε2 > κ. The shared capacity is a binding resource, provided also

that sufficient inventories exist. Figure 2.13 illustrates various regions induced by the

optimal policy.

Figure 2.13: Regions Induced by Optimal Policy When ε1 + ε2 > K
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Region A, min(ỹ1, ε1) + min(ỹ2, ε2) ≤ κ

Region A: min(ỹ1, ε1) + min(ỹ2, ε2) ≤ κ. In this region, the realized capacity is

not a binding resource. Although the total demand exceeds capacity, the amount of

inventory does not allow for full utilization of the shared capacity. As a result, the

cost that is incurred is Jt(ỹ, ε, κ) = h(ỹ − ε)+ + p(ε− ỹ)+ + βVt+1(ỹ − ε)+, satisfying

the desired properties, as discussed in Case 1.
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Region B: si(κ) = ỹi − ζi(ỹ1 + ỹ2 − κ). Denote by ζi = ζi(ỹ1 + ỹ2−κ). Note that

ζ2 = ỹ1 + ỹ2 − κ− ζ1. As a result, the following holds.

Jt(ỹ, ε, κ) = h1ζ1 + h2ζ2 + p1(ε1 − ỹ1 + ζ1) + p2(ε2 − ỹ2 + ζ2) + βVt+1(ζ1, ζ2)

= h1ζ1 + h2(ỹ1 + ỹ2 − κ− ζ1) + p1(ε1 − ỹ1 + ζ1)

+p2(ε2 + ỹ1 + κ− ζ1) + βVt+1(ζ1, ỹ1 + ỹ2 − κ− ζ1)

Using the envelope theorem, we have ∆ỹ1Jt(ỹ, ε, κ) = −p1+p2+h2+β∆x2Vt+1(ζ1, ζ2) ≥

−p1. By a similar argument, we can show ∆ỹ2Jt(ỹ, ε, κ) ≥ −p2. Second-order condi-

tions are derived as follows.

∆ỹ1ỹ1Jt(ỹ, ε, κ) = β∆x1x2Vt+1(ζ1, ζ2)ζ ′1 + β∆x2x2Vt+1(ζ1, ζ2)ζ ′2

∆ỹ1ỹ2Jt(ỹ, ε, κ) = β∆x1x2Vt+1(ζ1, ζ2)ζ ′1 + β∆x2x2Vt+1(ζ1, ζ2)ζ ′2

Obviously, ∆ỹ1ỹ1Jt(ỹ, ε, κ) = ∆ỹ1ỹ2Jt(ỹ, ε, κ) ≥ 0 due to inductional assump-

tions on Vt+1(x) and the fact that the functions ζ ′i(k) ≥ 0. By symmetry, we have

∆ỹ2ỹ2Jt(ỹ, ε, κ) = ∆ỹ1ỹ2Jt(ỹ, ε, κ) ≥ 0.

Region C: s1(κ) = s̄1(κ) and s2(κ) = s2(κ). First, we prove that ỹ1 ≥ min(ε1, κ)

in this region. The optimal solution satisfies s1(κ) = s̄1(κ) and s2(κ) = s2(κ) if

and only if s̄1(κ) < ỹ1 − ζ1(ỹ1 + ỹ2 − κ), since the optimal si(κ) satisfies si(κ) =

[ỹi− ζi(ỹ1 + ỹ2−κ)]|[si(κ),s̄i(κ)] for i = 1, 2, by Theorem 2.1. To derive a contradiction,

assume that ỹ1 < min(ε1, κ), in which case s̄1(κ) = min(ỹ1, ε1, κ) = ỹ1. Thus, either

s̄1(κ) = ỹ1 < ỹ1 − ζ1(ỹ1 + ỹ2 − κ) or ζ1(ỹ1 + ỹ2 − κ) < 0. This is, however, a

contradiction, since ζ1(ω) ≥ 0 by Theorem 2.1. As a consequence, s1(κ) = min(ε1, κ)

and s2(κ) = κ − min(ε1, κ). Using si = si(κ), we express the cost function as:

Jt(ỹ, ε, κ) = h1(ỹ1 − s1) + p1(ε1 − s1) + h2(ỹ2 − s2) + p2(ε2 − s2) + βVt+1(ỹ − s). It

is easy to check that ∆ỹiJt(ỹ, ε, κ) = hi + β∆xiVt+1(ỹ − s) ≥ −pi. Obviously, the

second-order properties of Jt(ỹ, ε, κ) in this region are the same as these of Vt+1(x).
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Hence, the second-order properties are preserved.

Region D: s1(κ) = s1(κ) and s2(κ) = s̄2(κ). The proof follows the same reason-

ing as in Region C, except that product indices are switched. Hence, we omit the

details.

We have shown that Jt(ỹ, ε, κ) is convex, ∆ỹiJt(ỹ, ε, κ) ≥ −pi and satisfies the

second-order properties in (ỹ1, ỹ2). Since Ct(ỹ, ε) = EκJt(ỹ, ε, κ), we have that Ct(ỹ, ε)

is also convex, ∆ỹiCt(ỹ, ε) ≥ −pi and satisfies the second-order properties in (ỹ1, ỹ2).

Crossing from Region A to D, A to C, B to A and B to C does not cause problems,

since the first derivatives are continuous. We only need to pay attention to the

boundary between Regions A and B, however, the proof follows the same logic as in

Case 1, by use of assumption A2
t+1. �

Proof of Theorem 2.2. Since Gt(ỹ) = EεCt(ỹ, ε) and Ct(ỹ, ε) is convex and

satisfies the second order properties in (ỹ1, ỹ2) due to Proposition 2.1, Gt(ỹ) is convex

in (ỹ1, ỹ2) and it satisfies the second-order properties, as the expectation operator

preserves them.

(a) Recall that ȳ1(y2) = arg miny1≥0Gt(y), hence ∆y1Gt(ȳ1(y2), y2) = 0. Taking

the derivative of both sides with respect to y2, we obtain dȳ1(y2)
dy2

= −∆y1y2Gt(ȳ1(y2),y2)

∆y1y1Gt(ȳ1(y2),y2)
.

It follows that −1 ≤ dȳ1(y2)
dy2

≤ 0 since Gt(.) satisfies the second-order properties. By

a similar argument, −1 ≤ dȳ2(y1)
dy1

≤ 0. (b) Recall that the feasible set of targets is

y ≥ x. Also, ỹ = y ∧ (x + K) denotes the inventories for realized capacity levels

K = (K1, K2). Obviously, x ≤ ỹ ≤ y.

Region 1: x1 ≥ ȳ1(x2) and x2 ≥ ȳ2(x1). For any capacity realization, we have

ỹ ≥ x. As a consequence, Gt(x1, x2) ≤ Gt(ỹ1, x2) ≤ Gt(ỹ1, ỹ2) holds due to con-

vexity, and the definitions of the curves ȳ1(.) and ȳ2(.). Consequently, Gt(x1, x2) ≤

EK1,K2Gt(y1 ∧ (x1 + K1), y2 ∧ (x2 + K2)) for any y ≥ x, hence, it is optimal not to

produce any of the products.
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Region 2: x1 < ȳ1(x2) and x2 ≥ ȳ2(x1). We first show that the optimal inventory

targets would be (ȳ1(x2), x2) if the dedicated capacity realizations, K1 and K2, were

known beforehand. First, we show that it is not optimal to produce product 2.

Consider any y2 > x2 with y1 ≥ x1. Since ȳ2(y1) is non-increasing, it implies that

ȳ2(x1) ≥ ȳ2(ỹ1). And, since x2 ≥ ȳ2(x1) by assumption, we have x2 ≥ ȳ2(ỹ1). Since

ỹ2 ≥ x2 ≥ ȳ2(ỹ1), we immediately have Gt(ỹ1, x2) ≤ Gtỹ1, ỹ2) by the definition of

ȳ2(ỹ1) and due to convexity. Hence, not producing product 2 is optimal. Recall that

ȳ1(x2) is a minimizer of Gt(y1, x2) in y1. Due to convexity of Gt(.), it follows that

ȳ1(x2) is also a minimizer of Gt(y1∧ (x1 +K1), x2). Therefore, (ȳ1(x2), x2) is optimal.

Note that the optimal inventory targets are independent of the capacity realizations

and knowing the capacity levels in advance does not influence the optimal decisions.

Therefore, inventory targets (ȳ1(x2), x2) are also optimal when capacities are not

known a priori.

Region 3: x1 ≥ ȳ1(x2) and x2 < ȳ2(x1). We follow the same reasoning as for

Region 2.

Region 4: x1 ≤ ȳ1(x2) and x2 ≤ ȳ2(x1). We prove that the optimal inventory

targets (y1, y2) satisfy ȳi(y3−i) ≤ yi ≤ ȳi(x3−i) for each i:

• yi ≤ ȳi(x3−i) for each i: Assume that one of the products, say product 1, violates

the condition. Consider any y1 > ȳ1(x2) and y2 ≥ x2. Since ȳ1(y2) is non-increasing,

we have ȳ1(x2) ≥ ȳ1(y2) for all y2 ≥ x2, hence, y1 > ȳ1(y2). By the definition of ȳ1(y2)

and due to convexity, revising the production decision by keeping y2 the same and

setting y1 = ȳ1(y2), the firm could have incurred a lower cost for any realization of K1

and K2. (The details are identical to the one for Region 2.) Therefore, yi ≤ ȳi(x3−i)

for each i.

• ȳi(y3−i) ≤ yi for each i: Assume that and one of the products, say product 1,

violates the condition. Consider any y1 < ȳ1(y2) and y2 ≥ x2. Since ȳ1(y2) is non-

increasing and ỹ2 ≤ y2, we have ȳ1(y2) ≤ ȳ1(ỹ2). By the definition of ȳ1(y2) and
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due to convexity, revising the production decision by keeping y2 the same and setting

y1 = ȳ1(y2), the firm could have incurred a lower cost for any realization of K1 and

K2 (as argued for Region 2). Therefore, ȳi(y3−i) ≤ yi for each i.

The property above, derived for Region 4, has the following two consequences.

Consequence 1: Assume that producing product j is not optimal, yj = xj. Since

ȳi(yj) ≤ yi ≤ ȳi(xj), the expression reduces to yi = ȳi(xi).

Consequence 2: If xi < y0
i for each i, then it is optimal to produce both products:

yi > xi. To reach a contradiction, assume that it is not optimal to produce product

1. Then, by Consequence 1, inventory target for product 2 is ȳ2(x1). However, a

better solution can be obtained by setting y1 = ȳ1(ȳ2(x1)) and keeping y2 = ȳ2(x1),

as shown for Region 4. Therefore, both products are produced in an optimal policy.

Consequence 2 always holds when Gt(y) is strictly convex. If Gt(y) is not strictly

convex, there could be multiple optimal solutions, however, we focus on the one that

satisfies Consequence 2. We next present an exact characterization of the optimal

policy in Region 4. Define EG(y;x) = EK1,K2Gt(y ∧ (x + K)). The objective is to

minimize EG(y;x) in y for a given x with y ≥ x. EG(y;x) is not necessarily convex

in y, however, as we will show, the first-order conditions are sufficient for optimality.

Denote by fi(.) and Fi(.) the probability density function and the cumulative distri-

bution function of the product i’s capacity. We derive the first-order conditions as

follows.

∆y1EG(y;x) = [1− F1(y1 − x1)]EK2∆y1Gt(y1, y2 ∧ (x2 +K2))

∆y2EG(y;x) = [1− F2(y2 − x2)]EK1∆y2Gt(y1 ∧ (x1 +K1), y2)

The following two steps show that EG(y;x) is unimodal in y1 for a given y2 (and

vice versa).

Step A1: The function Gt(y1, y2 ∧ (x2 + K2)) is convex in y1 for any K2 due to the
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convexity of Gt(.). Hence, EK2Gt(y1, y2 ∧ (x2 + K2)) is convex in y1. Define

y̌1(y2;x) = arg miny1≥0EK2Gt(y1, y2 ∧ (x2 + K2)). For convenience, we treat x

as a constant and write y̌2(y1) instead of y̌2(y1;x).

Step A2: For any K1, y̌1(y2) is also a minimizer of EK2Gt(y1 ∧ (x1 + K1), y2 ∧ (x2 +

K2)). Specifically, EK2Gt(y1 ∧ (x1 + K1), y2 ∧ (x2 + K2)) is unimodal in y1

and it is minimized at y1 = y̌1(y2) for any K1. For y1 ≤ y̌1(y2), the function

EK2Gt(y1 ∧ (x1 + K1), y2 ∧ (x2 + K2)) is convex and decreasing in y1. And

for y1 ≥ y̌1(y2), it is increasing (not necessarily convex). Thus, EG(y;x) =

EK1,K2Gt(y1∧(x1+K1), y2∧(x2+K2)) is also unimodal in y1 and it is minimized

at y1 = y̌1(y2).

Steps A1–A2 show that EG(y;x) is unimodal in yi for given y3−i and x. To

establish the optimal solution, we show that y̌i(y3−i) ≥ ȳi(y3−i) for i = 1, 2. Without

loss of generality, consider i = 1.

∆y1EG(ȳ1(y2), y2;x) = [1− F1(ȳ1(y2)− x1)]EK2∆y1Gt(ȳ1(y2), y2 ∧ (x2 +K2))

≤ [1− F1(ȳ1(y2)− x1)]EK2∆y1Gt(ȳ1(y2), y2)

= 0 = ∆y1EG(y̌1(y2), y2;x),

where the inequality is due to second-order properties of G. Hence, y̌1(y2) ≥ ȳ1(y2).

For y2 ≤ x2, the inequality holds with equality. Recall that x satisfies xi ≤ ȳi(x3−i)

for each i (in Region 4). Consequently, the solution to the first-order conditions,

denoted by ŷ = ŷ(x) (the intersection of the curves yi = y̌i(y3−i)) is such that it is

either feasible (i.e. ŷ ≥ x), or ŷi ≥ xi and ŷ3−i < x3−i for some i. In other words,

the first-order conditions never imply ŷ < x. Otherwise, a contradiction is reached,

in which x would not belong to Region 4 using the fact that y̌i(y3−i) ≥ ȳi(y3−i).

Consider three subcases.
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Case 1, ŷ ≥ x: First, consider the case where the solution to the first-order condi-

tions is feasible. We will show that ∆yiyiEG(ŷ;x) ≥ ∆y1y2EG(ŷ;x) ≥ 0 for i = 1, 2. In

other words, whenever the first-order conditions are satisfied, then second-order prop-

erties are also satisfied. Obviously, second-order properties imply that the Hessian is

positive, further implying the sufficiency of the first-order conditions for optimality.

We obtain the second-order conditions as follows.

∆y1y1EG(y;x) = [1− F1(y1 − x1)]EK2∆y1y1Gt(y1, y2 ∧ (x2 +K2))

−f1(y1 − x1)EK2∆y1Gt(y1, y2 ∧ (x2 +K2))

∆y1y2EG(y;x) = [1− F1(y1 − x1)][1− F2(y2 − x2)]∆y1y2Gt(y1, y2)

∆y1y2EG(y;x) ≥ 0 since ∆y1y2Gt(y1, y2) ≥ 0. When the first-order conditions are

satisfied, ∆y1y1EG(ŷ;x) reduces to ∆y1y1EG(ŷ;x) = [1−F1(ŷ1−x1)]EK2∆y1y1Gt(ŷ1, ŷ2∧

(x2 +K2)). Thus,

EK2∆y1y1Gt(ŷ1, ŷ2 ∧ (x2 +K2)) =

∫ ŷ2−x2

0

∆y1y1Gt(ŷ1, x2 +K2)f2(k2)dk2

+

∫ ∞
ŷ2−x2

∆y1y1Gt(ŷ1, ŷ2)f2(k2)dk2

≥
∫ ∞
ŷ2−x2

∆y1y1Gt(ŷ1, ŷ2)f2(k2)dk2

= [1− F2(ŷ2 − x2)]∆y1y1Gt(ŷ1, ŷ2)

Multiplying both sides of the inequality by 1−F1(ŷ1−x1), we obtain ∆y1y1EG(ŷ;x) ≥

∆y1y2EG(ŷ;x).Similarly, ∆y2y2EG(ŷ;x) ≥ ∆y1y2EG(ŷ;x). As a result, the Hessian is

positive when the first-order conditions are satisfied, hence, y∗(x) = ŷ(x).

Case 2, ŷ1 ≥ x1, ŷ2 < x2: We have either x1 > y0
1 or x2 > y0

2, since otherwise,

producing both products would be optimal, and the first-order conditions would be

feasible (Consequence 2 ). Since ŷ2 < x2, we have x2 > y0
2 (it can be shown by

contradiction). From Step A1, EK1∆y2Gt(y1∧(x1+K1), y̌2) = 0. Taking the derivative
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of both sides with respect to y1, we obtain the following.

dy̌2

dy1

= − [1− F1(y1 − x1)]∆y1y2Gt(y1, y̌2)

[1− F1(y1 − x1)]∆y1y2Gt(y1, y̌2) +
∫ y1−x1

0
∆y2y2Gt(x1 +K1, y̌2)f1(k1)dk1

Due to the second-order properties of Gt(y), −1 ≤ dy̌2
dy1
≤ 0. Similarly, −1 ≤ dy̌1

dy2
≤

0. Figure 2.14 illustrates the shaded region, where the optimal inventory targets lie.

The curves reflect the relationship y̌i(y3−i) ≥ ȳi(y3−i), and that for y3−i ≤ x3−i, the

inequality becomes an equality.

Figure 2.14: Optimal Solution in Region 4, ŷ1 ≥ x1, ŷ2 < x2

y2 = ȳ2(y1)

y1 = ȳ1(y2)

y1

y2

x = (x1, x2)

y1 = y̌1(y2)

y2 = y̌2(y1)

(ŷ1, ŷ2)

(y01 , y
0
2)

Optimal Inventory

Targets

We show that it is optimal not to produce product 2. To reach a contradiction,

consider any (y1, y2) (from the shaded region), satisfying y2 > x2 with ȳ2(y1) ≤ y2 ≤

ȳ2(x1), and assume that it is optimal. Due to unimodality of EG(y;x) in y1, we must

have y1 = y̌1(y2) for optimality. In this case, revising the target for product 2 as

max(y̌2(y1), x2) improves the objective function due to unimodality of EG(y;x) in

y2. Thus, we are able to construct a better solution, which is in contradiction with

the optimality of (y1, y2). Hence, not ordering product 2 is optimal. As a result, the

product 1 target is set to be ȳ1(x2) by Consequence 1.
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Case 3, ŷ1 < x1, ŷ2 ≥ x2: Similar analysis for Case 2 applies. �

Proof of Proposition 2.2. Assume first that (x1, x2) belongs to the region,

where it is optimal to produce both products. In this case, the optimal targets

(y∗1, y
∗
2) satisfy the first-order conditions: EK2∆y1Gt(y

∗
1, y
∗
2 ∧ (x2 + K2)) = 0 and

EK1∆y2Gt(y
∗
1 ∧ (x1 + K1), y∗2) = 0. Taking the derivatives of both sides of the two

equalities with respect to x1 and x2, we obtain

0 = EK2∆y1y1Gt(y
∗
1, y
∗
2 ∧ (x2 +K2))

∂y∗1
∂x1

+ [1− F2(y∗2 − x2)]∆y1y2Gt(y
∗
1, y
∗
2)
∂y∗2
∂x1

:= a11
∂y∗1
∂x1

+ a12
∂y∗2
∂x1

0 = [1− F1(y∗1 − x1)]∆y1y2Gt(y
∗
1, y
∗
2)
∂y∗1
∂x1

+ EK1∆y2y2Gt(y
∗
1 ∧ (x1 +K1), y∗2)

∂y∗2
∂x1

+

∫ y∗1−x1

0

∆y1y2Gt(x1 + k1, y
∗
2)f1(k1)dk1 := a21

∂y∗1
∂x1

+ a22
∂y∗2
∂x1

+ b1

0 = EK2∆y1y1Gt(y
∗
1, y
∗
2 ∧ (x2 +K2))

∂y∗1
∂x2

+ [1− F2(y∗2 − x2)]∆y1y2Gt(y
∗
1, y
∗
2)
∂y∗2
∂x2

+

∫ y∗2−x2

0

∆y1y2Gt(y
∗
1, x2 + k2)f2(k2)dk2 := a11

∂y∗1
∂x2

+ a12
∂y∗2
∂x2

+ b2

0 = [1− F1(y∗1 − x1)]∆y1y2Gt(y
∗
1, y
∗
2)
∂y∗1
∂x2

+ EK1∆y2y2Gt(y
∗
1 ∧ (x1 +K1), y∗2)

∂y∗2
∂x2

:= a21
∂y∗1
∂x2

+ a22
∂y∗2
∂x2

We have four equations with four unknowns. The solution of the above set of

equations is straightforward, and given by
∂y∗1
∂x1

= a12b1
a11a22−a12a21 ,

∂y∗2
∂x1

= − a11b1
a11a22−a12a21 ,

∂y∗1
∂x2

= − a22b2
a11a22−a12a21 , and

∂y∗2
∂x2

= a21b2
a11a22−a12a21 . To establish the monotonicity properties,
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we prove a22 ≥ a21 + b1.

a22 = EK1∆y2y2Gt(y
∗
1 ∧ (x1 +K1), y∗2)

=

∫ ∞
y∗1−x1

∆y2y2Gt(y
∗
1, y
∗
2)f1(k1)dk1 +

∫ y∗1−x1

0

∆y2y2Gt(x1 + k1, y
∗
2)f1(k1)dk1

= [1− F1(y∗1 − x1)]∆y2y2Gt(y
∗
1, y
∗
2) + b1

≥ [1− F1(y∗1 − x1)]∆y1y2Gt(y
∗
1, y
∗
2) + b1 = a21 + b1

The inequality follows from the second-order properties. Thus, we have 0 ≤ b1 ≤

a22 − a21. In the same manner, we have 0 ≤ b2 ≤ a11 − a12 by symmetry of the

argument. Obviously, a11 ≥ a12 ≥ 0 and a22 ≥ a21 ≥ 0. Therefore,
∂y∗1
∂x1
≥ 0,

∂y∗2
∂x1
≤ 0,

∂y∗1
∂x2
≤ 0, and

∂y∗2
∂x2
≥ 0 follow immediately. Thus,

∂y∗1
∂x1

=
a12b1

a11a22 − a12a21

≤ a12(a22 − a21)

a11a22 − a12a21

≤ a11(a22 − a21)

a11a22 − a12a21

≤ 1

∂y∗2
∂x1

= − a11b1

a11a22 − a12a21

≥ − a11(a22 − a21)

a11a22 − a12a21

≥ −1

∂y∗1
∂x1

− ∂y∗1
∂x2

− 1 =
a22(b2 − a11) + a12(b1 + a21)

a11a22 − a12a21

≤ 0

The last inequality is due to the fact that b2 − a11 ≤ −a12 and b1 + a21 ≤ a22.

Using a symmetric argument, we have
∂y∗1
∂x2
≥ −1,

∂y∗2
∂x2
≤ 1 and

∂y∗2
∂x2
− ∂y∗2

∂x1
≤ 1.

Assume now that (x1, x2) belongs to the region, where it is optimal to order only

one product, say product 1. In this case, y∗1 = ȳ1(x2) and y∗2 = x2. From Theorem

2.2, part (a), we have −1 ≤ dȳ1(y2)
dy2

≤ 0. Hence, −1 ≤ ∂y∗1
∂x2
≤ 0 and

∂y∗1
∂x1

= 0. In

addition,
∂y∗2
∂x1

= 0 and
∂y∗2
∂x2

= 1. Hence, the desired monotonicity results hold. In the

region, where it is not optimal to order, y∗i = xi, the desired monotonicity results

hold trivially:
∂y∗i
∂xi

= 1 and
∂y∗i
∂x3−i

= 0. �

Proof of Proposition 2.3. Since Gt(ỹ) = EεCt(ỹ, ε), we have that ∆ỹiGt(ỹ) ≥

−pi and Gt(ỹ) satisfies the second order properties in (ỹ1, ỹ2). In all of the cases
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considered below, it is easy to show that ∆xiVt(x) ≥ −pi, and as a consequence,

pi + hi + β∆xiVt(x) ≥ pi + hi − βpi = (1 − β)pi + hi ≥ 0, as desired. Therefore, we

focus on the second-order properties. Consider (x1, x2) in each of the regions.

• Region 1: In this case, Vt(x1, x2) = Gt(x1, x2), hence it satisfies the second-order

properties.

• Region 2: In this case, Vt(x1, x2) = EK1Gt(ȳ1(x2) ∧ (x1 + K1), x2). To show

that Vt(x1, x2) satisfies the second-order properties in this region, it suffices to show

that the function Gt(ȳ1(x2) ∧ (x1 + K1), x2) satisfies the second-order properties for

any given K1. When that is the case, expectation with respect to K1 preserves the

second-order properties.

When x1+K1 ≤ ȳ1(x2), we have Gt(ȳ1(x2)∧(x1+K1), x2) = Gt(x1+K1, x2), which

preserves the second-order properties. When x1 + K1 > ȳ1(x2), we have Gt(ȳ1(x2) ∧

(x1 + K1), x2) = Gt(ȳ1(x2), x2). Below, we show that the function Gt(ȳ1(x2), x2)

satisfies the second-order properties in (x1, x2). Obviously, ∂Gt(ȳ1(x2),x2)
∂x1

= 0, hence,

∂2Gt(ȳ1(x2),x2)

∂x21
= ∂2Gt(ȳ1(x2),x2)

∂x1∂x2
= 0. The first-order derivative with respect to x2 is

obtained using the envelope theorem. The second-order derivative is obtained using

the expression for ȳ′1(x2) from Theorem 2.2, part(a).

∂Gt(ȳ1(x2), x2)

∂x2

= ∆y2Gt(ȳ1(x2), x2)

∂2Gt(ȳ1(x2), x2)

∂x2
2

= ∆y1y2Gt(ȳ1(x2), x2)ȳ′1(x2) + ∆y2y2Gt(ȳ1(x2), x2)

=
(∆y1y1∆y2y2 −∆2

y1y2
)Gt(ȳ1(x2), x2)

∆y1y1Gt(ȳ1(x2), x2)
≥ 0

Therefore, Vt(x1, x2) satisfies the second-order properties in Region 2 (hence in

Region 3).
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• Region 4: We first derive the first-order derivative of the optimal cost function.

The envelope theorem is useful in obtaining the following result.

Vt(x1, x2) = EK1,K2Gt(y
∗
1 ∧ (x1 +K1), y∗2 ∧ (x2 +K2))

∆x1Vt(x1, x2) =

∫ y∗1−x1

0

EK2∆y1Gt(x1 + k1, y
∗
2 ∧ (x2 +K2))f1(k1)dk1

Next, we derive the second-order derivatives.

∆x1x1Vt(x1, x2) =

∫ y∗1−x1

0

∫ y∗2−x2

0

∆y1y1Gt(x1 + k1, x2 + k2)f1(k1)f2(k2)dk2dk1

+

∫ y∗1−x1

0

∫ ∞
y∗2−x2

∆y1y1Gt(x1 + k1, y
∗
2)f1(k1)f2(k2)dk2dk1

+

[∫ y∗1−x1

0

∫ ∞
y∗2−x2

∆y1y2Gt(x1 + k1, y
∗
2)f1(k1)f2(k2)dk2dk1

]
∂y∗2
∂x1

∆x1x2Vt(x1, x2) =

∫ y∗1−x1

0

∫ y∗2−x2

0

∆y1y2Gt(x1 + k1, x2 + k2)f1(k1)f2(k2)dk2dk1

+

[∫ y∗1−x1

0

∫ ∞
y∗2−x2

∆y1y2Gt(x1 + k1, y
∗
2)f1(k1)f2(k2)dk2dk1

]
∂y∗2
∂x2

∆x1x2Vt(x1, x2) ≥ 0 due to the second-order properties of Gt(.) and
∂y∗2
∂x2
≥ 0, as shown

in Proposition 2.2. Next, we prove that ∆x1x1Vt(x1, x2) ≥ ∆x1x2Vt(x1, x2). From

Property (iii) of, Proposition 2.2 we have
∂y∗2
∂x1
− ∂y∗2

∂x2
≥ −1. Thus,

(∆x1x1 −∆x1x2)Vt(x1, x2)

=

∫ y∗1−x1

0

∫ y∗2−x2

0

(∆y1y1 −∆y1y2)Gt(x1 + k1, x2 + k2)f1(k1)f2(k2)dk2dk1

+

∫ y∗1−x1

0

∫ ∞
y∗2−x2

∆y1y1Gt(x1 + k1, y
∗
2)f1(k1)f2(k2)dk2dk1

+

[∫ y∗1−x1

0

∫ ∞
y∗2−x2

∆y1y2Gt(x1 + k1, y
∗
2)f1(k1)f2(k2)dk2dk1

](
∂y∗2
∂x1

− ∂y∗2
∂x2

)
≥ 0
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By a similar argument, we have ∆x2x2Vt(x1, x2) ≥ ∆x1x2Vt(x1, x2) ≥ 0, hence,

Vt(x1, x2) satisfies the second-order properties in this region. Finally, crossing from

one region to another does not cause any problem since the first derivatives are

continuous. �

Proof of Proposition 2.4. We use Theorem 2.2 and explicitly derive the opti-

mal targets in each region. We show that the optimal targets (y∗1, y
∗
2) from Theorem

2.2 and the targets (y1(τ2(x2)), y2(τ1(x1))), claimed in this proposition, either coin-

cide, or lead to the same production decisions. That is, if it is optimal to order

product i, y∗i > xi, then y∗i ∧ (xi + Ki) = ȳi(τ3−i(x3−i)) ∧ (xi + Ki). Otherwise, if

ordering product i is not optimal, y∗i = xi, then ȳi(τ3−i(x3−i)) ≤ xi. Recall that the

functions ȳi(.) are non-increasing with −1 ≤ ȳ′i(.) ≤ 0 from Theorem 2.2, which is

used below.

Region 1: x1 ≥ ȳ1(x2) and x2 ≥ ȳ2(x1). From Theorem 2.2, it is not optimal to

produce any of the products. Below, we show for product 1 that the initial inventory

x1 exceeds the target defined by ȳ1(τ2(x2)) in Region 1. (Similar argument applies to

product 2, hence omitted.)

• If τ2(x2) = x2 +K2, then, ȳ1(τ2(x2)) = ȳ1(x2 +K2) ≤ ȳ1(x2) ≤ x1.

• If τ2(x2) = y0
2(< x2), then x1 > y0

1 in Region 1, because otherwise x2 > y0
2, and

τ2(x2) = x2. Thus, ȳ1(τ2(x2)) = ȳ1(y0
2) = y0

1 < x1.

• Finally, if τ2(x2) = x2, then, ȳ1(τ2(x2)) = ȳ1(x2) ≤ x1.

Region 2: x1 < ȳ1(x2) and x2 ≥ ȳ2(x1). From Theorem 2.2, it is not optimal

to produce product 2, while product 1 target equals ȳ1(x2). In Region 2, we have

x1 ≤ y0
1 and x2 ≥ y0

2. So, τ1(x1) equals either y0
1 or x1 +K1, while τ2(x2) = x2. As a

result, ȳ1(τ2(x2)) = ȳ1(x2). Product 1 target is indeed as given by Theorem 2.2. For

product 2, consider the following two cases.

• If τ1(x1) = x1 +K1, then, ȳ2(τ1(x1)) = ȳ2(x1 +K1) ≤ ȳ2(x1) ≤ x2.

• If τ1(x1) = y0
1, then, ȳ2(τ1(x1)) = ȳ2(y0

1) = y0
2 ≤ x2, likewise.
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Region 3: x1 ≥ ȳ1(x2) and x2 < ȳ2(x1). Same as Region 2.

Region 4: x1 ≤ ȳ1(x2) and x2 ≤ ȳ2(x1). Recall that ∆y1Gt(ȳ1(y2), y2) = 0 and

∆y2Gt(y1, ȳ2(y1)) = 0 by definition. Also, ȳ1(y0
2) = y0

1 and ȳ2(y0
1) = y0

2. From Theorem

2.2, targets satisfy: ∆y1Gt(y1, y2∧(x2 +K2)) = 0 and ∆y2Gt(y1∧(x1 +K1), y2) = 0.

• Let τi(xi) = y0
i for each i, i.e., y0

i −Ki ≤ xi ≤ y0
i . Then, ȳi(τ3−i(x3−i)) = ȳi(y

0
3−i) =

y0
i . Clearly, (y1, y2) = (y0

1, y
0
2), satisfies the first order conditions: ∆y1Gt(y

0
1, y

0
2 ∧ (x2 +

K2)) = ∆y1Gt(y
0
1, y

0
2) = 0 and ∆y2Gt(y

0
1 ∧ (x1 + K1), y0

2) = ∆y2Gt(y
0
1, y

0
2) = 0, hence

it must be optimal.

• Let τi(xi) = xi + Ki for each i, i.e., xi + Ki < y0
i . We have ȳ1(x2 + K2) ≥

ȳ1(y0
2) = y0

1 ≥ x1 + K1, since ȳ1(.) is non-increasing. Similarly, ȳ2(x1 + K1) ≥

x2 +K2. For (y1, y2) = (ȳ1(x2 +K2), ȳ2(x1 +K1)), first-order conditions are satisfied:

∆y1Gt(ȳ1(x2 +K2), ȳ2(x1 +K1) ∧ (x2 +K2)) = ∆y1Gt(ȳ1(x2 +K2), x2 +K2) = 0 and

∆y2Gt(ȳ1(x2 +K2) ∧ (x1 +K1), ȳ2(x1 +K1)) = ∆y2Gt(x1 +K1, ȳ2(x1 +K1)) = 0.

• Let τ1(x1) = x1 + K1 and τ2(x2) = y0
2. Then, ȳ1(τ2(x2)) = ȳ1(y0

2) = y0
1 and

ȳ2(τ1(x1)) = ȳ2(x1 +K1). Define z2 = ȳ2(x1 +K1)∧ (x2 +K2) and ý1 = ȳ1(z2). Below,

we show that (y1, y2) = (ý1, ȳ2(x1 + K1)) satisfies first-order conditions, and ý1 ≥

x1 +K1 (i.e., ý1 is not reachable), establishing the optimality of targets ȳi(τ3−i(x3−i)).

Indeed, since ý1 is not reachable, it can be replaced by ȳ1(τ2(x2)), which is also not

reachable (ȳ1(τ2(x2)) = y0
1 ≥ x1 +K1).

First, we prove that ý1 ≥ x1 + K1. Since x1 + K1 ≤ y0
1, and z2 ≤ ȳ2(x1 + K1) by

definition, the point (x1 +K1, z2) belongs to Region 4. From the definition of Region

4, ý1 = ȳ1(z2) ≥ x1 + K1. The first-order conditions are satisfied: ∆y1Gt(ý1, ȳ2(x1 +

K1) ∧ (x2 +K2)) = ∆y1Gt(ȳ1(z2), z2) = 0, and ∆y2Gt(ý1 ∧ (x1 +K1), ȳ2(x1 +K1)) =

∆y2Gt(x1 +K1, ȳ2(x1 +K1)) = 0.

Since ý1 ≥ x1 + K1, product 1 target is not reachable. And, since y0
1 ≥ x1 + K1,

replacing product 1 target with y0
1 does not alter the ending inventories, hence it is

optimal. In addition, we have ȳ2(τ1(x1)) = ȳ2(x1 +K1) as desired.
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• The case when τ1(x2) = x2 +K2 and τ1(x1) = y0
1 is similar as above.

• Let τi(xi) = xi for some i, the only case not analyzed for Region 4. In Region 4,

we cannot have τi(xi) = xi for both i. Without loss of generality, we analyze the

case when τ2(x2) = x2, i.e., x2 > y0
2, in which case, we must have x1 ≤ y0

1 (otherwise,

(x1, x2) would fall into Region 1). Hence, τ1(x1) equals either x1 +K1 or y0
1.

◦ Start with τ1(x1) = y0
1. First, we derive the optimal targets based on Theorem

2.2. We can show that (y0
1, y

0
2) is a solution to the first-order conditions, but it is

not a feasible production decision, since x2 > y0
2. Using Theorem 2.2, product 2 is

not produced, while product 1 target is ȳ1(x2). Comparing to the targets given by

ȳi(τ3−i(x3−i)), we have ȳ1(τ2(x2)) = ȳ1(x2) as desired, and ȳ2(τ1(x1)) = ȳ2(y0
1) = y0

2 <

x2, which is not feasible, as desired.

◦ Next, let τ1(x1) = x1 + K1. Define z2 = ȳ2(x1 + K1) ∧ (x2 + K2) and ý1 =

ȳ1(z2). We show that (y1, y2) = (ý1, ȳ2(x1 + K1)) satisfies the first-order conditions.

Since x1 + K1 ≤ y0
1 and z2 ≤ ȳ2(x1 + K1) by definition, the point (x1 + K1, z2)

belongs to Region 4. Thus, it must satisfy ý1 = ȳ1(z2) ≥ x1 + K1. The first-order

conditions are satisfied: ∆y1Gt(ý1, ȳ2(x1+K1)∧(x2+K2)) = ∆y1Gt(ȳ1(z2), z2) = 0 and

∆y2Gt(ý1∧(x1 +K1), ȳ2(x1 +K1)) = ∆y2Gt(x1 +K1, ȳ2(x1 +K1)) = 0. Using Theorem

2.2, the optimal targets are as follows. If ȳ2(x1 + K1) ≥ x2, then the optimal target

is (ý1, ȳ2(x1 +K1)). Otherwise, the product 2 target is not feasible, hence, product 1

target must be ȳ1(x2), while product 2 should not be produced.

We now compare the optimal targets from Theorem 2.2 to the targets given by

ȳi(τ3−i(x3−i)). Consider first the case that product 2 is not produced, ȳ2(x1 +K1) ≤

x2. Since τ2(x2) = x2, product 1 target is ȳ1(τ2(x2)) = ȳ1(x2) as desired. Because

τ1(x1) = x1 + K1, the product 2 target satisfies ȳ2(τ1(x1)) = ȳ2(x1 + K1) ≤ x2, as

desired. Consider next the case of ȳ2(x1 +K1) ≥ x2, that is, the optimal targets are

(ý1, ȳ2(x1 + K1)). In this case, ȳ2(τ1(x1)) = ȳ2(x1 + K1), as desired. For product 1,

since ý1 ≥ x1 + K1, it suffices to show that ȳ1(τ2(x2)) = ȳ1(x2) ≥ x1 + K1. First,
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notice that ȳ2(ȳ1(x2)) ≤ x2 when x2 ≥ y0
2 due to the monotonic behavior of the curves

ȳi(.) (follows from a simple tatonnement argument). Since ȳ2(x1 +K1) ≥ x2, we have

ȳ2(ȳ1(x2)) ≤ ȳ2(x1 +K1). Since ȳ2(.) is non-increasing, ȳ1(x2) ≥ x1 +K1, as desired.

�

Proof of Proposition 2.5. The proof is for product 1. Refer to Theorem 2.2

for the description of the inventory policy. The optimal targets do not depend on

dedicated capacities in Regions 1, 2, and 3. Hence, the optimal policy remains the

same. For initial inventories in Region 4, we inspect how the minimizers of function

EG(y;x) change. Obviously, the minimizer y̌1(y2;x) is not influenced by the capacity

increase in product 1, since EK2∆y1Gt(y̌1(y2;x), y2∧ (x2 +K2)) = 0. Below, we argue

that the curve y̌2(y1;x) shifts downwards, as shown in Figure 2.15.

Figure 2.15: Sensitivity of the Production Targets to K1

y1

y2

(x1, x2)

y1 = y̌1(y2;x)

y2 = y̌2(y1;x)

The function Gt(y1 ∧ (x1 +K1), y2) is supermodular in (y2, K1). Hence, the value

of EK1∆y2Gt(y1∧ (x1 +K1), y2) is increased due to Lemma 2.1. This implies that the

minimizer y̌2(y1;x) decreases, that is, the curve y̌2(y1;x) shifts downwards. Recall

that the curves y̌1(y2;x) and y̌2(y1;x) have negative slopes slopes, greater than or

equal to -1. Hence, the point of intersection of these curves shifts such that product

1 target is increased and product target 2 is decreased. �

Proof of Proposition 2.6. We show that ∆ỹiκJt(ỹ, ε, κ) ≤ 0 and (∆ỹjκ∆ỹ1ỹ2 −

∆ỹj ỹj∆ỹiκ)Jt(ỹ, ε, κ) ≥ 0 for i = 1, 2 and j = 3 − i. We consider only i = 1 and the
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results are valid for i = 2. We follow the same sequence as in the proof of Proposition

2.1.

Region A: min(ỹ1, ε1) + min(ỹ2, ε2) ≤ κ. In this region, we have ∆ỹiκJt(ỹ, ε, κ) =

0 for i = 1, 2. Hence, the desired properties hold by equality.

Region B: si(κ) = ỹi − ζi(ỹ1 + ỹ2 − κ).

∆ỹ1κJt(ỹ, ε, κ) = −β∆x1x2Vt+1(ζ1, ζ2)ζ ′1 − β∆x2x2Vt+1(ζ1, ζ2)ζ ′2

∆ỹ2κJt(ỹ, ε, κ) = −β∆x1x2Vt+1(ζ1, ζ2)ζ ′1 − β∆x2x2Vt+1(ζ1, ζ2)ζ ′2

∆ỹ2ỹ2Jt(ỹ, ε, κ) = β∆x1x2Vt+1(ζ1, ζ2)ζ ′1 + β∆x2x2Vt+1(ζ1, ζ2)ζ ′2

∆ỹ1ỹ2Jt(ỹ, ε, κ) = β∆x1x2Vt+1(ζ1, ζ2)ζ ′1 + β∆x2x2Vt+1(ζ1, ζ2)ζ ′2

Because of the inductional assumptions, we have ∆ỹ1κJt(ỹ, ε, κ) ≤ 0, and due to above

expressions, we have (∆ỹ2κ∆ỹ1ỹ2 −∆ỹ2ỹ2∆ỹ1κ)Jt(ỹ, ε, κ) = 0.

Region C: s1(κ) = s̄1(κ) and s2(κ) = s2(κ). We consider two subregions.

Region C1: First, let ε1 ≤ ỹ1.

∆ỹ1κJt(ỹ, ε, κ) = −β∆x1x2Vt+1(ỹ1 − ε1, ỹ2 + ε1 − κ)

∆ỹ2κJt(ỹ, ε, κ) = −β∆x2x2Vt+1(ỹ1 − ε1, ỹ2 + ε1 − κ)

∆ỹ2ỹ2Jt(ỹ, ε, κ) = β∆x2x2Vt+1(ỹ1 − ε1, ỹ2 + ε1 − κ)

∆ỹ1ỹ2Jt(ỹ, ε, κ) = β∆x1x2Vt+1(ỹ1 − ε1, ỹ2 + ε1 − κ)

Because of the inductional assumptions, we have ∆ỹ1κJt(ỹ, ε, κ) ≤ 0, and from the

above expressions, we have (∆ỹ2κ∆ỹ1ỹ2 −∆ỹ2ỹ2∆ỹ1κ)Jt(ỹ, ε, κ) = 0.
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Region C2: Next, let ε1 > ỹ1.

∆ỹ1κJt(ỹ, ε, κ) = −β∆x2x2Vt+1(0, ỹ1 + ỹ2 − κ)

∆ỹ2κJt(ỹ, ε, κ) = −β∆x2x2Vt+1(0, ỹ1 + ỹ2 − κ)

∆ỹ2ỹ2Jt(ỹ, ε, κ) = β∆x2x2Vt+1(0, ỹ1 + ỹ2 − κ)

∆ỹ1ỹ2Jt(ỹ, ε, κ) = β∆x2x2Vt+1(0, ỹ1 + ỹ2 − κ)

Because of the inductional assumptions, we have ∆ỹ1κJt(ỹ, ε, κ) ≤ 0, and due to

above expressions, we have (∆ỹ2κ∆ỹ1ỹ2 −∆ỹ2ỹ2∆ỹ1κ)Jt(ỹ, ε, κ) = 0.

Region D: s1(κ) = s1(κ) and s2(κ) = s̄2(κ). Same as Region C.

Now we are ready to evaluate the effect of increase in the shared capacity. First, as-

sume that the shared capacity is uncertain. From Theorem 2.1, Ct(ỹ, ε) = EκJt(ỹ, ε, κ).

Using Lemma 2.1 (stated in Appendix 2.11), the derivatives of Ct(ỹ, ε) with respect

to ỹ1 and ỹ2 are decreased when the shared capacity is stochastically increased. Since

Gt(ỹ) = EεCt(ỹ, ε), the derivatives of Gt(ỹ) with respect to ỹ1 and ỹ2 decrease, as well.

As a result, the minimizers of Gt(ỹ) are increased, effectively increasing the sum of

the inventory targets by Proposition 2.10. When the shared capacity is deterministic,

Gt(ỹ) = EεJt(ỹ, ε, κ), where κ is now a fixed parameter. Since ∆ỹiκJt(ỹ, ε, κ) ≤ 0

and (∆ỹjκ∆ỹ1ỹ2 −∆ỹj ỹj∆ỹiκ)Jt(ỹ, ε, κ) ≥ 0 for i = 1, 2 and j = 3 − i, the targets are

increased for both products due to Proposition 2.10. �

Proof of Proposition 2.7. We only prove for product 1. Following the same

procedure in Proposition 2.6, we can verify that ∆ỹ1ε1Jt(ỹ, ε, κ) ≤ 0, ∆ỹ1ε1Jt(ỹ, ε, κ) ≤

∆ỹ2ε1Jt(ỹ, ε, κ), (∆ỹ2ε1∆ỹ1ỹ2 −∆ỹ2ỹ2∆ỹ1ε1)Jt(ỹ, ε, κ) ≥ 0 and (∆ỹ1ε1∆ỹ1ỹ2 −∆ỹ1ỹ1∆ỹ2ε1)

Jt(ỹ, ε, κ) ≤ 0. Recall that Gt(ỹ) = Eε,κJt(ỹ, ε, κ). First observe that the minimizers

of Gt(.) behave as follows. As ε1 is stochastically increased, ȳ1(ỹ2) increases. As

a consequence, in Region 2, where only product 1 is produced, product 1 target

increases, while the product 2 target remains the same. In Region 3, product 1
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target remains the same. To analyze Region 4, we need to consider global minimizers

(y0
1, y

0
2). Due to Proposition 2.10, part (iii), y0

1 increases, while y0
2 decreases. �

Proof of Proposition 2.8. We only consider sensitivity to p1. Sensitivity to

p2, h1 and h2 are similar. Following the same procedure in Proposition 2.6, we can

verify that ∆ỹ1p1Jt(ỹ, ε, κ) ≤ 0 and ∆ỹ2p1Jt(ỹ, ε, κ) ≥ 0. Since Gt(ỹ) = Eε,κJt(ỹ, ε, κ),

and due to Proposition 2.10, we conclude that product 1 target increases, while the

product 2 target decreases. �

2.10. Appendix: Model Extensions

In this section, we provide model extensions to address infinite-horizon and Markov-

modulated settings.

Infinite Time Horizon: Assuming that all parameters are stationary, and with a

discount factor of 0 ≤ β < 1, the optimality equations are stated below.

Phase One : V ∗(x) = min
y≥x

EK,εC
∗(y ∧ (x+K), ε), (2.18)

Phase Two : C∗(y, ε) = min
si(.)

{
Eκ{h[y − s(κ)] + p[ε− s(κ)]

+βV ∗(y − s(κ))} (2.19)

s.t si(κ) ≤ si(κ) ≤ s̄i(κ), (2.20)

s′1(κ) + s′2(κ) ≤ 1, (2.21)

s′i(κ) ≥ 0 ; ∀κ ≥ 0, i = 1, 2
}

(2.22)

The following proposition establishes the infinite-horizon solution and shows that the

optimal policy structure is the same as its finite-horizon counterpart.

Proposition 2.9. There exists a function V ∗(x) = limt→∞ Vt(x), which solves (2.18)-

(2.22) and satisfies the second-order properties, and pi + hi + β∆xiV
∗(x) ≥ 0 for

i = 1, 2.

Proof of Proposition 2.9. Consider the following reformulation based on
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Theorem 2.1 and Proposition 2.1. Notice that periods are now indexed backwards in

time, and V0(x) = x.

Stage One : Vt(x) = min
y≥x

EK,κ,εJt(y ∧ (x+K), ε, κ), (2.23)

Stage Two : Jt(ỹ, ε, κ) = min
(z1,z2)

{
hz + p[ε− ỹ + z] + βVt−1(z) (2.24)

s.t 0 ≤ zi ≤ ỹi i = 1, 2 (2.25)

ỹi − zi ≤ εi i = 1, 2 (2.26)

z1 + z2 ≥ ỹ1 + ỹ2 − κ
}

(2.27)

We focus our discussion on the infinite-horizon version of (2.23)–(2.27). To establish

the infinite-horizon solution, we verify the conditions (a)–(d) of Theorem 8-14 in

Heyman and Sobel (1984). Conditions (b) and (d) are straightforward. Condition

(b) holds, since single-period costs are non-negative for any initial state and any

feasible decision. Condition (d) holds, since continuity is a consequence of convexity.

To show that condition (a) holds, it suffices to show that Vt(x) is bounded above by a

function B(x) for all t, as Vt(x) ≤ Vt+1(x) due to V0(x) = 0. This is straightforward by

considering a suboptimal policy, which sets y = x and si(κ) = 0 at the current period

t and onwards, (i.e., no production and no calibration of final products). Define Bt(x)

as the cost of such policy. Define B(x) = limt→∞Bt(x) = 1
1−β

(
h1x1 +h2x2 +p1E[ε1]+

p2E[ε2]
)

. Obviously, Vt(x) ≤ Bt(x) ≤ B(x), hence condition (a) holds.

To show condition (c), we show that the set of feasible decisions is compact.

This is obvious for stage two decisions, as the linear constraints define a closed and

bounded region. For stage one, there is no loss of optimality by replacing y ≥ x with

x ≤ y ≤ max(U, x) with Ui <∞ sufficiently large (see Example 8–33 in Heyman and

Sobel, 1984). Therefore, compactness of the feasible set in stage one can be claimed

without loss of optimality, hence condition (c) holds.

To show that V ∗(x) satisfies the second-order properties, we follow a similar proce-
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dure as in Hu et al. (2008) and restate the second-order conditions as follows: for any

ε > 0, ∆x1V
∗(x1+ε, x2) ≥ ∆x1V

∗(x1, x2+ε) and ∆x2V
∗(x1, x2+ε) ≥ ∆x2V

∗(x1+ε, x2).

Since Vt(x) satisfies the second-order conditions, it suffices to show that ∆xiVt(x) con-

verges to ∆xiV
∗(x). From Theorem 8-14 of Heyman and Sobel (1984), Vt(x) converges

uniformly to V ∗(x), hence ∆xiV
∗(x) = limt→∞∆xiVt(x). �

Proposition 2.9 implies that it is possible to solve a finite-horizon problem for

a sufficiently large horizon length and obtain the numerical solution to an infinite-

horizon problem in a practical manner. Figure 2.16 illustrates convergence of the

optimal production targets with initial inventory (0,0), as a test case.

Figure 2.16: Production targets increase in the length of horizon
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Markov-Modulated Process: Our model assumed that demands and capacities are

independent across periods. This assumption can be relaxed employing a Markov

chain driving the demand and capacity distributions. This enables the original model

to capture the real-life situations involving for example, seasonal demand, or the

possibility that capacity loss in a given period is an indicator of potential capacity

loss in the next few periods to come.

Suppose that there are N states of the world with a probability transition matrix

P = [pω,ω′ ]. When the state of the world is ω, dedicated capacity distributions are
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Kω = (K1ω, K2ω), shared capacity distribution is κω and the demand distributions

are given by εω = (ε1ω, ε2ω). With this, the model is reformulated below.

Phase One : Vt(x;ω) = min
y≥x

EKω ,εωCt(y ∧ (x+Kω), εω;ω),

Phase Two : Ct(y, ε;ω) = min
si(.)

{
Eκω ,ω′ {h[y − s(κω)] + p[ε− s(κω)]

+ βVt+1(y − s(κω);ω′)|ω}

s.t si(κ) ≤ si(κ) ≤ s̄i(κ),

s′1(κ) + s′2(κ) ≤ 1,

s′i(κ) ≥ 0 ; ∀κ ≥ 0, i = 1, 2
}

The revised formulation has the same optimal policy structure, however, the opti-

mal policy itself depends on the state of the world ω. For example, if one production

process i has lost full capacity for a number of periods, then product 3− i follows a

modified base-stock policy, which is a function of the existing stock of product i.

2.11. Appendix: Technical Results Needed for Sensitivity Analysis

Our sensitivity results depend on the following technical results below. The first

result is a special case of Theorem 3.10.1 of Topkis (1978).

Lemma 2.1 (Topkis). For a submodular function φ(x, ε) (i.e., ∆xεφ(x, ε) ≤ 0), let

x∗ = arg minxE[φ(x, ε)]. If ε is increased stochastically, then x∗ increases.

Lemma 2.1 establishes the monotonicity of the minimizer of E[φ(x, ε)]. Analogous

conclusions can be drawn when φ(.) is supermodular. Next, we consider optimizing

a function in two variables.

Proposition 2.10. Let function φ(y; γ) satisfy the second-order properties in y =

(y1, y2) (Definition 2.2) and let (y∗1, y
∗
2) = arg miny1,y2 Eγ[φ(y; γ)]. If γ increases

stochastically, then:
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i) y∗i increases if ∆yiγφ(y; γ) ≤ 0 and ∆yiγφ(y; γ) ≤ ∆y3−iγφ(y; γ).

ii) y∗i increases and y∗3−i decreases if ∆yiγφ(y; γ) ≤ 0 ≤ ∆y3−iγφ(y; γ).

iii) y∗1 + y∗2 increases if ∆yiγφ(y; γ) ≤ 0 for each i = 1, 2. Both y∗1 and y∗2 increase

if, in addition, (∆y3−iγ∆y1y2 −∆y3−iy3−i∆yiγ)φ(y; γ) ≥ 0 for each i = 1, 2.

Proof of Proposition 2.10. Before we prove the main result of this proposition,

consider a function ψ(y;λ) that satisfies the second-order properties in (y1, y2). Let

ŷ(λ) = arg miny ψ(y;λ). This is the deterministic counter-part of our problem. ŷ(λ)

satisfies the following set of equations.

∆y1ψ(ŷ(λ);λ) = 0 (2.28)

∆y2ψ(ŷ(λ);λ) = 0 (2.29)

Taking the derivatives of the equations (2.28) and (2.29) with respect to λ and rear-

ranging the terms, we obtain the following expressions.

ŷ′i(λ) =

(
∆y3−iλ∆y1y2 −∆y3−iy3−i∆yiλ

∆y1y1∆y2y2 −∆2
y1y2

)
ψ(ŷ(λ);λ) (2.30)

ŷ′1(λ) + ŷ′2(λ) = −
(

∆y1λ(∆y2y2 −∆y1y2) + ∆y2λ(∆y1y1 −∆y1y2)

∆y1y1∆y2y2 −∆2
y1y2

)
ψ(ŷ(λ);λ) (2.31)

Using expressions (2.30) and (2.31), as well as the second-order properties, we can

readily verify properties 1–3 for ψ(y;λ) below, which are the deterministic counter-

parts of properties (i)–(iii).

1. If ∆yiλψ(y;λ) ≤ 0 and ∆yiλψ(y;λ) ≤ ∆y3−iλψ(y;λ), then ŷ′i(λ) ≥ 0.

2. If ∆yiλψ(y;λ) ≤ 0 ≤ ∆y3−iλψ(y;λ), then ŷ′i(λ) ≥ 0 and ŷ′3−i(λ) ≤ 0.

3. If ∆yiλψ(y;λ) ≤ 0 for each i = 1, 2, then ŷ′1(λ) + ŷ′2(λ) ≥ 0. If, in addition,
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(∆y3−iλ∆y1y2 − ∆y3−iy3−i∆yiλ)ψ(y;λ) ≥ 0 for each i = 1, 2, then ŷ′i(λ) ≥ 0 for

both i = 1, 2.

Consider now the original optimization problem (y∗1, y
∗
2) = arg miny1,y2 Eγ[φ(y; γ)].

Consider two random variables with γ1 ≤s.t γ2. Denote by F1(.) and F2(.) the cumu-

lative probability distribution functions of γ1 and γ2 respectively. Due to stochastic

dominance, F−1
1 (u) ≤ F−1

2 (u) for all 0 ≤ u ≤ 1.

For a constant parameter 0 ≤ λ ≤ 1, define a random variable γ(λ) such that

its inverse cumulative distribution function is given by F−1(u;λ) = (1− λ)F−1
1 (u) +

λF−1
2 (u) for all 0 ≤ u ≤ 1. As a result, the inverse functions satisfy F−1

1 (u) ≤

F−1(u;λ) ≤ F−1
2 (u) for all 0 ≤ u, λ ≤ 1. In other words, γ1 ≤s.t γ(λ) ≤s.t γ2. Also

note that γ(λ1) ≤s.t γ(λ2) for 0 ≤ λ1 ≤ λ2 ≤ 1.

To show that the monotonicity properties hold when γ is stochastically increased

from γ = γ1 to γ = γ2, it suffices to show that the monotonicity results hold

for γ = γ(λ) when λ is increased marginally. For that purpose, define ψ(y;λ) =

Eγ(λ)[φ(y; γ(λ))]. First, observe that ψ(y;λ) satisfies the second-order properties.

Therefore, we can use the results obtained above.

We prove only the second part of property (iii), which is the least straightforward

case. All other properties can be established similarly. We show that (∆y2λ∆y1y2 −

∆y2y2∆y1λ)ψ(y;λ) ≥ 0, hence ŷ′1(λ) ≥ 0. First, we derive ∆λψ(y;λ) as follows.

(Below, we change the variable of integration. We let x = F−1(u;λ).)

ψ(y;λ) = Eγ(λ)[φ(y; γ(λ))] =

∫
φ(y;x)dF (x;λ)

=

∫ 1

0

φ(y;F−1(u;λ))du

=

∫ 1

0

φ(y; (1− λ)F−1
1 (u) + λF−1

2 (u))du

∆λψ(y;λ) =

∫ 1

0

∆γφ(y;F−1(u;λ))[F−1
2 (u;λ)− F−1

1 (u;λ)]du
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The above expression is useful in deriving ∆yiλψ(y;λ) for each i. As a result, we can

immediately derive (∆y2λ∆y1y2 −∆y2y2∆y1λ)ψ(y;λ) as follows.

(∆y2λ∆y1y2 −∆y2y2∆y1λ)ψ(y;λ) =

∫ 1

0

(
∆y2γφ(y;F−1(u;λ))∆y1y2Eγ(λ)[φ(y; γ(λ))]

−∆y1γφ(y;F−1(u;λ))∆y2y2Eγ(λ)[φ(y; γ(λ))]
)
...

[F−1
2 (u;λ)− F−1

1 (u;λ)]du

To show that (∆y2λ∆y1y2 − ∆y2y2∆y1λ)ψ(y;λ) ≥ 0, it suffices to show that the

statement ∆y2γφ(y; γ)∆y1y2Eγ(λ)[φ(y; γ(λ))] − ∆y1γφ(y; γ)∆y2y2Eγ(λ)[φ(y; γ(λ))] ≥ 0

holds. But, this immediately follows, since (∆y2γ∆y1y2 − ∆y2y2∆y1γ)φ(y; γ) ≥ 0 and

since F−1
2 (u;λ) ≥ F−1

1 (u;λ). �
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Chapter 3

Strategic Behavior of Suppliers in the Face of Production
Disruptions

3.1. Introduction

As companies become more integrated and their supply chains more complex,

they are exposed to many risks often driven by the geographical locations in which

they operate. Including natural disasters, economic and political crises, labor strikes,

currency devaluation, and pandemics, the total number and cost of both natural and

man-made disasters has increased dramatically over the last decade (Tang 2006).

Well-publicized examples of natural disasters include Hurricane Mitch in 1998, when

flooding destroyed banana plantations in Honduras, Guatemala, and Nicaragua, which

affected 10% of the world’s banana crop. During the spring of 2001, mad cow disease

broke out in England, resulting in mass destructions of cattle and shortages of Eu-

ropean hides for leather goods’ manufacturers. In March 2000, a fire in the Philips

Semiconductor plant in Albuquerque, New Mexico disabled production, which led to

a supply shortage for both Ericsson and Nokia. Today, many firms recognize these

and other supply risks are a major threat to their businesses. Firms including Cisco,

Walmart, Dell, and Apple, have publicly reported that their profitability can be in-

fluenced by supply disruptions due to supplier non-performance or natural disasters.

Potential for significant losses has led many practitioners and researchers to ques-

tion how to build more resilient supply chains (Martha and Subbakrishna 2002, Sheffi

2005, Hendricks and Singhal 2005, Tang 2006, Tomlin 2006, Babich et al. 2007).
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Given that some disruptions cannot be avoided, what distinguishes firms is the way

they handle the disruptions. For example, Nokia was able to source from alternative

suppliers during their March 2000 disruption, whereas Ericsson “did not have a Plan

B” and lost at least $400 million in potential revenue (Latour 2001). And, as Chiquita

leveraged alternative sources of bananas to maintain deliveries, Dole suffered revenue

declines and struggled to find alternatives sources of supply. During the outbreak

of mad cow disease in Europe, Natale, Gucci, and Wilson Leather were locked into

supply contracts. Naturalizer, Danier, and Justin Boot relied on inventories. Etienne

Aigner shifted purchases to other regions, but faced stiff cost increases (Martha and

Subbakrishna 2002). Tang (2006) has proposed several mitigation strategies based on

his observations of successful business practices, including production postponement,

maintaining strategic inventories, building a flexible supply base, and ensuring flex-

ible transportation. Among these strategies, the present paper focuses on strategic

inventories and a flexible supply base (i.e., sourcing strategy).

Our work is motivated by firms that contract with various suppliers and assign

different roles to them, that is, primary versus backup supplier. For example, Kol-

bus, a German manufacturer of bookbinding machinery, sources the majority of its

parts from offshore suppliers. In addition, for 70% of its purchased products, the

firm maintains backup suppliers from a network of local suppliers to hedge against

both demand-side and supply-side uncertainties. Kolbus’s COO stated that, “If we

actually need the local suppliers as an extended workbench on a full scale, we com-

pensate them for their deliveries generously. And they are prepared, still knowing

that they cannot reckon on us for steadily incoming orders” (Sting and Huchzermeier

2010). Prior literature that has investigated the use of backup suppliers has indeed

considered the profitability of using more expensive suppliers as backup in the pres-

ence of supply disruptions (e.g., Tomlin 2006, Sting and Huchzermeier 2010). It is

usually assumed in those studies, however, that the manufacturer is the sole decision
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maker and that supplier behavior is exogenous. In such an environment, conventional

wisdom suggests–and many models confirm–that a manufacturer cannot be worse off

by having backup suppliers. Our study, however, treats suppliers as active decision

makers aware of their strengths and weaknesses and evaluates the costs and bene-

fits associated with flexible sourcing, resulting from strategic supplier behaving as

price-setters.

We consider a manufacturer that can source from either a perfectly reliable sup-

plier, an unreliable supplier, or both.1 The option of sourcing from more than one

supplier is labeled as a flexible sourcing strategy. The unreliable supplier faces oc-

casional production disruptions, which temporarily stop the flow of materials to the

manufacturer. If the manufacturer sources primarily from the unreliable supplier,

he may choose to buffer the disruptions with inventory, use the reliable supplier as

a backup source, or use both strategies. The reliable supplier may play one of two

roles: serve as the primary supplier or provide backup capacity to the manufacturer

when the unreliable supplier experiences a disruption (possibly in addition to some

guaranteed primary capacity, as we explain later). These are significantly different

roles, which may justify different contracts and drive the supplier to make different

upfront capacity decisions.

The primary objective of the present study is to analyze the suppliers’ strategic

behavior when they compete for a manufacturer’s business. We focus on the suppli-

ers’ pricing strategy and the resulting sourcing strategy of the manufacturer in the

equilibrium. Our study also evaluates the effects of the capacity of the reliable sup-

plier and examines the case when demand is non-stationary. We seek to answer the

following questions: How do the suppliers set price under various reliability profiles?

What sourcing strategy does the manufacturer adopt in the equilibrium, assuming

the equilibrium exists? What pricing schemes will prevail in the equilibrium? Under

1In our extensions, we also discuss the case when both suppliers are unreliable.
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what circumstances do the manufacturer and the suppliers benefit from a flexible

sourcing strategy?

To answer these questions, we propose a model in which the suppliers offer terms

of delivery (wholesale prices) to the manufacturer. The manufacturer then chooses

the suppliers and the roles they will play, as well as decides the inventory policy that

will be used. We start by characterizing the inventory policy of the manufacturer and

show that it can be described by the number of periods to “cover,” and it is indepen-

dent of values of demand, even when demand is non-stationary. To evaluate strategic

supplier behavior, we consider two pricing games in which suppliers compete. In the

single-wholesale-price game, each supplier announces a single (wholesale) price. In

the contingent-pricing game, the reliable supplier offers wholesale prices contingent

on whether she serves as the primary or the backup supplier. The unreliable supplier

offers two wholesale prices: one for on-time deliveries and one for late deliveries. The

difference between prices can equivalently be interpreted as a penalty for late deliver-

ies in the form of a supplier rebate or a charge-back, which are commonly observed in

practice. We find that the single-wholesale price game leads to a conflict of incentives

in terms of the roles suppliers want to play and the amount of business they get. This

is formally confirmed as non-existence of pure-strategy Nash equilibria in most prac-

tical situations. In reality, the reliable supplier may wish to quote different wholesale

prices depending on the role she plays. Similarly, the unreliable supplier may offer in-

centives to win the manufacturer’s business. The contingent-pricing game, therefore,

corresponds to a more intuitive relationship and has a unique pure-strategy Nash

equilibrium. We derive conditions for the manufacturer’s various sourcing strate-

gies and corresponding inventory policies, and we describe the resulting equilibrium

sourcing outcomes. Except for cases with a significant cost advantages for one of the

suppliers, the manufacturer uses the (less expensive) unreliable supplier as well as

the (more expensive) reliable supplier. The economic benefits, however, are less obvi-
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ous. The conventional wisdom is that the manufacturer should never be worse off by

having backup suppliers. With endogenously determined wholesale prices, however,

the manufacturer does not necessarily benefit from the existence of a backup supplier

and, in fact, is typically worse off. Consequently, an up-front commitment to sole-

sourcing and using simple wholesale price contracts may be beneficial, as opposed

to opening up the opportunity for multi-sourcing and more flexible contracts. Inter-

estingly, suppliers may benefit from flexible sourcing even though the manufacturer

does not; indeed, the reliable supplier always benefits from offering backup capacity,

whereas the unreliable supplier might benefit in some situations from a reliable sup-

plier’s backup capacity despite reduced business volume. From a system perspective,

a flexible sourcing strategy may degrade the supply chain’s performance.

We characterize the sourcing policy by deriving the conditions under which the

manufacturer (1) sole sources from the reliable supplier; (2) the conditions under

which he sole sources from the unreliable supplier; and (3) the conditions under

which he sources primarily from the unreliable supplier, using the reliable supplier

as backup. We show that even when the manufacturer uses both suppliers, it is

optimal for him to maintain a safety stock of inventory, because the reliable supplier

charges a high price for providing backup capacity. For a special case with stationary

demand, we study the choice of capacity level by the reliable supplier. The problem

can be decoupled and interpreted based on two independent roles that the reliable

supplier can play: regular supplier and backup. Although these roles could be played

simultaneously, we show that the reliable supplier will never want to play both roles,

that is, to supply only a portion of total demand as a primary supplier.

Our extensions include the case of two unreliable suppliers. We identify conditions

when one of the suppliers can be treated as perfectly reliable. We also investigate how

the predictability of recovery times influences competitive outcomes and equilibrium

profits. Although reduced variability is usually considered favorable in the operations
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literature, we find that the unreliable supplier may achieve higher profits with unpre-

dictable (more variable) disruptions, resulting from dampening the competition due

to the availability of backup supplier.

The remainder of the paper is organized as follows. Section 3.2 reviews the litera-

ture. The model and assumptions are introduced in Section 3.3. The manufacturer’s

optimal sourcing and inventory policies for given wholesale prices are derived in Sec-

tion 3.4. Section 3.5 analyzes the wholesale-price game and the contingent-pricing

game and presents a collaborative framework. Section 3.6 describes the extensions we

derive from the primary scenario. Finally, Section 3.7 contains the paper’s summary

and conclusions.

3.2. Literature Review

The earliest papers dealing with disruptions concentrated on supply disruptions

within a single facility or from a given supplier. Meyer et al. (1979) modeled a produc-

tion facility with stochastic failures and repairs. Hopp and Spearman (1991) and Berg

et al. (1994) considered similar settings with machine breakdowns and internal disrup-

tions within a facility. Bielecki and Kumar (1988) derived the conditions under which

zero-inventory policies were optimal for a manufacturing facility subject to random

failures. Parlar and Perry (1995), Parlar (1997), Gupta (1996), and Arreola-Risa and

DeCroix (1998) analyzed disruptions at upstream suppliers. In principle, the analysis

is the same as analyzing the disruptions within a manufacturing facility, provided the

downstream buyer has perfect access to the upstream supplier’s operational status in

real-time. Song and Zipkin (1996) analyzed a single-supplier model with a more gen-

eral supply process (a generalized version of Kaplan 1970) and concluded that under

no-order-crossing assumption, the optimal ordering policy is independent of the state

of the outstanding orders. Due to generality of the framework, any single-supplier

problem in a multi-period setting is likely to fit into Song and Zipkin’s framework.

An increasing number of papers have considered scenarios that are more complex
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than a single-supplier single-buyer relationship. The benefits of multiple-supplier

sourcing have been studied in the context of risks such as price reductions resulting

from competition among suppliers (Elmaghraby 2000) and variable supplier lead times

(Minner 2003). The first papers to consider multiple suppliers to mitigate disruption

risks are Parlar and Perry (1996) and Gurler and Parlar (1997). Both papers consider

identical-cost infinite-capacity suppliers that were subject to exponentially distributed

failure and repair times with fixed ordering costs. Paper by Tomlin (2006) is the

most relevant to our work. He assumes that demand is constant and, in a periodic-

review setting, two suppliers can serve the manufacturer; one is reliable and the

other is unreliable. The unreliable supplier faces no capacity constraints between

disruptions but has zero capacity during a disruption. The reliable supplier has a

strict capacity constraint and a positive lead-time needed to start production. The

major difference between Tomlin’s work and ours is that in his model, the wholesale

prices are exogenously set, whereas we assume that the suppliers are price-setters and

compete for the manufacturer’s business. By modeling suppliers as price-setters, we

can analyze how suppliers’ behavior influences the structure of the supply contract

and the manufacturer’s sourcing strategy. In addition to the strategies analyzed in

Tomlin (2006), Tomlin (2009a) also considers demand switching as a potential lever

to mitigate supply disruptions.

Another stream of literature related to supply chain disruptions is one that consid-

ers supplier yield uncertainty. Yano and Lee (1995) provides a comprehensive review

of the yield uncertainty literature. Among the papers in this group, those that con-

sidered multiple suppliers are Gerchak and Parlar (1990), Yano (1991), Anupindi and

Akella (1993), Agrawal and Nahmias (1997), Federgruen and Yang (2009), Gurnani

et al. (2000), and Babich et al. (2007). A review of these papers can be found in

Tomlin (2006) and Babich et al. (2007). Among these papers, Babich et al. (2007) is

most relevant to our work. It models a single-period procurement problem with mul-

79



tiple uncertain suppliers. Ordering decisions are made before the supply uncertainty

is resolved. Supply disruptions are correlated across the suppliers – each of suppliers

can satisfy the order fully or produce nothing, according to a Bernoulli yield distri-

bution. The suppliers are price-setters, as they are in our model. Babich et al. (2007)

derives the equilibrium wholesale prices for the two-supplier case with deterministic

and stochastic demand. Rather than single wholesale-price contracts, we consider a

contingent-price framework and allow for different roles that the suppliers can play

(which are not considered in the Babich et al. model). Furthermore, our model is a

multi-period one with inventories carried across periods. This enables us to evaluate

a more realistic and intuitive pricing strategy and to study the efficacy of broader set

of sourcing strategies when inventory is a potential mitigation strategy for disrup-

tions. Tang and Kouvelis (2011) also deals with disruptions that occur in the form of

stochastically proportional yield. These authors consider two competing (identical)

manufacturers that have an option to source from two competing (identical) suppliers

in a single-period setting. The paper focuses on how the yield correlation across sup-

pliers influences the desirability of dual-sourcing for the manufacturers. In contrast,

we consider a multi-period model and a supply process that models random failures

and recoveries. Inventory is a potential mitigation strategy under this setting. We

consider supplier asymmetries with respect to production costs and reliability profiles

and allow suppliers to play different roles by offering contracts contingent on that role.

This approach leads to different insights. While the aforementioned papers assume

that the supplier yield distribution is known to the buyer, Tomlin (2009b) studies the

effect of Bayesian learning on optimal sourcing and inventory decisions.

Babich (2006) considers a slightly different setting, one in which a manufacturer

has an option to source from two unreliable suppliers, with unequal production lead-

times, that actively set their wholesale prices in a single-period setting. The supplier

with a shorter lead-time (the faster supplier) can commence production later than
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the one with a longer lead time (the slower supplier). This gives the manufacturer an

option to order from the slower supplier first and wait until the faster supplier must

start production. Significantly, the paper finds that the manufacturer could be worse

off with flexible sourcing when the suppliers set prices strategically, and that the

suppliers could be better off. We do not allow the reliable supplier (faster supplier in

the Babich setting) to postpone her pricing decision and announce a wholesale price,

if the unreliable supplier (slower supplier in the Babich setting) faces a disruption.

Interestingly, even when the suppliers must make price commitments upfront, we find

that the manufacturer could still be worse off with flexibility, whereas the suppliers

could be better off. This is not expected a priori.

Some of the papers that concentrate on bargaining and principle-agent models

with asymmetric supply reliability information are also related to our work. Gur-

nani and Shi (2006) considers a bargaining setting involving a supplier and a buyer

with asymmetric information on supplier reliability. Focusing on asymmetric supply

reliability information, Yang et al. (2009) considers a single-period model with one

manufacturer and one supplier. The supplier could be one of two types, either high-

reliability or low-reliability. The supplier can choose to pay a penalty for not being

able to deliver or use a backup option. The manufacturer (the principal) designs

contracts to maximize expected profits, whereas the supplier (the agent) truthfully

reveals her private information by choosing the contract that maximizes her payoff.

The manufacturer, having the full power to design the contract, extracts all the rents

in the absence of information asymmetry. In our paper, suppliers offer wholesale

prices (rather than the manufacturer offering a menu of contracts), which reflects a

different type of power for the suppliers. Furthermore, by focusing on a one-period

model, inventory cannot be used in Yang et al. model to mitigate risk.

Wan and Beil (2009) analyzes a supply base diversification problem to mitigate

cost shocks to procurement, where the buyer, due to lack of bargaining power, asks for
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bids from suppliers located in various geographical regions. The primary focus of this

study was to evaluate diversification strategies that minimize the cost of products

plus (random) transportation costs. In contrast, our focus is on the structure of

pricing strategies. Also, we consider complete information games only and allow for

inventory to be used as a mitigating factor.

3.3. Model and Assumptions

We consider a finite-horizon periodic-review inventory model, in which a down-

stream firm (manufacturer) faces a deterministic, not necessarily stationary, demand

throughout the planning horizon, denoted by dt for 1 ≤ t ≤ T .2 The manufacturer

has an option to source from an unreliable supplier U , who is subject to disruptions;

from a reliable supplier R; or from both. In each period, U is in one of two states,

ON or OFF. During an ON state, U can satisfy the order instantaneously, whereas

he cannot produce anything when in an OFF state. The players are risk-neutral,

and their objective is to maximize their expected profits. The contract is signed at

the beginning of the horizon (Phase I below), and the terms of the contract are not

subject to change during the life of the contract. The sequence of events is as follows.

Phase I: The suppliers announce their pricing schemes before the planning hori-

zon begins. The manufacturer determines which supplier will be his primary source,

and whether any supplier will be chosen as a backup supplier.

Phase II: At the beginning of any given period in the planning horizon, the

unreliable supplier’s state is revealed. Thereafter, the manufacturer decides how

much to order from each supplier. The products are received, if any. Finally, the

demand is satisfied subject to available inventory.

Supplier U ’s state is governed by a discrete-time Markov chain Xt. We define θf

2The deterministic demand assumption is appropriate when long-term supply fluctuations are
considered more important compared to short-term demand fluctuations. In addition, our model is
appropriate for situations in which the demand in the short term is quite predictable. Other dis-
ruption papers that make deterministic demand assumptions include Tomlin (2006), Parlar (1997),
Parlar and Perry (1995), Parlar and Perry (1996), and partly Babich et al. (2007).
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and θr as the probability of failure and recovery respectively, that is, Prob(Xt+1 =

OFF|Xt = ON) = θf and Prob(Xt+1 = ON|Xt = OFF) = θr. The Markov chain

is in steady state in the beginning of the planning horizon (i.e., t = 0). U does not

face any capacity constraints and after recovering from an OFF-state, U “catches

up” with unsatisfied demand in one period. If R serves as the primary supplier,

orders she receives are perfectly predictable, and R has exact capacity dedicated to

the orders. Additionally, R promises up to β units of capacity per period for backup

(emergency) orders, which represents her backup capacity that she reserves for all

other uses. Furthermore, suppliers do not hold inventories and supply the products

with zero lead times. Production costs are linear and denoted by cu and cr for the

unreliable and reliable suppliers, respectively. Similarly, suppliers’ wholesale prices

are wu and wr. The manufacturer sells at price p. Unsatisfied demand is backlogged.

The manufacturer incurs a goodwill penalty πb for backlogs and holding cost h for

inventories.

It is useful here to introduce some simplified notation related to the state of

the unreliable supplier. An alternative definition is a Markov chain X ′t with states

ON and OFF(k) for k ≥ 1, where OFF (k) means that Xt has been in the OFF

state for exactly k periods. The steady-state probabilities for X ′t are πON = 1 −

πOFF = θr
θf+θr

and πOFF (k) = θr(1 − θr)
k−1πOFF . Define F (t) =

∑t
k=0 πOFF (t) =

1 − πOFF (1 − θr)
t as the cumulative distribution function of the long-run average

length of a disruption and F̄ (t) = 1− F (t). We note that F (0) = πON describes the

proportion of time with no supplier disruption. Finally, we define the inverse function

F−1(x) := min {k | F (k) ≥ x}.

3.4. Phase II: Optimal Sourcing Strategy and Inventory Policies under
Exogenous Prices

This section contributes to the existing literature by generalizing the optimal pol-

icy for non-stationary and deterministic demand. Most important, it provides build-

83



ing blocks for analyzing the pricing games considered in the next section. Whereas

the primary model assumes demand backlogging, at the end of the section we provide

generalizations for various customer responses toward stock-outs.

We start with analyzing Phase II where the manufacturer, with knowledge of the

suppliers’ prices (revealed in Phase I), decides on an optimal sourcing strategy (which

depends on the state of the unreliable supplier and inventory level). We first allow

the manufacturer to source only from U . We then consider the possibility of sourcing

from R in addition to U .

3.4.1 Sole-Sourcing from the Unreliable Supplier

We first consider a special case with demand only in the last period. Solving

the last-period policy provides us with insights to derive the solution to the entire

problem, including when demand is non-stationary.

Simplified Problem: The manufacturer faces demand only in the last period,

dt = 0 for t < T . In the case of disruption, customers continue to wait until the

supplier becomes available.

We solve the simplified problem using a dynamic programming formulation with

the objective to minimize the expected holding and penalty costs.3 Denote by Vt(x, s)

the manufacturer’s expected cost from period t onward, given the starting inventory

level x and U ’s state s ∈ {ON,OFF}. Clearly, x ≤ dT and VT (x,ON) = 0. (If the

supplier is ON, no cost is incurred.) In addition, VT (x,OFF) = πb
θr

(dT − x), where πb
θr

is the expected cost of backlogging unsatisfied demand until the disruption ends. For

t < T , the optimality equations are:

Vt(x,ON) = max
x≤y≤dT

Gt(y) (3.1)

Gt(y) = hy + (1− θf )Vt+1(y,ON) + θfVt+1(y,OFF) (3.2)

Vt(x,OFF) = θrVt+1(x,ON) + (1− θr)Vt+1(x,OFF) (3.3)

3The revenue, p, and the procurement cost, wu, can be excluded from the formulation.

84



The intermediate cost-to-go function Gt(y) involves only the holding cost in the

current period and future expected costs. The optimal policy is described in Propo-

sition 3.1.

Proposition 3.1. (i) A base-stock policy is optimal for the simplified problem. Let

κ = F−1
(

πb
πb+h

)
. The base stock at period t is s∗t = 0 for t < T − κ and s∗t = dT for

t ≥ T − κ.

(ii) At t = 0, the probability that the manufacturer faces a supply disruption

is F̄ (κ) and the total expected holding and penalty cost at t = 0 is L(κ)dT , where

L(k) :=
(
πb
θr

)
F̄ (k) +H(k) and H(k) := hk+

(
h
θr

)
F̄ (k)− h

θr
πOFF . The coverage κ is

the minimizer of function L(k).

To meet the last period’s demand, the manufacturer should place an order κ

periods in advance. The optimal κ does not depend, however, on the volume of

demand, dT . Thus, κ can be interpreted as a time buffer that balances the cost of

disruption with the cost of holding inventory.

The solution to the simplified problem readily extends to the general case, in which

the manufacturer must meet non-stationary demand across T periods. By isolating

each period and assuming FIFO inventory use, we solve multiple simplified problems.

Because the economic parameters (holding cost and penalty) remain constant, and

due to feasibility of such a policy, the optimal policy turns out to be one in which

a given period’s requirement is procured exactly κ periods in advance, provided the

supplier is in an operating state. That is, the manufacturer carries inventories that

will be used in the current period and during the next κ periods. In the case of

a disruption, the manufacturer catches up with the desired trajectory as quickly as

possible.

Theorem 3.1. (i) There exists a positive integer κ, which we refer to as coverage,

such that in period t, it is optimal to raise the inventory up to s∗t = dt+dt+1+· · ·+dt+κ.
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The optimal coverage κ is independent of the volume of demand in each period. The

optimal coverage is κ = F−1
(

πb
πb+h

)
. (ii) At t = 0, the manufacturer’s expected profit

per customer is p− wu − L(κ).

We note that a zero-inventory policy is optimal (i.e., κ = 0) if πb
θr
≤ h

θf
, that

is, when the expected penalty cost per customer is less than the expected holding

cost per unit held. Given that the inventory policy does not depend on the demand

information beyond κ periods ahead, effectively we do not need the deterministic

demand assumption for the entire horizon providing the demand can be reliably

predicted for a sufficient number (at least κ) of periods.

While we stated above the results for the case when all unsatisfied customers

are backlogged, the analysis extends to various types of customer responses toward

stock-outs. In reality, some customers may switch to a competitor or some could

only tolerate waiting for a limited number of periods. To account for such behavior,

we define the following customer responses toward stock-outs and present modifica-

tions corresponding to an optimal policy for the manufacturer. We assume that the

manufacturer incurs πl per lost customer.

Partial Lost Sales (PLS(α)): A fraction α of the customers, with 0 ≤ α ≤ 1,

are willing to wait until the product becomes available, whereas the remaining 1− α

are lost immediately.

Gradually Lost Sales (GLS(α)): Customers who are backlogged leave the

system gradually. During each period, a fraction 1 − α of all of the backlogged

customers are lost.

Theorem 3.2. The optimal coverage is κ = F−1
(

σ
σ+ h

θr

)
, where

i) Under PLS(α), σ = α
(
πb
θr

)
+ (1− α)(p+ πl − wu).

ii) Under GLS(α), σ =
(

αθr
1−α+αθr

)(
πb
θr

)
+
(

1−α
1−α+αθr

)
(p+ πl − wu).
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The “optimal number of periods to stock,” κ, satisfies a newsvendor trade-off,

where σ is the cost of underage, and h
θr

is the cost of overage (i.e., the expected

holding cost during a disruption).

The key insight developed in this subsection is that the production function is a

shifted version of the demand function by a constant time κ.

By decreasing the size of a period, the periodic-review model readily extends to a

continuous-time model with exponentially distributed supplier up-time and supplier

down-time. The demand can be modeled as discrete realizations in time, through

demand rate function d(t), or through a combination of both.

3.4.2 Sourcing Strategies with a Reliable Alternative Source

We assume now that the manufacturer has an alternative supplier, R, which is

completely reliable. R can be used as the primary (and sole) supplier, as the backup

supplier to U , or R can serve both functions. In the last case, a portion of the total

demand is satisfied by R, whereas the remainder is satisfied by U . For this remainder,

R may also serve as a back-up to U in the event of a disruption.

If R serves as the primary supplier, the orders she receives are perfectly pre-

dictable. Thus, we assume that R has an exact capacity dedicated to orders placed

on a regular basis. Additionally, R promises up to β units of capacity per period

for emergency orders. To derive the optimal policy, we assume stationary demand,

dt = 1 for all t and 0 ≤ β ≤ 1. When the demand is non-stationary, the conclusions

of Proposition 3.2 are valid for the two extremes of the backup capacity: β = 0 and

β ≥ supt dt.

Proposition 3.2. Let κ0 = F−1
(

πb
πb+h

)
and κ1 = F−1

(
wr−wu

wr−wu+ h
θr

)
. The manufac-

turer’s optimal sourcing policy is as follows.

(i) If wr < wu, it is optimal to source solely from R.
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(ii) If wu ≤ wr ≤ wu+L(κ0), it is optimal to split the contract and source 1−β units

of the demand from R and β units from U on a regular basis, while covering κ1

periods (resulting in a safety stock of κ1β). If a disruption lasts longer than κ1

periods, the manufacturer sources additional β units per period from R.

(iii) If wu+L(κ0) ≤ wr ≤ wu+ πb
θr

, it is optimal to split the contract as follows. 1−β

units of the demand is sourced solely from U . The remainder is sourced from

U when U is operational and sourced from R when U faces a disruption. The

manufacturer covers κ0 periods for the portion sourced solely from U (resulting

in a safety stock of κ0(1− β)) and covers κ1 periods for the remaining portion

(resulting in a safety stock of κ1β). As a result, the manufacturer keeps (1 −

β)κ0 + βκ1 units in safety stock and sources from R if a disruption at U lasts

longer than κ1 periods.

(iv) If wr > wu + πb
θr

, it is optimal to source solely from U and cover κ0 periods.

Note that cases (ii) and (iii) have an intuitive interpretation. Consider two in-

dependent and identical manufacturers, except that Manufacturer 1 faces a constant

demand β and uses a backup source, whereas Manufacturer 2 faces a constant de-

mand 1− β and does not keep a backup source. Then, Manufacturer 1 should cover

κ1 periods (order up to κ1β) and Manufacturer 2 should cover κ0 periods (order up to

κ0(1− β)). Proposition 3.2 proves that such decoupling, with artificial roles assigned

to two manufacturers, is indeed optimal. Consequently, the profits of the suppliers

and the manufacturer are linear in β; therefore, the reliable supplier will offer either

no backup capacity or as much backup capacity as possible, if profitable.

This section has treated the suppliers’ wholesale prices as exogenously given. In

practice, suppliers actively compete on price. We are now ready to address the main

question of the paper and explore the impact of reliability on the pricing strategies

of the suppliers. We seek to answer the following questions. How do the suppliers
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price under various reliability profiles? What sourcing strategy does the manufacturer

adopt in the equilibrium, assuming it exists? What pricing schemes will prevail in

the equilibrium? Under what circumstances do the manufacturer and the suppliers

benefit from a flexible sourcing strategy?

3.5. Price Competition of the Suppliers

The key questions we address in this section are how the suppliers set prices and

what the manufacturer’s resulting sourcing strategy is. For general, non-stationary

demand, we analyze two extreme cases. In the first case, R does not offer backup

capacity, β = 0, and in the second case, R offers infinite backup capacity, β =

∞. The intermediate case with finite backup capacity and stationary demand is a

straightforward extension of these two extremes due to Proposition 3.2. We adopt

the continuous-time view for inventory replenishment.

Two pricing games are considered: the single-wholesale-price game and the contingent-

pricing game. In the single-wholesale-price game, the reliable and unreliable suppliers

simultaneously announce single wholesale prices. We find that a pure-strategy Nash

equilibrium does not exist, except for very special cases. This is because the price

that the reliable supplier wishes to charge as the primary supplier is not the same

as the price she would charge as the backup supplier. The contingent-pricing game

addresses this shortcoming (and reflects realities that suppliers face). In this scheme,

the reliable supplier offers two wholesale prices, one as a primary supplier and one

as a backup supplier. In response, the unreliable supplier offers two wholesale prices,

one for on-time deliveries and one for delayed deliveries. In contrast, we find that the

contingent-pricing game has a pure-strategy Nash equilibrium, and derive conditions

for different sourcing strategies of the manufacturer. We also evaluate the efficacy of

the contingent-pricing game using a centrally-managed supply chain as a benchmark.

3.5.1 Single-Wholesale-Price Game
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Here we analyze two separate cases. In the first case, R does not offer any backup

capacity, and in the second case, R offers backup capacity.

• Assume that R cannot offer any backup capacity, β = 0.

Proposition 3.3. Assume that R does not offer backup capacity, β = 0. Let κ0 =

F−1
(

πb
πb+h

)
. If cr ≤ cu+L(κ0), then, R is awarded the entire contract with (w∗r , w

∗
u) =

(cu +L(κ0), cu). Otherwise, U is awarded the entire contract with (w∗r , w
∗
u) = (cr, cr−

L(κ0)).

The effective cost of sourcing from U turns out to be wu + L(κ0). Hence, in the

equilibrium, R can charge a premium over the cost of U equal to L(κ0). This is the

expected holding and backlogging costs that the manufacturer would incur when he

sets the inventory coverage to κ0.

• Assume that R can serve as a backup supplier with infinite capacity, β = ∞. If

wr ≤ wu, the manufacturer clearly uses R as the primary supplier. If wr > wu, then

the manufacturer uses the less expensive supplier, U , as his primary supplier and may

use R as his backup supplier. Thus, R either sets wr = wu and serves as the primary

supplier or sets wr > wu and serves as the backup supplier. Denote by w∗rb(wu) the

optimal wholesale price that R would charge conditional on serving as the backup

supplier, that is, wr > wu.

Proposition 3.4. If wu < cr − πb
θr

, then w∗rb(wu) = cr and the manufacturer does not

source from R. If wu ≥ cr − πb
θr

and wr > wu, R serves as the backup supplier and

i) If wu < cr + h
θr

, w∗rb(wu) = wu + πb
θr

and the manufacturer’s inventory coverage

is κ0.

ii) If wu ≥ cr + h
θr

, w∗rb(wu) = wu + min
{
πb
θr
, h
θf

}
and the manufacturer holds no

inventory.
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The presence of backup supplier may either drive the manufacturer’s inventory

down to zero or leave it unchanged, compared to the case where R is not available as

a backup supplier. When inventory is held in equilibrium, R charges a premium on

U ’s wholesale price, equal to the expected penalty costs for backlogging the demand.

Otherwise, when no inventory is held, R’s premium is equal to the expected cost of

holding one unit of inventory until a disruption occurs or the expected penalty costs

for backlogging, whichever is lower. The smaller premium is beneficial for R, because

it corresponds to a no-inventory policy and, consequently, increases the portion of

R’s business. The following proposition characterizes the equilibrium prices in the

single-wholesale-price game.

Proposition 3.5. Let δ =
θf
θr

min
{
πb
θr
, h
θf

}
. Assume that R offers backup capacity,

β = ∞. If cu ≥ cr + δ, R is awarded the entire contract with (w∗r , w
∗
u) = (cu, cu).

If cu < cr + δ, no pure-strategy Nash equilibrium exists for the single-wholesale-price

game.

The single-wholesale-price game has a unique pure-strategy Nash equilibrium only

when R has significant cost advantage, cr ≤ cu−δ. This condition may not hold under

settings in which the reliability is associated with higher production costs. Comparing

Propositions 3.3 and 3.5 to the case where cr ≤ cu − δ, R wins the contract in both

cases and charges w∗r = cu if β = ∞ and w∗r = cu + L(κ0) if β = 0. Interestingly, R

charges a higher price when she cannot offer backup capacity. We briefly discuss the

reasons for this seemingly counter-intuitive result. If β =∞, the possibility of offering

backup capacity prevents R from charging a premium for its reliability. Unless R sets

a lower price than U , the manufacturer will chose U as the primary supplier and R

as the backup supplier. Without back-up capacity, R can charge a higher price than

U . Therefore, if R has plenty of unutilized capacity, she may find herself desperate

to use it and unable to charge a premium. If, however, R can credibly dedicate her

capacity to other customers in the event she does not get the contract, then she can
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take advantage of being reliable and charge a premium.

In the case cr > cu − δ, we observe from the proof of Proposition 3.5 that non-

existence of pure-strategy Nash equilibria is driven by the fact that R wishes to charge

different prices for acting as a primary supplier versus acting as a backup supplier.

If the price decreases significantly due to competition, R finds it optimal to increase

her price and become the backup supplier. However, in response, U finds it optimal

to increase prices, and hence, firms do not reach equilibrium. Similarly, they would

not reach equilibrium even if they were allowed to revise prices during the horizon.

To account for the possibility that R is able to price based on her role, we introduce

the contingent-pricing game.

3.5.2 Contingent-Pricing Game

In practice, one would expect the price to differ based on the supplier’s role, the

expected volume, and the expected predictability of using supplier capacity. In this

section, we consider the contingent-pricing game, in which R is able to announce

wholesale prices contingent upon her role. In the beginning of the horizon, R quotes

two contingent prices, (wr, wrb). The wholesale price, wr, is for regular orders and

wrb is for the emergency (backup) orders. We assume that R is able to verify whether

an order is placed on regular basis or on an emergency basis. Common knowledge

of demands and supplier state makes this a natural assumption in our model. U is

also allowed to offer two wholesale prices, (wu, wud). The wholesale price, wu, is for

units delivered on time, whereas wud is the wholesale price for delayed orders. The

difference φ = wu − wud can be interpreted as a penalty (or rebate) that U pays for

delayed orders. We represent U ’s decision as (wu, wud) and (wu, φ) interchangeably.

The backup capacity, β, continues to play a significant role.

• For β = 0, the contingent-pricing game reduces to the single-wholesale-price game.

R does not set a price for backup availability (or wrb = ∞). In response, U can

achieve any outcome with a single wholesale price and Proposition 3.3 applies.
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• Assume that R can serve as a backup supplier with infinite capacity, β = ∞. To

derive the equilibrium outcomes, we first derive R’s best response to U given (wu, φ).

Lemma 3.1. Let κcp(φ) = F−1
(

πb−θrφ
πb+h−θrφ

)
. Two thresholds exist, wlu(φ) ≤ whu(φ)

that characterize R’s best response.

If wu ≤ wlu(φ), R sets wr = wrb = cr and does not serve the manufacturer.

If wlu(φ) ≤ wu ≤ whu(φ), R serves as the backup supplier with wrb = wu − φ + πb
θr

and wr = cr + (wrb − cr) F̄ (κcp(φ)).

If wu ≥ whu(φ), R serves as the sole supplier with wr = wu+L(κcp(φ))−φF̄ (κcp(φ))

and wrb = cr + wr−cr
F (κcp(φ))

.

Figure 3.1: Sourcing outcome when R best responds to U

πb
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cr − πb
θr
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wu

φ

from U

Use
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Sole-source

Both

πb
θr
− h

θf

Figure 3.1 shows the resulting sourcing outcomes when U ’s wholesale prices are

exogeneously determined and R is best-responding to U ’s wholesale prices. Given

how R best responds to a contract offered by U , we characterize the equilibrium

outcomes below.

Proposition 3.6. Let κ0 = κcp(0) and ∆ = H(κ0)
F (κ0)

, satisfying 0 ≤ ∆ ≤ L(κ0). There

exists a unique equilibrium of the contingent-pricing game. The equilibrium outcomes

are:

(i) If cr − cu ≤ ∆, the manufacturer sole-sources from R: w∗r = cu + L(κ0),

w∗u = w∗ud = cu.
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(ii) If ∆ < cr−cu < πb
θr

, the manufacturer primarily sources from U and uses R as

the backup supplier: w∗u = cu + φ∗, w∗ud = cu, w∗rb = cu + πb
θr

. The equilibrium penalty,

φ∗, is weakly increasing in cr − cu; hence, equilibrium inventory, κcp(φ
∗), is weakly

decreasing in cr − cu.

(iii) If cr − cu ≥ πb
θr

, the manufacturer sole-sources from U : w∗u = cr − πb
θr

+ φ∗,

w∗ud = cr − πb
θr

, w∗r = w∗rb = cr. The equilibrium penalty, φ∗, and inventory, κcp(φ
∗),

do not depend on cr − cu.

It is easier to interpret Proposition 3.6 when πb
θr
≤ h

θf
, that is, when the inventory

holding cost is too high to allow the manufacturer to carry inventory. Because a zero-

inventory policy is optimal in equilibrium, the manufacturer’s orders can be classified

into two categories: regular orders that arise with a frequency πON and emergency

(or delayed) orders that arise with a frequency πOFF . With this separation of or-

ders, suppliers effectively engage in two pricing games with the flexibility of quoting

different wholesale prices for each game. In equilibrium, the manufacturer’s cost for

each type of order (including a backlog penalty, if any) is given by his second best

option: for regular orders, the manufacturer incurs max{cr, cu} and for emergency

(or delayed orders), he incurs max
{
cr, cu + πb

θr

}
. (Sourcing from U results in penalty

costs for delayed orders.)

The equilibrium outcomes are clearly influenced by the cost advantage of the

unreliable supplier, cr − cu. Except for the extreme cases, the manufacturer uses

the less expensive unreliable supplier and the more expensive reliable supplier. The

equilibrium outcomes are also influenced by other factors such as the manufacturer’s

holding and penalty costs, as well as the frequency and length of disruptions. Figure

3.2 illustrates how the equilibrium sourcing outcome depends on (a) the average

uptime and downtime and (b) the manufacturer’s inventory holding and penalty costs.

Figure 3.2(a) has an intuitive interpretation. For disruptions with sufficiently short

average length, in equilibrium, U is able to secure the contract as the sole supplier.
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Figure 3.2: Equilibrium Sourcing Outcome
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(b) Parameters θf ,θr and cr > cu are
fixed.

Otherwise, depending on the average length of disruptions, the manufacturer either

sole-sources from R or keeps R as the backup source. The latter case implies lost

orders for U whenever he faces disruptions that are longer than the manufacturer’s

inventory coverage.

Figure 3.2(b), on the other hand, is less intuitive and reflects the effect of strategic

supplier behavior. When the penalty cost is negligible, U is able to secure the contract

as the sole supplier. When the penalty cost is moderately high, the manufacturer uses

both suppliers. These results are intuitive. However, when the penalty cost increases,

the manufacturer’s sourcing strategy is influenced as well by holding cost, but in a

non-monotonic way. If the holding cost is negligible, the manufacturer can mitigate

disruptions by holding a significant amount of inventories. Consequently, R cannot

compete aggressively to serve as the primary supplier. When the holding cost is very

high, the manufacturer is unable to hold inventory economically and has an incentive

to maintain a backup supplier. In this case, R takes advantage of being reliable

and becomes the backup supplier, not because she cannot compete aggressively to

be the sole supplier, but because it is more profitable to be the backup. Finally, if

the holding cost is in the middle range, it is more profitable for R to compete more
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aggressively and secure the entire contract as the sole supplier. The dynamics we

observe for high penalty costs are driven purely by strategic supplier behavior in the

presence of backup capacity.

Exploring the equilibrium outcomes of the contingent-pricing game with and with-

out backup capacity enables us to address the focal questions of our paper. Does the

manufacturer benefit from flexible sourcing by allowing the reliable supplier to offer

backup capacity at a higher wholesale price? Which supplier(s) benefit from a flexible

sourcing arrangement? In the absence of strategic behavior (that is, with fixed whole-

sale prices), the manufacturer will always benefit from flexible sourcing, whereas the

supplier U could potentially be hurt, because his orders are lost with flexible sourc-

ing. Supplier R may or may not benefit, depending on the original arrangement

without flexible sourcing. Below, we show that this intuition does not necessarily

carry over when strategic supplier behavior is taken into account. To address how

flexible sourcing influences profits fully, we need the following lemma, in which we

prove monotonicity of profits in suppliers’ production costs. We use subscript m to

denote the manufacturer. Subscripts u and r are already defined and refer to the

suppliers.

Lemma 3.2. Denote by Π∗i (cr, cu) player i’s equilibrium profit in the contingent-

pricing game with β =∞. Let Π∗sc(cr, cu) denote the total supply chain profit. Then,

0 ≤ ∂Π∗i (cr,cu)

∂cj
≤ 1 and −1 ≤ ∂Π∗i (cr,cu)

∂ci
≤ 0 for i, j ∈ {u, r} with i 6= j. Also,

−1 ≤ ∂Π∗i (cr,cu)

∂cj
≤ 0 for i ∈ {m, sc} and j ∈ {u, r}.

The results of Lemma 3.2 are intuitive. When the supplier’s cost is increased,

that supplier’s equilibrium profit decreases; in addition, the manufacturer and the

supply chain performance suffer. On the other hand, the profit of the competing

supplier improves. The next proposition explores how backup capacity influences

profits, where we compare the case of backup availability (β = ∞) and no backup

availability (β = 0).
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Proposition 3.7. • Let πb
θr
≤ h

θf
, leading to zero inventory in equilibrium. If 0 ≤

cr − cu ≤ πb
θr

, with backup capacity, the profits of both suppliers and the total supply

chain profit are higher, whereas the manufacturer’s profit is lower. Otherwise, profits

are not influenced by backup capacity.

• Let πb
θr
> h

θf
. If cr − cu ≤ ∆, profits are not influenced by backup capacity. Let

cr − cu > ∆. R’s profit is higher with backup capacity when cr − cu ≤ πb
θr

, and her

profit does not depend on backup capacity when cr − cu > πb
θr

. With backup capacity,

there exist c̄u, c̄m and c̄sc, such that the profits of U , the manufacturer, and the supply

chain are higher if cr− cu ≤ c̄u, cr− cu ≥ c̄m and cr− cu ≤ c̄sc, respectively, and lower

otherwise. L(κ0) ≤ c̄u, c̄m, c̄sc ≤ πb
θr

and c̄u ≤ c̄m.

Proposition 3.7 shows that R always (weakly) benefits from offering backup ca-

pacity in the contingent-pricing game. This is in contrast to the single-wholesale-price

game, in which R could be worse off with backup capacity. Thus, the contingent-

pricing game enables R to make better pricing decisions and does not penalize R for

maintaining backup capacity.

Surprisingly, U and the manufacturer may or may not benefit from backup ca-

pacity. This is a major departure from our intuition for the case of non-strategic

suppliers. Even more surprising, there is no case when all supply chain players im-

prove their profits with backup capacity simultaneously; indeed, in some of those

situations, the supply chain performance degrades.

The findings of Proposition 3.7 are illustrated in Figure 3.3, when equilibrium pol-

icy results in zero inventory, and Figure 3.4, with positive inventory. When inventory

holding cost is high (Figure 3.3), both suppliers benefit from the existence of backup

capacity. When both suppliers are used, in the special case with zero inventory, the

equilibrium wholesale prices are driven by the following dynamics.

• The unreliable supplier might offer a higher price, wu, for regular deliveries

and a lower, discounted price, wud, for delayed deliveries. With a discount equal to
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Figure 3.3: Sourcing Outcomes and Benefits of Backup Capacity with πb
θr
≤ h

θf
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the expected penalty, wud is easily below U ’s cost and U loses money on delayed

orders. Because the backup business is separate from on-time deliveries, U is better

off charging at cost, wud = cu, and letting R serve as the backup supplier.

• The reliable supplier is interested in the backup business and can charge a

premium corresponding to the expected backlogging penalty, wrb = cu + πb
θr

. Alterna-

tively, R can serve as the primary (and only) supplier and charge a price that makes

the manufacturer indifferent to the cost of buying from an unreliable supplier (at wu)

plus the cost of backup delivery from R.

• This is where wu becomes critical. As wu decreases, R’s benefit from serving as

the primary supplier diminishes and falls below her benefit from serving as a backup

supplier. Competitive forces drive wu down until suppliers reach a point (wu = cr)

where R benefits more from serving as the backup supplier. When this occurs, both

suppliers make a larger profit. See Appendix 3.8 for a numerical example.

This is a striking result, which shows that the manufacturer is worse off by seeking

flexible sourcing, whereas the suppliers are better off. The flexibility of playing two

separate games removes the conflict of incentives that arise in the single-wholesale-

price game in terms of the roles that suppliers play and the amount of business

they get. It also allows the suppliers to quote prices based on their strengths and
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weaknesses: when U ’s strength is low cost and his weakness is long disruptions, then

he competes to be the primary supplier and simply forgoes orders during disruptions.

Figure 3.4: Sourcing Outcomes and Benefits of Backup Capacity with πb
θr
> h

θf
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The situation may be slightly different when inventory is inexpensive. As shown

in Figure 3.4, in some cases, the manufacturer can benefit from flexible sourcing.

When the manufacturer benefits from a flexible sourcing strategy, however, supplier

U is worse off. Moreover, the entire supply chain’s performance is worse compared to

the case when flexible sourcing is not allowed (β = 0).

Although supply chain performance often improves, typically, a coordinated out-

come is not achieved.4 Figure 3.5 illustrates the total supply chain profit and in-

ventory level under three scenarios (assuming cu = 0): (1) coordinated outcome, (2)

contingent-pricing game with β = 0 and (3) contingent-pricing game with β = ∞.

The inventory decision is distorted with the contingent-pricing game with β =∞.

To see why distortion occurs, note that in equilibrium (Proposition 3.6) U charges

his cost for delayed orders, w∗ud = cu. In response, the equilibrium wholesale price of

the (reliable) backup supplier is w∗rb = cu+ πb
θr

, which does not depend on cr. However,

U ’s equilibrium wholesale price, w∗u, is increasing in cr. Thus, the manufacturer

faces an increasing wholesale price (as a function of cr) for on-time deliveries and a

4To obtain a coordinated outcome, it suffices to set wr = wrb = cr and wu = wud = cu and use
our earlier results to derive the optimal policy.
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constant wholesale price for emergency (backup) orders. The manufacturer also has

less incentive to carry inventory, while he has more incentive to rely on the backup

supplier. Consequently, the distortion of inventory takes place with adverse effects

on the supply chain.

Figure 3.5: Supply Chain Performance
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In summary, whereas the manufacturer is most often worse off by seeking flexible

sourcing, situations exist in which it is not the case: when the difference between

supplier costs is significant and inventory is inexpensive.

Incorporating strategic supplier behavior shows that opening up opportunities for

more flexibility typically hurts the manufacturer. Consequently, the manufacturer

may not adopt a flexible sourcing strategy even when it is beneficial to the supply

chain. Instead, a manufacturer may ask the suppliers to quote single wholesale prices

with an upfront commitment to a sole sourcing strategy.

3.6. Extensions

In this section, we discuss potential directions for extending our model, including

the case when both suppliers are unreliable, the possibility of non-memoryless recovery

times, and positive lead-times.

• Both Suppliers are Unreliable
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We index suppliers by i = 1, 2, with the production costs of the suppliers c1 ≤

c2. We assume that disruptions across suppliers are independent and suppliers have

infinite capacity. Let θfi and θri be the probabilities that supplier i faces a disruption

and recovers from a disruption in the next period, respectively, and F (t) := 1 −(
θfi

θfi+θri

)
(1− θri)t.

Proposition 3.8. If c1 ≤ c2 ≤ c1 + πb
θr1

, state-dependent coverage policy is optimal,

and it is optimal to use supplier 2 as backup. There are three optimal coverages

(one for each state): κON−ON , κON−OFF , and κOFF−ON . κON−ON and κON−OFF are

increasing in c2 − c1 and κOFF−ON is decreasing in c2 − c1.

Figure 3.6 illustrates how the optimal policy depends on the cost difference c2−c1.

As supplier 2 becomes more costly, the manufacturer holds more safety stock. When

supplier 1 faces disruption, however, and only supplier 2 is available, the manufac-

turer delays the purchase of inventory and, consequently, maintains lower inventory

coverage. Figures 3.6 (a) and (b) together illustrate that the optimal coverage in one

state is not necessarily greater or smaller than the optimal coverage in another state.

It is interesting to consider how strategic supplier pricing affects the manufac-

turer’s equilibrium sourcing strategy. The suppliers’ strategy space expands, because

both suppliers can play the role of the primary supplier or the backup supplier. The

optimal inventory policy (state-dependent coverage) can only be computed through

backward induction, rather than closed-form expressions; furthermore, supplier pay-

offs in the pricing games cannot be expressed in closed form (which was possible in the

original model). Although this limits the analysis we can perform, below we derive

the conditions under which one of the suppliers can be treated as perfectly reliable for

the model we analyze in the present paper.

We consider a special case, in which supplier 2’s state in every period is given by

independent Bernoulli trials, where the supplier is OFF with probability ν and ON

with probability 1 − ν, independent of the supplier’s state in the previous periods.
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Figure 3.6: Illustration of State-Dependent Optimal Coverage
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(a) Supplier 2 is less reliable, (θf1, θf2) = (0.05, 0.10),
(θr1, θr2) = (0.15, 0.10).
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(b) Supplier 2 is more reliable, (θf1, θf2) =
(0.10, 0.05), (θr1, θr2) = (0.10, 0.15).

Note. For all numerical examples, we assume πb = 99 and h = 1.

Therefore, θf2 = 1− θr2 = ν.

Proposition 3.9. If c1 ≤ c2 and πb
πb+h

≤ 1 − (1 − θr1)ν, then the manufacturer

maintains a certain inventory coverage when supplier 1 is available (independent of

supplier 2’s state) and sources from supplier 2 only when supplier 1 is not available

and the inventory level drops to zero. The optimal coverage satisfies

κ = min

{
k | F1(k) ≥ σν+(c2−c1)(1−ν)

σν+(c2−c1)(1−ν)+ h
θr1

}
, where σ = πb

1−(1−θr1)ν
+ (1−ν)(1−θr1)(c2−c1)

1−(1−θr1)ν
.

Proposition 3.9 provides a sufficient condition when the optimal policy is charac-

terized by a single number, κ, as in the case with a perfectly reliable supplier, where
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the manufacturer sources from the reliable supplier only when inventory drops to

zero. This case applies when supplier 2 faces infrequent and short disruptions. In

this case, the supplier can be treated as perfectly reliable and the conclusions of the

original model apply. The logic of coverage applies except the cost of underage now

needs to include the possibility that supplier 2 could also face a disruption.

Although the derivation of equilibrium strategies of the suppliers is generally not

straightforward with two unreliable suppliers, the equilibrium outcomes can still be

derived if inventory holding cost is prohibitively high. Because either supplier can

serve as the primary source, with the other serving as backup, we allow each supplier

to quote three wholesale prices: wholesale price for regular deliveries, wi; wholesale

price for backup availability, wbi ; and wholesale price for delayed deliveries, provided

that an order is not placed with the other supplier who is operational, wdi . Here, we

refer to supplier i’s opponent as supplier −i.

Proposition 3.10. (i) Assume that suppliers do not offer backup availability. Let

i = arg mini=1,2

{
ci + πb

θri
πiOFF

}
. Then, supplier i serves as the sole supplier and

charges a wholesale price, wi = c−i + πb
θr,−i

π−iOFF − πb
θri
πiOFF .

(ii) Assume that the suppliers offer backup.

Let ρi = πiOFF − π1
OFFπ

2
OFF

(
θri

θr1+θr2−θr1θr2

)
. If c2 > c1 + πb

θr1
, supplier 1 serves as

the sole supplier in equilibrium with w1 = c2 +
(

πb
θr2(1−ρ1)

)
π2
OFF and w1

d = c2 − πb
θr1

.

Otherwise, if c1 ≤ c2 ≤ c1 + πb
θr1

, then supplier 1 serves as the primary supplier and

supplier 2 serves as the backup supplier, with w1 = c2 + πb
θr2

(
ρ2

1−ρ1

)
and w2

b = c1 + πb
θr1

.

(iii) With backup capacity, the profits of both suppliers are higher, whereas the

manufacturer’s profit is lower.

With two unreliable suppliers, flexible sourcing still leads to larger profits for the

suppliers and lower profit for the manufacturer. Extensive numerical study shows that

similar conclusions would apply when both suppliers are unreliable and inventory is

allowed. To illustrate this, consider a numerical example with two identical suppliers,
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having equal production costs (c1 = c2 = $10) and equal probabilities of failure and

recovery (θf1 = θf2 = 0.01 and θr1 = θr2 = 0.10). For the manufacturer, let p = $100,

h = $0.20, πb = $5 and dt = 1 for all t. If only sole sourcing is allowed, the suppliers

compete against one another very aggressively, and because they are identical, their

wholesale prices are equal to their costs, $10. Thus, in equilibrium, the suppliers

would make zero profit. In this case, the manufacturer’s inventory is 9, and his

average profit per period is $86.55. If flexible sourcing is allowed, then the suppliers

compete and undercut their wholesale prices until they reach a point where serving

as a primary supplier and serving as a backup supplier are equally profitable. At this

point, the competition stops, and the suppliers charge $11.79 for regular orders, $60

for emergency orders, and $10 for delayed orders. In equilibrium, one supplier is used

as the primary supplier, and the other supplier is used as backup. The manufacturer

still carries 9 units of inventory when the primary supplier is operational. Although

the suppliers make equal profits, on average $1.86, the manufacturer’s profit is $84.69.

Thus, the manufacturer’s profit is lower with flexible sourcing, whereas the suppliers’

profits are larger.

• Non-memoryless Recovery Times

Our model assumes exponential up-times and down-times, which is a common

assumption in most studies dealing with supply disruptions. This assumption not

only provides us with a simpler analytical framework, but it is also appropriate if the

disruptions are very unpredictable. To understand the effect of less variability in the

recovery times, we examine the boundary case with deterministic recovery times.

As before, assume that the demand is constant and occurs continuously at a rate

of 1. The time until a disruption (i.e., uptime) follows an exponential distribution

with mean U = 1
θf

, and a disruption (i.e., downtime) lasts for D time units. Focusing

first on single wholesale prices for each supplier, we derive the manufacturer’s optimal

inventory policy when wr > wu.
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The condition for the optimality of zero inventory policy is the same as for ex-

ponential disruptions. In deterministic disruptions, however, the manufacturer may

stop sourcing from R toward the end of a disruption, unlike the case with exponen-

tial disruptions. Also, if R is able to provide infinite backup capacity, the maximum

premium that R can charge to guarantee manufacturer sourcing during a disruption

is lower compared to the memoryless case. Denote by te as the time left until the end

of the current disruption.

Proposition 3.11. If the manufacturer sole sources from U , the optimal coverage is

κd = max
(

0, πbD−hU
πb+h

)
.

Assume that R serves as the backup supplier with infinite capacity.

(i) Let πbD ≤ hU . Then, a zero inventory policy is optimal, and it is optimal to

source from the backup supplier if {wr < wu + πbD and te ≤ wr−wu
πb
}.

(ii) Let πbD > hU . If wr > wu + h(U+D)πb
πb+h

, the manufacturer sole sources from

U and holds κd = πbD−hU
πb+h

units of inventory. Otherwise, the manufacturer holds

wr−wu−hU
h

units of inventory and sources from R when te ≤ wr−wu
πb

.

Based on numerical experiments, Figures 3.3 and 3.4 remain structurally un-

changed when disruptions are deterministic. The thresholds and the profits, how-

ever, are obviously influenced. We therefore compare the effect of variability on both

suppliers’ and manufacture’s profits.

Reducing variability is usually considered favorable. In the context of disruptions,

we expect that more variable disruptions hurt the manufacturer and the supplier U

in a competitive setting. This setting benefits R, however, because R holds a com-

petitive advantage due to being reliable. It is natural, therefore, to expect that R

prefers exponential disruptions, while U and the manufacturer prefer deterministic

disruptions. Following, we show that these hold when R does not offer backup capac-

ity. Through numerical examples, however, we demonstrate that this logic does not

hold when backup capacity is available.
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Proposition 3.12. Assume that R does not offer backup capacity. For the same

average length of disruptions, R is weakly better off with memoryless disruptions,

whereas U and the manufacturer are weakly worse off.

When backup capacity is available, the benefits are distributed differently. Nu-

merical evidence suggests that the intuition is correct for the manufacturer, who is

always worse off and for R, who is always better off with memoryless disruptions.

Contrary to the intuition, U may be better or worse off. Figure 3.7 shows that the

difference of supplier costs, cr− cu, and the manufacturer’s holding cost influence the

preference between memoryless and deterministic disruptions for U .

Figure 3.7: U ’s preferred disruption type
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When U has a significant cost advantage (cr − cu is very large), the manufacturer

sole sources from U under both disruption types. In this case, U fulfills all of the

orders, but at a higher wholesale price during deterministic disruptions; hence he

is better off with deterministic disruptions. For smaller values of cost difference, U

serves as the primary supplier, along with R as backup. In this case, U ’s portion of

business is determined not only by the length of the disruptions and time between

disruptions, but also by the inventory that the manufacturer holds. In addition to

inventory, a secondary driver is the equilibrium wholesale price that U is able to

charge for on-time deliveries during both of the disruption types.

Consider first the case when inventory holding cost is so high that the manu-
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facturer carries little or no inventory for both disruption types. If the difference of

supplier costs is small, R can profitably serve as both the primary and backup sup-

plier. With deterministic disruptions, however, the benefits of serving as the backup

supplier decreases compared to memoryless disruptions, and R is better off serving

as the primary supplier. U , in order to become the primary supplier, must lower

his price until R becomes indifferent between the two roles. As a result, contrary

to conventional wisdom, U ’s profit is lower with deterministic disruptions (upper-left

region in Figure 3.7). In other words, more variable disruptions may result in larger

profits for U because it dampens the competition: if U had an option to reduce the

variability of disruptions, he would be better off not doing so. The situation differs

when the when inventory holding cost is so large that R could still be competitive as

a primary supplier with memoryless disruptions, but is not competitive as a primary

supplier with deterministic disruptions. With deterministic disruptions, U can take

advantage of the situation and increase the price until R is indifferent between the

two roles. Thus, U ’s profit increases with deterministic disruptions. With high hold-

ing costs, the effect of inventory changes is very small, and they do not influence the

aforementioned logic.

However, with low holding costs, the manufacturer extensively uses inventory to

buffer disruptions. With deterministic disruptions, inventory is lower compared to

memoryless case. Thus, the profitability of serving as a backup supplier compared

to serving as primary supplier is higher for R. Because U must lower his price un-

til R becomes indifferent between the two roles, R’s indifference occurs at a higher

price with deterministic disruptions. Thus, deterministic disruptions lead to a higher

wholesale price for U in equilibrium. Inventories are lower with deterministic disrup-

tions, however, leading to a loss of business for U . Typically, the loss of business is

very small compared to the increase in wholesale price, except when the holding cost

is also very small.
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• Lead-times

Our model applies to situations in which production lead-times are negligible,

which is often the case; indeed, production lead times may be on the scale of days,

whereas transportation lead-times are on the scale of weeks. Although our analysis

assumes zero lead-times for transportation, the model can readily accommodate pos-

itive transportation lead-times when the reliable supplier’s lead-time does not exceed

that of the unreliable supplier. The manufacturer’s ordering policy simply needs to

be shifted to account for the transportation lead time.

3.7. Summary and Conclusions

In this chapter, we have considered a manufacturer’s choice to source from either

a perfectly reliable supplier, an unreliable supplier, or both where suppliers are active

decision makers. We also evaluated the costs and benefits associated with flexible

sourcing considering the suppliers’ strategic price-setting behavior. We first showed

that the manufacturer’s optimal inventory policy can be described based on how

many periods’ worth of stock to keep, regardless of the magnitude of the demand

in each period. By linking the optimal inventory policy to the classical newsvendor

problem, we identified the trade offs that lead to the optimal number periods to cover

for various types of stock-outs.

To evaluate the effect of strategic supplier behavior on the benefits of flexible

sourcing, we considered two pricing games. We found that the single-wholesale price

game led to a conflict of incentives in terms of the roles the suppliers want to play

and the amount of the business they are awarded. We formally confirmed the non-

existence of pure-strategy Nash equilibria in most practical situations. In contrast,

second game, the contingent-pricing game, reflected a more intuitive relationship.

Here, we showed that a unique pure-strategy Nash equilibrium always exits. Except

for cases that result in significant enough cost advantages for one of the suppliers,

we found that the manufacturer uses the less expensive, unreliable supplier and the
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more expensive, reliable supplier.

One of our findings is that with endogenously determined wholesale prices, the

manufacturer does not necessarily benefit from having a backup supplier and, in fact,

is typically worse off. Thus, an upfront commitment to sole sourcing and using sim-

ple wholesale pricing contracts may actually be beneficial, as opposed to creating an

opportunity for one supplier to serve as a backup through more flexible contracts.

Interestingly, suppliers may benefit from flexible sourcing even though the manu-

facturer does not. The reliable supplier always benefits from maintaining backup

capacity, whereas the unreliable supplier might benefit, in some situations, from a

reliable supplier’s backup capacity despite reduced business volume. From a system

perspective, a flexible sourcing strategy may degrade the supply chain performance.

Finally, we extended our results in two dimensions: (1) the possibility of having

two unreliable suppliers and (2) the possibility of predictable recovery times. For the

case of two unreliable suppliers, we derived the conditions under which one supplier

can be treated as perfectly reliable. Although reducing variability is usually consid-

ered favorable in the operations literature, we find that the unreliable supplier may

achieve higher profits with unpredictable (more variable) disruptions, which results

from dampening the competition due to the availability of a backup supplier.

3.8. Appendix: A Numerical Example for the Contingent-Pricing Game

Consider demand of 1 unit per day, an average up-time 1/θf of 120 days and aver-

age down-time 1/θr of 30 days, with a probability of being operational, πON = 80%.

Assume that the selling price is p = $10, U ’s cost is cu = $0, R’s cost is cr = $4, and

backlogging cost is πb = $1 per customer per day. During a disruption, the manu-

facturer expects to incur (30)($1) = $30 per customer and, on average, manufacturer

incurs (0)(πON)+(30)πOFF = $6 per customer for backlogs. For example, if the man-

ufacturer sole-sources from U and the wholesale price is wu = $1, the manufacturer’s

average (per-period) profit is 10 − 1 − 6 = $3. If suppliers compete and R does not
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offer backup capacity, R wins and charges wr = $6, while U charges wu = $0 (and

does not win).

Consider the case, when R offers backup capacity. Suppose that U charges wu =

$5. To discount for delays, he would need to charge $5 − $30 for late orders. He

prefers to set wud = $0. In response R can charge wrb = $0 + $30. To set wr,

R would be evaluating manufacturer’s long-run average cost: wuπON + wrbπOFF =

(5)(0.80) + (30)(0.20) =10 and charge wr = $10. The profit as a backup supplier is

(0.20)($30−$4) = $5.2, while profit when being primary supplier is (1.0)($10−$4) =

$6. In this case, R would prefer to be primary supplier. If, however, U chooses price

wu ≤ $4, R prefers to be backup supplier. At wu = $4, profit of unreliable supplier

is (0.8)(4) = $3.2 (versus $0 when R does not offer backup capacity) and profit of

reliable one is $5.2 (versus 6-4=$2 when R does not offer backup capacity). On the

other hand, manufacturer’s profit is 10-(4)(0.80)-(30)(0.20)=$0.80 (versus 10-6=$4

when R does not offer backup capacity).

3.9. Appendix: Mathematical Proofs

Proof of Proposition 3.1. (i) Proof is by induction. We normalize demand

dT to 1. It can be shown inductively that Gt(y) is linear in y and Vt(x, s) is linear

in x for each s, where x, y ∈ [0, 1]. As a result, if it is optimal to order in period t,

it is optimal to order all requirements. Since the optimal decision to order does not

depend on x, we assume that x = 0 in the beginning of the horizon. As a result, we

have Vt(0, ON) = min{Gt(0), Gt(1)}. Clearly, Gt(1) = h(T − t) and we derive Gt(0)

as follows. In the last period, s∗T = 1. Assume that the s∗t+1 = · · · = s∗T = 1. Denote

by γ = 1− θr. Clearly, Vt+1(0,ON) = h(T − t− 1).

Vt+1(0,OFF) =
T−t−1∑
k=1

(1− θr)k−1θr[h(T − t− 1− k)] + γT−t−1

(
πb
θr

)
= h(T − t− 1)− h

θr
+ γT−t−1

(
πb + h

θr

)
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Thus, Vt+1(0,OFF) captures the fact that we are going to place an order as soon as

the supplier becomes available. Since Gt(0) = (1− θf )Vt+1(0,ON) + θfVt+1(0,OFF),

we immediately have the following.

Gt(1)−Gt(0) = h− θf
[
γT−t−1

(
πb + h

θr

)
− h

θr

]

We have s∗t = 1 if Gt(1) < Gt(0), or equivalently, F (T − t− 1) > πb
πb+h

. Let k be the

period satisfying F (T − k − 1) ≤ πb
πb+h

< F (T − k − 2). We will show that s∗t = 0 for

all t ≤ k. The n−step transition matrix is derived in Lewis (2005), see below, where

0 and 1 denote OFF and ON. It can be shown that p
(n)
10 ≤ nθf (omitted).

 p
(n)
11 p

(n)
10

p
(n)
01 p

(n)
00

 =
1

θf + θr


 θr θf

θr θf

+ [1− θf − θr]n
 θf −θf
−θr θr




Assume that st+1 = · · · = s∗k = 0 and s∗k+1 = · · · = s∗T = 1. Consider period t.

Since it is not optimal to order until period k + 1, the following holds.

Gt(y) = h(t− k)y + p
(t−k)
11 Vk+1(y,ON) + p

(t−k)
10 Vk+1(y,OFF)

Gt(1)−Gt(0) = h(t− k)− p(t−k)
10

[
γT−k−1

(
πb + h

θr

)
− h

θr

]
≥ 0

The last inequality is due to p
(t−k)
10 ≤ (t−k)θf and F (T −k−1) ≤ πb

πb+h
, therefore,

s∗t = 0. As a conclusion, it is optimal to order only during the last κ periods, where

F (κ) ≥ πb
πb+h

> F (κ− 1).

(ii) The manufacturer faces a disruption if X ′T = OFF (k), where k ≥ κ. Since

X ′t is in steady state at t = 0, the probability of that happening is F̄ (κ) and the total

expected holding and penalty cost is L(κ) = πONVT−κ(0,ON) + πOFFVT−κ(0,OFF).

That is, the manufacturer will not order until period T − κ. Using the expressions

for the value function in part (i), we obtain the desired statement for L(κ). By
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investigating the difference L(k + 1)−L(k) = h− (πb + h)(1− F (k)), we can readily

show that L(k) is discrete-convex in k and minimized at k = κ. �

Proof of Theorem 3.1. (i) Since the demand is deterministic, we view the

sourcing problem as when to procure inventory for each future period. The optimal

procurement problem for a particular future period can be viewed as a simplified

problem described earlier. As a consequence of Proposition 3.1, it is optimal to

procure inventory for the current period and next κ periods that follow. Since so

defined myopic policy is feasible (inventory is never above the target), by the logic of

Veinott (1966) it is optimal. (ii) This follows from the fact that the periods can be

decoupled and that X ′t is in steady state at t = 0. �

Proof of Theorem 3.2. The analysis in Proposition 3.1 can be repeated by

letting VT (x,OFF) = σ(dT − x), where σ is the expected cost for not satisfying

demand. Under PLS(α), we clearly have σ = α
(
πb
θr

)
+(1−α)(p+πl−wu), accounting

for the lost profit and goodwill penalty. For GLS(α), σ = Eτ [
∑τ

t=1 α
tπb] + (1 −

Eτ [α
τ ])(p+πl−wu). Since τ is a geometric random variable, we have E[ατ ] = αθr

1−α+αθr
,

leading to σ =
(

αθr
1−α+αθr

)(
πb
θr

)
+
(

1−α
1−α+αθr

)
(p+ πl − wu). �

Proof of Proposition 3.2. Let β = 0. Then, only sole-sourcing strategies are

available. Manufacturer’s profit is p − wr and p − wu − L(κ0) when he sole-sources

from R and U respectively. The optimal strategy is to solely source from U and cover

κ0 periods if wr > wu + L(κ0). Let β = 1. If wr < wu, it is optimal to solely source

from R. If wr − wu ≥ πb
θr

, it is not optimal to source from R, at all. Otherwise,

R is used as backup supplier and the inventory level is κ1, using Theorem 3.2 with

σ = wr − wu.

Let 0 < β < 1. Assume that R is available only as a backup source. During

a disruption, the manufacturer may start sourcing from R before running out of

inventory. In that case, the manufacturer uses R’s inventory first to satisfy demand,

therefore, R’s inventory is not carried from one period to another, which is simply
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relabeling how the inventory on-hand is used. Without loss of generality, we consider

an infinite-horizon setting. Let xk and zk denote the fractions of demand satisfied

from the safety stock and from R respectively in the kth period of a disruption. Thus,

1 − xk − zk units of demand is backlogged. Manufacturer’s safety stock is
∑∞

k=1 xk,

where xk’s are zero for sufficiently large k.

Let x = (x1, x2, · · · ) and x = (z1, z2, · · · ). At the end of the kth period of a

disruption, the manufacturer will be left with Ik(x) :=
∑∞

j=k+1 xj units of inven-

tory, while he will accumulate a backlog of Bk(x, z) :=
∑k

j=1(1 − xj − zj) cus-

tomers. The long-run average cost of the manufacturer is C(x, z) = πONhI0(x) +∑∞
k=1 πOFF (k)

[
hIk(x) +πbBk(x, z) + (wr−wu)zk

]
. By rearranging the terms, and let-

ting ak = −h+
(
πb+h
θr

)
πOFF (k) and bk =

(
wu + πb

θr
− wr

)
πOFF (k), the manufacturer’s

problem is stated as follows.

min C(x, z) =
πb
θr
πOFF −

∞∑
k=1

[akxk + bkzk]

s.t 0 ≤ xk ≤ 1, 0 ≤ zk ≤ β, xk + zk ≤ 1, k = 1, 2, · · ·

Since C(x, z) is linear and separable in xk and zk, the problem reduces to solving

an LP for each k, where the objective is to maximize akxk + bkzk subject to the same

set of constraints. It can be readily shown that ak ≥ bk only for k ≤ κ1, ak ≥ 0

only for k ≤ κ0, and bk ≥ 0 for all k, provided that wr ≤ wu + πb
θr

. As a result, the

solution to the LP for any k is described as follows. (Denote by x∗ and z∗ the optimal

decisions).

i) Let wr ≤ wu + πb
θr

. If κ0 = 0, then ak < 0 ≤ bk for all k, and hence, x∗k = 0

and z∗k = β. Let κ0 > 0. For k ≤ κ1, ak ≥ bk ≥ 0, hence, x∗k = 1 and z∗k = 0.

For κ1 < k ≤ κ0, 0 ≤ ak ≤ bk, hence x∗k = 1 − β and z∗k = β. Finally, for k > κ0

, ak < 0 ≤ bk, hence x∗k = 0 and z∗k = β. As a result, the manufacturer carries

I(x∗) = (1− β)κ0 + βκ1 units in the safety stock and sources from R if a disruption
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takes longer than κ1 periods. ii) Let wr > wu + πb
θr

. As a result, z∗k = 0 for all k

since bk < 0. In addition, x∗k = 1 for k ≤ κ0 and x∗k = 0 otherwise as in case (i). As

a result, the manufacturer carries I(x∗) = κ0 units in the safety stock and does not

source from R.

This suggests that we do not lose optimality by splitting demand into two portions

with sizes β and 1− β respectively, and providing only the first portion access to the

backup supplier. This separation allows us to compare sourcing alternatives in a

convenient way. For each portion of demand, the optimal policy is as presented for

β = 0 and β = 1 above. �

Proof of Proposition 3.4. Denote by Πrb(wr, wu) R’s profit. The subscript

b stands for backup. The maximal price that R can charge is wu + πb
θr

, hence, if

wu < cr− πb
θr

, w∗rb(wu) = cr, and R does not serve as backup supplier. Let wu ≥ cr− πb
θr

.

We consider two sub-cases. If πb
θr
≤ h

θf
, a zero-inventory policy is optimal for all

wu ≤ wr ≤ wu + πb
θr

, and Πrb(wr, wu) = πOFF (wr − cr), implying that w∗rb(wu) =

wu + πb
θr

. Let πb
θr
> h

θf
. Since a zero-inventory policy is optimal when wr ≤ wu + h

θf
,

w∗rb(wu) ≥ wu + h
θf

. Hence, we consider the range wu + h
θf
≤ wr ≤ wu + πb

θr
. For

such wr, manufacturer’s inventory satisfies F (κ) = wr−wu
wr−wu+ h

θr

.We equivalently view

R’s price setting problem as one where she sets inventory κ, implying a wholesale

price wr = wu+ h
θr

(
F (κ)

1−F (κ)

)
. Using this relationship, we state R’s profit as a function

of inventory.

Πrb(wr, wu) = [1− F (κ)](wr − cr) = wu − cr +

(
cr +

h

θr
− wu

)
F (κ)

If wu < cr + h
θr

, R’s profit is decreasing in κ, hence the price should be set such

that κ = 0, implying, wr = wu + h
θf

. If wu ≥ cr + h
θr

, R profit is increasing in κ,

hence R should set the highest possible wholesale price, wr = wu + πb
θr

. Consequently,

inventory satisfies F (κ) = πb
πb+h

. �

Proof of Proposition 3.5. We first derive R’s best response for a given wu.

114



Denote by Π∗r(wu)) = wu − cr R’s profit as the primary supplier with wr = wu.

Let Π∗rb(wu) = maxwr>wu Πrb(wr, wu). We compare R’s profits under each role. If

πb
θr
≤ h

θf
, w∗rb(wu) = wu + πb

θr
by Proposition 3.4 and manufacturer holds no inventory.

As a result, Π∗rb(wu) =
(
wu + πb

θr
− cr

)
πOFF and Π∗r(wu) ≥ Π∗rb(wu) if and only if

wu ≥ cr +
πbθf
θ2r

= cr +
θf
θr

min
{
πb
θr
, h
θf

}
. Let πb

θr
> h

θf
. We consider two sub-cases. If

wu ≤ cr + h
θr

, w∗rb(wu) = wu + πb
θr

and the inventory satisfies F (κ0) = πb
πb+h

. Therefore,

Π∗rb(wu) = [1− F (κ0)](wr − cr) =
(

h
πb+h

)(
wu + πb

θr
− cr

)
, and

Π∗rb(wu)− Π∗r(wu) =
πb
θr

(
h

πb + h

)
−
(

πb
πb + h

)
(wu − cr)

≥ πb
θr

(
h

πb + h

)
−
(

πb
πb + h

)
h

θr
= 0

Thus, serving as the backup supplier is more profitable. If wu ≥ cr + h
θr

, w∗rb(wu) =

wu+
h
θf

and manufacturer holds zero inventory. Therefore, Π∗rb(wu) =
(
wu + h

θf
− cr

)
πOFF ,

and, Π∗r(wu)−Π∗rb(wu) =
(
wu − cr − h

θr

)
πON ≥ 0. Thus, serving as the primary sup-

plier is more profitable if wu ≥ cr + h
θr

= cr +
θf
θr

min
{
πb
θr
, h
θf

}
.With this, we proceed

to equilibrium analysis. Denote by δ =
θf
θr

min
{
πb
θr
, h
θf

}
.

i) Let cu ≥ cr + δ,. Since wu ≥ cu ≥ cr + δ, R prefers to serve as the primary

supplier, hence wr ≤ wu. Clearly, (w∗r , w
∗
u) = (cu, cu) is a Nash-equilibrium. To

show uniqueness, assume that there exists another pure-strategy Nash equilibrium,

(wr, wu). Let wr < wu. In that case, R can profitably increase wr to wr + ε for small

enough ε > 0. So, wr = wu. If cu < wr = wu, then U can profitably decrease wu to

wu− ε for ε > 0 small enough. Hence, wr = wu = cu and it is the unique equilibrium.

ii) Let cu < cr + δ. To reach a contradiction, assume that there exists a pure-

strategy Nash equilibrium . If cu ≤ wr < wu, then, U can profitably decrease wu to

wr, thus, wr ≥ wu. Also, wu ≤ cr + δ, otherwise, R could profitably undercut U ’s

price and become the primary supplier. When wu ≤ cr + δ, R serves as the backup

supplier and sets wr = wu + πb
θr

. In this case, U can profitably increase price, for
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example, set wholesale price equal to wr. Therefore, there exists no pure-strategy

Nash equilibrium when cu < cr + δ. �

Proof of Lemma 3.1. Due to rebate φ, manufacturer’s effective backlogging

cost is πb−θrφ, hence results for optimal policy in the single-wholesale price game can

be used with minor modifications. Let κ := κcp(φ) for conciseness in the rest of the

proof. Clearly, if the manufacturer sole-sources from U , his inventory level is κ and

his expected cost is wuF (κ) + wudF (κ) + L(κ). R’s objective is to maximize profits,

while setting a price that is acceptable to the manufacturer. Thus, if R serves as the

primary supplier, she sets wr = wuF (κ) +wudF (κ) +L(κ) = wu +L(κ)− φF (κ). On

the other hand, if she serves as the backup supplier, due to Proposition 3.4, she sets

w∗rb = wud+ πb
θr

, if wud < cr+ h
θr

, and w∗rb = wud+min
{
πb
θr
, h
θf

}
otherwise. When R can

profitably play both roles, she sets the optimal price for the more profitable role, while

setting sufficiently high price for the other role, resulting in the same profit. Clearly,

R cannot make profit serving as the backup supplier if wu − φ + πb
θr
≤ cr. Similarly,

R cannot make profit by serving as the primary supplier if wu + L(κ)− φF (κ) ≤ cr.

If both inequalities hold, R cannot compete at all, thus, she sets wr = wrb = cr.

To derive R’s best response, we compare the profitability of each strategy: serve

as primary supplier vs. serve as backup supplier. Denote by Π∗r(wu, φ) = wu +

L(κ) − φF (κ) − cr and Π∗rb(wu, φ) = F̄ (κ)(wrb − cr) R’s profit as primary supplier

and backup supplier respectively, when she best responds. First, let φ ≥ πb
θr

, in

which case, κ = 0, wrb = wud + πb
θr

, Π∗r(wu, φ) = wu +
(
πb
θr
− φ
)
πOFF − cr and

Π∗rb(wu, φ) = πOFF

(
wu + πb

θr
− φ− cr

)
. Serving as primary supplier is not profitable

if wu +
(
πb
θr
− φ
)
πOFF < cr. Also, serving as a backup supplier is not profitable if

wu+ πb
θr
−φ < cr. Assume that both roles are profitable. Since, wu+

(
πb
θr
− φ
)
πOFF ≥

cr and φ ≥ πb
θr

, we must have wu ≥ cr. Since Π∗r(wu, φ)−Π∗rb(wu, φ) = (wu−cr)πON ≥

0, serving as the primary supplier is more profitable. Therefore, wlu(φ) = whu(φ) =

cr +
(
φ− πb

θr

)
πOFF .
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Assume next that 0 ≤ φ ≤ πb
θr

. First, let wud = wu − φ > cr + h
θr

. In this case,

κ = 0 and wrb = wu + min
{
πb
θr
, h
θf

}
. If πb

θr
≤ h

θf
, and a zero-inventory policy is

optimal, Π∗r(wu, φ) − Π∗rb(wu, φ) = πON(wu − cr) ≥ 0. Let πb
θr
> h

θf
. In this case,

wrb = wu− φ+ h
θf

. For this case, it can readily be shown that Π∗r(wu, φ)−Π∗rb(wu, φ)

is increasing in wu and Π∗r(cr + h
θr

+ φ, φ) − Π∗rb(cr + h
θr

+ φ, φ) ≥ 0, implying that

Π∗r(wu, φ) ≥ Π∗rb(wu, φ) for wu − φ ≥ cr + h
θr

, that is, serving as the primary supplier

is more profitable for R. Lastly, assume wu − φ < cr + h
θr

,thus, wrb = wu − φ + πb
θr

.

Then, Π∗r(wu, φ) = wu+L(κ)−φF (κ)−cr and Π∗rb(wu, φ) = F̄ (κ)
(
wu + πb

θr
− φ− cr

)
.

Observing that Π∗r(wu, φ)− Π∗rb(wu, φ) is increasing in wu, there is a unique solution

to the equation Π∗r(wu, φ) = Π∗rb(wu, φ) for a fixed φ, denoted by whu(φ). Rearranging

the terms, we obtain whu(φ) = cr − H(κ)
F (κ)

. Thus, serving as the primary supplier is

optimal only if wu ≥ whu(φ). For all cases with 0 ≤ φ ≤ πb
θr

, serving as backup supplier

is not profitable for R when wu − φ+ πb
θr
≤ cr. Defining wlu(φ) = cr − πb

θr
+ φ, serving

as backup supplier is optimal only when wlu(φ) ≤ wu ≤ whu(φ).

Finally, we show the monotonicity of whu(φ). For φ ≥ πb
θr

, whu(φ) = cr+
(
φ− πb

θr

)
πOFF ,

is increasing in φ, with a slope equal to πOFF ≤ 1. For πb
θr
− h

θf
≤ φ ≤ πb

θr
, whu(φ) = cr

is a constant. Let 0 ≤ φ ≤ πb
θr
− h

θf
. For analytical convenience, we assume con-

tinuous inventory replenishment with exponential up-times and down-times, thus,

F (κ) = 1 − πOFF e
−θrκ. As a result, F ′(κ) = θrF̄ (κ) and H ′(κ) = hF (κ), where

H(κ) = hκ+ h
θr
F̄ (κ)− h

θr
πOFF is the expected holding cost. Defining W (κ) = cr−H(κ)

F (κ)
,

we have whu(φ) = W (κcp(φ)). Denote by Dx the derivative operator with respect to a

variable x. We need Dφwhu(φ) = DκW (κcp(φ))Dφκcp(φ). With straightforward calcu-

lation, we haveDκW (κ) = H(κ)θrF̄ (κ)
F 2(κ)

−h andDφκcp(φ) = − 1
πb+h−θrφ

≤ 0. To show that

Dφwhu(φ) ≥ 0, it suffices to show that DκW (κ) ≤ 0, or alternatively, H(κ)θrF̄ (κ) ≤

hF 2(κ). Define R(κ) := [hF 2(κ)−H(κ)θrF̄ (κ)]/h = 1− πOFF e−θrκ(κθr + 1 + πON).

Since R′(κ) = θrπOFF e
−θrκ(κθr + πON) ≥ 0, and R(0) = π2

ON ≥ 0, we have

that R(κ) ≥ 0 for all κ ≥ 0, implying that Dφwhu(φ) ≥ 0. Next, we show that
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Dφwhu(φ) ≤ πOFF . It can be shown that the threshold whu(φ) is convex in φ follow-

ing routine arguments as above. Given that whu(φ) is convex and increasing in φ,

Dφwhu(φ) ≤ Dφwhu
(
πb
θr
− h

θf

)
= πOFF for all φ ∈

[
0, πb

θr
− h

θf

]
. �

Proof of Proposition 3.6. To show that 0 ≤ ∆ ≤ L(κ0), assume first that πb
θr
≤

h
θf

, implying that κ0 = 0, ∆ = 0 and L(κ0) = πb
θr
πOFF . Hence, 0 ≤ ∆ ≤ L(κ0) holds.

Let πb
θr
> h

θf
, hence, κ0 > 0 and F (κ0) = πb

πb+h
. Clearly, ∆ ≥ 0. Note that whu(0) =

cr − ∆. Due to Lemma 3.1, we have cr − ∆ = whu(0) ≥ wlu(0) = cr − πb
θr

, implying

that ∆ ≤ πb
θr

. With straightforward calculation, L(κ0)−∆ = F̄ (κ0)
(
πb
θr
−∆

)
≥ 0,

hence ∆ ≤ L(κ0).

Without loss of generality, we assume that 0 ≤ φ = wu − wud ≤ πb
θr

in the

equilibrium, since zero-inventory policy is optimal for φ ≥ πb
θr

, and an alternative

equilibrium with φ ≤ πb
θr

can be constructed, where all the players make the same

profit. Let cu > cr. For any wu ≥ cu and 0 ≤ φ ≤ πb
θr

, R’s best response is to

set prices such that she serves as the sole supplier, due to Lemma 3.1. Therefore,

U cannot compete with R when cu > cr, hence, R serves as the sole-supplier. Let

cr ≤ cu. To be competitive, U cannot set a price larger than cr, that is, wu ≤ cr,

also implying that wud ≤ cr. Whenever R serves as the backup supplier, R’s optimal

backup price is wrb = wud + πb
θr

, due to Lemma 3.1. The equilibrium possesses the

following properties (Properties I and II).

Property I: If the manufacturer primarily sources from U and uses R as the

backup supplier in the equilibrium, then w∗ud = cu.

Proof of Property I: Let wud > cu in the equilibrium. R’s best response is wrb =

wud + πb
θr

, resulting in an inventory of κ = κcp(φ). In such a case, U has an incentive

to increase the penalty φ slightly to φ + ε, where ε > 0 sufficiently (infinitesimally)

small. In this case, the manufacturer sole-sources from U and still holds the same

amount of inventory, κ. U ’s profit increases by (wud− cu)F (κ). Therefore, we cannot

have wud > cu, if both suppliers are used in the equilibrium. Thus, wud = cu.
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Property II: If the manufacturer sole-sources from U , then w∗ud = cr − πb
θr

.

Proof of Property II: If U is the sole-supplier in the equilibrium, then, we must

have wu − φ ≤ cr − πb
θr

, due to Lemma 3.1. Let wu − φ < cr − πb
θr

. In this case, U can

improve profit by keeping φ fixed, but slightly increasing wu. This causes no change

in the manufacturer’s inventory, and it results in improvement in U ’s profit. Hence,

wu − φ = wud = cr − πb
θr

in the equilibrium.

(i) Let cr ≤ cu + ∆. To reach a contradiction, assume that U is the sole-supplier,

thus U sets wud = cr − πb
θr
< cu due to Property II, hence R’s best response is to

set wr = wrb = cr. When that is the case, U has incentive to slightly increase

wud (keeping wu unchanged) so that manufacturer uses R as the backup source. By

doing so, manufacturer’s inventory remains the same, and U does not have to incur

loss during a disruption, significantly improving profits, reaching a contradiction.

Similarly, assume that U is the primary supplier in equilibrium. In this case, wud = cu

due to Property I. Since whu(φ) is increasing in φ with a slope less than 1 (due to

Lemma 3.1), for any (wu, φ) with wu − φ = cu, we have that wu > whu(φ), where R’s

best response is to serve as the sole supplier, reaching a contradiction. Since U is

unable to serve the manufacturer, U sets wu = wud = cu, while R sets w∗r = cu+L(κ0)

and w∗rb = ∞ (or sufficiently large). Clearly, none of the suppliers have incentive to

unilaterally deviate from the equilibrium.

(ii) Let cu+∆ < cr−cu < πb
θr

. U does not serve as the sole supplier in equilibrium,

by the exact same reasoning as in part (i). Therefore, U serves as the primary supplier

along with R as backup. Due to Property I, we have w∗ud = cu and w∗rb = cu + πb
θr

.

To derive w∗u, define the set Fu = {(wu, φ) | wu − φ = cu, w
l
u(φ) ≤ wu ≤ whu(φ)}.

Due to Lemma 3.1 and Property I, (w∗u, φ
∗) ∈ Fu. Since w∗rb = cu + πb

θr
does not

depend on w∗u, (w∗u, φ
∗) is one that maximizes U ’s profit on the set Fu. For any

(wu, φ) ∈ Fu and wrb = cu + πb
θr

, manufacturer’s inventory is κcp(φ) due to Lemma

3.1, therefore, U ’s profit is (wu− cu)F (κcp(φ)), and (w∗u, φ
∗) = arg max(wu,φ)∈Fu(wu−
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cu)F (κcp(φ)). Let φ̄ = sup{φ | (wu, φ) ∈ Fu}. Since wu − φ = cu, equivalently,

φ∗ = arg max0≤φ≤φ̄ φF (κcp(φ)), leading to w∗u = cu + φ∗ and κ∗ = κcp(φ
∗). Next, we

describe how (w∗u, φ
∗) is actually derived. Define Πu(φ) := φF (κcp(φ)) as U ’s profit.

• If πb
θr
≤ h

θf
, then a zero-inventory policy is always optimal, thus, F (κcp(φ)) =

F (0) = πON . Therefore, the function Πu(φ) = φπON is linear and increasing in φ. In

addition, whu(φ) = cr for all 0 ≤ φ ≤ πb
θr

. As a result, w∗u = cr and φ∗ = φ̄ = cr − cu.

See Figure 3.8(a) for an illustration.

Figure 3.8: U ’s equilibrium pricing
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θf

(b) cr − cu < πb

θr
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θf

• If πb
θr

> h
θf

, then a zero-inventory policy is optimal only when φ ≥ πb
θr
− h

θr
,

leading to whu(φ) = cr. If cr − cu ≥ πb
θr
− h

θr
, then φ̄ = cr − cu. Otherwise, φ̄ < cr − cu,

as illustrated in Figure 3.8. When φ ≥ πb
θr
− h

θr
, Π̃u(φ) = φπON . On the other

hand, when φ < πb
θr
− h

θr
, we have F (κ) = πb−θrφ

πb+h−θrφ
and Π̃u(φ) = (πb−θrφ)φ

πb+h−θrφ
. Π̃u(φ)

is concave in φ and Π̃′u(0) = πb
πb+h

> 0. U ’s optimal wholesale price is computed as
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follows. Let φs = arg max
{

Π̃u(φ) | 0 ≤ φ ≤ πb
θr
− h

θr

}
. If φ̄ < cr − cu, U ’s profit is

fully characterized by the function Π̃u(φ), therefore, φ∗ = min(φs, φ̄) due to concavity.

If, however, φ̄ = cr−cu, then, we inspect U ’s profit for φ = φs and φ = cr−cu, that is,

we compare Π̃u(φs) and (cr − cu)πON , and choose the one that maximizes U ’s profit.

Note that if φs = πb
θr
− h

θf
(a corner solution), this means that Π̃u(wu, φ) is increasing

over
[
0, πb

θr
− h

θf

]
. Since U ’s profit is linear and increasing over

[
πb
θr
− h

θf
, φ̄
]
, U ’s profit

is maximized at φ = φ̄. Whenever U ’s optimal penalty is φ∗ = φs, we must have

φs <
πb
θr
− h

θf
as an interior solution. Also note that, whenever φ∗ = φ̄, w∗u = whu(φ∗),

implying that R is indifferent between serving as the backup supplier versus the sole

supplier. In addition, the manufacturer is indifferent between sole-sourcing from R

versus using both suppliers.

To establish the equilibrium, we need to show that no supplier has incentive to

unilaterally deviate from the prices we have derived. Due to Lemma 3.1, we have

w∗r = cr +
(
cu + πb

θr
− cr

)
F̄ (κ∗). Clearly, R does not have incentive to unilaterally

deviate, as R’s strategy is derived by choosing the best strategy given U ’s strategy.

Assume that U hopes to unilaterally deviate to a better strategy, (wu, φ). We consider

two cases. In the first case, wu− φ ≥ cu, in which case, the manufacturer still uses R

as the backup supplier. In the second case, wu − φ < cu, hence, U serves as the sole

supplier. Consider first wu−φ ≥ cu. Let ψ be such that wu = cu+ψ. Manufacturer’s

cost of underage is wrb − wu = πb
θr
− ψ. Therefore, manufacturer’s optimal inventory

is κcp(ψ). U ’s profit is, then, (wu − cu)F (κ) = ψF (κcp(ψ)). U ’s problem is stated as

follows.

max ψF (κcp(ψ)) (3.4)

s.t wu − φ ≥ cu

wu − cu = ψ

wuF (κcp(ψ)) +

(
cu +

πb
θr

)
F̄ (κcp(ψ)) ≤ w∗r
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The last inequality ensures that the manufacturer does not switch to R after U

revises his prices. Note that φ does not influence U ’s profit, as φ is never paid to

the manufacturer in case of a disruption. U can influence profit only by increasing

or decreasing wu. Case 1: Let φ∗ = φ̄ in the current solution, in which case, the

manufacturer is indifferent between sole-sourcing from R and sourcing primarily from

U along with R as backup. If U increases wu, then, the manufacturer sole-sources

from R. If U decreases wu, U ’s profit is decreased. Therefore, U does not have

incentive to deviate. Case 2: Let φ∗ = φs <
πb
θr
− h

θf
in the current solution. Since

φs is also a maximizer of the objective function in (3.4), U does not have incentive to

deviate.

Next, consider the case of wu−φ < cu, in which case U serves as the sole supplier.

The manufacturer’s optimal inventory is κcp(φ). U ’s problem is stated as follows.

max wu − cu − φF̄ (κcp(φ))

s.t. wu − φ ≤ cu

wu − φF̄ (κcp(φ)) ≤ w∗r

First constraint is binding in the optimal solution, wu−φ = cu. Thus, U ’s problem

can be restated as, max φF (κcp(φ)) s.t. cu + φF (κcp(φ)) ≤ w∗r . Since wu − φ = cu,

U ’s profit as the sole supplier is the same as his profit when he is only the primary

source. Thus, U does not have incentive to deviate.

Finally, we show that the equilibrium inventory is weakly decreasing in the cost

differential, cr − cu. Clearly, φ̄ is weakly increasing in cr − cu, since whu(φ) is an in-

creasing function of φ. Therefore, the optimal penalty, φ∗ = arg max0≤φ≤φ̄ φF (κcp(φ))

is weakly increasing in cr − cu (increasing the upper bound of optimization cannot

make the optimal solution smaller). Since κcp(φ) is a decreasing function of φ, κcp(φ
∗)

is weakly decreasing in φ∗, that is, a larger value of φ∗ leads to lower inventory.
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(iii) Let cr − cu ≥ πb
θr

. Towards a contradiction, assume that U serves as the

primary supplier along with R as backup, therefore, wud = cu due to Property I,

and wrb = max
(
cr, wud + πb

θr

)
= cr. In this case, manufacturer actually sole-sources

from U , reaching a contradiction. Furthermore, U can improve profits by setting

w∗ud = cr − πb
θr

. Thus, U is the sole supplier, and w∗r = w∗rb = cr. Since wu −

φ = cr − πb
θr

, U ’s profit, wu − F̄ (κcp(φ))φ − cu can be expressed as a function of φ,

Πu(φ) = cr − πb
θr
− cu + F (κcp(φ))φ. Clearly, the choice of optimal φ does not depend

on cr and cu. To obtain the optimal φ, consider two cases.

• If πb
θr
≤ h

θf
, then a zero-inventory policy is always optimal, thus, F (κcp(φ)) =

F (0) = πON . Therefore, the function Πu(φ) is linear and increasing in φ. The optimal

penalty is φ∗ = πb
θr

, hence, w∗u = cr.

• If πb
θr

> h
θf

, then a zero-inventory policy is only when φ ≥ πb
θr
− h

θf
. Hence,

φ = πb
θr

dominates all φ such that πb
θr
− h

θf
≤ φ < πb

θr
. Let φ < πb

θr
− h

θf
, in which case,

F (κ) = πb−θrφ
πb+h−θrφ

and Π̃u(φ) = cr − πb
θr
− cu + (πb−θrφ)φ

πb+h−θr−φ
. It can be readily shown that

Π̃u(φ) is concave for φ ∈
[
0, πb

θr
− h

θf

]
by inspecting the second derivatives. Therefore,

the unique maximizer of Π̃u(φ) can be obtained over the interval
[
0, πb

θr
− h

θf

]
using

the first order condition. However, Πu(φ) is not concave over the entire domain of φ,

one needs to compare the two solutions, one in the interval
[
0, πb

θr
− h

θf

]
, and the other

being φ = πb
θr

, using the exact same procedure as in (ii). Clearly, R does not have

incentive to deviate. U does not have incentive to deviate, either, since U ’s wholesale

prices maximize his profit given that R does not deviate from (w∗r , w
∗
rb) = (cr, cr).

�

Proof of Lemma 3.2. • For cr−cu ≤ ∆, R is the sole supplier and Π∗r(cr, cu) =

cu + L(κ0)− cr, Π∗u(cr, cu) = 0, Π∗m(cr, cu) = p− cu − L(κ0) and Π∗sc(cr, cu) = p− cr.

Therefore, desired properties hold.

• For cr − cu ≥ πb
θr

, U is the sole supplier. From Proposition 3.6, equilibrium

penalty, φ∗, does not depend on cr and cu. The profits are, Π∗r(cr, cu) = 0, Π∗u(cr, cu) =
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cr− πb
θr
− cu +φ∗F (κcp(φ

∗)), Π∗m(cr, cu) = p− cr + πb
θr
−φ∗F (κcp(φ

∗))−L(κcp(φ
∗)), and

Π∗sc(cr, cu) = p− cu − L(κcp(φ
∗)). Therefore, desired properties hold.

• Let ∆ ≤ cr − cu ≤ πb
θr

. Recall that φs = arg max
{

Π̃u(φ) | 0 ≤ φ ≤ πb
θr
− h

θr

}
,

φ̄ = sup{φ | wu − φ = cu, w
l
u(φ) ≤ wu ≤ whu(φ)} and φ∗ = min(φs, φ̄). By its

definition, we have whu(φ̄) − φ̄ = cu. Since whu(φ) = cr − H(κcp(φ))

F (κcp(φ))
, φ̄ is the unique

solution to the equation cr − cu = φ̄ + H(κcp(φ̄))

F (κcp(φ̄))
. Due to Lemma 3.1, 0 ≤ dwhu(φ)

dφ
≤ 1,

hence, 0 ≤ ∂φ̄
∂cr
≤ 1 and −1 ≤ ∂φ̄

∂cu
≤ 0.

For cr − cu = ∆ = H(κ0)
F (κ0)

, we readily have φ̄ = 0, therefore, φ∗ = 0. Let c̄ be the

value of cr − cu such that φ̄ = φs. As a consequence, φ∗ = φ̄ if ∆ ≤ cr − cu ≤ c̄.

I First, consider the case of ∆ ≤ cr − cu ≤ c̄. In this subregion, U ’s profit is

Π∗u(cr, cu) = Π̃u(φ̄), R’s profit is Π∗r(cr, cu) =
(
cu + πb

θr
− cr

)
F̄ (κcp(φ̄)), and finally,

manufacturer’s profit is Π∗m(cr, cu) = p − (cu + φ̄)F (κcp(φ̄)) −
(
cu + πb

θr

)
F̄ (κcp(φ̄)) −

H(κcp(φ̄)) = p− cu − φ̄F (κcp(φ̄))− L(κcp(φ̄)).

Unreliable Supplier: Recall that Π̃′u(0) = πb
πb+h

≤ 1 from Proposition 3.6 and Π̃′u(φ)

is concave. Therefore, Π̃′u(φ) ≤ 1 for all φ ≥ 0. Hence, ∂Π∗u(cr,cu)
∂cr

= Π̃′u(φ̄) ∂φ̄
∂cr
≥ 0 and

≤ 1, while ∂Π∗u(cr,cu)
∂cu

= Π̃′u(φ̄) ∂φ̄
∂cu
≤ 0 and ≥ −1.

Reliable Supplier: If κcp(φ̄) = 0, then F̄ (κcp(φ̄)) = πOFF and Π∗r(cr, cu) =(
cu + πb

θr
− cr

)
πOFF . If, however, κcp(φ̄), then, F̄ (κcp(φ̄)) = h

πb+h−θrφ̄
. We readily

have 0 ≤ dF̄ (κcp(φ̄))

dφ̄
≤ 1. Since 0 ≤ ∂φ̄

∂cr
≤ 1 and −1 ≤ ∂φ̄

∂cu
≤ 0, we have 0 ≤

∂F̄ (κcp(φ̄))

∂cr
≤ 1 and −1 ≤ ∂F̄ (κcp(φ̄))

∂cu
≤ 0. Hence desired monotonicity results for R

hold.

Manufacturer and Supply Chain: Since φ∗ = φ̄, R is indifferent between serving

as the sole supplier versus backup supplier in the equilibrium. Therefore, Π∗r(cr, cu) =

w∗u+L(κcp(φ̄))− φ̄F̄ (κcp(φ̄))− cr. Since w∗u = cu+ φ̄, this reduces to Π∗r(cr, cu) = cu−

cr +L(κcp(φ̄)) + φ̄F (κcp(φ̄)). As a consequence, manufacturer’s profit is Π∗m(cr, cu) =

p−cr−Π∗r(cr, cu), therefore, Π∗sc(cr, cu) = Π∗r(cr, cu)+Π∗u(cr, cu)+Π∗m(cr, cu) = p−cr+

Π∗u(cr, cu). We have already shown that 0 ≤ ∂Π∗r(cr,cu)
∂cu

≤ 1 and −1 ≤ ∂Π∗r(cr,cu)
∂cr

≤ 0.
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Thus, monotonicity properties for the manufacturer and the supply chain follow.

I Finally, consider the case c̄ ≤ cr − cu ≤ πb
θr

. In this subregion, φ∗ is either φs

or cr − cu, whichever provides a higher profit for U . Thus, we are comparing Π̃u(φs),

which does not depend on cr and cu and (cr−cu)πON . If Π̃u(φs) ≥ πb
θr
πON , φ∗ = φs for

all cr − cu ≥ c̄. Otherwise, there exists a threshold, c̃, where φ∗ = φs for cr − cu ≤ c̃

and φ∗ = cr−cu for cr−cu ≥ c̃. Let c̄ ≤ cr−cu ≤ c̃, hence φ = φs. Then, U ’s profit is

a constant in this range of costs. R’s profit is Π∗r(cr, cu) =
(
cu + πb

θr
− cr

)
F̄ (κcp(φs)),

where F̄ (κcp(φs)) is a constant less than 1. Finally, Π∗m(cr, cu) = p−cu−φsF (κcp(φs))−

L(κcp(φs)). Monotonicity properties clearly hold for all players and the supply chain.

Let c̃ ≤ cr − cu ≤ πb
θr

, in which case, φ = cr − cu and κcp(φ) = 0. Then, U ’s

profit is Π∗u(cr, cu) = (cr− cu)πON , R’s profit is Π∗r(cr, cu) =
(
cu + πb

θr
− cr

)
πOFF , and

finally, manufacturer’s profit is Π∗m(cr, cu) = p− crπON − cuπOFF − πb
θr
πOFF . Clearly,

monotonicity properties for the manufacturer and the supply chain follow. �

Proof of Proposition 3.7. Let Πβ
i (cr, cu) denote the equilibrium profit for

i ∈ {u, r,m, sc} when backup capacity is β. Consider first πb
θr
> h

θf
. • Let cr−cu ≤ ∆.

R serves as the sole supplier and charges w∗r = cu + L(κ0) regardless of the backup

capacity. Thus, profits of all players are the same for β = 0 and β =∞.

• Let ∆ ≤ cr−cu ≤ L(κ0). When β = 0, R serves as the sole supplier and charges

w∗r = cu + L(κ0). When β = ∞, U serves as the primary supplier and R serves as

the backup supplier. Denote by φ∗ U ’s equilibrium penalty, thus, w∗u = cu + φ∗ and

w∗rb = cu + πb
θr

. Denote by κ∗ the equilibrium inventory with β =∞.

Unreliable Supplier: When β = 0, U ’s profit is zero, hence, U ’s profit is improved

with backup capacity.

Reliable Supplier: Since Π0
r(cr, cu) = cu + L(κ0)− cr, we have ∂Π0

r(cr,cu)
∂cr

= −1 and

∂Π0
r(cr,cu)
∂cu

= 1. From Lemma 3.2, we have 0 ≤ ∂Π∞r (cr,cu)
∂cu

≤ 1 and −1 ≤ ∂Π∞r (cr,cu)
∂cr

≤ 0.

Since Π∞r (cr, cu) is determined by cr−cu, we compare R’s profit at the extreme values

for the cost difference. For cr − cu = ∆, Π∞r (cr, cu) = Π0
r(cr, cu). For cr − cu = L(κ0),
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we have Π∞r (cr, cu) ≥ Π0
r(cr, cu) = 0. Since ∂Π∞r (cr,cu)

∂cu
≤ 1 = ∂Π0

r(cr,cu)
∂cu

and ∂Π∞r (cr,cu)
∂cr

≥

−1 = ∂Π0
r(cr,cu)
∂cr

, we have Π∞r (cr, cu) ≥ Π0
r(cr, cu) for all ∆ ≤ cr − cu ≤ L(κ0).

Manufacturer: We compare the manufacturer’s profit with no backup capacity and

with infinite backup capacity: Π0
m(cr, cu)−Π∞m (cr, cu) = φ∗F (κ∗)+L(κ∗)−L(κ0) ≥ 0.

The inequality holds because L(κ) is minimized when κ = κ0. Thus, the manufacturer

is worse-off with infinite backup capacity.

Supply Chain: We similarly compare the profits: Π∞sc (cr, cu)− Π0
sc(cr, cu) = (cr −

cu)F (κ∗) − H(κ∗). If φ∗ = φ̄, then, we have that cr − cu = φ̄ + H(κ∗)

F (κ∗)
, as shown

in Lemma 3.2, therefore, Π∞sc (cr, cu) − Π0
sc(cr, cu) = φ̄F (κ∗) ≥ 0, thus, the supply

chain is better-off with backup capacity. If φ∗ = φs, that is, c̄ ≤ cr − cu ≤ c̃, then,

the supply chain is better-off with backup capacity, since Π∞sc (cr, cu) − Π0
sc(cr, cu) ≥

c̄F (κ∗) − H(κ∗) = φsF (κ∗) ≥ 0. Finally, if κ∗ = 0, that is, cr − cu ≥ c̃, then,

Π∞sc (cr, cu)− Π0
sc(cr, cu) = (cr − cu)πON ≥ 0.

• Let cr − cu ≥ πb
θr

. When β = 0, U serves as the sole supplier and charges

w∗u = cr − L(κ0). When β =∞, U still serves as the sole supplier.

Unreliable Supplier: Recall that U ’s equilibrium prices, (w∗u, φ
∗), are derived by

solving the following.

max wu − φF̄ (κcp(φ))− cu (3.5)

s.t. wu − φF̄ (κcp(φ)) ≤ cr − L(κ0) (3.6)

wu − φ ≤ cr −
πb
θr

(3.7)

From Proposition 3.6, Π∞u (cr, cu) = cr − πb
θr
− cu + φ∗F (κ∗), where κ∗ = κcp(φ

∗).

Next, we obtain an upper bound on Π∞u (cr, cu) by dropping (3.7). The objective

function value of the relaxed problem is cr−L(κ0)− cu. Thus, Π∞u (cr, cu) = cr− πb
θr
−

cu+φ∗F (κ∗) ≤ cr−L(κ0)− cu = Π0
u(cr, cu), implying that U is worse-off with backup

capacity. This also implies φ∗F (κ∗) ≤ L(κ0) + πb
θr

, which we use for manufacturer
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below.

Reliable Supplier: Backup capacity does not matter, as R makes zero profit in

both cases.

Manufacturer: We compare manufacturer’s profits: Π∞m (cr, cu)−Π0
m(cr, cu) = πb

θr
−

φ∗F (κ∗) − L(κ∗) ≥ L(κ∗) − L(κ0) ≥ 0. Thus, the manufacturer is better-off due to

infinite backup capacity.

Supply Chain: We compare supply chain profits: Π0
sc(cr, cu)−Π∞sc (cr, cu) = L(κ∗)−

L(κ0) ≥ 0.

• Let L(κ0) ≤ cr−cu ≤ πb
θr

. When β = 0, U serves as the sole supplier and charges

w∗u = cr − L(κ0). When β = ∞, U serves as the primary supplier along with R as

backup, thus, w∗u = cu + φ∗ and w∗rb = cu + πb
θr

.

Reliable Supplier: R makes no profit when β = 0. Thus, R’s profit improves with

backup capacity.

Unreliable Supplier: Since Π0
u(cr, cu) = cr−L(κ0)−cu, we have ∂Π0

u(cr,cu)
∂cu

= −1 and

∂Π0
u(cr,cu)
∂cr

= 1. From Lemma 3.2, we have 0 ≤ ∂Π∞u (cr,cu)
∂cr

≤ 1 and −1 ≤ ∂Π∞u (cr,cu)
∂cu

≤

0. Since Π∞u (cr, cu) is determined by cr − cu only, we compare U ’s profit at the

extreme values for the cost difference. For cr − cu = L(κ0), we have Π∞u (cr, cu) ≥

Π0
u(cr, cu) = 0. For cr − cu = πb

θr
, U ’s profit remains unchanged even if he serves as

the primary supplier along with R as backup. As we shown above, U is worse-off,

thus Π∞u (cr, cu) ≤ Π0
u(cr, cu) for cr − cu = πb

θr
. Since ∂Π∞u (cr,cu)

∂cr
≤ 1 = ∂Π0

u(cr,cu)
∂cr

and

∂Π∞u (cr,cu)
∂cu

≥ −1 = ∂Π0
u(cr,cu)
∂cu

, and Π∞u (cr, cu) and Π0
u(cr, cu) depend on cr and cu only

through cr− cu, there exists a threshold c̄u such that we have Π∞u (cr, cu) ≥ Π0
u(cr, cu)

for all L(κ0) ≤ cr − cu ≤ c̄u and Π∞u (cr, cu) ≤ Π0
u(cr, cu) for all c̄u ≤ cr − cu ≤ πb

θr
.

Since Π0
u(cr, cu) − Π∞u (cr, cu) = (cr − cu) − φ∗F (κ∗) − L(κ0), c̄u = φ∗F (κ∗) + L(κ0),

where (φ∗, κ∗) is the equilibrium when cr − cu = c̄u.

Manufacturer: Same logic follows for the manufacturer. Manufacturer is worse-off

for both cr − cu = L(κ0) and better-off for cr − cu = πb
θr

. Using a similar logic based
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on slopes, we conclude that the there exists a threshold where the manufacturer is

indifferent with or without backup capacity. Since Π0
m(cr, cu)−Π∞m (cr, cu) = φ∗F (κ∗)+

L(κ∗) − (cr − cu), c̄m = φ∗F (κ∗) + L(κ∗), where (φ∗, κ∗) is the equilibrium when

cr−cu = c̄m. Note that φ∗F (κ∗) is increasing in cr−cu and L(κ∗) ≤ L(κ0). Therefore

c̄u ≤ c̄m. When πb
θr
≤ h

θf
, that is φ∗ = πb

θr
and κ∗ = 0, c̄m = c̄u = πb

θr
readily follows.

Supply Chain: The supply chain is better-off for both cr − cu = L(κ0) and worse-

off for cr − cu = πb
θr

, as derived earlier. Since Π0
sc(cr, cu) − Π∞sc (cr, cu) = H(κ∗) −

L(κ0) + (cr − cu)F̄ (κ∗), the threshold, c̄sc satisfies c̄sc = L(κ0)−H(κ∗)
F̄ (κ∗)

, where, κ∗ is the

equilibrium inventory for cr − cu = c̄sc. When πb
θr
≤ h

θf
, then, c̄sc = πb

θr
.

Finally, the case of πb
θr
≤ h

θf
is a special case, where ∆ = 0 and c̄m = c̄u = c̄sc = πb

θr
,

and it can readily be shown that profits are not influenced with backup capacity when

cr − cu = πb
θr

. �

Proof of Proposition 3.8. We derive the optimal policy for the simplified

problem with demand only in the last period, dT = 1. Denote by s supplier states,

where s ∈ {11, 10, 11, 01, 00} corresponding to ON-ON, ON-OFF, OFF-ON and OFF-

OFF respectively, and henceforth used in this order. Denote by V s
t the expected

procurement, holding and penalty costs in state s from period t onwards, when the

initial inventory is 0. Vt is the column vector and c = (c1, c1, c2,∞)′ is the cost of

procurement corresponding to each state. P denotes the probability transition matrix

for the supplier states and 1 is a column vector of 1’s. Denote by γi = 1 − θri. If

c2 > c1 + πb
θr1

, it is not optimal to source from supplier 2. Let c1 ≤ c2 ≤ c1 + πb
θr1

.

The main dynamic programming recursion is Vt = min{c+ h(T − t)1, PVt+1}. In

the last period, VT = (c1, c1, c2, c1 + σ)′, where σ is the cost of underage, including

the expected backlogging cost and the extra cost of procurement if both suppliers are

OFF in the last period. To derive σ, let τ1 and τ2 be geometric random variables,

which stand for time to recover for each supplier. τi has a probability of success θri.

Also, τ = min(τ1, τ2) is a geometric random variable with a probability of success
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1− γ1γ2.

V 00
T = πbE[τ ] + c1Prob(τ1 ≤ τ2) + c2Prob(τ1 > τ2)

= c1 +
πb

1− γ1γ2

+
θr2γ1(c2 − c1)

1− γ1γ2

:= c1 + σ

The optimal policy is established similar to the simplified problem with one sup-

plier perfectly reliable with the above modification on the terminal values. To show

the monotonicity of the optimal policy, we fix c1 = 0 and inductively prove that

0 ≤ ∂V st
∂c2
≤ 1. Clearly, 0 ≤ ∂V sT

∂c2
≤ 1. Assume that 0 ≤ ∂V st+1

∂c2
≤ 1. Denote by

Ps the row corresponding to state s. To indicate the dependence on c2, we write

V s
t = V s

t (c2). First, consider s = 11, V 11
t (c2) = min{h(T − t), P11Vt+1}. Clearly,

0 ≤ ∂P11Vt+1

∂c2
≤ 1. Since V 11

t (c2) is the minimum of a constant and an increasing

function of c2, it follows that 0 ≤ ∂V 11
t (c2)

∂c2
≤ 1. If it is optimal to order in period t

for c2 = 0, h(T − t) ≤ P11Vt+1, then it is still optimal to order when c2 is increased.

If, however, it is not optimal to order for c2 = 0, then increasing c2 may result in

optimality of ordering in period t. Therefore, the optimal inventory corresponding to

state 11 is (weakly) increasing in c2. Similar argument holds for the state 10.

Lastly, V 01
t (c2) = min{c2 +h(T − t), P01Vt+1}. Thus, V 01

t (c2) is obtained by taking

the minimum of two functions of c2, one having a slope of 1, and the other having a

slope less than or equal to 1. Therefore, if it is not optimal to order for c2 = 0, it is

not optimal to order for any other value of c2. If, however, it is optimal to order when

c2 = 0, then increasing c2 may cause non-optimality of ordering in period t, since the

latter function increases at a smaller rate. Hence, the optimal coverage corresponding

to state 01 is (weakly) decreasing in c2. Also, 0 ≤ ∂V 01
t (c2)

∂c2
≤ 1. �

Proof of Proposition 3.9. Since supplier 2’s state is independent of the pre-

vious periods, the optimal coverage in states 11 and 10 are equal. To establish zero

optimal coverage in state 01, consider period T −1. If supplier 1 is OFF and supplier

2 is ON in period T − 1, it is not optimal to order if c2 + h ≥ θr1c1 + (1 − θr1)(1 −

129



ν)c2 + (1− θr1)ν(c1 + σ). This relationship may or may not hold depending on how

large c2 is. To ensure that the optimal coverage is zero in state 01, we let c2 = c1.

Therefore, the condition we obtain for c2 = c1, obtained as πb
πb+h

≤ 1− (1− θr1)ν, is

sufficient for any c2 > c1 to ensure zero coverage.

To compute the optimal coverage, it suffices to compute the appropriate cost of

underage. If supplier 1 is OFF in the last period, the cost of underage is c2− c1 when

supplier 2 is ON. Otherwise, when supplier 2 is also OFF, the cost of underage is σ,

as derived in Proposition 3.8. Therefore, the overall cost of underage is conveniently

obtained as (c2 − c1)(1− ν) + σν. �

Proof of Proposition 3.10. (i) The case of no backup capacity follows the

same reasoning as Proposition 3.3.

(ii) Let ρi denote the probability of sourcing from supplier −i if supplier i serves

as the primary supplier. We derive ρ1 as follows. When both suppliers are disrupted,

probability that supplier 1 recovers first is Prob(τ1 ≤ τ2) = θr1
1−γ1γ2 , which was derived

in the proof of Proposition 3.8. In the long-run, supplier 2 is used as backup with

the following probability: ρ1 = π1
OFF − π1

OFFπ
2
OFFProb(τ1 ≤ τ2). Therefore, ρi =

πiOFF − π1
OFFπ

2
OFF

(
θri

1−γ1γ2

)
for each i = 1, 2.

• If c2 ≥ c1 + πb
θr1

, supplier 2 is not competitive, and supplier 1 serves as the sole

supplier. Supplier 2 prices down to cost, c2. Supplier 1 can profitably serve as the

sole supplier by setting w1
d = c2 − πb

θr1
. Since, in the equilibrium, the manufacturer

is indifferent between the two suppliers, we must have w1(1− ρ1) +
(
w1
d + πb

θr1

)
ρ1 =

c2 + πb
θr2
π2
OFF , leading to w1 = c2 +

(
πb

θr2(1−ρ1)

)
π2
OFF .

• Let c1 ≤ c2 ≤ c1 + πb
θr1

. In equilibrium, the backup supplier must be indifferent

between serving as the sole supplier and serving as backup, and the sole supplier must

weakly prefer serving as the sole supplier. Following the logic of Proposition 3.6, we

have wid = ci, leading to wib = c−i + πb
θr,−i

. Thus, no supplier can serve as the sole

supplier. If supplier i serves as backup, his payoff is Πb
i =

(
c−i + πb

θr,−i
− ci

)
ρ−i.
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Assume that supplier i charges wi for regular deliveries. Manufacturer’s average

cost with supplier i as the primary supplier is wi(1−ρi)+
(
ci + πb

θri

)
ρi. In equilibrium,

manufacturer must be indifferent between the two suppliers, hence

w1(1− ρ1) +

(
c1 +

πb
θr1

)
ρ1 = w2(1− ρ2) +

(
c2 +

πb
θr2

)
ρ2

Supplier i’s payoff if he serves as the primary supplier is Πp
i = (wi−ci)(1−ρi) ≥ Πb

i .

This leads to wi(1 − ρi) ≥ ci(1 − ρ1 − ρ2) +
(
c−i + πb

θr,−i

)
ρ−i for each i. Define

w̃i = wi(1− ρi). Thus, the following must hold in equilibrium.

w̃1 − w̃2 =

(
c2 +

πb
θr2

)
ρ2 −

(
c1 +

πb
θr1

)
ρ1 := α

w̃1 ≥ c1(1− ρ1 − ρ2) +

(
c2 +

πb
θr2

)
ρ2 := α1

w̃2 ≥ c2(1− ρ1 − ρ2) +

(
c1 +

πb
θr1

)
ρ1 := α2

We have 1 − ρ1 − ρ2 = π1
ONπ

2
ON + π1

OFFπ
2
OFF

(
θr1θr2
1−γ1γ2

)
≥ 0, and α1 − α2 =

α − (c2 − c1)(1 − ρ1 − ρ2). Since c1 ≤ c2, we have that α1 − α2 ≤ α. As suppliers

compete by undercutting wholesale prices, we reach w̃1 = α2 + α ≥ α1 and w̃2 = α2.

At this point, supplier 2 is indifferent between serving as primary or backup, whereas

supplier 1 strictly prefers serving as primary. Since supplier 1 can infinitesimally

undercut, supplier 1 must serve as the primary supplier in equilibrium. Thus, the

wholesale price for supplier 1 is w∗1 = c2 + πb
θr2

(
ρ2

1−ρ1

)
.

(iii) Assume that 0 ≤ c2 − c1 ≤ πb
θr1
π1
OFF − πb

θr2
π2
OFF . Then, supplier 2 is the sole

supplier when suppliers do not offer backup capacity, and supplier 2 is the backup

supplier when suppliers offer backup capacity. Since supplier 1 becomes the primary

supplier with backup capacity in this region, supplier 1 clearly benefits. Denote by

Πβ
i player i’s payoff (i ∈ {1, 2}) with backup capacity β ∈ {0, 1}. Also, denote by Cβ

m
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the manufacturer’s average cost.

Π0
2 = c1 − c2 +

πb
θr1

π1
OFF −

πb
θr2

π2
OFF

Π1
2 =

(
c1 +

πb
θr1
− c2

)
ρ1

Π1
2 − Π0

2 = (c2 − c1)(1− ρ1)− πb
θr1

(π1
OFF − ρ1) +

πb
θr2

π2
OFF

≥ − πb
θr1

(π1
OFF − ρ1) +

πb
θr2

π2
OFF ≥ 0

The last inequality follows from the definition of ρ1. Thus, supplier 2 benefits from

backup capacity.

C0
m = c1 +

πb
θr1

π1
OFF

C1
m =

(
c2 +

πb
θr2

(
ρ2

1− ρ1

))
(1− ρ1) +

(
c1 +

πb
θr1

)
ρ1 + π1

OFFπ
2
OFF

(
πb

1− γ1γ2

)
C1
m − C0

m = (c2 − c1)(1− ρ1) +
πb
θr2
≥ 0

Thus, the manufacturer is worse-off with backup capacity. Assume next that

πb
θr1
π1
OFF − πb

θr2
π2
OFF ≤ c2 − c1 ≤ πb

θr1
. Then, supplier 1 is the sole supplier when

suppliers do not offer backup capacity, and supplier 1 is the primary supplier when

suppliers offer backup capacity. Since supplier 2 becomes the backup supplier with

backup capacity in this region, supplier 2 clearly benefits.

Π0
1 = c2 − c1 +

πb
θr2

π2
OFF −

πb
θr1

π1
OFF

Π1
1 =

(
c2 +

πb
θr2

(
ρ2

1− ρ1

)
− c1

)
(1− ρ1)

Π1
1 − Π0

1 = −(c2 − c1)ρ1 −
πb
θr2

(π2
OFF − ρ2) +

πb
θr1

π1
OFF

≥ − πb
θr2

(π2
OFF − ρ2) +

πb
θr1

(π1
OFF − ρ1) = 0
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Thus, supplier 1 benefits from backup capacity. And similarly, manufacturer is

worse-off with backup capacity, as shown below.

C0
m = c2 +

πb
θr2

π2
OFF

C1
m =

(
c2 +

πb
θr2

(
ρ2

1− ρ1

))
(1− ρ1) +

(
c1 +

πb
θr1

)
ρ1 + π1

OFFπ
2
OFF

(
πb

1− γ1γ2

)
C1
m − C0

m = −(c2 − c1)ρ1 −
πb
θr2

(π2
OFF − ρ2) + π1

OFFπ
2
OFF

(
πb

1− γ1γ2

)
+
πb
θr1

ρ1

≥ − πb
θr2

(π2
OFF − ρ2) + π1

OFFπ
2
OFF

(
πb

1− γ1γ2

)
= 0

Lastly, let c2− c1 ≥ πb
θr1

. In both cases, supplier 1 is the sole supplier. Hence, supplier

2 is indifferent to backup capacity.

Π0
1 = c2 − c1 +

πb
θr2

π2
OFF −

πb
θr1

π1
OFF

Π1
1 =

(
c2 +

(
πb

θr2(1− ρ1)

)
π2
OFF − c1

)
(1− ρ1) +

(
c2 −

πb
θr1
− c1

)
ρ1

Π1
1 − Π0

1 =
πb
θr1

(π1
OFF − ρ1) ≥ 0

Thus, supplier 1 benefits from backup capacity. And similarly, manufacturer is worse-

off with backup capacity, as shown below.

C0
m = c2 +

πb
θr2

π2
OFF

C1
m =

(
c2 +

(
πb

θr2(1− ρ1)

)
π2
OFF

)
(1− ρ1) +

(
c2 −

πb
θr1

)
ρ1 +

πb
θr1

π1
OFF

C1
m − C0

m =
πb
θr1

(π1
OFF − ρ1) = 0

�

Proof of Proposition 3.11. Consider a renewal process, where renewals occur

whenever U recovers from a disruption. A renewal cycle consists of an exponentially
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distributed up-time, and a deterministic down-time. For an inventory level κ ≤ D,

the expected cost during a cycle is C(κ) = hκU + hκ2

2
+ πb(D−κ)2

2
. Note that inventory

is depleted at a rate of 1 during a down-time and backlogs accumulate at a rate of

1 when all the inventory is depleted. The average cost per-unit time is given by

C(κ)/(U +D). By simple derivative arguments, κd = max
(

0, πbD−hU
πb+h

)
is the unique

minimizer of C(κ). We repeat a similar procedure when R offers backup capacity.

Let wr = wu + tπb for some t. Clearly, the manufacturer will not source from R if

t > D. Also, if t < 0, that is, wr < wu, the manufacturer will definitely source from R.

Therefore, we assume 0 ≤ t ≤ D. The manufacturer never sources from the backup

source in the last t time units of the disruption. Hence, when κ ≥ D− t, the backup

supplier is never used. On the other hand, if κ < D − t, the manufacturer relies on

inventory on-hand in the first κ time units of the disruptions, uses backup source in

the next D − κ− t time units of the disruption, and finally backlogs demand till the

manufacturer recovers. Using this, we express C(κ) (assuming wu = 0 without loss

of generality, thus wr = tπb) as follows.

C(κ) =


hκU + hκ2

2
+ πbt(D − κ− t) + πbt

2

2
, if 0 ≤ κ ≤ D − t

hκU + hκ2

2
+ πb(D−κ)2

2
, if κ ≥ D − t

C(κ) is convex in κ and smooth at the break-point κ = D−t. If C ′(0) > 0, or hU >

πbt = wr−wu, a-zero inventory policy is optimal. If C ′(D−t) = hU+h(D−t)−πbt ≤ 0,

then the optimal solution satisfies κ ≥ D − t, in which case it is never optimal to

source from the backup source. Therefore, if wr > wu + min
(
D, h(U+D)

πb+h

)
πb, the

backup source will not be used. As a result, the manufacturer carries κd units of

inventory, as derived above. Let t ≤ min
(
D, h(U+D)

πb+h

)
. Then, the optimal κ satisfies

C ′(κ) = 0 and 0 ≤ κ ≤ D − t. Thus, κ(wr, wu) = πbt−hU
h

= wr−wu−hU
h

. �

Proof of Proposition 3.12. Let d and e stand for deterministic and exponential
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disruptions respectively. Denote by Lθ(κ) the average holding and penalty costs that

the manufacturer incurs per unit time when the disruption type is θ ∈ {d, e} and

the manufacturer only sources from U . Define also κd and κe as the manufacturer’s

optimal inventory coverage when he sole-sources only from U .

When R does not offer backup capacity, the outcomes of the contingent-pricing

game and the single-wholesale-price game are the same, and therefore, the structure

of equilibrium outcomes remains the same: if cu + Ld(κd) ≤ cr, U wins with w∗u =

cr − Ld(κd), otherwise, R wins with w∗r = cu + Ld(κd). It, then, suffices to show that

Ld(κd) ≤ Le(κe). If πbD ≤ hU , then, κe = κd = 0 and Le(κe) = πbDπOFF , Ld(κd) =

πbDπOFF/2. Let πbD > hU . Recall that Le(κ) = hκ+(h+ πb) [1−F (κ)]D−hDπOFF
and Ld(κ) =

(
hκU + hκ2

2
+ πb(D−κ)2

2

)
/(D + U) due to Proposition 3.11. First, we

prove that κe ≥ κd.

To show κe ≥ κd, it suffices to show πb
πb+h

= F (κe) ≥ F (κd) = 1 − πOFF e−κd/D.

Without loss of generality, let πb + h = 1 (or πb = 1− h), hence, κd = D− h(U +D).

Since hU ≤ πbD is assumed, we also have h ≤ πOFF for πb = 1 − h. Thus, we

need to show πOFF e
1−h/πOFF ≥ h. This, however, follows from the inequality that

e1−x ≥ x for all 0 ≤ x ≤ 1, and it readily holds for x = πOFF/h. With πb =

1 − h and appropriate simplifications, Ld(κd)/h = DπON + πOFFD
2
− h(U+D)

2
and

Le(κe)/h = DπON + κe ≥ DπON + κd. To show Ld(κd) ≤ Le(κe), it suffices that

κd = D − h(U + D) ≥ πOFFD
2
− h(U+D)

2
, or equivalently, πOFF − π2

OFF

2
≥ h

2
. Since

h ≤ πOFF , a sufficient condition is to show πOFF − π2
OFF

2
≥ πOFF

2
, or πOFF ≥ π2

OFF ,

which holds, since 0 ≤ πOFF ≤ 1. Therefore, Le(κe) ≥ Ld(κd). �
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Chapter 4

Conclusions

This dissertation has examined the effects of internal and external disruptions on a

firm’s supply chain strategy and production/inventory policy. Chapter 2 explores the

effects of internal disruptions that manifest themselves through capacity uncertainty,

and investigate the effect of disruptions on the production and inventory policies of

a firm producing multiple products in multiple stages. Chapter 3 explores the effects

external disruptions on a firm’s supply chain strategy and inventory policy, taking

into account the active role suppliers play in defining the parameters of contracts.

The focus is on the effects of strategic supplier behavior and the resulting sourcing

practices.

In the context of internal disruptions (Chapter 2), we have considered optimal

production and inventory control for a make-to-stock/calibrate-to-order system. The

manufacturer has dedicated resources for each product in stage 1 and a common

resource that all products share in stage 2. We fully characterized the optimal policy

for the case of two products and proposed heuristic policies for the case of multiple

products based on the optimal policy structure for two products. We numerically

explored the effect of product asymmetries on the optimal policy and showed that

depending on shared capacity level, three different modes of behavior are present. We

also showed numerically that the performance of the heuristics is near-optimal when

the number of products is sufficiently large and the shared capacity is large relative
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to the demand for individual products.

In Chapter 3, we explored suppliers’ strategic behavior when external disruptions

may disable their production. The main insight here was that with endogenously

determined wholesale prices, the manufacturer does not necessarily benefit from flex-

ible sourcing and, in fact, is typically worse off. Thus, an upfront commitment to

sole sourcing and using simple wholesale price contracts may actually be beneficial,

as opposed to opening the opportunity for one supplier to serve as a backup, through

more flexible contracts. Interestingly, suppliers may benefit from flexible sourcing

even though the manufacturer does not. The reliable supplier always benefits from

maintaining backup capacity, whereas the unreliable supplier might benefit in some

situations from the reliable supplier’s backup capacity despite reduced business vol-

ume.
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