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Abstract 
 

The rapid development of distributed sensing and computer technologies has 

facilitated a wide collection of various nonlinear profiles during system operations, thus 

resulting in a data-rich environment that provides unprecedented opportunities for 

improving complex system operations. At the same time, however, it raises new research 

challenges on data analysis and decision making due to the complex data structures of 

nonlinear profiles, such as high-dimensional and non-stationary characteristics. In this 

dissertation, for the purpose of system performance improvement, new methodologies are 

proposed to effectively model and analyze nonlinear profile data. Specifically, three 

major research tasks are accomplished. First, the problem of informative sensor and 

feature selection among massive multi-stream sensing signals is discussed. In this 

research, a new hierarchical regularization approach called hierarchical non-negative 

garrote (HNNG) is proposed. At the first level, a group non-negative garrote is developed 

to select important signals, and at the second level, the individual features within each 

signal are selected using a modified version of non-negative garrote that can guarantee 

nice properties for the estimated coefficients. Second, a new methodology has been 

developed to analyze cyclic nonlinear profile signals for fully characterizing process 

variations and enhancing the fault diagnosis capability. In the proposed method, both 

within- and between-profile variations are taken into consideration. In order to 

accomplish this, a new mixed-effect model integrated with multiscale wavelets analysis 
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has been developed. Third, the problem of modeling and monitoring of binary survival 

profiles has been studied. A general Phase I risk-adjusted control chart is being proposed 

based on a likelihood ratio test derived from a change-point model. Furthermore it is 

shown that binary survival outcomes depend on not only patients’ health conditions prior 

to surgery, but also other categorical operational covariates, such as different surgeons. 

The efficacy of the proposed methods in each chapter is validated and demonstrated by 

Monte-Carlo simulations and real-world case studies.  
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CHAPTER I 

Introduction 

 

 

1.1 Motivation 

The rapid development of distributed sensing and computer technology has facilitated  a 

wide collection of data during system operations, resulting in a temporally and spatially 

data-rich environment that provides unprecedented opportunities for improving complex 

system operations in various fields of applications, including manufacturing, healthcare, 

and emerging energy systems. In practice, sensor measurements are often represented as 

a function of one or more variables such as time or location, and are known in the 

relevant literature as “waveform signals”, “profiles”, “functional data”, and “trajectories”. 

Examples of these types of data include the ram force signals used to press valve seats 

into engine heads in engine head assembly processes (Paynabar and Jin, 2011), post-

operation survival profiles of patients in a surgical system (Paynabar et al., 2012), and the 

body motion trajectories of drivers’ movements in vehicle ingress and egress testing for 

evaluating the comfort of various vehicle designs (Paynabar et al., 2012).  

 Profile data consist of rich information that can be used for system analysis, 

monitoring and diagnosis, as well as effective decision-making to improve system 

performance. However, analysis of these data also raises new research challenges due to 

the complex structures of profile data, such as high-dimensional and non-stationary 
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characteristics of signals. These critical problems are to be addressed in this dissertation 

as follows: 

1. Data dimension reduction through the selection of informative waveform 

signals among massive multistream sensing signals and the extraction of 

important features from each selected informative signal. 

2. Variation modeling and characterization of profiles, which can effectively 

analyze both within-profile and between-profile variations to enhance the root 

cause diagnosis of process variations.  

3. Parametric risk-adjusted modeling and monitoring of binary survival profiles 

with categorical operational covariates. 

The case studies shown in this dissertation are conducted in different field 

applications, indicating the generality and broad application opportunities of the proposed 

methodologies.  

1.2 Overview of Dissertation 

In this section, the research topics highlighted in the previous section is briefly discussed 

in the following subsections. For each topic, an overview of research objectives, 

challenges, and the proposed methodology are provided.   

1.2.1 Selection of Informative Sensing Signals and Features via Hierarchical Non-

Negative Garrote Method  

In many real-world applications, multiple waveform signals are recorded using a 

distributed sensing system, providing useful information about system performance. 

However, it is impossible or unaffordable to place sensors at every station of a process or 
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every element of a system. Moreover, not all of the collected sensing data are equally 

important with respect to a specific performance requirement. Therefore, it is necessary 

to develop a systematic method to optimally select important sensing variables and 

extract useful information for optimal decision-making. One example of multiple sensing 

signals includes the Electroencephalography (EEG) signals that record the electrical 

activity of the brain by distributing sensors over different locations of the scalp. EEG 

signals are exploited to diagnose and/or predict brain disorders such as epilepsy. 

However, depending on the purpose of study, only a small subset of EEG signals 

provides useful information for decision making. Alternatively, in another example, the 

problem of interest is to evaluate vehicle comfort based on the motion trajectories of 

drivers. For this purpose, the selected representative subjects are tested under various 

design configurations. During each test trial, the subjects are asked to get into and out of 

the vehicle, while their corresponding motion trajectories are recorded by the motion 

sensors mounted at critical positions on the subjects. Figure 1-1(a) shows a sample of the 

3D spatial trajectory, and Figure 1-1(b) shows the corresponding profile signals at x, y 

and z coordinates for two measurement positions on the right and left ankles. After each 

trial, each tested subject is asked to give a score of his/her comfort feeling on a scale of 1 

to 10, with 1 as the lowest and 10 as the highest comfort index. One critical issue in this 

research is how to develop a model to represent the relationship between the motion 

trajectories and the comfort score of each design configuration. As not all of motion 

trajectories are equally important in affecting the comfort score, it is essential to develop 

a systematic method for identifying the informative trajectory signals.   
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Figure 1-1. Body movement trajectories 

Figure 1-1(a) (left panel). A sample of 3D body movement trajectories. Figure 1-1(b) (right panel). A 

sample of trajectories for right and left ankles in x-, y-,  and z-coordinate 

 Although the problem of selecting important variables has been extensively 

studied in the literature, our problem is more challenging because we need to select not 

only important sensors/signals among multi-stream signals, but also a low dimension of 

interpretable features from the high-dimensional vector of a selected signal. Therefore, 

the objective of Chapter 2 of the dissertation is to develop a systematic method to 

effectively extract information from a distributed sensing system by identifying the 

informative sensors (i.e., selecting the important waveform signals) and selecting 

important features within the selected waveform signals. 

To achieve this objective, we encountered three research challenges. The first one 

is how to perform variable selection at both between-signal and within-signal levels. The 

second is a result of the large number of waveform signals that are shown as high-

dimensional data vectors. The third is due to the fact that the number of samples may 

often be less than the dimension of a waveform signal vector.  

In order to overcome these challenges, we are proposing a new hierarchical 

method called “Hierarchical Non-Negative Garrote” (HNNG). HNNG consists of two 

levels of hierarchy: at the first level, informative sensors/signals are selected using group 
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non-negative garrote (GNNG) proposed by Yuan and Lin (2007); at the second level, a 

modified version of non-negative garrote (MNNG) is proposed to select important 

features within waveform signals selected at the first step. We show that the proposed 

HNNG benefits from the following useful properties: 

 HNNG can effectively perform variable selection at both between- and within-

signal levels; 

 The solution path for both HNNG criteria is piece-wise linear, and thus can easily 

be obtained by the least angle regression (Efron et al. 2004); 

 HNNG is applicable in cases when the sample size is less than the number of 

sensors and/or the dimension of waveform signals;   

 The estimated coefficients by HNNG have the grouping effect (similar effect) 

property (Zou and Hastie, 2005), meaning that the estimated coefficients for 

highly-correlated variables tend to be the same. 

We use simulations to evaluate the performance of the proposed HNNG, which 

are further compared with the existing methods in the literature. Additionally, the 

analysis of the driver-motion-trajectory data is used as a real case study to illustrate the 

potential applications and the effectiveness of the HNNG method. 

1.2.2 Characterization of Nonlinear Profile Variations Using Nonparametric Mixed-

Effect Models and Wavelets 

Cyclic waveform profiles with complicated nonlinear structures are widely used for 

online process monitoring and quality control in automatic manufacturing systems. 

Chapter 3 of this dissertation is devoted to developing a new methodology for analyzing 
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cyclic waveform profiles in order to fully characterize process variations and achieve 

quick fault diagnosis. Extensive research on modeling and analysis of waveform signals 

for monitoring and fault diagnosis purposes has been done (see for example, Gardner et 

al., 1997, Williams et al., 2007, Ding et al., 2006, Zou et al., 2008, Zou et al., 2009). 

However, most of these studies assume that the total variability of profiles can be 

modeled by random noises, which are mainly used to reflect the within-profile variation 

that has a constant variance over all measurement points of individual profiles. In many 

practical situations, however, the variation among in-control profiles is too large to be 

handled when only using random noises. For example, consider the insertion force of a 

pressing machine used to press valve seat rings into an engine head. The overlapped 

multiple samples of signals collected at different cycles of in-control operations are 

shown in Figure 1-2. As can be seen here, the significant amount of total variation is due 

to between-profile variations, which cannot be modeled only by random noises. In 

practice, between-profile variations are usually caused by part-to-part variations, fixture 

or tooling tolerance, and/or process operation condition variations, while within-profile 

variations are mainly a result of measurement errors and environmental disturbances. 

Therefore, in order to effectively monitor the process and identify the sources of 

variations, it is essential to model and characterize both within-profile and between-

profile variations.  

In many applications, waveform profile signals are often shown as complicated shapes 

with local sharp changes and non-differentiable points. Such local information for 

profiles is very important in both fault detection and diagnosis, and thus must be 

accurately modeled. Therefore, the objective of Chapter 3 is to develop a modeling 
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approach for nonlinear profiles for the following two purposes: (1) to characterize both 

global and local segmental variation patterns; and (2) to characterize nonlinear profile 

variations by considering both between-profile and within-profile variations. 

 

Figure 1-2. Overlapped multiple samples of force in a valve seat assembly operation 

Wavelets analysis is a multi-resolution transform that can be used to effectively 

characterize both global and local segmental variations of the profiles with non-

differentiable points. Additionally, mixed-effect models can be used to represent both 

between- and within-profile variations. In order to take advantage of both the wavelet 

technique and the mixed-effect models, and to achieve the objectives described 

previously, we have developed a new wavelet-based mixed effect model.   

There are two research challenges in developing and implementing wavelet-based 

mixed-effect models. The first is to ensure that the collected profile samples used for 

model estimation follow an identical mixed-effect model distribution because otherwise 

combining samples from different distributions would lead to a large estimation error for 

the model parameters, resulting in a misleading model. This challenge is addressed by 
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applying a change-point model derived from a series of likelihood ratio tests that would 

be able to detect profile clusters with different model parameters. The second challenge is 

the computational complexity posed by the large number of wavelet coefficients that are 

modeled as random effects in the mixed-effect models. We address this issue by a two-

step estimation approach that decouples within- and between-profile variations using the 

wavelet multi-resolution property and estimates each of these separately. The 

performance of the proposed wavelet-based mixed-effect model is evaluated and 

compared with other existing methods via a Monte-Carlo simulation. The force profile 

dataset in the head-engine assembly process is used to illustrate this general methodology 

and show the performance of the proposed method in a real-world application.  

1.2.3 Parametric Risk-adjusted Modeling and Monitoring of Binary Survival 

Profiles with Categorical Operational Covariates 

Survival profiles are also typical profile data that are commonly found in healthcare 

systems. In Chapter 4 of this dissertation, we develop a new parametric method for a risk-

adjusted model to monitor the binary survival profiles with categorical operational 

covariates. For example, assessing the system performance of surgical operations is vital 

for improving hospital operations and performance in order to ensure patient safety. 

However, only tracking the number of successful operations as a metric of surgical 

performance may be misleading since a surgical outcome depends on not only surgical 

performance, but also the patients’ risk factors before surgery. Therefore, the surgery 

output, modeled as binary profile data, should be adjusted based on the patients’ risk 

factors. There is an increasing research interest in Phase II risk-adjusted monitoring of 

binary survival profiles in the literature. For example, Steiner et al. (2000) introduced a 
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risk-adjusted cumulative sum (RA-CUSUM) chart to monitor the binary survival profiles. 

Cook et al. (2003) developed a risk-adjusted Shewhart p-chart with variable control 

limits. Spiegelhalter et al. (2003) proposed resetting a sequential probability ratio test 

(RSPRT) chart. Grigg and Farewell (2004) proposed a risk-adjustment method to monitor 

the number of operations between two unsuccessful operations. Grigg and Spiegelhalter 

(2007) developed a risk-adjusted exponentially weighted moving average (RA-EWMA) 

chart. In contrast to the existing methods, we show that the binary surgical outcomes 

depend on not only the patient conditions described by the Parsonnet scores, but also 

other categorical operational covariates, including different surgeons. The proposed risk-

adjustment model should incorporate dummy variables to reflect different surgeon 

groups’ performances. Moreover, all existing research focuses on Phase II monitoring, 

where it is assumed that the parameters of the risk-adjustment model are known or can be 

accurately estimated from historical data collected from a stable process. However, this 

assumption is not valid in real applications, and historical data may follow different 

distributions due to instability of the surgery system, affecting the accuracy of the 

estimated parameters in the risk-adjusted model. Therefore, Phase I control is crucial in 

practice for checking the quality of historical data, and for obtaining accurate estimates of 

the model’s parameters. Constructing risk-adjusted control charts in Phase I is very 

challenging since each sample represents an individual operation for each patient, making 

it impossible to fit a risk-adjustment model for each patient based on individual 

observations. To address this issue, we develop a likelihood ratio test derived from a 

change-point model (LRT-CP) based on the risk-adjustment logistic regression.  
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Performance of the proposed method is evaluated and compared with other 

existing methods through Monte-Carlo simulations. Furthermore, the efficacy of our 

method in real applications is demonstrated via the analysis of a cardiac surgery dataset.  

1.3 Outline of Dissertation 

In this dissertation, a generic methodology is developed for the modeling and analysis of 

nonlinear profiles for the purpose of system monitoring and diagnosis, as well as for 

effective decision making to improve system performance. Throughout the dissertation 

the implementation of this methodology is demonstrated using different real-world case 

studies. The organization of the dissertation associated with the methodology 

development is shown in Figure 1-3. 

 

Figure 1-3. Outline of dissertation. 

Chapter I: 

Introduction 

Chapter V: 

Conclusion 

Nonparametric Modeling Parametric Modeling 

Chapter II: Informative 

sensor selection  

Chapter III: 

Characterization of 

profile variations  

Chapter IV: Risk-

adjusted modeling and 

monitoring for binary 

surgical profiles 
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Chapter I presents the key research topics to be discussed in the dissertation. Research 

motivations and challenges associated with each research topic is also presented in this 

chapter. 

Chapter II proposes a new method for selecting informative sensors and their 

corresponding waveform signals in a distributed sensing system. The method is also 

capable of selecting important features within each selected high-dimensional waveform 

signal. A hierarchical regularization approach called Hierarchical Non-Negative Garrote 

is used for this purpose.   

Chapter III studies variation modeling and characterization of nonlinear profiles with a 

complex shape for the purpose of process monitoring and fault diagnosis. In this chapter, 

a novel nonparametric mixed-effect model is developed based on wavelets, which not 

only characterizes both within- and between-profile variations, but also can extract local 

information of nonlinear profiles important for root-cause identification. 

Chapter IV deals with parametric risk-adjusted modeling and monitoring of binary 

survival profiles with heterogonous operational covariates. For this purpose, first, the 

binary survival profiles are modeled using a logistic regression model with dummy 

variables to model categorical operational covariates. Then, the logistic model is used to 

construct a likelihood ratio test derived from change-point models for Phase I monitoring.  

 Chapter V summarizes the major work and new contributions of the dissertation. 

Besides, some research topics are suggested for future research. 

 



12 
 

References 

1. Cook, D. A., Steiner, S. H., Farewell, V. T. and Morton, A. P. (2003) Monitoring the 

evolutionary process of quality: Risk adjusted charting to track outcomes in intensive 

care. Critical Care Medicine, 31, 1676–1682. 

2. Efron, B., Hastie, T., Johnstone, I. and Tibshirani, R. (2004) Least angle regression. 

Annals of Statistics, 32, 407–451. 

3. Gardner, M., Lu, J., Gyurcsik, R., Wortman, J., Hornung, B., Heinisch, H., Rying, E., 

Rao, S., Davis, J. and Mozumder, P. (1997) Equipment fault detection using spatial 

signatures. IEEE Transaction on Components, Packaging, and Manufacturing 

Technology, Part C, 20, 294-303. 

4. Grigg, O. A. and Farewell, V. T. (2004) A risk-adjusted sets method for monitoring 

adverse medical outcomes. Statistics in Medicine, 23, 1593-1602. 

5. Grigg, O., and Spiegelhalter, D. (2007) A simple risk-adjusted exponentially weighted 

moving average. Journal of the American Statistical Association, 102, 140-152. 

6. Paynabar, K., Jin, J. (2011) “Characterization of Nonlinear Profiles Variations using 

Mixed-effect Models and Wavelets,” IIE Transactions on Quality and Reliability 

Engineering, 43, 275–290. 

7. Paynabar, K., Jin, J., and Yeh. B. A. (2011) “Phase I Risk-Adjusted Control Charts for 

Monitoring Surgical Performance by Considering Categorical Covariates,” Journal of 

Quality Technology, 44, 39-53. 

http://journals.lww.com/ccmjournal


13 
 

8. Paynabar, K., Jin, J., and M. Reed, (2012) “Hierarchical Non-Negative Garrote for 

Group Variable Selection”, Technical Report, Department of Industrial and Operation 

Engineering, The University of Michigan. 

9. Spiegelhalter, D. J., Grigg, O. A., Kinsman, R. and Treasure, T. (2003) Sequential 

probability ratio tests (SPRTS) for monitoring risk-adjusted outcomes. International 

Journal for Quality in Health Care, 15, 1–7. 

10. Steiner, S. H., Cook, R. J., Farewell, V. T., and Treasure T. (2000) Monitoring surgical 

performance using risk-adjusted cumulative sum charts. Biostatistics, 1, 441-452. 

11. Williams, J. D., Woodall, W. H., and Birch, J. B. (2007) Phase I analysis of nonlinear 

product and process quality profiles. Quality and Reliability Engineering 

International, 23, 925–941. 

12. Yuan, M., and Lin, Y. (2006) Model selection and estimation in regression with 

grouped variable. J. R. Statist. Soc.B, 68, 49-67. 

13. Zou, C., Qiu, P., and Hawkins, D. (2009) Nonparametric Control Chart for 

Monitoring Profiles Using Change Point Formulation and Adaptive Smoothing. 

Statistica Sinica, 19, 1337-1357. 

14. Zou, H., and Hastie, T. (2005) Regularization and variable selection via the elastic net 

J. R. Statist. Soc. B, 67, 301–320. 

 

 

http://intqhc.oxfordjournals.org/
http://intqhc.oxfordjournals.org/


14 
 

CHAPTER II 

Selection of Informative Sensing Signals and Features via Hierarchical 

Non-Negative Garrote Method 

 

2.1 Introduction 

Recent advancements in sensing technology and data acquisition systems have facilitated 

large-scale data collection during system operations. In many real-world applications, 

multiple waveform signals are recorded using a distributed sensing system, providing 

useful information about system performance. However, it is impossible or unaffordable 

to place sensors at every station of a process or every element of a system. Moreover, not 

all of the collected sensing data are equally important with respect to a specific 

performance requirement. Therefore, it is necessary to develop a systematic method to 

optimally select important sensing variables and extract useful information for optimal 

decision-making. One example of multiple sensing signals includes the 

Electroencephalography (EEG) signals depicted in Figure 2-1(a). EEG signals represent 

the electrical activity of brain, which are recorded using several sensors located at 

different locations of scalp (Figure 2-1(b)). Those signals are exploited to diagnose 

and/or predict focal brain disorders such as epilepsy, stroke, etc. (See for example 

Chaovalitwongse et al., 2006). Depending on the purpose of analysis, only a small subset 

of EEG signals provides useful information for diagnosis and decision making. 

Alternatively, in another example, the problem of interest is to evaluate vehicle comfort 

http://www.springerlink.com/content/?Author=Wanpracha+Art+Chaovalitwongse
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based on the motion trajectories of drivers. For this purpose, the selected representative 

subjects are tested under various design configurations. During each test trial, the subjects 

are asked to get into and out of the vehicle, while their corresponding motion trajectories 

are recorded by the motion sensors mounted at critical positions on the subjects. The 

spatial motion trajectories are measured over time in x-,y-, and z-coordinate. Figure 1-

1(a) (in Chapter 1) shows a sample of the 3D spatial trajectories for right and left ankles, 

right and left hips, and head in an egress trial and Figure 1-1(b) shows the trajectories of 

one egress trial at x, y and z coordinates two measurement positions on the right and left 

ankles. After each trial, each tested subject is asked to give a score of his/her comfort 

feeling on a scale of 1 to 10, with 1 as the lowest and 10 as the highest comfort index. 

One critical issue in this research is how to develop a model to represent the relationship 

between the motion trajectories and the comfort score of each design configuration. As 

not all of motion trajectories are equally important in affecting the comfort score, it is 

essential to develop a systematic method for identifying the informative trajectory 

signals.  

 

 

Figure 2-1. Electroencephalography signals 

Figure 2-1(a) (left panel). A sample of multichannel EEG signals. Figure 2-1(b) (right panel). 

Location of sensors on scalp.  
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The problem of selecting informative sensors can be modeled as a group variable 

selection problem in which each group variable consists of recorded signals or signal 

features corresponding to one sensor. In this case, the significance of a group’s 

contribution in the model can reflect the importance of the corresponding sensor. For 

example, in the ingress/egress experiment, the motion trajectory captured by each 

individual sensor can be considered as one group of variables. Therefore, the selection of 

an important sensor can be assessed by the significance of the group corresponding to its 

motion curve. It should be noted that the application of group variable selection is not 

limited to sensor selection. Generally, the group relationship can be identified based on 

either the physical functionality of individual variables or the model structure. For 

example, in multi-way analysis-of-variance (ANOVA), a factor can be considered as a 

group of dummy variables, which represent the levels of the factor. Group variables can 

also be found in additive models, in which each component of the model is represented 

by a set of polynomials, splines, wavelets and/or other basis functions. Thus, each set of 

basis functions forms a natural group. 

In regression and classification problems, variable selection is a crucial issue 

since incorrect inclusion of unimportant variables in the model may seriously affect the 

prediction accuracy of the model. Moreover, from the practical standpoint, the 

parsimonious models that can be interpreted by the domain knowledge are often 

preferred. Owing to the importance of this topic, extensive research has been conducted 

and various methods can be found in the literature on variable selection. For example, 

best subset selection (Miller 2002) has been popularly used for variable selection. 

However, due to the discreteness of this method, it may yield unstable modeling results, 
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i.e., if data are slightly changed, the selected subset of variables may vary, thus leading to 

a very different model. Regularization techniques, on the other hand, are continuous 

processes that improve the prediction accuracy and model parsimony through the trade-

off of between model’s bias and variance. The examples of regularization techniques 

include Bridge regression (Frank and Freidman 1993), nonnegative garrote (Breiman, 

1995), LASSO (Tibshirani, 1996), SCAD (Fan and Li, 2001), elastic net (Zou and Hastie, 

2005), adaptive LASSO (Zuo, 2006), structured variable selection (Yuan et al., 2009), to 

name a few.  

The aforementioned methods are often employed when there is no group 

relationship among predictor variables (called predictors henceforth, for simplicity), and 

thus all predictors are treated individually. However, in the case of sensor selection, the 

variable selection procedure should also consider the group relationship among individual 

variables. In the literature, there is extensive research on group variable selection via 

regularization methods. In order to review these methods, a general regression model 

with the consideration of the group variable structure is presented as follows: 


 


K

k

i

p

j

kjikji

k

xy
1 1

,0  ,     (2-1) 

where iy  denotes the response variable, kjix ,  is predictor j (j=1,..,pk), belonging to group 

k (k=1,..,K), 
0  and kj  are the corresponding model parameters, 

i  is the random error, 

and index i ),...,1( ni   indicates the sample number. The general regularization method 

for estimating the parameters of model (2-1) can be written as 
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,    (2-2) 

where ),( kjtJ  is a penalty function with tuning parameters Ttt ,...,2,1;  . In practice, 

usually not more than two tuning parameters are used. Before introducing our method, a 

brief review of various penalty functions ),( kjtJ  for the purpose of variable selection is 

given as follows. 

Atoniadis and Fan (2001) developed a group thresholding method for wavelet 

coefficient shrinkage. Yuan and Lin (2006) extended the regular lasso and developed the 

group lasso by using an L2-norm penalty in the form of 



K

k

kkjtJ
1

1),( β

 

with 





kp

j

kjk

1

2β . Meier et al. (2008) further modified the group lasso for logistic regression 

models. Moreover, Zhao et al. (2009) proposed an alternative method using an L∞-norm 

penalty, i.e., 





K

k

kkjtJ
1

1),( β with  kj
j

k max


β  . Since both kβ  and 
kβ  

are singular at 0β k , unimportant groups can be removed from the model by choosing 

an appropriate tuning parameter.  

In the case of grouped variables, a desirable variable selection method should 

consider two levels of variable selection. The first level is at the group level, which is 

used to judge if a group variable should be included in the model. The second level is at 

the individual level, by which those non-significant individual variables within the 

selected important groups are further removed from the model. In the case of sensor 
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selection, at the first level, the important sensors and their corresponding signals are 

identified and at the second level, the individual features within each important signal are 

selected. However, the above-reviewed methods perform variable selection only at the 

group level. As a result, all variables within the selected group will be included in the 

model, which may affect both prediction performance and model parsimony. To address 

this issue, Huang et al. (2009) and Zhou and Zhu (2010) proposed group bridge and 

hierarchical lasso (Hlasso) by using the following penalty:  



K

k

kkjtJ
1

1
1),( β  with 





kp

j

kjk

1
1

β . Both between- and within-group parts of this penalty function (i.e., 




K

k

k

1
1

β , and 


kp

j

kj

1

 ) are singular at 0β k  and 0kj , respectively. Thus, this 

penalty function can perform variable selection at both group and individual levels. 

However, the penalty function of hierarchical lasso is non-convex function, which makes 

it difficult to solve the optimization problem. Zhou and Zhu (2010) proposed to break 

down the optimization criterion into two convex optimization sub-problems and claimed 

that solving these two problems iteratively can converge to an optimum solution. In 

addition to expensive computation caused by their proposed iterative algorithm, there is 

no guarantee that the obtained solution is global optimum or a local optimum. This is true 

since the penalty function is non-convex and the iterative algorithm may converge to a 

stationary point which may or may not be a local optimum. 

In the regression models with group variables, it often happens that individual 

variables are highly correlated both within and between groups. If two variables are 

highly correlated, their corresponding coefficients should tend to be equal (up to a sign 
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change if negatively correlated). This is called “grouping effects,” in the literature. Note 

that the “grouping effects” is different from the “group variable” structure we described 

earlier. In the former, the grouping is defined only based on the correlation of predictors, 

while in the latter grouping is defined based on any common characteristics among one 

set of variables such as different levels of a factor, measured response from each sensor, 

etc. To avoid confusion, between “group variable” and “grouping effects”, in the 

dissertation, we use the term similar effects to represent “grouping effects”. Zou and 

Hastie (2005) proposed elastic net with a combined L1- and L2-norm penalty (i.e.,

 


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and showed that the elastic net benefits from the 

similar effects property. Bondell and Reich (2007) developed OSCAR (octagonal 

shrinkage and clustering algorithm for regression) by combining regularization and 

clustering for the purpose of variable selection and clustering the highly-correlated 

variables into predictor clusters. Neither of these methods, however, considered group 

variable selection. 

The main goal of this chapter of dissertation is to propose a new group variable 

selection method for sensor selection that not only is capable of identifying informative 

sensors and signals, but also can select important features within each selected signal. For 

this purpose, we define a two-step hierarchical regularization based on NNG. We show 

that the optimization criteria in both steps are convex and propose an iterative algorithm 

based on least angle regression (LARS) (Efron et al., 2004) to simply obtain the whole 

solution path of each coefficient. The proposed method also benefits from the “similar 

effects” property for highly correlated individual variables. Moreover, another advantage 
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of the proposed method is that it can be used when the sample size is less than number of 

important variables, while other methods such as lasso and NNG cannot.  

The rest of the chapter is organized as follows. In Section 2.2, we introduce two-step 

hierarchical non-negative garrote (HNNG) and present an iterative algorithm for solving 

the optimization criteria and obtain the solution paths of coefficients. We also discuss the 

useful properties of HNNG regarding similar effects and small sample size. The 

performance of the proposed method is evaluated and compared with other exiting 

methods using Monte-Carlo simulation in Section 2.3. Section 2.4 is devoted to a real 

case study, in which the proposed method is applied to vehicle ingress data to select 

important sensors for predicting the comfort score of a design configuration. 

2.2 Proposed Method: Two-step Hierarchical Non-negative Garrote  

In this section, we present our two-step hierarchical regularization method based on 

NNG. The original NNG was proposed by Breiman (1995) as an effective alternative to 

the subset method for variable selection. Yuan and Lin (2007) studied the properties of 

NNG in terms of solution path and consistency, and showed that despite lasso, NNG is 

consistent in identifying important variables. Yuan (2007) applied NNG to component 

selection in functional ANOVA. Cantoni et al. (2011) used NNG for variable selection in 

additive models. Yuan and Lin (2006) developed group NNG (GNNG) for group variable 

selection. However, similar to group lasso, their proposed group NNG is not capable of 

variable selection within a group. To address this issue, we propose HNNG. Our 

proposed method consists of two steps, each of which corresponds to one level of the 

hierarchy. In the first step, we perform variable selection at the group level of the 

hierarchy, select important groups, and remove unimportant groups from the set of 
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predictors. This is done by a group NNG (GNNG) model. The second step is devoted to 

variable selection at the individual level. In this step, we use a modified NNG (MNNG) 

for individual variable selection and coefficients estimation within important groups 

selected at the first step. In the following subsections, each step is elaborated. 

2.1.1 Step 1: Variable Selection at Group Level 

In this step, to select the important group variables, we use GNNG (Yuan and Lin, 2006). 

Without loss of generality, it is assumed that all predictors are transformed such that 





n

i

kjix
1

, 0  and 

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, 1 , and the response variable is centered such that 
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i
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0 . 

Consider the following reparameterization: 0;ˆ ols  kkjkkj dd  , where olsˆ
kj  is the 

ordinary least square estimate of kj  and 
kd  is the shrinking factor for group k. 

kd is 

considered non-negative to avoid nonidentifiability issue. The following penalized least 

square criterion is used for GNNG (Yuan and Lin, 2006):  
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where y  is the vector of the observed response variable, 
kX  is the matrix of the predictor 

variables for group k, olsˆ
kβ  is the vector of the estimated coefficients using the ordinary 

least square method corresponding to group k, and   is the tuning parameter. Since 

)0(;
1




k

K

k

k dd  is singular at 0kd , this penalty can effectively identify the unimportant 

groups.  
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 After optimizing criterion (2-3), if 0ˆ kd , we keep the variables of group k for 

the next step, otherwise the corresponding variables are removed from the model. Let S 

denote the set of indices for the selected groups. We define X
~

 as the matrix of all 

predictor variables whose groups are identified as important, i.e.,   Skk  ,
~

XX . The 

dimensions of matrix X
~

is n by 
Sk

kp .  

2.2.1 Step 2: Variable Selection and Coefficient Estimation at Individual Level 

After selecting important groups, this step is used to further identify important individual 

variables, and estimate their corresponding coefficients within the selected groups. As 

mentioned earlier, individual variables are often correlated. Therefore, it is preferred to 

develop a model that has similar effects property for highly correlated variables. We 

modify the NNG (Brieman 1995) as follows such that it gains the similar effect property.  

Let β  denote the vector of coefficients of all individual variables. β  can be 

reparameterized as 0ddββ   ),ˆ( r , where 
r

β̂  is the vector of ridge estimates calculated 

by yXIXX
TT ~

)
~~

( 1

2

  , d  is the vector of shrinking factors of individual variables and 

operator “ ” represents the element-wise vector product. The proposed MNNG criterion 

is defined as follows: 

, :subject to,
2

)ˆ(
~

2

1
min

22
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2
r

0ddddβXy
d




   (2-4) 

where 2,1,0  tt  are tuning parameters. If 01  , criterion (2-4) becomes a ridge-

type criterion, and if 02  , it becomes an NNG criterion, thus it has the characteristics 

of both ridge and NNG criteria. Note that the penalty function used in (2-4) can be 
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considered as the weighted penalty function in the elastic net criterion (Zou and Hastie, 

2005) with 
r

β̂  as the vector of inverse weights. Therefore, similar to elastic net, the 

MNNG has the similar effects property and also can handle the situations where the 

sample size is less than number of important variables. We discuss these two properties 

in more details in Subsections 2.2.5 and 2.2.6. Despite Hlasso, which lacks a convex 

criterion, HNNG uses convex criteria at both group- and individual-levels, thus the global 

optimum can be easily obtained.  

2.2.2 Hierarchical Non-negative Garrote with Orthogonal Predictors 

To gain more insight about the proposed two-step HNNG, we study the cases with 

orthogonal predictors. Orthogonal predictors can be seen in many situations, for example, 

orthogonal wavelets, orthogonal spline, and/or orthogonal polynomials are often used as 

the predictors for nonparametric curve fitting. In the case of orthogonal bases, where 





n

i

kjix
1

2

, 1  and 


 
n

i

jkikji xx
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,, 0  if kk  or jj  , both group- and individual-level 

criteria have closed-form solutions. 

Lemma 2-1. If predictor variables are orthonormal to each other, 

 i) the solution of (2-3) in Step 1 is obtained by 
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is the ordinary least square estimator 

using the orthogonal predictors, and   ),0max( aa 
. 
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ii) the solution of (2-4) in Step 2 is obtained by 
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The proof is given in Appendix 2.A. 

It should be noted that both solutions in (2-5) and (2-6) are soft-thresholding 

estimates. The intuitive interpretation is given as follows. The soft-thresholding estimate 

in (2-5) shrinks each group effect, and the amount of shrinkage is inversely proportional 

to  


kp

j

kj

1

2
ols̂ . Therefore, if the ordinary least square coefficient of a group is small 

implying the group is not important, it is more likely that corresponding kd is shrunk to 

zero. Furthermore, the soft-thresholding estimate in (2-6) shrinks the olsˆ
j  coefficients 

using two different shrinkage factors 1  and 2 . The amount of shrinkage using both of 

these factors is inversely proportional to  2olsˆ
j . If a predictor is significant, we expect 

that its coefficient is slightly shrunk. In other words, for significant predictors with large 

 2olsˆ
j , 1  and 2  are close to 1 and 0, respectively, implying that the amount of 
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shrinkage for this coefficient is small. So, both (2-5) and (2-6) have a rational 

interpretation.  

2.2.3 Computation: Solutions of Hierarchical Non-negative Garrote  

To solve the optimization criterion at the group level for GNNG in (2-3), one can apply 

standard convex optimization method such as interior-points algorithms (Sturm, 1999), 

the shooting algorithm (Fu, 1999), and/or an efficient solution path algorithm (e.g., Efron 

et al., 2004, and Yuan and Lin, 2006). We recommend the GNNG solution path 

algorithm based on LARS proposed by Yuan and Lin (2006) because this algorithm can 

provide the entire solution path for a wide range of   with the same order of 

computations as a single OLS fit. 

To solve the optimization criterion at individual level for MNNG in (2-4), we 

propose an efficient solution path algorithm called LARS-MNNG, which is based on the 

LARS algorithm (Efron et al., 2004). The original LARS algorithm (Efron et al., 2004) 

was proposed for individual variable selection and applied to lasso and stagewise 

regression. This algorithm can be summarized as follows. Starting from all coefficients 

equal to zero, LARS selects the variable, which has the highest correlation with the 

response variable and proceeds in this direction. Despite the stepwise regression methods, 

instead of taking a full step towards the projection of Y on the selected variable, the 

LARS algorithm takes the largest possible step in this direction until another input 

variable has as much correlation with the current residuals. In this case, the projection of 

current residuals on the space spanned by the selected variables has the equal angle with 

the selected two variables. Then, the LARS algorithm proceeds in this direction until it 

finds the third variable. This procedure continues until all variables enter to the model. 
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The fact that the LARS solution path is piecewise linear, significantly reduces the 

computation complexity of the LARS algorithm. Therefore, in order to calculate the 

entire solution path, it suffices to find the break points defining the piecewise linear path. 

Yuan and Lin (2007) showed that the solution path for NNG is piecewise linear and 

modified the LARS algorithm to obtain the solution path for NNG. We show that, similar 

to the NNG, the solution path for modified NGG, given 2  is piecewise linear and thus 

the LARS algorithm can be adapted for calculating the solution path.  

Lemma 2-2. Define 
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,where B  is a PP  diagonal matrix 

whose diagonal elements are equal to   1
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kpP . The MNNG criterion in (2-
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        (2-7) 

The proof is given in Appendix 2.B.         

Lemma 2-2 states that we can transform the MNNG problem into an equivalent 

NNG problem on augmented data. Therefore, given 2 , the LARS algorithm is adapted 

to obtain the piecewise linear solution path for MNNG (LARS-MNNG) as follows. 

Step a: start from yrd


  ]1[]1[ ,0 ll , and 1l , where superscript [l] denotes the 

algorithm iteration. 
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Step b: select the variable that is the most correlated with the augmented response y


, 

and define the active set 
lC , which includes the selected variables until iteration l. 
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Step d: for 
lCi , compute the amount of progress for the LARS-MNNG in 

direction γ before ix


enters the active set. This can be measured by an i  as follows. 

   γXrxγXrx

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iii
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 ]1[r]1[r )()( , 

where i is arbitrarily chosen from lC  

Step e: for lCi , compute )1,min( ]1[

i

k

ii d   .  

Step f: if 0,  ii  , or   1min
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 . Set   ]1[][ ll
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1 iCC ll  ; otherwise 
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1 iCC ll  . 
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Step g: set )ˆ( r][
dβXyr 

l , and 1 kk . Go back to step c until 1 . 

According to Lemma 2-2, the MNNG criterion can be transformed to an NNG 

criterion. Therefore, as proven by Yuan and Lin (2007, Theorem 5) the trajectory of the 

above LARS-MNNG algorithm coincides with the solution path of modified NNG.  

Performance of the proposed approach depends on the choice of tuning 

parameters. There are a few methods in the literature that can be used for this purpose 

(See Hastie et al., 2009 for details). If enough data are available, the data are divided into 

3 subsets; training, validation, and test. Then, the validation subset is used for tuning the 

parameters. Otherwise, the k-fold cross-validation (CV) method is used. In either method, 

several values of tuning parameters within an applicable range are used to train the 

model. Then the prediction error is calculated for each of these tuning parameters using 

validation data, and the tuning parameter with the least prediction error is chosen. 

2.2.4 Case of small n, large p (n  p) 

In spite of the lasso and NNG methods, the MNNG method can handle the case when the 

number of significant variables is larger than the sample size. This property is due to the 

L2-norm penalty in the MNNG criterion. To show that MNNG can handle such situations, 

we refer to Lemma 2-2. In the MNNG criterion in (2-7), the dimensions of X


 is 

  PPn   with the maximum rank of )( PnP  , which implies that the MNNG can 

select all P variables if they are important. In other words, even if Pn  , using the L2-

norm penalty, the sample size is augmented such that it is always larger than the rank of 

matrix X


. 
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2.2.5 Similar Effects for Highly Correlated Predictors 

In this subsection, we show that the MNNG criterion in (2-4) enjoys the similar 

effects property. In the regression model with “similar effects” property, it is expected 

that predictors with high correlation have the similar coefficients (up to a sign change if 

negatively correlated). In the extreme case, particularly, when two predictors are 

identical, the estimation method should assign the same coefficients to the identical 

variables. The following theorem is proved to show the proposed MNNG can effectively 

reflect the similar effects property. 

Theorem. Given 1  and 2 , let ),(ˆ
21 β  denote the estimates obtained from the MNNG 

criterion in (2-4) and j

T

iij xx ~~ be the sample correlation between predictors ix~  and 

jx~ . Also, suppose 0),(ˆ),(ˆ
2121  ji  . Define

12121, ),(ˆ),(ˆ),(
21

y jijiD  , then 0),(
21, jiD   as 1ij  and 

0),(
21 , jiD   if 1ij   

The proof is given in Appendix 2.C. 

 The unitless quantity ),(
21 , jiD   represents the difference between two 

coefficients of predictors i and j given the tuning parameters. The above theorem 

indicates that if predictors ix~  and jx~
 
are highly correlated, i.e., 1ij  (if 1ij , 

replace jx~ with jx~ ), then difference between two coefficients, ),(
21 , jiD   

tends to zero. 

In the extreme case with 1 , this difference is equal to zero implying that two 

coefficients are identical. Note that despite the MNNG method, the original NNG 
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(Breiman 1995) does not benefit from the similar effects property. Indeed, the L2-norm 

penalty added to NNG criterion in (2-4) leads to this property in the modified NNG. 

2.3. Performance Comparison using Simulation  

In this section, we conduct a simulation study to evaluate the performance of the 

proposed HNNG and compare it with some existing methods in the literature. 

Specifically, we compare HNNG with lasso as an individual variable selection method; 

and with L2-norm group lasso, L∞-norm group lasso, GNNG, and Hlasso as the group 

variable section methods. 

Two different scenarios are considered in this simulation study. In the first 

scenario, in order to evaluate and compare the prediction performance of different 

methods, we extend the simulation study conducted by Zhou and Zhu (2010). We first 

generate 17 independent standard normal variables, ,,...,, 1621 ZZZ  and W . We exploit 

these variables to generate 16 correlated variables using   16,...,1,2  kWZX kk  . 

Then, each of the first 8 variables is expanded through a fourth-order polynomial and 

each of remaining variables is discretized to 0, 1, 2, 3, and 4 by )2.0(1 , )4.0(1 , 

)6.0(1 , and )8.0(1 , where )(1   is the inverse cumulative distribution function of 

the standard normal distribution. This gives us a total of 8 continuous group variables and 

8 discrete group variables. Each group variable consists of 4 individual variables. The 

following model is used to simulate independent responses. 

 )]0(3[]22[]5.25.2[ 9

4

2

2

2

3

11 XIXXXXY , 
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where I is the indicator function, and   is the random error generated from a normal 

distribution ),0( 2N .   is set such that )(/)(
64

1

 stdXstd
k

kk


is equal to 3.  

For this study, we generate 400 observations as training dataset, 400 observations 

as validation dataset, and 10,000 observations as test dataset. For each method, we try 

different values of tuning parameters to train the model using the training dataset and 

choose tuning parameters such that their validation error is minimum. There are 3 criteria 

used for performance evaluation and comparison, mean square error (MSE) for test 

dataset, the percentage of true important variables selected by each method (denoted by 

IV), and the percentage of unimportant variables removed from the model by each 

method (denoted by UV).  We repeat the simulations 100 times and record these criteria. 

Figure 2-2 shows the boxplot of MSE values obtained from each method. Furthermore, 

the mean and standard error of each of the criteria over the 100 repetitions are 

summarized in Table 2-1. For each criterion, the number inside the parenthesis represents 

the standard error of simulation. 

Table 2-1. Summary of simulation results for performance comparison of different methods. 

 

MSE IV UV 

HNNG 
2.63 91% 90% 

(0.20) (1.1%) (1.0%) 

Hlasso 
4.08 79% 90% 

(0.25) (0.8%) (0.8%) 

GNNG 
4.50 91% 76% 

(0.40) (1.1%) (1.6%) 

L2 
4.88 86% 51% 

(0.24) (0.9%) (1.7%) 

L∞ 
4.66 85% 50% 

(0.29) (0.9%) (1.7%) 

Lasso 
5.37 89% 72% 

(0.33) (1.4%) (1.1%) 

OLS 
18.94 

--- --- 
(1.50) 
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Figure 2-2. Boxplot of MSE values for test dataset 

As can be seen from the results, in terms of MSE, the proposed HNNG 

significantly outperforms other methods with the average MSE of 2.63 and the standard 

error 0.20. After HNNG, Hlasso has the least MSE among others. The reason of HNNG’s 

and Hlasso’s superiority is that both HNNG and Hlasso can perform the variable 

selection at both the group- and individual-level, while others only perform the group 

variable selection. Lasso on average has the larger MSE (5.37) compared to L2-norm 

group lasso and L∞-norm group lasso since it cannot select group variables. L2-norm 

group lasso and L∞-norm group lasso perform almost equally. The very large MSE of 

OLS (18.94) also indicates the essential need of the regularization. Furthermore, from 

Table 2-1, GNNG and HNNG are equivalently effective in terms of selecting important 

variables, with IV of 91%. The small IV of Hlasso (79%) indicates that the model 

obtained by Hlasso is too sparse. This is the reason that the MSE of Hlasso is worse than 

the MSE of HNNG. In terms of removing unimportant variables, HNNG and Hlasso with 

HNNG Hlasso GNNG L2 Linf Lasso

0
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4
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M
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UV of 90% are much better than all other methods. Also, the small UV values for L2-

norm group lasso, L∞-norm group lasso (51% and 50%) is because of the fact that these 

methods are not able to remove unimportant variable within the selected groups.  

To study the similar effect property, in the second scenario, two groups of 

variables, each of which comprises four variables are considered. All predictors follow a 

standard normal distribution, i.e., 4,3,2,1;2,1);1,0(~  jkNX kp . The predictors are 

generated so that 90.0),( 2111 XXcorr and 90.0),( 2212 XXcorr , and other pair-wise 

correlations are equal to zero. The following data generating model is used to simulate 

independent responses obtained from highly correlated predictors.   

 ]25.2[]25.2[ 22211211 XXXXY , 

where   is the random error generated from a normal distribution ),0( 2N .   is set 

such that )(/)(
64

1

 stdXstd
k

kk


is equal to 3. Similar to the first scenario, we generate 

400 observations as training dataset, 400 observations as validation dataset used for 

choosing tuning parameters. Then, we calculate the ),( jiD  values for the highly 

correlated predictors in each simulation repetition, i.e., ),( 2111 XXD  and ),( 2212 XXD . 

The boxplots of ),( jiD  values obtained from each method are plotted in Figures 2-3(a) 

and 2-3(b), respectively.   
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Figure 2-3. Boxplot of unitless difference between two coefficients of predictors 

Figure 2-3(a) (top panel). Boxplot of ),( 2111 XXD , Figure 2-3(b) (bottom panel). Boxplot of 

),( 2212 XXD  

 Both Figures 2-3(a) and 2-3(b) show that ),( jiD values of the proposed HNNG 

for highly correlated variables on average are smaller than ),( jiD  values of all other 

methods and close to zero. For HNNG, the median of ),( 2111 XXD  and ),( 2212 XXD  are 

0.0002 and 0.0001, respectively. This implies that the coefficients estimated via HNNG 
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tend to be the same for highly correlated variables. That is, despite other methods, the 

proposed HNNG benefits from the similar effect property. In short, the simulation results 

imply that considering MSE, IV, UV, and ),( jiD criteria, HNNG has the best overall 

performance among all variable selection methods discussed in this chapter. 

2.4 Case Study  

A case study is shown in this section to further demonstrate the effectiveness of the 

proposed HNNG method. We apply HNNG to the ingress/egress dataset described in the 

introduction. In a set of experiments, different drivers tried different design 

configurations of a vehicle by getting in and getting off the vehicle. During each trial, the 

motion profiles of 19 points of drivers’ body including right hip, right ankle, left hip, left 

ankle, head, pelvis, T12L1 (on spine) ,T1T2 (on spine), neck, right knee, right toe, right 

shoulder, right elbow, right wrist, left knee, left toe, left shoulder, left elbow, and left 

wrist were captured. The spatial trajectories were measured over time in x-,y-, and z-

coordinate. After each trial, each driver gave a score in the scale of 1 to 10 about comfort 

of the design configuration with 1 as the worse and 10 as the best comfort index. The 

objective of this case study is to identify informative sensors and their corresponding 

trajectories to construct a regression model for predicting the comfort score of a vehicle.  

In this case study, we analyzed ingress profiles. Motion ingress profiles were 

registered (aligned) based on the starting and stopping time of movement determined by 

the 3D speed. The dataset contains 254 trials with 57 trajectories in each trial (19 profiles 

of 19 measurement points × 3 xyz-coordinates), in which each trajectory consists of 200 

data points. If each data point in a trajectory were considered as a predictor, the number 

of predictors would be 11,400 (57×200). To reduce the dimension of predictors, we 
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modeled each curve by applying a cubic bspline with degrees of freedom of 13 (9 

coefficients) and used the bspline coefficients as predictors. Before fitting a cubic 

bspline, each trajectory was scaled to the interval [0,1], thus the obtained bspline 

coefficients reflect variations in the shape of trajectories. Also, in order to consider 

variations in the magnitude of trajectories, two other features including startpoint, and 

(endpoint – startpoint) of each trajectory were added to the shape features. Therefore, 

each trajectory was reduced to a vector of 11 features.  

In this chapter, a group variable is defined as each measurement position. Each 

group variable consists of 33 individual variables that correspond to the xyz three 

trajectories with 11 features representing each trajectory. Therefore, 19 measurement 

positions yield the total of 627 predictors (19 groups with 33 individual variables in each 

group). For model estimation and validation, we randomly selected 150 trials as the 

training dataset and remainders as the test dataset. Then, we used a 10-fold CV for 

choosing the tuning parameters and training the models. Finally, after training and tuning 

the parameters, each model was tested using the test dataset. Table 2-2 shows the 

comparison between HNNG and other existing methods, in which the mean square 

prediction error (MSPE) along with the number of selected group and individual 

variables are reported. 

Table 2-2. MSPE and sparsity results of different methods for ingress/egress dataset. 

  HNNG GNNG L2 L∞ Hlasso Lasso OLS 

MSPE 3.28 4.18 4.14 4.11 3.91 4.30 132.03 

No. of selected groups 13 13 12 13 9 16 19 

No. of selected variables 159 429 396 429 99 17 627 
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As can be seen from Table 2-2, the proposed HNNG has the least MSPE among 

all methods with MSPE of 3.28. Also, all group variable selection methods predict the 

comfort index more accurately than lasso. In terms of sparsity, Hlasso results in the 

sparsest model by selecting 99 variables within 9 groups. However, it is so sparse that 

affects the prediction performance. HNNG, on the other hand, selects 271 variables in 13 

groups, which results in a sparse model as well as accurate prediction. The number of 

selected individual variables in HNNG is much smaller than GNNG, L2, and L∞. This is 

because, despite other methods, HNNG is able to select variable in both group- and 

individual-levels. 

Figures 2-4(a) and 2-4(b) also show the coefficients solution path for Step 1 and 

Step 2 of HNNG obtained from the Ingress dataset, respectively. In both figures, x-axis is 

the fraction of progress measuring how far the estimate has stepped on the solution path, 

and y-axis is the value of estimated coefficients. Each line represents a solution path 

corresponding to one coefficient and each dot represents one iteration of the LARS 

algorithm. As can be seen from the figures the solution paths for both GNNG and MNNG 

are linear piecewise. In both figures, the intersections of the vertical dashed line and the 

solution paths show the optimum coefficients obtained from the 10-fold CV.  
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Figure 2-4. Solution paths for HNNG 

Figure 2-4(a) (top panel). The solution path of Step 1 of HNNG obtained from GNNG-LARS 

Figure 2-4(b) (bottom panel). Partial solution path of Step 2 of HNNG obtained from MNNG-

LARS 

As can be seen from Figure 2-4(a), 13 trajectories were selected that include left 

and right toe, left and right knee, left and right hip, left and right wrist, T1T2, T12L1, left 
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elbow. These trajectories can be grouped into a few clusters based on their location 

proximity of sensors on the driver’s body. These clusters along with the average of kd̂  

values for each cluster are reported in Table 2-3. From this table, it can be implied that 

both right and left foot clusters with average kd̂ of 0.29 are as equally important. 

However, the trajectories of left hand cluster are more influential on subjects’ response 

than those of the right hand cluster. Right hip has also larger kd̂  than left hip. Another 

important cluster is the spine cluster including T1T2 and T12L1, which is associated with 

the drivers’ bending when getting inside the car.  

Table 2-3. Clusters of selected trajectories and their average importance. 

 

Cluster 1 (right foot) Cluster 2 (left foot) Cluster 3  

Selected 

profiles 
Right toe Right ankle Right knee Left toe Left ankle Left knee Right hip 

Average kd̂  0.29 0.29 0.18 

 

Cluster 4  Cluster 5 (right hand) Cluster 6 (left hand) Cluster 7 (spine) 

Selected 

profiles 
Left hip Right wrist Left wrist Left elbow T1T2 T12L1 

Average kd̂  0.06 0.02 0.29 0.17 

 

Appendix 2.A: Proof of Lemma 2-1 

Part i. In case of orthogonal predictors, Since ols

1

ˆ
kj

n

i

ikji xy 


 , criterion (2-3) can be 

simplified as 
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Since (2.A.1) is convex, for 0kd , Karush–Kuhn–Tucker (KKT) sufficient condition 
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Appendix 2.B: Proof of Lemma 2-2 

After plugging 



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2
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2
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 and doing 

algebraic simplification, we will obtain the criterion in (2-4). ■ 

Appendix 2.C: Proof of Theorem 

To prove this theorem, first we prove the following lemma. 

Lemma 2-3 let 
r

β̂  denote the ridge estimate and suppose 0ˆˆ rr ji   . Then 0ˆˆ rr  ji   

as 1ij  . 

Proof: According to Theorem 1 of Zou and Hastie (2005) with 01  ,  it is true that 

)1(2ˆˆ

2

rr 

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y

ji .     (2.C.1) 

Therefore 0ˆˆ rr  ji   as 1ij  .■ 

Proof of Theorem: Suppose id̂  and jd̂ are the solutions of (2-4), and rˆ
i  and rˆ

j  are the 

ridge estimates corresponding to ),(ˆ
21  i , and ),(ˆ

21  j , respectively. So, based on 

the KKT first order necessary condition for id̂  and jd̂ , it can be stated that 
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where )ˆ~
(ˆ βXyr  is the residuals vector. 
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 Since X
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Because d̂  is the optimum solution to (2-4), we have 
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which implies that yr ˆ . From (2.C.1), (2.C.3), and yr ˆ , it can be implied that 
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Lemma 2-3 and inequality (2.C.4) together imply that 0),(
21 , jiD   as 1ij , and 

0),(
21 , jiD  if 1ij .■ 
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CHAPTER III 

Characterization of Nonlinear Profile Variations Using Nonparametric  

Mixed-Effect Models and Wavelets 

 

3.1 Introduction 

With the rapid development of embedded sensing and computer technologies, online 

sensing and monitoring systems have been increasingly used for manufacturing process 

control. In many practical situations, the sensor measurements are shown as time-

dependent functional data, which are also called “profile data” or “waveform signals.” 

Some examples include the welding force responses recorded in resistance welding 

operations at the uniform sampling time intervals (Chu et al., 2004), the tonnage 

signature signals measured in stamping processes at the equal crank angle sampling 

intervals (Jin and Shi, 1999), the vertical density profile of a particleboard measured at 

each fixed vertical depth (Walker and Wright, 2002), and the ram force signals used to 

press valve seats into engine heads in engine head assembly processes.  

Most of the previous research has focused on linear profile monitoring. Some of 

these studies include the work done by Kang and Albin (2000), Kim et al. (2003), 

Mahmoud and Woodall (2004), Mahmoud et al. (2007), Zou et al. (2006), and Jensen et 

al. (2008). Meanwhile, nonlinear profile modeling and monitoring has also generated 

increasing interest in the statistical process control (SPC) research field for complicated 

profile data. For example, Gardner et al. (1997) utilized smoothing spline to model 
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nonlinear profiles. Williams et al. (2007) used a four-parameter logistic regression and 

smoothing spline to model dose-response profiles of a drug. To monitor and distinguish 

out-of-control nonlinear profiles in Phase I, Ding et al. (2006) considered each profile as 

a high-dimensional data set and applied principal component analysis (PCA) and 

independent component analysis to reduce the dimension of the nonlinear profile data 

while preserving the cluster structure of the profiles. Zou et al. (2008) used local linear 

smoothers to monitor nonlinear profiles. Zou et al. (2009) applied the generalized 

likelihood ratio test to develop a monitoring procedure for nonlinear profiles modeled by 

local linear kernel smoothing. To determine the control limit, they used the bootstrap 

method based on a few samples of in-control profiles. 

In all of the studies mentioned above, it is assumed that the total variability of 

profiles can be modeled by random noises, which are typically assumed to be normally 

independently distributed (NID). In those cases, such random noises are mainly used to 

reflect the within-profile variation with a constant variance over all measurement points. 

In many practical situations, however, the variation among in-control profiles is too large 

to be handled by NID noises only. Growth curves (Ramsay and Silverman, 1997), as 

shown in Figure 3-1, are typical examples of such situations. Since the growth of one 

individual generally differs from that of others, a large amount of profile variations is due 

to the person-to-person growth variability, which may not be fully explained by only the 

random noises within each person’s growth curve.  
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Figure 3-1: Growth curves of 10 Swiss boys  

As another example (to be discussed in detail in Section 3.7), the inserting forces of 

a pressing machine (as shown in Figure 3-2) are used to press valve seat rings into an 

engine head. These force signals are continuously recorded during each cycle of repeated 

pressing operations. The overlapping multiple samples of signals collected at different 

cycles of in-control operations are shown in Figure 3-2(a). Furthermore, to show the 

magnitude of random noises within each profile, an individual signal is also depicted in 

Figure 3-2(b), in which the dotted points represent the actual measurements, and the solid 

line is the fitted profile through the wavelet-based denoising method. As can be seen in 

Figure 3-2(b), the within-profile variation obtained from the fitted model residuals et is 

much smaller than the part-to-part (i.e., curve-to-curve) variation shown in Figure 3-2(a). 

In other words, a significant portion of the total inherent variation is mainly reflected in 

the between-profile variation and is too large to be taken into account by only random 

noises corresponding to the within-profile variation.  

In practice, there are many causes for such inevitable between-profile variations, 

such as part-to-part variation, fixture or tooling tolerance, and/or process operation 

condition variations. The between-profile variation may affect the local profile shape 
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differently at different segments of a profile. In contrast, the within-profile variation is 

mostly due to measurement errors and environmental disturbances, which independently 

and identically affect all observations of an entire profile. Therefore, characterization and 

estimation of between-profile and within-profile variations will not only help monitor the 

process more effectively, but also provide us with a better understanding of the root 

causes of process variations, which can expedite further decision making for variation 

reduction and process improvement.  

 
Figure 3-2. Pressing force profile signals in a valve seat assembly operation 

Figure 3-2(a) (left panel) overlapped multiple samples of profile signals. Figure 3-2(b) (right panel) 

one original profile (dot) and fitted profile (line)  

Recently, a few advanced modeling methods have been developed on variation 

modeling for nonlinear profiles by considering both within-profile and between-profile 

variations via mixed-effect models (hereafter called mixed models for simplicity). For 

example, Mosesova et al. (2006) and Jensen and Birch (2009) developed a parametric 

mixed model by including a few model parameters as the random effects to reflect the 

between-profile variation. Applying a parametric model, however, is not always 

achievable because it requires strong domain knowledge and tremendous modeling 

efforts to identify an appropriate parametric model structure. To overcome this challenge, 
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an alternative approach of using nonparametric mixed models has attracted recent 

research interests. Mosesova et al. (2006) developed a mixed model by using a B-spline 

basis. Shiau et al. (2009) used a random-effect B-spline model along with PCA for 

monitoring nonlinear profiles. Although splines and PCA have been considered effective 

nonparametric approaches for modeling and analyzing smooth nonlinear profiles, they 

are inherently ineffective for modeling complicated nonlinear profiles with local sharp 

jumps or nondifferentiable points. The wavelet transform is a nonparametric alternative 

that can be effectively used for modeling nonlinear profiles with sharp jumps.  

One of the research challenges in using wavelets for process monitoring is 

determining how to select a low dimension of monitoring features from the large 

dimension of wavelet coefficients. Jin and Shi (1999) developed a feature-preserving 

wavelets-based thresholding method to extract monitoring features from complicated 

tonnage waveform signals, and then constructed a Hotelling T
2 

control chart based on 

unthresholded wavelet coefficients for stamping process monitoring (Jin and Shi, 2001). 

However, their method is limited to detecting profile changes that are reflected by the 

selected unthresholded wavelet coefficients. To overcome this problem, Jeong et al. 

(2006) presented an adaptive thresholding procedure that threseholds the wavelet 

coefficients of each incoming profile and updates the selected coefficients based on those 

that are unthresholded.  

Chicken et al. (2009) developed a change-point model based on the likelihood ratio 

test, in which all wavelet coefficients are taken into account. They showed that 

monitoring wavelet coefficients is equivalent to evaluating the hypothesis that the 

noncentrality parameter of a Chi-square distribution is equal to zero. They estimated the 
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noncentrality parameter based on the unthresholded coefficients, which can reduce the 

variance of the estimator and consequently improve the performance of monitoring 

methods. They also showed that the change-point model outperforms the methods 

proposed by Jin and Shi (2001) and Jeong (2006). 

All of the aforementioned work on wavelet-based monitoring approaches only 

consider the within-profile variation in modeling of the total profile variability. Very little 

research has been done on wavelet-based profile modeling or on monitoring methods that 

can account for both within-profile and between-profile variations. Therefore, the 

objective of this chapter is to develop a mixed model based on wavelets for the following 

two purposes: (1) to characterize nonlinear profile variations by considering both 

between-profile and within-profile variations, thus going beyond the existing wavelets-

based nonparametric modeling methods that account for only the within-profile variation; 

and (2) to characterize both global and local segmental variation patterns by mapping 

scale/detail wavelet coefficients into profile segments, which goes beyond the existing 

methods (such as PCA or splines) that mainly characterize global variations for smooth 

nonlinear profiles.  

In this chapter, the wavelets transform is selected by considering its following three 

unique merits over other nonparametric approaches: (1) the wavelets-based modeling is 

capable of fitting complicated nonlinear profiles with sharp jumps and nondifferentiable 

points; (2) the multi-scale wavelet coefficients have the unique capability to separate the 

within-profile noises (at the high frequency range) from the true profile signal (mainly at 

the low frequency range), which can significantly simplify the computation for estimating 

the mixed model parameters; and (3) the mapping relationship between the 
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multiresolution wavelet coefficients and the local profile segments can facilitate the 

identification of the sources of the between-profile variation.  

Implementing the proposed mixed model involves two critical research issues. The 

first is to ensure that the collected profile samples used for model estimation have an 

identical mixed model distribution. It is well known that combining samples from 

different distributions would lead to a large estimation error for the model parameters, 

thus resulting in a misleading model. For this purpose, a change-point model, which is 

used to group profiles based on their distributions, is developed based on a likelihood 

ratio test (LRT). The other critical issue is knowing how to reduce the computation for 

implementing a mixed model. It is well known that the computation required for 

estimating model parameters increases with the number of random parameters. 

Demidenko (2004) recommended a method for constructing a model starting with one 

random coefficient and then adding more random parameters one-by-one if needed. 

However, this step-by-step exploration approach may not be very effective considering 

the large number of wavelet coefficients transformed from profile signals. Therefore, 

although wavelet transform is an effective approach for modeling complex nonlinear 

profiles, implementing a wavelets-based mixed model is still challenging. This chapter 

also discusses how to effectively select a low dimension of wavelet random effects in the 

construction of the proposed mixed model, which can be well suited for characterizing 

the between-profile variation. 

The remainder of the chapter is organized as follows. Section 3.2 provides an 

overview of the proposed methodology, and Section 3.3 gives a brief review of the 

wavelets transform used for profile signals. The development of the proposed wavelet-
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based mixed model is elaborated in detail in Section 3.4. In Section 3.5, an LRT-based 

change point model is developed to check the distribution identicalness of the collected 

profile samples. The performance of the proposed approach is examined through both 

Monte-Carlo simulations and a case study in Sections 3.6 and 3.7, respectively.  

3.2 Overview of the proposed methodology 

A general framework of the proposed methodology is shown in Figure 3-3. Firstly, the 

measured nonlinear profile data are transformed into the wavelet domain by using a 

selected wavelet basis. Then, a mixed model is developed on the wavelet coefficients, in 

which a two-step modeling approach is developed to reduce the computational 

complexity in the mixed model estimation. At the first step, the wavelet denoising 

thresholding is conducted on each profile in order to separate within-profile noises from 

between-profile variations. At the second step, in order to reduce the dimension of the 

parameters in the mixed model, a few wavelet coefficients with random-effect are 

selected. Afterward, the LRT-based change-point model is applied to check the 

distribution identicalness of the collected profile samples. This result is used to group 

profile samples based on their distributions for further estimation of mixed model 

parameters. Finally, a mapping between the selected wavelet coefficients with the 

random-effect and the profile segments is conducted to facilitate the identification of 

variation sources. The detailed analysis of each step will be elaborated in subsequent 

sections. 
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Figure 3-3. Flow diagram of the proposed methodology. 

 

3.3 Wavelet transformation for profile signals 

Suppose there are m available profiles, each of which consists of n pairs of (t, y) discrete 

observations that can be generally described by 

iii f εty  )(  for mi ,...,2,1 ,    (3-1) 

where iy  is a vector of the discrete response measurements of profile i; (.)if  is an 

unknown nonlinear function of profile i; t  is a vector comprising of equally spaced 

sampling time or distance; and iε  is a vector of NID noises with ),(MVN~ 2
I0ε i  to 

represent the within-profile variation, where I  is an nn identity matrix. 

The first step of the proposed procedure, as shown in Figure 3-3, is to transform 

each profile into the wavelet domain. It is well known that any function g  in )(2 L , the 

square-integrable functions space can be expressed by a wavelet series of 




 


0

00
)()()(

jj Zk

jkjk

Zk

kjkj tdtctg 

 

(Daubechies, 1992). Functions (.)  and (.)  are 

known as father and mother wavelets basis, respectively. They are used to decompose 
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function g into two parts corresponding to low-frequency (coarse) and high-frequency 

(detail). The multiresolution decomposition property of wavelets is performed by a set of 

orthonormal wavelets basis of )2(2)( 00

0

2
kxt

jj

kj    and )2(2)( 2 kxt jj

jk   ; for 

any nonnegative integer 0jj  . The decomposed coefficients kjc
0

 and jkd  are called 

approximate and detail wavelet coefficients, which are determined by the inner product 

of g  and the corresponding wavelet functions, i.e., ,,
00 kjkj gc 

 
and jkjk gd , , 

where  represents the inner product operator.  

When the number of discrete measurements (n) in each profile is dyadic, i.e., 

;2Jn   with J as a positive integer number, a fast numerical algorithm called discrete 

wavelet transform (DWT), can be used to determine wavelet coefficients (Mallat, 1999). 

The matrix form of DWT is represented as Wyz  , where nnW  is an orthogonal real 

matrix depending on the selected orthogonal wavelet basis, and the vector 

T

JlJlJlJ ],...,,,[ 11000  dddcz  represents all decomposed wavelet coefficients, where 

superscript T denotes the transpose operator. The elements of 
0lJc  denote the 

approximate coefficient vector at the decomposition level l0 )1( 0 Jl  , y can be 

represented by Jc , and ),...,2,1( 0lllJ d  denotes the detail coefficient vector at the 

decomposition level l. More details about the wavelets transform can be found in Mallat 

(1999) and Daubechies (1992). 

In the chapter, an orthogonal Haar transform is used for the discretized profile 

data iii f εty  )(  and the resulting wavelet coefficients are represented as iii εθz ~ ; 
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where )(tWθ ii f  is a vector of the true wavelet coefficients transformed from the true 

profile function fi(t); ii Wyz   is a vector of the empirical wavelet coefficients 

transformed from noisy profile iy ; and ii Wεε ~  is a random noise vector in the wavelet 

domain with ),0(MVN~~ 2
Iε i . 

3.4 Mixed Model for Wavelet Coefficients 

To consider the between-profile variation, a mixed model, in which a few wavelet 

coefficients are considered as random effects, is utilized. Davidian and Giltinan (1995), 

Pinheiro and Bates (2000), and Demidenko (2004) provided a comprehensive 

introduction of mixed-effect models. It is commonly known that constructing a 

parametric nonlinear mixed model and estimating the corresponding parameters is often 

based on numerical methods, which are computationally expensive and might not 

converge if the number of random effects is large. In contrast, the wavelets transform 

provides a multi-scale linear transformation capable of separating the within-profile 

variation from the true between-profile variation. This capability of the wavelets 

transform allows us to simplify the estimation of the mixed model parameters.  

To implement the mixed model based on wavelet coefficients, let ii bμθ  , where 

μ  is the vector of fixed effects common to all profiles, ib  is the vector of random effects 

of profile i with )(MVN~ Λ0b ,i , and Λ  is a positive definite matrix representing the 

covariance structure of random effects. In this chapter, Λ  is assumed to be a diagonal 

matrix, which implies that the random effects are uncorrelated. The reason for this 

assumption is that the maximum likelihood (ML) estimate of the covariance matrix could 

become negative definite if the sample size is less than the dimension of the covariance 
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matrix, especially in the wavelet-based mixed model where the number of wavelet 

coefficients is often large. However, if the sample size is large enough, the method 

presented in this  is applicable to cases in which no restriction on the covariance matrix 

structure (such as a diagonality assumption) exists. Furthermore, such a diagonality 

assumption only restricts the covariance among the random effects of between-profile 

variations, which implies neither the independency nor a constant variance across 

different data points within a profile. We also assume that in the equation iii εbμz ~ , 

ib  is independent from iε
~ . Based on this mixed model, the parameters of μ  and ib  can 

be effectively used to represent the profile mean and between-profile variation, 

respectively.  

In order to construct a wavelet-based mixed model, a two-step modeling approach 

is proposed (Figure 3-3). At the first step, the within-profile variation is estimated and 

removed through wavelet denoising thresholding of each sample of profile signals. As a 

result, the sample-to-sample variability of the remaining wavelet coefficients mainly 

reflects the between-profile variation. Therefore, at the second step, the between-profile 

variation is estimated based on the remaining wavelet coefficients using all collected 

samples of profile signals if they follow an identical mixed model distribution. The 

investigation of distribution identicalness among samples will be discussed in Section 

3.5. In order to effectively estimate the mixed model parameters and identify the major 

sources of variations, a data dimension reduction approach is further explored by 

selecting a few significant wavelet coefficients, which are sufficient to characterize the 

majority of the between-profile variation. The following two subsections will discuss the 
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details of the proposed two-step estimation of the mixed model parameters on the wavelet 

coefficients. 

3.4.1 Characterizing Within-Profile Variation and Denoising 

In this subsection, wavelet-based denoising thresholding is utilized to estimate and 

remove the within-profile variation of noises iε
~ . As Mallat (1989) indicates, only a few 

wavelet coefficients contribute to the original true function of profiles. Therefore, 

denoising thresholding can be effectively applied to wavelet coefficients to remove the 

within-profile variation.  

Since the white noises equally contribute to the wavelet coefficients, the soft 

thresholding approach introduced by Donoho and Johnstone (1995) is applied with the 

following thresholding rule: 

   nInn iiiii log2ˆlog2ˆ)(sign),ˆ;(   zzzz ,   (3-2) 

where )(  is the soft thresholding function, )(I  represents an indicator function, )(sign 

is the sign function, and ̂  denoting the estimated standard deviation of iε
~ , is calculated 

by ;ˆˆ
1

22 



m

i

i m  where   6745.0)median(medianˆ
1,1,   JiJii dd  with 1, Jid  

denoting the detail coefficients at the lowest decomposition level (Donoho and Johnstone, 

1995). Based on equation (3-2), if a coefficient is less than the threshold of nlog2̂ , it 

will be shrunken to zero. The denoised profile data and wavelet coefficients are denoted 

as y~  and z~ , respectively. It is known that the maximum of n independent Gaussian 

white noises cannot exceed nlog2  when n is large (Fan, 1996), i.e., 
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


n

n 1)log2~Pr(max ε  with ),0(~~ 2
Iε NID . This implies that with a high 

probability, all noises are shrunk towards zero when n is large. Thus, the remaining 

coefficients approximate the wavelet coefficients of the true profile signals. 

As shown in Appendix 3.A, for each profile, the conditional variance of the 

denoised wavelet coefficients, given ib  denoted by 2
~

irz ( nr ,..,2,1 ), can be calculated as 

follows: 
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,   (3-3) 

where   is the threshold value nlog2 ; )( r

zir
 and )( l

zir
 are the right and left 

truncated means of irz  with truncation point  , respectively; )( r

zir
 and )( l

zir
 are the 

right and left truncated standard deviation of irz  with truncation point  , respectively; 

   is the cumulative distribution function of the standard normal distribution; 
irz~ is the 

conditional mean of the denoised wavelet coefficients; and irrz b
ir

   with r  and irb  

as the r
th

 element of vectors μ  and ib , respectively. The detailed derivations for 

obtaining 
irz~ , )( r

zir
, )( l

zir
, )( r

zir
 and )( l

zir
 are given in Appendix 3.A.  

3.4.2 Characterizing between-profile variation 

After denoising thresholding (Section 3.4.1), the true wavelet coefficients iθ  can be 

estimated by the remaining denoised wavelet coefficients z~ , i.e.,  
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ii zθ ~ˆ   and ii bμθ  .    (3-4) 

As a result, the remaining unthresholded empirical wavelet coefficients can be used 

for modeling the between-profile variation and estimating the remaining unknown 

parameters of the mixed model. The ML estimate of μ  is obtained by  





m

i

i m
1

~ˆ zμ .             (3-5) 

Let zΣ~  represent the covariance matrix of the denoised wavelet coefficients. The 

ML estimate of zΣ~  is  
nr
rSdiag

,...,2,1

~
ˆˆ



zΣ ; 



m

i

rirr mzzS
1

2)~~(ˆ , where irz~  is the r
th

 denoised 

wavelet coefficient of the i
th

 profile and rz~  is the sample mean of the r
th

 denoised wavelet 

coefficient among all profiles. Furthermore, It is well known that 

     ii bzbzΣz
~VarE~EVar~  . In other words, in the wavelet domain, the variance 

obtained from the denoised coefficients of all profiles, zΣ~ , can be decomposed into the 

between-profile variation,   ibz~EVar , and the estimate’s variation caused by denoising 

each profile   ibz~VarE . Based on equation (3-4), the term   ibz~EVar  can be 

estimated by Λ̂ , where Λ̂  is the estimate of the covariance matrix of bi. Also, the term 

  ibz~VarE  can be estimated by (3-3) provided that 
irz  and   are replaced with r̂  

and ̂ , respectively, where r̂  represents the r
th

 element of μ̂ . If the estimated 

  ibz~VarE  is denoted by  
nr
rdiag

,...,2,1

ˆˆ


 Σ  with r̂  as the estimate of 
2
~

rz , we can obtain  
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rrrS  ˆˆˆ  . Therefore, r̂  can be estimated by )0ˆˆ()ˆˆ(ˆ  rrrrr SIS  , with )(I  as 

an indicator function. 

3.4.2.1 Selecting wavelet coefficients with significant random effects 

To reduce the dimensionality of random effects in the mixed model, only a small 

number of wavelet coefficients that have larger and more significant random effects, 

should be selected. For this purpose, two rules are suggested in this  for selecting 

appropriate wavelet coefficients in the mixed model. Rule 1 is used to select wavelet 

coefficients with larger contributions to the between-profile variance. Rule 2 is used to 

further check whether the selected coefficients have a significant random effect. The 

detailed description of each rule is provided below.  

Rule 1: Wavelet coefficients with a larger variance are chosen such that the 

cumulative variance contribution of the selected random effects exceeds a threshold of Q 

)10( Q . The contribution of each wavelet coefficient as a random effect in the total 

between-profile variation is sorted by  

n
r

rq 
 ˆ...ˆˆ;

)ˆ(trace

ˆ

21 
Λ

.    (3-6) 

Thus, the set of the selected wavelet coefficients can be represented by 

















 


Qqrz
k

d

d
k

r

1

minarg~ .  

Justification of Rule 1: The reason we use this criterion is because we are often 

interested in identifying the root sources for only the top 100Q percent of total variations. 



63 
 

To show how rq  is related to the between-profile variation, let )(tfΣ  denote the between-

profile covariance matrix. As proved in Appendix 3.B, the total between-profile variance, 

calculated by )(trace )(tfΣ , can be explained by the total variance of the random effects. 

That is, )(trace)(trace )( ΛΣ tf . Therefore, the selected wavelet coefficients would be 

sufficiently described as more than 100Q percent of the total between-profile variation. 

There is no fixed value for threshold Q. The choice of Q is subject to the specific 

application. Generally, a very small value of Q may result in information loss about 

between-profile variation. On the other hand, as will be explained in the next section, a 

very large value of Q may lead to too many selected wavelet coefficients that may affect 

the performance of the model used for grouping profile data.  

Rule 2: Each wavelet coefficient in   is tested to check whether it is a significant 

random effect.  

For this purpose, the following hypothesis is formulated: 









r

r

r
,

0:H

0:H

a

0




. 

The statistic  r
S

F
r

r
r ,

ˆ

̂
 is used for testing the above hypothesis. If the 

calculated rF  is larger than the critical value CF , then it can be implied that the random 

effect corresponding to wavelet coefficient r is significant. The critical value CF  is 

obtained by the 10,)1(100 th    percentile of the empirical distribution of rF  when 

there is no random effect in the model that is obtained by the Monte Carlo simulation.  
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Justification of Rule 2: As stated earlier, in the wavelet domain, the estimated 

variance obtained from the denoised coefficients of all profiles can be expressed by the 

estimated random effect plus the estimate’s variation caused by denoising each profile, 

i.e., rrrS  ˆˆˆ  . Therefore, when the value of r̂  is close to the value of rŜ , it indicates 

that the corresponding random effect is not significant.  

After using these two rules, the set of selected wavelet coefficients with a significant 

random effect is denoted as S , and U  represents the remaining unselected wavelet 

coefficients. Furthermore, if the distribution of coefficients in S  is identical, these 

coefficients can be used to estimate the between-profile variation in the wavelet domain. 

By applying the inverse discrete wavelet transformation (IDTW), we can map the 

coefficients in S  to the corresponding local segments of profiles, which have 

significant between-profile variability. The mapped segments of profiles contributing to 

the between-profile variation about the process can further facilitate the identification of 

sources of variations along with engineering knowledge. A case study employing this 

mapping will be presented in Section 3.7.   

3.5 LRT based change-point model for clustering profiles 

In estimating a mixed model, it is essential to ensure that all the selected profile samples 

follow an identical distribution. Thus, a change-point model involving LRT (LRT-CP) is 

applied for checking this condition. To develop the LRT-CP model, it is assumed that if 

there is a change in the process, it would only affect the mean of the profile distribution 

and the covariance structure would remain constant. If LRT-CP finds more than one 

group of profiles, the parameters of each group should be reestimated.  
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3.5.1 Construction of monitoring features 

If all coefficients are directly considered in the LRT-CP, the test power would decrease 

due to the “curse of dimensionality”. To reduce the number of variables involved in LRT-

CP, we use the taxonomy of coefficients presented in subsection 3.4.2.1. It is commonly 

known that the sample covariance matrix is sensitive to the change of sample mean, i.e., 

if the mean of the process changes globally or locally, the estimated sample covariance 

matrix is inflated. Therefore, the larger the sample variance of a wavelet coefficient, the 

more likely the coefficient mean has changed. Thus, coefficients with the random effect 

in S  are chosen as the monitoring features to be directly used in LRT-CP. In order to 

further include the information of unselected coefficients in U , these coefficients are 

added together as a combined monitoring feature, which is defined as 

miz
Rr

iri ,...,2,1;~ 


  with  UirzrR  ~; . Since the elements of vector z~  are 

normally independently distributed, it yields ),(~ 
 Rr

r

Rr

ri SN  . Therefore, if there is a 

change on the coefficients in U , it could also be detected by i . If we use iγ
~  to denote 

all the selected coefficients in S , the monitoring feature vector can be formed as 

T

i

T

ii γ ]~[γγ   with ),(MVN~ γγ Λμγ i , where γμ  and γΛ  represent the mean vector 

and covariance matrix of the monitoring feature, respectively. 

3.5.2 LRT-based change-point model 

Various change-point models have been developed with great successes in analyzing and 

grouping collected observations. For example, an LRT-based change-point model is 

developed for univariate normally distributed data (Sullivan and Woodall, 1996) and 
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multivariate normally distributed data (Worsely, 1979; Sullivan and Woodall, 2000; and 

Zamba and Hawkins, 2006). Sullivan (2002) developed a different change-point model 

based on the clustering approach. Recent research on process monitoring using a change-

point model has also been explored, such as the change-point method for monitoring 

linear profiles (Zou et al., 2006 and Mahmoud et al., 2007) and for monitoring nonlinear 

profiles using wavelet coefficients in Phase-II control charts (Chicken et al., 2009). In 

addition to the change-point models, there is another set of methods for grouping 

observations based on the clustering approach (see the work by Fraley and Raftery, 1998; 

Kothari and Pitts, 1999; Ertoz et al., 2003; and Zhang and Albin, 2007). The LRT-based 

change-point model, however, is preferred in this  for two reasons. First, for the purpose 

of grouping sequential observations, the change-point models directly utilize the 

information related to the data sequence order. Second, since the observations are 

assumed to follow a normal distribution in this , a parametric model is preferred over a 

nonparametric model. It is well known that the LRT-based change-point model is a 

commonly-used parametric model-based approach. We extend the existing change-point 

models by including the wavelet coefficients with random effect in order to account for 

the between-profile variability.  

Suppose the mean of the profiles changes at an unknown time  . Assuming the 

covariance matrix of nonlinear profiles is constant, the distribution of iγ  is written as  















i

i
i

),(MVN

),(MVN
~

1

0

γγ

γγ

Λμ

Λμ
γ ,     (3-7) 
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where 0

γμ  and 1

γμ  represent the mean vectors before and after the change, respectively. If 

all profiles are from an identical distribution, then does not exist and 10

γγ μμ  . 

Therefore, in order to check whether the collected profile data have an identical 

distribution, the following hypothesis test can be evaluated: 

   

   
m

i

i
i

i

i

i
i

i

,...,2,1,
EE:H

EE:H

1

a

0

0























γ

γ

μγγ

μγγ

,    (3-8) 

where  E  is the mathematical expectation operator. Here, a likelihood ratio test is 

utilized for evaluating this hypothesis test. As derived in Appendix 3.C, the log likelihood 

ratio can be expressed as  

,)ˆˆ(ˆ)ˆˆ(
)(

)(
1

0101 1










m

i

T

m

m




 γγγγγ μμΛμμ    (3-9) 
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


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
1

0ˆ
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iγμ γ , 
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
m

i

i m
1

1 )(ˆ


γμ γ , and 

)2()ˆ)(ˆ()ˆ)(ˆ(ˆ
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



γγγγγ μγμγμγμγΛ . 

 The values of )( ; ),...,2,1( m  are compared with a limit of L. If L
m


 ,..2,1

)(


 , all 

profiles are from an identical distribution. Otherwise, they can be categorized into 

different clusters and the value of   maximizing )(  is an estimate of the change-point 

i.e., )(maxargˆ
,...,2,1





 m

. If the LRT-CP detects a change, the profile samples can be 

separated into two groups based on the estimated change-point. Then, LRT-CP should be 
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applied for each group to check whether more clusters exist in each group.  Using this 

approach, one can categorize multiple change-points and clusters. Additionally, knowing 

the estimated time at which the process changed could help process engineers effectively 

detect the root cause(s) of the change and identify the corresponding source(s) of 

variations. It should be noted that the LRT-CP model is often used to detect single and/or 

multiple sustained shifts in the historical profile data. If one is interested in identifying 

outlier profiles, other methods such as multivariate T
2
 control charts with a robust 

estimator of the covariance matrix (Vargas, 2003), can be utilized to examine the selected 

wavelet coefficients with random effect and detect outliers.   

The limit L could be determined based on the desired Type-I error ).(  In this , L is 

determined via simulations since the values of )(  are not independent. 

3.6 Performance evaluation using simulations 

In this section, the performance of the proposed approach is evaluated through the Monte 

Carlo simulations. This is accomplished in two stages. First, the performance of the 

proposed mixed-effect LRT-CP model (denoted by “M”) is assessed under different 

change scenarios and compared with another wavelet-based method recently proposed by 

Chicken et al. (2009) (denoted by “C”), in which the between-profile variation is not 

considered. As mentioned earlier, if the collected profiles do not follow the same mixed 

model, the estimation results are misleading. In this , two criteria are used for the 

performance evaluation: probability of detecting change in the mean ( 1 ) and the 

average estimation of change time (̂ ). In the other stage, the accuracy of the proposed 

approach for estimating the between-profile variation is checked. This is evaluated based 
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on the ratio of the estimated to actual random effects standard deviations, denoted by 

̂ . Since the case of multiple changes can be boiled down to a single change case, only 

single change is studied here. 

To simulate profiles, the popularly used piecewise smooth function of Mallat (1999) 

is utilized for generating simulated profiles, as shown in Figure 3-4. This simulated 

function is a complicated function with several nondifferentiable points that cannot be 

easily modeled by parametric models or other nonparametric models such as splines. 

Additionally, Chicken et al. (2009) used this function to evaluate the performance of their 

monitoring procedure. Also, it is assumed that the between-profile variations only occur 

at three segments: I1=[32,55], I2=[146,153], and I3=[207,236] as shown in Figure 3-4, 

which cover 62 data points, or 24% of the entire profile. In those segments, each response 

nrmiyir ,...,2,1,,...2,1;   is generated based on ,)( f

irrir btfy   where )( rtf  is the 

value of the Mallat’s function at tr, and  )(,0~ 22

r

f

ir tfsNb  is the random effects with the 

coefficient of variation s, that sets the standard deviation of each response iry  to be 

proportional to the value of its mean )( rtf . Finally, to include the within-profile 

variation, normally independently distributed noises with mean zero and variance 12 σ  

are added to iry . Figure 3-4 shows the 50 simulated profiles with n=256, ]256,1[t , and 

s=0.2. An alternative procedure that can be used for simulating random profiles is 

generating both within- and between-profile variations on the wavelet coefficients, and 

then transforming the coefficients back to the original domain using IDWT. In this , we 

prefer to use the first procedure since we are interested in modeling and characterizing 

variations of original profiles. For the comparison purpose, similar to Chicken et al. 
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(2009), the Haar basis with the complete decomposition (i.e., 8 levels of decomposition) 

is used to develop the wavelet-based mixed model. 

In order to assess the capability of the methods in detecting different types of profile 

changes, three change scenarios with different magnitudes are examined: 

Scenario 1: overall mean change, where the whole profile is shifted vertically, that 

is, )( 001   γγγ μμμ s . 

Scenario 2: local mean change in the segments of [41,46] and [208,215] with 

)( 001   γγγ μμμ s . These two segments contain the between-profile variation. 

Scenario 3: local mean change in the segments of [6,22], [89,106], and [129,145] 

with  01

γγ μμ . These three segments are not comprised of between-profile 

variations.  

Furthermore, to investigate the performance sensitivity to the parameters of m and 

 , the simulations are carried out for m=75 and 150; m5.0 and m8.0  with 1000 

replications. Also, Q=0.80 is used for all simulation scenarios.  
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Figure 3-4. Mallat’s function and randomly generated profiles 

To compare the performance of the methods, the limit L is chosen so that the 

estimated probability of false signal )( is approximately equal to 0.05. In the proposed 

method, the probability of the signal is estimated by the proportion of simulation runs 

where at least one of m,...,2,1);(    is plotted beyond L. So, the 95
th

 percentile of 

m,...,2,1);(max    obtained from 1000 simulation runs is chosen as the limit L. It is 

clear that for a specific , the value of L depends on the number of collected profiles m 

and the dimension of iγ , denoted as p. The estimated values of L based on 1000 

simulations for 05.0 under different m and p are provided in Table 3-1. 

The estimated detection probabilities for different change scenarios are shown in 

Figure 3-5. As can be seen from these figures, under all scenarios and different 

parameters of m and  , the proposed mixed LRT-CP method outperforms Chicken’s 

method. This is because the LRT-CP model accounts for the between-profile variation, 

while the other does not. Moreover, the detection probability of LRT-CP is improved as 

the number of sampled profiles (m) increases. Clearly, by increasing m, the estimation of 
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parameters in the mixed model becomes more precise, thus resulting in this improvement. 

Also, the performance of LRT-CP is better when m5.0  than when .8.0 m  This is 

because in the case of ,5.0 m there are equal samples available in each group to 

estimate the parameters, which leads to a better estimation for the two groups on average.  

Table 3-1. L values for different p and m with α=0.05 

p 

m 5 10 15 20 25 

75 25.81 41.38 58.70 80.12 108.22 

100 24.73 38.77 52.08 67.62 86.72 

125 24.40 36.27 49.31 62.39 78.12 

150 23.84 35.55 47.99 58.90 73.84 

175 23.16 34.94 45.50 56.54 70.51 

200 23.30 34.64 45.24 55.81 66.10 

250 23.70 33.56 42.55 53.42 63.68 

300 22.16 33.58 43.73 52.53 62.32 

350 22.96 32.86 43.64 52.12 61.99 

400 23.67 33.30 42.65 51.74 60.76 

450 23.21 33.94 41.87 50.67 59.76 

500 23.03 32.99 42.43 51.49 59.77 

p 

m 30 35 40 45 50 

75 140.97 187.64 254.12 351.40 529.93 

100 106.90 130.81 164.97 206.79 256.82 

125 93.92 111.80 133.16 159.12 186.31 

150 86.49 102.60 118.03 139.07 157.97 

175 82.54 96.46 110.71 125.19 140.76 

200 78.13 89.66 104.15 118.21 132.76 

250 73.70 86.45 98.34 108.15 120.35 

300 72.05 82.87 94.42 105.10 115.19 

350 70.89 79.92 90.93 101.09 112.71 

400 70.47 78.77 89.99 97.83 106.43 

450 69.56 77.73 88.48 97.94 105.58 

500 67.41 76.83 87.27 96.02 104.79 
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Overall shift (Scenario 1) 

 τ=0.5m τ=0.8m 

  
Local shift in random segments (Scenario 2) 

τ=0.5m τ=0.8m 

  
Local shift in fixed segments (Scenario 3) 

τ=0.5m 

 

τ=0.8m 

 

 

Figure 3-5. Detection probability of methods “M” and “C” under different shift scenarios. 
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Furthermore, the performance of change-point estimation is also studied. The mean 

value and the standard error (given in the parentheses) for each estimated   by using the 

LRT-CP method are shown in Table 3-2. As an example, under Scenario 2 with m=150,

75 , and 60.0 , the mean of the estimated change-point is 74.97 with the standard 

error of 0.07. Similar to the effect of   and m on the detection performance of LRT-CP, 

the performance of the change-point estimator also improves when m increases and/or 

when m5.0 . Generally, the higher the detection probability of LRT-CP, the more 

accurate and precise the change-point estimator will be. Based on Table 3-2, it can also 

be seen that the absolute biases of the estimated change-points are all less than 5, except 

for in a few cases (where values are underlined). Therefore, the estimation performance 

of change-points by using LRT-CP is quite reasonable. 

Furthermore, in order to investigate the performance of the proposed approach in 

estimating the between-profile variation, the ratio of 62,...,2,1;ˆ rrr   is calculated for 

every point within all three random-effect segments [I1, I2, I3]. In order to show the 

estimation performance, we use the median of all rr ̂ ratios to assess the average 

estimation performance, and use the third and the first quartile values of rr ̂ , 

respectively denoted by Q3 and Q1, to show the estimation uncertainty. The results under 

different change scenarios with m5.0  are presented in Figure 3-6. The values of 

rr ̂ greater and less than 1 imply overestimation and underestimation, respectively, 

while values close to 1 indicate the unbiased estimates. From Figure 3-6, it is clear that 

median of rr ̂  are close to 1, which shows that they have a very good average 

estimation performance. In the case of m=150, the estimates are more stable than those of 

m=75 across all   values. Therefore, the standard deviation estimates become steadier 
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when m is large. Moreover, when m=75, the accuracy of the estimates becomes more 

stable as  increases. The reason for this is that the detection probabilities of change-

points increase as   increases, thus resulting in the better change-point estimates. 

Table 3-2. Mean and standard error of estimated change-point of LRT-CP under different scenarios 
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m τ 
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0.15 0.20 0.25 0.30 0.35 0.40 

75 

0.5m=38 
40.32 39.03 38.43 38.24 38.10 38.02 

(0.59) (0.36) (0.17) (0.06) (0.02) (0.01) 

0.8m=60 
43.86 52.50 58.98 60.18 60.07 60.02 

(0.72) (0.61) (0.25) (0.03) (0.01) (0.01) 

150 

0.5m=75 
76.43 76.35 75.61 75.19 75.04 75.00 

(0.79) (0.21) (0.06) (0.02) (0.01) (0.00) 

0.8m=120 
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37.73 37.41 38.34 37.46 37.75 37.86 
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1.50 2.00 2.50 3.00 3. 50 4.00 

75 

0.5m=38 
37.58 39.11 38.17 38.03 38.00 38.00 

(0.57) (0.39) (0.1) (0.02) (0.01) (0.002) 

0.8m=60 
40.03 51.63 57.92 59.19 59.85 59.99 

(0.79) (0.55) (0.31) (0.19) (0.10) (0.01) 

150 

0.5m=75 
74.39 75.27 75.20 75.03 75.00 75.00 

(0.70) (0.46) (0.11) (0.01) (0.00) (0.00) 

0.8m=120 
106.46 114.85 116.68 119.48 120.01 120.00 

(1.15) (0.80) (0.58) (0.21) (0.03) (0.004) 
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 From Figure 3-6, it can be observed that the variances of random effects could 

sometimes be overestimated under the scenario with a small shift, which is due to the 

poor performance in detecting and estimating the change point with a small shift. With 

the increase of the shift magnitude , the estimation performance is improved and the 

estimated variance approaches the true variance (i.e., the ratio of ii ̂ is closer to 1, as 

shown in Figure 3-6). However, the stable value of ii ̂ is generally less than 1 because 

in our mixed model, only a subset of random-effect coefficients is selected to explain the 

100Q% of the total between-profile variation. Therefore, without the effect of the 

estimation error of change-points, the estimated variance should be less than the true total 

variance. 

In short, the simulation results show that the proposed methodology has 

reasonable performance in classifying different groups of profiles as well as in 

characterizing the variance of each group of profiles. 
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Overall shift (Scenario 1) 

m=75 

 

m=150 

 
Local shift in random segments (Scenario 2) 

m=75 

 

m=150 

 
Local shift in fixed segments (Scenario 3) 

m=75 

 

m=150 

 

Figure 3-6. Q1, Median, and Q3 of ii ̂  under different shift scenarios. 
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3.7 Case study 

In this section, the proposed methodology is applied to real-world profile data, which are 

collected during valve seat pressing operations in an engine head assembly process. At 

every cycle of the pressing operations, each valve seat is pressed into a seat counterbore 

pocket of a cylinder head, which generates one cycle of press force signals as a sample of 

profile data. Pictures of the engine head (upper left), valve seat pocket (lower left), and 

pressing machine (right) are shown in Figure 3-7. In this process, one of the important 

quality characteristics is the gap between the seat bottom and the pocket. However, there 

is no automatic sensing technology for directly measuring that gap during production. 

Another aspect to take into account is that the product quality is very sensitive to the 

pressing force on the ram, which can be measured online by the load sensors installed on 

a pressing machine. Therefore, pressing force signals are often used for process control 

(i.e., reduction of the variation of pressing force signals will lead to the improvement of 

product quality). In this case study, 50 force profiles are collected for process variation 

evaluation by the following analysis (as shown in Figure 3-8).  

A mixed model is developed to characterize the process variation according to the 

proposed methodology given in Figure 3-3. Based on Section 3.4.2.1, Q=0.80 is used as 

the threshold for selecting the wavelet coefficients with random-effect in S . The LRT-

CP model presented in Section 3.5.2 is also used to check whether all 50 profiles follow 

an identical distribution. The LRT-CP result indicates a change-point of 42ˆ  , thus 

these 50 profiles are clustered into two groups. In Figure 3-8, the profiles corresponding 

to clusters 1 and 2 are plotted with a solid line and a dashed line, respectively. LRT-CP is 

also applied to the profiles within each group, but it does not find a new change-point 
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within each group of profiles. Since the number of profiles in cluster 2 is not large 

enough, only cluster 1 is used for further identification of the critical segments with a 

large variability. A similar method can be applied once more profiles are collected for 

cluster 2. 

 

 

 
 

 

 

Figure 3-7. Engine head, cross-section view of valve seat pocket, and gap between valve seat and 

pocket (left panel), valve seat assembly process (right panel). 

In order to identify sources of variations of cluster 1, a mixed model is 

constructed. Based on the fitted mixed model, the estimated within-profile variance (
2̂ ) 

is equal to 82.28. The wavelet coefficients with random-effect, identified in S include 

Tdccccccccccc ],,,,,,,,,,,[ 15,529,518,523,522,528,515,517,521,519,520,516,5  with the descending order of 

their variances. Then, the mapping of these coefficients in S  to the associated profile 

segments is conducted using IDWT. These mapped segments, along with their 

corresponding coefficients, are shown in Figure 3-8.  There are three segments 

contributing to 80% of the total between-profile variation. Table 3-3 summarizes the 

Gap 

Force 

Sensor 
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information about each segment and the corresponding between-profile variances. In 

Table 3-3, we see that the between-profile variance is much larger than the within-profile 

variance, which implies that the sources of variations causing between-profile variations 

are more important for process improvement. The wavelet coefficients with random-

effect along with the estimated mean and variance (reported in Table 3-3) can be further 

served as the basis to implement control charts for process monitoring.  

Table 3-3. Summary information of the fitted mixed model. 

Segment 

Corresponding 

profile 

observations 

Corresponding 

wavelet 

coefficients 

Wavelet 

coefficients 

mean  

(fixed effect) 

Wavelet 

random 

effect 

variances 

Average of 

segmental 

between-

profile 

variance 

A y57- y73 

c5,16 5.736E+02 1.1163E+05 

1.7026E+04 

c5,19 1.076E+03 5.9810E+04 

c5,17 8.129E+02 4.8550E+04 

c5,15 1.238E+02 4.1900E+04 

c5,18 8.951E+02 2.4110E+04 

d5,19 -8.410E+01 2.0460E+04 

B y74- y92 

c5,20 1.362E+03 6.8650E+04 

1.1852E+04 

c5,21 1.525E+03 5.0160E+04 

c5,22 1.538E+03 3.4070E+04 

c5,23 1.464E+03 2.4350E+04 

c5,19 1.076E+03 5.9810E+04 

C y109- y116 
c5,28 1.998E+03 3.8790E+04 

7.7238E+03 
c5,29 3.651E+03 2.3000E+04 

 

Furthermore, based on the segments obtained from IDWT and engineering 

knowledge, the sources contributing to the between-profile variations can be identified. 

The variation in “segment a” is due to the position variations of engine head surfaces. 

This source is mainly related to the variation of initial contacting points induced by the 



81 
 

variation of an engine head’s pocket depth due to previous manufacturing stages. The 

clearance tolerance between the valve seat and the seat packet is the major source of 

variations for “segment b.” The pressure variation of the assembly machine could be 

causing the force signal variation in “segment c.” The first two sources of the variations 

are considered part-to-part variations, but the source for “segment a” is related to the 

process variation at previous manufacturing stages while the source for “segment b” is 

related to the current assembly process variation. The average between-profile variance 

for each segment can also be obtained by adding up the variance of wavelet coefficients 

in each segment and dividing the sum by the length of the segment. These values, 

reported in Table 3-3, can be used to prioritize further actions for variation reduction and 

process improvement.  

 

Figure 3-8. Force vs. time profiles. 

Appendix 3.A: Derivation of 
irz~  and 

2
~

irz  

First, we derive the conditional mean of denoised coefficients 
irz~   
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Since ),(~ 2
irzirir Nbz , the random variable  iririr bzz ,  follows a right truncated 

normal distribution with parameters ),,( 2 
irz . Similarly,  iririr bzz ,  follows a 

left truncated normal distribution with parameters ),,( 2  
irz . Therefore,  (3.A.1) can 

be written as 
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where, )(r

zir
  and )(l

zir
 , respectively are the right and left truncated means of irz  with 

truncation point )( , and can be calculated by 
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where    is the probability distribution function of a normal standard random variable 

(Johnson and Kotz, 1970). The conditional variance 2
~

irz is also obtained based on the 

derived 
irz~ .  
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Appendix 3.B: Proof of ).(trace)(trace )(~ tfΣΣz    

It is known that )(tf  can be obtained by applying IDWT to true wavelet coefficients, 

i.e.,  

θWt
1)( f       (3.B.1) 

Therefore, the covariance matrix of )(tf  can be expressed by 

     TTT

f
111111

)( )(Var)(Var   WΛWWbμWWθWΣ t  (3.B.2) 



84 
 

This is true because μ  is deterministic. Also, since W  is an orthogonal wavelet basis, it 

can be implied   .1
WW  T

  

After taking the trace(.), it yields 

)trace()trace()trace()(trace 11

)( ΛWΛWΛWWΣ  

tf   (3.B.3)■ 

Appendix 3.C: Derivation of the likelihood ratio test statistic 

The log likelihood function under the alternative hypothesis in (3-8) can be written 

as: 
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where (.)h  is the multivariate normal probability distribution function, and c is equal to 

the cardinality of sΩ . 

Under H0, the corresponding log likelihood function would be 
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 (3.C.2) 

The maximum likelihood estimators for mean parameters are 


 
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1

0ˆ
i iγμγ  and 

,)(ˆ
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
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m

m

i iγμγ respectively. The estimate of γΛ  is the pooled-sample covariance 
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matrix, i.e., )2()ˆ)(ˆ()ˆ)(ˆ(ˆ
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CHAPTER IV 

Parametric Risk-adjusted Modeling and Monitoring of Binary Survival 

Profiles with Categorical Operational Covariates 

  

4.1 Introduction  

Statistical monitoring for effective detection of the deteriorated mortality rate of surgical 

outcomes has increasingly attracted researchers’ attention. Such detection can be further 

used to assist root cause identification and decision-making for surgical operation 

improvement. In order to more effectively detect the performance anomalies that go 

beyond the natural variability of surgical operations, the risk factor of each patient, which 

reflects the patient’s health condition prior to surgery, must be taken into account. 

Ignoring patients’ risk factors may lead to misjudgments about surgical performance 

since a surgical outcome depends on not only surgical operation performance, but also 

patients’ risk factors before surgery. For example, patients with high risk factors may 

inadvertently result in a low rate of successful surgical outcomes. In the related literature, 

the monitoring charts that account for patients’ risks are known as the “risk-adjusted” 

control charts. 

Since Treasure et al. (1997) and Waldie (1998) investigated cases in which poor 

performance of cardiac surgery centers remained undetected for a long time, tremendous 

research interests in improving Phase II monitoring of surgical outcomes have emerged. 
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The relevant research on this topic can be divided into two groups, depending on the 

types of surgical outcome data used in the monitoring. The first group of monitoring 

methods focused on each patient’s binary survival status at a specified time period after 

surgery. The second group of monitoring methods used continuous measures of each 

patient’s survival time, or a fixed right censored time if a patient survives beyond a 

specified time period after surgery.  

In the first group of monitoring methods, various risk-adjusted control charts 

have been developed. Steiner et al. (2000) introduced a risk-adjusted cumulative sum 

(RA-CUSUM) chart to monitor the binary survival status of any given patient during a 

thirty-day period after surgery. They adjusted the patient’s risk using a logistic regression 

model and utilized a CUSUM chart to monitor the log-likelihood score corresponding to 

each operation. Cook et al. (2003) proposed a simpler control chart for monitoring binary 

surgical outcomes. They developed a risk-adjusted Shewhart p-chart with variable control 

limits based on grouped patients. Spiegelhalter et al. (2003) proposed a more general 

monitoring approach, known as the resetting sequential probability ratio test (RSPRT) 

chart. They showed that the RA-CUSUM chart is a special case of the risk-adjusted 

RSPRT chart. Instead of directly monitoring the binary survival status of patients, Grigg 

and Farewell (2004a) proposed a risk-adjustment method to monitor the number of 

operations between two unsuccessful operations (two deaths). To evaluate the efficacy of 

the existing monitoring methods, Grigg and Farewell (2004b) compared the performance 

of the existing RA control charts in detecting changes based on the binary outcomes. 

Grigg and Spiegelhalter (2007) developed a risk-adjusted exponentially weighted moving 
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average (RA-EWMA) chart, which, in addition to monitoring, can be used to estimate the 

risk of unsuccessful surgery for each patient.  

In the second group of monitoring methods, the control charts are developed 

based on continuous measures of the exact survival time or right censored time after 

surgery. Biswas and Kalbfleisch (2008) proposed an RA-CUSUM chart to monitor 

continuous survival time based on the Cox model. Sego et al. (2009) used location-scale 

regression models to monitor survival time, in which the corresponding observations are 

considered as censored data if a patient survives beyond thirty days after surgery. They 

proposed a risk-adjusted survival time CUSUM chart (RAST-CUSUM) based on the log-

likelihood score of each operation. Gandy et al. (2010) extended the RAST-CUSUM to a 

more general setting, in which they considered general alternatives and a head start of the 

CUSUM chart. Steiner and Jones (2010) proposed an updated EWMA chart for 

monitoring risk-adjusted survival time. 

All of the afore-mentioned research focuses on Phase II (prospective) 

monitoring, where it is assumed that the parameters of the risk-adjustment model are 

known or can be accurately estimated from historical data collected from a stable process. 

The Phase I (retrospective) control, however, is crucially needed in practice for checking 

the quality of historical data, and for obtaining accurate estimates of the model 

parameters, based on which the patient’s risk factor can be correctly adjusted for Phase II 

monitoring. Despite the importance of Phase I control, very little work has been done in 

the literature on risk-adjusted control charts for Phase I control. Furthermore, for 

constructing risk-adjusted control charts in Phase I, since each sample represents an 

individual operation for each patient, it would be impossible to fit a risk-adjustment 
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model for each patient based on individual observations. Therefore, it is necessary to 

check whether individual observations can be grouped together, which can then be 

adjusted by the same risk-adjustment model.  

Most of the previous research considered patient’s risk factors as the only 

continuous covariates in risk-adjustment models. However, there are often other variables 

that may also significantly affect surgical outcomes. For example, in addition to the 

preexisting health condition of a patient, certain operational variables such as surgeons, 

surgical procedures, and the types of surgery operations may also influence surgical 

outcomes. Generally, the performance of experienced surgeons may be different from 

that of inexperienced surgeons. As a result, the parameters of the risk-adjustment model 

would be different for surgeons with different levels of experience or skills. Hence, 

ignoring such important variables in the risk-adjustment model may result in an 

inaccurate estimation of the risk-adjustment model. In this chapter, we focus on the Phase 

I control of binary surgical outcomes that are affected by heterogeneous risk factors and 

operational variables. Generally, these operational variables are often recorded as 

categorical covariates. Therefore, a logistic regression model, which includes dummy 

variables for categorical covariates, is first employed in this chapter to represent a unified 

risk-adjustment model. Change-point models have been widely used in various Phase I 

control chart applications for continuous responses (See for example, Sullivan and 

Woodall 2000, Zamba and Hawkins 2006, and Mahmoud et al., 2007). This chapter 

intends to extend such work for binary responses with the focus on the Phase I control of 

risk-adjustment models. Specifically, the Phase I control chart is constructed via a 

likelihood ratio test derived from a change-point model (LRTCP) based on the risk-
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adjustment logistic regression. The proposed Phase I risk-adjusted control chart is the 

first to include both continuous and categorical covariates in the risk-adjustment model.  

The rest of the chapter is organized as follows. A motivating example is 

presented in the next section that illustrates the importance of including categorical 

covariates in risk-adjustment models. Then a general risk-adjustment model that includes 

categorical operational covariates is introduced. The detailed development of the 

proposed Phase I risk-adjusted control charts using LRTCP is also given. After that, the 

proposed control charts are examined through a case study of evaluating cardiac surgery 

performance. The effect of ignoring the categorical surgeon covariate on modeling and 

monitoring is also analyzed and discussed. The following section is devoted to studying 

and comparing, through Monte Carlo simulations, the performance of the proposed Phase 

I risk-adjusted LRTCP control charts with and without considering categorical 

operational covariates. 

4.2 A Motivating Example 

In this section, a motivating example is presented to illustrate the potential drawbacks of 

model fitting when categorical operational covariates are ignored. We analyzed a cardiac 

surgery dataset from a single surgical center in the U.K. This is the same dataset that was 

used by various authors including Steiner et al. (2000), Sego et al. (2009), Steiner et al. 

(2010), etc.  The dataset covers a seven-year period from 1992 to the end of 1998, and 

includes surgery information for each patient such as the surgeon’s code, the type of 

surgery operation, survival time, patient’s age, and patient’s Parsonnet score. The 

Parsonnet score, commonly used in cardiac surgery, is a weighted score of pre-operative 

variables that reflect the health condition of a patient before surgery (Parsonnet et al. 
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1989). This score is often used to adjust the risk associated with heterogeneous patients. 

Similar to Steiner et al. (2000), we selected the first two years of data, years 1992 and 

1993, as the initial Phase I observations of three experienced surgeons. The analysis of 

this portion of the dataset indicated that the risk-adjusted mortality rate of patients 

operated by surgeon 1 differs from that of the others. Therefore, surgeon 1 was labeled as 

group 1 and the rest as group 2. Two separate models were fitted for these two groups of 

surgeons. Figure 4-1 shows the fitted mortality rates obtained by fitting a logistic 

regression model of the thirty-day mortality rate on the Parasonnet score as the risk 

factor. In Figure 4-1, the dashed and dotted lines represent the two fitted models 

corresponding to group 1 and group 2 of surgeons, respectively; and the solid line 

represents the fitted model when the surgeon covariate is ignored (combining two groups 

of surgeons together). As can be seen from Figure 4-1, the fitted model without 

considering the surgeon covariate is different, especially from that of group 2. Therefore, 

the model that ignores the effect of surgeons may not accurately reflect the patients’ risk 

in the surgical performance by the surgeons in group 2. 

In addition, ignoring the important categorical operational covariates (e.g., 

different surgeons) in fitting a risk-adjustment model may affect the control chart 

performance in Phase I as well as in Phase II. The major reason is that this may lead to 

higher variances of parameter estimators, and result in a poorer performance in detecting 

possible changes. Therefore, it is vital to consider important categorical operational 

covariates in the risk-adjustment model for examining historical data in Phase I control. 

A naive approach to account for the effect of a categorical operational covariate is to fit a 

risk-adjustment model for each level of the categorical variable. However, as the number 
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of levels in the categorical operational covariates increases, the number of models and 

control charts required for monitoring the process also quickly increases. This results in 

not only more computing efforts, but an increase in the overall Type I error rate 

associated with the control charts. To tackle this problem, we propose to incorporate the 

categorical variables into one model by using dummy variables. 

 
Figure 4-1. Fitted risk-adjustment models based on each surgeon’s group and all surgeons. 

4.3 Phase I Risk-Adjusted Control Charts with Categorical Variables 

4.3.1 A Risk-adjustment Model with Categorical Variables 

Consider a process with a binary outcome iY  , where 1iY  if the process fails and 0iY  

otherwise, and i=1,2,… represents the time index. Suppose i  denotes the process failure 

probability that is a function of a set of risk factors denoted by the vector ix . The risk-

adjustment model is represented as 

),( ii g xβ ,     (4-1) 
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where β  is a vector of parameters and the function )(g  denotes a risk-adjustment 

function. Since the outcome is binary, a logit function is an appropriate choice for )(g . 

The logit function based risk-adjustment model can be written as 
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where  T
ipiii xxx ,...,, 10x  represents the i

th
 observation vector of p risk factors, and 

10 ix ;  
p

T  ,...,, 10β  denotes the vector of risk factors’ coefficients; and the 

superscript T denotes the transpose operator.  

We extend the logistic regression model in (4-2) to include the categorical covariates. 

Suppose there are K categorical operational covariates, each with ck levels, k=1,2,…,K. 

As mentioned earlier, one way to consider the categorical variables is to group the dataset 

based on the levels of the categorical variables and fit a risk-adjustment model for each 

group. This requires an exhaustive model fitting effort, in which a total of 


K

k

kc
1

 models 

would need to be fitted. In addition to the increased computational complexity, this 

approach is also problematic in Phase I control because the number of required control 

charts is equal to 


K

k

kc
1

, which results in an excessive increase of the overall Type I error 

rate of the control procedure. An alternative approach is to account for categorical 

variables in a unified model by incorporating dummy variables. In this case, the 

categorical variable k is represented in the model by )1( kc  dummy variables. The risk-
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adjustment model with dummy variables, which can represent different levels of the 

categorical operational covariates, can be written as 
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where  Tkickikiik k
ddd ,...,, 32d  is the vector of dummy variables, and 

),...,1,,...,2;,...,1(, Kkcjmid kijk   corresponds to observation i at level j of the k
th

 

categorical operational covariate, which is equal to 1 when the k
th

 categorical variable is 

at level j, and equal to 0 otherwise. By convention, if the k
th

 categorical variable is at its 

first level for observation i, 0ijkd  , for all ),...,2( kcjj  .  Tkckkk k
 ,...,, 32γ  is also 

the coefficient vector of the k
th

 dummy variables with ck categorical levels, and jk  

corresponds to level j of the k
th

 categorical operational covariate. The vectors kγ  and β  

can be estimated based on historical data using the maximum likelihood (ML) approach 

(McCullagh and Nelder 1989, pp.115-117).  

4.3.2 Phase I Risk-Adjusted Control Charts Based on a Change-Point Model 

 Suppose there are m historical observations available, the i
th

 of which denoted as 

 iT

iK

T

i

T

iiY xddd ...21 , where mi ,...,2,1  indicates the observations order. Let i  represent 

the failure probability for observation i. In this section, we present a monitoring approach 

for examining the historical data and determining the baseline model in Phase I control. 

This baseline model can be further used to monitor process outcomes for incoming 

observations in Phase II monitoring. To develop the Phase I control chart, a likelihood 
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ratio test procedure derived from a change-point model (LRTCP) is utilized in our 

approach.  

The change-point models have been effectively applied in Phase I control. For 

example, the LRTCP model was developed for univariate normally distributed data 

(Sullivan and Woodall 1996) and for multivariate normally distributed data (Worsley 

1979, Sullivan and Woodall 2000, and Zamba and Hawkins 2006). Sullivan (2002) 

developed a change-point model based on a clustering approach. Zou et al. (2006), and 

Mahmoud et al. (2007) applied a change-point model to linear profiles monitoring. The 

previous research (see for example, Sullivan and Woodall 1996, and 2000) has shown 

that the LRTCP control chart outperforms other Phase I methods such as the Shewhart and 

multivariate T
2
 control charts when sustained changes occur in the process. Furthermore, 

the LRTCP model can also provide an estimate of the time when changes occur in the 

process. These estimates can further be used to assist in identifying the root causes of 

process changes. For binary data monitoring, Gurevich and Vexler (2005) developed an 

LRTCP model by using the risk-adjustment logistic regression model with both known 

and unknown parameters wherein the response risk is adjusted by the continuous risk 

covariates. Shang et al. (2011) used a similar LRTCP combined with the EWMA chart for 

the purpose of Phase II monitoring of binary profiles. Nevertheless, there is little research 

on developing the LRTCP for Phase I control of risk-adjusted binary outcomes with the 

presence of both categorical covariates and continuous risk factors. As shown in the 

motivation example, categorical covariates often exist and play a very important role in 

constructing a risk-adjustment model. Thus ignoring important categorical covariates 

may bring about misleading results. Therefore, we extend the LRTCP proposed by 
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Gurevich and Vexler (2005) to develop a Phase I monitoring method for risk-adjustment 

models with categorical covariates. Henceforth, the proposed control chart is simply 

called the risk-adjusted LRTCP (RA-LRTCP) chart. 

As defined earlier, the binary outcome 
iY  follows a Bernoulli distribution with 

)0(1)1(  iii YPYP  . Suppose an assignable cause occurs at an unknown time  , 

which leads to changes of parameters of the risk-adjustment model. The distribution of 
iY

, hence, can be written as  
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where k0γ  and 0β  represent the parameters of the risk-adjustment model before the 

change; and k1γ  and 1β represent these parameters after the change. Define )(sl
ψ  as the 

vector of the risk-adjustment model parameters for observations s+1 to l. Hence, 

 TTT

K

TT

000201

)0( ... βγγγψ 
and  TTT

K

TTm

111211

)( ... βγγγψ  . If all the data follow an 

identical distribution, then )()0( m
ψψ  for all umuu  ,...,1, , implying that the 

process is in-control, where u (u> the number of coefficients) is the minimum required 

sample size for estimating the parameters of the risk-adjustment model. Therefore, in 

order to control the process in Phase I, it suffices to evaluate the following hypotheses: 
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The value of u is chosen so that at least one outcome with value 0 and one outcome with 

value 1 exist among sampled data from 1 to u and also from m-u+1 to m. Thus, a 

likelihood ratio test can be used to test the hypotheses in (4-4).  

The log likelihood function of 
iY  under the alternative hypothesis in (4-4) can be 

written as: 
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where (.)h  is the Bernoulli probability mass function; 0i  and 1i  represent the failure 

rates for the i
th

 observation calculated by using )0( 
ψ  and )( m

ψ , respectively; and 

    10;)1(loglogit  aaaa . Let )(ˆ sl
ψ  denote the ML estimate of the model 

parameters that is obtained by fitting the risk-adjustment model (3) based on observations 

1s  to l. Therefore, the ML estimates of )0( 
ψ  and )( m

ψ  under Ha are )0(ˆ 
ψ  and )(ˆ m

ψ , 

respectively. Furthermore, 0i  and 1i are functions of )0( 
ψ  and )( m

ψ , therefore, )0(ˆ i  

and )(ˆ m

i

 , which are calculated by substituting )0(ˆ 
ψ  and )(ˆ m

ψ correspondingly into (4-3), 

are ML estimates of 0i  and 1i , respectively (Casella and Berger, 2001). 
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Under H0, the corresponding log likelihood function would be 
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Thus, the ML estimates of )0( m
ψ  and 

0i  under H0 are )0(ˆ m
ψ  and )0(ˆ m

i , respectively. 

Replacing 
0i  and 1i  in (4-5) and (4-6) by their ML estimators, after simplification, the 

negative of the log likelihood ratio for each ),...,1,( umuu   can be expressed as 
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(4-7) 

where 1
ˆ

iR  and 2
ˆ

iR  denote two odds ratio between )0(ˆ  i  and )0(ˆ m

i , and between )(ˆ m

i

  and 

)0(ˆ m

i , respectively. The odds ratio of a and b is defined as 1,0;
)1(

)1(





ba

bb

aa
. 

The RA-LRTCP chart plots the values of )( ),...,1,( umuu   against time 

indexes, and each )(  is compared with an upper control limit (UCL). If for all 

,,...,1,, umuu   UCL)(   , it will be concluded that the historical data have 

been collected from an in-control process, that is, the process performance has been 

consistent during the time of data collection and the model parameters estimated from the 

historical dataset can be used to construct the control charts for Phase II monitoring. 

Otherwise, the process is considered out-of-control, indicating that the process 
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performance has significantly changed at some time index  . The value of   that 

maximizes )(  can provide an ML estimate of the change-point, i.e., 

)(maxargˆ
,...,1,





 umuu

. If the RA-LRTCP chart detects a change, the dataset can be separated 

into two groups based on the estimated change-point. Then, the RA-LRTCP chart can be 

applied to each group to further check whether a change-point exists in each group. Using 

this iterative approach, multiple change-points can also be detected. Furthermore, the 

estimated change-points may assist practitioners in identifying the root causes of the 

change for further improvement. It should be noted that the proposed RA-LRTCP chart is 

also applicable when no categorical operational covariates exist. In this case, to derive 

equation (4-7), all terms related to categorical variables are deleted, and model (4-2) is 

used for estimating model parameters. The rest is the same as the RA-LRTCP chart with 

categorical operational covariates. 

4.3.3 Determining the UCL Values for the RA-LRTCP Chart 

If the process is in-control, for each fixed  , the asymptotic distribution of the 

monitoring statistic )(  is independent of the values of k0γ ’s and 0β  and follows  a 

Chi-square distribution with the degrees of freedom equal to the number of coefficients in 

the logistic regression model (Myers et al., 2010, p. 112). However, since the values of 

)(  across all different   values are autocorrelated, determining the exact distribution 

of )(  under H0 is intractable. Therefore, a Monte-Carlo simulation is used to 

determine the UCL as follows. At First, the whole Phase I data are used to fit the logistic 

regression model in (4-3). Then, the obtained model is used to generate m random 

observations, and calculate )( ’s from which 
umuu 


,...,1,

)(max


  is obtained. This 
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procedure is repeated r times and the values of   are recorded in each repetition. Finally, 

the UCL can be determined as the )1(100  th
 percentile of the recorded ’s, where   is 

the desired Type-I error rate.  

In order to simplify the UCL calculation for practitioners, the simulated UCL’s of the 

RA-LRTCP chart for different sample sizes (m), different numbers of regression 

coefficients (v), and 01.0,05.0 , obtained from 1,000 replications are reported in 

Tables 4-1 and 4-2, respectively. 

Table 4-1. Simulated UCL values for 05.0
 

Sample 

size (m) 

Number of regression coefficients (v) 

2 3 4 5 6 7 8 9 10 

500 4.20 4.95 5.91 7.20 8.09 9.20 10.08 10.67 11.50 

1000 4.62 5.64 6.80 7.52 8.74 10.70 11.69 12.45 13.42 

1500 4.89 6.42 7.56 8.87 9.57 11.04 11.83 13.05 13.64 

2000 5.41 6.59 7.79 9.10 9.77 11.17 12.12 13.09 13.90 

2500 5.73 6.77 7.95 9.28 9.81 11.39 12.14 13.44 14.02 

3000 6.00 7.03 8.09 9.36 10.16 11.43 12.22 13.47 14.35 

3500 6.07 7.14 8.25 9.47 10.22 11.72 12.52 13.52 14.46 

4000 6.27 7.17 8.48 9.51 10.38 11.79 12.63 13.66 14.52 

4500 6.27 7.27 8.59 9.57 10.53 11.81 12.80 13.67 14.87 

5000 6.29 7.49 8.65 9.69 10.66 11.85 12.83 13.74 14.92 

 

 Table 4-2. Simulated UCL values for 01.0
 

Sample 

size (m) 

Number of regression coefficients (v) 

2 3 4 5 6 7 8 9 10 

500 6.20 6.37 8.19 8.99 10.54 11.77 12.91 13.05 14.94 

1000 6.48 7.85 9.43 10.01 10.79 12.60 13.61 15.02 16.01 

1500 6.99 8.31 9.65 10.86 11.77 13.30 14.56 15.52 16.13 

2000 7.42 8.43 9.76 11.08 11.80 13.36 14.67 15.80 16.48 

2500 7.46 8.56 10.12 11.12 11.89 13.76 15.07 15.85 16.50 

3000 8.01 8.61 10.23 11.33 12.44 13.80 15.14 15.93 16.76 

3500 8.22 9.16 10.33 11.42 12.64 13.87 15.24 16.12 17.17 

4000 8.30 9.39 10.35 11.45 12.82 13.95 15.50 16.47 17.44 

4500 8.31 9.50 10.40 11.57 12.88 14.06 15.58 16.72 17.48 

5000 8.33 9.90 10.57 11.64 12.93 14.25 15.91 16.91 17.55 
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4.4 A Case Study: Phase I Control of Cardiac Surgical Outcomes 

In this section, the proposed RA-LRTCP chart is applied to the cardiac surgery data 

discussed in the introduction. Following Steiner et al. (2000) and Sego et al. (2009), we 

use the first two years of data (corresponding to 1992 and 1993) as the Phase I data. It 

should be pointed out that Steiner et al. (2000) and Sego et al. (2009) assumed that the 

first two years of data were collected from an in-control process. They used the data to 

estimate the parameters of the risk-adjustment model in order to monitor the rest of the 

Phase II data from 1994 to 1998. In contrast, we apply the proposed control chart to 

check whether the cardiac surgery process was in-control during Phase I data collection. 

If a change is detected, the out-of-control data are removed and a risk-adjustment model 

is fitted to the remaining Phase I data. Clearly, the fitted model can be further exploited to 

implement an RA-LRTCP chart for Phase II monitoring.  

In Phase I data, there are a total of six surgeons each designated as either a trainee or 

an experienced surgeon. The cardiac surgery data corresponding to the three experienced 

surgeons are chosen. This is because trainee surgeons operated on only relatively simple 

cases. Furthermore, during an operation by a trainee surgeon, an experienced surgeon has 

always been present to take over the operation if serious difficulties occur. In this case the 

operation performance may not consistently reflect the performance of individual trainee 

surgeons. There are 1,112 records in Phase I data related to the selected experienced 

surgeons. The numbers of patients operated by surgeons 1, 2, and 3 are 565, 286, and 

261, respectively. The numbers of dead patients are 54, 27, and 18 (99 in total) 

corresponding to surgeons 1, 2, and 3, respectively. The Parsonnet score is used as the 

risk factor in the model since it has been shown that it can effectively reflect the patients’ 
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risks prior to operation such as hypertension, diabetic status, and renal function (Steiner 

et al., 2000). The Parsonnet scores of patients operated by the selected surgeons range 

from 0 to 69. 

Since the performance of the surgeons may be different from one another over time, 

surgeons should be included in the risk-adjustment model as a categorical operational 

covariate. In order to demonstrate the important role of the surgeon covariate in Phase I 

control, two risk-adjustment models are used to develop the RA-LRTCP chart; i.e., one 

model without the surgeon covariate and the other with the surgeon covariate. 

Henceforth, the RA-LRTCP charts based on the former and latter models are called the 

RA-LRTCP1 chart and the RA-LRTCP2 chart, respectively.  

 To construct a RA-LRTCP1 chart, the risk-adjustment model in (4-2) is fitted to the 

data. Since the Parsonnet score is the only risk factor in this study, the risk-adjustment 

model in (4-2) is reduced to 
)exp(1

)exp(

10

10

i

i
i

x

x









  with ix  as the Parsonnet score of the 

patient i, and the parameters are estimated as 
TT 0.073]  -3.471[]ˆˆ[ˆ

10cp1  β . 

Furthermore, the RA-LRTCP2 chart can be developed based on the risk-adjustment model 

in (3), which considers the surgeon covariate. Because the categorical covariate 

considered in this study consists of three surgeons, two dummy variables are included in 

the risk-adjustment model, i.e., 
)exp(1

)exp(

332210

332210

iii

iii
i

ddx

ddx









  , where 2id  and 

3id  are dummy variables corresponding to surgeons 2 and 3, respectively, i.e., if patient i 

is operated by surgeon 2, 0,1 32  ii dd  , if patient i is operated by surgeon 3, 

1,0 32  ii dd  , and if he/she is operated by surgeon 1, 0,0 32  ii dd . In this case, the 
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parameters are estimated as 
TT 0.073] -3.376[]ˆˆ[ˆ

10cp2  β and 

TT 0.324]-  -0.079[]ˆˆ[ˆ
32  γ ,

 
respectively. -3.376ˆ

0  can be interpreted as the 

logit of mortality probability for a healthy patient with the Parsonnet score equal to zero, 

which is operated by surgeon 1. 073.0ˆ
1   is the effect of the Parsonnet score on the 

mortality logit when the Parsonnet score changes one unit. -0.079ˆ
2  , and 0.324- ˆ

3 

indicate the difference between the performance of surgeon 1 and surgeon 2, and surgeon 

1 and surgeon 3 in terms of mortality logit, respectively.  

The RA-LRTCP1 and RA-LRTCP2 control charts are constructed using the likelihood 

ratio test of (4-7) based on the fitted models. The UCLs for the RA-LRTCP1 and RA-

LRTCP2 charts, which are obtained from the simulation procedure described earlier, are 

5.99 and 6.86, respectively. These control charts are depicted in Figure 4-2. As can be 

seen from Figure 4-2, the RA-LRTCP1 chart indicates that the process is in-control, while 

the RA-LRTCP2 chart that accounts for the surgeon covariate shows out-of-control 

signals. According to the change-point estimator of the RA-LRTCP2 chart, the time of 

change in the process is estimated to be 400ˆ  . Clearly, this contradiction in the results 

is due to the fact that the performance of surgeons is not the same over time. To further 

explore this, the data before and after the estimated change-point are used to separately fit 

a risk-adjustment model without the surgeon covariate, and to fit three separate models 

for each of the three surgeons. The plots of mortality rate versus Parsonnet score are 

shown in Figure 4-3. It can be seen in Figure 4-3 that the mortality rate of surgeon 1 

decreases after the estimated change-point 400. For surgeon 2, this rate also decreases for 

patients 401 to 1,112 with high Parsonnet scores. On the other hand, an increase in 



108 
 

mortality rate is evident for surgeon 3 after patient 400, even for patients with relatively 

low Parsonnet scores. However, if the surgeon covariate is ignored and all data are 

combined, the decrease in mortality rates corresponding to surgeons 1 and 2 is 

compromised by increased mortality rates of patients operated by surgeon 3, and 

consequently, as shown in Figure 4-3(d), the mortality rate curves do not significantly 

change when all patients are combined without considering the surgeon covariate. This is 

the reason that the RA-LRTCP1 chart did not detect the change. 

 

Figure 4-2. RA-LRTCP1 (top panel) and RA-LRTCP2 (bottom panel) control charts of surgical data. 
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(a) Surgeon 1 

 

(b) Surgeon 2 

 

(c) Surgeon 3 

 

(d) Without the surgeon covariate 

 

Figure 4-3. Mortality rate plots for different surgeons and the model without the surgeon covariate 

before and after the change 

 

After receiving a signal from the RA-LRTCP2 chart, the Phase I data are divided into 

two segments based on the estimated change-point 400. Each segment is examined by 

similar procedures to check if additional out-of-control observations are detected. The 

results, however, indicate no additional change-point in the Phase I data. Therefore, the 

first data segment is discarded and the second data segment from patients 400 to 1,112, 

which reflects the current state of the cardiac surgery operations, is used to fit a baseline 
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model for implementing the Phase II monitoring. The parameters of the fitted model 

using the second data segment are estimated as 
T0.065] -2.957[ˆ

cp2 β and 

T0.955] -  -0.323[ˆ γ . To check the significance of each coefficient, the Wald 

hypothesis test is conducted (Myers et al., 2010, pp.109-112). The p-values 

corresponding to all parameters but 323.0-ˆ
2   are less than 0.05. This indicates that 

surgeon 2 performs as well as surgeon 1, and the data corresponding to surgeons 1 and 2 

should be combined into one group. In other words, the number of levels of the surgeon 

covariate is reduced to 2. The parameters of the new risk-adjustment model with one 

dummy variable are estimated as 
T0.064] -3.050[ˆ

cp2 β and -0.849ˆ  . This model can 

be used as a baseline model for monitoring the cardiac surgery process in Phase II. 

Furthermore, it can help assess whether including the surgeon covariate in the risk-

adjustment model is essential in terms of the goodness of fit criterion. This is done by 

comparing model (4-2) and model (4-3) using likelihood inference (Myers et al., 2010, 

p.112). The test statistic can be calculated as 5.7061)log(2 21  LL , in which 

)log(2 21 LL follows a Chi-square distribution if the surgeon covariate is not significant. 

The estimated likelihood functions L1 and L2 are obtained for model (2) and model (3), 

respectively, based on the data set after the change-point of 400. Since the test statistic is 

larger than the critical value 3.84152

1,0.05  , there is a significant evidence to suggest 

that the risk-adjustment model which includes the surgeon covariate is better. 

If the RA-LRTCP1 chart were to be used to control the Phase I data, the entire data 

would be employed to estimate the parameters of the baseline model since no out-of-

control point was detected by the RA-LRTCP1 chart. In this case, the estimated parameters 
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are 
T0.073]  -3.471[ˆ

cp1 β  which is very different from the baseline model estimated by 

the RA-LRTCP2 chart. Figure 4-1, presented in the introduction, is based on these two 

estimated baseline models. Such an obvious difference between these two models, as 

shown in Figure 4-1, implies that ignoring the surgeon covariate in the risk-adjustment 

model may produce misleading results in both the mortality rate modeling and Phase II 

monitoring.  

 Generally, two approaches can be used for Phase II monitoring. One is to construct 

a set of control charts corresponding to each group of surgeons (i.e., at one level of the 

categorical covariate). In this way, each control chart at Phase II is built with a different 

risk-adjusted baseline model that is estimated based on each group’s data at Phase I, i.e., 

observations 400 to 1,112 of each surgeons’ group. The other approach is to construct a 

single control chart using all groups of surgeons’ data, in which a categorical covariate is 

added to the risk-adjustment model to represent different group levels of surgeons. Such a 

risk–adjustment model is estimated at Phase I based on all groups of surgeons’ data. The 

advantage of the first approach is that it is more explicit than the second approach in 

identifying which group of surgeons’ performance has changed after receiving an alarm 

at Phase II monitoring. On the other hand, the overall Type-I error rate corresponding to 

the first approach increases as the number of groups (i.e., the levels of the categorical 

covariate) increases, while the second approach has a fixed Type-I error rate. We 

recommend using the second approach for Phase II monitoring because of its simplicity 

in requiring only one chart construction. For the purpose of identifying which level of the 

categorical covariate has changed, we suggest using a post-alarm analysis similar to the 

one illustrated in Figure 4-3. 
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4.5 Performance Evaluation of the RA-LRTCP Charts  

In this section, the performance of the proposed RA-LRTCP1 and RA-LRTCP2 charts 

for binary surgical outcomes are further compared through Monte Carlo simulations. The 

probability of detecting a change in the mortality rate, and the average of the estimated 

change time (̂ ) are two criteria used for the performance comparison.  

To generate the simulated data, the risk-adjustment model presented in (4-3) is 

utilized. Parsonnet score is the sole risk-adjustment factor and the surgeon is the 

categorical operational covariate with two levels. The estimated parameters of the 

baseline model from the cardiac surgery example, as obtained in the previous section, are 

used in the risk-adjustment model. The model that is used to generate the simulation data 

in this section can be written as  

 
 11

11

849.00.0643.050exp1

849.00.0643.050exp

ii

ii
i

dx

dx




 .    (4-8) 

Based on the risk-adjustment model in (8), the logit of the mortality rate is denoted 

by ,2,1),logit( jj

i where 1

1 0.0643.899)logit( ii x  and 

1

2 0.0643.050)logit( ii x  correspond to two levels of the surgeon covariate, 

respectively. 

In order to simulate a random binary outcome, the level of the categorical 

operational covariate 1id  is first randomly chosen based on an assigned prior probability 

of each level, denoted by 2,1, jj . Then, a random Parsonnet score 1ix  is generated 

independently from the empirical distribution of Parsonnet scores obtained from the 
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Phase I surgery dataset. The reason for using the empirical distribution is that Parsonnet 

scores in the surgery dataset follow no known probability distribution. After that, the 

randomly generated 
1ix and 

1id  are substituted into (4-8) to calculate the mortality rate 

.i  Finally, the obtained mortality rate 
i  is used to generate a binary outcome through a 

Bernoulli distribution. In each replication, m binary outcomes are randomly generated 

using this procedure. 

To assess the performance of the RA-LRTCP1 and RA-LRTCP2 charts in detecting 

changes in the mortality rate, two out-of-control scenarios with different magnitudes are 

examined. 

Scenario 1: The logit of the mortality rate corresponding to each surgeon increases, 

i.e.,       ijjj

j

i

j

i ,2,1,0;logitlogit 01 . The expected change in the logit 

of the overall mortality rate can be calculated as 2211   .   

Scenario 2: The logit of the mortality rate corresponding to each surgeon changes 

in the opposite directions, while the expected change in the logit of the overall 

mortality rate 2211    is positive, i.e., 

      ijj

j

i

j

i ,2,1,0,0;logitlogit 2101 .  

In both scenarios, 1  and 2  are set to be proportional to the standard errors of 

)ˆˆ( 11   and 1̂ , respectively, and 1  is equal to 0.5. The UCL is set so that the estimated 

Type I error rate   is approximately equal to 0.05. The value of   is estimated by the 

proportion of simulation runs where at least one of 
umuu 


,...,1,

)(


 values is plotted beyond 
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UCL. The 95
th

 percentile of the 
umuu 


,...,1,

)(max


  values obtained from 1000 simulation runs 

when the process is in-control is chosen as the UCL. Furthermore, to investigate the 

sensitivity of the control charts performance, the simulations are carried out for different 

values of simulation parameters. We compare the performance under two sample sizes of 

m=1000 and 2000, and two different change point positions of m5.0 and m75.0 , with 

1000 replications in each case. 

The obtained detection probabilities of both control charts for different change 

magnitudes and scenarios are shown in Figures 4-4. From Figure 4-4, it can be seen that 

under both scenarios and different parameters of m and  , the RA-LRTCP2 chart 

outperforms the RA-LRTCP1 chart. For instance, under Scenario 1 with 2000m , and 

m75.0 , the detection probability corresponding to 6.1  of the RA-LRTCP2 chart is 

about 0.78, while it is 0.64 for the RA-LRTCP1 chart. Since the RA-LRTCP2 chart can 

distinguish different surgeon groups, it generally provides more precise parameter 

estimates, and thus leading to a better detection power.  
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Scenario 1 

 τ=0.5m τ=0.75m 

  

 Scenario 2 

τ=0.5m τ=0.75m 

  

m=1000, RA-LRTCP1  m=1000, RA-LRTCP2  m=2000, RA-LRTCP1  m=2000, RA-LRTCP2 

Figure 4-4. Detection probability of “RA-LRTCP1” and “RA-LRTCP2” charts under different shift 

scenarios 

The performance of both charts improves as the sample size of Phase I data (m) 

increases. Clearly, the model parameters can be better estimated with a smaller standard 
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error when m is larger, thus resulting in a higher detection power. Another parameter that 

can be influential in the performance of both control charts is  . It is obvious from 

Figure 4-4 that when m5.0 , the performance of both charts is better than when 

.75.0 m  For example, under Scenario 1 with 2000m , and m5.0 , the detection 

probability corresponding to 6.1  of the RA-LRTCP2 chart is about 0.88, while this 

detection probability decreases to 0.78 for the case with .75.0 m  This is due to the fact 

that when ,5.0 m  there are equal observations available from each group before and 

after the change, which makes two groups more distinguishable from each other, leading 

to better model estimation for both groups.  

In order to study the performance of the change-point estimator, the mean values of 

the change-point estimates obtained from simulations are calculated. These estimated 

means along with their standard errors (given in the parenthesis) for each of the RA-

LRTCP1 and RA-LRTCP2 charts are reported in Table 4-3. As can be seen from Table 4-3, 

the change-point estimates in the RA-LRTCP2 chart are more accurate and precise than 

those in the RA-LRTCP1 chart. As an example, under Scenario 1 with m=2000, 1500 , 

and 6.1 , the mean of the estimated change-point is 1477.32 with a standard error of 

6.39 for the RA-LRTCP2 chart, while these values are 1467.35 and 7.49, respectively, for 

the RA-LRTCP1 chart. The performance of the change-point estimation and the detection 

probability in both charts are improved when m increases. Generally, the higher the 

detection probability is, the more accurate and precise is the change-point estimator. The 

estimated change-points whose biases are more than 5% of  are underlined in Table 4-3. 

Both RA-LRTCP1 and RA-LRTCP2 charts produce biases within this range in most cases 
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considered. Therefore, the change-point estimator performance of both control charts is 

quite reasonable.   

Table 4-3. Mean and standard error of estimated change-point of proposed charts under different 

scenarios 

S
ce

n
ar

io
 1

 

δ 1.20 1.40 1.60 1.80 2.00 2.50 3.00 

m=1000 

τ=500 

CP1
*
 

572.16 520.55 518.57 513.47 505.05 503.25 503.38 

(8.1) (5.76) (4.46) (3.54) (2.02) (1.17) (0.73) 

CP2 
544.63 512.10 511.80 509.82 505.77 503.61 503.09 

(8.1) (5.5) (4.33) (2.94) (1.8) (0.98) (0.57) 

τ=750 

CP1 
583.81 661.30 714.48 738.03 742.72 750.00 751.27 

(9.23) (7.53) (5.19) (3.92) (3.04) (1.42) (0.98) 

CP2 
599.30 671.79 716.25 740.20 744.15 750.08 750.26 

(9.23) (7.34) (4.62) (3.54) (2.43) (1.14) (0.82) 

m=2000 

τ=1000 

CP1 
1052.51 1031.52 1017.86 1008.78 1008.44 1004.40 1003.47 

(17.11) (10.37) (6.74) (4.11) (2.56) (1.26) (0.76) 

CP2 
1038.49 1017.93 1009.21 1000.03 1006.65 1003.93 1002.07 

(16.19) (9.23) (5.63) (3.16) (1.9) (0.85) (0.57) 

τ=1500 

CP1 
1249.87 1457.88 1467.35 1480.43 1496.91 1505.24 1504.45 

(18.88) (11.04) (7.49) (5.06) (3.26) (1.2) (0.76) 

CP2 
1252.60 1460.51 1477.32 1489.09 1499.79 1504.64 1503.42 

(17.65) (10.28) (6.39) (4.14) (2.25) (0.95) (0.54) 

S
ce

n
ar

io
 2

 

δ 1.20 1.40 1.60 1.80 2.00 2.50 3.00 

m=1000 

τ=500 

CP1 
575.16 525.06 522.65 512.38 504.82 500.05 497.78 

(7.72) (5.38) (4.14) (3.16) (2.06) (0.7) (0.66) 

CP2 
569.29 514.63 511.67 506.14 504.51 499.47 497.34 

(7.62) (4.87) (3.57) (2.5) (1.52) (0.66) (0.63) 

τ=750 

CP1 
576.91 682.31 717.20 740.65 745.79 748.30 749.66 

(9.11) (7.08) (4.84) (3.29) (2.21) (1.17) (0.76) 

CP2 
592.85 683.82 719.21 739.13 745.64 748.47 748.55 

(8.98) (6.32) (4.08) (2.78) (1.87) (0.85) (0.63) 

m=2000 

τ=1000 

CP1 
1069.72 1035.19 1016.15 1010.55 1009.24 1003.74 1002.88 

(16.82) (9.58) (5.41) (3.26) (1.8) (0.95) (0.51) 

CP2 
1028.04 1011.45 1008.50 1004.01 1005.04 1002.69 1001.44 

(14.51) (8.03) (3.98) (2.25) (1.33) (0.57) (0.38) 

τ=1500 

CP1 
1292.85 1467.94 1484.14 1494.26 1498.58 1503.09 1504.73 

(18.12) (9.87) (5.6) (3.6) (2.62) (0.82) (0.54) 

CP2 
1306.38 1473.26 1489.42 1495.97 1502.28 1502.98 1502.14 

(15.72) (8.7) (4.49) (2.88) (1.45) (0.63) (0.41) 
* 
CP1 and CP2 represent RA-LRTCP1 and RA-LRTCP2, respectively. 
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CHAPTER V 

Conclusions and Future Research 

 

 

5.1 Conclusions 

This dissertation has focused on developing new methodologies to model and analyze 

profile data for the purpose of process monitoring, fault diagnosis, and effective decision 

making for system performance improvement. We first proposed a new framework to 

identify informative sensors and extract information of multi-stream waveform signals in 

distributed sensing systems. Then, the problem of modeling profile variations was 

studied, and a new method was proposed to characterize both within- and between-profile 

variations. We used this information for identifying sources of variations and fault 

diagnosis in a process. Furthermore, in the last part of the dissertation, we addressed the 

problem of modeling and making inferences about nonlinear profiles in the presence of 

disturbance covariates. The main research results and new contributions of this 

dissertation are summarized as follows. 

(1) A new hierarchical non-negative garrote (HNNG) method for identifying 

informative sensors. The proposed hierarchical non-negative garrote method consists of 

two steps. In the first step, the informative sensors and their corresponding signals are 

identified in a distributed sensing system. In the second step, important individual 

features are selected within each selected signal. We showed that the proposed method 
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benefits from the following three useful properties: (a) the “similar effects” property for 

incorporating highly correlated variables, (b) the applicability in cases when the number 

of important variables is larger than the sample size, and (c) the simplicity in computation 

to achieve optimum solutions in both steps of the method by using least angle regression 

with the order of complexity equal to the ordinary least square method. To evaluate the 

effectiveness of this method, we conducted a simulation study, and the results indicated 

that the proposed method outperforms other existing methods in terms of both prediction 

performance and model sparsity. Moreover, we applied our method to a real case study, 

where we showed that our method performs the best in predicting drivers’ comfort scores 

among all other methods.  

(2) A new mixed-effect model based on wavelets for characterizing both within- 

and between profile variations. In most applications, the total inherent variation of 

profiles often consists of both within-profile and between-profile variations. 

Characterizing both types of variations and identifying their variation sources are very 

useful when making proactive decisions for process improvement. For the purpose of 

variation modeling, we enhanced the mixed-effect models with the capability of wavelets 

for modeling local variations. Moreover, we used the multi-resolution property of 

wavelets to separate within-profile from between-profile variations and for estimating 

them separately, significantly reducing the computational effort for model fitting.  In 

constructing the mixed-effect model, an LRT-based change-point model was also utilized 

in order to check the historical profile data and identify potential clusters. Furthermore, a 

method for effective selection of monitoring features was proposed for improving LRT-

CP performance. Several Monte-Carlo simulation scenarios were conducted to evaluate 
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the effectiveness of this proposed approach. The simulation results indicated that the 

proposed method can effectively model both within- and between- profile variations and 

also outperforms the existing method in terms of detecting changes in historical profile 

data. We also applied the proposed wavelet-based mixed-effect model to profile data 

collected during valve seat pressing operations in an engine head assembly process, and 

demonstrated how the proposed method can be used to effectively characterize profile 

variations and identify sources of variations in the process.  

(3) A new parametric method for risk-adjusted modeling and monitoring of binary 

survival profiles with the categorical operational covariates. We proposed a general risk-

adjusted control charting scheme for Phase I control of surgical performance, which can 

account for not only patients’ health conditions as described by Parsonnet scores, but also 

other categorical operational covariates, such as the surgeons’ group factor. The proposed 

Phase I risk-adjusted control chart was developed based on a likelihood ratio test derived 

from a change-point model. The risk-adjustment model is fitted by incorporating the 

dummy variables to represent different surgeon groups’ performances. To demonstrate 

the importance of including relevant categorical operational covariates in the risk-

adjustment model, a cardiac surgery dataset was analyzed. The discovered data clusters 

for the mortality rate indicated that the inclusion of the categorical surgeon covariate in 

the risk-adjustment model can effectively model the heterogeneity of the surgical 

outcome data. The Monte-Carlo simulations were further conducted to demonstrate that 

by including the surgeon covariate, the Phase I risk-adjusted chart results in a better 

detection power of surgical performance change. It is expected that the improved 
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estimation of model parameters based on the proposed Phase I control will lead to a 

better Phase II monitoring performance. 

 

5.2 Future Research  

Waveform sensing signals have broad applications, which provide great opportunities 

and challenges for system performance improvement. Multidisciplinary approaches were 

proposed for waveform signal analysis by integrating domain engineering knowledge 

with advanced data analysis methods. In this dissertation, some initial efforts have been 

made and demonstrated in both methodological developments and real-world 

applications. However, future research is needed in this area, and a few examples of such 

research topics are listed below. 

 In the first problem studied in the dissertation, we considered the case, in which 

the response variable is continuous. However, the hierarchical NNG can be 

extended to classification models, where the response variable is categorical and 

can be suggested as a potential topic for future research. 

 In practice, there are many instances where process variables are measured and 

represented as multi-stream waveform signals. In order to effectively analyze 

multiple profiles, the inter-relationship among profiles should be considered in 

addition to between- and within-profile variations. This would make the data 

analysis very challenging and would require the development of new statistical 

learning techniques integrated with the domain knowledge. 

 In modeling profile variations, it was assumed that within-profile noises are 

identically and independently distributed. If the independency assumption is not 
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held, the denosing procedure used for removing the within-profile variation may 

not perform properly since the estimated within-profile variance would be highly 

biased. Therefore, developing wavelet-based mixed models for modeling 

nonlinear profile data in the presence of auto-correlated noises would be an 

interesting topic for future research.   

 Recently, some research has been conducted on constructing Phase II risk-

adjusted control charts based on continuous measures, such as patient’s survival 

time. Thus, extending the proposed Phase I risk-adjusted charts to continuous 

survival profiles would be another potential topic for future research. 

 Image data are widely used for system monitoring in various applications, such as 

hot rolling processes and MRI images and contain rich information which can be 

extracted and used for monitoring, fault detection and diagnosis purposes. There 

is extensive research on analysis of image data in the literature; nonetheless, there 

are many issues surrounding this area, specifically in analyzing the image data as 

it evolves over time. In order to effectively extract the image data information, 

both spatial and temporal correlations should be taken into account. Moreover, 

image data can be considered as a general type of functional data in the sense that 

they can be represented by a spatial function. Therefore, it would be plausible to 

adapt and modify the functional data techniques and use them for image data 

analysis and vice versa. 

 

 


