
MEASURING ACCESSIBILITY FOR RESIDENTIAL LOCATION CHOICE: 

BEYOND THE DICHOTOMY OF LOCAL AND REGIONAL 

by 

Xuan Liu 

A dissertation submitted in partial fulfillment 

of the requirements for the degree of 

Doctor of Philosophy 

(Urban and Regional Planning) 

in The University of Michigan 

2012 

 

Doctoral Committee: 

 

Professor Jonathan C. Levine, Chair 

Professor Daniel G. Brown 

Emeritus Professor Robert W. Marans 

Associate Professor Joseph D. Grengs 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© Xuan Liu 2012 



 ii 

DEDICATION 

 

To my parents, Rongxun Liu and Lanbi Bai, 

            and to my wife, Yisun Cheng, 

  and to my daughter, Sophie 



 iii 

ACKNOWLEDGMENTS 

 

This dissertation could not have existed without the help of many generous 

individuals. I am heartily thankful to my supervisor and dissertation committee chair, 

Jonathan Levine, whose guidance, encouragement, and support from the beginning of my 

doctoral study to the process of writing the dissertation enabled me to complete my Ph.D. 

degree. I would like to address special thanks to each member of my dissertation 

committee, Daniel Brown, Joseph Grengs, and Robert Marans who provided insightful 

advice and needed input at all stages of the research. I would like to thank John Nystuen 

who provided enormous support during my early years at the doctoral program. I also 

would like to express my gratitude to the current and past doctoral program chairs, Scott 

Campbell and Margaret Dewar for their support. I am also thankful to my fellow doctoral 

students, particularly Qingyun Shen for her help on modeling issues. 

SEMCOG, Southeast Michigan Council of Governments, provided most of the 

data needed for this research. I greatly appreciate the help from SEMCOG as an 

organization and from all my colleagues at SEMCOG for their support. I would like to 

thank the following current and former SEMCOG staff particularly: Guangyu Li, Sirisha 

Uppalapati, Brian Parthum, Jeff Nutting, Janet Mocadlo, Delores Muller, Andy Cain, 

Peter McNally, Martina Nimser, Liyang Feng and Jilan Chen. I would also like to thank 

my predecessor, Jim Rogers, manager of Data Center, SEMCOG executive director Paul 

Tait and deputy director Kathleen Lomako for their unwavering support. There are many 



 iv 

more names to mention. I am indebted to all of them, although I am solely responsible for 

the interpretations and any errors of omission or commission in this study. 

I am also grateful to the UrbanSim team at University of California, Berkeley, and 

University of Washington, Seattle, particularly Paul Waddell for his guidance on 

SEMCOG’s implementation of the UrbanSim model, Liming Wang for his support on 

UrbanSim programming, and Hana Sevcikova for her help on statistical matters. 

My wife, Yisun, has always supported and encouraged me throughout the entire 

doctoral study process. I am greatly indebted to her and my daughter, Sophie, for their 

patience and support in this endeavor. Their contribution is immeasurable, from Yisun’s 

“Don’t worry about anything else.” to Sophie’s “Are you going to study tonight?” They 

helped me to balance academic research, professional work, and family life. I am also 

grateful to my parents’ support and encouragement from the other side of the globe. This 

dissertation is dedicated to all of them.   

 

 

 

 

 

 

 

  



 v 

TABLE OF CONTENTS 

 

DEDICATION .................................................................................................................... ii 
ACKNOWLEDGMENTS ................................................................................................. iii 
LIST OF TABLES ........................................................................................................... viii 

LIST OF FIGURES ........................................................................................................... ix 
ABSTRACT ....................................................................................................................... xi 

 

CHAPTER 

I. INTRODUCTION .................................................................................................. 1 

A. Scales of Accessibility ................................................................................ 2 

B. Effects of Clustered Destinations................................................................ 6 
C. Commute Time ......................................................................................... 12 

D. Research Objectives .................................................................................. 13 
E. Organization of Chapters .......................................................................... 15 
F. Summary of Chapter I ............................................................................... 16 

 

II. LITERATURE REVIEW: APPROACHES TO UNDERSTANDING 

ACCESSIBILITY AND RESIDENTIAL LOCATION CHOICE ..................... 18 

A. The Concept of Accessibility .................................................................... 18 
B. Accessibility and Residential Location Choice ........................................ 22 

C. Accessibility Measures ............................................................................. 30 
1. Cumulative Opportunities ....................................................................... 30 
2. Gravity-based Accessibility Measures .................................................... 31 
3. Utility-based Accessibility Measures ..................................................... 32 

D. Accessibility by Trip Purpose ................................................................... 37 
E. Place-based vs. People-based Accessibility .............................................. 40 
F. Accessibility by Mode .............................................................................. 44 

1. Transit Accessibility ............................................................................... 44 
a) Access to public transit system ........................................................... 44 

b) Accessibility to Destinations by Transit ............................................. 47 
2. Non-motorized Accessibility .................................................................. 49 

a) Density ................................................................................................ 49 
b) Land Use Mix ..................................................................................... 50 
c) Design and Street Pattern .................................................................... 50 
d) Composite Index ................................................................................. 51 

G. Central Place Theory................................................................................. 52 
H. Summary of Chapter II ............................................................................. 55 

 



 vi 

III. DATA SOURCES AND PROCESSING .......................................................... 57 

A. Overview of Study Area ........................................................................... 58 
B. Household Travel Survey ......................................................................... 64 

1. Survey Design ......................................................................................... 65 

2. Selected Survey Results .......................................................................... 68 
a) Households .......................................................................................... 69 
b) Workers ............................................................................................... 71 
c) Vehicle Availability and Licensed Drivers ......................................... 71 
d) Income................................................................................................. 71 

e) Travel Behavior .................................................................................. 72 
3. Geocoding and GIS Processing ............................................................... 75 

C. Parcel Map and Assessing Data ................................................................ 77 
1. Data Collection ........................................................................................ 78 

a) Parcel Maps ......................................................................................... 78 
b) Property Assessment Records ............................................................. 80 

2. Data Processing and Enhancement .......................................................... 81 
a) Imputing Missing Values .................................................................... 82 

b) Completing Number of Housing Units ............................................... 84 
c) Improving Land Use Classification .................................................... 84 
d) Mapping Other Data to Parcels ........................................................... 85 

D. Synthesizing Households .......................................................................... 86 
1. Block-group Marginal Distributions ....................................................... 89 

2. Drawing Households from PUMS .......................................................... 89 
3. Assigning Households to Parcels ............................................................ 90 

E. Employment Data ..................................................................................... 92 

1. Employment Data Overview ................................................................... 92 

2. Employment Data Processing ................................................................. 93 
a) Breaking out multi-establishment records .......................................... 94 
b) Adjusting employment by type ........................................................... 94 

c) Geocoding ........................................................................................... 95 
d) Confidentiality requirements .............................................................. 96 

e) Imputation of missing data.................................................................. 97 
F. Summary of Chapter III ............................................................................ 98 

 

IV. METHODOLOGY .......................................................................................... 100 

A. Multinomial Logit Model for Estimating Residential Location Choice . 101 

1. Reducing the Choice Set to a Practical Size ......................................... 105 

2. Adjustments to Household Travel Survey Sample ............................... 107 
B. Model Specifications – Independent Variables ...................................... 109 

1. Affordability/Economic Variables ........................................................ 109 
2. Social Composition Variables .............................................................. 110 
3. Amenity and Service Variables: ........................................................... 111 
4. Accessibility Variables ......................................................................... 112 

C. Measuring Multiple Aspects of Accessibility ......................................... 115 
1. Regional Accessibility .......................................................................... 116 



 vii 

2. Mid-range Accessibility ........................................................................ 117 

3. Local Accessibility ............................................................................... 119 
a) Population Density ............................................................................ 120 
b) Diversity - Land Use Mix ................................................................. 121 

c) Design ............................................................................................... 122 
d) Composite Index of Local Accessibility ........................................... 124 

4. Commute Time – Individual Worker’s Journey to Work ..................... 125 
D. Spatial Clustering Analysis ..................................................................... 125 

1. Average Nearest Neighbor (ANN) Spatial Statistics ............................ 127 

2. Multi-Distance Spatial Cluster Analysis (Ripley’s K-function) ........... 132 
E. Expected Model Results ......................................................................... 135 

1. The Direction of Independent Variables ............................................... 135 
2. The Significance of Variables ............................................................... 139 

3. The Relative Influence of Variables ..................................................... 140 
4. The Explanatory Power of the Model ................................................... 140 

F. Summary of Chapter IV .......................................................................... 141 
 

V. MODEL RESULTS .......................................................................................... 142 

A. Initial Model Results ............................................................................... 142 
B. Regional, County, and City Models ........................................................ 150 
C. Model by Race ........................................................................................ 155 

D. Summary of Chapter V ........................................................................... 158 
 

VI. DISCUSSIONS AND CONCLUSIONS ......................................................... 160 

A. Theoretical Implications ......................................................................... 161 
B. Practical Implications.............................................................................. 163 

C. Policy Implications ................................................................................. 166 
D. Questions for Further Research .............................................................. 170 

1. Additional Data for Spatial Cluster Analysis ........................................ 170 

2. Spatial Cluster Boundaries and Geographic Scales .............................. 171 

3. Defining Multiple Mid-ranges for Measuring Nonwork Accessibility . 171 
4. Geographic Areas for Modeling ............................................................ 172 
5. Using Commute Time in Urban Modeling ............................................ 173 

E. Conclusions ............................................................................................. 173 
 

BIBLIOGRAPHY ........................................................................................................... 176 

  



 viii 

LIST OF TABLES 

 

Table 1.  Chained and Unchained Trips, based on Detroit Region Household Travel 

Survey, 2004-2005 ............................................................................................... 9 

Table 2.  MDOT and SEMCOG Survey Samples for Detroit Region .............................. 67 

Table 3.  Household Variables from Travel Survey ......................................................... 68 

Table 4.  Selected Household Characteristics Based on Expanded Samples ................... 70 

Table 5.  Household Income Distributions ....................................................................... 72 

Table 6.  Comparing Mean Travel Time by Trip Purpose, 1994 and 2005 ...................... 75 

Table 7.  Geocoding Results of Survey Households ......................................................... 76 

Table 8.  Key Attributes by Parcel .................................................................................... 81 

Table 9.  Land Use by Parcel ............................................................................................ 85 

Table 10.  Attributes of Synthesized Households ............................................................. 88 

Table 11.  Results of Confidentiality Checking on Employment Data ............................. 96 

Table 12.  Deviation of Sample Size from Census Household Distribution .................. 107 

Table 13.  Derivation of Sample Weights by County ..................................................... 108 

Table 14.  Expected signs of variables ............................................................................ 137 

Table 15.  Results of Residential Location Choice Models ............................................ 144 

Table 16.  Three Levels of Geographic Scales ............................................................... 151 

Table 17.  Model Results at Three Geographic Levels ................................................... 153 

Table 18.  The Friction Factors of Three Levels of Geography ..................................... 154 

Table 19.  Residential Location Choice Models for Whites and Blacks ........................ 157 

Table 20.  Number of Households, Predicted/Observed, by Municipality ..................... 165 



 ix 

LIST OF FIGURES 

 

Figure 1.  Percent Non-Motorized Mode by Trip Distance, Home-based Trips ................ 4 

Figure 2.  Percent Home-based Work and Nonwork Trips by Trip Distance..................... 4 

Figure 3.  Clustering Effects in the Cumulative Opportunity Measure .............................. 7 

Figure 4.  Clustering Effects in Gravity-Based Regional Accessibility ............................. 8 

Figure 5.  Percent Chained Tours, Destinations, and Distance from Home ..................... 10 

Figure 6.  Percent of Destinations with Distance to the Longest Destination less than   

One Fifth the Distance to Home in Chained Tours .......................................... 11 

Figure 7.  Accessibility Measure Using Logsum .............................................................. 34 

Figure 8.  Central Place Theory: A Case of Christaller Model ......................................... 52 

Figure 9.  Accessibility at Multiple Scales in a Hierarchy of Market Areas .................... 53 

Figure 10.  Study Area - Seven Counties in Southeast Michigan ..................................... 59 

Figure 11.  Population History – Detroit City vs. the Region........................................... 60 

Figure 12.  Land Developed before and after 1970 .......................................................... 61 

Figure 13.  Population by Race by Municipality, Detroit Region, 2010 .......................... 63 

Figure 14.  Number of Driver Trips .................................................................................. 73 

Figure 15.  Mean Travel Time for All Trips ..................................................................... 74 

Figure 16.  Mean Travel Time for Work Trips ................................................................. 74 

Figure 17.  A Sample Survey Household and Land Parcels ............................................. 77 

Figure 18.  Assessed Building Values by Parcel .............................................................. 83 

Figure 19.  Three Scales of Accessibility ....................................................................... 115 



 x 

Figure 20.  Regional Accessibility to Jobs in Detroit Region ......................................... 117 

Figure 21.  Local Accessibility: Population within Walking Distance                            

(1/4 Mile Radius), Southeast Michigan, 2008 .............................................. 121 

Figure 22.  Local Accessibility: Commercial Square Footage                                      

within Walking Distance (1/4 Mile Radius), Southeast Michigan, 2008 ..... 122 

Figure 23.  Local Accessibility: Number of 4-way (or greater) Intersections               

within Walking Distance (1/4 Mile Radius), Southeast Michigan, 2008 ..... 123 

Figure 24.  Attraction in zones of various degrees of clustering .................................... 126 

Figure 25.  Average Nearest Neighbor (Spatial Statistics) ............................................. 127 

Figure 26.  Non-residential Parcels in Birmingham, Michigan ...................................... 128 

Figure 27.  Average Nearest Neighbor Statistics for Birmingham, Michigan ................ 129 

Figure 28.  Destinations for Cluster Analysis ................................................................. 130 

Figure 29.  ANN Scores by Municipality ....................................................................... 131 

Figure 30.  Ripley’s K-function Spatial Statistics .......................................................... 133 

Figure 31.  Ripley's K, Difference between Observed and Expected, by TAZ .............. 134 

Figure 32.  Relative Influence of Independent Variables ............................................... 150 

Figure 33.  Number of Households, Predicted/Observed, by Municipality.................... 165 

 

  



 xi 

ABSTRACT 

 

Travel demand forecasting has been a key component of long range planning at 

Metropolitan Planning Organizations (MPOs) in the United States. Research 

advancements have led to incorporating transportation accessibility into household and 

business location choice analysis and forecasting. The dynamic feedback effects between 

transportation and land use have been studied using accessibility measures with mixed 

results. 

This dissertation examines multiple aspects of accessibility and their effects on 

residential location choice. First, while accessibility has been dichotomized into local and 

regional accessibility, this study suggests that a mid-range accessibility may have an 

independent and statistically significant effect on residential location choice. Second, 

accessibility metrics have traditionally been indifferent to the clustering of destinations. 

This dissertation tests the idea that, in addition to amount of activities, clustering of 

activities also contributes to accessibility. Models that explicitly incorporate clustering 

into measures of accessibility may show stronger explanatory power in predicting 

residential location choice than models that do not incorporate clustering into 

accessibility measures. Third, this study compares the effects of place-based accessibility 

measures and personal commute time on residential location choice. Finally, this 

dissertation develops alternative models for analyzing residential location choice in 

regard to accessibility for various socio-economic groups of population, particularly by 



 xii 

race and ethnicity, as well as alternative models at three levels of geographic scale, which 

are metropolitan region, county, and city, for assessing the effects of scale on 

accessibility.  

Research hypotheses in this dissertation are tested using multinomial logit models 

estimated for Detroit metropolitan area based on data from 2004 to 2010. The results 

show that local, mid-range, and regional accessibility measures affect residential location 

choice significantly, while the effects of clustering need further study. Individual workers’ 

commute time has the biggest impact on residential location choice. This is found to be 

true at multiple geographic levels in Detroit region. The purpose of the study is to 

contribute to understanding the effects of accessibility in residential location choice, 

developing innovative tools for measuring accessibility that incorporate clustering and at 

multiple geographic scales, improving land use and transportation modeling practice, and 

eventually helping development of land use and transportation policies. 
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CHAPTER I 

INTRODUCTION 

 

Accessibility has been defined in a number of ways such as “the potential of 

opportunities for interaction” (Hansen 1959), “the ease with which any land-use activity 

can be reached from a location using a particular transport system” (Dalvi and Martin 

1976), “the freedom of individuals to decide whether or not to participate in different 

activities” (Burns 1979), “the benefits provided by a transportation/land-use system” 

(Ben-Akiva and Lerman 1979), and “the ease of reaching places” (Cervero 1996). In 

general, the concept of accessibility concerns with how easily that various destinations in 

an area can be reached.  

Accessibility is a driving force in models of land-use change and location choices. 

In general, the more accessible an area is to the various destinations in a region, the more 

desirable it is for people and businesses to locate, everything else being equal (Hansen 

1959). The relationship between transportation accessibility and other housing and 

location characteristics was formalized by Alonso (1964) in a monocentric regional 

model. Alonso developed the economic `bid-rent' model based on the concept that 

residential location choices of individuals are made from a trade-off between the 

increasing costs of commuting to work and the decreasing land prices and housing costs 

when moving away from the regional employment center, typically the Central Business 

District (CBD). More recently, while the assumptions of monocentric regions, single-
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worker households, and dominating journey-to-work trips became more and more 

questionable, residential location choice models have been developed to account for such 

complexities of polycentric regions and often in the form of discrete choice models based 

on the random-utility theory (Mcfadden 1978; Ben-Akiva and Bowman 1998). The 

original feature of the classical urban economic models that treat residential location 

choice as a trade-off between transportation and housing cost has been generalized to 

account not only for travel time to the CBD but also for accessibility to a variety of 

destinations at regional and local scales. Accessibility is considered as one of the 

independent variables, along with a number of other household characteristics and place 

attributes, for predicting the likelihood of a household choosing a residential location. A 

household chooses a particular location that maximizes its utility compared to other 

properties, and accessibility is one important factor considered in a household’s utility 

maximization process.  

 

A. Scales of Accessibility 

 

Accessibility has been defined in the regional and local ways (Handy 1993). Both 

regional and local accessibility were found significant in location choice models 

(Waddell and Nourzad 2002, Waddell and Ulfarsson 2003). “Local accessibility” 

typically measures access to activities by non-motorized mode (e.g. walking and biking) 

within a neighborhood. It focuses on neighborhood density, mix of land use, and urban 

design characteristics to determine how easily to reach locally oriented destinations such 

as drug stores, barber shops, and fitness facilities. “Regional accessibility” is a macro-
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scale measurement centered on the overall structure of a metropolitan region and on 

potential interactions within the entire region. Examples of regional destinations include 

employment centers (CBDs and other job clusters), airports, regional malls, and sports 

venues. 

The primary reason for separating “local accessibility” from “regional 

accessibility” is to account for the difference between motorized and non-motorized trips, 

namely the “mode of transportation.” As shown in Figure 1, the percentage of trips made 

by non-motorized mode declines sharply when the length of trips increases from zero to 

approximately one mile. The geographic range of non-motorized trips is very limited, but 

they provide desirable local accessibility to people who do not use motor vehicles. Local 

accessibility is often found significant in residential location choice models particularly 

for younger and smaller households.   

Regional accessibility could differ for different modes, different population 

groups, and different trip purposes. Figure 2 shows the change of work trips and nonwork 

trips (e.g. shopping, school, recreation) as the percentage of total trips made from home. 

The percent of nonwork trips declines from nearly 90% while the length of trip is five 

miles or shorter to about only 30% when the distance increases to 25 miles. Meanwhile 

work trips increase sharply. There are more work trips than nonwork trips when distance 

of trips reaches 15 miles. It indicates that people, in general, are more willing to travel 

longer distance for work than for nonwork purposes.  
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Figure 1.  Percent Non-Motorized Mode by Trip Distance, Home-based Trips 

 

Data Source: Southeast Michigan Council of Governments (SEMCOG) Household 

Travel Survey, 2004-2005 

 

Figure 2.  Percent Home-based Work and Nonwork Trips by Trip Distance 

 

Data Source: Southeast Michigan Council of Governments (SEMCOG) Household 

Travel Survey, 2004-2005 
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The concept of distance-decay, used widely in spatial interaction models 

including many transportation forecasting models, can be interpreted as measuring the 

impedance (or unwillingness) to travel various distances to access opportunities. 

Evidence has shown that the degree of distance-decay varies by travel mode and travel 

purpose. The magnitude of empirically estimated distance-decay parameters for nonwork 

trips could be as much as ten times higher than for work trips (Iacono et al. 2008, p. B-7) 

indicating strong unwillingness to travel long distance for nonwork trips than for work 

trips.     

Just like local accessibility is significant for measuring the impacts of non-

motorized accessibility on location choice in addition to auto accessibility, nonwork 

accessibility may play a different and independent role in residential location choice than 

work accessibility. While regional accessibility is better suited for measuring 

accessibility to work and regional centers, one may argue that a sub-regional “mid-range” 

accessibility might be needed for measuring impacts of nonwork accessibility that meets 

residents’ daily needs. In a metropolitan area, a household’s daily needs are mostly met at 

the sub-regional level. A sub-regional market provides most opportunities to its residents 

in regard to retail, education, and other services. When making residential location 

decisions, households may choose a sub-regional market area first before choosing a 

particular neighborhood and a specific house.  It seems to suggest the importance of a 

sub-regional “mid-range” accessibility that is typically beyond the non-motorized range 

of local accessibility measures but doesn’t necessarily include all destinations in the 

entire region measured by regional accessibility. 
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B. Effects of Clustered Destinations  

 

Since accessibility is about the ease of reaching destinations, it is conventionally 

measured by the amount of destinations and the cost to reach them. The simplest but 

widely used accessibility measure is “cumulative opportunities” method. It is simply a 

count of activities that can be reached within a specified threshold radius of a distance or 

travel time. It is most often used for measuring local accessibility where distance or travel 

time is short, but could be used for measuring regional accessibility as well. For example, 

a cumulative opportunity measure of accessibility to employment could be simply by 

counting “number of jobs within 30 minutes of commute.” Within this framework, higher 

number of jobs indicates greater accessibility. An implicit presumption in such 

accessibility measures is that destinations’ value is unaffected by their proximity to other 

destinations. As illustrated in Figure 3, both area A and B have the same number of 

destinations (eight in each), therefore they have the same accessibility based on 

conventional “cumulative opportunities” measure.  

However, this is inconsistent with what we know about the travel phenomenon 

called “trip chaining.” If a trip has more than one destination (i.e. “trip chaining”), as 

shown in both A and B in Figure 3, one may think that B provides greater accessibility 

because the clustering of destinations in B could reduce the cost of chained trips to these 

destinations. 
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Figure 3.  Clustering Effects in the Cumulative Opportunity Measure 

 

 

The effects of clustering apply to other conventional accessibility measures as well. 

For example, the gravity model is widely used in measuring accessibility. While the 

“cumulative opportunities” method treats all destinations within the fixed threshold 

equally by omitting distance or travel costs and ignores all destinations beyond the fixed 

threshold, a gravity model overcomes those weaknesses by including all destinations in 

the region and by incorporating travel costs to recognize that distant destinations are less 

desirable than close destinations. But it also treats destinations equally regardless whether 

they are in the clustered urban centers or at the dispersed rural periphery of a region.   As 

illustrated in Figure 4, based on conventional gravity model, accessibility from location 

“P” to the larger destination “3E” is the same as the sum of accessibility from “P” to the 

three smaller destinations, as long as “t” is the same impedance for all destinations and 

the attractions at the larger destination, 3E, is three times the attractions at each smaller 

destination E. The “attractiveness” in conventional gravity-based accessibility measures 

is often measured by the amount of activities alone, such as “number of jobs.” However, 
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there are other factors besides the amount that can affect the attractiveness. Clustering is 

one of them.     

 

Figure 4.  Clustering Effects in Gravity-Based Regional Accessibility 

 

 

One may argue that destination “3E” is more important than the sum of the three 

“E”s. It is likely that “3E” has greater regional impacts, i.e., attractiveness to the entire 

region, for its being able to provide higher level of services to the region. The 

hierarchical central place theory (Christaller 1933/1966) asserted that settlements 

functioned as 'central places' providing services to surrounding areas. A region is 

consisting of nested market areas of various economic scales. The higher the order of the 

goods and services, the larger the range of the services, the longer the distance people are 

willing to travel to acquire them. Destination “3E” is likely to be at a higher level of the 

regional hierarchy than the three “E”s. Access to “3E” is more valuable than to the “E”s. 

This could also be in part because of the clustering of destinations that makes trip 
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chaining more efficient. If a trip from “P” has more than one stop, destination “3E” has 

the potential to provide better accessibility for the intervening stops by clustering stops 

than the more scattered three “E”s. In summary, when destinations are clustered, the 

whole could be greater than simply the sum of its constituent parts. Therefore, it could be 

desirable to weight destinations by degree of clustering when estimating accessibility, 

regardless which accessibility measuring method to use. 

Trip chaining is a common phenomenon in daily travel. Analysis of Detroit region 

household travel survey shows that 43% of home-based tours (a round-trip journey from 

home) had more than one destination, i.e. chained tours.  More importantly, 70% of all 

destinations in the survey were reached by chained tours (Table 1). 

If we assume that clustering carries no weight in accessibility measures, we are 

effectively assuming that interaction potential is always measured from home with one 

destination, i.e. home-destination-home. Under that assumption, clustering would not 

matter. However, since there is high potential for interaction that goes home-

destination1-destination2- … destination-n … -home, clustering would be essential 

because it reduces the impedance between intervening destinations. 

  

Table 1.  Chained and Unchained Trips, based on Detroit Region Household Travel 

Survey, 2004-2005 

 

 

Chained Unchained Total 

Percent 

Chained 

Tours 4,861 6,418 11,279 43% 

Destinations 14,702 6,418 21,120 70% 

 

More detailed analysis of the same travel survey data shows that the likelihood of 

forming chained trips increases when trip length increases (Figure 5). When distance of 
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the longest destination from home reaches five miles, more tours are chained (51%) than 

not. Furthermore, 82% of destinations are reached by chained tours when distance 

increases to ten miles. While intervening stops could be either along the way to the 

longest destination or clustered around the “final destination”, it suggests clustering of 

destinations may have significant impacts on regional accessibility.  

 

Figure 5.  Percent Chained Tours, Destinations, and Distance from Home 

 

Data Source: Southeast Michigan Council of Governments (SEMCOG) Household 

Travel Survey, 2004-2005 

 

Further analysis seems to show that destinations increasingly cluster to the end of 

tour when distance of travel increases (Figure 6). Overall, clustering seems to have more 

0% 

10% 

20% 

30% 

40% 

50% 

60% 

70% 

80% 

90% 

100% 

1
 

2
 

3
 

4
 

5
 

6
 

7
 

8
 

9
 

1
0

 

1
1

 

1
2

 

1
3

 

1
4

 

1
5

 

1
6

 

1
7

 

1
8

 

1
9

 

2
0

 

2
1

 

2
2

 

2
3

 

2
4

 

2
5

+ 

Distance of Longest Destination from Home (mile) 

P
er

ce
n

t 
  C

h
ai

n
ed

 

Percent  of  Chained  Destinations 

Percent  of  Chained  Tours 



 

 11 

impact on regional accessibility than local accessibility. It suggests a form of regional 

accessibility that considers a destination’s proximity to other destinations in measuring its 

effects and assessing its importance in location choice. 

 

Figure 6.  Percent of Destinations with Distance to the Longest Destination less than 

One Fifth the Distance to Home in Chained Tours 

 

 

Source: Southeast Michigan Council of Governments, SEMCOG, Household Travel 

Survey, 2004-2005 

 

In summary, the conventional approach of dichotomizing regional and local 

accessibility seems to neglect the potential influence of an independent mid-range 

accessibility.  Furthermore, the omission of clustering in regional accessibility seems to 

neglect the importance of trip chaining, particularly trip chaining where stops are closer 

to the far end of the trip than they are to home. 
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C. Commute Time 

 

The above sections have discussed place-based accessibility measures that focus 

on the spatial separation and connection among locations such as home, employment 

centers, retail stores, health care services, and recreation facilities. There are other 

implementation issues associated with these place-based accessibility measures besides 

the scale issues and clustering issues that are discussed in Section A and B respectively. 

One issue is related to aggregation. Accessibility measures typically use some kind of 

spatial zones to group activities. For example, accessibility to employment measures 

often use number of jobs in Traffic Analysis Zones (TAZs) to represent job attractiveness 

to all workers in a region.  However, geographic aggregation of destinations can affect 

the results of accessibility analysis. If the zone system changes, the measured results of 

accessibility may differ. Existing spatial analysis literature defines this issue as 

Modifiable Areal Unit Problem (MAUP), that is if the zone system is modifiable, the 

results can vary simply because of changing the zone system (Cressie 1996). The 

problem is twofold. First, the level of spatial aggregation is artificial. Second, the 

delineation of the zones is also artificial. There is no perfect solution to this problem. A 

general suggestion is spatial disaggregation, and greater disaggregation is better (Handy 

and Niemeier 1997). Miller (2005) believes that place-based measures of accessibility 

should be enhanced and complemented with people-based measures that are more 

sensitive to individual activity patterns and accessibility in space and time. He argues that 
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only complete disaggregation to the atomic units of analyses can eliminate MAUP 

problem. 

When analyzing accessibility to employment, the “atomic unit of analysis” is an 

individual worker’s journey to his or her own job. A worker’s specific employment 

location may affect his or her residential location choice most. When there are multiple 

workers in a household, multiple employment locations of these workers may all affect 

the household’s residential location decision. However, this is not to suggest that 

individual workers’ commute time should replace place-based accessibility. A household 

may choose to locate near its workers’ employment locations. It may also consider place-

based overall employment accessibility as well for potential employment changes of its 

workers in the future. Places with good overall employment accessibility maybe even 

more important for households with multiple workers than single-worker households, 

because high overall accessibility of a place may help optimize individual employment 

accessibility for all workers in the household.  

 

D. Research Objectives 

 

The effect of accessibility on residential location choice is a controversial 

research topic. There is contradictory empirical evidence to support or dismiss such 

effects. This study examines the scale issue and the clustering issue of the accessibility 

concept and its measurement by exploring the role of accessibility in residential location 

decisions. How effectively can residential location choice be explained by a range of 

accessibility from regional, to sub-regional, and to local, and by incorporating clusters of 
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destinations? Do place-based accessibility and individual workers’ commute time affect 

residential location choice differently? The study examines the notion that accessibility at 

each scale has its own power in explaining where households choose to live, adding 

clustering effects improves the explanatory power, and both place-based accessibility and 

workers’ commute time affect residential location choice.  

Specifically, the hypotheses of the study are as follows:  

First, a sub-regional mid-range accessibility will have a statistically significant 

effect on residential location choice, controlling for regional and local accessibility. 

Second, models that incorporate clustering into measures of accessibility will 

show stronger explanatory power in predicting residential location choice than models 

that do not incorporate clustering into accessibility measures. 

Third, both place-based accessibility and workers’ commute time affect 

residential location choice significantly, although their effects may not be equal. 

These hypotheses are tested using multinomial logit models estimated for Detroit 

metropolitan area based on data from 2004 to 2010. Alternative models for various 

population groups with different socio-economic characteristics are developed to assess 

the different effects of accessibility on their residential location choice.  

The purpose of the study is to contribute to understanding of accessibility at 

various scales in a region, providing additional tools for measuring accessibility 

characteristics of metropolitan areas that can be used for predicting household location 

choices, improving land use and transportation modeling, and eventually helping 

evaluation of land use and transportation policies. 
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E. Organization of Chapters 

 

This dissertation is organized in three main parts including six chapters. The first 

part (Chapter I and II) discusses the theoretical perspectives on the effects of accessibility 

on residential location choice. Chapter I introduces the concept of “mid-range” 

accessibility in addition to regional and local accessibility. This chapter also argues for 

the effects of clustering of activities on accessibility. Chapter II reviews the literature on 

accessibility, its measurements, and effects on location choice. Central Place Theory is 

also discussed as a theoretical base for including “mid-range” scale and clusters in 

measuring accessibility for residential location choice.   

The second part (Chapter III and IV) presents a descriptive analysis of 

accessibility across a region and its residents’ location choices. Chapter III provides an 

overview of the study area, the Detroit region in Southeast Michigan, and explores all 

data items that are necessary for analyzing accessibility, assessing its impact on location 

choice, and testing research hypotheses. These data items include demographic data, 

socio-economic data, and transportation data. This chapter illustrates the land use 

characteristics and travel patterns in the region. Chapter IV discusses the methodology 

used for this research. Various “mid-ranges” are tested for measuring accessibility. The 

degree of clustering of activities is measured to weight accessibility. Multinomial logit 

models are estimated for analyzing residential location choice to test the effects of “mid-

range” accessibility and clustering of activities, controlling for other variables. Workers’ 

commute time measures are used with place-based accessibility measures in these models.  
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The third part (Chapter V and VI) presents the modeling results and discusses 

their implications. Chapter V first presents the results of models with various 

accessibility measures. It then discusses alternative models for various socio-economic 

groups of population, as well as alternative models at various scales within a region. It 

also interprets modeling outcomes and reviews the research hypotheses. Chapter VI 

discusses the implications of the findings from this study, in regard to planning theory, 

land use and transportation modeling practice, and enhancing public policy. It addresses 

the values of this research that may contribute to urban and regional planning, and 

suggests further research questions in the future. Finally, the dissertation concludes by 

highlighting the lessons learned from this research. 

 

F. Summary of Chapter I 

 

Accessibility is a driving force in location choices. The more accessible an area is 

to the various destinations in a region, the more desirable it is for people to locate there, 

all else being equal. The relationship between accessibility and residential location choice 

has been studied in various research projects. Accessibility has been dichotomized to 

regional and local accessibilities in some of these research projects. While “local 

accessibility” measures access to activities within a neighborhood scale and is thus 

particularly relevant to travel by non-motorized modes, “regional accessibility” centers 

on the overall structure of a metropolitan region and on potential interactions within the 

entire region. Both local and regional accessibilities have been found significant in 

residential location choice in previous studies. 
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This study tests whether a sub-regional mid-range accessibility is needed in 

assessing accessibility and estimating the effects of accessibility on residential location 

choice. While the primary reason for separating “local accessibility” from “regional 

accessibility” is to account for the difference between non-motorized and motorized trips, 

“mid-range” accessibility may identify the uniqueness of nonwork accessibility from 

work accessibility. This mid-range accessibility may play an independent role in 

residential location choice, in addition to local and regional accessibility.  

This study also suggests that the clustering of activities, besides the amount of 

activities, is important in analyzing accessibility. If we assume that clustering carries no 

weight in accessibility measures, we are effectively assuming that interaction potential is 

always measured from home with one destination. Under that assumption, clustering 

would not matter.  But since there is high potential for interaction that involves multiple 

destinations as demonstrated in trip-chaining, clustering would be essential because it 

reduces the impedance between intervening destinations. Models incorporating clustering 

into measures of accessibility will show stronger explanatory power in predicting 

residential location choice than models that do not incorporate clustering into 

accessibility measures. 

Furthermore, this study argues that both place-based accessibility and individual 

workers’ commute time affect residential location choice. They may co-exist as 

independent variables in residential location choice models. Including commute time to 

work in residential location choice model may supplement other independent variables 

that measure place-based accessibility.  
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CHAPTER II  

LITERATURE REVIEW: APPROACHES TO UNDERSTANDING 

ACCESSIBILITY AND RESIDENTIAL LOCATION CHOICE  

 

 

A. The Concept of Accessibility 

 

Accessibility and its effect on location decisions as a research topic have a long 

tradition in literature related to geography, urban economics, and planning. Hansen (1959) 

defined accessibility as “the potential of opportunities for interaction.” His 1959 article 

has been often cited in accessibility research as seminal to the concept of accessibility 

and constructing the measurements of accessibility. He presented an operational 

definition and suggested a method for determining accessibility patterns within 

metropolitan areas. His formulation of accessibility states that the accessibility is 

“directly proportional to the size of the activity … … and inversely proportional to some 

function of the distance” between locations. It is also important to note that Hansen’s 

intention was to develop a residential land use model that relates accessibility of an area 

to the rate and intensity of land development in that area “based on a realistic 

measurement of accessibility.” The primary focus of his research was “an empirical 

examination of the residential development patterns illustrates that accessibility and the 

availability of vacant developable land can be used as the basis of a residential land use 

model” (Hansen 1959, p. 73). Since then, accessibility has been proved to be a useful tool 
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for metropolitan planning purposes. Henson’s concept of accessibility and approach for 

measurement have been continuously refined in the past decades, particularly in the 

1990s and 2000s.  

Handy (1993) summarized research advances in accessibility and categorized 

accessibility into local and regional types. Local accessibility is defined with respect to 

"convenience" establishments. Only such establishments that are nearby or that are 

nearest to people are included in local accessibility. These establishments usually are 

found in small centers or in stand-alone locations in neighborhoods. Local accessibility is 

presumed to be associated with short and relatively frequent "local" trips, whereas the 

choice of particular destinations will depend to a large degree on the distance to that 

destination. On the other hand, regional accessibility is defined with respect to regional 

employment centers, suburban shopping malls, or other major commercial areas, which 

offer an abundant of job opportunities, or a wide range of "comparison" of goods and 

services. These activity centers may be close to neighborhoods or relatively far. They 

attract people from a wide geographic area. Regional accessibility is associated with 

longer regional trips, where distance is less of a concern in destination choice compared 

to local accessibility. But, Handy also noted that the distinctions between regional and 

local accessibility “are not entirely clean” (Handy 1993, p. 59). There is no definitive 

geographic scale specified for local or regional accessibility.  

In fact, the geographic definition of “local” and “regional” in measuring 

accessibility varies significantly. “Local accessibility” ranges from TAZs and “super 

districts” (Handy 1993) to “walking distance” (Waddell and Nourzad 2002). Increasingly, 

“local accessibility” has been defined as “neighborhood accessibility” (Krizek 2003) that 
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is geographically limited to “walking distance.” Therefore, local accessibility is a micro-

level measurement that typically focuses on density, land use mix, and urban design 

characteristics (Cervero and Kockelman 1997) at the neighborhood scale. It is 

particularly helpful in measuring the effects of non-motorized modes of transportation, 

which are often overlooked by traditional transportation planning tools. However, it left 

everything beyond “walking distance” to regional accessibility, regardless distance, travel 

mode, and trip purpose.   

“Regional accessibility” is a macro-scale measurement centered on the overall 

structure of metropolitan regions and focused on potential interactions at the regional 

scale. The interaction between local and regional accessibility has not been explicitly 

studied but deserves more research. Accessibility of a walkable neighborhood in the 

middle of nowhere is very different from accessibility of a walkable neighborhood within 

a well established city. Under the right conditions, there may be some substitutability 

between local and regional accessibility. A high level of local accessibility may reduce 

the frequency of regional trips, whereas a high level of regional accessibility may reduce 

the frequency of local trips, depending upon the characteristics of these trips. For 

example, although it is difficult to substitute work trips because of the fixed job locations, 

trips to retail stores and service centers could be more easily substituted. Furthermore, it 

is hard to justify a long trip to a single destination. But if there are multiple destinations 

clustered at a particular location, people may be more willing to travel longer distance. 

The concept of accessibility is truly multi-dimensional. The above discussions touched on 

some important dimensions of accessibility, such as regional vs. local, and work vs. 

nonwork. The rest of this chapter will further explore these dimensions and other 
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dimensions of accessibility, including travel mode and place-based vs. people-based 

accessibility. 

Overall, accessibility is determined by a number of factors including: 1) the 

spatial distribution of activities, 2) the magnitude, quality, and characteristics of the 

activities, and 3) the means of reaching those activities. Destinations where activities take 

place are central: the more destinations with greater varieties, the higher the accessibility. 

Travel cost is crucial: the less time (or cost in general) spent in travel, the more 

destinations that can be reached within a budget, the greater the accessibility. Travel 

choices are important too: the wider the variety of modes for getting to destinations, the 

better the accessibility. Personal preferences and constraints also make significant 

differences. “Accessibility is thus determined both by patterns of land use and by the 

nature of the transportation system, although two people in the same place may evaluate 

their accessibility differently, as wants and tastes vary” (Handy and Niemeier 1997).  

The multi-dimensional nature of accessibility makes it difficult and complex to 

measure.  A number of ways of measuring accessibility have been proposed, although 

what constitutes the best or even suitable measures of accessibility is far from clear. 

Specifications of accessibility measures have varied substantially from simple minimum 

travel time indices (Leake and Huzayyin 1979), measures of cumulative opportunities 

within specified distance or time thresholds (Wachs and Kumagi 1973), gravity-based 

measures (Wilson 1971), to maximum utility functions (Niemeier 1997). These measures 

will be further discussed in Section C. 
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B. Accessibility and Residential Location Choice 

 

The issue of accessibility’s effects on residential location choice is controversial. 

There has been contradictory empirical evidence to support or dismiss such effects. 

While Hansen (1959) and others believed that accessibility is essential to explain 

metropolitan development patterns, and Alonso (1964) proved that residential location 

choices of individuals are made from a trade-off between the increasing costs of 

commuting to work and the decreasing land prices and housing costs when moving away 

from the regional employment center, others have questioned the importance of 

accessibility in residential location decisions. 

Hamilton (1982) questioned whether commuting behavior can be predicted by the 

classic monocentric model developed by Alonso (1964). He instead introduced the 

concept of “excess commuting” to argue against the impact of accessibility on residential 

location choice. The excess commuting approach divides “actual commuting time” into 

“required minimum commuting time” and “excess commuting time.” Its methodology is 

based on the assumption that individual households, each minimizing its housing cost and 

commuting cost, will achieve an equilibrium with no “cross-commuting,” which is one 

that minimizes aggregate commuting cost given the distributions of housing and job 

locations. White (1988) tested this theory by applying a linear programming method to 

the existing distribution of housing and job locations, reassigning workers to housing 

locations so as to minimize average commuting cost. That is, the assignment algorithm 

minimizes the following quantity: 
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subject to the constraints for every i.j.: 

    

 

          

 

                

 where Xij is the number of workers commuting from zone i to zone j; Cij is the 

corresponding travel cost (e.g., commuting time); Dj is the employment in zone j ; and 

Oi is the number of workers residing in zone i.  

This is a cost-minimizing assignment approach based solely on job locations and 

resident locations. Under this approach, a journey‐to‐work matrix (origin–destination 

matrix) is constructed to contain the elements Xij showing the number of workers 

commuting from their residential place (zone i) to the work place (zone j). A 

corresponding matrix of commuting costs is also constructed to contain the elements Cij. 

The linear programming reassigns the locations of jobs and residences to minimize the 

total average commuting costs to find the optimal journey‐to‐work flow in the origin–

destination matrix. It then compares the minimum commute resulted from linear 

programming analysis to the actual commute. Various excess commute studies have 

found a wide range of excess commuting (a.k.a., “wasteful commute”) from 11 percent to 

87 percent of actual commute (Ma and Banister 2006).  

Several studies on excess commuting have tried to explain why excess 

commuting exists. Most pointed to the simple assumptions of the bivariate relationship 

between jobs and residents’ locations that formed its basis. Some of the reasons that have 

been mentioned in those studies are as follows. 

 

• Multi-worker households 

• Tenancy 

• Uncertainty of job locations 
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• Heterogeneous housing and job markets 

• Different tax subsidy systems 

• Minority groups 

• Moving costs 

• Neighborhood amenities 

• Rapid job turnover 

• Decreasing importance of work trips 

 

      (Ma and Banister 2006, p. 754) 

 

Although these factors have been mentioned as possible explanations of excess 

commuting, very few of them have been incorporated into the excess commuting models. 

Yet, conclusions have been drawn from this over-simplified approach that job locations 

have only a limited influence on residential location choice and therefore accessibility is 

less important in shaping urban physical forms. 

Some studies on excess commuting acknowledged this approach’s major 

weakness of omitting factors other than commuting and attempted to incorporate other 

variables into their models. Giuliano and Small (1993) tried to add worker occupations as 

a ‘constraint’ in their cost minimization procedure. They identified seven occupational 

groups in the data from Los Angeles region. Adding this occupational constraint means to 

do the cost minimization seven times, once for each group. But there are at least three 

unresolved issues in this approach. First, the problem of this approach is still assuming 

that people can trade places freely to minimize commute, as long as they are in the same 

occupation, regardless if a specific job fits the commuter. Second, even if there is more 

than one job in an occupation that fits a particular commuter, job selection is probabilistic 

in realty due to other factors rather than deterministic in the excess commuting model that 

is only subject to minimizing commuting. Job interchangeability is less common in the 
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real world than in those models. Third, this modified approach is still not a true 

multivariate analysis and ignores many other factors in the analysis. There are many other 

variables that need to be considered simultaneously. Nevertheless, adding occupational 

constraint increased “average required commute” by 22 percent. It indicates exactly that 

there are other factors need to be considered in those models. Commute time is only one 

factor. However the authors stated that “mismatches could lengthen commutes to some 

extent, but more than half of the average commute time remains unexplained” to 

conclude that “job location has only a limited influence on housing-location choice” 

(Giuliano and Small 1993, p. 1488). 

Manning (2003) attempted to further incorporate heterogeneous household 

characteristics and job sub-markets by occupation into excess commuting analysis. He 

disaggregated London data into a number of characteristics such as age and occupation, 

and checked whether there is a convergence of minimum required commute towards 

actual commute when these restrictions are considered. Using the Greater London data 

from the 1991 Census, Manning analyzed seven different age categories and 23 

occupation groups. He found only very small effects of disaggregation on the volume of 

excess commuting. In the male labor market, imposing an occupational constraint caused 

an increase in the minimum commute by an average of only 30 meters. Similarly, age 

disaggregation caused a rise in the minimum commute by only 40 meters, which in 

practical terms means that there is a minimal effect on the amount of excess commute. 

Manning argued that excess commuting is not likely to disappear by imposing more 

restrictions. He indicated that even among workers doing the same job, there is a large 

variation in pay, which is likely to lead to a certain amount of excess commuting.  
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The findings in Manning’s study are not surprising. It actually conveys a strong 

message about the importance of including a full range of variables in analyzing 

accessibility and location choice. The number of variables, or “constraints,” that can be 

added to excess commuting analysis is limited due to its unusual methodology. The 

distribution of jobs and households in the real world is never likely to be ‘optimal’ as 

defined by excess commuting approach. This approach attempts to explain spatial 

structure solely in terms of commuting. It is an over-simplified method to use for 

analyzing such a complex socio-economic issue. It needs to be extended to include a 

wide range of individual, social, and location factors.  

In summary, despite some intuitive appeal of distinguishing ‘excess commuting’ 

from ‘inevitably necessary commuting,’ the excess commuting approach can only explain 

a part of location choice decision making. Despite variations of the methodology and 

several attempts for improvement, it failed to address a wide range of individual, social, 

and location variance in location choice. What more problematic are the conclusions 

drawn from excess commuting analysis. It is wrong to conclude that access to jobs is not 

important because commute time cannot explain all the variance in location choice. The 

excess commuting studies employ an unusual construct in its methodology. It is based on 

an extremely strong assumption that simplifies the reality, which is minimizing journey-

to-work by considering job locations and residence locations only. It is basically a 

bivariate analysis that expects commuting itself to fully explain residential location 

choice decisions. It ignores many other important factors that affect commute and 

residential location choice in turn. However, in a more typical social science approach, 

one would consider as many variables as possible in analyses.  
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Other studies have used residential location choice models to predict households’ 

choices of where to live based on a wide range of variables including the characteristics 

of households and the attributes of locations. Accessibility, used as an independent 

variable in residential location choice models, is a measure of how well transportation 

options interact with land use attributes that satisfy household preferences. 

Srour et al. (2002) developed models that related general accessibility indices for 

the Dallas-Fort Worth region of Texas to property valuations for single-family dwelling 

units and commercial units, and to household location choices. Multinomial logit models 

were used to derive logsum measures of accessibility as well as to assess the effect of 

accessibility on location choices, while controlling for household demographics. They 

considered independent variables such as average lot size and value, home size, value and 

age, average number of garages and bathrooms, and distance to work. They developed 

four different forms of regional accessibility measures including logsum-based, 

cumulative opportunities, and residential land value residuals by census tract or by parcel. 

Four models were developed, one for each accessibility measure along with all the 

control variables. The results of the four model estimations were compared. They found 

that various functional specifications of accessibility measures appeared useful. 

“Cumulative opportunities access measures were most helpful in predicting residence 

location (Srour et al. 2002, p. 25).” This was because it had the highest t-value (5.22) 

among the four accessibility measures, and the model that included this measure had the 

highest “goodness of fit” measure (ρ = 0.38). Meanwhile, the t-values for control 

variables ranged from -0.17 (average garage) to -19.4 (work distance). While individual 

households are the choosers in their model, Traffic Analysis Zones (TAZs) are the units 
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in the choice set. This limits the accessibility measures used in the model to be regional. 

Local accessibility was excluded from the model.   

Waddell and Nourzad (2002) developed a residential location choice model in a 

set of land use models called UrbanSim, in which geographic unit of analysis is 

disaggregated to land parcels or gridcells of five acres each. Their residential location 

choice model included both regional and local accessibility to predict the probability that 

a household is likely to choose a housing unit at a parcel or gridcell. The form of the 

model is specified as multinomial logit. The data used in the model draw principally from 

a household travel survey conducted at the Puget Sound Region in the State of 

Washington. The independent variables in the model include household characteristics 

such as income, motor vehicle availability, number of workers and children. Location 

attributes include assessed value, density, development types, commercial, industrial, and 

institutional building, as well as regional and local accessibility.  

They operationalize the concept of regional accessibility for a given location as 

the distribution of opportunities in the region weighted by the composite utility of all 

modes of travel to those destinations, defined as the logsum from the mode choice model 

for each origin-destination pair. Specifically, regional accessibility to employment 

opportunities in the region is represented as the sum of logsum from a TAZ to all other 

TAZs multiplied by employment numbers at those TAZs (same as Equation 5 shown in 

Section C on pages to follow). Model estimation results show positive and significant 

coefficients for regional accessibility to employment at each household auto ownership 

class (Waddell and Nourzad 2002, p. 123), which means that households are more likely 

to choose locations with better access to employment in the region, everything else being 
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equal. In other words, the model estimation results indicate that households prefer to 

reduce commuting costs to work by automobile or by transit while controlling for other 

factors, because driving and taking transit are the two modes included in the impedance 

measurement using the logsum. 

Local accessibility is also considered in the UrbanSim model by including such 

variables as density and mixed uses in neighborhoods. It is found that some interactions 

between household attributes and local accessibility are significant. For example, young 

households are more likely to choose high density and mixed-use neighborhoods. 

Overall, in the Waddell and Nourzad (2002) model, several local and regional 

accessibility measures are statistically significant, with t-values up to 4.64 (variable “log 

access to employment for two-car households”), meanwhile the t-values for control 

variables range from -1.57 (a dummy variable for moderate high density residential 

development) to -15.05 (“log total number of housing units in cell”). The model’s 

goodness of fit measure, i.e., log likelihood ratio, was 0.13. 

The UrbanSim modeling system has been implemented in a number of 

metropolitan areas in the United States, including the Detroit region (Waddell et al. 

2008). In the Detroit region’s UrbanSim system, both regional accessibility to jobs (t-

value = 4.15) and local accessibility interacting with young households (t-value = 3.64) 

are found positive and statistically significant in the residential location choice model. 

Meanwhile, some other variables are more significant in the model. For example, percent 

of minority households within walking distance for a minority household has a very high 

t-value of 27.61. And the t-value for income interacting with housing value is 14.04. The 

overall model goodness of fit measure is 0.17.  
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Using conventional regional and local accessibility in predicting household 

location choice does not account for the clustering effects of destinations, and may have 

under-estimated some “mid-range” accessibility, which may have its own and 

independent impact on location choices. While place-based accessibility measures are 

often used in residential location choice models, people-based accessibility may also 

show significance using disaggregated data and analytical methods.  

 

C. Accessibility Measures 

 

Existing approaches of measuring accessibility can be classified into three broad 

categories: cumulative opportunities, gravity-based, and utility-based. 

 

1. Cumulative Opportunities 

A simple form of measuring accessibility is a count of activities that can be 

reached within a specified threshold radius of a distance or travel time, e.g., walking 

distance. For example, the following equation (1) measures the accessibility of location i 

to shopping opportunities by counting number of stores within walking distance using 

spatial queries. The more number of stores, the higher the accessibility.  

cetanWalkingDisStoresAccess
j

ji                 (1) 

Cumulative opportunity measures estimate accessibility only in terms of the 

quantity of opportunities available within an arbitrary limit. The advantages of these 

measures are related to its operationalization, interpretability, and communicability. 

These measures are relatively not demanding of data and are easy to interpret. However, 
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there are serious limitations to these measures. These measures imply that all 

opportunities are equally desirable within the limit, regardless of the time spent on 

travelling or the type of opportunities. The measures include elements from the land-use 

and transportation components, but fail to evaluate their combined effects (Geurs and van 

Wee 2004). Furthermore, they ignore everything outside the threshold. These measures 

are often used to measure local accessibility where distance is of less concern, although 

some success has been shown in using these measures to capture both local (Waddell and 

Nourzad 2002) and regional (Srour et al. 2002) accessibilities in residential location 

choice models. 

 

2. Gravity-based Accessibility Measures 

A typical form of measuring regional accessibility is a gravity-based accessibility 

measure that weights activities (e.g. number of jobs) by impedance, often as a function of 

travel time or travel cost. Accessibility,
iAccess , for residents of zone i to jobs in all the 

zones in a region can then be measured as shown in equation (2) below: 


j

ijji TimefJobsAccess )(                (2) 

Where 
jJobs is the jobs (or other activities) in zone j, 

ijTime  is the travel time (or 

other forms of travel cost) from zone i to zone j, and )( ijTimef  is an impedance function 

that can be estimated for various mode of travel as well as for various trip purposes to 

reflect people’s level of willingness to travel. Although the impedance function may take 

many forms, the negative exponential form has been the most commonly used, that is, the 

measurement of distance separating various areas should be raised to some power. 
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Accessibility increases with the amount of activities increases. Accessibility also 

increases when activities become closer to each other. 

Gravity-based accessibility measures have been successfully used by researchers 

to evaluate the relative ease of reaching jobs, i.e. work-place accessibility, as well as the 

relative ease of reaching other services such as retail stores in a metropolitan region, i.e. 

nonwork accessibility, and by various travel modes, including automobile and public 

transit (Hansen 1959; Ingram 1971; Wilson 1971).  

One criticism to gravity-based accessibility is that in general it only takes “supply 

side” into consideration, whereas the “demand side” (e.g. how many people looking for 

jobs) is not considered (Morris et al. 1979). But research advancements have overcome 

this weakness. Shen (2001) developed a model that incorporated characteristics of job 

seekers such as level of education and vehicle availability. The study concluded that for 

job seekers who depend on public transit, very few residential locations will allow them 

to have an above-average access level.        

 

3. Utility-based Accessibility Measures 

Other forms of accessibility measures have been developed and used in research. 

One type of utility-based measure takes a form similar to that of gravity-based measures 

but uses the “logsum” from the mode choice model as a composite measure for 

impedance (Waddell and Ulfarsson 2003).  

Based on random utility theory, the probability of an individual making a 

particular choice depends on the utility of that choice relative to the utility of all choices. 

When making mode choice decisions, it is assumed that an individual assigns a utility to 
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each mode and then selects the alternative which maximizes the utility. The denominator 

of the mode choice model, called “logsum”, has been used to represent the impedance for 

calculating accessibility.  

A typical mode choice model is a probabilistic model as shown below in equation 

(3): 


j ji UUiP )exp(/)exp()(                (3) 

Where: P(i) = probability of choosing travel mode i 

 Ui = utility of mode i 

The Ui represents the utility of a mode compared to other modes and is a function 

of travel costs and other attributes. Equation (4) below is the utility function of auto mode 

in a SEMCOG mode choice model: 

Uauto = -0.052(Travel Time) – 0.0041(Auto and Parking Cost)  

–5.324(Worker/Auto)       (4)   

Utility functions can be much more complex than equation (4) by taking into 

account of mode attributes such as transit fare and outside waiting time, as well as 

characteristics of travelers. Overall, it is mode specific and typically a negative number 

because it represents cost. The sum of utilities of all modes, a.k.a, logsum, becomes a 

composite measure of impedance. Equation (1) can then be transformed into the 

following form in equation (5).  


j

sum

ji
ijeJobsAccess

log
            (5) 

Since logsum =< 0 (at least in theory, rescaling required if positive in practice), the 

exponentiated logsum is between 0 and 1, where “1” indicates best access, whereas “0” 

means no access. This concept is illustrated graphically in Figure 7. 
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Figure 7.  Accessibility Measure Using Logsum 

 

 

At each destination zone j, activities are typically measured the same way as 

gravity-based accessibility measures. For example, to measure households’ accessibility 

to employment, number of jobs is used to represent attractiveness at destination zones, j 

(Waddell et al. 2008). 

Just like gravity-based accessibility measures, utility-based accessibility measures 

are mostly used to measure regional accessibility than local accessibility. The main 

advantage of the logsum term is that it provides a single composite measure of travel 

disutility across modes, and incorporates all the factors considered in the mode choice 

model that have an impact on utility, such as in- or out- vehicle travel time, wait time, 

transit fares, tolls, comfort, etc.  Its behavioral approach reflects people’s preferences. 

But it also has disadvantages. Logsums are difficult to interpret, compared to simpler 

measures. Shortcomings associated with gravity-based accessibility measures may also 

apply to this measure.  
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Applications of these accessibility measures to various modes and purposes of 

trips will be further reviewed in the following sections. Overall, existing accessibility 

measures provide good indicators for neighborhoods and regions. They reflect well the 

impacts of land use and transportation systems on accessibility. Recent research shows 

that it is also possible to compare accessibility among multiple regions (Grengs et al. 

2010). However, additional perspectives on accessibility continue to emerge, that 

provides new challenging research opportunities. 

Conventional regional accessibility measures are indifferent to the clustering of 

regional destinations.  Thus the regional accessibility impact of an isolated destination at 

impedance X is identical to that of a similar destination at impedance X that is part of a 

major regional cluster. However, it is possible that more clustered destinations have 

greater attractions in the region. People may be significantly unwilling to travel to a 

destination that is not a part of any major regional clusters. Therefore, the upward bias 

may exist in this situation of using conventional regional accessibility measures. 

The effects of clustering on accessibility may be further explained by the “trip 

chaining” phenomenon. People often link two or more trips together before a return to 

home. This could happen to a person making multiple nonwork stops (shopping, school, 

services, etc.), or to a commuter making nonwork stops during a commuting trip. This 

“trip chaining” behavior could be driven by resource-saving in terms of shortened travel 

time, miles of road traveled, and the associated reductions in fuel used and other costs to 

fulfill a prescribed combination of activities (Southworth 1985). Therefore, selection of 

places to visit is likely to be affected strongly by the ability to link a given site to other 

sites on a multi-trip chain. The importance of such chaining in people’s daily lives is 
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supported by a large body of empirical evidence (Hanson 1980a; Horowitz 1982). Thus 

clustering of destinations could be essential for reducing costs of reaching those 

intervening destinations, hence the higher accessibility in clusters. On the other hand, 

destinations that are not clustered could significantly increase the cost to travel between 

intervening destinations in a tour. Furthermore, the importance of clustering may increase 

when destinations are farther away. Research has found that the likelihood of trip 

chaining increases as travel distance, travel cost, or the density of opportunities increases 

but decreases with the speed of travel (Nishii et al. 1988). Under the trip chaining logic, 

destinations that are along the route could be equally valuable as destinations that are in 

the cluster at the end of the tour, as long as a traveler is able to stop easily. One might 

think that routes matter a lot. But there is a significant penalty for stopping, particularly 

when traveling long distance at high speed. Therefore this dissertation focuses on 

clustering. 

It is logical to think that the conventional measurement of regional accessibility 

needs to be tempered by an awareness of the clustering effects. A weight might be 

estimated for each destination based on the degree of clustering. The degree of the 

regional accessibility impact might depend on these weights as shown in the following 

equation (6):  

 
j

ijjji TimefJobskAccess )(                (6) 

Where 
jk  is the weight of clustering for zone j. 

To the knowledge of the author, this is the first time that clustering effects are 

being considered explicitly in analyzing accessibility.  
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D. Accessibility by Trip Purpose 

 

While accessibility to work dominated earlier research activities, studies on 

accessibility for nonwork purposes have been increasing as nonwork trips increased to 

constitute approximately three-quarters of urban trips and also represent an increasingly 

large proportion of peak period trips (Rajamani et al. 2003). Work accessibility and 

nonwork accessibility have clear differences. The most important difference is that 

people are willing to travel farther to work than they are for all other nonwork purposes. 

Early empirical estimations of gravity models resulted in exponent values for travel time 

ranging from 0.5 to almost 3.0 for different trip purposes (Hansen 1959):  “These studies 

indicate decreases in the exponent as trips become more important, i.e., school trips 2.0+, 

shopping trips 2.0, social trips 1.1, work trips 0.9. Inasmuch as distance appears in the 

denominator of the gravity model, a decrease in the exponent means that distance 

becomes a less restrictive factor” (Hansen 1959, p. 74). People can have shorter trips to 

nonwork destinations than to work places often because nonwork destinations are more 

ubiquitous than work places. Retail stores and service centers for daily life exist in many 

places at the same time. 

In a much more recent study, Grengs et al. (2010) evaluated metropolitan regions 

in terms of the level and distribution of accessibility across the population for four 

accessibility categories: work accessibility by car, work accessibility by transit, nonwork 

accessibility by car, and nonwork accessibility by transit. A common form of the gravity 

model was used in this study. Distance-decay coefficients in these gravity models, 
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representing the resistance of travel between zones, were estimated separately for work 

and nonwork trips. The results (0.068 for work and 0.220 for nonwork) confirmed that 

people are more willing to travel long distance for work than to nonwork activities.  

 It is important to consider both work and nonwork trip purposes in accessibility 

analysis. Journey to work data is frequently analyzed because it is typically more readily 

available and has been considered critical in travel behavior and location choice 

decisions. Nonwork trips are analyzed because of their increasing shares of metropolitan 

travel and considered representing trip types most directly influenced by levels of 

neighborhood access (Krizek 2005). Furthermore, work trips and nonwork trips are more 

connected to each other in reality than in existing research. If a commuter stops at a 

daycare facility and then proceeds to work or coming home, the tour that he or she is 

taking has home-based-nonwork, nonhome-based-work, or nonhome-based-nonwork 

trips in it. The primary purpose of the tour is not obviously identifiable. Therefore, any 

analysis that does not consider the trip-chaining phenomenon in this case would miss the 

unique effects and interaction of the two trip purposes. Three decades ago, Hanson 

(1980b) stressed the importance of jointly analyzing work and nonwork travel because 

separating trips by type fails to capture linked and multi-purpose travel behavior that 

often exists. In regard to analyzing accessibility and location choice, examining only 

individual trips instead of the larger pattern of linked trips in tours fails to take into 

account the physical and temporal relationship of intervening destinations and may 

provide an incomplete account of accessibility and its impacts on travel behavior and 

location choice. 

Another issue often related to trip purpose is the selection of trip ends, as 
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indicated in the earlier discussion. By far the most commonly used trip end in 

accessibility measurements is the home (Handy and Niemeier 1997). Accessibility is 

generally measured between a residential location and a destination. Home-based 

accessibility measures can be related to the demographic and socio-economic 

characteristics of the residents (Peng and Dueker 1995). This enables the identification of 

population and household characteristics with various preferences as well as identifying 

concentrations of vulnerable social groups. Analysis can be made in regards to how well 

the transportation needs of these people are being met. However, the percentage of home-

based trips has been declining while percentage of nonhome-based trips as well as trip 

chaining has been increasing (Hu and Reuscher 2004). This calls for a growing need for 

nonhome-based accessibility measurements. For example, work-based accessibility 

measures can serve as indicators to monitor the progress in bringing the labor force closer 

to jobs (Cervero et al. 1999), which is a goal of jobs-housing balancing strategies (Levine 

1998). In regard to equity, public transit accessibility to and from work places is 

especially important to transit dependent populations. Of course, it is also important to 

consider nonwork transit accessibility for the same population, as it may be particularly 

relevant for no-car households. 

This dissertation aims to take into account the effects of both work and nonwork 

trips and their interactions by 1) including clusters of both work and nonwork 

destinations in measuring accessibility, and 2) estimating mid-range accessibility’s 

effects on residential location choice. First, chained work-nonwork trips may benefit 

from clustered destinations, because clustering reduces travel time between intervening 

destinations. Furthermore, mid-range accessibility may reveal the significant unique 
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effects of nonwork trips on location choice, as previously discussed that the biggest 

difference between nonwork trips and work trips is that people are less willing to travel 

long distance for nonwork trips. Another way to think about this phenomenon is that we 

need to be aware of such factors as non-use of remote irrelevant activities when 

measuring regional accessibility. For example, because there is a grocery store nearby, 

the existence of other grocery stores is largely irrelevant. For activities that are near, 

whether clustered or not, they are important for measuring accessibility. It may be argued 

that adjusting regional accessibility based on clustering may not be sufficient to account 

for all the impact of accessibility at various scales on location choice. Adding mid-range 

accessibility may explicitly account for the scale effects. People only use parts of the city 

where they live. These “parts of the city” (or parts of a region in the modern urbanized 

areas) could be sub-regional market areas. A sub-regional accessibility measure is 

therefore needed to better explain people’s location choice. Accessibility may also need 

to be tempered for a second type of non-use that is based on individual’s preference, 

wants, tastes, as well as constraints. This study deals with the first type, i.e., the 

geographic or market scales of the issue.  

 

E. Place-based vs. People-based Accessibility 

 

Most of the discussion in the preceding sections was about “place-based” 

accessibility measures. These measures describe level of accessibility to spatially 

distributed activities from various locations. However, people live in same locations may 
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have different accessibility. An alternative to place-based accessibility is “person-based” 

accessibility, where accessibility is analyzed at individual level. 

Person-based accessibility measures are founded in the time-space geography that 

was first developed by Hägerstrand (1970). Hägerstrand demonstrated the dialectical 

relationship between space and time by introducing the time-space prism theory. A time-

space "prism" is the set of all points that can be reached by an individual given a 

maximum possible speed from a starting point in time-space and an ending point in time-

space. These time-space prisms can be regarded as accessibility measures. They give the 

potential areas of opportunities that can be reached given predefined constraints.  

Hägerstrand identified three interrelating sets of constraints: capability constraints, 

coupling constraints, and authority constraints. First, capability constraints limit the 

activities of an individual due to his or her biological construction or the tools he or she 

can command. Secondly, coupling constraints are defined as where, when, and for how 

long an individual has to join other individuals, tools, and materials in order to produce, 

consume, or transact. When an individual needs to join other individuals, tools, and 

materials, his or her path in space-time has to be grouped with their paths, or ‘bundle’ as 

Hägerstrand calls these groupings of paths. Finally, authority constraints are ‘control 

areas’ or ‘domains’, that are time-space entity within which things and events are under 

the control of a given individual or a given group. 

Built upon the time-space prism theory, person-based accessibility attempts to 

measure accessibility from the viewpoint of individuals incorporating spatial and 

temporal constraints. In other worlds, these measures analyze whether and how observed 

or assumed individual activities can be carried out in time-space prisms under capability, 
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coupling, and authority constraints. For example, a person who leaves work at time X at 

location A needs to arrive home at time Y in location B. He or she has (Y-X) amount of 

time to take part in other activities between and around location A and B. The more 

destinations he or she can reach, the higher the accessibility. If he or she can move 

quicker, and/or if the destinations are closer, there is a better chance for the person to 

enjoy higher accessibility. Accessibility measured at personal level has theoretical 

advantages compared to place-based accessibility measures.  First, it represents the 

individuals’ experiences on the accessibility instead of assuming that all individuals in 

one zone have the same level of accessibility. Secondly, it takes into account the fact that 

many trips that contribute to individual accessibility are made in the context of the 

sequential unfolding of an individual’s daily activities, i.e., trip chaining may be 

considered explicitly at the personal level in the measurements. Finally, it considers time-

space constraints that may render many opportunities in the urban environment 

unreachable by an individual (Makri and Folkesson 1999). 

Time-space theory seems very promising in measuring personal accessibility 

because of its disaggregated approach. However, their applications in accessibility 

research have been relatively rare. Using Hagerstrand’s time-space prism theory, 

Lenntorp (1976) developed maps to determine the parts of an individual’s environment 

that are physically accessible, or “within his physical reach” in Lenntorp’s words. Kwan 

(1998) developed a distance matrix for all locations in her study area using the shortest 

path algorithm. The feasibility of each network link is then tested by going through the 

entire matrix and identifying those links that are reachable within the time-space 

constraints for any given pair of fixed activity locations. The results demonstrated that 
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time-space based measures capture activity-based contextual effects which are not 

incorporated in traditional location-based accessibility measures. This allows more 

sensitive assessment of individual variations in accessibility, including gender and ethnic 

differences. Lee et al. (2010) developed an accessibility measure to nonwork destinations 

based on the time-space prism theory using data from the central Puget Sound region. 

They used a traffic analysis zone (TAZ) system. First, they assessed daily activity 

schedule of an individual using household travel survey data. Then they determined for 

each TAZ whether it could be visited with sufficient time given a travel mode. Finally 

they applied the cumulative opportunity approach to the set of TAZs to quantify the 

opportunities that are available to an individual given the temporal and spatial constraints. 

Their results show that person-based accessibility to nonwork destinations is statistically 

significant in residential location choice.  

Although person-based accessibility can reveal individuals’ specific experiences 

in their socio-spatial context by measuring accessibility enjoyed by a particular person 

having specific needs and resources, it also has disadvantages. The biggest disadvantage 

is the difficulty of operationalizing the concept. This is troublesome in several ways. First, 

space-time measures require large amount of information about detailed individual travel 

and activity data which are not typically available. Second, despite advancements in 

programming, GIS, and spatial modeling, operationalization of person-based accessibility 

measures still faces difficulties for lack of feasible operational algorithms. Third, even 

with today’s computing power, the computational intensity still makes it difficult to use 

space-time measures in large-scale projects. The applications are often restricted to a 

relatively small area or corridor and to a subset of the population because of the large 
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data requirements and computing intensity. Finally, the results are difficult to aggregate 

to evaluate accessibility to a larger population and to a bigger geographical area (Geurs 

and van Wee 2004). 

Although this dissertation does not deal with the full range of person-based 

accessibility, it considers one simple type but important aspect of personal accessibility, 

that is individual workers’ commute time from home to work. 

 

F. Accessibility by Mode 

 

While much of existing research on accessibility dealt with automobile 

accessibility, a considerable number of studies focused on public transit or non-motorized 

(e.g., walking and biking) accessibility.  

 

1. Transit Accessibility 

Developing accessibility measures for transit could be especially complicated 

because of its inherent spatial and temporal characteristics. Existing public transit 

accessibility measurements fall into two broad categories: 1) accessibility that measures 

access to a public transit system, and 2) accessibility that measures public transit access 

to destinations. 

a) Access to public transit system 

When measuring public transit accessibility, many measurements actually are 

only concerned with the ease of accessing transit stops and stations. In other words, these 

measurements are assessing the catchment potentials of transit stops and stations. These 
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measurements usually do not assess the destinations and activities that the transit users 

can actually reach. The underlying assumption is that access to the public transit system 

acts as a proxy for access to a range of destinations (Kerrigan and Bull 1992). These 

assumptions, of course, are only valid when the public transit system is really well 

designed and implemented.    

The simplest measurement of this type is the area buffer method that is used to 

define the extent to which a public transit system can reach its users. Area catchment 

maps can be created by drawing circles around transit stops and stations. The radius that 

has been used most often is around one quarter mile or 400 meters, which has been found 

to be the distance that people are willing to walk to use public transit service, a.k.a., 

“walking distance” (Murray 2001). Once the area that public transit system can serve is 

determined, the proportions of population, households, workers, jobs, and other activities 

within walking distance to transit service can be calculated. This simple area buffer 

method can be easily implemented with GIS. The results are also easy to interpret. But it 

has obvious shortcomings. 

 First, using a Euclidean distance to create the buffer could overestimate 

accessibility, because the Euclidean distance represents the farthest reach of actual 

walking distance from a stop or station. The difference between this farthest reach and 

actual reach may vary significantly depending upon the configuration and connectivity of 

the pedestrian network leading to a stop or station. These buffers ignore physical barriers 

to walking and tend to overestimate the spatial service coverage of a transit system 

(Horner and Murray 2004). Secondly, using area ratios to calculate the number of people 

or jobs that can be served by the transit system may have bias too (Zhao et al. 2003). 
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Area buffers often overlap with census tracts, transportation analysis zones (TAZs), zip 

codes, or any other areas where population and employment data are based on. When 

calculating severed population or jobs using area ratios, even distribution is assumed 

within these areas although they are often too large to ignore variations within them. The 

measurement would be more accurate with more disaggregated data such as land parcel 

data. 

To overcome the shortcomings of area buffer method and area ratio allocation, the 

network ratio method was proposed by utilizing the layout of street network (O’Neill et al. 

1992). In this method, population and jobs are allocated based on the proportions of street 

length within a buffer. The underlying assumption has changed from even distribution 

within a buffer to that number of residents and jobs on a street are proportional to its 

length. Even though this is still a weak assumption, but it is no weaker than the 

assumptions in the area ratio method. Other studies using the network ratio method 

confirmed that this method is better suited for measuring access to a transit system than 

area ratio method (Hsiao et al. 1997). 

Attempting to tackle the weakness of both area ratio and network ratio methods, 

some researchers developed other methods that mostly eliminated the allocation process. 

Zhao et al. (2003) used disaggregated parcel data to account for population and job 

distribution. They also explicitly considered physical barriers such as water bodies and 

walls in the pedestrian network. After comparing the results from this parcel level 

measurement to those from area and network ratio methods, they found the previous 

methods constantly overestimated catchment potentials of public transit systems. 
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While measuring the physical dimension of access to transit progressed from area 

ratio, to network ratio, to parcel-level methods, the temporal dimension of access to 

transit was also added to accessibility measurements in other studies. The temporal 

perspective is about how often transit users are served by the system. The goal is to not 

only identify areas that are within walking distance to a transit stop or station, but also 

estimate the level of service in terms of average waiting time or frequency of service in 

order to measure accessibility to transit more accurately (Polzin et al. 2002).   

b) Accessibility to Destinations by Transit 

A different set of transit accessibility measurements actually measures how well 

destinations can be reached by public transit systems instead of measuring access to the 

system only. Most of these measurements use the gravity-based method that weights the 

quantity of opportunities at the destination zones by impedance as a function of travel 

time or cost from the origin zones. Based on these gravity-based models, the more 

opportunities there are in the destination zones and the shorter time spent on public transit 

to get there from the origin zone, the higher the accessibility. Two recent examples of this 

type are from Grengs (2010) and Lee (2009). 

Grengs (2010) used a modified gravity model (Shen 1998) to measure 

accessibility of low-skill workers to low-wage jobs in Detroit region. This modified 

gravity model has two advantages. First, it considers not only the supply of jobs but also 

recognizes that the workers who compete for jobs are not evenly distributed in space. In 

other words, it accounts for the spatial difference in job demand. Secondly, it measures 

accessibility by mode, i.e., measuring accessibility by auto and accessibility by transit 

side by side. Accessibility of residents in each zone traveling by automobile and by 
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transit is calculated explicitly. The application of gravity-based accessibility 

measurement in his study clearly demonstrated the similarity of measuring accessibility 

by transit and by automobile. 

Lee (2009) developed a prototype measurement to estimate public transit 

accessibility at the parcel-level that takes into account some of the most advanced 

development in both measuring access to transit system and access to destinations by 

transit. This method uses a land use classification system at the parcel-level to measure 

accessibility, in terms of total transit travel time, to each location of a destination type 

from land parcels that are served by a transit system. The accessibility measure can be of 

a single type of destination (e.g. retail), or it can be combined with the accessibility 

measurements of other types of destinations to produce a composite measure. On the 

origin side (e.g. residential), it may be categorized by the same land use classification 

system to specify certain types of trips (e.g., home-based or work-based trips). Ultimately, 

this technique can be used to measure the accessibility between any two types of land 

uses. In regard to travel time, it takes into account of in- and out-of-vehicle transit travel 

times to compute the accessibility measure. This includes travel times in transit vehicles; 

walk access from the origins to the transit network, as well as from the transit network to 

the destinations; transfer walk times if the transfers do not occur at the same stops; and 

average waiting times for transit vehicles to arrive at the stops or stations. The prototype 

measurement that calculated transit access to grocery stores in Seattle region showed 

promising results, although it required intensive computing. 

Summarizing the above two types of transit accessibility and using an analogy to 

automobile accessibility, one can think that measuring access to transit system is 
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equivalent to measuring local accessibility using cumulative opportunities method with 

transit stops and stations specifically as destinations, whereas measuring transit access to 

destinations is similar to measuring regional accessibility in automobile mode by using 

gravity-based measurement. Clustering of destinations would still matter, although it is 

not so much about have closer transit stops, but rather it is mostly about clustering 

destinations around stops, that makes chained trips, e.g., transit to walking, more efficient. 

Sub-regional accessibility may also be significant in transit mode, for passengers are less 

willing to travel long distance on a bus or train for nonwork purposes. 

 

2. Non-motorized Accessibility 

When measuring non-motorized accessibility, measurements need to be sensitive 

to detailed local conditions. Small or disaggregated zonal systems are required to reveal 

variations in accessibility. Accessibility by non-motorized mode is mostly described by 

local, or neighborhood, accessibility measures. Existing research showed that 

accessibility increases when 1) increase local concentrations of population and 

employment, 2) encourage a mix of appropriate land uses, and 3) design development 

and street network improvements to be pedestrian oriented. These factors can be 

summarized into three words: density, diversity, and design, or "3Ds" (Cervero and 

Kockelman 1997). Some additional measures attempt to combine two or all three of these 

categories to develop a “composite” accessibility index. 

a) Density 

Neighborhood density is the most readily available urban form measurement to 

operationalize non-motorized accessibility. It is more commonly used than any other 
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local accessibility measures (Steiner 1994). However, it needs to be used with caution. A 

common practice of density calculation is to separate residential density from non-

residential, e.g. commercial, industrial, and institutional densities. But it is really the 

combination between the two that affects accessibility most. A large neighborhood of 

high-density residential development only helps little to promote walking or biking for 

lack of attractive destinations in the neighborhood. Land use mix is critical. 

b) Land Use Mix 

A mix of land use can promote walking or biking as a substitute for auto travel. 

But it requires the right mix, meaning that land uses complement one another in terms of 

functions. Banerjee and Baer (1984) identified that the most valuable land uses that 

people value in close proximity to their home are drug stores, food markets, gas stations, 

post offices, specialty food stores, and banks. Furthermore land uses that complement one 

another need be close enough to encourage walking, biking, and other non-motorized 

trips. Measures to capture non-motorized accessibility range from simple inspection of 

presence or absence of nonresidential uses in a residential neighborhood, to counting 

employment in the neighbor, to complex index of land use dissimilarity in the 

neighborhood (Cervero and Kockelman 1997). 

c) Design and Street Pattern 

While density and mixed uses are often used as local accessibility measures, there 

are other physical characteristics that affect non-motorized accessibility. Lynch (1962) 

identified design features that have shown to be critical to quality experience of 

pedestrians, cyclists, and transit users in the built environments, including sidewalks, 
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building scale, streetscape, and landscaping. It is obvious that operationalizing all these 

concepts are difficult. Some studies used gridded streets as a surrogate to measure 

traditional neighborhood characteristics (Cervero and Gorham 1995). Traditional 

neighborhoods with gridded streets contain characteristics that make walking, biking, and 

transit more attractive compared to modern subdivisions with cul-de-sac type of roads. 

McNally and Kulkarni (1997) performed a cluster analysis and found that gridded streets 

were one of the most influential variables to separate traditional and suburban 

neighborhoods. 

d) Composite Index 

 Density, diversity, and design may re-enforce each other or undermine each 

other’s effects on accessibility in neighborhoods. A neighborhood with density and 

sidewalks but no diversity in land use may or may not provide good walking accessibility. 

Aimed to take into account multiple dimensions of local accessibility, some researchers 

attempt to develop composite index. Krizek (2003) developed an index that considered 

all three dimensions. Using Puget Sound Regional Council (PSRC) data, for each 150-

meter grid cell in the Seattle region, Krizek calculated housing density, number of 

employees in neighborhood retail services, and number of street intersections. Then a 

factor analysis reduced these three variables into a single index. 

Local accessibility was originally used for exploring land use’s impacts on travel 

behavior (Crane 2000). For example, higher density development may reduce the 

percentage of trips taken by auto. Increasingly, local accessibility is also used as an 

independent variable in urban modeling applications to predict location choice of 

households (Waddell and Nourzad 2002). 
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G. Central Place Theory 

 

Finally, the hierarchy of market areas in a region may help further explain why 

local, regional, and “mid-range” accessibility may all have their own and independent 

impact on residential location choice. 

Seeking to explain the number, size, and location of human settlements in an 

urban system, Christaller (1933/1966) constructed a hierarchical central place theory, as 

illustrated in Figure 8. It asserted that settlements functioned as 'central places' providing 

services to surrounding areas. A region is consisting of nested market areas of various 

economic scales. The higher the order of the goods and services, the larger the range of 

the services, and the longer the distance people are willing to travel to acquire them. 

Hence the residents trade transportation cost for higher level of services. Examples for 

high order goods and services are: jewelry stores, shopping centers, and sports venues. 

They are supported by a much larger threshold population and demand. Examples for low 

order goods and services are: groceries, barbershops, and fitness centers. They are 

supported by a smaller threshold population and demand. 

 

Figure 8.  Central Place Theory: A Case of Christaller Model 
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Now, consider two households A and B in a region as shown in Figure 9, where A 

is located near the center of sub-regional market area M1, while B is located further away 

from the center of sub-regional market M2.   

 

Figure 9.  Accessibility at Multiple Scales in a Hierarchy of Market Areas 

 

 

Using conventional regional accessibility methods such as gravity-based measures, 

regional accessibility of A or B takes into account all activities in the region dampened 

by travel impedance. Activities at all regional centers R1 and R2 as well as all sub-

regional market areas M1 to M5 are included. However, the hierarchy of goods and 

service provision implies multiple levels of accessibility.  

At the regional level, places that provide the highest order of goods and services, 

i.e., R1 and R2 in this chart, are more desirable destinations where A and B are willing to 

travel for long distance.  
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For the lower order of goods and services, accessibility matters most at the sub-

regional market level. If there is a grocery store in each market area, what matters to 

household A is the accessibility to the store in M1. All other grocery stores are mostly 

irrelevant. Including all activities in the entire region without considering the order of 

services as in the conventional regional accessibility measurement could over-estimate 

accessibility in general. Furthermore, assuming household A has greater accessibility 

than B at the sub-regional market level (This could be because of denser activities in M1, 

closer destinations in M1, higher impedance in M2, longer distance of B to sub-regional 

center, or combinations of these factors.), if conventional regional accessibility were used 

for A and B indifferently, it could disproportionally over-estimate accessibility for B.   

In addition, previous studies have shown that CBDs and places close to CBDs 

have much higher accessibility for work, shopping, social, and recreational trips (Shen 

2001). While this is generally expected, it might be an indication that sub-regional 

accessibility has been under-represented in conventional accessibility measures for 

today’s mostly decentralized regions with substantial secondary market centers.  

While regional and local accessibility are important components of the hierarchy 

of accessibility, a mid-range sub-regional accessibility might be able to make the 

hierarchy more complete in accessibility measurements. At the neighborhood scale, as 

indicated by the lightly shaded circles in Figure 9, local accessibility can be used most 

effectively for measuring the effects of non-motorized modes as opposed to motorized 

regional accessibility. Effects of the sub-regional areas surrounding the neighborhoods 

might be measured by a mid-range accessibility that could be most effectively used for 

accounting the effects of nonwork trips which are particularly significant for household 
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daily needs and are more sensitive to travel distance than work trips (Figure 2). 

The research question that this dissertation attempts to address is as follows. First, 

can regional accessibility measurements take into account the effect of clustering of 

regional attractions to be more accurate indices for residential location choices? 

Secondly, does a mid-range sub-regional accessibility have its own significant effect on 

residential location choice when controlling for local and regional accessibility? If 

significant positive coefficients are found for sub-regional accessibility in residential 

location choice model, it would indicate that households are more likely to locate in sub-

regional market areas that provide higher accessibility. Thirdly, how do place-based 

accessibility measures and individual commute time affect residential location choice? 

 

H. Summary of Chapter II 

 

Accessibility is a multi-dimensional concept. Dimensions of accessibility include: 

regional vs. local accessibility, place-based vs. person-based accessibility, accessibility 

by mode, and accessibility by trip purpose. Numerous accessibility measurements have 

been developed either to tailor to a specific dimension or to capture effects of as many 

dimensions as possible. Despite research advancements in measuring accessibility, 

limitations of existing measurements require continued creative thinking and innovation 

of new methods. Clustering of destinations may be important to account for the 

increasing trip chaining phenomenon, whereas a mid-range accessibility may further 

explain residential location choice given the uniqueness of nonwork travel. Central Place 
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Theory helps explain the needs of these innovations. The focal point of this study is how 

various accessibility measures affect residential location choice. 

Next chapter will describe the data needs and provide descriptive analyses of the 

study area for this dissertation.  
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CHAPTER III 

DATA SOURCES AND PROCESSING 

 

The first two chapters of this discussion suggested that a sub-regional mid-range 

accessibility is needed in assessing accessibility and estimating the effects of accessibility 

on residential location choice. It also suggested that models incorporating clustering of 

activities into measures of accessibility would show stronger explanatory power in 

predicting residential location choice than models that do not consider clustering of 

activities. Furthermore, both place-based accessibility measures and commute times 

could affect residential location choice. The following analyses will examine the 

hypotheses using data from the seven-county Detroit region in Southeast Michigan.  

This chapter presents an overview of the Detroit region in terms of demographic, 

socio-economic, land use, and transportation trends and patterns to serve as a background 

for analyses. The discussions on these trends are embedded in the following sections on 

data sources and data development that are needed for measuring accessibility and 

modeling residential location choices in the region. First, an overview of the region at the 

macro level is presented. This will then be followed by discussions on data that are 

developed at very detailed micro levels down to disaggregated individual households and 

land parcels.  

Four major data sources are discussed in this chapter: (1) 2004-2005 Michigan 

Department of Transportation (MDOT) and SEMCOG household travel survey; (2) land 



 

 58 

parcel map and the associated property assessment data; (3) synthesized individual 

households and population for the entire region; and (4) employment data. The household 

travel survey was conducted by MORPACE International. Land parcel and assessment 

data, synthesizing households and population, and employment data were originally 

collected and processed by SEMCOG’s Data Center led by this author for developing and 

running SEMCOG’s UrbanSim forecast model. Further adjustments were made for this 

dissertation research.  

Data development methods for UrbanSim can be found at the UrbanSim website 

(www.urbansim.org). Additional data procedures developed by SEMCOG staff are 

documented on SEMCOG’s internal wiki site, which can be obtained upon request. The 

highly disaggregated data set used for this study allows for detailed behavior-based 

analysis on household’s residential location choice with respect to accessibility at various 

levels from land parcels to the entire region.   

 

A. Overview of Study Area 

 

The study area for this dissertation is the Detroit region, that is defined as the 

seven county area in Southeast Michigan where SEMCOG is responsible for regional 

transportation planning. Approximately 50% of population and jobs of the State of 

Michigan are located in this region (Figure 10).  

http://www.urbansim.org/
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Figure 10.  Study Area - Seven Counties in Southeast Michigan 

 

 

The Detroit region has experienced economic turbulence and has been in a critical 

transition in its recent history. Population changes tell the story of the rise and fall of the 

region and its central city, Detroit (Figure 11).  
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Figure 11.  Population History – Detroit City vs. the Region 

 

Data Source: United States Census Bureau 

 

 The region’s population experienced little change in the last 40 years since 1970. 

However, distributions of population in the region, and consequently land use patterns, 

changed significantly in the same time period. The central city Detroit’s population has 

been declining since 1950, down from over 1.8 million to only 714 thousand. The city’s 

share of the region’s population has declined from 32% to 15% in the same time period. 

Employment experienced an even larger shift away from the central city. Only 13% of 

the region’s jobs were in the City of Detroit by 2005 (SEMCOG 2005). Because 

population and employment continued to shift to suburbs, significant amount of land has 

been developed outside the central city, while a large part of once developed land has 
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become vacant in the City. The developed land in the region doubled from 1970 to 2010 

while population remained virtually unchanged (Figure 12). 

 

Figure 12.  Land Developed before and after 1970 

 

 

The Detroit region has long been transformed from a Detroit-dominated 

monocentric metropolitan area to a much more sprawling region with numerous sub-

regional centers. Residential location choices reflect the preferences of households of 

various demographic and socio-economic characteristics as well as the changing physical 
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form of a region. People’s travel behavior has also changed, including the frequency of 

trip-making, the length of the trips, and the mode of travel for both work and nonwork 

purposes. Some of the key household characteristics and travel patterns are further 

discussed in the following sections when data sources are discussed in greater detail. But 

racial patterns of residential location are discussed first here because they are such 

dominant shapers of accessibility in the region. 

 The Detroit region is one of the most racially segregated areas in the United 

Stated. Frey and Myers (2005) ranked Detroit metropolitan area the second highest 

segregated region using a dissimilarity index for Blacks and Whites (Frey and Myers 

2005, p. 39, Table A2). The concentration of Blacks and Whites as well as the separation 

of the two races are shown in the following map (Figure 13). 

The region has 4.7 million people (Census 2010). The White population accounts 

for nearly 70 percent of the total population, whereas the Black population makes up 22 

percent of the total. While the total Black population exceeds 1 million, most live in a 

few concentrated municipalities. There are 235 municipalities in the region. 

Approximately 80 percent of Black population lives in the 19 municipalities where 

percent of black population is higher than the regional average. Two-thirds of Black 

population lives in just five municipalities. The City of Detroit is home to over 586,000 

or 58 percent of total black population in the region. The Black population makes up 82 

percent of total population in the City of Detroit. 

Meanwhile, there are 211 municipalities where the percentage of the White 

population is higher than the regional average of 70 percent. There are 147 municipalities 

where the White population is over 90 percent, and there are 73 of them where the White 
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population is over 95 percent. The City of Detroit has only 55,600 Whites, which account 

for only eight percent of the City’s total population. What this means for residential 

location choice modeling is that it is not enough to use variables of accessibility and 

affordability, etc. Race needs to be explicitly represented as independent variables, 

interacting with other variables. Estimating separated models for various races is also 

desirable.  

 

Figure 13.  Population by Race by Municipality, Detroit Region, 2010 
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The goal of data development for this study is to estimate household location 

choice models, including measuring accessibility of various forms as independent 

variables in the choice models. To estimate choice models, data are needed to 

characterize the “choosers” and the “choice set.” In this study, the “choosers” are 

households making location choice decisions. Those households with their demographic 

and socio-economic characteristics were obtained mainly from the 2004-2005 Michigan 

Department of Transportation (MDOT) and SEMCOG household travel survey. The 

“choice set” in this study is the residential buildings on individual land parcels in the 

Detroit region. The main source of data for characterizing this choice set is the land 

parcel map with property assessment data. In addition, a complete universe of households 

and population in the region were created to help characterize the demographic and social 

environment of the choice set. Employment data by Traffic Analysis Zones (TAZs) were 

developed for measuring accessibility to jobs. Additional input data files include U.S. 

Census data, regional environmental GIS files such as wetland, preserved farmland and 

recreation land, water and sewer service areas, and community master plans that are 

collected and processed by SEMCOG.  

 

B. Household Travel Survey 

 

As in most metropolitan areas in the United States, household travel survey is 

periodically conducted in the Detroit region. During 2004-2005, Michigan Department of 

Transportation (MDOT) conducted a comprehensive data collection program known as 



 

 65 

Michigan Travel Counts, which collected activities and travel inventories from all 

members of 14,996 randomly selected households within the state of Michigan, of which 

2,222 households completed were within the Southeast Michigan region. To supplement 

this Southeast Michigan sample, SEMCOG commissioned a separate SEMCOG Travel 

Counts program, as an add-on component to Michigan Travel Counts. The objective of 

this effort was to collect activities and travel inventories from an additional 3,843 

randomly selected households within Southeast Michigan. When the MDOT and 

SEMCOG samples are combined, data precision for the region is improved. The 

combined MDOT and SEMCOG files are used for this study to analyze residential 

location preferences with respect to neighborhood characteristics and accessibility in 

Southeast Michigan.  

 

1. Survey Design 

The MDOT household travel survey was designed to collect 48 hours of travel 

data from approximately 2,040 households in each of seven regions in the State of 

Michigan. Travel diaries were sent to each member of a household for completion, 

regardless of age, and to any overnight visitors the household may have during the 

assigned travel period. In addition to collecting travel information for the assigned period, 

respondents were also asked to provide demographic and socio-economic data. 

Randomly selected households were sent a pre-notification letter informing them that 

they would be receiving a telephone call within the following week. Once a household 

agreed to participate during the recruitment call, they were assigned a two-day travel 

period. Travel diaries were mailed and each household received a reminder call the day 
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before the assigned travel days. Households were then called for retrieval of their travel 

information the day following their travel period. If a household did not respond via 

telephone, survey questionnaire including the travel diaries could be mailed in or data 

could be entered via the internet.  

The goal of the survey was to gather enough data to account for the variance in 

travel patterns across the entire State of Michigan to support travel demand forecast 

model development for the State. Southeast Michigan was one of the seven geographic 

regions statewide for the purpose of this survey. Because the survey sample design called 

for equal number of survey households located in each one of the seven regions, only one 

seventh of the sample households were from Southeast Michigan region. However, 

nearly 50% of the State’s population and employment are located in this region. 

Furthermore, travel demand forecast models at metropolitan level typically have higher 

data requirements than statewide models. SEMCOG decided to add approximately 3,800 

more sample households to supplement the MDOT survey that had 2,222 sample 

households in Southeast Michigan, using the same consultants and similar methodology, 

for developing a new regional travel demand forecast model.  

In the supplement SEMCOG survey, additional geographic stratifications were 

added to ensure representative samples for smaller areas and low-response-rate areas. The 

sample design for SEMCOG survey divided the Detroit region into eight geographic 

sample areas.  Each sample area is defined by a county. Wayne County is split into City 

of Detroit and the balance of the county. The target sample size is proportional to each 

area’s share of total households in the region. When the MDOT survey and SEMCOG 

supplement survey were combined, the resultant sample had a 5% or less estimated 
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standard error at 95% confidence level for each of the eight areas in the region. The 

overall standard error for the region was 1.26% at 95% confidence level (Table 2). 

 

Table 2.  MDOT and SEMCOG Survey Samples for Detroit Region 

Sampling Areas   

Sample Sources Standard Error  
(at 95%  

Confidence Level)   
MDOT SEMCOG Total 

Livingston County 82 358 440 4.67% 

Macomb County 354 612 966 3.15% 

Monroe County 69 279 348 5.25% 

Oakland County 562 666 1,228 2.80% 

St. Clair County 103 408 511 4.33% 

Washtenaw County 213 400 613 3.95% 

Balance of Wayne County 421 640 1,061 3.01% 

City of Detroit 418 480 898 3.27% 

Total Region 2,222 3,843 6,065 1.26% 

 

Another difference between the SEMCOG survey and MDOT survey is that 

SEMCOG survey has a one day travel diary instead of a two day diary in the MDOT 

survey. Analysis on MDOT survey results showed that there were concerns with the 

second day of trip dairy in the survey. For example, personal trip-rates dropped from 3.64 

in the first day dairy to 3.19 in the second day dairy.  Similarly, zero-trip households 

increased from 8.1% in the first day dairy to 11.0% in the second day dairy. Therefore, 

for this study, only the first day MDOT survey was combined with the SEMCOG one-

day survey. A lesson learned here is that it is essential to note the differences in survey 

results between days in a multi-day trip dairy. One day of travel dairy is possibly 

sufficient for analysis needs. 
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The design of survey instruments, the trip diary in particular, was aimed for 

improving existing traditional four-step travel demand forecast models as well as for 

developing the next generation of activity based models. To achieve that goal, a location-

based travel diary format was used. In this type of travel diary, respondents would be 

carefully taken chronologically through their travel days from location to location, 

recording both their activities at locations and their detailed travel information between 

locations. Analysis of trip chaining is possible based on this survey design. 

 

2. Selected Survey Results 

There are six major variables on household characteristics that can be developed 

for the survey results. They are listed in Table 3 with the ranges of their values. 

 

Table 3.  Household Variables from Travel Survey 

Household Attributes Values 

Number of Persons (Household Size) 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more 
Age of Household Head Single year, 18 to 97 
Household Income $0 to $125,000 or more 
Number of Children 0, 1, 2, 3, 4, 5, 6, 7, 8 or more 
Number of Workers 0, 1, 2, 3, 4, 5 or more 
Number of Vehicles Available 0, 1, 2, 3, 3, 4, 5, 6, 7, 8, 9, 10 or more 

 

Race is often a significant variable in determining residential location choices. 

However, race was not asked in either MDOT or SEMCOG survey. A synthesized race 

attribute was assigned to each household. The methodology for synthesizing households 

and population is explained in Section D: Synthesizing Households later in this chapter. It 

is similar to the method developed at the Los Alamos National Lab for the TRANSIM 

software (U.S. Department of Transportation 2005), but enhanced by weighting more on 
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marginal distributions at census block-group level, and by considering local housing 

characteristics developed from assessment data when assigning synthesized households 

to parcels. 

The original sample data from the surveys were expanded to reflect the entire 

population of the region. Data expansion factors were developed from 2000 census 

Public Use Microdata Samples (PUMS). The total expanded household and population 

numbers were compared to 2005 SEMCOG population and household estimates for 

validating the survey results. All the analyses presented in the remainder of this section 

are based on the data expanded from the survey samples to the population of the areas 

surveyed (Table 4). 

a) Households 

Table 4 provides a breakdown of various household characteristics. Household 

size various from the smallest of 2.41 in Washtenaw County to the largest of 2.73 in 

Livingston County. The more developed counties such as Macomb County, Oakland 

County, and Wayne County excluding City of Detroit all had smaller than regional 

average household size, whereas the more rural counties including Monroe County and St. 

Clair County had larger than average household size. Detroit led average number of 

children per household, followed by Livingston County where large families with more 

children tend to live. Washtenaw County had the lowest average age largely due to its 

college population. It was followed by City of Detroit where households had more than 

average number of children.
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Table 4.  Selected Household Characteristics Based on Expanded Samples 

  Detroit 
Living- 
ston 

Macomb Monroe Oakland St. Clair 
Wash- 
tenaw 

Balance 
Wayne 

Region 

Households (HH) 322,393 64,611 327,861 60,068 497,466 66,538 138,846 448,316 1,926,099 

  Percent of Total 16.7% 3.4% 17.0% 3.1% 25.8% 3.5% 7.2% 23.3% 100.0% 

Persons 858,231 176,339 819,659 158,827 1,243,874 171,487 334,728 1,127,986 4,891,131 

  Persons/HH 2.66 2.73 2.50 2.64 2.50 2.58 2.41 2.52 2.54 

Workers 298,157 90,753 402,495 76,073 626,527 82,670 179,057 541,852 2,297,584 

  Workers/HH 0.92 1.40 1.23 1.27 1.26 1.24 1.29 1.21 1.19 

Vehicles Available 412,084 147,895 621,424 130,259 962,585 126,241 257,282 861,717 3,519,487 

  Vehicles/HH 1.28 2.29 1.90 2.17 1.93 1.90 1.85 1.92 1.83 

Children 268,819 49,974 205,312 41,231 329,837 44,026 89,642 283,482 1,312,323 

  Children/HH 0.83 0.77 0.63 0.69 0.66 0.66 0.65 0.63 0.68 

Average Age 36.6 37.9 38.8 38.5 38.3 38.7 36.4 39.2 38.2 

Licensed Drivers 477,108 125,945 592,508 114,527 888,458 122,820 241,156 810,748 3,373,270 

  Licensed Drivers/HH 1.48 1.95 1.81 1.91 1.79 1.85 1.74 1.81 1.75 

Driver Trips 1,461,472 461,835 2,098,148 405,933 3,423,399 433,845 888,128 2,937,913 12,110,673 

  Driver Trips/HH 4.53 7.15 6.40 6.76 6.88 6.52 6.40 6.55 6.29 

Transit Trips 161,278 2,527 15,853 857 15,940 7,148 36,023 45,674 285,300 

  Transit Trips/HH 0.50 0.04 0.05 0.01 0.03 0.11 0.26 0.10 0.15 

Mean Travel Time 21.5 22.3 18.4 18.7 18.5 18.0 18.1 17.3 18.8 

Mean Travel Time to Work 27.9 33.4 26.1 23.5 26.7 24.7 24.2 25.1 26.2 
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b) Workers 

Respondents were asked to provide both home address and work address. All 

findings discussed here are based on respondents’ home address. The average number of 

workers per household for the region was 1.19. Only the City of Detroit had the lower 

than average number of workers at 0.92 per household. The number went up to as high as 

1.40 in Livingston County. These workers’ commute time is used explicitly as 

independent variables in residential location choice modeling for this study. 

c) Vehicle Availability and Licensed Drivers 

Households were asked the number of cars, minivans, and light trucks available to 

household members for travel. The number of vehicles available per households ranged 

from 1.28 in Detroit to 2.29 in Livingston County, which is a difference of one full 

vehicle per household. The number of licensed drivers is highly related to number of 

vehicles available. But the difference between the lowest number (1.48 per household in 

Detroit) and the highest number (1.95 in Livingston County) is not as large as the 

difference in vehicles available. This could be a reflection on the unmet needs in vehicles 

in Detroit and the “excessiveness” of vehicles available in Livingston County. 

d) Income 

Household income distribution for all eight areas is presented in Table 5. The 

shaded cell in each column is the income category that contains the median value for that 

place. Livingston, Oakland, and Washtenaw counties saw more households in the higher 

income categories, with approximately 50% of their households reporting income of 
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more than $60,000. On the other hand, City of Detroit’s income is significantly lower 

than the other areas. More than half of Detroit’s households had annual income less than 

$40,000. St. Clair County also had larger shares of its households in the lower income 

categories. 

 

Table 5.  Household Income Distributions 

Income Detroit 
Living 
-ston 

Macomb Monroe Oakland 
St. 

Clair 
Wash- 
tenaw 

Rest of 
Wayne 

Region 

Less than $10,000 15% 2% 4% 3% 3% 5% 3% 4% 5% 

$10,000 to $19,999 16% 5% 8% 8% 5% 13% 6% 8% 8% 

$20,000 to $29,999 13% 7% 8% 13% 7% 14% 7% 10% 9% 

$30,000 to $39,999 12% 7% 10% 8% 7% 10% 9% 9% 9% 

$40,000 to $49,999 9% 7% 10% 10% 8% 9% 7% 10% 9% 

$50,000 to $59,999 9% 7% 10% 11% 9% 10% 7% 10% 10% 

$60,000 to $74,999 8% 10% 10% 10% 11% 15% 13% 12% 11% 

$75,000 to$99,999 6% 18% 17% 15% 15% 10% 16% 13% 13% 

$100,000 to $124,999 4% 16% 6% 6% 10% 4% 11% 7% 8% 

$125,000 or more 2% 8% 4% 4% 12% 3% 11% 6% 7% 

Under $50,000 2% 1% 2% 0% 2% 2% 1% 3% 2% 

50,000 and over 1% 4% 4% 6% 5% 1% 4% 3% 3% 

Don’t Know 1% 1% 1% 2% 1% 1% 1% 1% 1% 

Refused 2% 6% 6% 5% 4% 3% 4% 4% 4% 

 

e) Travel Behavior 

Besides the data about household characteristics, there is rich information about 

trips that households made in the travel survey. Some analyses on these trips were 

presented in the previous two chapters (e.g., Table 1, Figure 1, 2, and 5). Additional 

analyses are summarized below. 
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On average, households in the region made 6.29 trips each day. These trips can be 

chained in tours, and are not necessarily home-based. Households in Livingston County 

made more trips than households in any other places. This is not surprising given that 

they also led in household size, income, number of workers, and number of vehicles 

available. Households in Detroit made significantly fewer trips than households in any 

other areas. In fact, Detroit was the only place where number of trips was lower than 

regional average (Figure 14). 

 

Figure 14.  Number of Driver Trips 

 

 

Livingston County also led in overall trip length measured in minutes (Figure 15) 

and work trip length (Figure 16). Average length of work trips was significantly higher 

than average length of all trips. 
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Figure 15.  Mean Travel Time for All Trips 

 

  

Figure 16.  Mean Travel Time for Work Trips 
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It was more than ten years earlier when the previous household travel survey was 

taken in Southeast Michigan in 1994. Table 6 compares travel time by trip purpose from 

the two surveys. The comparison reveals that travel time for work trips increased 

somewhat. But travel time for nonwork trips decreased significantly. One might think 

that nonwork trips have become increasingly important in life and people attempt to 

minimize the cost of nonwork trips. 

 

Table 6.  Comparing Mean Travel Time by Trip Purpose, 1994 and 2005 

Trip Purpose 
1994 

Survey 
2005 

Survey Difference 
Percent 

Difference 

Home Based Work (HBW)  24.2 25 0.8 3.3% 

Home Based Shopping (HBSH)  16.7 14 -2.7 -16.2% 

Home Based School (HBSC)  17.2 11.8 -5.4 -31.4% 

Home Based Other (HBO) 17.7 14.8 -2.9 -16.4% 

Non-Home Based Work (NHBW)  19.4 20.8 1.4 7.2% 

Non-Home Based Other (NHBO)  16.1 14.5 -1.6 -9.9% 
 

 

3. Geocoding and GIS Processing 

Survey consultants conducted initial geocoding to the sample households 

collected. That geocoding process was using street centerline files for geographical 

reference. Households and their trip stops were assigned latitudes and longitudes on street 

centerlines. For this study, parcels are the analytical unit. It is necessary to geocode 

households to parcels. The initial latitudes and longitudes from survey consultants were 

used as a reference only. 

To geocode survey households to parcels, first the street address fields in parcel 

map and survey data are standardized. The fields used in this process included street 
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number, prefix direction, prefix type, street name, street type, suffix direction, and ZIP 

code. Second, standardized addresses in survey data are geocoded to the addresses in 

parcel map using ArcMap GIS software. This automatic geocoding process resulted in 

4,343 of total 6,065 households, or 71.6%, geocoded to parcels. Third, the remaining 

1,714 households were geocoded manually. In the end, there were only eight households 

that could not be geocoded to parcels. The overall successful geocoding rate was 99.9% 

(Table 7). 

 

Table 7.  Geocoding Results of Survey Households 

County Total 
Auto 

Geocoding 
Manual 

Geocoding 
Total 

Geocoded 
Can't be 

Geocoded 
Percent 

Geocoded 

Livingston 440 310 130 440 0 100.0% 

Macomb 966 663 302 965 1 99.9% 

Monroe 348 192 156 348 0 100.0% 

Oakland 1,228 953 271 1,224 4 99.7% 

St. Clair 511 247 264 511 0 100.0% 

Washtenaw 613 365 245 610 3 99.5% 

Wayne 1,959 1,613 346 1,959 0 100.0% 

Region Total 6,065 4,343 1,714 6,057 8 99.9% 

 

 

GIS processing and analysis were used to link household attributes from 

household survey to the neighborhood characteristics for understanding the relationship 

between households and their locations to model household location preferences. Figure 

17 shows one hypothetical (for confidentiality reasons) survey household over a digital 

ortho-photography. Also shown in the figure are land parcel boundaries in red. The 
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analysis and modeling work described in this study were by parcel. The data obtained and 

used for characterizing these parcels will be explained in the following sections. There 

are over 1.8 million parcels in the study area. 

 

Figure 17.  A Sample Survey Household and Land Parcels 

 

 

 

C. Parcel Map and Assessing Data 

 

While the household travel survey data provide the attributes of the choosers for 

location choice models in this study, parcel data provide most of the characteristics of the 

choice set for the models. Parcel data consist of local land parcel maps and property 
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assessment data associated with the land parcels. They provide highly disaggregated 

information and are the most logical form of source data for representing real estate 

characteristics in a disaggregated location choice model. Parcel data are increasingly 

available to researchers in the form of a GIS database due to rapid automation of land 

records. The parcel data used in this study were collected, processed, and enhanced by 

SEMCOG mainly for developing its regional forecasts.  

 

1. Data Collection 

Parcel data collection consisted of two primary data sets which were land parcel 

maps and property assessment records. In addition, local municipality master plans were 

collected separately but overlaid with the parcel data eventually. Furthermore, land use 

by parcel was added to the dataset, which was developed through the use of the digital 

parcel files, property assessment records, aerial photography, and other records about the 

buildings in the region such as CoStar commercial real estate database. 

a) Parcel Maps 

Digital parcel maps are typically created and maintained more centrally than 

assessment data. Most counties have high quality digital parcel maps but do not have the 

detailed assessment data as local assessors have, which are needed for the location choice 

analysis. This is partly because counties are mainly concerned with property assessing 

equalization and are mostly interested in assessing values only, whereas local assessors 

needed more detailed data for assessing the properties firsthand. While counties and 

municipalities have various schedules for updating their databases, the collected digital 

parcel maps and assessing data representing as closely as possible to the spring of 2005.  



 

 79 

Parcel maps were collected from various sources but mostly from counties 

digitally. Livingston County, Macomb County, and Oakland County regularly update 

their digital parcel maps and provided their GIS layers closest to 2005. St. Clair County 

has been regularly updating its digital parcel layer but historically has not included the 

City of Port Huron's parcel data, therefore, City of Port Huron and the rest of county’s 

parcel maps were collected separately. Washtenaw County was similar to St. Clair 

County where City of Ann Arbor and the rest of county’s parcel maps were obtained 

separately. 

Monroe County did not have a full county wide digital parcel file. SEMCOG staff, 

with assistance from Monroe County's Planning Department collected whatever digital 

parcel data existed in the county (both GIS data and CAD data) as well as paper maps. 

SEMCOG staff then processed all of the information and created a county wide digital 

parcel map for Monroe County.  

The parcel map for Wayne County has not been updated since approximately 

2000. The difference in dates between the parcel geography and assessment data caused 

significant mismatches. Extensive effort was taken at SEMCOG to help identify correct 

parcel to assessing record relationships. Meanwhile some municipalities in Wayne 

County have kept their own parcel files up-to-date. Their digital parcel maps, wherever 

available, were collected and incorporated into the Wayne County parcel file. These 

municipalities include City of Detroit, Brownstown Township, Canton Township, City of 

Dearborn, City of Livonia, Northville Township, City of Taylor, Van Buren Township, 

and City of Westland. 
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There are 1,837,676 parcels in the final parcel file for the Detroit region that are 

used for this study. 

b) Property Assessment Records 

While digital parcel maps depict the geographic boundaries of the land parcels, 

property assessment records provide the raw data for most of the location characteristics 

that are used as the input data for household location choice modeling. Property 

assessment records representing as close as possible to the spring of 2005 were collected, 

which was the assessment rolls archived after each municipality’s 2005 March Board of 

Review (MBOR) process. Files containing 2005 MBOR assessment records were 

collected from municipality’s assessors for the most of the region except for two small 

municipalities, one in Livingston County and another one in Washtenaw County, which 

never provided their assessing data. Their data had to be imputed using county data and 

data of similar parcels in the neighboring municipalities. 

Local assessment files typically contain hundreds of fields. Some fields are 

always populated such as assessed values. Some other fields may not be populated in 

some municipalities. The most valuable attributes were extracted for modeling purposes 

as shown in Table 8. This table also included additional attributes that were not in the raw 

assessment data but were developed from other sources and added to parcels that could 

be used for modeling work. 
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Table 8.  Key Attributes by Parcel 

Name Description 

PRCLNUM Parcel number that can be used to join parcel maps and assessing data 

P_ADDRESS Property address, including street number, name, city, state, and ZIP codes  

TAXYEAR Year of the assessed values  

PROPCL Parcel’s current property class 

EXEMPT Exempt status. Can be used for identifying parcels owned by governments. 

ASS1BLDG Assessed improvement values, i.e., building values in the parcel 

ASS1LAND Assessed land value 

YRBLT Year when the building was built 

SALEAMT Amount of last sale 

SALEDATE  Date of last sale 

CIBLDGS Number of commercial or industrial buildings 

CIFLAREA Commercial or industrial building square footage 

RESBLDGS Number of residential buildings 

RESFLAREA Residential building square footage 

ZONING Parcel zoning 

  Added Fields 
 GENERAL_LU General land use code assigned to the parcel 

DETAIL_LU Detailed land use code assigned to the parcel 

STATUS  Development status assigned to the parcel, 

 
i.e., "developed", "undeveloped", or "undevelopable" 

PLANYEAR Year of the master plan updated 

CATEGORY Detailed planned use category as written in the community's master plan 

MIN Minimum planned density 

MAX Maximum planned density 

 

 

2. Data Processing and Enhancement 

Parcel-based assessment data were developed originally for local government 

taxation purposes. Therefore assessed value fields are most complete and accurate. Other 

fields that are less important for assessing purpose but are equally important to this study 
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are less complete and less accurate than assessed values fields. Improvements to the raw 

assessing data were made in several ways for modeling purpose. 

a) Imputing Missing Values 

Even for assessed value fields, there are missing values, particularly for publicly 

owned parcels and buildings that are tax exempt. It is necessary to populate these missing 

fields as accurately as possible, based on valid data values and the relationships between 

attributes. The imputation process took several steps as summarized below. 

Once the properties with missing values were identified, they were grouped by 

types of municipalities, including core city, small town, urban fringe, suburban, exurban, 

bedroom community, and rural area. Then a correlation analysis was conducted between 

missing fields and the fields for which data existed in the same type of municipalities. 

The next step was to utilize the results from the correlation analysis to develop regression 

models, relating the dependent variable (missing value) with the independent values 

(relevant variables). Finally, a value was generated for each missing data point using the 

regression models. 

The result of this work was a complete layer of parcel map with necessary 

attributes for modeling location choice. For example, assessed land values and 

improvement values, i.e. building values, were assigned to every legitimate parcel. These 

values were used to represent the real estate prices of various locations in the region for 

modeling purposes. As Figure 18 shows, these values vary significantly across the region. 
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Figure 18.  Assessed Building Values by Parcel 
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b) Completing Number of Housing Units 

The quality of housing unit data varies in assessing data as some assessors are not 

particular interested in this type of data, particularly for apartments and mobile homes.  

An apartment database was created at SEMCOG by manually locating apartment 

buildings through assessment data as well as from other sources including calling 

apartment managements. The database contains records for all the apartment buildings 

found across the Detroit region. The database fields included number of units within each 

apartment building. Similarly, a manufactured housing database was created by manually 

locating manufactured housing parks in the region. The database contains records for all 

the manufactured housing parks in the region, and includes the field of total number of 

units within each manufactured housing park. Housing unit data in both apartment 

database and manufactured housing park database were used to update number of 

housing unit field of the parcel file. 

Housing unit data by census block from 2000 Census and building permits data 

from 2001 to 2005 were also used to check the number of housing units in the parcel file. 

Necessary adjustments were made when significant mismatches were found. 

c) Improving Land Use Classification 

Land use types were developed through the use of information from the digital 

parcel files, property assessment records, aerial imagery, internet research, and other real 

estate data for the region. The list of parcel-based land use types is shown in Table 9. 
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Table 9.  Land Use by Parcel 

ID Land Use Type Description 

1 agricultural Agricultural Property 

2 agricultural_residential Property Used for both Agriculture and Residence 

3 agricultural_mining Mining Property 

4 sf_residential Single-Family Residential 

5 mf_residential Multi-Family Residential (Apartment, etc.) 

6 mobile_home_park Mobile home in a park 

7 office Commercial, Industrial, or Government offices 

8 retail Commercial Retail 

9 entertainment_leisure Commercial Entertainment/Leisure 

10 hotel_motel Hotels and Motels 

11 commercial_mixed_use Commercial Mixed Use 

12 manufacturing Industrial Manufacturing 

13 warehousing Industrial Warehousing 

14 tcu Transportation, Communication, Utility 

15 hospitals Hospitals 

16 medical_facilities Medical Buildings, Doctors Offices, etc. 

17 public_building Public Buildings (Library, Museum, etc.) 

18 civic_organization Veterans of Foreign Wars, Boy/Girl Scouts, etc. 

19 schools All Schools including Colleges and Universities 

20 religious Religious Organization Owned Property 

21 parking Parking Structures and Lots 

22 park_open_space_conservation Parks and Recreation/Conservation 

23 ROW Right of Way 

24 vacant_developable Vacant Developable Property 

25 vacant_undevelopable Vacant Undevelopable property 

26 water Water 

 

d) Mapping Other Data to Parcels  

Other data that were not originally parcel-based were converted to parcels. Master 

plans from municipalities are still mostly not parcel based at the present time. However, 

master plans collected in 2005 by SEMCOG were converted to parcels. Some of the 

fields in this file are listed in Table 8 above as “added fields,” including planned land use 

types and planned densities. 
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Digital parcel maps and property assessment data were joined by unique parcel 

IDs. The attributes in the parcel data can be used to compute additional variables to 

characterize neighborhoods for analyzing location choice.  For example, linking 

household income to assessed value may reveal housing affordability, whereas analyzing 

age of buildings in an area may tell the maturity of the area and quality of housing that 

could affect household location choice.  

Parcel maps and assessment data provided most of the data needed for 

characterizing the choice set but not all the data needed. Several other data sources 

provided additional information as discussed in the following sections. 

 

D. Synthesizing Households 

 

Household travel survey provides the sample data for characterizing the choosers 

in estimating household location choice models. Parcel data are used to measure many 

characteristics of the choice sets and the neighborhoods from which sample households 

can choose. What is missing from these two datasets is the characteristics of the other 

people that are not in the limited sample of household travel survey but live in the region. 

Who else are in the neighborhood can impact location choice significantly. Some studies 

use geographically aggregated demographic data for modeling purposes, such as census 

tract or TAZs. This study uses land parcel as the unit of analysis. It is necessary to 

develop a demographic data set at parcel level. Essentially, a universe of households and 

population is needed to represent the demographic patterns of the region in a highly 

disaggregated fashion. There are benefits of having such a universe of households and 



 

 87 

population, besides the requirement of parcel-based modeling. First, it can take advantage 

of accurate data from small geographies, for example 100 percent count of population by 

census block and housing value by parcel. Furthermore, individual households by parcel 

or building can be conveniently grouped into customized neighborhoods, e.g., areas 

within walking distance of a sample household.  

Since there is no data source that provides individual households at such a 

detailed level directly, a mathematical procedure was used to “synthesize” them. A 

computer program for synthesizing households and population was pioneered by the Los 

Alamos National Lab for the TRANSIM software. The procedure uses several census 

data products and a series of Monte Carlo simulations to synthesize demographic 

characteristics for each household. This study used a similar method, but enhanced it by 

weighting more on marginal distributions at the smallest geography possible for each 

variable, and by considering local housing characteristics developed from parcel-based 

assessment data when assigning synthesized households to parcels. In the end, each one 

of the approximately 1.85 million households in Detroit region was synthesized and 

placed to parcels.  

The synthesized households have seven attributes (Table 10) that are similar to 

the household attributes obtained from household travel survey. The one exception is that 

race of the head of household is also in the synthesized households but not in the 

household travel survey. Four major race categories are included, which are non-

Hispanic White, non-Hispanic Black, Hispanic, and all others (mostly Asian).  
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Table 10.  Attributes of Synthesized Households 

Household Attributes Values 
Household Size 1, 2, 3, 4, 5, 6, 7 or more 
Age of Household Head Single year, 15 to 93 or older 
Race of Household Head White, Black, Hispanic, Other 
Household Income $0-$894,082 
Number of Children 0, 1, 2, 3 or more 
Number of Workers 0, 1, 2, 3, 4, 5 or more 
Number of Vehicles Available 0, 1, 2, 3, 3, 4, 5, 6 or more 

 

Three sets of census data were used in this process. First, for basic demographic 

information collected in decennial census (“short from” for Census 2000 and earlier), 

100-percent data were available down to the block level in census Summary File 1 (SF1). 

Second, American Community Survey (ACS, or “long form” for Census 2000 and earlier) 

provides additional socio-economic sample data down to the block-group level. Third, 

individual household sample data are available in PUMS (Public Use Microdata Sample) 

for large geographic areas, called PUMAs, that have at least 100,000 people in each area. 

The objective of synthesizing households and population is to take the sample of 

individuals in PUMS that has the most detailed information to the much smaller 

geographies of block-groups to create a universe of individual households and people and 

ensure the characteristics of these households and people match what are observed at 

small geography such as block-groups, and eventually assigned to parcels. 

Given that 100-percent cross-tabulated data are available at the block level for the 

key life cycle household characteristics of household tenure, household type, sex of 

householder, and broad age of householder, the Census 2000 Summary File 1 (SF1) table 

is chosen as the primary Census 2000 table to begin with. Additional variables are added 
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to this from Census 2000 Summary File 3 (SF3). The basic idea is to use the more 

accurate 100-percent count data before using less accurate sample data. 

There are three major steps in the household synthesis process as discussed 

below. The overall strategy is to prioritize the use of data sources by their coverage of 

household characteristics and synthesize characteristics that are consistent with aggregate 

block group level data while preserving multivariable distributions as represented by 

census PUMS data. Placement of the synthesized households into individual parcels is 

carried out using a ranked comparison of housing values and rental costs of the 

synthesized households to assessed property values in a digital parcel map.  

 

1. Block-group Marginal Distributions  

The first step is to produce marginal distributions of household characteristics at 

the census block-group level. This task develops a target distribution to guide the 

household synthesis process, ensuring that the characteristics of the households 

synthesized to each block-group will sum to the totals of the block-group for those 

characteristics from the Census Short Form, Long Form or American Community Survey 

(ACS) data. 100-percent count data are used first before sample data are used. 

 

2. Drawing Households from PUMS 

The second step is assigning weighted household records from PUMS areas to 

census block-groups. This is a simulation process. Weighted household records from the 

most recent PUMS dataset are expanded to form a complete universe of households in 

each PUMS geographic area (a.k.a. PUMAs). Each household is given a random number 
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from a uniform distribution and then the dataset resorted, so that the drawing of 

households for assignment to block-groups is random. Each household is then drawn in 

turn and compared to each block-group within the PUMS area, in sequence. If a block-

group can accommodate a household with the characteristics of the drawn household, 

then the household is coded to that block-group and removed from the draw. The 

marginal distribution of the block-group is decremented based on the household’s 

characteristics, and the process repeats until each household has been assigned to a block-

group, and each block-group has the appropriate number of households, whose 

characteristics sum to the block-group marginal distribution totals. 

 

3. Assigning Households to Parcels 

Once the synthesis of households has been completed, the PUMS households 

previously assigned to a census block-group are then placed to land parcels within the 

block-group. Land parcels containing housing units are identified using assessment data 

and other administrative records, as well as current land use and aerial photography 

layers. Census occupancy rates by tenure are applied to estimate total occupied housing 

units within a block group. Because there are differences between Census 2000 and 

parcel data, there may not be an exact match in the number of housing units and/or 

households at the block group level. However, by controlling the number of housing units 

assigned at the parcel-level to Census 2000 block group totals, the total number of 

households assigned to parcels can also be controlled to Census 2000 data at the block 

group level. In special circumstances where significant geocoding errors are apparent in 

Census 2000 data, block groups were aggregated together for the purposes of controlling 



 

 91 

to Census 2000. Placement of the synthesized households into individual parcels is 

carried out using a ranked comparison of housing values or rental costs of the synthesized 

households to assessed property values in the digital parcel file. 

This household synthesizing method utilized the best data available from various 

sources. The placement of synthesized households at the parcel-level allows for the 

analysis of household data below traffic analysis zones and census blocks. Yet, individual 

households can always be analyzed at larger geographies by applying aggregation 

procedures.  

The synthesizing process was run only once. But additional runs would not make 

much difference, for several reasons. First of all, this procedure uses the marginal 

distributions of socio-economic attributes of each census block-group to control 

synthesized households within a block-group. Census block-groups are small 

geographies, and variations of household characteristics within block-groups are small. In 

addition, assigning households to parcels within each block-group based on housing 

value further reduces uncertainty. The assignment process was carried out by a ranked 

comparison of the synthesized housing values or rental costs of households and the 

observed assessed values by parcel. The rank orders are fixed unless there are identical 

housing values, or identical rental costs, or identical assessed values in a block-group. 

Therefore, additional runs of the synthesizing procedure would not really make much 

difference. 
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E. Employment Data 

 

An accurate and detailed employment dataset is always difficult to obtain. This 

study uses a published high quality 2005 QCEW (Quarterly Census of Employment and 

Wages) dataset by TAZ with some imputation.  

 

1. Employment Data Overview 

As described in the sections above, decennial census and estimations between 

census years are the best sources for estimating population and households. However, it 

is much more complicated for measuring employment than population partly because 

jobs can be measured in various ways, such as full-time jobs, part-time jobs, wage and 

salary jobs, self-employed or proprietary jobs, private jobs, and government jobs. QCEW 

is a virtual census of employment in the United States, covering over 99% of wage and 

salary civilian employment. The name QCEW was adopted in 2003. Before 2003, it was 

called Covered Employment and Wages program, because of its focus on jobs covered by 

Unemployment Insurance and Unemployment Coverage for Federal Employees. The 

QCEW program is often referred to as the “ES-202” program, as it is derived from an 

obsolete transmittal with that number that was part of the Employment Security (i.e., 

Unemployment Insurance) program (U.S. Department of Labor, Bureau of Labor 

Statistics, 2011).  

QCEW is a cooperative program among the U.S. Department of Labor's Bureau 

of Labor Statistics (BLS) and the employment security agencies of the 50 States, the 

District of Columbia, Puerto Rico, and the Virgin Islands. In Michigan, State 
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Unemployment Insurance Agency collects and compiles employment and wage data for 

workers covered by the Michigan Employment Security Act. Among the data collected 

are monthly employment and quarterly wage information for workers covered by State 

unemployment insurance (UI) laws and for civilian workers covered by the program of 

Unemployment Compensation for Federal Employees (UCFE). Employment data 

represent the number of covered workers who worked during, or received pay for, the pay 

period including the 12th of the month. Excluded are members of the armed forces, the 

self-employed, proprietors, domestic workers, unpaid family workers, and railroad 

workers covered by the railroad unemployment insurance system. About 40% of 

agriculture wage and salary jobs are included in the dataset. Wages represent total 

compensation paid during the calendar quarter, regardless of when services were 

performed. 

 

2. Employment Data Processing 

Data from the QCEW program serve as an input to Federal and State programs, as 

well as research and analysis programs at federal, state and local level. Employment data 

are included in the QCEW program for nearly every industry by 4-digit NAICS (North 

American Industrial Classification System) code. The broad coverage, continuity, and 

currency of the QCEW program make it one of the most useful employment data sources 

for socio-economic research.  

While QCEW data are readily available for large area analysis such as at national 

and state levels, there are several data quality issues and disclosure issues that must be 

addressed if the data are applied to small area analysis, such as at TAZ level. SEMCOG 
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obtained March 2005 QCEW file form the State of Michigan, processed the data, and 

published a TAZ dataset for the Detroit region after confidentiality checks. Data 

processing and improvement procedures are summarized below.  

a) Breaking out multi-establishment records 

An employer may operate in a number of different locations, but there is often 

only one unemployment insurance account for an employer in QCEW data.  For example, 

the U.S. Post Office employs thousands of individuals in hundreds of locations in 

Michigan. In fact, this applies to a number of large companies (e.g., General Motors 

Company), institutions (e.g., University of Michigan), and franchises (e.g., Domino’s 

Pizza) in the region.  Each location is called an establishment. To ensure the accuracy of 

employment data by small area, those records with multi-establishments are broken out 

by research based on company records or real estate and land use data. 

b) Adjusting employment by type 

In addition to multi-establishment records, firms may have various types of 

operations at the same location. A company may have significant numbers of research 

and development jobs and manufacturing jobs at one location. Some firms do not 

distinguish employment among various types when reporting to state unemployment 

insurance agency. Corrections and adjustments were made to deal with significant 

problems of this nature to provide more accurate measurement of the economy. 
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c) Geocoding 

Employer addresses in QCEW and additional establishment addresses from the 

results of breaking out multi-establishment records were geocoded to parcel maps.  

Because of the complexity of the parcel addresses and QCEW addresses, there are several 

steps to geocode the establishments. 

(1) The addresses were first geocoded to the parcel by using the original parcel 

addresses.  But the matching rate is only about 30%.   

(2) Many large parcels, such as malls, offices, etc, have address ranges, but the 

parcel map only contain a single address.  A script was used to create address 

ranges for those parcels.  The script uses the addresses adjacent to a large 

parcel to create address ranges.  For example, if an address of a large parcel is 

2 Maple Rd, and the address of the adjacent parcel is 10 Maple Rd, the script 

assigns the address ranges, 2 to 8 to the parcel.  The addresses that were not 

geocoded in step one were run through these created address ranges.  The 

matching rate increased significantly to approximately 70%. 

(3) Next, the remaining addresses were geocoded using Michigan Geographic 

Framework (MGF).  The points were then moved to appropriate parcels based 

on parcel maps and aerial photos. 

(4) Finally, remaining addresses were geocoded individually by using 

mapquest.com, aerial photos, and other sources. 

(5) A small number of addresses that could not be geocoded were allocated to the 

TAZs, proportional to geocoded jobs in TAZs. 
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(6) The University of Michigan and Eastern Michigan University addresses were 

manually geocoded to the buildings by using aerial photos.   

Employment records geocoded to parcels were summed to TAZs.  

d) Confidentiality requirements 

To assure the anonymity of QCEW covered firms, public disclosure of all QCEW 

data is contingent on the number of Unemployment Insurance covered accounts (i.e., 

firms or employers) included in an individual data record (e.g., TAZ employment), and 

each account's share of the employment reported in that data record. Any publications 

based on data from the QCEW program can not disclose data for any level in which the 

universe (1) consists of fewer than three unemployment insurance accounts; or (2) is 

dominated by a single employer that represents 80 percent or more of employment. A 

computer program was developed at SEMCOG to check the processed data for 

confidentiality restrictions. As the result, 2,453 of total 2,811 TAZs passed total 

employment confidentiality checking, which represents approximately 92% of total jobs 

in the region (Table 11). Employment by type was also checked using the same computer 

program. Once the disclosure restrictions were met, the employment dataset was 

approved by the State of Michigan, and then published at SEMCOG Web site. 

 

Table 11.  Results of Confidentiality Checking on Employment Data 

 
Number of TAZs Percent Number of Jobs Percent 

Total 2,811 100.0% 2,044,057 100.0% 

Published 2,453 87.3% 1,876,944 91.8% 

Blocked 358 12.7% 167,113 8.2% 
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e) Imputation of missing data 

Although the blocked 358 TAZs (or 12.7%) are mostly small zones with little 

employment, it is desirable to have a complete employment dataset for all the TAZs. 

Therefore, the missing 8.2% employment (or 167,113) in those blocked TAZs was 

imputed based on the published employment data and land use data. 

First, for TAZs in which total employment numbers were blocked, total blocked 

jobs in each county are allocated to these TAZs based on employment land area from the 

region’s land use layer. This is possible because no county had either total employment 

numbers or employment numbers by type were blocked. The assumption of this method 

is that jobs are distributed evenly and proportional to employment land use, including 

commercial, industrial, governmental and other institutional land areas. 

Once the missing total employment numbers for blocked TAZs were imputed, the 

blocked employment numbers by industrial class were imputed for each blocked TAZ by 

the following steps.  

 Calculate total blocked jobs by industrial class by county. 

 Distribute above calculated blocked jobs in each industrial class in each county to 

TAZs that had jobs blocked in that industrial class in proportion to total jobs of 

those TAZs. 

 Apply iterative-proportional-fitting method to initially imputed jobs (and imputed 

jobs only) by industry to match TAZ total blocked jobs and county blocked jobs 

by industrial class. Note that, in this application, iterative-proportional-fitting is a 

mathematical method that iteratively adjusts cell values of a two-dimensional 

matrix so that sum of each column or row matches a predefined total. In this case 
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the predefined columns or rows are TAZ total blocked employment numbers and 

county blocked employment numbers by industrial class respectively.  

The result of the imputation work is an employment dataset of 2,811 TAZs with 

2,044,057 jobs by 16 industrial sectors. This is the employment dataset used for this 

research. 

 

F. Summary of Chapter III 

 

This study is data intensive and relies on input data from a wide range of sources. 

The disaggregated nature of the input data for this study allows for investigations of 

accessibility at great detail and at various scales of geography. It also makes it possible to 

study individual household’s residential location choice that takes into account fine-

grained variations of socio-economic, land use, and transportation characteristics in their 

neighborhoods.  

The input data discussed in this chapter are developed to characterize the 

“choosers” and the “choice sets” for estimating household location choice models. For 

characterizing the “choosers,” 6,057 households from the most recent household travel 

survey are selected and processed. For characterizing the “choice set,” data were 

developed for over 1.8 million land parcels in the study area. Assessing data and 

synthesized households were all located to the land parcels. Employment data are also 

used to measure accessibility at TAZ level.  

The next chapter will discuss the methodologies used in this study. This will 

include methods of measuring accessibility at local, mid-range, to regional scales; 
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methods of weighting accessibility with the degree of clustering of activities; as well as 

developing residential location choice models.  
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CHAPTER IV 

METHODOLOGY 

 

 

This chapter describes methods used in analyzing the effects of various aspects of 

accessibility on residential location choice in Detroit region. This study develops a 

number of accessibility measures and uses these measures as independent variables in 

multinomial logit models of residential location choice. The study uses these models to 

assess the importance of accessibility by estimating and interpreting the relative influence 

of accessibility measures on residential location choice.  

This chapter first addresses a number of modeling issues in order to apply the 

discrete choice theory to this study. These issues include creating a statistically 

representative sample from household travel survey, and sampling of housing units from 

a large number of housing units in the entire region to construct a practical choice set.   

This chapter then describes in detail the methods for analyzing various aspects of 

accessibility and developing specific measures, including three components of measuring 

local accessibility and the composite local accessibility index developed from these 

components, regional accessibility by vehicle availability, mid-range accessibility at a 

number of scales, spatial clustering of destinations measured by either single nearest 

neighbor method, i.e., Average Nearest Neighbor (ANN) spatial statistics, or by multi-
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distance spatial cluster analysis, i.e., Ripley’s K-function, as well as individual commute 

time to work for up to two workers in each household.  

This chapter also discusses the techniques and advantages of using multinomial 

logit models for analyzing residential location choice, selections of independent variables 

including accessibility measures, and the expected results of estimating such models in 

terms of the signs of the independent variables. 

 

A. Multinomial Logit Model for Estimating Residential Location Choice 

 

This study uses discrete choice modeling techniques to estimate residential 

location choice, particularly the effects of accessibility on the choice. Discrete choice 

models are widely used in many areas, including travel demand modeling in the urban 

and regional planning field. It was Daniel McFadden’s Nobel-prize winning work on 

Random Utility Theory and his derivation of the generalized extreme value class of 

models, which include multinomial and nested logit models, that gave these models a 

firm foundation within econometrics (McFadden 1973, 1981, 1984). Discrete choice 

models have since become standard methods in developing models that attempt to predict 

individual choices among a finite set of alternatives. Discrete choice models are generic 

in the sense that they do not impose overly-restrictive assumptions on the choice process, 

and have been shown capable of addressing large and complex choice sets effectively 

(Ben-Akiva and Lerman 1985). The purpose of model estimation is to reveal the 

coefficients that describe the strength of each chosen variable in affecting the choice.  
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The “results” are the coefficients, interpreted to give a sense of what factors are most 

important in determining the choice.  

The discrete choice approach models an individual’s selection of a single choice 

from a number of alternative choices. In this approach, a model can use explicitly both 

attributes of the individual who makes a choice decision and the characteristics of the 

alternative choices from which the individual selects. The word “discrete” indicates 

another property of the discrete choice approach, that is an individual selects from a 

limited number of available choices. The idea is that the individual chooses his or her 

optimal alternative from all available choices, given a budget constraint. However that 

individual chooser needs not necessarily to optimize all the attributes of all the factors. 

Both properties of the discrete choice approach make it suitable for this study of 

analyzing residential location choice. First, both the attributes of house hunters and the 

characteristics of locations affect decision making when searching for a place to live. 

Second, a locating household selects a particular location not by being able to optimize 

all factors but in fact by selecting a bundled package deal that may offer the best 

combination of affordable price, local services, neighborhood amenity, as well as 

accessibility at various scales, among other factors.  

For the discrete choice models specified and estimated in this study, the choosers 

are households obtained from the 2004-05 Detroit region household travel survey. The 

choice set for each chooser consists of the chosen property, which is the house where the 

household actually lives, and a number of randomly selected other properties in the 

region, a.k.a. the rejected properties.  The total number of housing units in the choice set 

for each household is 30 in this study. The purpose of the modeling work is to analyze 
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how accessibility affects households’ decision on where to live, controlling for other 

factors. The dependent variable is the choice of a location, whereas the independent 

variables are household attributes and location characteristics including accessibility 

measures. Household attributes include age, race, income, number of persons, number of 

children, number of workers, and number of motor vehicles available in the household. 

Location characteristics include assessed land value, assessed improvement value (value 

of buildings), residential density, mix of housing units and commercial space measured 

by square feet, crime rates, school quality, accessibility, and others that will be discussed 

later in this chapter. 

The assumption underpinning the discrete choice approach to residential location 

choice modeling is that observed residential location patterns are the results of choices 

made by individuals. A rational consumer selects the alternative from all possible 

alternatives that maximizes his or her utility. Each alternative has a utility function for 

that consumer. The attributes of the alternatives may be positive or negative as expressed 

by the signs of the independent variables in the utility function equations. The attributes 

are bundled. The consumer chooses the alternative that maximizes utility from all 

available alternatives.  

Expressed in mathematical terms, a consumer chooses alternative i if: 

U (Xin) > U (Xjn) for all alternatives j in choice set C 

where 

 U = utility 

 Xi = the chosen alternative 

 Xj = other alternatives 
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 n = the chooser making choice decisions 

 C = the choice set of all alternatives for the chooser to choose from 

 

 The utility function has attributes of the chooser and characteristics of the 

alternatives. The chooser’s attributes can only enter the utility equation when they 

interact with the characteristics of the alternatives. The utility function has a deterministic 

component which is the function of observed attributes, and an error term which 

represents the unobserved factors. An analyst’s knowledge of the chooser’s and 

alternatives’ utility function is only partial. And a chooser may never have all the 

information to make choices. Therefore, one may observe that seemingly similar 

choosers facing apparently same choice sets may be making different choice decisions. 

As a result, models cannot make deterministic predictions about individual choices. 

Instead, models predict probabilities of individual choices. Nevertheless, the probability 

of a choice being selected increases when the deterministic component of the utility 

function to an individual chooser increases, or when the deterministic components of the 

utility of other alternatives to that individual decrease. Mathematically, the probability 

that the utility of the chosen alternative i exceeds the utilities of all other alternatives j for 

an individual equals the following: 

 

        
        

               

  

Where 

 Pn(i) = probability that chooser n selects alternative i 

V = the deterministic component of utility function 
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Cn = the choice set 

 

 This form of discrete choice model is called the multinomial logit model 

(Domencich and McFadden 1975; Ben-Akiva and Lerman 1979). The most commonly 

used method for estimating multinomial logit model is the maximum likelihood 

estimation (Greene 2003). Maximum likelihood estimation first constructs a likelihood 

function equivalent to the probability of the observed sample. It then uses a gradient 

search method to determine the value of the estimated coefficients so that the logarithm 

of the value of the function is maximized.  

The model estimation results can be reviewed and evaluated in a number of ways. 

First, the direction (positive or negative signs) and significance of the estimated 

parameters can tell if independent variables, such as accessibility measures at multiple 

geographic levels in this study, are important in household location decision making 

process. Secondly, relative influence of variables can be estimated and compared. Finally, 

the explanatory power of multiple models can be compared by assessing the goodness of 

fit measurements. 

When applying discrete choice approach to this study, two technical issues need 

to be dealt with first as described below, before actually constructing the models. 

 

1. Reducing the Choice Set to a Practical Size 

This study estimates multinomial logit models for household location choice 

using residential properties as the choice set. Ideally, the form of the model is appropriate 

for estimating choice among the full set of alternatives available to households if it is 
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practical in terms of data collection and statistical analysis at a very detailed and 

disaggregated level. The study area for this research has over 1.9 million housing units. 

All the housing units are identified at parcel level in a database as described in Chapter 

III. However, it is infeasible to estimate multinomial logit models using such a large 

choice set. Considering the enumeration of all the alternatives is impractical when the 

universal choice set is too large for multinomial logit model estimation, McFadden (1978) 

studied and proved that reduced choice sets from the full universe could yield consistent 

parameter estimations. He considered three ways of reducing the full choice set (C) to a 

manageable subset (D) of alternatives as follows: 

a) choose a fixed subset D of C, independent of the observed choice,  

b) choose a random subset D of C, independent of the observed choice, and  

c) choose a subset D of C, consisting of the observed choice and one or more 

other alternatives, selected randomly. 

McFadden proved that in all three types of subsets, consistent estimates of the 

parameters of the utility function can be obtained from a fixed or random sample of 

alternatives from the full choice set, as long as the multinomial logit functional form is 

valid. Therefore, analysis of housing location can be carried out with a limited number of 

alternatives, facilitating data collection and processing, provided the choice process is 

described by a valid multinomial logit model. 

In this study, the third type of subset is used to reduce the choice set for practical 

reasons. A random subset of all housing units is selected which includes the chosen 

housing unit and a number of alternatives which are considered as the rejected housing 

units. I tested various sizes of the randomly selected subset, including 30, 50, and 200. 
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The results show consistent estimates of the parameters. The final models presented in 

this dissertation use 30 choices. 

 

2. Adjustments to Household Travel Survey Sample 

When SEMCOG conducted household travel survey in 2004 and 2005, it over-

sampled households in smaller and often more rural counties than in larger and more 

urban counties. Table 12 compares each county’s share of households from 2010 U.S. 

Census to those from household travel survey. All four smaller counties, which are 

Livingston, Monroe, St. Clair, and Washtenaw Counties, were significantly over-sampled, 

whereas the three larger counties, i.e. Macomb, Oakland, and Wayne Counties, were 

under-sampled. It was necessary to create a statistically representative sample before 

estimating models for this study. 

 

Table 12.  Deviation of Sample Size from Census Household Distribution 

 

    Census Households    Household Survey Difference Reduced 

  Number Share Number Share in Share Sample  

Region 1,845,218 100.0% 5,720 100.0% 0.0% 4,224 

   Livingston County 55,384 3.0% 387 6.8% 3.8% 127 

   Macomb County 309,203 16.8% 896 15.7% -1.1% 708 

   Monroe County 53,772 2.9% 310 5.4% 2.5% 123 

   Oakland County 471,115 25.5% 1,133 19.8% -5.7% 1,079 

   St. Clair County 62,072 3.4% 476 8.3% 5.0% 142 

   Washtenaw County 125,232 6.8% 588 10.3% 3.5% 287 

   Wayne County 768,440 41.6% 1,930 33.7% -7.9% 1,759 

      City of Detroit 336,428 18.2% 941 16.5% -1.8% 770 

      Balance of Wayne county 432,012 23.4% 989 17.3% -6.1% 989 
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 One way to correct over-sampling in small counties is to reduce number of 

sample households in these counties so that the distribution of households in each county 

will be the same as census data. The reduced sample size for each county is shown in the 

last column of Table 12. 

Another way to correct the sampling problem is to assign weights to samples in 

various counties, so that the weighted samples are proportional to the true probability of 

selection. Mathematically, each observation is assigned a weight that equals to the ratio 

of its county’s true share of census household numbers to the county’s share of 

households in household travel survey. Model estimation will then be based on the 

weighted samples, which are equivalent to the samples shown in the last column in Table 

13. Manski and Lerman (1977) developed a model estimator, called the WESML 

(Weighted Exogenous Sample Maximum Likelihood) estimator. It can use the weighted 

samples for estimating multinomial logit models.  

 

Table 13.  Derivation of Sample Weights by County 

 

  Census Households     Household Survey Weighting Adjusted 

  Number Share Number Share Factor Sample  

Region 1,845,218 100.0% 5,720 100.0% 1.00 5,720 

   Livingston County 55,384 3.0% 387 6.8% 0.44 172 

   Macomb County 309,203 16.8% 896 15.7% 1.07 958 

   Monroe County 53,772 2.9% 310 5.4% 0.54 167 

   Oakland County 471,115 25.5% 1,133 19.8% 1.29 1,460 

   St. Clair County 62,072 3.4% 476 8.3% 0.40 192 

   Washtenaw County 125,232 6.8% 588 10.3% 0.66 388 

   Wayne County 768,440 41.6% 1,930 33.7% 1.23 2,382 

      City of Detroit 336,428 18.2% 941 16.5% 1.11 1,043 

      Balance of Wayne county 432,012 23.4% 989 17.3% 1.35 1,339 
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This present study uses the sample reduction method to create a statistically 

representative sample for model estimation, because the sample weighting method had 

not been implemented in the version of the model estimation software, UrbanSim, that 

was used for this study. 

 

B. Model Specifications – Independent Variables 

 

This section provides a list of the independent variables considered in the 

residential location choice models, with brief explanations. The methods of developing 

the key accessibility variables are further explained in the following sections. 

  

1. Affordability/Economic Variables 

“income_-_cost”:  This variable is the income of a household interacting with the 

price of housing, defined as the natural log of household income minus annualized 

housing cost. It measures the affordability of housing relative to income, which arguably 

represents one of the most important factors that influence a household’s choice of 

housing, because housing price should be a powerful indicator of a household’s location 

choice given the income of the household.  

“housing_size_x_high_inc”:  This variable and the following two variables 

measure the preference and ability to pay for various sizes of housing. This variable is 

defined as households with an annual income equal to or greater than $75,000 interacting 

with square footage of housing units. 
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“housing_size_x_mid_inc”:  Households with annual income equal to or greater 

than $25,000 and less than $75,000 interacting with square footage of housing units.   

“housing_size_x_low_inc”:  Households with annual income less than $25,000 

interacting with square footage of housing units. 

 

2. Social Composition Variables 

 “race1_x_zonal_pct_race1”:  This variable and the following three variables 

represent similarities of households in a neighborhood in regard to race. This variable is 

defined as a household whose head is Non-Hispanic White interacting with percent of 

households whose head is Non-Hispanic White in the Traffic Analysis Zone (TAZ). 

“race2_x_zonal_pct_race2”:  A household whose head is Non-Hispanic Black 

interacting with percent of households whose head is Non-Hispanic Black in the TAZ. 

“race3_x_zonal_pct_race3”:  A household whose head is Hispanic interacting 

with percent of households whose head is Hispanic in the TAZ. 

“race4_x_zonal_pct_race4”:  A household whose head is any race other than the 

above three interacting with percent of households whose head is any race other than the 

above three in the TAZ. The majority of these households are Asian in Detroit region, but 

also included in this group are Native Americans, Alaskan Natives, and multi racial 

households. 

“high_inc_x_zonal_pct_high_inc”:  This variable and the next variable represent 

similarities of households in a neighborhood in regard to income. This variable is defined 

as a household with annual income equal to or greater than $75,000 interacting with 

percent of households of the same range of income in the TAZ. 
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 “low_inc_x_zonal_pct_low_inc”:  Households with annual income less than 

$25,000 interacting with percent of households of the same range of income in the TAZ. 

 

3. Amenity and Service Variables: 

“school_quality”:  Average scores from Michigan Educational Assessment 

Program (MEAP) standardized testing for grade 3 to 8, by Intermediate School District 

(ISD), 2010.  

“school_quality_x_children”:  Households that have children interacting with 

average MEAP scores.  

“school_quality_x_high_inc”:  Households with annual income equal to or 

greater than $75,000 interacting with average MEAP scores.  

“crime_rate_violent”:  Number of violent crimes per 100,000 residents, by 

municipality, 2010. 

“crime_rate_property”:  Number of property crimes per 100,000 residents, by 

municipality, 2010. 

“crime_rate_both”:  Number of violent crimes and property crimes per 100,000 

residents, by municipality, 2010. 

“crime_rate_both_x_high_inc”:  Households with annual income equal to or 

greater than $75,000 interacting with number of violent crimes and property crimes per 

100,000 residents, by municipality, 2010. 

“property_tax”:  Property_tax rate by municipality, 2010. 

“is_detroit”:  A dummy variable, equaling 1 for City of Detroit and 0 for all other 

areas. 
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4. Accessibility Variables 

 Accessibility variables are listed below. The following Section C of this chapter 

explains the methods for measuring these accessibility variables in greater detail. 

“local_access_density”:  Population density within walking distance, which is a 

circle of a quarter of mile radius. 

“local_access_diversity”:  Square feet of commercial buildings within walking 

distance. 

“local_access_design”:  Number of 4-way or more intersections within walking 

distance. 

“local_acess_composite”:  An index created by using factor analysis that 

combines the above three local accessibility measures. 

“local_acess_young_hh”:  The composite local accessibility measure interacting 

with households whose head is 30 years old or younger. 

 “mid_range_access”:  Mid-range accessibility measured by number of jobs in 

retail, education, leisure, and other services within 10 minutes of travel time. 

“emp_access_x_workers>cars”:  Logsum-based regional accessibility to 

employment interacting with households that have more workers than vehicles available. 

“emp_access_x_workers<=cars”:  Logsum-based regional accessibility to 

employment interacting with households that have the same or more vehicles than 

workers. 

“worker1_commute_time”:  The first worker’s travel time from home to his/her 

employment zone. 



 

 113 

“worker2_commute_time”:   The second worker’s travel time from home to 

his/her employment zone. 

 “cluster_k”:  Spatial cluster index defined by using multi-distance spatial cluster 

analysis (a.k.a., Ripley’s K-function).  

“cluster_k_x_emp”:  Ripley’s K-function based cluster index interacting with 

employment.  

 

While the above discussions grouped potential independent variables by subject, 

one may also categorize these variables by geographic scales. When a household 

considers its residential location, it may consider characteristics of the house specifically, 

attributes of the neighborhood, and its relationship to the rest of the region. In such a 

classification scheme, the first set of location attributes is about the housing itself. These 

attributes include the cost of housing that can be measured by the assessed value of the 

property in this study.  The cost of housing and its relationship to household income is a 

vital variable theoretically for residential location choice. Housing type also affects 

location choice. Large families with more children may be more likely to choose single 

family homes, whereas young households without children or senior empty-nesters may 

prefer multifamily housing. Other housing specific variables include the size of a house 

and when a house was built.  

The second set of variables is about the immediate neighborhood. This is where 

local accessibility being measured and incorporated in this study. These variables 

correspond to the activities that can be reached by walking or other non-motorized mode, 

over a distance of approximately a quarter of a mile. Being able to walk to daily-life 
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destinations may be attractive to at least some households. The local accessibility 

measures are developed by spatial queries of a house’s neighboring parcels. Achieving 

this scale of analysis provided the possibility to model location choice and travel 

behavior at a level that can effectively represent pedestrian and bicycle scales of travel. 

As a result, it may provide a basis for making more systematic assessments of the effects 

of urban design-scale policies on both location choice and travel behavior. Traditional 

zone-based travel models are severely limited by poor performance on intra-zonal travel 

and insufficient representation of non-motorized travel modes. By creating a more 

detailed basis for the land use model, a major barrier to the improvement of 

transportation planning to address non-motorized modes and the integration of urban 

design policies might be effectively removed. 

The third set of variables deal with characteristics of the larger neighborhood, 

including a wide range of attributes such as who else lives in the neighborhood, what are 

the shopping options, school quality, and crime rates. These variables reflect sub-regional 

market areas. Mid-range accessibility proposed by this study belongs to this group. For 

example, number of retail and commercial square feet that are mostly reached by 

nonwork trips is a mid-range accessibility variable. Definition of the “mid-range” is 

tested empirically with various distance and travel time thresholds in the present study. 

The task of the modeling work is to determine if the mid-range accessibility has 

independent effects on location choice controlling for local and regional accessibility. 

The last set of variables deal with the regional context. Travel time from 

residential areas to downtown, employment centers, airports, and other regional 

destinations may be relevant to a household’s location choice. This study uses logsum-
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based regional accessibility to represent the regional context for residential locations, and 

focuses on if clustering of destinations has significant effects on household location 

choice. Spatial clustering based weights are included in the models to test if more 

clustered destinations have greater impact on accessibility and residential location choice. 

The next section discusses accessibility measures at various scales. 

 

C. Measuring Multiple Aspects of Accessibility 

 

This study categorizes accessibility into metropolitan region, sub-regional market 

areas or mid-range, and local neighborhood levels as shown in Figure 19. Regional 

accessibility deals with how to access employment opportunities in the entire region. 

Mid-range accessibility focuses on the ease to access nonwork destinations such as 

shopping and daily-life service activities. Local accessibility measures opportunities for 

accessing destinations by non-motorized model. 

 

Figure 19.  Three Scales of Accessibility 
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1. Regional Accessibility 

This study measures regional accessibility using a utility based method that takes 

into account distributions of employment opportunities in the region and the impedance 

affecting access to them. The impedance is represented by logsum from SEMCOG’s 

travel demand forecast model. Mathematically, the logsum is the denominator of the 

mode choice model in the travel demand forecast modeling system.  

SEMCOG has two types of households in is mode choice model: 1) households 

that have fewer motor vehicles available than number of workers in these households, 

and 2) households that have the same number or more vehicles available than number of 

workers. A separate set of logsum numbers is available for each type of households. Both 

household-type-specific logsums and combined logsum numbers can be used to measure 

regional accessibility. When using combined logsums, all households use the same set of 

logsums for calculating regional accessibility. When using household-type-specific 

logsums, households of each type uses their respective set of logsum numbers.   

Regional accessibility to employment by TAZ calculation in this study was 

measured by using zone-to-zone logsums and number of jobs by TAZ. The concentration 

of high-regional-accessibility zones is obvious (Figure 20). City of Detroit and 

surrounding areas have much higher employment accessibility than other areas. This 

picture shows little effects of the decentralization of jobs. That is one reason why 

regional accessibility itself may not explain residential location choice very well. 
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Figure 20.  Regional Accessibility to Jobs in Detroit Region 

 

 

2. Mid-range Accessibility 

This study views mid-range accessibility as the accessibility of sub-regional 

market areas within a metropolitan region. It focuses on measuring accessibility to 

nonwork daily life destinations. Specifically, the attraction of these destinations is 

measured by the employment numbers in four industries published by SEMCOG. They 

are retail trade, education, leisure, and other services. These industries are selected 

because they represent nonwork trip destinations of typical daily life. The selection of 

industries is also constrained by data availability. For example, the “other services” 

industry is one of the 16 industries published in SEMCOG’s employment data by TAZ. It 

comprises establishments engaged in providing services not specifically defined 

elsewhere in the North American Industry Classification System (NAICS). 

Establishments in this sector are primarily engaged in such activities as providing 
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drycleaning and laundry services, personal care services, death care services, pet care 

services, photofinishing services, temporary parking services, and dating services; 

promoting or administering religious activities, grantmaking, and advocacy. But it also 

includes establishments that provide commercial and industrial machinery and equipment 

repair and maintenance, which are not likely daily life destinations. 

Mid-range accessibility supplements and balances regional “attractions” measured 

by regional accessibility and the “convenience” measured by local accessibility. Existing 

analyses of accessibility have shown high degrees of correlation of accessibility among 

various trip purposes (Srour et al. 2002). Places that are highly accessible for work trips 

are also highly accessible for shopping and social, recreational trips and vice versa. Yet, 

analyses on travel behavior have shown significantly greater willingness for people to 

travel longer distance for work than for nonwork purposes. This study measures work 

accessibility at the regional scale and nonwork accessibility at sub-regional scale. 

There are conceptual and measurement challenges in defining accessibility at the 

sub-regional level. The present study uses a cumulative opportunity measure, which 

counts number of jobs indentified for representing daily life nonwork destinations within 

a certain travel time threshold. Definition of the mid-range travel time threshold was 

explored in a trial-and-error process. Travel behavior analysis (Figure 2 in Chapter I) 

indicates that nonwork trips as a percent of total trips declined to less than 50%  once the 

distance was longer than 15 miles. Various ranges of sub-regional market areas were 

tested empirically beginning from a 5-minite travel time threshold up to 30 minutes by 5-

minutes increment. Travel time is absent from the local accessibility measures in the 

present study, because they assume that speed does not vary significantly within walking 
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distance.  When distance to activities increases, it is necessary to consider travel time in 

the mid-range accessibility measures.  It is arguably better to use travel time than distance 

because metrics that rely on proximity alone neglect the possibility that travel may be 

slowed by denser development.  

Household location choice models were estimated with control variables and each 

of the mid-range accessibility measures at various time thresholds. The estimation results 

show that mid-range accessibility with 10-minute travel time threshold has the most 

significant effect on residential location choice. Therefore, the mid-range accessibility 

variable used in the final models is defined as number of jobs in retail, education, leisure, 

and other services within 10 minutes of travel time. 

 

3. Local Accessibility 

In this study, local accessibility focuses on measuring the effects of non-

motorized modes at the neighborhood level. Specifically, local accessibility was 

measured by a composite index that takes into account of density, diversity, and design 

(3D) characteristics of the neighborhood (Cervero and Kockelman 1997). To measure 

local accessibility for each parcel, a neighborhood of a quarter-mile radius is defined 

around the centroid of each parcel, using the “Neighborhood Statistics” tool in ArcGIS 

software. Each parcel has four values calculated based on the characteristics of the 

neighborhood in regard to local accessibility. First, population density of the 

neighborhood is calculated to gauge the intensity of the neighborhood. Second, square 

footage of commercial buildings in the neighborhood is calculated to indicate the degree 

of land use mix. Third, number of four-way or more intersections was calculated in the 
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neighborhood to represent traditional neighborhood design characteristics. Finally, a 

composite index based on those three measures was created using factor analysis to 

measure the overall local accessibility of the neighborhood surrounding a parcel. 

The Neighborhood Statistics tool in ArcGIS is a function that rasterizes an input 

GIS coverage and computes an output raster where the value at each location is a 

function of the input cells in a specified neighborhood of the location. For each cell in the 

input raster, the Neighborhood Statistics function computes a statistic based on the value 

of the processing cell (i.e. the cell at the center) and the value of the cells within a 

specified neighborhood, then it sends this value to the corresponding cell location on the 

output raster (ESRI 2011). This study uses Neighborhood Statistics function to create a 

raster data set from the original vector parcel file.  This raster data set is made up of 25 

meter by 25 meter gridcells, and the neighborhood is set to be a circle of a quarter-mile 

radius around each cell. “The neighborhood” can be imagined as a “moving window” of 

a quarter-mile radius circle that moves across the entire region one cell at a time. At each 

move, the tool calculates a value based on the characteristics of all the cells that fall 

inside the window and assigns that value to the cell at the center of the circle. 

a) Population Density 

Population numbers were assigned to parcels in the process of synthesizing 

household and population. ArcGIS Neighborhood Statistics tool transfers population 

numbers from parcels to gridcells, and then calculates the sum of population of all cells in 

the neighborhood (i.e. within a quarter-mile radius circle) and assigns the sum to the cell 

at the center of the neighborhood. This sum of population represents the total population 

in the neighborhood that can be accessed by non-motorized mode. The higher value 
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indicates better local accessibility (Figure 21). In this map, the higher points and the 

darker colors represent higher population density, which indicates greater local 

accessibility. 

 

Figure 21.  Local Accessibility: Population within Walking Distance (1/4 Mile 

Radius), Southeast Michigan, 2008 

 

 

b) Diversity - Land Use Mix 

Mixing of population with non-residential land use is critical to increase 

accessibility because non-residential uses provide meaningful destinations for the 

residents. This study uses square footage of commercial buildings to gauge land use mix. 

“Commercial buildings” in this study include retail, entertainment, and commercial 

services that could be attractions for non-motorized modes of travel such as walking and 

biking.  These square footage data were developed from building types and actual 

building size information from parcel files. Similar to population density calculation, 
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ArcGIS Neighborhood Statistics tool transfers square footage from parcels to gridcells, 

and then calculates the sum of square footage of all cells in the neighborhood and assigns 

the sum to the cell at the center of the neighborhood. This sum of square footage 

represents the commercial attractions in the neighborhood. Higher values mean better 

local accessibility, as shown in Figure 22, where higher points represent greater square 

feet of retail, entertainment and leisure, and commercial uses, indicating greater local 

accessibility. 

      

Figure 22.  Local Accessibility: Commercial Square Footage within Walking 

Distance (1/4 Mile Radius), Southeast Michigan, 2008 

 

 

c) Design 

In regard to design features that affect local accessibility, this study uses number 

of four-way (or more) intersections to represent the traditional neighborhood 
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characteristics. Contrary to modern subdivisions with cul-de-sacs, traditional grid road 

networks have been found to provide higher local accessibility, and counting number of 

four-way intersections is an effective method of distinguishing traditional neighborhoods 

from suburban subdivisions (McNally and Kulkarni 1997). Again, ArcGIS Neighborhood 

Statistics function creates a raster data set from the original four-way or more intersection 

points based on detailed road network.  It then calculates the sum of such intersections in 

the neighborhood and assigns the sum to the cell at the center of the neighborhood. The 

higher sum of such intersections indicates enhanced connectivity of destinations, 

particularly for non-motorized mode such as walking in the neighborhood (Figure 23). 

High accessibility areas based on number of four-way intersections are shown by the 

higher points and darker color. 

 

Figure 23.  Local Accessibility: Number of 4-way (or greater) Intersections within 

Walking Distance (1/4 Mile Radius), Southeast Michigan, 2008 
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d) Composite Index of Local Accessibility  

Density, diversity, and design may re-enforce each other or undermine each 

other’s effects on accessibility in neighborhoods. A composite index based on all three 

local accessibility measures is developed for this study by using GIS overlay and 

statistical factor analysis technique.   

First, a regional parcel-centroid point coverage was created from the parcel file. 

This parcel centroid coverage was then overlaid with the three raster output files from the 

above analysis of each local accessibility measure. ArcGIS Spatial Joins tool assigns the 

values from raster files to the parcel centroids. These values are population, commercial 

square footage, and number of four-way intersections. The next step was to combine 

those three values into a composite index for each parcel centroid, using factor analysis. 

The main idea of factor analysis is to form a new variable, from a set of existing 

variables, that contain as much variability of the original data as possible. This is a 

method of data reduction. The reason to reduce the number of variables is to handle data 

more easily in the model, so that it is possible to use one variable to represent various 

aspects of local accessibility. This study used factor analysis function in SPSS to create 

the local accessibility index from the three individual local accessibility measures. 

Local accessibility is based on 1.8 million parcels in the region. Local 

accessibility maps (Figure 21, 22, and 23) show different patterns than regional 

accessibility (Figure 20). The peak values of local accessibility are more prominent and 

more scattered throughout the region, whereas regional accessibility, based on 2,811 

Traffic Analysis Zones (TAZs), shows more gradual changes from the region’s center to 

the edges.  
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4. Commute Time – Individual Worker’s Journey to Work 

This study considers not only place-based accessibilities as described in the about 

sections, but also individual workers’ journey to his or her own job, i.e., commute time. 

Workers’ home and work locations were obtained from the SEMCOG household travel 

survey. While workers’ home locations were geocoded to parcels, work locations were 

geocoded to Traffic Analysis Zones (TAZs). Travel time during morning peak hours 

from a worker’s home location to his or her work TAZ was used to measure the worker’s 

personal accessibility to employment. 

A worker’s specific employment location may be a key factor that affects his or 

her residential location choice. When there are multiple workers in a household, multiple 

employment locations of these workers may all affect the household’s residential location 

decision. This study considers up-to-two workers’ journey to work in residential location 

choice models. 

 

D. Spatial Clustering Analysis 

 

Spatial cluster analyses help to measure the degree of clustering of destinations in 

the region. Two types of spatial clustering measures are tested in this study. First, a 

straightforward “Average Nearest Neighbor” (ANN) spatial statistics was used. This is a 

simple and easy to interpret measure, but it looks only at the nearest neighbor’s distance. 

Other point-to-point distances are ignored. Second, a multi-distance spatial cluster 

analysis, i.e. “Ripley’s K-function” spatial statistics was then explored. This measure 
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addresses limitations of looking only at the nearest neighbors used by the average nearest 

neighbor method. It looks at the distribution of distances between all pairs of points. 

Therefore it is a more robust measure of spatial clustering. Both ANN scores and K-

function scores are calculated at both municipality and TAZ levels. Once the spatial 

clustering is measured, the number of jobs, cluster scores, and the interaction between the 

two were tested in residential location choice models.  

Number of jobs, their clustering, and the interaction of the two may all affect 

location choice (Figure 24). Using a conventional accessibility measure, e.g., gravity-

based accessibility measure, person P’s accessibility to zone A and zone B are the same 

because each zone has the same amount of activities, represented by the centroids of 

eight non-residential parcels (e.g., commercial, industrial, and institutional parcels) and 

the travel time to each zone being the same “t”. But if P travels to more than one 

destination in chained trips of a tour, one may argue that accessibility to B is higher 

because destinations in B are close to each other which may reduce travel time for trips 

between these destinations. The task of cluster analysis is to measure the degree of 

clustering of destinations in these zones.  

Figure 24.  Attraction in zones of various degrees of clustering 
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1. Average Nearest Neighbor (ANN) Spatial Statistics 

One method to measure spatial clustering is to use the Average Nearest Neighbor 

(ANN) spatial statistics as illustrated in Figure 25 (ESRI 2012). 

 

Figure 25.  Average Nearest Neighbor (Spatial Statistics) 

 

 

The Average Nearest Neighbor method measures the distance between each 

feature centroid and the nearest neighbor's centroid. In this study, these are the centroids 

of non-residential parcels in zones. It then averages all these nearest neighbor distances. 

If the average distance is less than the average for a hypothetical random distribution, the 

distribution of the features being analyzed are considered clustered. If the average 

distance is greater than a hypothetical random distribution, the features are considered 

dispersed. The index is expressed as the ratio of the observed distance divided by the 

expected distance, while the expected distance is based on a hypothetical random 

distribution with the same number of features covering the same area. If the index is less 

than 1, the pattern exhibits clustering. If the index is greater than 1, the trend is toward 

dispersion. Statistical significance can be tested by Z scores. Z scores are measures of 

standard deviation. For example, if an analysis returns a Z score of +2.5, it is interpreted 

as “+2.5 standard deviations away from the mean.”  
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An example is shown in Figure 26 and Figure 27. Each dot in Figure 26 

represents a commercial, industrial, or institutional parcel in the City of Birmingham, 

Michigan. The grey lines depict the city boundary. In this example, AAN ratio is 0.32 

that is calculated as observed mean distance of the dots divided by their expected mean 

distance if randomly distributed, indicating a clustered pattern.       score is calculated 

as -20.86 standard deviations.  The critical      score for a statically significant 

clustered pattern at 99% level is -2.58 standard deviations. These results mean that there 

is less than 1% likelihood that the clustered pattern of non-residential parcels in the City 

of Birmingham could be the result of random chance (Figure 27). 

 

Figure 26.  Non-residential Parcels in Birmingham, Michigan 
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Figure 27.  Average Nearest Neighbor Statistics for Birmingham, Michigan 

 

 

 

This study uses the centroids of all the parcels that have commercial, industrial, or 

institutional parcels to represent the destinations in the region. Each point in Figure 28 

depicts such a destination, whereas the black lines depict the municipal boundaries.  The 

Average Nearest Neighbor method analyzes the points in each municipality to calculate 

an index that measures the degree of clustering of the destinations in that municipality. 

ANN scores are also calculated by TAZ. Both sets of ANN scores by municipality and by 

TAZ are tested in the models, because cluster indices are often affected by the unit of 

analysis. 
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Figure 28.  Destinations for Cluster Analysis 

 

 

It is noteworthy that Figure 28 shows clearly the relationship between destinations 

and transportation networks. Most destinations cluster around major roadways in the 

region. Municipalities that have dense road network tend to have more clustered 

destinations. Average Nearest Neighbor scores of these destinations by municipality are 

shown in Figure 29. 
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Figure 29.  ANN Scores by Municipality 

 

 

Compared to regional accessibility to employment (Figure 20), cluster scores 

measured by the ANN ratio (Figure 29) show a more decentralized pattern. If regional 

accessibility is weighted by cluster scores, some areas that have fewer but more clustered 

jobs may have higher accessibility than non-weighted measures would show. This may 

be a desirable effect because the residential location pattern in the region is more 

decentralized than the non-weighted regional accessibility indicates.    
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2. Multi-Distance Spatial Cluster Analysis (Ripley’s K-function) 

Another method to measure spatial clustering is to use a multi-distance spatial 

cluster analysis, i.e. “Ripley’s K-function” spatial statistics (Ripley 1981). A 

distinguishing feature of this measure from the previous ANN measure is that it 

summarizes spatial dependence (feature clustering or feature dispersion) over a range of 

distances. When using this measure, the user must specify the number of distances to 

evaluate and, optionally, a starting distance and/or distance increment. With this 

information, the average number of neighboring features associated with each feature is 

computed. Neighboring features are those closer than the distance being evaluated. As the 

evaluation distance increases, each feature will typically have more neighbors. If the 

average number of neighbors for a particular evaluation distance is greater than the 

average concentration of features throughout the study area, the distribution is considered 

clustered at that distance. Mathematically, Ripley’s K can be defined as the following: 

                                                     

where λ is called the intensity of the spatial process and is equal to the mean 

number of events per unit area, a value that is assumed constant over the region of 

interest. E is the expectation operator, so that the right hand side is the average number of 

events in the neighborhood of a given event. 

When the observed K value is larger than the expected K value for a particular 

distance, the distribution is more clustered than a random distribution at that distance. 

When the observed K value is smaller than the expected K value, the distribution is more 

dispersed than a random distribution at that distance. When the observed K value is larger 
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than the Higher Confidence Envelope (HiConfEnv) value, spatial clustering for that 

distance is statistically significant. When the observed K value is smaller than the Lower 

Confidence Envelope (LwConfEnv) value, spatial dispersion for that distance is 

statistically significant (Figure 30). 

 

Figure 30.  Ripley’s K-function Spatial Statistics 

 

Source: Modified Chart from ArcGIS Manual 

 

The Ripley’s k-function statistic is very sensitive to the size of the study area. 

Identical arrangements of points can exhibit clustering or dispersion depending on the 

size of the study area enclosing them. Therefore, it is imperative that the study area 

boundaries are carefully considered. Similarly, the nearest neighbor function is very 

sensitive to the study area as well. Small changes in the area can result in considerable 

changes in the results. 
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The present study tests two sets of boundaries, municipalities and Traffic Analysis 

Zones (TAZs), to measure the degree of clustering activities. Both ANN scores and 

Ripley’s K-function statistics were calculated within both municipalities and TAZs. For 

Ripley’s K-function statistics, in order to assign a cluster index to each municipality or 

TAZ, number of distance bands was set to one. Both the difference (Figure 31) and the 

ratio between observed K value and expected K value were calculated and tested as 

measures for degree of clustering. I chose the difference measure for the final models 

because it shows more effectiveness than other cluster measures.  

 

Figure 31.  Ripley's K, Difference between Observed and Expected, by TAZ 
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E. Expected Model Results 

 

As discussed in the Section A of this chapter, this study estimates multinomial 

logit models for analyzing residential location choice based on household attributes and 

place characteristics including accessibility. The dependent variable is the probability of 

residential locations being chosen. For each household in the sample dataset, these 

locations include the observed chosen location and 29 other randomly sampled locations. 

The independent variables were selected to describe the factors which influence each 

household’s choice of a location.  

 

1. The Direction of Independent Variables 

The direction of the relationship between independent variables and modeled 

outcomes is given by the sign of the coefficients estimated for the variables.  A positive 

coefficient means that the probability of choosing a location increases as the value of the 

variable increases, vice versa. T-statistics and adjusted utility (discussed in greater detail 

later in this section) also carry the same sign.  Although the value of the coefficients may 

be difficult to interpret because variables do not share the same scale or distribution, one 

may expect local accessibility, mid-range accessibility, and regional accessibility with or 

without clustering effects should have positive signs, meaning that households are more 

likely to choose locations with better accessibility. 

Some of the control variables are expected to have straightforward effects on the 

model. The first group of control variables is affordability and economic variables. In this 
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group of variables, first and foremost, “income_-_cost” should be positive because after 

paying for housing, households should prefer having more financial resources remaining 

for other consumption needs. For the variables of housing unit size interacting with 

household income, one would expect that higher income households would be more able 

to compensate for higher housing prices and afford larger houses. Therefore the 

coefficients for higher income households should be positive. But it is somewhat 

uncertain if the coefficients for lower income households can hold positive for this 

interaction variable (Table 14). 

The second group of variables is about social economic characteristics of the 

households and the neighborhood characteristics. Households tend to live close to similar 

households. Therefore, interaction variables between household race and percent of same 

race households in the neighborhood, i.e. Traffic Analysis Zone (TAZ), are expected to 

be positive. For the same reason, households of various income levels tend to locate with 

households of similar income levels in general. Interaction variables between households 

of a certain income level and the percent of same level income households in the 

neighborhoods are expected to be positive too.  

The third group of control variables is about amenities and local services. School 

quality is expected to have a positive coefficient, especially for high income households. 

This should be particularly true for households with children. But even for households 

without children, choosing a neighborhood with good schools can be attractive too for 

maintaining and increasing housing value and other social qualities.  
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Table 14.  Expected signs of variables 

Variables Signs 

1. Affordability/Economic Variables 

     income_-_cost + 

     housing_size_x_high_inc + 

     housing_size_x_mid_inc ? 

     housing_size_x_low_inc ? 

2. Social Composition Variables 

     race1_x_zonal_pct_race1 + 

     race2_x_zonal_pct_race2 + 

     race3_x_zonal_pct_race3 + 

     race4_x_zonal_pct_race4 + 

     high_inc_x_zonal_pct_high_inc + 

     low_inc_x_zonal_pct_low_inc + 

3. Amenity and Service Variables: 

     school_quality_x_high_inc + 

     crime_rate_violent - 

     crime_rate_property - 

     crime_rate_both - 

     crime_rate_both_x_high_inc - 

     property_tax ? 

     is_detroit ? 

4. Accessibility Variables 

     local_acess_x_young_hh + 

     emp_access_x_workers>cars + 

     emp_access_x_workers<=cars + 

     mid_range_access + 

     cluster_k + 

     cluster_k_x_emp ? 

     worker1_commute_time - 

     worker2_commete_time - 

 

Crime is expected to be negative for both violent crimes and property crimes. This 

should be particularly true for high income households, because they are able to avoid 

high crime areas with the financial means that they have.   
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Impacts of property tax on location choice may not be straightforward. While 

avoiding high tax seems preferable for economic considerations, higher property tax may 

mean better local services. The expected sign of this variable is thus ambiguous. 

The final group of variables is the accessibility variables, which is the focal point 

of this study. Local accessibility may have different effects on different population 

groups. Because local accessibility in this study measures accessibility by non-motorized 

transportation mode such as walking, it may be more attractive to younger households 

and households without children, who tend to live in walkable urban areas as opposed to 

households with children who tend to live in lower density suburban areas where houses 

are larger. Therefore, local accessibility interacting with young households is expected to 

be positive. 

Mid-range accessibility measures daily life attractions within 10 minutes of 

driving time. It is also expected to be positive because households should prefer more and 

convenient opportunities for shopping, entertainment, schooling, and other services. 

The regional accessibility variables measure employment opportunities. Even 

though these are not household workers’ personal accessibility, households may prefer 

high employment accessibility in general for such reasons as the ease of finding a job, 

changing employers, or minimizing total commute for all workers in multi-worker 

households. Therefore regional accessibility to employment is expected to be positive. 

Individual workers’ personal commute time may be one of the most important 

factors for household location choice. One should expect the utility of such variables 

measuring travel time to work to be negative, because longer commute to jobs makes a 

residential location less desirable, all else being equal. A significant negative coefficient 
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for workers’ commute time will support the notion that workplace accessibility is 

important in residence location choice.  

The indicator of clustering is defined as the difference between the observed 

Ripley’s K value to the expected Ripley’s K value by TAZ. It should be positive, because 

clustering of activities is expected to increase accessibility. The effect of the interaction 

between clustering and the amount of jobs is unclear. It is reasonable to think that high 

clustering and a high number of jobs should increase accessibility, therefore a positive 

sign is expected. On the other hand, areas that show high degree of clustering may consist 

of a large number of clustered small establishments, whereas areas with large 

employment numbers may be dominated by a few establishments. In this case, the sign 

should be negative. 

 

2. The Significance of Variables 

The statistical significance of any given variable increases when the absolute 

value of the t-statistic increases.  This helps identify which variables are genuinely related 

to the outcome being modeled. In this study, the t-statistic identifies the real effects of 

accessibility measures on the probability of household location choice. Larger absolute t-

values indicate stronger evidence of a variable’s significance, but any value above the 

threshold indicates the variable is admissible. Accessibility variables are expected to be 

statistically significant. UrbanSim, which is the software used for model estimation in 

this study, provides the suggested t-value.  This t-value is based on Bayes Factors. It 

provides the “weak level evidence” (Raftery 1995) that a variable should be included in a 

model. An advantage of this form of t-value is that it is directly related to the sample size. 
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As sample size increases, a higher t-value is needed to show statistical significance of a 

variable.    

 

3. The Relative Influence of Variables 

While it is impossible to directly compare the coefficient of one variable with that 

of another in the proposed residential location choice model, a series of utility 

calculations can be performed to help reveal the relative influence of each variable on 

residential choice. In UrbanSim, a pair of utilities can be calculated using the estimated 

coefficients for each variable. One utility is determined using the 5th percentile value of 

that variable and the other using the 95th percentile while all other variables are held 

constant at the median values. The difference in the two utilities between the 5th and 95th 

percentile values indicates the influence of that variable. Variables with larger utility 

value difference contribute more to the result than those with smaller values. 

This study expects that the influence of regional accessibility weighted by 

clustering will be greater than conventional regional accessibility in location choice 

model. It also expects that adding a mid-range accessibility will increase the combined 

influence of accessibility (local, regional, and mid-range) on location choice than models 

without a mid-range accessibility. Furthermore, workers’ commute time may have the 

greatest impact on residential location choice.  

 

4. The Explanatory Power of the Model 

The combined explanatory power of a model as a whole can be assessed using the 

log-likelihood ratio statistics for multinomial logit models. This study expects the 
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model’s explanatory power on residential location choice will increase after adding 

accessibility measures, including mid-range accessibility, incorporating clustering effects 

into regional accessibility, and individual workers’ travel time to work.  

 

F. Summary of Chapter IV 

 

This chapter discussed the methodology of measuring the effects of accessibility 

on residential location choice. In order to adapt discrete choice theory to analyzing 

household location choice by buildings on land parcels in this study, a couple of sampling 

issues are addressed first. Household travel survey needs to be a statistically 

representative sample. The choice set needs to be of a practical size. 

Then the discussion focused on defining accessibility variables as well as control 

variables for estimating residential location choice models. This was followed by 

describing the methods of measuring accessibility at various scales and characterizing 

spatial clusters of activities. Finally the expected modeling results were discussed, 

particularly for the signs of the coefficients of the control variables and accessibility 

variables based on theories and intuitions. 
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CHAPTER V 

MODEL RESULTS 

 

This study develops a number of multinomial logit models to analyze the effects 

of accessibility on residential location choice. The modeling work begins with using 

socio-economic control variables only as independent variables, then adding various 

accessibility measures. The results of these models are presented first in this chapter. 

Additional models are developed and presented later in this chapter. In order to 

explore the effects of commute time on residential location choice at various geographic 

scales, three sets of multinomial logit models are developed at regional, county, and city 

levels respectively. Furthermore, since Detroit region is one of the most racially 

segregated regions in the United States in terms of Black and White populations, specific 

residential location choice models are estimated for Black and White populations 

respectively in order to assess the differences in residential location choice, explore 

possible reasons for explaining the differences, and help developing policies.  

 

A. Initial Model Results 

 

A series of multinomial logit models are estimated using the households from 

2004-05 SEMCOG household travel survey to explore the effects of various aspects of 

accessibility on residential location choice. The results of these models are summarized 
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in Table 15. The first model (labeled as Model 1) is a base model that has only control 

variables as its independent variables, without any accessibility variables. Model 2 has 

local and regional accessibility measures as independent variables in addition to control 

variables. Model 3 has mid-range accessibility as an additional independent variable 

besides all the variables in Model 2. Model 4 incorporates clustering effects. And finally 

Model 5 has workers’ commute time as additional independent variables.  

The estimated coefficients for the control variables in Model 1 through Model 5 

are consistent with theoretical and intuitive expectations. Beginning with economic and 

housing affordability variables, this model shows that the estimated coefficients for the 

interaction variable between household income and housing price (“income_-_cost”) to 

be consistently positive and statistically significant, which is theoretically sound. The 

variables of income and housing unit size interactions are also consistent with 

expectations. The signs of the estimated coefficients are positive for all three income 

groups, meaning that all households view housing size as a positive utility. The 

magnitude of the coefficients for the three income groups increases as income increases, 

indicating that the utility of housing size is higher for higher income households, whereas 

the utility of housing size is lower for lower income households due to financial 

constraints. It reflects the economic ability for households of various income levels to pay 

for larger housing.  
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Table 15.  Results of Residential Location Choice Models  

  Model 1 Model 2 Model 3 Model 4 Model 5 

Variables Coeff. t-value Coeff. t-value Coeff. t-value Coeff. t-value Coeff. t-value 

1. Affordability/Economic Variables 

     income_-_cost 0.0718 10.25* 0.0748 10.54* 0.0699 10.06* 0.0734 10.40* 0.0653 8.59* 

     housing_size_x_high_inc 0.7246 8.90* 0.6991 8.39* 0.7183 8.74* 0.7408 8.88* 0.7427 8.33* 

     housing_size_x_mid_inc 0.3607 8.34* 0.3691 8.55* 0.3530 8.22* 0.3815 8.82* 0.3658 8.19* 

     housing_size_x_low_inc 0.3172 5.82* 0.2943 5.37* 0.2712 4.98* 0.2847 5.22* 0.1891 3.34* 

2. Social Composition Variables 

     race1_x_zonal_pct_race1 0.0230 17.04* 0.0245 18.12* 0.0239 17.55* 0.0242 17.31* 0.0242 16.57* 

     race2_x_zonal_pct_race2 0.0345 23.97* 0.0332 23.08* 0.0348 23.89* 0.0346 23.97* 0.0347 23.17* 

     race3_x_zonal_pct_race3 0.0690 12.00* 0.0606 10.88* 0.0564 9.72* 0.0689 11.76* 0.0724 10.86* 

     race4_x_zonal_pct_race4 0.0912 10.54* 0.0860 9.98* 0.0866 10.69* 0.0894 10.05* 0.0992 9.61* 

     high_inc_x_zonal_pct_high_inc 0.0147 8.13* 0.0154 8.38* 0.0155 8.39* 0.0159 8.55* 0.0150 7.41* 

     low_inc_x_zonal_pct_low_inc 0.0339 12.93* 0.0319 12.01* 0.0319 12.15* 0.0315 11.92* 0.0312 11.44* 

3. Amenity and Service Variables: 

     school_quality_x_high_inc 0.0038 0.98 0.0050 1.31 0.0032 0.82 0.0028 0.73 0.0042 0.98 

     property_tax 0.0299 12.18* 0.0239 9.09* 0.0184 6.92* 0.0171 6.22* 0.0201 6.55* 

     is_detroit -0.8046 -8.58* -0.6940 -7.36* -0.6101 -6.50* -0.5837 -6.09* -0.6642 -6.54* 

4. Accessibility Variables 

     local_access_x_young_hh 
  

0.1278 2.84 0.1284 2.81 0.0823 1.86 0.1135 2.34 

     emp_access_x_workers>cars 
  

9.9E-06 4.28* 7.9E-06 3.48* 9.5E-06 4.27* 1.5E-06 0.61 

     emp_access_x_workers<=cars 
  

7.2E-07 5.83* 3.4E-07 2.72 2.2E-07 1.35 -3.6E-07 -1.20 

     mid_range_access 
    

0.1244 9.30* 0.1171 8.56* 0.0607 4.00* 

     cluster_k 
      

1.5E-07 1.02 2.5E-07 1.35 

     cluster_k_x_emp 
      

-8.6E-10 -1.95 2.0E-07 3.70* 

     worker1_commute_time 
        

-0.0945 -46.84* 

     worker2_commute_time                 -0.0777 -34.46* 

Log-Likelihood -12477.3 -12468.1 -12427.9 -12391.8 -9880.0 

Null Log-Likelihood -14366.7 -14366.7 -14366.7 -14366.7 -14366.7 

Log-Likelihood Ratio (ρ) 0.13151 0.13215 0.13495 0.13746 0.31230 

Notes: (1) Number of observations is 4,224. (2) Suggested |t-value| is 2.89. (3) “*” indicates statistically significant coefficients. 
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The next group of variables is about demographic and socio-economic 

characteristics of the households and their neighborhoods. The coefficients for the race 

variables are all positive, indicating that for all races, households are more likely to 

choose neighborhoods (represented by Traffic Analysis Zones for these four variables) 

where there are more households of the same race. This is an indication of people’s 

preference to locate close to same race neighbors as well as other factors for racial 

segregation, which will be further discussed later in this chapter. The two income 

interaction variables show similar results as the race variables, i.e., high income 

households tend to locate close to other high income households, whereas low income 

households tend to locate close to other low income households. 

The third group of control variables is about local services and amenities. School 

quality has a positive utility for high income households. They prefer to locate in good 

school districts with the financial resources that they have. However, the present models 

do not show this variable being statistically significant. This is in part due to the high 

correlation between school quality and other income related variables in the model. 

Property tax is positive in the present models, indicating its functioning as a proxy to 

services provided by the local governments that have positive effects on the utility 

functions. The Detroit dummy variable is used to capture the factors that cannot be 

observed in the central city. It shows a negative utility for household location choice. 

Despite numerous attempts to include several forms of crime variables in the 

models, they failed to provide meaningful additional explanation of residential location 

choice. The main reason is that crime variables are highly correlated (negatively) to 
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school quality variables. And they are both correlated to all the other income-related 

variables. School quality variable performed more consistently in the models than crime 

rates. Therefore, school quality variable is included in the models whereas crime rate 

variables are left out of the present models.   

Overall, the estimated coefficients for the control variables in Model 1 through 

Model 5 confirmed their expected effects on residential location choice. All the 

coefficients are statistically significant except for one that is the interaction variable of 

school quality and household income. Nevertheless, it at least has the right sign, showing 

the positive impact of school quality to high-income households’ location choice.      

Model 2 adds local and regional accessibility measures in addition to all the 

control variables in Model 1. Local accessibility is represented by the composite index as 

described earlier in the last chapter. This is a robust measure of local accessibility which 

incorporates the density, diversity, and design all three aspects of local accessibility. The 

variable itself for all households showed little impact on residential location choice, and 

was excluded from the model. However, the interaction between this measure and the 

young households shows a positive impact on location choice. And the t-value for the 

coefficient is almost statistically significant. This confirms that young people are more 

likely to locate in areas that have high local accessibility. 

Regional accessibility to employment is split into two variables. They both are 

based on logsums. One of them measures regional accessibility for households that have 

fewer motor vehicles available than the number of workers in the households. The other 

one measures regional accessibility for households that have at least the same number of 

vehicles available as number of workers in the households. Both variables have 
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statistically significant positive coefficients, confirming that regional accessibility to 

employment is significant for residential location choice.  

Model 3 adds mid-range accessibility in addition to all the variables in Model 2. 

The mid-range accessibility variable is a cumulative opportunity measure that counts 

number of retail, leisure, education, and other services jobs within a household’s 10 

minutes driving radius. The positive coefficient of this variable indicates that accessibility 

to nonwork destinations at sub-regional market areas has a positive impact on household 

location choice. This variable is statistically significant. After this variable is added into 

the model, the coefficient for local accessibility interacting with young households 

increases slightly, and its t-value decreases slightly but remains close to be statistically 

significant. The coefficients and t-values for regional accessibility variables decrease. 

Note that for households that have more workers than motor vehicles available, the 

coefficient for their regional accessibility to employment is more than 10 times higher 

than the same coefficient for households with at least same number of vehicles as number 

of workers, and its t-value remains statistically significant. This indicates that regional 

accessibility is more important to households with insufficient motor vehicles available to 

their workers and other members in the households than households with sufficient 

vehicles available. The results of Model 3 essentially confirms the first hypothesis of this 

study, that is a sub-regional mid-range accessibility has a statistically significant effect on 

residential location choice, controlling for regional and local accessibility. 

Model 4 incorporates clustering effects of destinations. Besides the amount of 

employment by TAZ, cluster scores by TAZ (measured by the observed Ripley’s K 

statistics minus the expected K statistics), and the interaction between the amount of 
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employment and cluster score for each TAZ are included in the model, to assess the 

effects of regional accessibility on residential location choice from all these three related 

variables. The coefficient for the amount of employment remains significant (t-value = 

4.27) for households with fewer vehicles than workers. The coefficient for the clustering 

itself has a positive sign, indicating that clustering has a positive effect on location 

choice. But it is not statistically significant (t-value = 1.02). The interaction between the 

amount of employment and clustering has a negative sign, which could be caused by the 

fact that smaller establishments tend to be more clustered than larger establishments. But 

it is also not statistically significant (t-value = -1.95). The model’s explanation power 

increased somewhat indicated by the increase of the model goodness of fit measure, log-

likelihood ratio (ρ). The expected effect as stated in the second hypothesis is that models 

incorporating clustering will show stronger explanatory power in predicting residential 

location choice than models that do not incorporate clustering. While the model result 

shows some increase in explanation power, and the sign for clustering is right, the 

coefficients for clustering and for the interaction between clustering and amount of 

employment are far from being statistically significant. Therefore, the result from the 

modeling work for the second hypothesis shows some encouraging signs, but it is 

inconclusive in the present study. Further research is needed in the future. 

Model 5 adds individual workers’ commute time as an additional accessibility 

measure. This model includes travel time to work for up to two workers in each 

household. The estimated coefficients for both workers are negative and highly 

significant statistically. It indicates that workers’ travel time to work is a negative utility 

for household location choice. Households prefer home locations that are closer to jobs. 
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Mid-range accessibility remains significant in Model 5, and local accessibility for young 

households is close to being significant. Clustering and clustering interacting with 

employment amount are both positive. And the coefficient for the interaction variable is 

statistically significant. The drawback of adding commute time in the current form of 

Model 5 is that place-based regional accessibility to the amount of employment is no 

longer significant. Logsum-based accessibility to employment for households with more 

workers than available vehicles remains positive but not significant. The impact of 

commute time is so large that the sign is changed for logsum-based accessibility to 

employment for households with same or more vehicles available than workers. 

However, the most important finding in this modeling work is that adding workers’ 

commute time more than doubled the model’s log-likelihood ratio, which is the 

goodness-of-fit measurement. This means that commute time variables significantly 

increase the model’s explanation power. Overall, the modeling result confirms the third 

hypothesis of this study in the sense that individual workers’ commute time is highly 

significant in residential location choice and dramatically increases the explanation power 

of the models. However, some of the place-based accessibility measures cannot be found 

significant simultaneously. 

Although it is impossible to directly compare the coefficient of one variable with 

that of another in these multinomial logit models, a series of utility calculations can help 

reveal the relative influence of each variable on residential location choice, as explained 

in the last chapter. The relative influence of each variable in Model 5 that is calculated by 

such utility difference is shown in Figure 32. 
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Figure 32.  Relative Influence of Independent Variables 

 

 

In Figure 32, commute time for worker 1 and worker 2 have the greatest influence 

on residential location choice. Their influence is much greater than any other variables. 

This suggests that accessibility to jobs is the most important factor for residential location 

choice among all factors that have been identified and measured in this study. It also 

suggests that commute time is the most effective accessibility measure in modeling 

residential location choice. 

 

B. Regional, County, and City Models 

 

One may wonder how geographic scales may affect the significance of 
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accessibility on residential location choice. It might be easier to imagine that travel time 

to work matters in residential location choice at the regional scale. Regions are large. 

They may extend over 100 miles from one side to the other. People normally do not 

travel that far to go to work. People tend to live relatively closer to jobs when the entire 

region is considered to be the choice set. What happens if only a portion of the region is 

considered in a discrete choice model? Will the effects of accessibility on residential 

location choice decrease when most of the jobs are within reasonable commuting time? 

Will the journey-to-work effects on location choice completely disappear if the study area 

becomes very small, and all that matters is the other factors such as housing 

characteristics? To answer these questions, this study estimates a set of residential 

location choice models at three different geographic levels in the Detroit region. They are 

the entire Detroit region, Washtenaw County, and City of Ann Arbor respectively. They 

vary greatly in terms of area, number of households, population, and jobs (Table 16). 

 

Table 16.  Three Levels of Geographic Scales 

Study Areas Land Area (Acres) Households Population Jobs 

Detroit Region 2,946,745 1,844,758 4,704,743 2,484,251 

Washtenaw County 462,248 137,193 344,791 236,676 

City of Ann Arbor  17,986 47,060 113,934 120,588 

 

Data Source: SEMCOG 

 

There are seven counties in the Detroit region. Washtenaw County is selected not 

only because its size in terms of population and jobs is in the middle of the seven 

counties, but more importantly because it functions like an independent small region by 

itself with a core city, suburban neighborhoods, and rural townships. The City of Ann 
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Arbor is the central city of Washtenaw County with abundant jobs and housing 

opportunities to choose from, and it has a good size of household samples from the 2004-

05 SEMCOG travel survey for model estimation.  

For the Washtenaw County model and Ann Arbor City model, only households 

that live and work in these areas respectively are considered. These models are about 

residential location choice. They obviously should not include households that do not live 

in the study area. Furthermore, the purpose of estimating these models is to assess the 

difference among models at various geographic scales. If jobs outside the study areas 

were included, the model would still be a regional model for a subset of choosers who 

happened to live in Washtenaw County or City of Ann Arbor. Therefore, households 

must live and work in the study area in order to study the scale effects on the models. 

To ensure consistency among the models, the same set of variables is used in all 

the models (Table 17). There is a pair of models for each one of the three geographic 

levels. Each pair has a model with control variables only and a model with control 

variables and workers’ travel time to work, i.e., commute time. 

The modeling results clearly show that travel time to work is significant at all the 

three geographic levels. It might seem to be surprising that the absolute value of the 

coefficients of travel time to work increases when the size of study areas decreases. In 

fact, this indicates that commuters are more sensitive to travel time when areas become 

smaller. There is a strong intuitive reason for people to be more sensitive to changes in 

travel times when the size of the area in consideration decreases.
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Table 17.  Model Results at Three Geographic Levels 

 
Model 6: 

Detroit Region 

Model 7:  

Washtenaw County 

Model 8: 

Ann Arbor City 

Variables 
Without  

Travel Time 

With 

 Travel Time 

Without  

Travel Time 

With 

 Travel Time 

Without  

Travel Time 

With 

 Travel Time 

 
Coeff. t-val. Coeff. t-val. Coeff. t-val. Coeff. t-val. Coeff. t-val. Coeff. t-val. 

Control Variables 

   income_-_cost 0.0761 13.07* 0.0752 12.00* 0.1061 4.83* 0.1257 5.55* 0.1596 4.62* 0.1630 4.44* 

   housing_size_x_high_inc 0.6591 11.67* 0.7325 12.42* 0.5828 2.37 0.5887 2.36 0.6076 1.95 0.6547 2.02 

   housing_size_x_mid_inc 0.3813 10.75* 0.4420 11.87* 0.2927 1.46 0.4915 2.48* 0.6690 2.01 0.6469 1.92 

   housing_size_x_low_inc 0.2624 5.81* 0.2209 4.75* 0.2466 1.52 0.3910 2.34 0.3698 0.93 0.4150 1.11 

   race1_x_zonal_pct_race1 0.0296 27.92* 0.0346 30.51* 0.0244 5.62* 0.0320 7.20* 0.0120 1.49 0.0057 0.68 

   race2_x_zonal_pct_race2 0.0319 31.59* 0.0281 25.86* 0.0331 4.15* 0.0358 4.35* 0.1224 3.93* 0.1533 4.10* 

   race3_x_zonal_pct_race3 0.0618 11.59* 0.0588 9.69* 0.2434 3.75* 0.2526 1.99 0.4430 1.60 0.3474 2.08 

   race4_x_zonal_pct_race4 0.0918 11.90* 0.0862 9.71* 0.0642 3.58* 0.0486 2.73* 0.0115 0.52 0.0154 0.79 

   high_inc_x_zonal_pct_high_inc 0.0141 10.01* 0.0150 9.79* 0.0209 4.28* 0.0179 3.66* 0.0265 3.13* 0.0278 3.07* 

   low_inc_x_zonal_pct_low_inc 0.0373 17.49* 0.0362 15.92* 0.0403 6.80* 0.0381 6.54* 0.0287 3.75* 0.0236 2.87* 

Accessibility Variables 

   worker1_commute_time 
  

-0.0820 -58.4* 
  

-0.0860 -10.8* 
  

-0.1415 -3.7* 

   worker2_commete_time     -0.0679 -44.3*     -0.0683 -7.04*     -0.1184 -2.5* 

Number of Observations 5682 5682 460 460 177 177 

Log-Likelihood -16957.3 -13404.5 -1447.9 -1365.7 -555.7 -543.7 

Null Log-Likelihood -19325.6 -19325.6 -1564.6 -1564.6 -602.0 -602.0 

Log-Likelihood Ratio (ρ) 0.12255 0.30639 0.07455 0.12710 0.07687 0.09694 

Adjusted ρ (ρ') 0.12203 0.30577 0.06815 0.11943 0.06026 0.07700 

Change of ρ 
 

0.18384 (150.0%) 
 

0.05256 (70.5%) 
 

0.02006 (26.1%) 

Change of ρ'   0.18374 (150.6%)   0.05128 (75.2%)   0.01674 (27.8%) 

Suggested |t-value| > 2.94 2.94 2.48 2.48 2.28 2.28 

Note: Statistically significant variables are indicated by “*”.
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At the regional scale, adding a minute of commuting time may seem trivial, 

whereas adding a minute of commuting time in the City of Ann Arbor may result in 

greater marginal disutility compared to the regional level. This argument can be further 

verified by the so called “friction factors” in transportation models. In the gravity model 

based trip distribution models, friction factors indicate the level of impedance to interact, 

or the unwillingness to travel. The friction factor increases for home-based work trips 

when study area decreases (Table 18), which indicates greater impedance in smaller areas 

and confirms that workers are more sensitive to travel time with greater unwillingness to 

take additional time to commute. 

 

Table 18.  The Friction Factors of Three Levels of Geography 

  Region Washtenaw County Ann Arbor 

Home-based Work Trips 0.111 0.126 0.175 

Home-based Shopping Trips 0.301 0.298 0.388 

Home-based School Trips 0.387 0.398 0.377 

Home-based Other Trips 0.240 0.245 0.315 

 

 

One may argue that people who live and work in Ann Arbor are a “self-selected” 

group who are less willing to commute compared to other commuters. This may in part 

be true. But it does not void the basic argument of this discussion that travel time to work 

is a significant factor in residential location decisions.  
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The changes of the model goodness of fit measure, log-likelihood ratio (ρ), in 

Table 17 provides additional insight. The ratio decreases when study area decreases, 

indicating greater unobserved randomness in smaller areas. Furthermore, the additional 

explanatory power of travel time to work decreases when study area decreases as 

indicated by the percent change of log-likelihood ratio (ρ) within each pair of models that 

decreases when study area decreases. For the regional model, adding commute time to 

the control model increases log-likelihood ratio by 150%. The percent change decreases 

to 70% and 26% for Washtenaw County model and Ann Arbor City model respectively. 

Nevertheless, these results indicate that workers’ travel time to work affects residential 

location choice at various geographic scales, from a large region, to a mid-sized county, 

to a specific municipality. To the knowledge of this author, this is the first study that 

demonstrates such effects at multiple geographic scales. 

 

C. Model by Race 

 

The model estimations discussed so far in this study use population attributes in 

the models as independent interaction variables. Another way to analyze the effects of 

various population groups’ accessibility on location choice is to estimate a separate 

model for each group, such as by race and ethnicity. Racial discrimination may limit 

people’s ability to optimize freely their residential locations. This is particularly relevant 

in regions like Detroit where racial segregation is high. Accessibility varies among 

population groups. Although Black-White segregation is declining fairly consistently for 

most metropolitan areas, many changes are small, preserving the long-standing 
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segregation for different racial and ethnic groups (Frey and Myers 2005).  The level and 

change of segregation can be attributed to a variety of demographic and economic 

contextual factors in a region. These factors include disparate economic resources across 

groups, preferences to reside with neighbors of the same group, municipal zoning laws 

that discourage racial and economic integration, and the long history of discriminatory 

practice on the part of real estate agents, rental agents, lending institutions, and insurers.  

A series of trend studies (Taeuber and Taeuber 1965; Massey and Denton 1993) 

have documented that the effects of discriminatory practice is most evident in the 

segregation of African Americans from Whites. Frey and Farley (1996) found that, on 

average at the national level, six out of ten Blacks would have had to change 

neighborhoods (by census block groups) in order to be distributed in the same way that 

Whites were. Meanwhile, Hispanics and Asians were also segregated but less 

substantially than Blacks. On average, four in ten Hispanics or Asians would have had to 

change residence to be distributed like the White population in their respective 

metropolitan areas.  

The Detroit region is one of the regions in the United States that have a large 

number of African Americans and have highly segregated Blacks and Whites residential 

location pattern. In fact, the Detroit region ranks the second in Black-White segregation 

(Frey and Myers 2005). It is desirable to model location choice for Blacks and Whites in 

this region separately, compare the differences, search for reasons, and help making 

policies to reduce segregation.  This study estimates two alternative residential location 

choice models based on Model 5, one for Whites and the other one for Blacks. The 

modeling results are summarized in Table 19. 
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Table 19.  Residential Location Choice Models for Whites and Blacks 

 

  Model 9: Whites Model 10: Blacks 

Variables Coeff. t-value Coeff. t-value 

1. Affordability/Economic Variables 

     income_-_cost 0.0788 8.82* 0.0514 3.30* 

     housing_size_x_high_inc 0.8314 8.37* 0.3446 1.25 

     housing_size_x_mid_inc 0.3578 6.79* 0.3907 4.35* 

     housing_size_x_low_inc 0.1609 2.46 0.3684 3.08* 

2. Social Composition Variables 

     race1_x_zonal_pct_race1 0.0218 12.84* na na 

     race2_x_zonal_pct_race2 na na 0.0334 16.36* 

     high_inc_x_zonal_pct_high_inc 0.0106 4.85* 0.0192 2.77* 

     low_inc_x_zonal_pct_low_inc 0.0272 9.25* 0.0275 5.95* 

3. Amenity and Service Variables: 

     school_quality_x_high_inc 0.0061 1.25 -0.0206 -1.95 

     is_detroit -0.4983 -3.38* -0.1622 -1.18 

4. Accessibility Variables 

     local_access_x_young_hh 0.3263 5.54* -0.1201 -1.13 

     mid_range_access 0.0767 4.64* 0.0590 1.21 

     emp_access_x_workers>cars 5.40E-06 0.61 1.04E-05 0.76 

     emp_access_x_workers<=cars -2.21E-06 -9.18* 1.11E-07 0.19 

     worker1_commute_time -0.0913 -41.70* -0.1104 -16.46* 

     worker2_commute_time -0.0757 -31.21* -0.0933 -11.29* 

Number of Observations 2,940 996 

Log-Likelihood -7180.37 -2063.06 

Null Log-Likelihood -9999.52 -3387.59 

Log-Likelihood Ratio 0.28193 0.39099 

Adjusted Log-Likelihood Ratio 0.28043 0.38657 

Suggested |t-value| > 2.83 2.63 

Note: Statistically significant variables are indicated by “*”. 

 

Economic disparity is one major reason for racial segregation. Coefficient 

differences of a few variables in Model 9 and 10 seem to reflect the impact of economic 

disparity. Note that the most influential variables of workers’ commute time, coefficients 

for Blacks are more negative than for Whites for both workers in a household. This may 

be an indication that Blacks are less able to afford transportation costs than their more 
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affluent White counterparts.   Similar logic may apply to the place-based regional 

accessibility measures. Coefficients for these variables are more positive for Blacks than 

for Whites. It shows Blacks are more favorable to high accessibility areas than Whites, 

which could be again an effect of their inability to pay higher transportation costs.   By 

contrast, White young households have a statistically significant positive coefficient for 

local accessibility whereas Black young households have a negative coefficient for that 

variable. Areas with high local accessibility where young households like to live tend to 

be more expensive places. The premium costs may be prohibiting poorer young Black 

households to live in those places. 

Economic disparity cannot explain all the differences in coefficients for Blacks and 

Whites. For example, school quality has a positive coefficient for Whites but a negative 

coefficient for Blacks, even though those are all high income households. Explanations 

may come from preference to reside with same race neighbors, and/or institutional 

discriminatory practices that may force Black households to live in areas with lower 

school qualities. These same forces may explain the coefficient difference for same race 

variables. The coefficient for Blacks to live in higher percentage Blacks neighborhoods is 

0.0334 (t-value = 16.36), which is higher than the coefficient for Whites to live in higher 

percentage Whites neighborhoods (coefficient = 0.0218, t-value = 12.84). 

 

D. Summary of Chapter V 

 

This chapter discussed the modeling results which clearly show the important 

effects of accessibility on residential location choice. The three research hypotheses of 
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this dissertation are supported to various degrees. First, the sub-regional mid-range 

accessibility has a statistically significant effect on residential location choice, controlling 

for regional and local accessibility. Second, models that incorporate clustering effects 

show somewhat stronger explanatory power in predicting residential location choice than 

models that do not incorporate clustering effects. However, the improvement is small. 

Third, individual workers’ commute time is highly significant in residential location 

choice and is the most powerful variable in the model, although some place-based 

accessibility measures cannot be found significant simultaneously. Adding commute time 

to residential location choice model more than doubled the explanatory power of the 

model. 

 The significant effects of commute time on residential location choice were 

found at regional, county, and city levels. To the knowledge of this author, this is the first 

study that demonstrated the significance of commute time on residential location choice 

at multiple geographic scales within a region. Additional modeling results show that the 

effects of accessibility on residential location choice vary among population groups such 

as by race and ethnicity. The next chapter will discuss the implications of this study from 

three perspectives: planning theory, modeling practice, and public policy development.  



 

 160 

CHAPTER VI 

DISCUSSIONS AND CONCLUSIONS 

 

The final chapter of this dissertation provides discussions on the implications of 

the modeling results, suggestions for future research areas, and conclusions of the 

dissertation.  

The implications of the modeling results are discussed in three perspectives: 

theoretical clarifications, practical improvements, and public policy development. From 

the theoretical point of view, the fact that workers’ commute time has consistently shown 

statistical significance suggests the important effects of accessibility on residential 

location choice. In planning practice, the results of this study should help improve the 

accuracy of land use and transportation models. This will be demonstrated by running the 

estimated household location choice models to predict home locations of the households 

from the SEMCOG travel survey, and comparing the predicted home locations to their 

observed locations. The results of this study support public policies that take into account 

the important relationship between land use and transportation interactions.   

After discussing the implications of the modeling results, this chapter then 

suggests future research areas including additional data and improvement of methods. 

The chapter completes with conclusions for the dissertation by highlighting the findings 

of this study.  
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A. Theoretical Implications 

 

The issue of accessibility’s effects on residential location choice is controversial. 

There has been contradictory empirical evidence to support or dismiss such effects. 

Studies based on excess commuting approach divides “actual commuting time” into 

“required minimum commuting time” and “excess commuting time.” By showing that the 

amount of “required minimum commuting time” is less than the amount of “actual 

commuting time,” Giuliano and Small (1993, p. 1485) stated that “other factors must be 

more important to location decisions than commuting cost, and that policies aimed at 

changing the jobs-housing balance will have only a minor effect on commuting.”  

However, this study finds that accessibility significantly affects residential 

location choice. Particularly, workers’ travel time to work is found to be the most 

influential factor in choosing a residential location. This funding is based on 

comprehensive multivariate statistical analyses. By contrast, the excess commuting 

approach uses an unusual bivariate construct in its methodology. 

The excess commuting theory is based on the assumption that individual 

households, each minimizing its commuting cost, will achieve an equilibrium with no 

“cross-commuting,” which is one that minimizes aggregate commuting cost given the 

distributions of housing and job locations. This cost-minimizing assignment approach is 

solely based on job locations and resident locations. This is the fundamental problem 

with the excess commuting approach because it is based on an extremely strong and 

narrow assumption that dramatically simplifies reality. It is a bivariate analysis that 

expects commuting itself to fully explain residential location choice decisions. It ignores 
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many other important factors that affect commuting and residential location choice. The 

null hypothesis is equivalent to an r-squared of “1.0” that commuting time should explain 

all the variance in residential location choice. Any outcome that is less than “1.0” would 

result in the conclusion of “wasteful commuting.” However, in a typical social science 

approach, the null hypothesis is typically equivalent to an r-squared of “0.0”, meaning no 

effects of a variable. The analytical task is to prove that the effect of a variable is 

significantly different from “0.0”. This dissertation study takes this more conventional 

and comprehensive approach and shows that commute time is highly significant in 

residential location choice, controlling for all the other variables that can be measured by 

this study. In fact, commuting is the most powerful variable found in this study. 

Excess commuting studies produced a wide range of estimates of wasteful 

commuting, from 11.1% (White 1988) to 87.1% (Hamilton 1982). The size variation of 

analysis unit is one of the main reasons for the very divergent estimates of excess 

commuting. The linear programming model uses the origin and destination matrix, which 

is usually based on Traffic Analysis Zones (TAZs). The size and the number of TAZs 

used in linear programming models affect the estimation of excess commuting. The high 

degree of aggregation of zones tends to diminish the proportion of excess commuting 

because the transportation optimization model does not change jobs or residential places 

to minimize work trips within a zone. In the most extreme case, excess commuting is zero 

when the number of zones is one for the entire study area, because there are no jobs or 

households for the linear programming to “swap.” Small and Song (1992) further 

investigated the geographic scale issue in excess commuting analysis. They argued that 

this aggregation bias is more serious than expected. In their study there was a huge 
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difference of the estimated excess commuting between studies using aggregated and 

disaggregated data. They found that if large zones are used, only one‐third of the actual 

commuting could be classified as excessive commuting. On the contrary, if small zones 

are used, about two‐thirds of actual commuting could be classified as excessive. This 

again indicates that the amount of excess commuting is very sensitive to the level of 

aggregation. 

This dissertation also deals with the scale issue, from a different perspective. 

Multinomial logit models are estimated at three geographic scales: region, county, and 

city. One might think that commute time could affect residential location choice at the 

regional scale but not in a smaller geography. However, the result of this study suggests 

that commute time is the most influential factor on residential location choice at all three 

geographic scales. 

 

B. Practical Implications 

 

The most direct implication of this study in urban and regional planning practice 

is the potential to improve land use and transportation modeling, which is a key function 

of metropolitan planning organizations. Improving the quality of modeling work would 

provide more accurate information for land use and transportation decision making. 

Hansen (1959) has been cited often in accessibility research for his seminal work in 

developing the concept and constructing the basic measures of accessibility. It has been 

less frequently noted that Hansen’s intention was to develop a residential land use model 

that relates the accessibility of an area to the rate and intensity of land development in 
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that area “based on a realistic measurement of accessibility.” Exploring accessibility 

measures from various perspectives and their impacts on residential location choice is the 

key purpose of this study. A goal of this study is to contribute to improving land use and 

transportation modeling by studying accessibility at various scales including a mid-range 

accessibility measure, clustering of destinations, as well as both place-based accessibility 

and individual workers’ commute time. To demonstrate the technical implications of the 

findings of this study, I run the base model (Model 2) and the improved model (Model 5) 

to predict home locations of the households from the 2004-05 SEMCOG household travel 

survey and compare the predicted home locations to the observed home locations. The 

comparison is not at specific home location level, because it is almost impossible for any 

model to pick exactly the same house from over 1.9 million houses in a region for any 

households. And the multinomial logit model is not a deterministic model, but a 

probabilistic model. What really matters is to locate the right type of households to the 

right type of locations. Therefore the comparison is made at the municipality level for 

this study.  

There are 235 municipalities in the Detroit region. Using the predicted number of 

households to the observed number of households ratio as a measure for assessing 

prediction success, running Model 2 resulted in 27 municipalities where the prediction 

error is less than 10% (Table 20). Running Model 5 improved the results to 31 

municipalities, an increase of 14.8%. Similarly, running Model 2 resulted in 52 

municipalities with a less than 20% error, and running Model 5 improved the result to 66 

municipalities. The 26.9% increase is a larger improvement than municipalities with a 

less than 10% error. A graphic comparison of the complete results from the two models 
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by ten percentage point interval is shown in Figure 33.   

 

Table 20.  Number of Households, Predicted/Observed, by Municipality 

  
Number of 

Municipalities 
Percent of 

Municipalities Percent 
Change 

 

Model 1 Model 5 Model 1 Model 5 

Within 10% Error (0.9-1.1) 27 31 11.5% 13.2% 14.8% 

Within 20% Error (0.8-1.2) 52 66 22.1% 28.1% 26.9% 

Within 30% Error (0.7-1.3) 87 94 37.0% 40.0% 8.0% 

More than 30% 148 141 63.0% 60.0% -4.7% 

 

 

Figure 33.  Number of Households, Predicted/Observed, by Municipality 

 

 

In regard to the households that are exactly predicted to the same municipalities 

as observed, the results are improved from 22% (Model 2) to 26% (Model 5), which is an 
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improvement of 16.2%. These results confirm that a higher percentage of households can 

be predicted in the right municipalities by using the improved model. Given the fact that 

workers’ commute times more than doubled the model goodness of fit statistics, these 

model improvements are expected.  

 

C. Policy Implications 

 

The practical implications of this study indicate the potential of improving land 

use and transportation modeling to provide better information for policy making. If mid-

range accessibility, clustering of destinations, and commute time are relevant, they ought 

to improve the predictive capacity of land-use and transportation models.  Modeling is 

central to regional land use and transportation planning. Getting a better answer to 

questions of land-use impacts on transportation and vice versa would give policy makers 

clearer information for decision making.  Better information should lead to improvement 

of decision making. 

The theoretical implications of this study confirm the importance of accessibility 

in land use and transportation connection. This is contrary to the conclusions drawn in the 

excess commuting studies which argued that the metropolitan-wide structure of urban 

land use via policy intervention is likely to have disappointing impacts on commuting 

patterns. To provide policy guidance, any policy-related interpretations of empirical 

studies are inevitably dependent on the reliable methods. Policy conclusions drawn from 

the excess commuting analysis are biased due to its overly simplified view on the 

complex real world and expecting commuting time to explain everything in location 
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decisions while unable to include other variables in the analysis. Acknowledging the 

inability to explain why “journey to work play only limited role in residential location 

choice,” some researchers offered a few “hypotheses” including “job turnover,” “two-

worker households,” “non-work trips,” “other priorities” than transportation costs, and 

“racial discrimination” (Giuliano and Small 1993, p. 1498). But the results of this 

dissertation research show contradictory evidence to several of these “hypotheses". 

First,  among all the arguments that commuting time  plays a limited and 

diminishing role in urban policy, one of the most frequently mentioned reasons has been 

the increasing number of two-worker households, that makes optimizing one worker’s 

commute may worsen that of the other. While it is intuitive to think that two-worker 

households may have more constraints than single-worker households, this study has 

shown that both workers’ travel time to work are statistically significant in residential 

location choice decisions. Policies that encourage better work accessibility may actually 

have great potential to improve both workers’ commute.  

Second, it has also been widely mentioned that the increasing importance of 

nonwork trips reduces the influence of work trips on residential location choice. This 

study first finds that nonwork accessibility oriented mid-range accessibility is significant 

in residential location choice. But work-based regional accessibility remains significant 

after adding mid-range accessibility. Furthermore, workers’ travel time to work has much 

more explanatory power than mid-range accessibility and any other variables that can be 

measured in this study. Public policies need to address both work and nonwork 

accessibility. 
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Third, it has been argued that transportation costs are overshadowed in 

importance by other factors such as neighborhood characteristics and housing varieties 

that urban residents care most. This study uses the most detailed and disaggregated 

available data and concludes otherwise. Housing cost and size are found significant but 

less powerful than commute time. School quality variable has the right sign in the models 

but not statistically significant. This is not to say that school quality is not important. But 

it is highly correlated to income. Since affordability is a more direct and influential 

variable, it is more significant than school quality when both are in the model. Similar 

results are found for crime rate variables. They cannot coexist with income and school 

quality in the models, although they show significant disutility by themselves. On the 

other hand, workers’ commute time explains more variance than any of the amenity 

variables. Policies that emphasize amenity and services but ignore accessibility seem to 

be biased and may miss important opportunities for creating successful places.  

Another hypothesis from Giuliano and Small (1993) concerns equity and deserves 

more analysis. They suggested that racial discrimination may limit people’s ability to 

optimize freely their job and residential locations. This is particularly relevant in regions 

like Detroit where racial segregation is high. Therefore this study estimated separate 

models for Blacks and Whites respectively. While the results show several differences in 

residential location choice between Blacks and Whites that suggest the existence of racial 

discrimination, commute time is significant for both populations. While there is no single 

model that can be simply applied to all geographic areas or to all demographic and social 

economic groups, it is important for policy makers to remember the importance of 

improving accessibility. The concept of accessibility and effective measurements of 
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accessibility can provide a useful tool for other planning practice and public policies 

besides land use and transportation modeling. For example, environmental justice (EJ) 

analysis needs to identify and address any potential adverse impacts on minority and low-

income population groups that could result from infrastructure investments such as 

transportation projects. The methodology and the results of this study could be useful for 

improving environmental justice analysis, particular if race-specific models are used.  

The finding of the significant negative utility of commute time on residential 

location choice at the regional, county, and municipality levels has important 

implications to on-the-ground planning policies. Since commute time to work is the most 

important measurable factor in residential location choice, local planning policies should 

at least allow residential development close to employment to reduce commute time. A 

more proactive approach could be to encourage higher density residential development 

close to employment. However, many existing planning policies have the opposite 

effects. Master plans and zoning ordinates typically have maximum residential density 

limits but rarely have minimum density requirements. They also tend to emphasize 

separating different land uses rather than promoting land use mix. Such policies are 

inconsistent with people’s preference on good accessibility to jobs, as well as to nonwork 

destinations.   

Accessibility is a component of quality of life, which is a goal that land use and 

transportation planning try to achieve. Categorizing accessibility into regional, sub-

regional, and local levels may help suggest practical solutions to improve overall 

accessibility. It is important to increase walkability at neighborhood level for appropriate 

locations. Regional planning may be most effective on large scale regional attractions 
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with clusters of activities. At the middle range, municipalities may decide on what 

strategies serve them best to achieve mid-range accessibility. Do they want to intensify 

development and bring destinations closer to create a lively city? Do they want to “keep 

rural characteristics” by maintaining low density and increasing travel speed?  Hopefully, 

competitions among communities would provide a wider range of choices to the residents 

so that people could “vote with their feet” in finding their preferred home locations.  

 

D. Questions for Further Research  

 

1. Additional Data for Spatial Cluster Analysis 

In the present study, spatial clustering only shows limited success in residential 

location choice models. The sign of the variable is correct but its coefficient is far from 

being statistically significant. It only increases the model’s goodness of fit slightly. While 

the theoretical reasoning based on trip-chaining phenomenon is sound, availability of data 

is more problematic. Even though the present study uses a very comprehensive and 

disaggregated data set, it still may not be sufficient for developing a good indicator on the 

degree of activity clustering. For example, a shopping center may consist of many 

individual retailers and service providers. However, all or most of these establishments 

often locate in a single building, or multiple buildings on a single land parcel. All of these 

establishments are represented by one single point, which is the centroid of the land 

parcel. In the future, a data set that can distinguish these establishments geographically 

may increase the accuracy of measuring the degree of spatial clustering.    
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2.  Spatial Cluster Boundaries and Geographic Scales 

Boundaries and the scale of analysis units are very important in spatial cluster 

analysis, for both Average Nearest Neighbor statistics and Ripley’s K statistics used in 

the present study. A group of points may be measured as clustered if they are placed in 

one part of a large analysis area, but may be measured as dispersed if the area reduces to 

enclose those points tightly. In the present study, existing municipal boundaries or traffic 

analysis zones are used as boundaries to calculate cluster indices. These boundaries are 

artificial and vary greatly in size. A more standardized zone system is necessary in the 

future research to minimize boundary effects. 

 

3. Defining Multiple Mid-ranges for Measuring Nonwork Accessibility 

The mid-range accessibility concept presented in this study is based on the 

analysis of different characteristics between work trips and nonwork trips, as well as the 

concept of central place theory. The implementation of the mid-range accessibility 

measurement in the present study is a relatively simple cumulative opportunity measure 

that counts nonwork activities within a specified travel time threshold. A number of time 

thresholds were tested, and the 10-minute threshold was chosen because it has the most 

significant effects on residential location choice. However, it treats various kinds of 

nonwork activities equally within the time threshold. The key notion of central place 

theory is the hierarchy of market areas. The friction factors (Table 18) indicate that 

school trips are shorter than shopping trips, and shopping trips are shorter than other 

nonwork trips in the Detroit region, because the friction factors, i.e., the impedance to 

travel, decreases respectively. Travel time information from household travel survey may 
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provide additional evidence that various nonwork activities have different scales of 

market areas. In future studies, multiple time thresholds may be explored for different 

types of nonwork activities and may be used in residential location choice models. 

Separating work and nonwork accessibility, as well as separating various types of 

nonwork accessibility based on the nature and market scales of those nonwork activities 

may provide a more complete explanation of accessibility’s effects on residential location 

choice. 

 

4. Geographic Areas for Modeling 

Scale also affects sub-regional models. The present study uses a particular county 

and city to analyze scale effects on residential location choice. Although the county and 

city are carefully chosen, alternative selections of sub-regional areas are necessary to 

generalize the findings from this study. First, all counties and more cities should be 

modeled and compared to better understand the scale effects. Furthermore, it may be 

even better to use more standardized and uniformed sub-regional areas other than 

political boundaries to fully understand the effects of geographic scales on residential 

location choice models. 

This study is based on a single metropolitan region, which is the Detroit region. 

More generalized conclusions on the effects of accessibility on residential location choice 

will depend on empirical studies of a variety of metropolitan areas, including those places 

that are more compact than the Detroit region and have stronger public transit systems. 

Public transit accessibility is not a strong component of this study, partly because the 

share of transit trips in the Detroit region is less than 2%.  
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5. Using Commute Time in Urban Modeling 

This study finds that individual workers’ commute time is the most influential 

variable in explaining residential location choice at regional and sub-regional levels. 

Incorporating workers’ commute time into land use and transportation forecast models 

requires good predictions of job locations for individual workers. It requires more 

research and assessment. The approach in general is consistent with the general trend in 

the land use and transportation modeling world that is moving towards to greater 

disaggregation and micro simulation. Aggregated models are less productive because 

they suffer from ignoring individual characteristics. 

 

E. Conclusions 

 

This study evaluates accessibility’s effects on residential location choice. In a 

comprehensive analysis, it considers accessibility at various geographic scales ranging 

from local, to mid-range, to regional levels. It incorporates both place-based accessibility 

measures and individual workers’ commute time. It considers not only the quantities of 

activities but also the clustering of activities that contributes to accessibility. It does not 

treat accessibility as equal to all people and invariant at all scales. Instead, it analyzes 

accessibility for various socio-economic groups of population, particularly for population 

groups of various race and ethnicity, as well as at multiple levels of geography in a 

metropolitan region. 

The disaggregated nature of the data and methodology used in this study enables 
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the research to analyze various aspects of accessibility and their effects on residential 

location choice.  The more refined parcel-based measures permit the detection of 

accessibility patterns for smaller geographic areas such as neighborhoods within walking 

distance, as well as incorporation of the contextual effects of accessibility at lager 

geographical areas including the regional and sub-regional levels. 

The effects of accessibility on residential location choice are apparent in this 

study. The results show various aspects of accessibility matter significantly when 

households make residential location decisions. First and foremost, individual workers’ 

commute time has the biggest impact on residential location choice. It explains more 

variation in household location choice decisions than any other variables. For two-worker 

households, both workers’ accessibility to employment affects location choice 

significantly.  Results of other accessibility measures are mixed in the models of the 

present study. There is evidence that local, mid-range, and regional accessibility 

measures affect residential location choice, while the effects of clustering need further 

research.  Overall, these findings suggest that significant linkages exist between 

accessibility and residential location choice. It is apparent in this study that workers’ 

personal travel time to work is the most effective accessibility measure for analyzing its 

impact on residential location choice. This study has demonstrated this finding to be true 

at multiple geographic levels in the Detroit region. The significance of this finding is that 

travel time to work could be more predictive in urban models while regional and local 

accessibility are typically used in the current practice. This study also demonstrates that 

the effects of accessibility on residential location choice vary for different population 
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groups, which reflects the economic, demographic, and institutional constraints on 

residential location choices of various racial and ethnic population groups.   

The findings of this study should help urban and regional planning policy making. 

Policies that emphasize amenities and services but ignore accessibility would be biased 

and might miss important opportunities for creating successful places. Public policies 

should take into account work and nonwork accessibility at various scales, although work 

accessibility strategies could be most effective. 
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