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Abstract 

 

Recognition systems allow animals to discriminate among social partners on the 

basis of species, group membership, kinship or individual identity. Despite the 

fact that recognition is central to theories of social evolution, relatively little work 

has examined the processes by which the traits involved in recognition evolve. 

Notably, recognition often involves highly diverse traits used for recognition and 

specialized cognitive abilities, though the evolutionary origins of these traits has 

been largely unexplored.  I consider three questions regarding the evolution of 

individual recognition, using Polistes wasps as a model.  

 

First, I examine the phenotypes used for recognition. Does selection favor 

individuals to broadcast their identity or is recognition akin to eavesdropping? 

Through a series of studies I show that the variable color patterns used by P. 

fuscatus to recognize conspecifics have arisen as the result of selection for 

distinctive easily recognizable identity signals. This work provides the first 

evidence that selection for recognition favors individuals to broadcast their 

identity. Selection for efficient recognition is likely to be a prominent mechanism 

maintaining polymorphism in social species.  

 



 

x 

Second, I examine the specificity of cognitive processes associated with 

recognition. Do wasps use general learning mechanism for recognition or is it a 

specialized process? I demonstrate that P. fuscatus wasps have face-recognition 

specific learning adaptations, suggesting that cognitive evolution may be highly 

specific. Additionally, I show that wasps have surprisingly robust social memories 

despite their small brain size.  

 

Third, it is difficult to understand how sender and receiver phenotypes are 

elaborated in the absence of the other. I propose that the evolution novel 

recognition systems may be facilitated by pre-existing sender or receiver biases. 

I provide initial tests of the hypotheses, finding that sender bias is likely to be a 

widespread mechanism facilitating the evolution of novel recognition systems. 

Additionally, I provide experimental evidence for a receiver bias in Polistes 

wasps. 

 

The work presented in this dissertation present a multi-faceted examination of 

the evolution of an important social trait – individual recognition. Importantly, the 

results of this dissertation demonstrate that individual recognition will be an 

important model for studies of phenotypic polymorphic and cognitive evolution. 
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Chapter 1: Introduction 

 Social interactions have major effects on animal fitness. Recognition 

systems, in particular, play an important role in mediating interactions among 

social partners. Indeed a wide body of literature has examined the evolutionary 

and ecological consequences of social recognition, with a particular focus the 

mechanisms underlying of kin and individual recognition (Beecher 1989; 

Frommen et al. 2007; Gamboa 2004; Sharp et al. 2005; Tang-Martinez 2001; 

Thom and Hurst 2004). Despite the importance of recognition systems in 

theoretical and empirical studies of social behavior, surprisingly little attention 

has been given to the evolution of recognition systems themselves (Tibbetts and 

Dale 2007). 

 One approach to understanding the evolution of recognition systems is to 

examine how selection has shaped the various components of recognition. For 

recognition to occur, one individual (the sender) must produce some information 

that is perceived and then acted upon by another individual (the receiver) 

(Sherman et al. 1997). Selection, then, is expected to influence both the 

phenotypes of senders and the cognitive abilities of receivers. When senders 

benefit from being recognized, selection is expected to favor the evolution of 

distinctive phenotypes that provide identity information (Johnstone 1997). 

Discriminating among senders is one of the major challenges facing receivers 
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when recognizing social partners. Thus, selection is expected to favor the 

evolution of cognitive abilities allowing for efficient discrimination of conspecifics 

(Jouventin et al. 1999; Loesche et al. 1991; McKone et al. 2007). 

 Individual recognition, the most specific form of social recognition, 

provides an ideal system to investigate the evolution of recognition systems. 

There have been multiple independent origins of individual recognition across 

many taxa and social contexts (Tibbetts and Dale 2007). Additionally, the 

specificity of individual recognition has the potential to favor more extreme 

adaptations in both senders and receivers, allowing them to be more easily 

identified and studied.  

 In this dissertation I describe a series of studies examining the evolution of 

individual recognition, using Polistes paper wasps as a model. The Northern 

paper wasp, P. fuscatus, recognizes individuals using highly variable color 

patterns on the face and abdomen (Tibbetts 2002), though its close relatives lack 

phenotypic variation (Tibbetts 2004) making Polistes an ideal group for 

investigating the evolution of individual recognition. I first describe the function of 

individual recognition in P. fuscatus and then introduce the three sections of the 

dissertation focusing on adaptations in sender phenotypes, receiver cognition 

and the origins of novel recognition systems respectively.  

 

Individual recognition in Polistes fuscatus 

 Why do wasps need to recognize each individually? Each spring, paper 

wasps emerge from diapause and initiate new colonies either alone or in 
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cooperative multiple foundress groups. P. fuscatus has a flexible social system 

with some foundresses nesting singly and others multiply, where foundresses 

form a strict linear dominance hierarchy that determines relative contributions to 

work and egg-laying in the colony (West Eberhard 1969). This flexibility is 

associated with conflict among the multiple queens and appears to have favored 

the evolution of variable color patterns that may be used for signaling in multiple 

clades of Polistes (Tibbetts 2004). Thus, individual recognition is a tool for 

managing conflict among competing reproductives in a colony. 

 

Sender adaptations: Are variable color patterns in P. fuscatus identity 

signals? 

 Identity signals are traits that have been selected to be distinctive in order 

to facilitate accurate and efficient recognition. For this to occur, individuals must 

benefit from distinctive phenotypes (Dale et al. 2001). If distinctiveness is 

favored, this is expected to give rise to increased phenotypic variation in 

signalers over evolutionary time (Dale 2006; Dale et al. 2001). I tested both of 

these predictions in a series of experimental and comparative studies with P. 

fuscatus and its relatives. 

To test whether individuals benefit from identity advertisement, I 

experimentally altered the phenotypes of small groups of unrelated P. fuscatus 

foundresses so that one individual had a unique, distinctive phenotype (Chapter 

2). Each wasp was painted so that they had an all-black face or a small yellow 

dot at the tip of their clypeus. The distinctive wasp was painted yellow or all-black 
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in half of the groups respectively, with the three common wasps receiving the 

opposite color treatment. Each group was then placed in a small arena and 

allowed to interact for two hours. I videotaped the trials and later recorded the 

initiator and recipient of all aggressive acts. 

Analysis of the distribution of aggression demonstrated that distinctive 

wasps received the least aggression in a disproportionate number of trials. In 

general, distinctive wasps received less aggression than wasps with a common 

appearance. Color treatment did not influence aggression, so distinctiveness 

rather than a particular phenotype was responsible for lower receipt of 

aggression. Given that receiving excess aggression is costly, these results 

demonstrate that individuals that advertise their identity with rare recognizable 

phenotypes benefit from identity signaling. 

 When distinctive phenotypes are beneficial they are expected to spread 

via a negative frequency-dependent process, with the benefits decreasing as a 

phenotype spreads and becomes less distinctive (Dale et al. 2001; Sheehan and 

Tibbetts 2009). At any time, however, new rare mutants may arise that would 

also be favored and spread. Over time the repeated spread of distinctive traits 

will give rise to multiple variable phenotypic components, such as color patches 

in different parts of a wasp’s face (Dale 2006). 

 If selection favors the evolution of identity signaling, we expect species 

with individual recognition to be more variable than relatives lacking individual 

recognition. I examined two species, P. dominulus and P. metricus, for 

phenotypic variability and recognition abilities (Chapter 3). I measured the level 
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of color polymorphism in P. fuscatus, P. dominulus and P. metricus, confirming 

that P. fuscatus color patterns are far more variable than the other species. 

Importantly, P. fuscatus show variation in multiple independent color patterns on 

their faces and abdomens whereas the other species only showed significant 

variation in one region. Next, I tested recognition abilities by pairing wasps with 

others they had and had not previously interacted with in a series of four 

encounters. If wasps recognize an individual, they are expected to show lower 

levels of aggression to familiar compared to unfamiliar wasps, as is seen in P. 

fuscatus (Sheehan and Tibbetts 2008). As predicted, the less variable species 

showed no evidence of individual recognition. This finding is consistent with the 

hypothesis that selection for identity signaling rather than other neutral processes 

is responsible for the evolution of elevated phenotypic polymorphism in P. 

fuscatus. 

 

Receiver adaptations for individual recognition 

 The first challenge of recognizing individuals is to be able to reliably 

discriminate among them. Wasps are visual foragers with large eyes and well 

developed visual systems (Land 1997; Richter 2000) so there is no a priori 

reason to expect any specializations for visual learning of faces. Mockingbirds 

spontaneously recognize individual humans (Levey et al. 2009) and bees can be 

trained to distinguish among human faces (Dyer et al. 2005), demonstrating that 

specialization isn’t strictly necessary for face learning. However, primates also 

recognize individuals based on distinctive faces and do have cognitive 
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specializations for learning conspecific faces (Pascalis and Kelly 2009), 

suggesting that specializations for learning conspecific faces may be adaptive. 

While it is possible to recognize individuals without specialized learning abilities, 

primates and wasps regularly interact with and recognize conspecifics so efficient 

face learning may be beneficial. If selection for individual recognition favors 

specialized face learning, then P. fuscatus should learn wasp faces differently 

than other image types while close relatives lacking IR should show deficits in 

face learning. 

 I tested visual learning abilities in P. fuscatus and P. metricus, a close 

relative lacking individual recongnition (Chapter 4). Using a negatively reinforced 

T-maze, we trained wasps on conspecific faces, abnormally configured jumbled 

faces, antenna-less faces, caterpillars (wasp prey), simple patterns and 

heterospecific faces. P. fuscatus learned conspecific faces more rapidly and 

accurately than the other image types. Jumbled faces were made from the same 

stimuli as normal faces, so poor performance on these stimuli demonstrates that 

faces per se are important for learning. Additionally, the mere removal of the 

antennae from the images led to significant deficits in performance. Simple, high 

contrast black and white patterns are predicted to be easy for hymenopteran 

compound eyes to discriminate (Lehrer and Campan 2004), yet P. fuscatus 

learned the complex face images more rapidly. In contrast to P. fuscatus, P. 

metricus failed to discriminate among conspecific faces. This pattern persisted 

when each species was trained to discriminate the heterospecific faces, with P. 

fuscatus performing well and P. metricus poorly on both species’ face images. 
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Collectively the training data demonstrates an interesting case of convergent 

evolution of specialized face learning abilities between primates and wasps. 

Importantly, association between face learning and individual recognition in 

wasps provides evidence for cognitive adaptations for individual recognition. 

 In addition to discrimination, individual recognition also requires memory 

of previous interactions. Prior to founding new nests each spring, P. fuscatus 

wasps investigate possible nest sites and interact with multiple wasps over the 

course of many days (West Eberhard 1969). This presents a particular challenge 

as memories attenuate over time (Gherardi and Atema 2005) and are often 

replaced by memories of more recent experiences (Reinhard et al. 2006). I 

tested the robustness of P. fuscatus social memories to attenuation over 1 week 

and interference from interactions with 10 other wasps (Chapter 5). I paired two 

unfamiliar wasps together for one day, separated them for a week and later 

rejoined the pair. During the week of separation, each wasp was placed in a 

different communal cage with 10 other wasps. Upon rejoining, the wasps 

interacted more peacefully than they had when they first met a week earlier, 

suggesting recognition of their social partner. To ensure that reduced aggression 

levels were due to recognition and not a general decline in aggression, we paired 

each wasp with new unfamiliar wasps on the 6th and 8th day. On both days, 

wasps showed elevated levels of aggression, demonstrating that wasps 

remembered each other after a week of complex social interactions. Wasp social 

interactions are based on memories of past encounters rather than simple 

fighting rules. Given the small size of wasp brains (Gronenberg et al. 2008) this 
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finding suggests that tracking individual social relationships may not be as 

cognitively demanding as is often assumed.  

 

Evolutionary origin of novel recognition systems 

As with any communication system, recognition requires coordination 

between senders and receivers (Bradbury and Vehrencamp 2011; Sherman et 

al. 1997). Within the context of an established recognition system, it is relatively 

straightforward to understand how selection may act on either sender 

phenotypes or receiver cognition and behavior. In the absence of recognition, 

however, is it less clear how selection might act on the components of a 

recognition system. How could selection act on sender phenotypes in the 

absence of receiver behavior? How can receiver behavior evolve in the absence 

of identifiable sender phenotypes?  

In Chapter 6 I propose and provide initial tests of two hypotheses to 

explain the origin of novel recognition systems. The evolution of a recognition 

system may be facilitated by pre-existing biases in sender phenotypes or 

receiver behavior. The sender bias hypothesis proposes that the initial evolution 

of recognition is facilitated by existing variation in sender phenotypes that allows 

for identification. In effect, sender bias is a broader conception of the ritualization 

hypothesis for signal evolution, which posits that selection acts on existing 

behavioral variation during the initial process of signal evolution (Maynard-Smith 

and Harper 2003; Scott-Phillips et al. in press). Similarly, the receiver bias 

hypothesis proposes that the initial evolution of recognition is facilitated by pre-
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existing receiver behavior favorable to recognition. The exploitation of receiver 

biases by senders is a major explanation for the origin of sexually selected traits 

(Endler and Basolo 1998; Ryan and Rand 1993). Based on this previous work, 

we develop a hypothesis to explain the origin of novel recognition systems via 

biases in receiver behavior. 

I tested the sender bias hypothesis by examining patterns of sender 

variation and receiver behavior across a wide range of animals. Our analysis 

finds broad support for the sender bias hypothesis, especially in taxa that use 

vocalizations for individual recognition. While support was widespread, our 

analysis showed that sender biases were not a universal explanation for the 

origin of novel individual recognition systems. Notably, Polistes wasp lineages 

with individual recognition are known to have lacked variable color patterns 

ancestrally (Tibbetts 2004), suggesting that receiver bias may play a role in the 

evolution of individual recognition in wasps and other lineages. 

I experimentally tested the predictions of receiver bias in P. metricus, 

which lacks individual recognition and has uniform coloration (Sheehan and 

Tibbetts 2010). By painted small groups of P. metricus so that one wasp had a 

unique phenotype, I was able to test receiver responses under a circumstance 

mimicking the initial evolution of variable recognition traits. For selection to favor 

the evolution of recognition, receivers must respond to variations in behavior in a 

manner that favors senders to advertise their identity (i.e. senders must benefit 

from recognition, Sheehan and Tibbetts 2009). Receivers in P. metricus were 

able to discriminate among wasps based on the small experimental manipulation 
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of color patterns. Importantly, receivers directed less aggression at unique 

wasps, regardless of their marking, suggesting that receiver behavior would 

facilitate the evolution of individual recognition in P. metricus. 
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Chapter 2: Evolution of Identity Signals: Frequency-dependent benefits of 

distinctive phenotypes used for individual recognition 

 

Abstract 

 

Identifying broad-scale evolutionary processes that maintain phenotypic 

polymorphisms has been a major goal of modern evolutionary biology. There are 

numerous mechanisms, such as negative frequency-dependent selection, that 

may maintain polymorphisms, although it is unknown which mechanisms are 

prominent in nature. Traits used for individual recognition are strikingly variable 

and have evolved independently in numerous lineages, providing an excellent 

model to investigate which factors maintain ecologically relevant phenotypic 

polymorphisms. Theoretical models suggest that individuals may benefit by 

advertising their identities with distinctive, recognizable phenotypes. Here, we 

test the benefits of advertising one's identity with a distinctive phenotype. We 

manipulated the appearance of Polistes fuscatus paper wasp groups so that 

three individuals had the same appearance and one individual had a unique, 

easily recognizable appearance. We found that individuals with distinctive 

appearances received less aggression than individuals with nondistinctive 

appearances. Therefore, individuals benefit by advertising their identity with a 
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unique phenotype. Our results provide a potential mechanism through which 

negative frequency-dependent selection may maintain the polymorphic identity 

signals in P. fuscatus. Given that recognition is important for many social 

interactions, selection for distinctive identity signals may be an underappreciated 

and widespread mechanism underlying the evolution of phenotypic 

polymorphisms in social taxa. 

 

Introduction 

 

Phenotypic polymorphisms occur in a wide range of taxa from flowers (Gigord et 

al. 2001) to fish (Olendorf et al. 2006), although the adaptive value of many 

polymorphisms is often unclear. Given that selection and genetic drift typically 

reduce the amount of variation in a population, explaining these striking 

phenotypic polymorphisms has been a challenge for evolutionary biologists. 

 

A number of explanations for the evolution of phenotypic polymorphisms have 

been proposed including local adaptation, mutation–selection balance, and 

negative frequency-dependent selection (Mitchell-Olds et al. 2007). In local 

adaptation, connected populations each adapt to separate ecological conditions 

so that individuals within a local population are relatively monomorphic (Hoekstra 

et al. 2006). Under the local adaptation hypothesis, phenotypic polymorphism 

within a population results from migration between populations with opposing 

selection regimes. Migrants with rare phenotypes generally have lower fitness so 
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the polymorphism is a consequence of gene flow, not adaptation per se (Mitchell-

Olds et al. 2007; Yeaman and Jarvis 2006). Polymorphisms may also arise via 

the accumulation of deleterious variants affecting phenotypes that have yet to be 

purged by selection. Although mutation–selection balance has been extensively 

studied from a theoretical perspective (Zhang and Hill 2005), few empirical 

studies have directly tested how much phenotypic variation arises from 

deleterious mutations. Unlike the local adaptation and mutation–selection 

balance hypotheses, the negative frequency-dependent selection hypothesis 

posits that rare phenotypes are favored by selection such that polymorphism 

within populations is adaptive. Although frequency-dependent selection has the 

potential to be a powerful evolutionary mechanism for the promotion and 

maintenance of polymorphisms, relatively few studies have documented 

frequency-dependent selection in natural populations. Documented examples 

have typically been narrow in scope (Fitzpatrick et al. 2007) or governed by 

unknown mechanisms (Nosil 2006; Olendorf et al. 2006). To date, there are few 

examples of widespread ecological and evolutionary processes that may favor 

polymorphisms. 

 

One promising system for research into the evolution of phenotypic variation is 

individual recognition. The highly variable phenotypes used for individual 

recognition are among the most striking examples of phenotypic polymorphism in 

nature (Fig. 2.1 A). Individual recognition occurs when individuals are able to 

discriminate among multiple social partners based on unique phenotypic 
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characters (Tibbetts and Dale 2007; Tibbetts et al. 2008). Individual recognition 

has evolved independently in a wide range of taxa, making it an excellent model 

for investigating the evolution of phenotypic polymorphism. Efficient navigation of 

complex social environments depends on individual recognition in a number of 

diverse species, including Polistes paper wasps (Sheehan and Tibbetts 2008; 

Tibbetts 2002), Pachycondyla ants (D'Ettorre and Heinze 2005), lobsters 

(Karavanich and Atema 1998), crayfish (Seebacher and Wilson 2007) as well as 

many vertebrates  (Cheney and Seyfarth 1999; Grosenick et al. 2007; Hurst et al. 

2001; Jaeger 1981; Jouventin et al. 1999; Paz-y-Mino et al. 2004). Species use 

individual recognition to discriminate among social partners in a number of 

different contexts such as parental care (Jouventin et al. 1999), the recognition of 

territorial neighbors (Jaeger 1981), and linear dominance hierarchies (Tibbetts 

2002). 

 

To date most of the research on individual recognition has focused on the 

presence or absence of recognition behavior in a given species, whereas 

relatively little research has focused on the individual being recognized. It is 

unknown whether individuals are selected to signal their identity with distinctive 

phenotypes (i.e., via an identity signal) or if observers cue into otherwise neutral 

phenotypic variation to recognize conspecifics (Tibbetts and Dale 2007). If being 

memorably different is advantageous, rare phenotypes are predicted to spread 

via negatively frequency-dependent selection such that individuals who look, 

sound, or smell unique will be favored (Dale et al. 2001). Even relatively minor 
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benefits associated with distinctiveness can lead to the evolution of identity 

signals as long as the phenotypes used for recognition are not costly to produce 

or maintain (Dale et al. 2001). 

 

Here, we experimentally test whether there are benefits associated with the 

distinctive, recognizable phenotypes used for individual recognition. Specifically, 

we test whether distinctiveness is beneficial within a linear dominance hierarchy. 

Within species with dominance hierarchies, individuals with unique, recognizable 

phenotypes are predicted to benefit by receiving less aggression than 

indistinguishable individuals (Barnard and Burk 1979; Dale et al. 2001). Both 

dominants and subordinates are predicted to benefit from distinctive phenotypes. 

When animals contest a resource (such as food or a position in a dominance 

hierarchy) both the winner and loser benefit by settling the contest without costly 

escalation (Maynard-Smith and Harper 2003). Although some species possess 

signals, such as badges of status, that allow contestants to assess relative 

agonistic ability, such signals are often poor predictors of fighting ability. 

Individual recognition, however, allows individuals to accurately assess social 

partners based on the outcomes of prior interactions. Typically, the first 

encounter between two competing individuals is quite aggressive, as individuals 

fight to establish their relative dominance ranks. When individuals can recognize 

each other, aggression typically declines in subsequent interactions because 

relative dominance ranks have already been established (Dreier et al. 2007; 

Sheehan and Tibbetts 2008). However, in species lacking individual recognition, 
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aggression is not predicted to decline over subsequent encounters because the 

relative ranks of social partners are not clear unless individuals engage in new 

aggressive contests (Barnard and Burk 1979). 

 

We experimentally tested the benefits of distinctive, easily recognizable 

phenotypes in the paper wasp, Polistes fuscatus, which uses variable facial 

patterns for individual recognition (Fig. 2.1 A , Sheehan and Tibbetts 2008; 

Tibbetts 2002). In this species, multiple queens often found nests together. The 

queens cooperate to rear offspring, but they also compete to form a linear 

dominance hierarchy (Reeve 1991; West Eberhard 1969). Individual recognition 

is thought to play an important role in mediating aggressive dominance 

interactions among wasp queens and aiding colony stability (Tibbetts 2002). We 

set up groups of four unrelated wasp queens: three wasps with a similar, 

common appearance and one with a distinctive, rare appearance (Fig. 2.1 B) and 

then compared the interactions of individuals with common and rare 

appearances. 

 

We make a number of specific predictions about how distinctiveness will 

influence social interactions. First, distinctive individuals are expected to be more 

easily identifiable than nondistinctive individuals. Therefore, individuals with a 

unique phenotype are predicted to receive less aggression than individuals with a 

common phenotype. Second, individuals are predicted to have difficulty 

determining the relative ranks of individuals with common appearances, so the 
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amount of aggression an individual initiates is expected to depend on the number 

of distinctive versus common individuals they interact with. As a result, wasps 

that interact with three nondistinctive individuals will initiate more aggression than 

wasps that interact with two nondistinctive and one distinctive individual. 

 

Methods 

 

In early spring 2007, behavioral interactions were observed among 18 groups of 

queens collected from distant locations separated by at least 1 km around Ann 

Arbor, Michigan. Each group contained four foundresses that had never 

previously encountered each other. This mimics natural foundress behavior in 

early spring. After Polistes foundresses emerge from diapause, they interact with 

many individuals before settling down to start a nest, either alone or with other 

foundresses that may or may not be related (Queller et al. 2000; Reeve 1991). 

Within each group, we painted three wasps to have similar appearances and one 

wasp to have a unique appearance. The experimental manipulation of markings 

created a situation in which only one individual (i.e., the unique wasp) was 

recognizable, allowing us to test the benefits of having a phenotype that allows 

for individual recognition. Unlike the quality signals found in Polistes dominulus 

(Tibbetts and Dale 2004; Tibbetts and Lindsay 2008; Zanette and Field 2009) 

and Polistes satan (Tannure-Nascimento et al. 2008), the variable patterns in P. 

fuscatus are not correlated with condition (Tibbetts and Curtis 2007) and do not 

convey information about their bearer's agonistic abilities. Nevertheless, to 
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ensure that behavioral responses resulted from distinctiveness rather than a 

particular color pattern, the same color patterns were used for distinctive and 

nondistinctive wasps in different trials. In half the trials, the distinctive wasp had 

one yellow facial spot whereas in the other half of the trials; the common wasps 

had one yellow facial spot (Fig. 2.1 B). These color patterns mimic naturally 

occurring morphs of P. fuscatus (Tibbetts 2002). The initial experiment that found 

individual recognition in P. fuscatus did so by altering the color of small portions 

of the face, such as the tip of the clypeus (Tibbetts 2002), indicating that the 

wasps are able to distinguish between the treatments. Research on other social 

insects, such as honeybees, has shown that Hymenopteran visual systems are 

well developed and can easily distinguish among complex patterns (Stach et al. 

2004). We chose the distinctive wasp randomly, so the neutral expectation is that 

the distinctive wasp will be just as likely to receive the most aggression from the 

other group members, as it is to receive the least aggression from the other 

group members. 

 

For each trial, we chose four wasps with similar weight (within 0.015 g) and 

general body coloration. To allow identification by the experimenters, each wasp 

was marked with two small red dots in slightly different locations on the top of the 

thorax. Given the position and coloring of the red dots the markings are unlikely 

to increase the distinctiveness of wasps, as wasps do not see red (Briscoe and 

Chittka 2001). Any additional variation provided by the markings would only 

dampen the effect of the experimental treatment. After allowing the paint to dry, 
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wasps were placed in an 8 cm × 8 cm × 2 cm sized container and filmed for 2 h. 

The paint treatments remained on all of the wasps’ faces throughout the trials. 

Each wasp participated in only one trial. 

 

MJS watched the tapes without knowledge of the specific experimental 

treatment. The actor and the recipient were noted for each aggressive act. All 

aggressive acts including darts, lunges, bites, grapples, and mounts were 

recorded (West Eberhard 1969). Aggressive behaviors in social wasps are 

stereotyped, so researchers score these same suites of aggressive behaviors 

across studies (Reeve and Nonacs 1992; Strassmann et al. 2004; Tibbetts 2002; 

Weiner et al. 2009). To ensure that there was no subconscious observer bias; 

MJS trained an individual with no knowledge of the experimental treatment or 

expected outcomes to score behavioral data. The naive observer watched 12 5-

min samples of video from various trials. There was nearly perfect agreement 

between the initial received aggression ranks found by MJS those found by the 

naïve observer (Cohen's Kappa with quadratic weighting, k= 0.87), 

demonstrating that the results are robust across observers (Landis and Koch 

1977). 

 

We analyzed the relative distribution of aggression using two complimentary 

methods. First we asked whether distinctive wasps engaged in a different 

number of aggressive interactions than nondistinctive wasps. Because the levels 

of aggression differed among trials (mean = 254.44 ± 50.01, range = 120–1049 
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aggressive acts), we standardized aggression scores within each trial. To 

calculate the score, we subtracted the mean number of aggressive acts received 

or initiated in a trial from the number received or initiated by the wasp of interest 

and divided this by the standard deviation in aggression scores of that trial. The 

standard aggression scores for distinctive wasps could then be compared to the 

population average (set to 0) with one sample t-tests (Sokal and Rohlf 1995). 

Second, we considered the relative distribution of aggression. Within each trial, 

wasps were ranked 1 (most aggression received) to 4 (least aggression 

received) to analyze the distribution of aggression across all the trials. Because 

the distinctive wasp was chosen randomly the null expectation is that they should 

receive the most aggression in one-fourth of the trials, second most in one-fourth 

of the trials, and so on. We conducted a Monte Carlo simulation of the 

multinomial sampling distribution for 50,000 iterations. This procedure samples 

the probability that a given distribution would occur compared to expected values 

and approximates a chi-square goodness-of-fit test with a sufficiently large 

number of iterations. Means are shown ± SEM and all tests described are two-

tailed. 

 

Results 

 

Rare, easily recognizable phenotypes provided a benefit during social 

interactions, as the distinctive wasps received less aggression than the 

population average (mean aggressive acts received = 0.43 SD less than the 
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population + 0.15 SE, one sample t-test, t17 = −2.95, P = 0.0089). The color 

treatment did not affect the amount of aggression that distinctive wasps received 

(two sample t-test, t16 = 1.05, P = 0.31). Therefore, aggression was influenced by 

whether a wasp was distinctive rather than the individual's particular color 

pattern. Because distinctive wasps were chosen randomly among four 

individuals, the null expectation is that they should receive the most aggression 

in one-fourth of the trials and the least in one-fourth. The distribution of 

aggression, however, was skewed. Distinctive wasps received the least 

aggression in a disproportionate number of trials (Fig 2.2. multinomial sampling 

distribution, N = 18, P = 0.038), providing additional evidence that individuals with 

distinctive phenotypes benefis by receiving less aggression 

 

The amount of aggression initiated by an individual depended on the number of 

distinctive versus common individuals they interacted with. Distinctive wasps 

interacted with three unidentifiable individuals during each trial whereas common 

wasps interacted with two unidentifiable individuals and one distinctive individual. 

As a result, distinctive wasps were more aggressive than the population average 

(mean aggressive acts initiated = 0.38 SD more than the population ± 0.17 SE, 

one sample t-test, t17 = 2.18, P = 0.044). There was no relationship between the 

amount of aggression a wasp initiated and the wasp's color, i.e., yellow spot or all 

black (two sample t-test, t14.7 = 0.42, P = 0.68). When considering the distribution 

of aggression, distinctive wasps initiated the most aggression in a 
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disproportionate number of trials (Fig 2.3. multinomial sampling distribution, N= 

18, P = 0.033). 

 

Discussion 

 

Overall, our results provide experimental evidence that individuals benefit when 

they advertise their identities with rare, distinctive phenotypes. Wasps with 

distinctive, easily recognizable appearances received less aggression than 

wasps with common indistinguishable appearances. Given that receiving 

aggression is costly (Maynard-Smith and Harper 2003; Reeve 1991; West 

Eberhard 1969) these results indicate that distinctive phenotypes are beneficial. 

In addition, our results indicate that identity signaling likely provides a colony-

level benefit in wasps. Wasps that interacted with indistinguishable social 

partners were more aggressive than individuals that interacted with distinctive 

individuals. Thus, identity signaling plays an important role in mediating the 

distribution of aggression in animal societies by allowing aggression to be 

targeted appropriately. Our experimental results demonstrate that there are 

benefits associated with having a rare phenotype as well as interacting with 

individuals that have rare phenotypes. Taken together, these results provide a 

mechanism through which selection may have driven the evolution of variable 

visual features in P. fuscatus: negatively frequency-dependent selection. 

 

EVIDENCE FOR IDENTITY SIGNALS 
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Prior research on individual recognition has primarily focused on recognition 

behavior, with little research testing how selection acts on the phenotypes of 

individuals being recognized (Tibbetts and Dale 2007). Models for the evolution 

of identity signals critically predict that recognizable individuals will benefit by 

advertising their identities (Dale et al. 2001), and our results support the 

predictions of these models. 

 

Traits that evolved to signal individual identity are expected to have a number of 

properties that distinguish them from traits that evolved to convey other types of 

information (Dale 2006). Specifically, identity signals are predicted to (1) be 

highly variable with multimodal frequency distributions, (2) show low to no 

correlations between traits, (3) be uncorrelated with fitness, (4) expressed 

independently of condition, and (5) show a high degree of genetic determination 

(Dale 2006). Any phenotype that fits this specific set of criteria is a plausible 

candidate for an identity signal. 

 

Previous work indicates that P. fuscatus facial patterns fit the predictions of 

identity signaling models. (1) The facial patterns are highly variable (e.g., Fig. 2.1 

A) with a multimodal frequency distribution and (2) no correlation among traits 

(Tibbetts 2002). (3) The color variation does not correlate with indicators of 

fitness. Tibbetts (2002) failed to find any relationship between facial patterns and 

aspects of quality in nest founding queens such as founding strategy, dominance 
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rank, or weight. (4) The facial patterns are also expressed independent of 

condition. Experimental manipulation of larval nutrition had no effect on the 

development of P. fuscatus color patterns (Tibbetts and Curtis 2007). (5) Finally, 

facial patterns are more similar within a nest than between nests. This similarity 

occurs across both workers and gynes (future reproductives), although the 

different castes are reared in different conditions. Therefore, there is likely to be a 

heritable component to variation in facial patterns (M. J. Sheehan and E. A. 

Tibbetts, unpubl. data). Of course, other mechanisms, such as developmental 

stochasticity (Leimar 2005) can give rise to polymorphisms, so additional 

research will be important to assess the precise heritability of P. fuscatus color 

patterns. Overall, the tight fit between the theoretical predictions for identity 

signals and the characteristics of P. fuscatus facial patterns suggests that paper 

wasp facial patterns have likely evolved to signal individual identity. 

 

Comparative work in Polistes provides further evidence that variable color 

patterns have evolved because distinctiveness is beneficial in certain paper wasp 

species. The kind of variable color patterns required to signal individual identity 

have evolved multiple times in Polistes species with complex social interactions 

and linear dominance hierarchies (Tibbetts 2004). Species with simpler social 

interactions, however, do not have variable visual markings. Instead, they have a 

uniform, species typical color pattern with low intraspecific variability. Given that 

the majority of Polistes species do not have variable coloration patterns (Tibbetts 

2004), the conspicuous phenotypic polymorphisms used for identity signaling in 
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P. fuscatus are unlikely to be the result of neutral processes. Rather, selection for 

distinctive identity signals likely drives the evolution of elaborated, recognizable 

phenotypes. 

 

Although our results demonstrate that individuals can benefit by advertising their 

identities, social interactions will not necessarily lead to the evolution of 

phenotypic polymorphism and identity signals. For example, the chemical profiles 

that Pachycondyla queens use for individual recognition (D'Ettorre and Heinze 

2005; Dreier et al. 2007) are not more variable than chemical profiles in ant 

species lacking individual recognition (Dreier and D'Ettorre 2009). Therefore, 

observers can cue into variation that has not evolved specifically to signal 

identity. When being recognizable is neutral, variable features used for individual 

recognition may be lost. In some circumstances, selection may even favor 

individuals that conceal their identities (Johnstone 1997). 

 

IDENTITY SIGNALING AND NEGATIVE FREQUENCY-DEPENDENT 

SELECTION 

 

Most previous examples of negative frequency-dependent selection focus on 

systems with a limited number of morphs that are at an evolutionarily stable 

state. When multiple, evolutionarily stable foraging or mating strategies are 

maintained in a population via negative frequency-dependent selection, selection 

maintains the relative frequencies of the strategies at equilibrium (Maynard Smith 
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1982). In contrast to many other examples of negatively frequency-dependent 

selection, selection for identity signaling favors individuals with a unique 

appearance rather than a particular strategy. As a result, it is expected to 

produce a large array of polymorphic phenotypes. Unique traits are favored 

because they are useful for discriminating among conspecifics and thus are 

expected to spread in a population. As a trait increases in frequency, it will 

become less useful for discriminating among individuals at which point it is no 

longer expected to spread in the population. Unlike evolutionary stable 

strategies, new variants are expected to invade the population because they 

provide individuals with distinctive phenotypes. Over time, this dynamic is 

expected to produce populations with numerous polymorphic traits that are 

uncorrelated (Dale 2006; Dale et al. 2001), as observed in P. fuscatus (Tibbetts 

2002). Therefore, selection for identity signaling differs from many other 

examples of negatively frequency-dependent selection because it favors 

extremely high variation, rather than maintaining a limited number of morphs at 

equilibrium. 

 

BENEFITS: INDIVIDUAL OR GROUP? 

 

Polistes fuscatus paper wasps live in complex social groups where the fitness of 

an individual is influenced by the productivity of their colony, so distinctive 

phenotypes may provide benefits for both the individual and the group (Korb and 

Heinze 2004). Our experiment was designed to test Dale et al.'s (2001) model, 
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which posits that individuals with rare, recognizable phenotypes will benefit by 

receiving less aggression during social interactions; our results are consistent 

with this prediction. In most taxa, high levels of aggression are costly, as fighting 

increases the chance of injury (Jaeger 1981). In Polistes, intense fighting can 

lead to severe injury including the loss of limbs and wings or even death (West 

Eberhard 1969, M. J. Sheehan and E. A. Tibbetts, pers. obs), suggesting that 

reductions of aggression through identity signaling may increase individual 

fitness. Further, individuals that receive intense aggression often reduce other 

activities, including brood care, foraging, and social interactions. Previous 

research on individual recognition in P. fuscatus indicates that distinctiveness 

may reduce aggression in a range of contexts. Known individuals receive less 

aggression than unknown individuals on nests (Tibbetts 2002) and in the 

laboratory (Sheehan and Tibbetts 2008). 

 

The results of this experiment suggest that there may also be colony-level 

benefits associated with identity signaling. Individuals that interacted with 

indistinguishable conspecifics initiated more aggression than those that 

interacted with more distinctive conspecifics. Further, interacting with distinctive 

conspecifics may increase colony stability, as distinctiveness allowed individuals 

to target their aggression appropriately. In natural colonies of P. dominulus, lower 

levels of aggression are associated with higher rates of resource sharing 

(Tibbetts and Reeve 2000). Whether increased cooperation is a cause of 

consequence of lower aggression levels is unknown, though at least one 
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theoretical model predicts that individual recognition will increase cooperation 

(Crowley et al. 1996). Therefore, distinctive phenotypes are likely to be favored at 

both the individual and colony level in P. fuscatus. 

 

Conclusion 

 

Overall, selection for identity signals is likely to occur across a range of taxa and 

sensory modalities. Our results demonstrate that easily recognizable individuals 

with rare, distinctive phenotypes benefit by receiving less aggression from 

conspecifics than individuals with common, nondistinctive phenotypes. Highly 

polymorphic features facilitate recognition in a wide range of taxa from paper 

wasps to swallows (Medvin et al. 1993) to humans (Kanwisher and Yovel 2006). 

Further, recognition is an essential component of social interactions across a 

range of behavioral contexts (Mateo 2004; Sherman et al. 1997; Tibbetts and 

Dale 2007). Therefore, negative frequency-dependent selection favoring identity 

signaling is likely to be an underappreciated mechanism for the maintenance of 

phenotypic polymorphisms in many social taxa. Future research on identity 

signals is likely to uncover many more social situations in which the benefits of 

being unique have driven the evolution of phenotypic diversity. 
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A     B  

 

Figure 2.1. (A) Polistes fuscatus use highly variable facial markings for individual 
recognition. (B) Examples of wasps with experimentally altered facial patterns. 
The wasp in the lower right hand corner has a yellow dot on its clypeus. Ten 
trials contained three wasps with black clypeus tips: one wasp with a yellow 
clypeus tip whereas eight trials contained one wasp with a black clypeus tip: 
three wasps with yellow clypeus tips. 
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Figure 2.2. Wasps with distinctive phenotypes (i.e., the rare morph) benefit from 
advertising their identity. Distinctive wasps received the least aggression in a 
disproportionate number of trials (multinomial sampling distribution, N= 18, P= 
0.038). In each trial, wasps were ranked based on the total number of aggressive 
acts they received from 1 (most) to 4 (least). The dotted line illustrates the null 
expectation if aggression had been distributed randomly. Only the ranks of 
distinctive wasps are shown. 
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Figure 2.3. Wasps with distinctive phenotypes encountered three wasps with the 
same appearance, whereas common wasps encountered two wasps with the 
same appearance. Wasps that encountered three individuals with the same 
appearance were the most aggressive in a disproportionate number of trials 
(multinomial sampling distribution, N= 18, P= 0.033). The dotted line shows the 
null expectation if aggression had been initiated randomly with respect to the 
number of common versus distinctive individuals each wasp interacted with. Only 
the ranks of distinctive wasps are shown. 
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Chapter 3: Selection for individual recognition and the evolution of 

polymorphic identity signals in Polistes paper wasps 

Abstract 

Individual recognition (IR) requires individuals to uniquely identify their social 

partners based on phenotypic variation. Because IR is so specific, distinctive 

phenotypes that stand out from the crowd facilitate efficient recognition. Over 

time, the benefits of unique appearances are predicted to produce a correlation 

between IR and phenotypic variation. Here, we test whether there is an 

association between elevated phenotypic polymorphism and IR in paper wasps. 

Previous work has shown that Polistes fuscatus use variable colour patterns for 

IR. We test whether two less variable wasp species, Polistes dominulus and 

Polistes metricus, are capable of IR. As predicted, neither species is capable of 

IR, suggesting that highly variable colour patterns are confined to Polistes 

species with IR. This association suggests that elevated phenotypic variation in 

taxa with IR may be the result of selection for identity signals rather than neutral 

processes. Given that IR is widespread among social taxa, selection for identity 
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signalling may be an underappreciated mechanism for the origin and 

maintenance of polymorphism. 

Introduction 

Phenotypic variation is essential for recognizing and differentiating between 

social partners. Recognition occurs when one individual, the receiver, 

discriminates between other individuals, the senders, using cues or signals 

produced by the senders (Mateo 2004; Sherman et al. 1997). There are many 

different types of recognition, including species, kin, nestmate and individual. 

Individual recognition (IR) is the most precise form of social recognition, because 

it requires receivers to uniquely identify each social partner (Beecher 1989; 

Tibbetts and Dale 2007). 

Selection may act on the senders and/or the receivers during recognition system 

evolution. As a result, IR can evolve through two nonexclusive paths: (i) receiver 

cognition and perception may evolve so receivers can discriminate between 

individual conspecifics using neutral variation or (ii) the phenotypes of senders 

may evolve so that senders have distinctive, highly variable features that permit 

easy individual identification (Dale et al. 2001; Johnstone 1997). 

To date, most of the research on recognition systems has documented the extent 

of recognition, whereas less is known about the evolution of recognition systems 

and how selection has acted on sender phenotypes (Tibbetts and Dale 2007). A 

method for testing whether recognition selects for the evolution of phenotypic 
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variation is to assess the legacy of selection by comparing recognition abilities 

with the extent of phenotypic variation in a group of closely related species. If 

species with IR have more variable phenotypes than species lacking IR, the 

elevated phenotypic variation in taxa with IR may have evolved to facilitate 

accurate recognition. For example, swallow species with IR have more variable 

calls than species lacking IR, suggesting that selection has favoured call 

diversification in swallow species with IR (Beecher et al. 1986; Medvin and 

Beecher 1986; Medvin et al. 1993). 

Alternatively, selection may act on receiver cognition and perception alone, 

rather than the phenotypic variation in senders. For example, Pachycondyla spp. 

ants use distinctive chemical signatures for IR (D'Ettorre and Heinze 2005; Dreier 

et al. 2007), although their chemical profiles are not more diverse than species 

that lack IR (Dreier and D'Ettorre 2009). Thus, IR may select for receivers that 

can differentiate between individuals based on otherwise neutral phenotypic 

variation. Selection for efficient IR systems can affect both sender and receiver 

phenotypes. Examining the associations between recognition abilities and 

phenotypic polymorphism can differentiate between these two processes. 

Polistes paper wasps provide a good model for testing whether there is an 

association between the specificity of recognition and the extent of phenotypic 

variation within a species. The amount of phenotypic variation is dramatic across 

paper wasps(Enteman 1904; Tibbetts 2004). Some species such as Polistes 

fuscatus have extremely variable colour patterns, whereas other species such as 
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Polistes dominulus and Polistes metricus have less variable colour patterns 

(Fig. 3.1). Less is known about Polistes recognition behaviour. In at least one 

species, P. fuscatus, the variable colour patterns are used for visual IR (Fig. 3.1, 

top row) (Sheehan and Tibbetts 2008; Tibbetts 2002), but P. fuscatus is the only 

wasp species where IR has been tested. Wasp species that appear to be less 

variable may be able to recognize individuals through two means. First, receiver 

perception may have evolved such that receivers can discriminate between 

individuals based on apparently minor colour variation. Second, wasps may use 

other sensory modalities, such as variable chemical signatures, to recognize 

individuals. As a result, it is important to test whether wasp species that lack 

variable visual features also lack IR abilities. 

Here, we test the relationship between IR and phenotypic variation in three 

species of paper wasps (P. fuscatus, P. dominulus and P. metricus). First, we 

quantify the levels of intraspecific colour pattern polymorphism in the species. 

Then, we experimentally test their ability to individually recognize conspecifics by 

comparing the response to familiar and unfamiliar individuals. If selection for IR in 

Polistes promotes and maintains highly variable colour patterns (Tibbetts, 2004), 

then species with low marking variability, such as P. dominulus and P. metricus, 

are not predicted to individually recognize conspecifics. 

Methods 

Colour pattern analysis 
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We describe the relative variation in colour patterns between species by 

assessing the distribution of colours on five different regions of the face 

(Fig. 3.2). Adobe Photoshop CS3 was used to measure the fraction of pixels in 

each of the five areas that were black, yellow or brown. These colour categories 

provide good estimates of the colour variability in P. dominulus and P. metricus. 

Polistes fuscatus have a wider range of brown colours, so any colour that was 

not black or yellow was classified as brown. This categorization underestimates 

the variability of P. fuscatus, so it provides a conservative method of scoring 

colouration with respect to our hypothesis. We collected wasps from nests at a 

number of sites in Michigan throughout the year. For colour analysis, 20 

additional individuals from each species, all from different nests, were randomly 

chosen, freeze-killed and stored in a freezer at −20 °C to ensure that colour 

patterns did not fade. All wasps were measured by a student with no knowledge 

of the specific experimental predictions. 

Behavioural assessment of recognition abilities 

We assessed the recognition abilities of P. dominulus and P. metricus by scoring 

the intensity of aggressive interactions between foundresses with and without 

prior social experiences with each other. Wasps of both species were collected 

near Ann Arbor, MI, in the early spring of 2008. We used 26 focal P. dominulus 

and 28 focal P. metricus foundresses in our trials. Immediately before the 

experiment, all individuals were housed individually and kept in social isolation. 

Previously, the P. dominulus foundresses had participated in choice experiments 
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similar to those described elsewhere (Tibbetts 2008; Tibbetts and Lindsay 2008), 

in which they interacted with model wasps. We previously used methods similar 

to those described in the following paragraph to demonstrate that P. fuscatus can 

recognize individuals (Sheehan & Tibbetts, 2008), so we did not test this species 

again. 

Our experimental design measured the abilities of both P. dominulus and 

P. metricus to remember individual social partners regardless of sensory 

modality. To ensure that foundresses had not encountered each other previously, 

all interactions were staged between foundresses collected from sites at least 

2 km apart. In the first trial (day 0), two foundresses were introduced to each 

other in a small, sterile container and their interactions were filmed. After filming, 

they were housed together until the next day (day 1) at which point they were 

separated and returned to their initial solitary housing. One day later, the same 

two wasps were filmed interacting again (day 2). To ensure that any changes in 

aggression between days 0 and 2 were a result of IR and not of decreases in 

motivation over time, we paired the wasps with other unfamiliar social partners 

on the day before and after (days 1 and 3). On day 1, wasps were housed 

individually for approximately 5 h between separation from their initial partner and 

meeting a new partner. If the wasps are able to recognize and remember social 

partners, they should be least aggressive when they interact with a known 

individual (day 2). Species capable of IR behave differently towards individuals 

with whom they share a history of prior interactions (D'Ettorre and Heinze 2005; 

Dreier and D'Ettorre 2009; Dreier et al. 2007; Karavanich and Atema 1998; 
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Sheehan and Tibbetts 2008; Tibbetts et al. 2008). In this case, species with IR 

are predicted to be less aggressive towards the individual they have previously 

encountered (day 2) than towards individuals they are encountering for the first 

time (days 0, 1 and 3). 

All of the behavioural trials lasted 2 h. Trials were videotaped and the first half 

hour of each trial was scored by an observer who was blind to the identity of 

wasps and the day the trial took place. Wasps engage in a range of aggressive 

and affiliative behaviours. Behaviours were rated on a scale of 0–4 with higher 

scores, indicating more intense aggression: (0) nonaggressive physical contact, 

(1) darts, (2) darting while snapping mandibles, (3) bites and (4) mounting or 

grappling. To compare the levels of aggression between trials, we calculated 

three measures: an intensity index, the number of nonaggressive interactions 

and an overall aggression index. The intensity index measured how intense 

aggressive interactions were and was calculated by summing the scores of 

aggressive interactions and dividing by the number of aggressive acts. The 

number of nonaggressive interactions was calculated by tallying the number of 

discreet nonaggressive interactions that took place. The overall aggression index 

took into account both aggressive and affiliative acts. The aggression index was 

calculated using the same method as the intensity index with the addition of the 

number of nonaggressive interactions in the denominator (Dreier et al., 2007; 

Sheehan & Tibbetts, 2008). The indices and number of nonaggressive contacts 

were compared between days using Friedman’s anova and multiple comparisons 

(Sokal and Rohlf 1995). Post hoc power tests were carried out using G*Power. 
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Results 

Intraspecific colour pattern variation 

Polistes fuscatus have far more variable colour patterns than either P. dominulus 

or P. metricus, and the differences in variation across species are obvious after 

examining a few pictures of each species (Fig. 3.1). The greater variability in the 

colour patterns of P. fuscatus arises from a combination of two factors. First, 

P. fuscatus have large amounts of variation in each area of the face (Fig. 3.3), 

whereas the variation in P. dominulus and P. metricus is limited to small areas of 

the face (clypeus in P. dominulus and antennal region in P. metricus). Second, 

there are more potential variants for each face region in P. fuscatus than 

P. metricus or P. dominulus. For example, the clypeus in P. fuscatus can contain 

a huge range of yellow, black and brown colour patterns (Fig. 3.1, top row). In 

contrast, the variation in P. dominulus is largely restricted to the size and shape 

of black clypeal spots, which previous research has shown acts as a signal of 

fighting ability (Tibbetts & Dale, 2004). Variation in P. metricus is restricted to the 

brown vs. black pigment in the eyebrow and frons areas. The variation in 

P. metricus is likely to be less visually apparent than the variation in P. fuscatus 

and P. dominulus, as the differences in colouration are quite subtle, and this area 

is typically obscured by the antennae during social interactions. 

Behavioural recognition experiments 

Polistes dominulus 
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There is no evidence of IR in P. dominulus. Aggressive encounters between 

wasps with prior histories of social interactions were just as intense as 

encounters between wasps that had not previously met (Fig. 3.4 A. Friedman’s 

anova, F(3, n = 26) = 1.51, P = 0.68; post hoc power analysis, Power = 0.95). 

Additionally, the number of nonaggressive contacts did not differ between trials 

(Fig. 3.4 B. Friedman’s anova, F(3, n = 26) = 3.79, P = 0.29; post hoc power 

analysis, Power = 1.00). Finally, the overall aggression index, which accounts for 

both aggressive and nonaggressive interactions, did not differ between trials 

(Fig. 3.4 C. Friedman’s anova, F(3, n = 26) = 5.67, P = 0.13; post hoc power 

analysis, Power = 0.91). 

Polistes metricus 

There is no evidence of IR in P. metricus. The intensity of aggression declined 

after the first encounter in P. metricus (Fig. 3.5 A. Friedman’s anova, F(3, n = 28) = 

18.06, P < 0.0001; post hoc power analysis, Power = 0.95). However, there were 

no differences in the intensity of aggression after the first encounter. Aggressive 

intensity was similar among pairs of individuals with and without prior social 

histories (Fig. 3.5 A). There were also a similar number of nonaggressive 

contacts across all trials (Fig. 3.5 B. Friedman’s anova, F(3, n = 28) = 1.72, P = 0.63; 

post hoc power analysis, Power = 1.00). The overall aggression index, which 

incorporates both aggressive and nonaggressive interactions, was highest during 

the initial trial and lower in subsequent trials (Fig. 3.5 C. Friedman’s anova, F(3, 

n = 28) = 13.76, P = 0.003; post hoc power analysis, Power = 0.95). Although 
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aggression indices declined between a pair’s first (day 0) and second (day 2) 

encounters [Nonparametric Tukey’s HSD (Honestly significant difference), P < 

0.05], there was no difference in aggression between the unfamiliar pairs on days 

1 and 3 and the familiar pair on day 2 (Nonparametric Tukey’s HSD, P > 0.2). In 

sum, there was no difference in the intensity of aggressive or nonaggressive 

interactions between wasp pairs that had interacted previously vs. pairs that 

lacked a prior history of social interactions. 

Discussion 

Paper wasp species differ markedly in their relative levels of intraspecific colour 

pattern variation. As predicted, the extent of colour variation is associated with 

recognition abilities in the three species tested. Polistes fuscatus are far more 

variable than P. metricus or P. dominulus and have robust long-term memories of 

individual conspecifics (Sheehan & Tibbetts, 2008). In contrast, P. dominulus and 

P. metricus have little variation in colour patterns. In both species, aggressive 

and affiliative behaviours did not vary with social history, indicating that neither 

species recognizes individual social partners. 

The pattern of aggression across trials was slightly different in P. metricus than 

P. dominulus. Polistes metricus were more aggressive during their first encounter 

with a conspecific than during subsequent social encounters, whereas 

P. dominulus were similarly aggressive across all social encounters. The pattern 

of aggression in P. metricus is not evidence of IR, as aggression did not vary with 

individual social experience. Further, other species that lack IR show similar 
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patterns of declining aggression over subsequent encounters (Dreier & D’Ettorre, 

2009). Instead, the pattern of aggression may reflect differences in the social 

behaviour of the species. For example, P. metricus are less likely to form co-

operative foundresses associations than P. dominulus or P. fuscatus and have 

extremely high rates of nest usurpation (Gamboa 1978; Gamboa et al. 2004). As 

a result, P. metricus may have a stronger initial aggressive response to 

conspecifics than P. dominulus or P. fuscatus. 

The results of this study support a key prediction of the hypothesis that selection 

for efficient IR promotes and maintains phenotypic polymorphism. Selection for 

efficient social recognition has been hypothesized to favour the evolution of 

variable, distinctive phenotypes, thus promoting and maintaining polymorphism 

within populations (Dale 2006; Dale et al. 2001; Sheehan and Tibbetts 2009). 

Over time, we expect selection for identity signalling to produce numerous 

phenotypes, such as those seen in P. fuscatus (Fig. 3.1, top row). In contrast, 

individuals in species lacking IR are not under selection to advertise their identity 

with unique phenotypes. Therefore, species without IR are predicted to have less 

variable phenotypes than those with IR, as we found in Polistes. A similar 

relationship between variation and recognition has been found in a few other 

species, suggesting that evolution can adaptively shape sender phenotypes to 

facilitate accurate recognition [e.g. comparative studies call variation in swallows 

(Beecher et al. 1986; Medvin et al. 1993) and penguins (Jouventin and Aubin 

2002; Jouventin et al. 1999)]. 
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An alternative hypothesis for the relationship between IR and phenotypic 

variation is that pre-existing variation is required to allow the evolution of IR. That 

is, pre-existing variation may be co-opted to allow IR rather than IR selecting for 

phenotypic variation. If pre-existing variation has been co-opted for recognition in 

the wasps, variation is predicted to be more strongly associated with a species’ 

evolutionary history than its social behaviour. In fact, variable colour patterns in 

the Polistes are significantly associated with a species’ social behaviour rather 

than its evolutionary history, suggesting that the benefits of social recognition 

have selected for phenotypic variation in certain taxa (Tibbetts, 2004). For 

example, P. metricus and P. fuscatus are sister species, yet foundresses of each 

species have different social behaviour and different patterns of phenotypic 

variation. Further, recent behavioural work has illustrated the mechanism that 

could drive the evolution of phenotypic variation. Wasps with unique phenotypes 

receive less aggression during dominance contests than individuals with a 

common appearance, indicating that phenotypic variation provides benefits by 

facilitating recognition (Sheehan & Tibbetts, 2009). Although inferring the 

direction of evolutionary change can be difficult, current evidence suggests that 

IR selects for phenotypic variation rather than standing variation being co-opted 

for recognition behaviour in paper wasps. Future behavioural analysis on 

additional Polistes species with and without phenotypic variation will be important 

to confirm this pattern. 

Data on chemical communication also suggest that IR has selected for variation 

rather than vice versa. In Polistes, variable cuticular hydrocarbon profiles have 
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been found in all species examined to date (Gamboa 2004). Both P. dominulus 

and P. metricus pay attention to the variation and use hydrocarbons to 

communicate nest membership (Cini et al. 2009; Singer and Espelie 1996) and 

individual fertility (Izzo et al. 2010). However, the results of this study 

demonstrate that neither P. dominulus nor P. metricus recognize individuals 

based on their variable hydrocarbon profiles. Therefore, pre-existing variation is 

not sufficient to allow the evolution of IR. Perhaps, the evolution of IR using 

chemical information is difficult in Polistes, because cuticular hydrocarbons 

already convey information about nestmate identity and fertility. Evolving a novel 

signal in a different modality may be easier than modifying chemical information 

to convey multiple, different kinds of information. Examining whether the 

presence of a pre-existing communication system constrains the evolution of 

other types of recognition within the same sensory modality presents an exciting 

possibility for future research. Overall, most evidence suggests that IR has been 

selected for variable visual features in P. fuscatus. 

Mechanisms other than identity signalling may also maintain colour 

polymorphism in a population, including apostatic selection, mate choice for 

heterozygosity and alternative behavioural strategies. However, these 

alternatives are unlikely to explain the pattern of polymorphism in P. fuscatus. 

Apostatic selection favours phenotypic variation that is visually apparent to 

predators (Bond and Kamil 2002). However, variation in P. fuscatus is primarily 

confined to the face (Tibbetts, 2002), which is useful during face-to-face social 

interactions but is not noticeable from a distance. Therefore, it is unlikely that 
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variation in paper wasps has evolved to avoid detection by predators. 

Polymorphic colour patterns can also evolve via sexual selection when mates are 

chosen for novelty or mate heterozygosity (Eakley and Houde 2004; Farr 1977). 

This hypothesis predicts that the sex under strong sexual selection will be 

polymorphic. However, facial pattern polymorphism in Polistes is confined to 

females, even though males are lekking and experience strong sexual selection 

(Beani and Turillazzi 1988; Matthessears and Alcock 1986; Polak 1993; Post and 

Jeanne 1983). Finally, phenotypic polymorphism is often associated with 

alternative social or mating strategies (Sinervo et al. 2001; Svensson et al. 2005). 

However, the colour pattern variation in P. fuscatus is not related to behavioural 

strategies such as founding strategy, dominance or social caste (Tibbetts, 2002). 

Therefore, although numerous mechanisms can maintain phenotypic 

polymorphism, most of these mechanisms are unlikely to be relevant to the 

variation in Polistes colour patterns. Instead, this study and other published work 

suggest that selection for identity signals is likely to have driven the evolution of 

the highly variable colour patterns in the paper wasps (Sheehan & Tibbetts, 

2009). 

Identity vs. quality signalling 

The results of this study confirm that P. fuscatus and P. dominulus rely on 

different communication systems. Polistes fuscatus use IR (Tibbetts, 2002; 

Sheehan & Tibbetts, 2008), whereas P. dominulus are incapable of IR, relying 

instead on a visual signal of quality (Tibbetts and Dale 2004; Tibbetts and 
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Lindsay 2008; Tibbetts et al. 2010). Despite the differences in communication 

behaviour, these species have very similar social systems. Both species display 

complex, flexible founding strategies, where queens may initiate a nest either 

alone or in co-operative groups. When multiple queens co-operate, they form a 

linear dominance hierarchy that influences work, reproduction and aggression 

(Gamboa et al. 2004; Roseler et al. 1991). Foundress associations remain 

flexible for weeks, so foundresses of both species engage in aggressive contests 

with numerous familiar and unfamiliar individuals (Reeve 1991; West Eberhard 

1969; Zanette and Field 2009). 

Given the similar social systems of P. dominulus and P. fuscatus, what accounts 

for the differences in the species’ signalling systems? One possibility is that their 

social systems differ in subtle ways that have influenced signal evolution. Signals 

of fighting ability are expected to evolve when individuals compete with many 

unfamiliar rivals (Tibbetts and Safran 2009), while identity signals are more 

important in smaller, stable groups (Tibbetts & Dale, 2007). Empirical data 

indicate that the quality signals in P. dominulus may be used primarily during 

interactions with non-nestmates (i.e. during early spring dominance contests 

before nesting groups are established or during attempted nest usurpation) 

(Tibbetts and Shorter 2009; Zanette and Field 2009). Identity signals in 

P. fuscatus are important during dominance interactions within established nests 

(Tibbetts, 2002). Therefore, identity and quality signals may reflect solutions to 

different types of social problems faced by Polistes wasps – non-nestmate 

interactions during colony foundation vs. linear dominance hierarchies among 
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queens. Although communication researchers sometimes considers signal 

evolution to be a deterministic process, with a set of social conditions leading to a 

certain type of signalling system, historical contingency may also play an 

important role in signal evolution. 

Conclusions 

IR requires receivers to distinguish between many individual social partners on 

the basis of unique cues (Tibbetts et al. 2008). Recognition systems may evolve 

via two paths: (i) receivers may be favoured to pay attention to pre-existing 

phenotypic variation and (ii) senders may be favoured to advertise their identities 

with variable phenotypes. Distinguishing between these two non–mutually 

exclusive alternatives is challenging, although studies examining the relationship 

between phenotypic variation and recognition behaviour can provide insight into 

the dynamics of recognition system evolution. The results of this study 

demonstrate that two Polistes species without variable phenotypes lack IR, 

supporting the hypothesis that sender phenotypes have evolved to facilitate 

accurate recognition. Together with other published results (Tibbetts, 2004; 

Sheehan & Tibbetts, 2009), the current study provides evidence that the variable 

colour patterns in P. fuscatus have evolved via selection for easily recognizable 

identity signals rather than neutral processes. 
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Figure 3.1. Portraits showing the colour pattern variation within each of the three 
species in this study.  Polistes fuscatus (top row) have variable colouration in 
numerous regions of the face. Note that there is also a wide range of colour 
including numerous shades of brown. Polistes dominulus (middle row) has 
species-typical yellow markings on its face that show low levels of variability, 
although the black mark in the middle of the clypeus (the badge of status) is 
variable. Polistes metricus has some invariant colour regions (clypeus and inner 
eyes), but the species-typical markings on the frons and eyebrow show some 
variability in the extent of brown colouration. 
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Figure 3.2. Schematic of the regions of the wasp face considered in this study. 
(1) the clypeus, (2) the upper frons or ‘eyebrow’, (3) the frons, (4) the right inner 
eye and (5) the left inner eye. For the frons (region 3), the antennal sockets were 
not included in the total area. 
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Figure 3.3.  Polistes fuscatus is by far the most variable of the three species. For 
each region, the percentage covered by each of the three colours is shown by 
the box plots. Black is at the top, yellow is in the middle and brown is at the 
bottom. Note that P. fuscatus shows variability in all of the regions and that the 
clypeus shows a wide of colouration patterns. 
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Figure 3.4.  Polistes dominulus show no evidence of individual recognition. 
Individuals with whom they have interacted previously (day 2) receive similar 
amounts of aggression as individuals they have never encountered (days 0, 1 
and 3). The overall aggression indices (a), the number of nonaggressive contacts 
(b) and the intensity of aggressive acts (c) towards individual they have 
interacted with previously as individuals they have never encountered before 
does not differ. Days that are significantly different (Nonparametric Tukey’s HSD, 
P < 0.05) are designated with different letters. Box plots show medians and 
quartiles.  
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Figure 3.5. Levels of aggression among  Polistes metricus decline over time and 
do not show evidence of individual recognition. Interactions are the most 
aggressive during the first encounter and are less aggressive in subsequent 
encounters. When wasps re-encounter their social partner from days 0 to 2, they 
are less aggressive (a, c). However, they are similarly less aggressive to other 
new social partners on days 1 and 3, suggesting that motivation for aggression 
declines over time. Additionally, there are no differences in affiliative behaviours 
across trials (b). Days that are significantly different (Nonparametric Tukey’s 
HSD, P < 0.05) are designated with different letters. Box plots show medians and 
quartiles.  
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Chapter 4: Specialized face learning is associated with individual 

recognition in paper wasps 

 

 We demonstrate that the evolution of facial recognition in wasps is 

associated with specialized face-learning abilities. Polistes fuscatus can 

differentiate among normal wasp face images more rapidly and accurately than 

nonface images or manipulated faces. A close relative lacking facial recognition, 

Polistes metricus, however, lacks specialized face learning. Similar 

specializations for face learning are found in primates and other mammals, 

although P. fuscatus represents an independent evolution of specialization. 

Convergence toward face specialization in distant taxa as well as divergence 

among closely related taxa with different recognition behavior suggests that 

specialized cognition is surprisingly labile and may be adaptively shaped by 

species-specific selective pressures such as face recognition.  

 

 

 The cognitive mechanisms underlying learning abilities are surprisingly 

similar across taxa as diverse as mammals, birds, insects, and mollusks (Papini 
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2002). Although the mechanisms that underlie learning are broadly generalized 

across animals, there is increasing evidence that learning abilities are adaptively 

shaped by species’ ecology and can be highly specialized (Shettleworth 2010). 

One of the most striking examples of specialized cognition is specialized face 

learning found in some mammals, including humans (Kendrick et al. 1996; 

McKone et al. 2007; Pascalis and Bachevalier 1998). Individual face recognition 

is an important aspect of human social interactions, and our brains process the 

images of normal conspecific faces differently than any other images (Yovel and 

Kanwisher 2004). Further, individual recognition is a type of complex social 

behavior that could favor specialized cognition (Tibbetts and Dale 2007) because 

it requires flexible learning and memory and has the potential to dramatically 

increase cognitive demands. However, the claim that face specialization is an 

adaptation to facilitate individual recognition has been contentious, in part 

because it is unclear whether face learning is based on conserved mechanisms 

or has evolved independently in multiple mammalian lineages (Leopold and 

Rhodes 2010; Pascalis and Kelly 2009). If face specialization is an adaptation to 

facilitate face recognition, we predict that specialization will be associated with 

the evolution of facial individual recognition across distant taxa.  

 Paper wasps are a good system for examining the evolution of face 

specialization because closely related wasp species differ in their ability to 

individually recognize conspecific faces. The paper wasp, Polistes fuscatus, has 

variable facial features that are used to recognize individual conspecifics 

(Sheehan and Tibbetts 2008; Tibbetts 2002). Visual recognition is possible in 
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Polistes wasps because they have acute vision (Land 1997) and live in well-lit 

nests. P. fuscatus nests are often initiated by groups of cooperating queens, in 

which relative reproduction is determined by a strict linear dominance hierarchy 

(Reeve 1991; Reeve et al. 2000); individual recognition stabilizes social 

interactions and reduces aggression within these cooperative groups (Sheehan 

and Tibbetts 2009). Some wasp species, such as Polistes metricus, typically nest 

alone (Hughes et al. 1993) and therefore lack competition among queens. 

Solitary nest founding is associated with a lack of facial pattern variability 

(Tibbetts 2004), and experiments have shown that P. metricus does not 

recognize conspecifics as individuals (Sheehan and Tibbetts 2010).  

 We tested the adaptive evolution of specalized face learning by comparing 

face specialization in P. fuscatus and P. metricus. We predicted that P. fuscatus 

will learn normal face images faster and more accurately than nonface images or 

manipulated faces (Fig. 4.1), whereas P. metricus will not. Comparing learning of 

normal and manipulated face images (Fig. 4.1) provides a particularly good test 

of face specialization because manipulated faces are composed of the same 

colors and patterns as those of normal faces (table 4.1), but alteration may 

prevent the perceptual system from identifying the stimuli as faces. We tested 

learning by training wasps to discriminate between two images using a negatively 

reinforced T-maze (Fig. 4.5; Supplemental materials and methods). The floor of 

the entire maze was electrified, except for a “safety zone” in one arm of the 

maze, which was consistently associated with one image in a pair. The position 

of the safety zone switched across trials in a predetermined pseudo-random 
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order. Wasps were placed in an antechamber, allowed to acclimate, and then 

released into the electrified maze for 2 min. A wasp “chose” when it entered a 

chamber in one of the arms of the maze. Each wasp was a healthy wild-caught 

adult female naïve to the training paradigm and was tested only once. We trained 

12 wasps for 40 consecutive trials on each image type (Fig. 4.1). We compared 

the speed of acquisition using generalized estimating equations (GEEs) and total 

number of correct choices between image treatments using 2-by-2 χ2 tests.  

 We found that individual recognition is associated with specialization for 

conspecific face learning in paper wasps. P. fuscatus distinguished pairs of 

normal faces more rapidly and accurately than nonface and manipulated face 

images (GEE, full model: Wald χ2 = 32.06, df = 4, P < 0.0001, n = 2400 trials) 

(Fig. 4.2, A and B). These results are surprising because Hymenopteran visual 

systems are predicted to distinguish between high-contrast patterns more readily 

than complex images of natural scenes, such as faces and caterpillars (Lehrer 

and Campan 2005). Nevertheless, P. fuscatus that were trained to discriminate 

faces learned faster (for trials 1 to 30: GEE, Wald χ2 = 5.61, P = 0.018, n = 720 

trials) and made more correct choices than did wasps trained to discriminate 

simple patterns (χ2 = 9.1, P = 0.0026, n = 960 trials) (Fig. 4.3 A). A greater 

familiarity with faces than patterns cannot explain the result because paper 

wasps are generalist visual predators of caterpillars (Land and Fernald 1992) yet 

learn to discriminate between pairs of caterpillars more slowly (GEE, Wald χ2 = 

25.45, P < 0.0001, n = 960 trials) and with fewer correct choices than between 

pairs of faces (χ2 = 45.02, P < 0.0001, n = 960 trials) (Fig. 4.3 A). The most 
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striking evidence for specialized face learning in P. fuscatus is that they have 

trouble learning faces without antennae. Wasps learn pairs of antenna-less faces 

more slowly and less accurately than normal faces (lower rate of acquisition 

GEE, Wald χ2 = 13.98, P < 0.0001, n = 960 trials; and fewer correct choices χ2 = 

18.85, P < 0.0001, n = 960 trials). Therefore, antennae are an essential cue for 

effective face recognition. In a separate image manipulation, we rearranged the 

components of the wasp face and found that facial configuration also influences 

learning. Wasps trained to discriminate pairs of rearranged faces had lower rates 

of acquisition (GEE, Wald χ2 = 20.18, P < 0.0001, n = 960 trials) and made fewer 

correct choices (χ2 = 18.28, P < 0. 0001, n = 960 trials) (Fig. 4.3 A) than did 

wasps trained to discriminate pairs of normal faces. Taken together, these data 

suggest that P. fuscatus do not use general pattern- or shape-discrimination 

abilities to recognize conspecific faces. Instead, faces appear to be treated as 

unique visual inputs.  

 We next examined how face specialization co-varies with individual face 

recognition by testing learning in P. metricus, which lacks individual recognition 

(Sheehan and Tibbetts 2010). P. metricus showed no evidence of specialized 

face learning. In fact, wasps trained to discriminate pairs of face images 

performed no better than chance (χ2 = 0.2, P = 0.65, n = 480 trials) (Fig. 4.3 B). 

In contrast to P. fuscatus, P. metricus had higher rates of acquisition when 

trained to discriminate patterns and caterpillars than conspecific faces (GEE full 

model: Wald χ2 = 8.48, df = 2, P = 0.014, n = 1440 trials; patterns: Wald χ2 = 

8.27, P = 0.004, n = 960 trials; caterpillars: Wald χ2 = 4.02, P = 0.045, n = 960 
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trials) (Fig. 4.2 C). Additionally, P. metricus choose the correct pattern and 

caterpillar images more often than the correct conspecific face image (pattern: χ2 

= 10.47, P = 0.0012, n = 960 trials, caterpillar: χ2 = 7.37, P = 0.0066, n = 960 

trials) (Fig. 4.3 B).  

 To ensure that the difference in face-learning abilities between the two 

species is caused by cognitive differences rather than the particular face stimuli 

used, we trained each species to discriminate heterospecific face images. P. 

fuscatus learned the face stimuli of both species more rapidly and made more 

correct choices than did P. metricus (rate of aquistion GEE full model: Wald χ2 = 

39.43, df = 2, P < 0.0001, n = 1920 trials; P. fuscatus faces: Wald χ2 = 32.38, P < 

0.0001, n = 960 trials; P. metricus faces: Wald χ2 = 7.11, P = 0.008, n = 960 

trials; number correct choices, P. fuscatus faces: χ2 = 42.52, P < 0.0001, n = 960 

trials; P. metricus faces: χ2 = 10.05, P = 0.0015, n = 960 trials) (Fig. 4.4, A and 

B). Although P. metricus learned face images poorly, they were able to 

discriminate between pairs of P. fuscatus faces; wasps performed better than 

chance in the last 10 trials (65.8%; χ2 = 5.54, P = 0.019, n = 120 trials) (Fig. 4.4 

A). We further analyzed whether P. metricus treat faces as unique visual inputs 

by examining how antennae removal influenced face learning. Unlike P. fuscatus, 

digital removal of the antennae from images did not reduce the number of correct 

choices (χ2 = 3.33, P = 0.068, n = 960 trials) (Fig. 4.4 C) or rates of learning 

(GEE, Wald χ2 = 2.23, P = 0.14, n = 960 trials), providing further evidence that 

faces are not special for P. metricus. Differences in face learning between the 

two species cannot be attributed to general differences in visual learning 
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because both species learned to discriminate between pairs of artificial patterns 

and caterpillars at the same rate and with the same accuracy (rate of acquisition 

GEE full model: Wald χ2 = 2.66, df = 2, P = 0.27, n = 1440 trials; number correct 

choices patterns: χ2 = 3.47, P = 0.063, n = 960; caterpillars: χ2 = 1.52, P = 0.22, n 

= 960 trials) (Fig. 4.4 D). Therefore, P. fuscatus and P. metricus differed only in 

their ability to learn normal face stimuli. Differences in visual acuity between the 

two species cannot account for the results because morphological 

measurements of facet diameter demonstrate that P. metricus is likely to have 

more acute vision than that of P. fuscatus (Table 4.2 and Fig. 4.6). Instead, 

specialized face learning is an evolutionarily labile trait that tracks individual 

recognition.  

 Overall, our data suggest that selection for efficient individual recognition 

has led to the adaptive evolution of specialized face learning in the paper wasp 

P. fuscatus. Specialized face learning provides a remarkable example of 

convergent evolution between wasps and mammals. Although mammals and 

wasps have dramatically different eyes and neural structures (Farris 2005; Land 

and Fernald 1992), specializations for recognizing conspecific faces have arisen 

independently in both groups. Although specialized face learning in mammals 

and wasps are phenomenologically similar, they are likely to have different 

mechanistic bases. Face learning in primates and sheep is highly specialized, 

involving multiple brain regions and face-specific neurons (Kendrick and Baldwin 

1987; McKone et al. 2007). Examining whether similar neural signatures of 

cognitive specialization are found in the “miniature” brain of an insect (Chittka 
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and Niven 2009) provides an interesting avenue for future comparisons. The 

evolutionary flexibility of specialized face learning is striking and suggests that 

specialized cognition may be a widespread adaptation to facilitate complex 

behavioral tasks, such as individual recognition.  
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Figure 4.1 Images used for training wasps. Wasps were trained to discriminate 
between pairs of images. Pairs are shown in the same row except for P. metricus 
face images. For P. metricus face images, the unmanipulated faces in the top 
row were paired with the manipulated images of the other face (for example, top 
left paired with middle left and bottom left). Image statistics for all images are 
provided in table S1.  
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Figure 4.2. P. fuscatus learned to discriminate between pairs of conspecific face 
images faster than (A) other images such as patterns and caterpillars and (B) 
manipulated face images. (C) P. metricus learned to discriminate between pairs 
of patterns and caterpillars faster than conspecific face images. Line graphs 
show the mean number of correct choices (±SEM) per 10 trial blocks. Chance 
performance is 5 correct choices per 10 trial blocks; n = 12 wasps for each 
treatment.  
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Figure 4.3. (A) P. fuscatus made more correct choices when trained to 
discriminate between pairs of conspecific face images than nonface or 
manipulated face images. (B) P. metricus made fewer correct choices when 
trained to discriminate between pairs of conspecific face images than nonface 
images. Bars show the sum of correct choices across all wasps in a treatment as 
a percent of 480 trials. Random choice is 50%; n = 12 wasps for each treatment. 
Asterisks denote the statistical significance level for comparisons to normal 
conspecific faces: **P < 0.001; ***P < 0.0001.  
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Figure 4.4. P. fuscatus learned to discriminate between wasp face images faster 
than did P. metricus when trained to discriminate both (A) P. fuscatus and (B) P. 
metricus face images. Line graphs show the mean number of correct choices 
(±SEM) per 10 trial blocks. Chance performance is 5 correct choices per 10 trial 
blocks. (C) Removal of the antenna from faces decreases learning performance 
in P. fuscatus but not in P. metricus. (D) The two species make a similar percent 
of correct choices when learning nonface images. Bars show the sum of correct 
choices across all wasps in a treatment as a percent of 480 trials; n = 12 wasps 
for each treatment. Asterisks denote the statistical significance: NS, P > 0.05; 
***P < 0.0001.  
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Materials and Methods 

Maze Construction 

 Maze walls were white foam board that was glued to a clear acrylic ceiling 

(Optix brand by Plaskolite, www.plaskolite.com, Fig 4.5). The walls were 7mm 

high, which is shallow enough to prevent wasps from flying inside the maze. This 

ensured that wasps received a small electric shock at all times, unless they were 

in the ‘safety zone’. 

 The floor of the maze was a small piece of anti-static conductive foam 

(Abramson et al. 2004). The foam is impregnated with graphite, so it carries a 

small electrical current. To create an electrified surface, two parallel copper wires 

were run through opposite ends of the foam. Anti-static foam provides a 

consistent, low-level electric charge, so it is ideal for negative reinforcement 

training. Voltage was regulated using a variac transformer and regularly checked 

using a digital multimeter. Voltage was set so that wasps received approximately 

4 volts of electricity, which elicits a response but does not inhibit movement. A 

‘safety zone’ was created by placing a separate, non-electrified piece of foam 

next to the electrified piece so that they made a seamless floor.  

 

Stimulus Creation 

 All images used in training are shown in Fig 4.1 of the main text. We 

tested wasps on different three pairs of stimuli for a total of six stimuli per image 

set (Fig 4.1). Normal facial images of P. fuscatus were photographs of wasps 

from Michigan, USA that showed the face and antenna. Antennae-less faces 
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were created by digitally covering the portion of the antennae external to the face 

with the same color as the background of the image. Rearranged face stimuli 

were created by digitally manipulating these same images using Adobe 

Photoshop CS3. For each face, facial features (e.g. clypeus, mandible, antennal, 

eye, etc) were traced and copied onto separate layers. The facial features were 

then re-arranged and placed in abnormal configurations, while maintaining the 

overall shape of the face.  Face images of P. metricus were photographs of 

wasps from Michigan, USA that showed the face and antennae.  Natural face 

variation is limited in P. metricus, so variation was added to some images using 

Adobe Photoshop CS3. Images were altered to add variation that commonly 

occurs in the Polistes: yellow inner eye stripe, black clypeus spots, yellow stripes 

above the antenna, etc. P. metricus did not show any preference for normal or 

modified faces. During the first block of ten trials, when any bias should be 

strongest, P. metricus chose normal and modified faces at the same rate (Normal 

faces = 53.3%, N=12 wasps, χ2 = 0.25, P = 0.60). Because P. metricus failed to 

learn normal conspecific face images we did not train them to discriminate 

manipulated conspecific faces. Pictures were all taken using a Cannon 

Powershot G10 at the highest resolution using the macro setting. All pictures 

were cropped and re-sized so that they were 7 mm high and 14 mm wide with a 

300 DPI resolution (approximating the size of a wasp). 

 The simple black and white patterns were created using Adobe Illustrator 

CS3. Patterns were created based on previously published patterns used to train 

honeybees (Benard and Giurfa 2004). All patterns were sized to be 7 mm high. 
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To create the caterpillar stimuli, we searched the internet for high resolution 

images of caterpillars available under creative commons. We chose pictures with 

similar backgrounds (i.e. green vegetation).  As with other pictures, caterpillar 

images sized to be 7 mm high and 14 mm wide with a 300 DPI resolution. All 

images were printed using a commercially available Sony Picture Station photo 

printer. 

 Stimuli were placed both inside and outside the side chambers of the 

maze (Fig 4.5). This design ensured that wasps could view the stimuli at close 

range before making a decision. For all trials, the maze was well lit using a full-

spectrum incandescent light bulb, ensuring that the stimuli were easily visible. 

 

Image Analysis 

 When discriminating among complex images, Hymenopteran vision is 

particularly sensitive to the level of contrast in the images (Lehrer and Campan 

2004; Lehrer and Campan 2005), with higher contrast images being easier to 

discriminate. We examined the amount of contrast in the stimuli used in our study 

by calculating the high spatial frequency (>5 deg) power for each image, 

following methods by Rajimehr et al (Rajimehr et al. 2011). To do so, we 

processed the images in MATLAB by extracting the high spatial frequency power 

spectrum with a bandpass filter. To compare images, we standardized the high 

spatial frequency by the total power in the image. Normalized high spatial 

frequency values for the images are presented in Table 4.1. Overall differences 

in color could also influence learning if some image sets were more diverse in 
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color than others. Therefore, we also calculated the overall RGB values with 

Photoshop CS3 (Table 4.1). Finally, we report the complexity of the images as 

measured with JPEG file sizes (Table 4.1). Simpler images compress to smaller 

file sizes, with increasing file size indicating increasing image complexity (Wu et 

al. 2008). 

 The image analysis confirms that the P. fuscatus face images used for 

training do not differ substantially from other natural images such as caterpillars 

or from the manipulated versions of the faces. Additionally, patterns are the 

simplest images with the highest contrast. Further, P. metricus faces tend to 

have less contrast (as measured by high spatial frequency) than the other natural 

images, which may help explain the relatively poor performance of both species 

when trained to discriminate between P. metricus face images. 

  

Training Process 

 All wasps used in this experiment had no prior experience in the maze. 

Each wasp received 40 successive 2-minute trials. In each trial, a wasp was 

placed by hand into the antechamber. Wasps were left in the antechamber for 

approximately 10 seconds. During this time, wasps did not receive any electric 

shock. Once wasps were acclimated to the chamber, the electricity was turned 

on and a sliding door was opened.  After release, wasps were given two minutes 

in the maze to choose between chambers associated with two images. A wasp 

‘chose’ when it fully entered one of the chambers. Even though choices occurred 

prior to two minutes, wasps were left in the electrified maze until the end of the 2-
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minute period. In rare cases (31 out of 5840 trials) wasps had not chosen by the 

end of the 2 minute trial, so we continued the trial until the wasp had chosen 

(typically within 30 seconds), at which point the wasp was removed. Wasps could 

choose between two chambers, one of which was a ‘safety zone’ that did not 

provide electric shock. The ‘safety zone’ was positioned on the right or left side of 

the maze in a predetermined pseudo-random order. One of the images was 

consistently associated with the ‘safety zone’ while the other image was 

consistently associated with the electrified chamber. At the end of a trial, a wasp 

was manually removed from the maze and placed in a small container with sugar 

and water while the maze was set-up for the next trial. 

 Some individuals showed a strong, consistent bias toward one size of the 

maze, a common issue in animal training.  For each wasp, the ‘safety zone’ was 

on the right and left sides of the maze in an equal number of trials (i.e. 20 out of 

40 trials).  Individuals that choose the same side of the maze in more than 30 

trials were excluded from data analysis. If a wasp was excluded, a new wasp 

was trained on the same images to maintain a sample size of 12 individuals per 

image set. In total, 8 of 80 P. fuscatus and 6 of 66 P. metricus were excluded for 

a directional bias. The ratio of included:excluded individuals does not differ 

between the species (χ2 = 0.01, P = 0.92). Individuals that have a directional 

choice bias are commonly excluded from training experiments (Cassia et al. 

2004; Giurfa et al. 1999; Kendrick et al. 1996). Additionally our exclusion rates of 

10% and 9.1% respectively for P. fuscatus and P. metricus are low compared to 

other published values that include values as high as 26% and 41% ((Cassia et 
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al. 2004; Giurfa et al. 1999; Kendrick et al. 1996). We confirmed that directional 

choice bias was consistent within individuals by training a sample of biased 

individuals on a simple choice task (yellow versus blue rectangles), finding that 

4/5 biased individuals retained their bias in the color choice task.  

 

Visual Acuity in Polistes 

 Discriminating between facial patterns requires reasonably acute vision. In 

comparison to insects generally, all Polistes wasps have relatively acute vision, 

as is expected for large visual predators. The extent to which visual acuity varies 

among Polistes wasps is unknown. We tested whether differences in visual 

acuity could account for some of the differences in visual learning by estimating 

the relative acuity of P. fuscatus and P. metricus wasps. Increased acuity can be 

achieved by larger facet diameter (Land 1997), in the forward looking ‘acute 

zone’ or fovea. Among close relatives, differences in facet diameter correlate with 

differences in acuity (Rutowski et al. 2009). We measured the size of facets by 

making a replica of the right eye, flattening the replica, and photographing it with 

a dissecting microscope (Greiner 2006). First, we fully mapped the sizes of all 

eye facets for one specimen of each species (Fig. 4.6). The maps show strong 

similarity in eye structures between the two species, though P. metricus has the 

largest facets. We note here that both species’ eyes maps are very similar to the 

eye map of P. occidentalis (Greiner 2006), a more distantly related paper wasp, 

suggesting that eye structure is likely conserved within Polistes. We further 

investigated relative acuity in each species by estimating the largest facet 
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diameter from the acute zone for three specimens of each species. To do so, we 

measured the length of 10 sets of 5 consecutive facets from the eye maps in 

each direction (i.e. the x, y and z-axis). To estimate the largest facet diameter, 

we average the 3 largest measurements from each direction. The results show 

that P. metricus tend to have slightly larger facets (Table 4.2), concurring with the 

eye maps. Therefore, the poor performance of P. metricus on face images 

cannot be attributed to differences in visual acuity between the two species.  

 

Statistical Analysis 

 We analyzed the data to assess rates of learning and overall performance. 

Rates of learning were assessed using a binomial logistic regression, which 

takes into account the changes in the number of correct choices across trials 

(Hartz et al. 2001). We modeled the change in responses (correct or incorrect) as 

a function of the trial (1-40) and the interaction of the trial and image type. A 

significant interaction between trial and image type demonstrates that rates of 

learning differed between the image types. When comparing species, we added 

the interaction of trial, image and species to the model. Overall performance 

accuracy was compared between groups using 2x2 chi-square tests. 
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Figure 4.5. 
Diagram of the T-shaped maze used to train wasps. 
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Figure. 4.6 
Distribution of facet sizes for P. metricus and P. fuscatus eyes. The eye-maps 
represent a flattened mirror image of the right eye of an individual wasp. The 
lower right-hand portion of each eye, where the facet sizes are largest, is the 
forward-looking acute zone (i.e. fovea) for each species. Both eyes are shown at 
the same scale.  
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Table 4.1. 
Image statistics 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The HSF index 
provides a 
measure of the 
proportion of the 
power spectrum 
for each image 
that is high spatial 
frequency. High 
values indicate 
more contrast in 
the image. 

 
Position in Fig 
1 in main text 

HSF 
Index 

Overall 
RGB 

JPEG 
size (kb) 

Patterns Top left 22.07   17.2 
 Top right 21.32  18.8 
 Mid left 22.30  22.3 
 Mid right 16.54  16.7 
 Bottom left 19.05  15.4 
  Bottom right 16.61   18.3 
Caterpillars Top left 12.15 102.44 40.1 
 Top right 6.30 120.12 34.3 
 Mid left 10.47 96.30 36.1 
 Mid right 6.02 97.94 38.5 
 Bottom left 13.54 131.10 38.8 
  Bottom right 9.80 121.98 38.4 
P. fuscatus faces Top left 6.01 89.71 31.4 
 Top right 5.06 87.83 31.9 
 Mid left 13.33 82.14 32.8 
 Mid right 16.26 89.85 35.7 
 Bottom left 9.88 109.13 35.3 
  Bottom right 9.34 115.19 32.9 
P. metricus faces Top left 6.30 103.80 28.9 
 Top right 5.98 97.41 29.1 
 Mid left 7.99 102.90 29.9 
 Mid right 7.53 97.24 29.3 
 Bottom left 7.22 103.53 29.8 
  Bottom right 6.00 96.00 29.2 
Antenna-less P. fuscatus 
faces 

Top left 5.71 93.81 30.9 
Top right 4.88 90.62 31.0 

 Mid left 13.25 82.95 32.1 
 Mid right 16.17 91.47 35.4 
 Bottom left 9.53 109.14 33.9 
  Bottom right 8.89 118.04 31.3 
Re-arranged P. fuscatus 
faces 

Top left 5.14 89.32 31.3 
Top right 8.94 89.24 34.5 

 Mid left 4.55 80.94 32.8 
 Mid right 7.22 88.38 35.1 
 Bottom left 9.95 109.30 34.0 
  Bottom right 10.10 114.86 32.8 
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Table 4.2. 
Maximum Eye Facet Diameter (um) 
 
Polistes fuscatus 28.36 + 0.83 SEM 

F1 29.02 
F2 29.34 
F3 26.72 

  
Polistes metricus 30.10 + 0.66 SEM 

M1 31.23 
M2 28.95 
M3 30.12 
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Chapter 5: Robust long-term social memories in paper wasps 

Abstract 

Remembering individual identity is necessary for the complex, individually-

differentiated social relationships found in many vertebrates, including humans. 

Despite the complexity of social insect colonies, individual social insects are 

generally thought to have simple, undifferentiated relationships. Here we show 

that Polistes fuscatus paper wasps, which individually recognize conspecifics, 

remember the identity of social partners for at least a week, even if they interact 

with ten other wasps. Therefore, social interactions among paper wasps are 

based on robust memories of past interactions with particular individuals rather 

than simple rules. Considering the small size of wasp brains, these results 

suggest that at least some aspects of social cognition may not be as cognitively 

demanding as is generally assumed. 

 

 The complex, individually-differentiated social relationships common in 

social vertebrates rely on individual recognition. Remembering the individual 

identity of social partners reduces aggression, promotes cooperation, and 

stabilizes long-term social relationships (Crowley et al. 1996; Tibbetts and Dale 

2007). Given the importance of social knowledge, it is not surprising that the 

cognitive challenge of remembering the identities, ranks and relationships among 
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many individuals is thought to have driven the evolution of social intelligence in 

many taxa, including primates and humans (Dunbar and Shultz 2007). 

 Large colony social insects are on the other end of the social complexity 

spectrum, as they are thought to lack individually-differentiated relationships. 

Instead, colony-level social complexity is thought to emerge from the interactions 

among numerous, cognitively simple individuals following basic decision rules 

(Anderson and McShea 2001). Recently, individual recognition has been shown 

in P. fuscatus paper wasps, which use variable visual features (Fig. 5.1) for 

individual recognition (Tibbetts 2002), and in Pachycondyla spp. ants, which 

have distinctive hydrocarbon profiles (Dreier et al. 2007). These studies suggest 

that previous ideas about social relationships among insects may be overly 

simplistic. 

 Individual recognition is typically considered a relatively complex form of 

recognition because it requires flexible learning and memory. Individuals must 

learn the unique features of conspecifics, then recall that information during 

subsequent social interactions. However, prior research indicates that social 

insects have relatively limited memories; new learning experiences quickly 

degrade previous memories. For example, honeybees can remember two 

foraging locations, each associated with a scent, but fail to complete the same 

task if a third location is tested simultaneously (Reinhard et al. 2006). 

Considering the size and complexity of social insect colonies, individual 

recognition can only produce complex, individually-differentiated social 

relationships if social memories are sufficiently robust. 
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 We have assessed the extent of social memory in P. fuscatus by testing 

whether memories of past interactions with a particular conspecific are robust to 

attenuation over the course of a week and to interference from subsequent social 

interactions with ten other individuals. The strength of memories is predicted to 

vary with the relative cost and benefits of the memories and may also be 

influenced by cognitive constraints (Dukas 1999). For paper wasps, robust 

memories of prior social interactions would be especially useful given the 

complex social interactions among nest founding queens. P. fuscatus can found 

nests alone or in groups. When multiple queens cooperate to found a nest, they 

have intense battles to establish relative dominance ranks. Queens assess 

multiple nest sites and battle with many potential partners before starting a nest 

(Reeve 1991), so remembering prior social interactions with particular individuals 

would allow individuals to avoid additional, costly escalated dominance contests. 

Previous work has demonstrated that P. fuscatus are more aggressive to 

individuals with unfamiliar appearances (Tibbetts 2002). Therefore, if wasps have 

robust social memories, they should be less aggressive towards individuals they 

have interacted with previously than individuals they have not previously 

encountered. 

 Memory was tested by measuring aggression among 50 unrelated wasp 

queens in four different encounters over eight days (Dreier et al. 2007; 

Supplemental methods). Initially, wasps encountered a new social partner from a 

distant collection location (Day 0). Then, we separated the pair, returning each 

wasp to different communal cages containing ten other wasps. One week later 
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(Day 7), the same wasps interacted again. To ensure that any decreases in 

aggression on Day 7 resulted from memory of their partner rather than a general 

decrease in motivation over time, focal wasps interacted with new social partners 

on Days 6 and 8. If the wasps have robust memories, aggression levels between 

wasps with prior social histories (Day 7) should be lower than between two 

wasps that encounter each other for the first time (Days 0, 6 and 8). 

 Our results demonstrate that previous social partners remembered each 

other's identities after one week apart even though they interacted with ten other 

wasps during the intervening time. Aggression indices differed significantly 

among the days of the experiment (Fig. 5.2 A; Friedman's ANOVA, (3, n = 50) = 

48.10, p < 0.0001). Importantly, on Day 7, when wasps were paired with the 

same individuals from Day 0, the aggression index was lower than all other days 

(Non-parametric Tukey's HSD, p < 0.05). One important reason for the lower 

aggression indices was that wasps with prior interaction histories (Day 7) 

engaged in more non-aggressive social behaviors (Fig. 5.2 B; Friedman's 

ANOVA, (3, n = 50) = 21.42, p < 0.0001). Aggression did not differ between Days 

0 and 8, indicating that wasps remained motivated to fight. Therefore, the 

lowered aggression on Day 7 was due to individual memory rather than a general 

reduction in focal wasp aggression over time. 

 P. fuscatus wasps therefore remember the individual identity of social 

partners after one week of interactions with ten other wasps. This is by far the 

most robust social memory demonstrated in an insect (Dreier et al. 2007). Social 

interactions in P. fuscatus are not based on simple rule-driven decisions, but on a 
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robust memory of past interaction histories with particular individuals. Robust 

social memories are a necessary component of the complex relationships 

hypothesized to be responsible for evolutionary increases in brain sizes among 

many vertebrates (Dunbar and Shultz 2007). So it is interesting that even small-

brained invertebrates (Gronenberg et al. 2008) can form cognition-based social 

relationships. Perhaps basic components of social cognition may not be as 

demanding as is assumed by the current formulation of the social intelligence 

hypothesis. Future research that addresses exactly which aspects, if any, of 

social relationships are especially cognitively demanding will be important to 

understanding the role of social complexity in encephalization. 
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Figure 5.1. Examples of variable facial patterns used for individual recognition in 
Polistes fuscatus. 
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Figure 5.2. Long-term social memory in a paper wasp. Wasps were (A) less 
aggressive and (B) engaged in more non-aggressive interactions with known 
individuals than with unknown individuals. (A) Aggression indices (Friedman's 
ANOVA, (3, n = 50) = 48.10, p < 0.0001) and (B) the number of non-aggressive 
physical contacts (Friedman's ANOVA, (3, n = 50) = 21.42, p < 0.0001) for the 
four days of dyadic encounters between foundresses. The aggression index 
weights interactions based on the intensity of aggression with lower scores 
indicating less intense aggression (non-aggressive physical contacts (0 pts) to 
grappling (4 pts)). On Days 0, 6 and 8 wasps interacted with a new social partner 
for the first time. On Day 7, wasps re-encountered the same partner from Day 0. 
Different letters indicate significant differences between days (Non-parametric 
Tukey's HSD, p < 0.05). Box plots show the median and 25th and 75th 
percentiles. 
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Supplemental Methods 

 

In early spring 2007, emerging P. fuscatus were collected in and around Ann 

Arbor, Michigan. After emerging from diapause, wasps do not immediately begin 

nest construction, but rather spend up to a few weeks assessing potential nest 

sites. During this time, they also engage in aggressive dominance contests with 

multiple other foundresses (West Eberhard 1969), possibly assessing potential 

co-foundresses. Prior to this experiment, wasps were housed with approximately 

10 other wasps from the same collection location (mean + SE. = 10.38 + 0.50, 

range = 9-13, mode = 10, n = 8 cages) for one week. All collection locations were 

separated by at least 1 km, and most by more than 20km to ensure wasps from 

different collection locations had not previously interacted. In total, the aggressive 

interactions of 50 focal wasp queens were followed over the entire length of the 

experiment. On the first trial (Day 0), focal wasps were introduced to a new wasp 

that was collected from a distant location, with whom they had not previously 

interacted. The first two hours of their encounter were filmed and then the pair of 

wasps were housed together for one day. After one day together, the wasps 

were separated and returned to their initial housing situations. On the sixth day 

after the separation (Day 6), focal wasps were paired with a new and different 

social partner and their interactions were filmed for two hours. After the two-hour 

trial, the wasps were returned to their initial housing situation. Similar procedures 

were used on Days 7 and 8. On Day 7, the focal wasp was re-paired with the 

same wasp from Day 0. On Day 8, the focal wasp was paired with another new 
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social partner. 

 

Videotapes of the behavioral interactions were watched double blind to the 

identity of wasp and the day of the trial. While wasps do engage in a number of 

non-aggressive interactions, these generally occur after prolonged interactions 

on a next. In our trials, the only clearly measurable interactions were proximity 

and aggression. To compare aggression between trials, we calculated an 

aggression index that takes into account the intensity of each aggressive 

interaction for the first half hour, when interactions were most intense (Dreier et 

al. 2007). The aggression index was calculated by assigning each behavior a 

score and dividing the summed aggression score by the total number of 

interactions. We recorded each instance of the following behaviors (score): bodily 

contacts that did not result in aggressive behaviors (0), darts (1), dart with open 

mandibles (2), bites (3), mounts (4) and grapples (4). While the wasps are 

extremely visual, contacts were assigned conservatively, only when one of the 

wasps actually made sustained physical contact. If wasps were simply passing 

by each other (i.e. no sustained interaction) no contact was scored. We 

compared the aggression indices among the rounds using Friedman ANOVA and 

multiple comparisons. 

 

West Eberhard, M.J. (1969). The Social Biology of Polistine Wasps, (Ann Arbor: 
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Chapter 6: A role for sender and receiver biases in evolutionary origins of 

recognition systems 

 

Abstract 

 Recognition requires coordination between a sender, who produces a 

phenotype containing identity information, and a receiver, who responds to 

information from the sender. Understanding the origin of novel recognition 

systems poses a problem: How can selection act on senders in the absence of 

receiver behavior? How can selection act on receivers without the necessary 

sender phenotypes? Here, we propose that the origin of recognition systems may 

be facilitated by pre-existing biases in sender phenotypes or receiver behavior. 

We outline the two hypotheses and their predictions and provide preliminary tests 

of the hypotheses using individual recognition as a model. First, we test the 

sender bias hypothesis with published data on recognition behavior and 

phenotypic variability. Recognition phenotypes are often individually variable in 

species that do not use the phenotypes for recognition, supporting the sender 

bias hypothesis for the evolution of individual recognition. Second, we 

experimentally confirm the predictions of the receiver bias hypothesis in Polistes 

paper wasps by testing receiver responses to individually distinctive phenotypes 

in a species that is known to lack individual recognition. The results indicate that 
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receiver bias may be involved in the evolution of individual recognition in Polistes 

wasps.  Overall, sender biases may be a widespread mechanism facilitating the 

evolution of individual recognition and receiver bias may be applicable to a wider 

set of communication behaviors than typically considered.  

 

Introduction 

 Social interactions depend on the recognition of social partners based on 

species, kinship, group membership or individual identity. Recognition occurs 

through three steps – production, perception and action (Sherman et al. 1997) 

and involves both the individual being recognized (i.e. the ‘sender’) and the 

individual doing the recognizing (i.e. the ‘receiver’). Thus, for a recognition 

system to function, senders must produce sufficiently recognizable phenotypes 

(Tsutsui 2004) and receivers must be able to differentiate among senders and 

respond to them appropriately (Liebert and Starks 2004; Mateo 2004). As 

recognition has important effects on animal social behavior and fitness, selection 

is expected to act on both senders and receivers to facilitate efficient recognition.  

Sender phenotypes will be selected to reliably and effectively convey relevant 

information to receivers. Receiver physiology and cognition will be selected to 

facilitate perception and processing of the traits used for recognition. Indeed, 

studies from a variety of organisms have shown that selection acts on both 

sender phenotypes (Jouventin and Aubin 2002; Medvin et al. 1993; Pollard and 

Blumstein 2011; Sheehan and Tibbetts 2009) and receiver psychology (Loesche 

et al. 1991; Sheehan and Tibbetts 2011) to promote efficient recognition. 
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 While it is straightforward to understand how selection can fine-tune an 

existing recognition system, it is less clear how recognition systems initially 

emerge. Recognition requires coordination between senders and receivers, so it 

is difficult to understand how such a relationship originates. In the absence of 

appropriate receiver responses, how do recognizable phenotypes evolve? 

Without the phenotypes needed for recognition, how do receiver responses 

evolve?   

Here, we use individual recognition as a model for exploring the 

evolutionary origin of recognition systems. Though we focus on individual 

recognition, the concepts are applicable to other recognition systems. Individual 

recognition provides a particularly good model for studying the origin of 

recognition systems because there have been many independent evolutions of 

individual recognition across a wide range of animal lineages, in a variety of 

social contexts and sensory modalities (Tibbetts and Dale 2007). Individual 

recognition is the most specific and complex form of recognition because it 

requires unique recognition phenotypes (Beecher 1989) and flexible learning and 

memory (Thom and Hurst 2004; Tibbetts and Dale 2007). When recognizing an 

individual, receivers learn the unique characteristics of senders and then recall 

these characteristics during subsequent social interactions. In the presence of 

the appropriate receiver behavior, selection is expected to favor the evolution of 

distinctive sender phenotypes that signal individual identity (Dale et al. 2001; 

Sheehan and Tibbetts 2009). When sender phenotypes are sufficiently variable 

to allow identification, selection for individual recognition is expected to favor 
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receivers that discriminate among, remember and respond to individuals 

appropriately based on their unique phenotypes. With communication in place, 

senders and receivers are expected to undergo correlated evolution producing 

sender phenotypes and receiver psychology are well suited to each other 

(Bradbury and Vehrencamp 2011; Guilford and Dawkins 1991; Johnstone 

1997b). How the initial evolution of individual recognition occurs is unclear and 

the subject of this paper. 

 

Hypotheses 

Recognition may originate via two different pathways: sender bias or 

receiver bias. First, pre-existing variation in sender phenotypes provides a route 

to the initial evolution of recognition. The ‘sender bias’ hypothesis proposes that 

there is variation in sender phenotypes that predates appropriate receiver 

responses.  Second, recognition may evolve if receivers are able to respond 

differentially to individuals based on the identity information in their phenotypes.  

The ‘receiver bias’ hypothesis proposes that appropriate receiver responses 

predate variation in sender phenotypes.  Initially, sender variation and receiver 

responses are likely to be more rudimentary than those found in established 

recognition systems.  For example, less variation in sender phenotypes is 

required for sender bias than is expected in established identity signals.  

Similarly, receiver responses required for receiver bias may be quite simple and 

more akin to discrimination than recognition.  Receivers need only respond to 

differences in sender phenotype when differences occur.  If there are sufficient 
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benefits associated with recognition, selection will fine-tune both sender 

phenotypes and receiver responses to facilitate efficient recognition. 

 Though few previous studies have examined the origin of recognition, both 

sender and receiver biases are plausible hypotheses.  First, there are many 

evolutionary and developmental processes unrelated to recognition that are 

known to maintain phenotypic variation in populations (Leimar 2005; Mitchell-

Olds et al. 2007), suggesting that sender bias is a possible route for the initial 

evolution of individual recognition. Second, previous models examining the 

evolution of individual recognition have implicitly assumed that receiver biases 

exists (Barnard and Burk 1979; Dale et al. 2001), though receiver bias has not 

been experimentally tested.  Although previous studies have not examined 

receiver bias in the context of recognition systems, numerous studies have 

examined receiver or sensory biases in the evolution of signals related to mate 

choice (Endler and Basolo 1998; Ryan 1998; ten Cate and Rowe 2007). More 

recently, receiver bias arguments have been used to explain a wider range of 

signals including floral displays and warning coloration (Jansson and Enquist 

2003; Naug and Arathi 2007; Sherratt 2002). Typically, receiver bias hypotheses 

posit that receivers have a pre-existing preference for a particular trait, which is 

then exploited by senders during the initial process of signal evolution. In the 

case of individual recognition, receiver bias would merely require that receivers 

are able to discriminate among individuals and act on the observed differences. 

Animals are adept at distinguishing among stimuli and frequently treat social 

partners differentially, so a bias in receiver behavior that facilitates the evolution 
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of recognition systems appears plausible. Our main objective in this paper is to 

outline the potential role of sender and receiver biases in the evolution of 

recognition systems and provide initial tests of each hypothesis. 

 The sender and receiver bias hypotheses make distinct and testable 

predictions. The sender bias hypothesis critically predicts that variation in sender 

phenotypes predates the origin of individual recognition.  As a result, ancestral 

state reconstructions of recognition behavior and phenotypic variation will show 

that variation in sender phenotypes originated prior to recognition behavior. In 

contrast, the receiver bias hypothesis predicts that variation in receiver behavior 

predates the origin of variation. Therefore, receivers will respond differentially to 

senders when sufficient phenotypic variation is provided.    Receiver bias for 

individual recognition requires that 1) receivers perceive and respond to 

phenotypic variation and 2) the response provides some benefit to the sender. If 

receiver responses were on average harmful to senders, then selection would 

favor senders that obscure rather than advertise their identity (Johnstone 1997a), 

effectively precluding the evolution of individual recognition. The specific 

response from receivers, however, may vary across contexts. Across contexts, 

the receiver response will only facilitate the evolution of individual recognition if it 

provides a selective benefit to the sender.  

 Here we use a literature review and an experiment to explore how sender 

and/or receiver bias contribute to the evolution of individual recognition.  First, we 

review existing literature to assess whether there is general support for the 

sender bias hypothesis by testing whether the type of phenotypic variation used 
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for individual recognition is associated with receiver recognition behavior. The 

sender bias hypothesis predicts that the type of variation used for individual 

recognition will commonly exist in the absence of receiver recognition behavior. 

The origin and/or maintenance of individualized variation in lineages without 

recognition behavior supports the sender bias hypothesis because it suggests 

that forces unrelated to recognition maintain the variation (Fig. 6.1).  In contrast, 

if variation only co-occurs with recognition behavior, sender bias is unlikely. The 

rejection of the sender bias hypothesis would, by default, provide a weak 

suggestion that receiver bias facilitated the evolution of individual recognition. 

Receiver bias cannot be adequately tested with a review of the current literature, 

so we perform a separate experiment to directly test receiver bias.  The receiver 

bias hypothesis predicts that species that lack sender variation and established 

individual recognition will detect and respond to differences in sender phenotype 

when such differences appear.  We tested receiver bias in Polistes metricus, a 

species of paper wasp that lacks individual recognition and the type of 

phenotypic variation used for individual recognition.  Variation in visual 

appearance was experimentally added to some P. metricus to test how receivers 

respond to the variation.  

 

Test of the Sender Bias Hypothesis 

Methods 

 The goal of this literature review is to assess whether patterns of sender 

phenotypic variation and receiver behavior within multiple different groups and 
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contexts are consistent with the sender bias hypotheses. To do this, we surveyed 

the literature to find examples of clades that show variation in presence of 

individual recognition among species or populations. Definitive tests of the 

sender bias hypothesis require extensive information on the individual 

recognition abilities and phenotypic variation in recognition traits within a clade 

with a well-supported phylogeny. At present, such information does not exist so 

we use existing information to provide a preliminary test of the hypothesis. 

Together, information on sender phenotypic variability and receiver behavior 

allow us to assess whether the evolution of individual recognition in each case is 

likely to have been facilitated by sender bias (Fig 1). If sender bias has facilitated 

the evolution of individual recognition, we expect to find that species that lack 

individual recognition nevertheless have individually identifiable phenotypes. In 

contrast, if species that lack individual recognition also lack variation in sender 

phenotypes, then we can conclude that biases in sender phenotypes are unlikely 

to have driven the evolution of individual recognition. 

We searched for articles published prior to November 2011 using the Web 

of Science and GoogleScholar databases. We located articles using a variety of 

search terms related to individual recognition including individual recognition, 

mate recognition, mother recognition, offspring recognition, pup recognition, 

chick recognition, vocal recognition, odor recognition, etc. In addition to 

searching the databases using these terms, we also looked for additional articles 

in the reference lists of relevant papers found during our search.  
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 We included individual recognition studies that fit the following criteria.  

First, the study must experimentally demonstrate that animals individually 

recognize social partners.  We required that studies demonstrate recognition (or 

lack thereof) using ecologically relevant tasks, rather than test the ability to 

discriminate among individuals in an operant training paradigm (Thom and Hurst 

2004). Second, the study must identify the specific phenotype used for 

recognition and assess its intraspecific variability. These criteria exclude studies 

where authors suggest that a species uses individual recognition based on the 

level of phenotypic variability (Jahelkova et al. 2008; Koren and Geffen 2011; 

Lawson et al. 2000) without experimental tests of recognition behavior (Tibbetts 

et al. 2008). In addition, the second criteria excluded many studies using 

olfactory recognition, as few studies have identified the specific compounds used 

for recognition or quantified inter-individual variation (Thom and Hurst 2004).  

 There are multiple definitions of individual recognition in the literature that 

primarily differ in the number of individuals receivers must differentiate among 

and the extent to which receivers are required to react differently to individuals 

from the same social category (Gherardi and Tiedemann 2004; Steiger and 

Muller 2008; Thom and Hurst 2004; Tibbetts and Dale 2007; Tibbetts et al. 2008; 

Van Dyk and Evans 2007). For this analysis, species were considered to have 

individual recognition if they responded to animals or a stimuli based on the 

unique features of the other individual in an ecologically relevant context 

(Tibbetts et al. 2008). The essential requirement, then, was that receivers attend 

to the unique phenotypes of senders and change their behavior accordingly. 
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Under this definition a parent with a single chick would only be considered to 

recognize its chick by individual recognition if it attended to the particular features 

of the chick (e.g. an individually unique call) as opposed to indirect cues such as 

the chick’s spatial location. Similarly we would consider a parent with multiple 

chicks that recognized them based on their unique calls to individually recognize 

its chicks, even if there is no difference in the way it responds to one chick versus 

another. Thus we consider recognition to be individualized when the means by 

which animals use to respond to their social partners is based on prior 

experience with individually unique phenotypes, regardless of the specificity of 

the response (Tibbetts et al. 2008).   

 We used the following criteria to score species as individually identifiable. 

Individually recognizable phenotypes must be relatively consistent within an 

individual and variable among individuals   

(Beecher 1989; Dale 2006). Attempts to quantify the amount of identity 

information in phenotypes have focused primarily on vocal and chemical signals, 

which tend to show some variation within and between individuals. Typically 

researchers conclude that such phenotypes are individually distinctive if 

individuals differ significantly from one another in ANOVA analyses (Beecher 

1989) or if there is above chance less of correct classification in discriminate 

function analyses (Cure et al. 2009; D'Ettorre and Heinze 2005; Koren and 

Geffen 2011). In some studies, traits that show weak, but reliable, differences 

among individuals are not considered to have individual signatures. However, 

sender bias requires only that traits show some statistical association with 
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individual identity, so we consider traits to be individually distinctive in one study 

where the authors had concluded they were not distinctive (Torriani et al. 2006). 

Assessing the identifiably of color patterns, which tend not to vary considerably 

within an individual over short periods of time, is more problematic. Technically 

any color pattern variation between individuals is likely to be unique, though in 

practice minor variants are likely to be undetectable by animal’s perceptual 

systems. Dale (2006) suggests that color patterns used for individual recognition 

should have multiple variable components each showing elevated levels of 

polymorphism. Therefore, we used these criteria to assess whether or not color 

patterns for each species or population were individually identifiable. 

 Robust tests of the sender bias hypothesis require phylogenetically 

controlled analyses. We attempted to control for the effects of phylogeny in our 

study by examining patterns of sender variation and receiver behavior within the 

multiple different groups of closely related species (Martins 2000). Given the 

state of available data, the clade-level groupings are necessarily variable in their 

scope. In a few instances we compared data from multiple populations of the 

same species or from congeners, but more often available data from multiple 

species was most logically grouped at broader taxonomic levels. For example, 

most of the passerine birds for which data is available come from various 

different families within that clade. However, a number of species of swallows 

have been well studied, so we considered them as a separate case even though 

they are passerines. In addition to phylogeny, we also grouped data based on 

the trait used for recognition (e.g. offspring vocalization versus adult vocalization) 
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as traits used in different contexts are likely to be under differential selection 

pressures. 

 In the processes of conducting the literature search, it became clear that 

there are a number of publication biases regarding individual recognition. First, 

there is a well-known bias where negative results often go unpublished (Jennions 

and MØLler 2002; Moller and Jennions 2001), so it is not surprising that we 

identified relatively few taxa that are known to lack individual recognition.  

Second, much of the research documenting the degree of individual variation in 

recognition phenotypes has focused on vocalizations of birds and mammals, with 

less work on other taxa and signaling modalities. The overall goal of the literature 

review is to test whether sender bias is a plausible hypothesis for the evolution of 

individual recognition and the publication biases will not influence this conclusion. 

However, conclusions about the relative prevalence of sender bias as a facilitator 

of the evolution of individual recognition will require more even sampling of taxa 

and sensory modalities and recognition contexts. 

 

Results and discussion 

 The results of the literature review are summarized in Table 1. The pattern 

of variation in sender phenotype and receiver behavior provides evidence for the 

sender bias hypothesis and also suggests that receiver bias may play a role the 

evolution of individual recognition. In 12 of 14 cases, the patterns are consistent 

with the sender bias hypothesis because species shown to lack individual 

recognition have individually identifiable phenotypes. In 2 of the 14 cases, the 
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patterns do not support sender bias, as individually identifiable phenotypes are 

limited to species with individual recognition.  Instead, these cases suggest that 

receiver bias may play a role in the evolution of individual recognition.  

 Patterns of sender phenotypic variation and receiver behavior in the 

literature are consistent with sender biases in most but not all cases examined. 

The limited data set begs a cautious interpretation of the patterns at this time, 

though it appears reasonable to conclude that sender bias is likely to be a 

common route for the evolution of individual recognition. This finding is 

particularly interesting given the emphasis on receiver biases in the broader 

literature on animal signaling (Endler and Basolo 1998; Fuller et al. 2005; 

Jansson and Enquist 2003; Ryan 1998; ten Cate and Rowe 2007). In models of 

receiver or sensory bias, signals are typically construed as adaptations on the 

part of senders to manipulate the behavior of receivers (Bradbury and 

Vehrencamp 2000; Guilford and Dawkins 1991; Krebs and Dawkins 1984). 

Under this view, senders are responsible for the initial changes that lead to the 

evolution of a signaling system. Counter to this view, verbal and mathematical 

models have claimed that biases in sender traits may be a common route for the 

evolution of communication (Maynard-Smith and Harper 2003; Scott-Phillips et 

al. in press; Zahavi 1980). Here, we use a literature review to show that individual 

recognition may commonly evolve by receivers adapting to utilize pre-existing 

variation in sender phenotype. Thus, the initial evolution of individual recognition 

may frequently result from receivers eavesdropping on identity information 

inadvertently broadcast by senders.  
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 The literature review suggests that sender biases may be a particularly 

important route for the evolution of acoustic individual recognition. Acoustically 

based individual recognition has been reported in a wide range of taxa, perhaps 

because acoustic communication is well suited for a wide range of environmental 

conditions. The prevalence of acoustic individual recognition may also be due, in 

part, to the complex process of acoustic signal production.  Acoustic signals are 

produced by multiple morphological components (Taylor and Reby 2010), so 

even small differences among individuals in each trait used to produce sounds 

may lead to detectable and consistent individual differences in sound production. 

The morphological basis of acoustic signal production means that individual 

differences in signal production will be widespread unless the signals are under 

selection to be highly uniform. Of course, individual variation in acoustic signals 

is not merely the result of random processes, as there is clear evidence that 

selection for increased recognizability favors more individually distinctive 

vocalizations (Pollard and Blumstein 2011). Rather, the evolution of acoustic 

individual recognition is likely facilitated by sender bias because of the inherent 

individual signature common in the production of acoustic signals. 

 In comparison to acoustic signals, which are easy to quantify and 

measure, many fewer studies have systematically documented the inter-

individual variation of recognition phenotypes in other modalities. From the very 

limited evidence available in the literature, sender biases seem like a potentially 

important factor in the evolution of scent-based individual recognition. For 

example, individual recognition in ants appears to have evolved through a sender 
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bias (Table 6.1). The mechanisms underlying odor production may be one 

reason why scent based individual recognition may commonly evolve via sender 

bias.  Odors are frequently produced by processes that are expected to show a 

high degree of variation among individuals in a population. In vertebrates, 

variation at MHC loci, which is maintained by balancing selection from 

pathogens, also results in distinctive odors among individuals as a result of 

differences in bacterial communities supported by different MHC types (Brown 

and Eklund 1994). Analogous immunologically-based differences in chemical 

phenotypes are used in arthropod kin recognition (Giron and Strand 2004). Odor 

differences can also result from differences in diet, metabolism or physiological 

states among individuals (Schellinck et al. 1992). Reasonably stable differences 

in diet or physiological state among individuals are expected to produce unique 

odor signatures. These differences may be sufficient to allow individual 

identification in many cases, which can then facilitate the evolution of scent-

based individual recognition. 

 Unlike acoustically and chemically mediated individual recognition, the 

argument for sender biases as an important factor in the evolution of visually-

based individual recognition is less clear-cut. Both of the examples of visual 

individual recognition in the literature review are inconsistent with sender bias 

(Table 6.1). Why might the color variation in wasp faces and weaver eggs have 

evolved through receiver rather than sender bias? One possibility is that many 

color patterns may show less inherent inter-individual variation than other traits, 

such as acoustic and chemical phenotypes.  For example, ancestral color 
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patterns of wasp faces and weaver eggs were relatively simplistic. The ancestral 

color pattern for eggs is thought to be a solid white color lacking any other 

patterning (Kilner 2006). Similarly, the ancestral paper wasp is thought to have 

lacked variable patterning (Tibbetts 2004). Processes other than recognition can 

select for variable visual phenotypes, including apostatic selection and crypsis 

(Bond and Kamil 1998). Additionally, visual recognition in some species is 

mediated by individually distinctive performances of displays (Brandt and Allen 

2004). Displays, like acoustic and chemical communication, are likely to have 

more inherent individual differences as a consequence of morphological 

differences among individuals.  As a result, some species without individual 

recognition likely have the kind of inter-individual variation in color patterns or 

displays that are consistent with sender bias. Therefore, the apparent lack of 

support for sender bias in visually mediated individual recognition may also be 

the result of biases in the literature. 

Importantly, the comparative analysis suggests that a sender bias is not 

the only route for the evolution of individual recognition. The lack of variable 

sender phenotypes in species or populations lacking individual recognition 

suggests that receiver bias may facilitate the evolution of individual recognition.  

However, experimental evidence that receiver behavior conducive to the 

evolution of individual recognition exists in these taxa is needed (see below).  

 

 

Receiver Bias Experiment 
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Methods 

 Receiver behavior may facilitate the evolution of individual recognition if it 

meets three criteria. First, receivers must be able to distinguish among senders 

based on relatively minor variation in phenotypes. This is important because the 

initial mutations that give rise to identifiable variants would likely have minor 

effects on phenotypes. Second, receivers must respond to differences in 

individual appearance when they appear. Third, the responses must, on average, 

benefit senders that are identifiable. While recognition may evolve in the absence 

of benefits to senders – receivers can eavesdrop on unavoidable recognition 

cues produced by senders – the evolution of individual recognition via receiver 

bias can only work is senders benefit from recognition. If senders do not benefit 

by being identifiable, selection would act against the evolution of identity 

signaling phenotypes (Johnstone 1997a). Without selection to favor the 

elaboration of identity signaling phenotypes, recognition will not evolve in the 

absence of sender biases.  

 Paper wasps provide a good system to experimentally test receiver biases 

because variation in sender phenotypes and recognition behavior is not 

consistent with the sender bias hypothesis (Table 6.1). We assessed whether or 

not receiver behavior may play a role in the origin of individual recognition by 

altering the phenotypes of groups of P. metricus foundresses, which lack 

individual recognition and do not have variable color patterning (Sheehan and 

Tibbetts 2010). In doing so, we tested the three criteria for receiver bias, as 

differential responses to individuals with unique phenotypes are only possible if 
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(1) receivers distinguish individuals based on minor phenotypic variants and (2) 

receivers respond to those differences. Finally, we assessed if (3) senders 

benefit from the differential receiver response. 

 Polistes metricus is a common paper wasp found throughout the eastern 

United States. As with all temperate paper wasps, P. metricus colonies are 

initiated each spring by foundresses that have recently emerged from diapause 

(Reeve 1991). We used foundresses collected from human structures in three 

locations, Ann Arbor, Michigan, Columbus, Ohio and Knoxville, Tennessee. They 

were brought into the lab, housed individually, and provided ad libitum sugar and 

water. 

 We created 20 groups of four, unfamiliar weight-matched foundresses 

collected from locations at least 1km apart to ensure individuals had not 

previously interacted. All groups contained foundresses from at least two 

different collection regions. We experimentally altered the appearance of each 

wasp so there were three foundresses with a similar appearance and one 

foundress with a unique appearance in each group. This treatment is meant to 

mimic a situation where a rare mutation arises causing individuals to have a 

slightly different appearance that could be used for discrimination or recognition. 

The appearance of each foundress was altered by painting the region just above 

the antenna black or yellow (Fig 6.2). The distribution of color patterns was 

balanced across trials such that the distinctive wasp was yellow in half the trials 

and black in half the trials. Distinctive wasps were chosen randomly from among 

the four possible individuals. To allow individual identification by the 
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experimenters, each wasp was given two small dots of red paint on the top of 

their thorax in a unique pattern. The red dots are unlikely to increase 

distinctiveness of the wasps, as wasps do not see red (Briscoe and Chittka 

2001). After the paint treatments dried, the wasps were placed in a small 

container (8cm x 8cm x 2cm) and their interactions were filmed for 2hr. The tapes 

were scored for aggressive acts such as darts, lunges, bites, grapples and 

mounts – all of which are stereotyped behaviors commonly used to assess wasp 

aggression (Reeve and Nonacs 1992; Strassmann et al. 2004; West Eberhard 

1969). Straub scored the videotapes blind to the treatments, experimental 

design, and predictions of the experiment. One tape was damaged and unable to 

be viewed, so the sample size was reduced to 19 from 20. 

 We analyzed the distribution of aggression in two ways. First, we 

compared the amount of aggression directed at unique and common wasps by 

receivers. The three wasps with common paint treatments each experienced two 

other common wasps as well as the unique wasp. In contrast, the unique wasp 

only experienced common wasps, so we did not include the aggressive acts 

performed by the unique wasp in the analysis. Second, we examined whether 

unique wasps received or directed aggression at others more or less often than 

common wasps.  

The overall level of aggression differed among trials (mean aggressive 

acts = 456.58 + 115.74), so we calculated standardized aggression scores based 

on the distribution of aggression within a trial (Sokal and Rohlf 1995). To 

examine the behavior of receivers towards each individual in the trial, we 
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constructed a mixed model with treatment (unique v. common marking) and color 

(yellow v. black) and a treatment-by-color interaction as fixed factors. We 

included the collection region (Michigan, Ohio, Tennessee), trial, and receiver 

identity as random factors. To examine the aggregate patterns of aggression, we 

used the same model with the removal of the receiver identity as a random 

factor. A disproportionate amount of the total aggressive occurred soon after the 

trials began (the first 30 minutes accounted for 37% of the aggression), so we 

focused our analyses on the initial 30 minutes of the trials when aggression was 

most intense, as has been done in other studies (Dreier et al. 2007; Sheehan 

and Tibbetts 2008). This approach provided us the greatest power to detect 

differences in receiver behavior. Statistical tests were run in SPSS v19. Mean 

standard scores are shown + SE and all tests described are two tailed. 

 

Results and Discussion 

 The presence of an individual with a unique appearance influenced 

receiver behavior. The receivers directed significantly less aggression towards 

wasps with the unique paint treatment compared to common wasps (Fig. 6.2 A, 

F1,112 = 4.89, P = 0.029). There were no significant effects of the color of the 

marking (F1,112 = 0.07, P = 0.79) or the interactions between the color and 

uniqueness of the markings (F1,65.1 = 0.001, P = 0.98) on receiver behavior. 

 On the whole, wasps with the unique marking received less aggression 

than wasps with common markings (Fig. 6.2 B, F1, 70.5 = 4.09, P = 0.047). There 

were no significant effects of the color of the marking (F1,71.7 < 0.001, P = 0.99) or 



 

131 

the interactions between the color and uniqueness of the markings (F1,72.0 < 

0.001, P = 0.99) on the total aggression received by wasps. Thus, the distribution 

of aggression was influenced by the uniqueness of the markings per se rather 

than the particular colors used. Additionally, wasps with unique and common 

markings initiated similar amounts of aggression (Fig. 6.2 C, F1,70.0 = 0.003, P = 

0.96), so the lower aggression received by the unique wasps was not a 

byproduct of the unique wasps’ own behavior. There were no significant effects 

of the color of the marking (F1,70.4 = 0.28, P = 0.60) or the interactions between 

the color and uniqueness of the markings (F1,70.4 = 0.01, P = 0.93) on the 

aggression initiated by wasps. Thus, the lower aggression received by the unique 

individuals is a result of changes in receiver behavior rather than other factors, 

such as the color of the paint treatment or aggressiveness of the unique wasp. 

 Together, the patterns of aggression provide experimental evidence for a 

receiver bias that could favor the evolution of individual recognition in Polistes 

wasps. P. metricus receiver behavior meets the three criteria for the evolution of 

individual recognition. First, receivers are capable of discriminating among 

senders based on relatively minor phenotypic differences. This is important since 

identity signals would likely originate with relatively phenotypic minor variation. In 

light of previous operant conditioning experiments demonstrating that P. metricus 

can learn to distinguish among images of variable wasp faces, their ability to 

discriminate minor variation in facial patterns is not surprising (Sheehan and 

Tibbetts 2011). Indeed, the ability to discriminate among individuals, in the 

absence of individual recognition, is likely to be common, since animals are often 
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adept at discriminating among patterns. For example, barn swallows, which do 

not individually recognize their chicks, are nonetheless capable of discriminating 

among chick calls in operant tasks (Loesche et al. 1991). Second, discrimination 

among individuals led to a change in receiver behavior, as wasps directed less 

aggression to the unique individuals. The reduced aggression toward unique 

individuals also fulfilled the third criterion, as senders benefit by receiving less 

aggression for advertising their identity. While the evolution of individual 

recognition does not require that receiver behavior is beneficial for senders, 

elaborated identity signaling phenotypes will only evolve when senders benefit 

from recognition (Dale et al. 2001; Johnstone 1997a; Sheehan and Tibbetts 

2009). Thus, the receiver behavior found in P. metricus would be expected to 

facilitate the evolution of identity signals and individual recognition. Provided that 

the distinctive phenotypes are not costly to produce, a relatively minor benefit 

from recognition will favor the elaboration of identity signaling phenotypes in 

senders (Dale et al. 2001), allowing for the evolution of highly specialized sender 

and receiver adaptations for individual recognition (e.g. paper wasps (Sheehan 

and Tibbetts 2009; Sheehan and Tibbetts 2011), cliff swallows (Loesche et al. 

1991; Medvin et al. 1993)). 

 If the benefits of distinctiveness in P. metricus are sufficient to facilitate the 

evolution of identity signals, why does P. metricus lack variable color patterns 

and individual recognition? It is likely that identity signals have not evolved in P. 

metricus because P. metricus foundresses do not experience the relevant social 

circumstances in the wild. Interactions among foundresses are thought to be the 
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primary selective pressure favoring the evolution of social signaling in Polistes 

(Tibbetts 2004), as social recognition is thought to minimize the costs of conflict 

among foundress. Foundresses of some species often nest in groups where they 

compete for status before forming a strict linear dominance hierarchy that 

determines relative rates of reproduction and work (Reeve 1991). P. metricus 

foundresses usually nest alone and rarely nest in groups of more than two 

wasps, so sophisticated recognition systems are unnecessary (Gamboa 1978; 

Hughes et al. 1993). In contrast, P. fuscatus have highly variable identity signals 

and frequently nests in large foundress associations (Klahn 1979; Tibbetts 2002; 

West Eberhard 1969). While foundresses in all wasp species eventually have 

extensive social interactions with their workers, foundress-worker interactions are 

unlikely to favor individual recognition. Instead, foundress-worker social 

interactions across Polistes are mediated through cuticular hydrocarbons that 

communicate queen fertility and status (Izzo et al. 2010; Monnin 2006). Overall, 

our results suggest that unique, identifiable phenotypes could be beneficial 

during foundress competition in P. metricus, but their nesting habits provide little 

opportunity for selection to act in the wild. 

 Our results suggest that a bias in receiver behavior may be an explanation 

for the evolution of novel communication systems in a wider range of signal 

forms than is typically considered. Traditionally,  receiver biases have been 

invoked to explain the evolution of female preference for exaggerated male traits 

(Endler and Basolo 1998; Fuller et al. 2005; Pryke and Andersson 2002; Ryan 

1998). More recently, the same framework has been applied to the evolution of a 
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wide variety of other types of signals including floral displays (Naug and Arathi 

2007) and conspicuous warning colors (Halpin et al. 2008). In all of these cases, 

receivers have a pre-existing preference (or aversion) to certain stimuli, which 

are co-opted by senders during signal evolution (Endler and Basolo 1998). Here 

we present experimental evidence for a  bias in receiver responses.  These 

responses provide favorable conditions for the evolution of identity signals and 

individual recognition. Unlike the other examples or receiver biases, we are not 

arguing that receivers have a preference for a particular feature, but rather that 

receivers are capable of discriminating among individuals based on their 

distinctive phenotypes. Consistent with the theory of receiver biases for other 

types of signals (Endler and Basolo 1998), latent abilities for discrimination are 

likely to be a by-product of other aspects of animals’ behavioral repertoire such 

as foraging and predator detection, which often require well-developed pattern 

discrimination abilities. Since all recognition systems depend on discrimination, it 

is likely that biases in receiver behavior may help explain the evolution of other 

recognition at other levels of specificity such as kin or species. While receiver 

discrimination abilities have obvious connections to behaviors not used in social 

recognition, the origin of receiver responses to individuals is less straightforward. 

 

General Discussion 

 Individual recognition is associated with highly distinctive phenotypes and 

fine-tuned cognitive abilities in a number of taxa including swallows (Beecher et 

al. 1986; Medvin et al. 1993), penguins (Jouventin and Aubin 2002; Jouventin et 
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al. 1999), humans (Kanwisher and Yovel 2006) and paper wasps (Sheehan and 

Tibbetts 2009; Sheehan and Tibbetts 2011). Once individual recognition is firmly 

in place, it is easy to understand how selection can favor increasing 

distinctiveness or finer discrimination abilities. Understanding how the process 

begins is less straightforward. Through a combination of literature review and 

experiments we have provided evidence for the role of sender and receiver 

biases in facilitating the evolution individual recognition. While the currently 

available data is not definitive, the patterns of phenotypic variation and receiver 

behavior suggest that sender biases may be a widespread contributor to the 

evolution of individual recognition. Given the emphasis on receiver biases in the 

much of the literature on signal evolution (Endler and Basolo 1998; Fuller et al. 

2005; ten Cate and Rowe 2007), the apparent prevalence of sender biases in the 

evolution individual recognition is surprising (though see (Scott-Phillips et al. in 

press). Our experimental results, however, demonstrate that biases in receiver 

behavior explain the origin of individual recognition in Polistes wasps. Thus, 

biases in receiver behavior are a viable hypothesis for explaining the evolution of 

individual recognition. Though receiver biases appear uncommon in our survey 

of the literature, it is premature to draw any conclusions about the relative 

prevalence of sender or receiver biases in the evolution of individual recognition 

from existing data. 

 Regardless of whether individual recognition initially evolved via a sender 

or receiver bias, we expect similar evolutionary outcomes. In both cases, the pre-

existing bias allows for selection to act on the other trait. As selection causes the 
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‘lagging’ trait to catch up, both traits may be elaborated in a correlated manner. 

There is growing evidence that selection for efficient recognition favors the 

evolution of distinctive identity signaling phenotypes (Pollard and Blumstein 

2011; Sheehan and Tibbetts 2009; Sheehan and Tibbetts 2010). Identity 

signaling traits are expected to show a number of characteristics including: (1) 

composed of multiple traits, (2) each trait has a multi-modal distribution, (3) the 

traits are uncorrelated, (4) the traits are not associated with individual quality, and 

(5) the individual variations in the traits are stable (Beecher 1989; Dale 2006; 

Dale et al. 2001). Traits used for individual recognition in a number of species 

appear to fit these predictions including paper wasps Polistes fuscatus (Tibbetts 

2002; Tibbetts and Curtis 2007), ruffs Philomachus pugnax (Dale et al. 2001), 

red-billed queleas Quelea quelea (Dale et al. 2001) and mice Mus musculus 

domesticus (Hurst et al. 2001; Hurst et al. 2008). While traits that have evolved 

as identity signals are expected to show a particular suite of characteristics, the 

precursors to identity signals need only to have some degree of variation that 

allows for improved individual identification. Provided that senders benefit from 

being recognized, selection for distinctive, identifiable phenotypes is expected to 

favor the evolution of identity signals (Dale et al. 2001; Johnstone 1997a). 

 Just as selection appears to favor the evolution of identity signals in 

senders, there is evidence for the evolution of receiver psychology in the context 

of individual recognition. Experiments in a diverse range of taxa and in different 

sensory modalities have demonstrated that receivers are particularly adept at 

recognizing individuals of their own species, often through specialized cognitive 
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mechanisms. In humans, faces and voices are processed using specific brain 

regions and specialized cells (Kanwisher and Yovel 2006; Perrodin et al. 2011; 

Petkov et al. 2008). The paper wasp Polistes fuscatus shows cognitive 

specializations for learning conspecific faces, though its close relative that lacks 

individual, P. metricus, does not (Sheehan and Tibbetts 2011). Adaptations for 

acoustic recognition have also been found in swallows (Loesche et al. 1992; 

Loesche et al. 1991). Given that animals are capable of discriminating among 

and recognizing a wide range of patterns, it is somewhat surprising that such 

elaborate cognitive abilities associated individual recognition are present in 

primates, birds and wasps. Cognitive specializations for recognition have been 

tested in very few species to date, so the prevalence of cognitive specializations 

for individual recognition is unclear.  Nevertheless, the existing work indicates 

that selection may shape cognitive processing in receivers to facilitate individual 

recognition. The exact nature of receiver behavioral evolution is expected to vary 

depending on the context of individual recognition and the specific history of a 

lineage.  For example, territory holders in many species are often less aggressive 

to individually recognized territorial neighbors, such that the appropriate receiver 

behavior is to alter the levels of aggression depending on whether or not a 

particular they recognize a particular individual. If the ancestor prior to the 

evolution of individual recognition aggressively defended territories against 

everyone, selection for individual recognition in this context would be expected to 

favor receiver to reduce aggression to individuals that they recognize. 

Conversely, if the ancestor were passive to all individuals, selection for individual 
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recognition would favor increased aggression to individuals that are not 

recognized. The nature of selection on receiver behavior will vary across taxa 

and contexts, though in call cases selection should favor receivers to respond to 

individuals differently depending on their past experiences with that particular 

individual. 

 Although individual recognition is thought to play a central role in many 

aspects of social evolution (Axelrod and Dion 1988; Crowley et al. 1996; Stevens 

and Hauser 2004), very few studies have examined how this highly specific 

recognition system has originated (Tibbetts and Dale 2007). In this paper, we 

provided a framework for future research examining the origin of individual 

recognition.  Future research will ultimately need to combine analyses of 

phenotypic variability with experimental studies of receiver behavior in a robust 

phylogenetic framework. An important first step in understanding the evolution of 

individual recognition will be to identify more instances where closely related 

species differ in whether or not they individually recognize social partners, as 

variation in the trait will facilitate comparative analyses (Table 6.1).  

 This paper has focused on individual recognition though the general 

findings are likely to apply to other, less specific recognition systems. All 

recognition systems require variation in sender phenotypes as well as 

appropriate receiver discrimination abilities and responses (Sherman et al. 1997). 

The de novo evolution of any recognition system would likely be facilitated by 

sender or receiver biases. Previous work has not used the term sender bias, 

though it is a central theme in research on the evolution of kin recognition 
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phenotypes. Numerous theoretical studies have pointed out that the variation 

required for kin recognition is unlikely to be maintained solely by selective 

pressures from recognition itself (Crozier 1986; Grosberg 1988; Rousset and 

Roze 2007). Indeed, many kin recognition systems are mediated by genes 

involved in immune responses to pathogens, so variation is maintained due to 

frequency-dependent selection and heterozygote advantages imposed by 

pathogens (Bernatchez and Landry 2003). Sender biases may play an important 

role in class-recognition as many natural categories of individuals (e.g. male - 

female, juvenile - adult, territorial - sneaker morphs) differ phenotypically, which 

could provide the basis for signals of class membership (Dale 2006; Roulin 

2004).  

 Whereas sender biases may play a role in the evolution of a range of 

recognition systems, the scope of receiver bias may be more limited. Receiver 

bias provides a route for the evolution of recognition systems in the absence of 

variation in sender phenotypes. Thus, for receiver to be effective selection for 

recognition must be sufficient to maintain variation in recognition phenotypes. 

Selection for recognition appears to be sufficient to maintain variation in 

phenotypes used for individual recognition (Lahti 2005; Sheehan and Tibbetts 

2010). However, Current theory suggests that may not be the case for other 

recognition systems such as kin recognition (Crozier 1986; Grosberg 1988; 

Rousset and Roze 2007). In models of kin recognition, individuals with a kin 

phenotype receive benefits, which favors common recognition alleles as those 

individuals have more beneficial interactions. Provided that senders on average 
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benefit by being properly classified by receivers and suffer costs when incorrectly 

classified (as occurs in individual recognition), selection should favor the 

evolution of phenotypes that allow for proper classification whether that be at the 

individual, kin, group or species level. Thus, when senders benefit from proper 

identification, receiver bias may play a role in origin of novel evolution of 

recognition systems. 

 

Conclusion 

 Recognition systems have been the focus of a great deal of research in 

biology and psychology because of their importance for understanding social 

evolution (Tang-Martinez 2001; Tibbetts and Dale 2007) Previous research has 

shown that selection for individual recognition can produce highly polymorphic 

and individualistic phenotypes (Pollard and Blumstein 2011; Sheehan and 

Tibbetts 2009) as well as highly specialized cognitive abilities (Sheehan and 

Tibbetts 2011; Zhu et al. 2010). Here we outlined the evolutionary routes through 

which recognition cues and cognition might originate via sender and receiver 

biases. As with the evolution of other signaling systems, receiver biases appear 

to play a role in the evolution of individual recognition. In contrast to the 

emphasis on receiver bias in the literature, we find evidence that sender biases 

may be particularly important in facilitating the evolution of recognition systems. 
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Figure 6.1 
A schematic representation of the expected patterns of individual recognition and 
sender phenotypic variability under the sender and receiver bias hypotheses. 
Black boxes indicate that a trait is present. White boxes indicate that a trait is 
absent. For sender bias, taxa lacking individual recognition are expected to 
possess individually variable phenotypes.  If taxa lacking individual recognition 
lack individually variable phenotypes, there is no support for receiver bias. The 
patterns are expected to be the same for each hypothesis, whether the lack of 
individual recognition is ancestral (left) or derived (right). 
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Figure 6. 2 

Standardized aggression scores for 

wasps with common (white bars) and 

unique (black bars) appearances + SE. 

(A) The average aggression directed at 

distinctive and common wasps by 

individual receivers. This analysis 

specifically considers the effect of 

distinctive markings on the behavior of 

the average receiver. (B) The average 

aggression initiated by wasps of each 

treatment in the first half hour of 

interactions. (C) The average aggression 

received by wasps of each treatment in 

the first half hour of interactions. The 

mean standard scores differ in 

magnitude across the analyses because 

each analysis used an independently derived set of scores.  
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Chapter 7: Conclusions 

 

 This dissertation has examined the evolution of individual recognition from 

the perspectives of both senders (Chapters 2-3) and receivers (Chapters 4-5) as 

well as the processes facilitating the origin of novel recognition systems (Chapter 

6). In doing so, this work provides a foundation for thinking about the evolution of 

individual recognition and recognition systems more broadly. Additionally, this 

work has provided key insights in four areas. 

 First, understanding the mechanisms that maintain polymorphism in 

populations is a central goal of modern evolutionary biology. Recognition 

systems, which require variable phenotypes, are ideal study systems for 

investigating the evolution of ecological important polymorphisms. Our work 

provides the first evidence that selection favors the evolution of distinctive identity 

signaling phenotypes (Sheehan and Tibbetts 2009; Sheehan and Tibbetts 2010). 

Thus, selection that favors recognition is likely to be a common force maintaining 

polymorphism in populations. 

 Second, animal cognition is thought to play a central role in many areas of 

research in evolutionary biology such as mate choice (ten Cate and Rowe 2007) 

and predator-prey co-evolution (Bond and Kamil 2002), though the processes of 

cognitive evolution themselves are poorly understood (Bitterman 2000; 
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Shettleworth 2000). Recognition decisions are important for animals not only 

when they interact with social partners, but also when then search for mates or 

prey. Therefore, understanding the evolution of cognitive abilities associated with 

recognition systems may provide important insights. Our work on face 

recognition in paper wasps suggests selection for improved recognition abilities 

has favored the evolution of specialized face-processing abilities in paper wasps 

(Sheehan and Tibbetts 2011), analogous to those found in mammals (Pascalis 

and Kelly 2009). The striking patterns of convergent evolution across wasps and 

mammals and divergent evolution between closely related wasps, is consistent 

with the hypothesis that specialized cognition is the result of adaptive evolution.  

This means selection for cognitive abilities use for one task may have little 

influence cognitive abilities related to other tasks. Thus, counter to common 

wisdom, animal may best be viewed as a suite of independent abilities. 

 Third, the individual recognition is thought to dramatically increase the 

cognitive demands of social life. The presence of many individually-differentiated 

relationships have been a major selective force favoring the evolution of 

encephalization in primates and other vertebrates (Dunbar and Shultz 2007; 

Perez-Barberia et al. 2007; Shultz and Dunbar 2007). More recently, work on the 

cognitive abilities of insects has begun to challenge some of the long-held beliefs 

regarding brain size and cognitive abilities (Chittka and Niven 2009). In fitting 

with this trend, our work on social memories in P. fuscatus demonstrates that 

even insects with ‘mini-brains’ such as wasps are capable of maintaining 

individual social memories for relatively long periods of time in complex social 
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environments (Sheehan and Tibbetts 2008). Interestingly, P. fuscatus does not 

have a larger brain than other paper wasps (Gronenberg et al. 2008), suggesting 

that the cognitive aspects of individual recognition may not be particularly costly 

in paper wasps. 

 Finally, the origin of recognition systems, like any communication systems, 

poses a chicken and egg problem. Recognition requires both variable 

phenotypes in senders and appropriate responses in receivers to function 

(Sherman et al. 1997). Understanding the origin of recognition systems is 

therefore predicated on identifying which came first – sender variation or receiver 

behavior. Our results demonstrate that pre-existing variation in sender 

phenotypes are likely to be a widespread facilitator for the evolution of novel 

recognition systems (Chapter 6). Verbal and mathematical models have 

predicted that the ritualization of pre-existing sender behavior into formal signals 

should be common (Maynard-Smith and Harper 2003; Scott-Phillips et al. in 

press), and our survey of the literature finds broad, though not universal, 

empirical support for this hypothesis. We also demonstrate that the evolution of 

recognition systems may be facilitated by appropriate receiver responses through 

experiments in P. metricus, which lack individual recognition (Chapter 6). Our 

results demonstrate that the receiver bias hypothesis for the origin of novel 

signals can also be extended to the origin of novel recognition systems. 

  

Future directions 
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 In addition to providing new insights into many areas of research in 

evolutionary biology, the work described in this dissertation suggests a number of 

avenues for future research on regarding identity signals and specialized 

cognition. 

 

Genetic basis of individual variation in identity signals 

 A growing body of evidence suggests that the highly variable phenotypes 

used for individual recognition are the result of selection for distinctive, identity 

signaling phenotypes in a range of taxa (Logan et al. 2008; Medvin et al. 1993; 

Pollard and Blumstein 2011; Sheehan and Tibbetts 2009; Sheehan and Tibbetts 

2010). While it is clear that selection for identity signaling promotes 

polymorphism, the mechanism underlying the polymorphism are unknown in any 

taxa. Generally, there are three basic mechanisms that can generate increased 

polymorphism: (1) negative frequency-dependent selection of genetically 

determined morphs, (2) increased phenotypic plasticity and (3) increased 

developmental stochasticity (Leimar 2005). Given that comparative studies have 

shown that identity signaling traits respond to selection, there must be a genetic 

basis to identity signaling. While any of the three mechanisms could function to 

provide increased polymorphism, the nature of the underlying genetics of identity 

signaling has important ramifications for the maintenance of genetic diversity. 

Whereas, selection for increased plasticity and developmental stochasticity 

would reduce genetic polymorphism (while increasing phenotypic polymorphism) 

negative-frequency dependent selection would increase genetic variation. 
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 Dale (2006) has argued that identity signals should have strong genetic 

determination as that would enforce honest identity advertisement. Indeed, there 

is evidence from the calls of swallow nestlings (Medvin et al. 1992) and the 

urinary scents of mice (Cheetham et al. 2007) that there is a genetic basis for 

variation in identity signals. Additionally, there is evidence from paper wasps that 

identity signals are not condition dependent (Tibbetts and Curtis 2007), 

suggesting that the variation could have a genetic basis. At the moment, 

evidence for negative-frequency dependent selection maintaining genetic 

variation as a result of selection for identity signaling is lacking. 

 Interestingly, negative-frequency dependent selection for identity signaling 

is expected to differ from patterns of negative-frequency dependent selection on 

other traits. This occurs because in most instances negative-frequency 

dependent selection favors tight linkage between genes involved in traits under 

selection (Van Doorn and Dieckmann 2006). Empirical studies of self-recognition 

loci in plants are consistent with these predictions are loci show suppressed rates 

of recombination (Kamau and Charlesworth 2005). Additionally, the genetic basis 

of multiple male morphs in many species is controlled by a single mendelian 

locus (Lank et al. 1995; Sinervo et al. 2001), which is also consistent with the 

theoretical predictions. Unlike self recognition alleles or competing morphs, 

where a particular combinations of traits experience higher fitness, traits involved 

in identity signaling are expected to be phenotypically uncorrelated with each 

other, providing a greater number of possible phenotypic combinations and 

increased discriminatory power (Dale 2000; Dale et al. 2001). Thus, selection 
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should favor the loci controlling variation at various identity signaling traits to be 

unlinked. Therefore, in contrast to traditional predictions of limited polymorphism 

maintenance under multilocus negative-frequency dependent selection (Van 

Doorn and Dieckmann 2006), identity signaling is expected to maintain 

polymorphism at multiple unlinked loci. Tests of this prediction will require 

information on the genetic correlations among traits that compose identity 

signals. 

 

Comparative studies of specialized face learning 

 For a wide range of animals, faces provide a wealth of social information 

(Leopold and Rhodes 2010). Since animals typically orient towards each other 

during social interactions, faces provide an ideal canvass for conveying 

information regarding identity or aspects of quality to conspecifics. In primates, 

face learning is highly specialized, domain specific cognitive task (Pascalis and 

Kelly 2009). Decades of research have revealed a number of properties of 

specializations for face learning in primates, particularly that (1) processing 

occurs in a dedicated regions of the brain (Kanwisher and Yovel 2006), (2) the 

face template develops through a process of perceptual narrowing (Pascalis et 

al. 2002) and (3) that face learning abilities are heritable and genetically 

uncorrelated with other cognitive traits (Wilmer et al. 2010; Zhu et al. 2010). 

Whether these findings reflect general features of specialized learning or are 

specific to primates is unknown. Our recent demonstration of specialized face 
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learning abilities in wasps (Sheehan and Tibbetts 2011) opens up exciting 

possibilities for comparative work between wasps and primates. 

 An additional avenue for future research on face learning in wasps will be 

to compare face-learning abilities among Polistes with independently evolved 

facial signals. Variable color patterning that could be used for signaling has 

evolved multiple independent times within Polistes (Tibbetts 2004). In addition to 

individual recognition in P. fuscatus (Sheehan and Tibbetts 2008; Tibbetts 2002), 

quality signals have been experimentally confirmed in P. dominulus (Tibbetts and 

Dale 2004; Tibbetts and Lindsay 2008) and P. exclamans (Tibbetts and Sheehan 

2011). All three species (P. dominulus, P. exclamans and P. fuscatus) are distant 

relatives from distinct subclades within the genus (Pickett and Carpenter 2010). 

Whether species with quality signals will also show specializations for face 

learning is unknown. If P. dominulus and P. exclamans have independently 

evolved specialized face learning abilities, it will open up numerous research 

opportunities to study the repeatability of cognitive evolution, using face learning 

in Polistes as a model. 
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