
Testing Statistical Isotropy With Large-Scale

Structure

by

Cameron M. Gibelyou

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Physics)

in The University of Michigan
2012

Doctoral Committee:

Assistant Professor Dragan Huterer, Chair
Professor Timothy McKay
Associate Professor Aaron Pierce
Assistant Professor Jeff McMahon
Research Scientist Philip Hughes



“And amid all the splendours of the World, its vast halls and spaces, and its wheeling fires,
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CHAPTER I

Introduction

Cosmology is the study of the physical universe on its largest scales in space and

time. As a physical science that explores, both observationally and theoretically, the

properties of the universe at scales much larger than that of individual galaxies, the

field is actually quite young; the existence of galaxies outside the Milky Way was

only demonstrated conclusively in the 1920s. But ever since then, it has become

increasingly clear that the observable universe is unimaginably vast, and includes on

the order of a hundred billion galaxies.

In addition to the ordinary luminous matter that we see when we observe the

distant universe, the universe appears to contain components that remain compar-

atively poorly understood. Observations of the rotation curves of galaxies, gravita-

tional lensing by clusters of galaxies, and the growth of structure in the universe all

lend a great deal of support to the notion that most of the matter in the universe is

non-baryonic “dark matter” which neither emits light nor interacts electromagneti-

cally in any way. Other observations, including the acceleration of the universe and

the inference of the universe’s total mass-energy budget from the cosmic microwave

background, show that an even larger portion of the universe’s energy exists in the

form of “dark energy,” which exerts an antigravity-like influence at the very largest

1
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scales of the universe, pushing distant galaxies apart at ever-increasing rates. While

the identity and precise nature of dark-matter particles remains elusive, and no sin-

gularly compelling model of dark energy has been advanced, the presence of dark

matter and dark energy is inferred from their influences on the baryonic/luminous

matter that we can see and observe. In this way, the existence of dark matter and

dark energy is well-established even without compelling models to explain precisely

what they are.

The proportions of ordinary matter, dark matter, and dark energy are also well-

established: roughly 70-75 percent of the universe’s mass-energy is in the form of dark

energy, 20-25 percent takes the form of dark matter, and 4-5 percent corresponds to

baryonic matter. Various independent probes of the relative “abundances” of dark

energy, dark matter, and ordinary matter all arrive at nearly the same proportions,

an encouraging sign that our understanding of the non-electromagnetic universe is

on the right basic track. An array of observations have thus led to the emergence of

something like a “standard model” of the universe, the ΛCDM model, which stands

for dark energy (Λ indicating Einstein’s cosmological constant, a major candidate

for the identity of the dark energy) plus cold dark matter, the components that

dominate the mass-energy of the universe.

As far as the luminous matter is concerned, our knowledge of the distribution

of galaxies and other tracers of the large-scale structure of matter in the universe

is constantly growing. Major observational projects such as the Sloan Digital Sky

Survey (SDSS) and the upcoming Dark Energy Survey (DES) and Large Synoptic

Survey Telescope (LSST) map increasingly wide portions of the sky to increasing

depths, giving the astronomical community a better and better map of the universe

at its largest scales.
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As we look further out into the universe, we peer further back in time, due to the

fact that the speed of light is finite and hence light takes billions of years to reach

us from the most distant galaxies we can see. Peering even further back in time

than the most distant galaxies, we see the most distant (in both space and time)

light in the universe: the cosmic microwave background, which we see as coming

from the surface of last scattering near the “edge” (not a literal physical edge) of the

observable universe. Many observational projects, including the COsmic Background

Explorer (COBE), the Wilkinson Microwave Anisotropy Probe (WMAP), and the

Planck satellite (which is currently collecting data), have made and are making highly

detailed observations of the CMB, and thereby mapping out the structure of the

universe at its largest scales at a very early time, roughly 380,000 years after the Big

Bang.

At that 380,000-year mark, the first atoms formed, removing free electrons from

the universe and thereby setting photons (which we now detect as the CMB) free to

travel unimpeded through the universe (instead of scattering off the free electrons,

as before the 380,000-year mark). To understand the evolution of the universe before

that time, we cannot rely on direct observation of light from the early universe, since

the CMB is the oldest light we observe. However, based on the fact that we have

observed the universe to be expanding for almost the entirety of the last 13.7 billion

years, going back to less than a million years after the Big Bang, we can extrapolate

and “predict” that the universe has been expanding for the entirety of its existence.

Such an assumption has consequences for the physics of the universe; for example,

the entire universe should have been the right temperature for several minutes in

the immediate aftermath of the Big Bang to sustain fusion. Well-constrained theo-

retical predictions for the abundances of isotopes of hydrogen, helium, and lithium
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can be made, and observed abundances agree with predictions – an impressive and

highly nontrivial match between theory and observation, given that predictions for

abundances of different isotopes range over many orders of magnitude. Big Bang

nucleosynthesis, along with the observed expansion of the universe and the exis-

tence and detailed properties of the cosmic microwave background, are considered

the “three pillars” of the Big Bang, the three most important lines of evidence in

support of the almost universally accepted model for the evolution of the universe.

A great deal of research effort in the past 30 years has been put toward un-

derstanding the very first tiny fraction of a second after the birth of the universe.

Cosmological inflation is a paradigm that explains several outstanding problems with

the Hot Big Bang model (most notably the flatness problem and the horizon prob-

lem) and also has at least one major observational success to its name: inflation, at

least in its simplest realizations, predicts a nearly scale-invariant power spectrum,

which accords very well with observations in recent years.

Through powerful unifying ideas like inflation, the frontiers of cosmology now

regularly involve exploring connections between the very small and the very large,

especially in the setting of the early universe where the physics of subatomic particles

can have consequences for extremely large scales in the present universe. More

generally, cosmology can be seen in part as a testbed for ideas about fundamental

physics: constraints derived from observations of the cosmic microwave background

and the large-scale structure of the universe (referring primarily to the distribution

of matter, both dark and luminous, in the universe) can tell us something about

fundamental physics.

One example of this involves the cosmological principle. The cosmological princi-

ple, an assumption that cosmologists have built their theoretical models around for
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a very long time, holds that on its largest scales (hundreds of Mpc), the universe is

both the same from point to point (homogeneity) and the same from one direction

to another (isotropy). While the universe is not identically the same from one point

or direction to another, even on the largest scales, we speak in terms of statistical

averages when articulating the universe’s homogeneity and isotropy.

The cosmological principle, which functioned as a simplifying assumption before it

had strong theoretical or observational justification, is also a natural prediction of the

simplest models of inflation. Observations do bear out that the cosmological principle

is a reasonable approximation for most purposes. However, the cosmological principle

still exists as a sort of hybrid of assumption, theoretical prediction, and loosely

constrained observational result. Few rigorous observational tests have been applied

to test homogeneity and isotropy; my thesis attempts to address this. Accordingly,

I present work I have done toward performing tests of the statistical isotropy of the

universe using large-scale structure. The goal of this work is, fundamentally, to bring

statistical isotropy more fully out of the realm of assumption and into the realm of

observation.

While I have worked on multiple projects that do not fit neatly under this heading,

this thesis will focus only on work strongly connected with these questions of isotropy,

in the interest of telling a coherent story rather than haphazardly smashing together

largely unrelated work. More specifically, I will discuss work I have done in collabo-

ration with Dragan Huterer on the presence of dipole components in the distribution

of various tracers of large-scale structure (galaxies observed in the infrared and radio,

as well as gamma-ray bursts) on the sky. This work puts statistical isotropy, and

more specific predictions of ΛCDM theory, to the test. Observational results which

are used to test theoretical predictions come from an array of cosmological probes
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with (typically) quite different sources of systematic error. The control of systematic

errors, and the understanding of which systematic errors affect which surveys, is a

major theme of this work, and a large portion of the work involved in performing

this research involved understanding systematic errors in detail. The other major

component of the work involved coding up all the formalism and rigorously checking

to make sure that the behavior of the estimator we used to detect dipole signals was

as expected.

1.1 Dissertation outline

In Chapter 2 of this thesis, I lay out the theoretical foundations of work on

“dipoles in the sky.” The usual terminology for describing dipoles present in large-

scale structure tends to be somewhat confusing, and so I will attempt to describe as

precisely as possible which dipole-related quantities are relevant for this analysis.

In Chapter 3, I outline the formalism used throughout the thesis for detecting

dipole patterns in a distribution of objects observed on the celestial sphere. I also

demonstrate how this formalism naturally accounts for real or proposed systematic

errors.

In Chapter 4, I provide several comparisons of theoretical predictions and obser-

vational results for dipole patterns present in Two Micron All Sky Survey (2MASS)

extragalactic sources as well as the 2MASS Redshift Survey (2MRS), a survey of

redshifts of a small subset of the 2MASS extragalactic sources.

In Chapter 5, I provide similar theory vs. observation comparisons for the Comp-

ton Gamma Ray Observatory (CGRO) BATSE catalog, which observed over 1600

gamma-ray bursts, and the NRAO VLA Sky Survey (NVSS) catalog of extragalactic

sources observed in radio.
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Chapter 6 summarizes the previous four chapters. Appendix A presents detailed

tables related to results presented earlier in the thesis. Appendices B and C demon-

strate relatively minor but still notable features of the formalism and algorithms I

have used to produce these results.



CHAPTER II

Statistical Isotropy and Dipoles in the Sky

In this chapter, I provide a detailed introduction to the theoretical concepts and

predictions that are put to the test in this thesis.

2.1 The Importance of Statistical Isotropy

The cosmological principle holds that the universe is homogeneous and isotropic on

its largest observable scales. While the cosmological principle is a crucial ingredient in

obtaining many important results in quantitative cosmology, there is no fundamental

reason why our universe must obey it. The most general aim of this research has

been to directly test the cosmological principle using data from recent astrophysical

observations.

In a time when cosmology has become ever more precise and data-driven, it makes

a great deal of sense to put the cosmological principle to the observational test. This

has been done already only to a limited extent, and many avenues for testing the

cosmological principle remain to be pursued. It is particularly worthwhile to test

statistical isotropy, which, in addition to being a consequence of the cosmological

principle, is a generic prediction of inflationary models of the early universe. Any

observed violations of statistical isotropy could have far-reaching implications for our

understanding of the universe’s earliest moments, and violations of isotropy would

8
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also invalidate basic assumptions that serve as prerequisites to typical methods of

data analysis in observational cosmology.

To define statistical isotropy, consider a fluctuating field on the sky T (n̂) (the

same arguments will apply for any field, including the cosmic microwave background

(CMB) temperature field, the galaxy density field, etc.). The field is statistically

isotropic if the two-point correlation function depends only on the separation between

points:

(2.1) �T (n̂)T (n̂�)� = C(n̂ · n̂�)

while in the case where statistical isotropy is violated, the right-hand side would read

C(n̂, n̂�).

Alternatively, we could expand the field in spherical harmonics T (n̂) ≡
�∞

�=0
T� ≡

�∞
�=0

��
m=−� a�mY�m, where the a�m are the coefficients of the expansion. If statistical

isotropy is assumed, the angular power spectrum C� may be defined via �a∗�ma��m�� =

C�δ���δmm� , where C� does not depend on the rotational degrees of freedom m. Hence,

it is meaningful to calculate C� by averaging over the (2�+1) (on a full sky) “samples”

corresponding to the (2�+1) values ofm for each �. However, without the assumption

of statistical isotropy, we have in general

(2.2) �a∗�ma��m�� = C̃�m��m� ,

which is much more difficult to measure than C� since we get only one sample of

C̃�m��m� for each (�,m, �
�
,m

�) in our universe. This is a big reason why statistical

isotropy is such a crucial assumption in cosmology: it is much easier to work with

C� than the much more complicated quantity above.
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Figure 3: Multipole vectors of our sky, based on WMAP five-year
full-sky ILC map and with galactic plane coinciding with the plane
of the page. The temperature pattern at each multipole ! (2 ≤ ! ≤ 8)
can either be described by an angular temperature pattern (colored
lobes in this figure), or alternatively by precisely ! multipole vectors
(black “sticks”). While the multipole vectors contain all information
about the directionality of the CMB temperature pattern, they are
not simply related to the hot and cold spots and, for example, do
not correspond to the temperature minima/maxima [14]. Notice
that ! = 2 and 3 temperature patterns are rather planar with the
same plane and that their vectors lie approximately in this plane.
Adopted from [15].

interesting theoretical results have been found; for example,
Dennis and Phys [21] analytically computed the two-point
correlation function of multipole vectors for a Gaussian
random, isotropic underlying field. Numerous quantities
have been proposed for assigning directions to multipoles
and statistics on these quantities have been studied. In the
work of Copi et al. [14] we have summarized these attempts
and have shown their connections to the multipole vectors.

3.2. Planarity and Alignments. Tegmark et al. [22] and de
Oliveira-Costa et al. [23] first argued that the octopole is
planar and that the quadrupole and octopole planes are
aligned. In the work of Schwarz et al. [24], followed up
by Copi et al. [14, 25], we investigated the quadrupole-
octopole shape and orientation using the multipole vectors.
The quadrupole is fully described by two multipole vectors,
which define a plane. This plane can be described by the
“oriented area” vector

−→w (!;i, j) ≡ v̂(!,i) × v̂(!, j). (10)

(Note that the oriented area vector does not fully characterize
the quadrupole, as pairs of quadrupole multipole vectors
related by a rotation about the oriented area vector lead to the
same oriented area vector.) The octopole is defined by three
multipole vectors which determine (but again are not fully
determined by) three area vectors. Hence there are a total of
four planes determined by the quadrupole and octopole.

In the work of Copi et al. [25] we found that (see
Figure 4)

(i) the four area vectors of the quadrupole and octopole
are mutually close (i.e., the quadrupole and octopole
planes are aligned) at the 99.6% C.L.;

(ii) the quadrupole and octopole planes are orthogonal
to the ecliptic at the 95.9% C.L.; this alignment was at

NEP

Dipole

Dipole Ecliptic plane

SEP

−60 60
T (µK)

Figure 4: Quadrupole and octopole (! = 2 and 3) temperature
anisotropy of the WMAP sky map in galactic coordinates, shown
with the ecliptic plane and the cosmological dipole. Included are
the multipole vectors (solid diamonds): two for the quadrupole
(red diamonds) and three for the octopole (green diamonds). We
also show the four normals (solid squares) to the planes defined
by vectors that describe the quadrupole and octopole temperature
anisotropy; one normal is defined by the quadrupole (red square)
and three by the octopole (green squares). Note that three out of
four normals lie very close to the dipole direction. The probability
of this alignment being accidental is about one part in a thousand.
Moreover, the ecliptic plane traces out a locus of zero of the
combined quadrupole and octopole over a broad swath of the sky—
neatly separating a hot spot in the northern sky from a cold spot
in the south. These apparent correlations with the solar system
geometry are puzzling and currently unexplained.

98.5% C.L. in our analysis of the WMAP 1 year maps.
The reduction of alignment was due to WMAP’s
adaption of a new radiometer gain model for the 3
year data analysis, that took seasonal variations of the
receiver box temperature into account—a systematic
that is indeed correlated with the ecliptic plane. We
regard that as clear evidence that multipole vectors
are a sensitive probe of alignments;

(iii) the normals to these four planes are aligned with
the direction of the cosmological dipole (and with
the equinoxes) at a level inconsistent with Gaussian
random, statistically isotropic skies at 99.7% C.L.;

(iv) the ecliptic threads between a hot and a cold spot
of the combined quadrupole and octopole map,
following a node line across about 1/3 of the sky and
separating the three strong extrema from the three
weak extrema of the map; this is unlikely at about the
95% C.L.

These numbers refer to the WMAP ILC map from three years
of data; other maps give similar results. Moreover, correction
for the kinematic quadrupole—slight modification of the
quadrupole due to our motion through the CMB rest
frame—must be made and increases significance of the
alignments. See [25, Table 3] for the illustration of both of
these points.

While not all of these alignments are statistically inde-
pendent, their combined statistical significance is certainly

Figure 2.1: Anomalies in measurements of the cosmic microwave background. Left: Low power
at large angles in the CMB. Measurements of the angular correlation function of the CMB on the
cut sky (Galactic plane and other known sources of non-CMB microwave emission removed, which
arguably gives the most reliable results) are very close to zero at angular scales above 60 degrees.
This is unlikely in the standard ΛCDM model at the 0.03 percent level (Copi et al. (2009)). Figure
adapted from Sarkar et al. (2011). Right: A combined map of the quadrupole and octopole of the
cosmic microwave background temperature fluctuations. The WMAP-measured quadrupole and
octopole are strongly aligned with one another, to an extent unexpected in ΛCDM (Copi et al.
(2007)). In addition, the ecliptic plane neatly divides a large cold spot from a large hot spot in
this map, an effect that is representative of several anomalies in which it appears the geometry and
motion of the Solar System are correlated with (putatively cosmological) features of the CMB.

2.1.1 Point of Departure: Large-Scale Structure as Probe of CMB Anomalies

While measurements of the angular power spectrum of the CMB by the Wilkinson

Microwave Anisotropy Probe (WMAP) experiment have provided strong support for

the inflationary Hot Big Bang model and allowed for unprecedentedly precise deter-

mination of cosmological parameters, these successes have come along with various

unexpected “anomalies” in the data. The literature on these anomalies is vast, and

there has been much debate over whether some – or even all – of the anomalies

are mere relics of the selection of a posteriori statistics and other unconvincingly

arbitrary uses of the huge WMAP dataset (Bennett et al. (2011); Efstathiou et al.

(2010); Pontzen and Peiris (2010); Aurich and Lustig (2010)).

For example, one anomaly that has received a great deal of attention involves the

low power in the CMB at large angular scales. The angular correlation function of
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the CMB, defined via

(2.3) C(θ) ≡
�
∆T

T
(n̂)

∆T

T
(n̂�)

�

n̂·n̂�=cos θ

,

is unusually close to zero at angles θ � 60◦ (see Fig. 2.1). One way of quantifying

how low C(θ) is at large angular scales uses the S1/2 statistic, defined originally by

the WMAP team (Bennett et al. (2003)) as

(2.4) S1/2 ≡
�

1/2

−1

[C(θ)]2 d(cos θ).

WMAP measurements produce an S1/2 statistic low enough to be unlikely in the

standard ΛCDM model at the 0.03 percent level (Copi et al. (2009)). While it could

be – and has been – argued that this choice of statistic is a posteriori (e.g., Efstathiou

et al. (2010)), given (for example) the somewhat arbitrary cutoff at cos θ = 1/2 and

the choice to square C(θ) in the integral rather than using an absolute value or a

different even power, there is still good reason to suspect (e.g., Copi et al. (2007,

2009)) that WMAP measurements of the large-angle C(θ) disagree with ΛCDM. In

particular, large-angle power was low in COBE (where this effect was first noted),

lower in the initial WMAP results, and still lower in WMAP years 3-7. The fact that

the signal has become more prominent with better and better data can be regarded

as the signature of a genuine physical effect.

My own previous research has attempted to circumvent discussions of a posteriori

statistics and focus on the question of whether other probes of large-scale correlations

in our universe might used to cross-check and possibly validate CMB measurements.

That is, if observations of the universe’s large-scale structure could effectively probe

the scales corresponding to θ > 60◦ in the CMB, such observations could provide a

new window on large-scale correlations that would rely on verifying predictions made

in advance of data collections rather than a posteriori inferences after the fact.
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In collaborations with Dragan Huterer and Wenjuan Fang of the University of

Michigan, and Andrew Hearin and Andrew Zentner of the University of Pittsburgh,

I have modeled primordial curvature power spectra ∆2

R(k) with a roughly horizon-

scale cutoff in power that would give rise to a CMB with suppressed power at large

scales, and examined how much suppression would be necessary for the effect to

be detectable in a future redshift survey (Gibelyou et al. (2010)) or galaxy imaging

survey (Hearin et al. (2011)). In general, there is a tradeoff: as the scale of the cutoff

in power becomes smaller and smaller (so that there is more and more suppression),

S1/2 likewise becomes smaller and (up to a point) in closer agreement with the

WMAP-measured value. It also becomes easier and easier to rule out or detect

suppression with large-scale-structure observations. But too much suppression (that

is, suppression on much-smaller-than-horizon scales) leads to disagreement with the

measured angular power spectrum C� of the CMB. For the details of these tensions

and the relative likelihood of detecting large-scale suppression using galaxy surveys,

see Gibelyou et al. (2010) and Hearin et al. (2011).

The idea of using large-scale-structure observations to (partially) independently

test anomalous results in CMB measurements has, in general, not been heavily ex-

ploited. This is in part because the common assumption is that the CMB is always

best for detecting any pattern on very large scales, and most of the anomalies involve

such scales – low multipoles, or large angles in WMAP measurements. While it is

true that the CMB, originating at redshift z ∼ 1100 as it does, is the best probe of

the largest scales in the universe, it is simply not the case that the CMB is the only

viable probe of such scales. Also, large-scale-structure measurements add a third

dimension that is absent in CMB observations.

This is where my previous research links up with the research in this thesis, which
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concerns the question of statistical isotropy. There are already tantalizing hints of

violations of statistical isotropy in CMB data; in fact, several observed anomalies,

especially those indicating correlations between patterns in the CMB of (apparently)

cosmological origin (e.g., the quadrupole and octopole) and the geometry and motion

of the Solar System (see Fig. 2.1), can be understood as indications that statistical

isotropy fails to hold. In addition, the southern ecliptic hemisphere has significantly

more power than the northern ecliptic hemisphere on scales of about 3 degrees and

larger (multipoles � 60) (Hoftuft et al. (2009)). This so-called “hemispherical power

anomaly” is a dipole modulation (see the beginning of Chapter 3 for precise discussion

of what this entails mathematically) of CMB power (direction in Galactic coordinates

is (l, b) = (224◦,−22◦)) that is completely distinct from the measured CMB dipole

C1 (which is due to our motion with respect to the CMB rest frame), and is yet

another possible indication of breaking of statistical isotropy in the CMB. (However,

see Hanson and Lewis (2009) for the updated result that the significance of the

hemispherical power anomaly decreases when smaller scales are taken into account:

previous analyses had been done for � � 60; when analysis is extended out to � ∼ 500,

the effect becomes less than 3σ-anomalous. The fact that greater resolution reduces

the significance of the signal calls into question the authenticity of the signal as a

genuine cosmological effect.) Finally, the low power at large angles in C(θ) may itself

be an indication that statistical isotropy is violated: it seems that a conspiracy of

low-� multipoles in the angular power spectrum C� is responsible for creating the

suppressed C(θ) (Copi et al. (2009)), and correlations between different multipoles

could be the result of a lack of statistical isotropy.

I take these considerations as general motivation for the work performed in the

rest of this thesis, which will analyze the specific issue of dipole patterns in various
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surveys being used as probes of the statistical isotropy of the universe.

2.2 Types of Dipoles: Specific Theoretical Considerations

It is completely expected that a dipole will be present in any survey of objects

that trace large-scale structure. Both of the following effects contribute to the dipole:

(a) there are local anisotropies since the universe is not homogeneous and isotropic

except on its very largest scales, and (b) the Earth has a total motion relative to

the large-scale-structure rest frame that is the sum of several vector contributions

(Earth moves around the Sun, the Sun moves around the center of the Milky Way,

the Milky Way moves with respect to the Local Group barycenter, and the Local

Group barycenter moves with respect to the structure around it and, ultimately, the

large-scale-structure rest frame). That motion produces dipole anisotropy due to two

effects, the Doppler effect and relativistic aberration of angles (Itoh et al. (2010);

see Sec. 2.2.3 for mathematical details). The Doppler effect is relevant because

it changes how magnitude varies with frequency, and since LSS surveys invariably

operate within limited frequency ranges, the Doppler effect may shift certain objects

into or out of a magnitude-limited sample. Since frequencies will increase in the

direction of motion and decrease in the opposite direction, this produces a small

dipole in the number of objects detected. Meanwhile, relativistic aberration causes

the measured positions of galaxies to be displaced toward our direction of motion.

This effect is on the order of v/c ∼ 10−3, relevant for our purposes.

We expect that as we go from smaller to larger survey volumes, the measured

value of the dipole amplitude should converge to that of the CMB dipole. This is

because with larger survey volumes, we average over more and more structure, and

the universe approaches homogeneity and isotropy. Any dipole left over should be
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due only to our motion, a kinematic dipole (with amplitude on the order of 10−3) just

as in the CMB. There are several reasons why the dipole might not converge to that of

the CMB. One is that the rest frame of the CMB is not the same as the rest frame of

the LSS: novel horizon-scale physics (explored below) could induce a relative velocity

between the CMB and LSS, so that galaxies would have a nonzero average streaming

velocity with respect to the CMB rest frame. There is also the possibility that there

is genuinely more mass (and therefore more galaxies/objects that trace the mass

distribution) in one direction, corresponding to modulation of primordial curvature

perturbations due to the physics of inflation. Scenarios in this vein, exploring the

possibility that isocurvature perturbations produce such an effect (with an eye to

explaining the CMB hemispherical power anomaly) have been advanced by Erickcek

et al. (2009) and Erickcek et al. (2008b). Careful measurement of dipoles in various

surveys, such as those we perform here, help zone in on these possibilities, which

correspond to a violation of statistical isotropy.

The rest of this section will flesh out the details of the discussion in the preceding

two paragraphs.

2.2.1 Flux-weighted dipole vs. 2D-Projected Dipole

One very commonly computed type of dipole is not, strictly speaking, a dipole at

all, but is worth explaining in detail here because it is so frequently referred to as a

dipole, and is strongly related to quantities that are genuine dipoles. This “dipole”

is the flux-weighted dipole, where instead of calculating a (genuine) dipole based

only on the two-dimensional projected positions of objects on the sky, some radial

information is preserved by weighting each object by the flux we receive from it.

The flux-weighted dipole, as typically computed, is a measure of the acceleration

due to gravity on the Local Group. In linear theory, the peculiar velocity v(r) at
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position r is proportional to the peculiar acceleration vector g(r) induced by the

matter distribution around position r (Erdogdu et al. (2006), Bilicki et al. (2011)):

(2.5) v(r) =
H0f(ΩM)

4πGρ̄
g(r) =

2f(ΩM)

3H0ΩM
g(r) .

Here, H0 = 100h km/s/Mpc is the Hubble constant, ΩM is the matter density divided

by the critical density, and f(ΩM) ≡
�
d lnD
d ln z

�
|z=0 (where D is the growth factor). In

the ΛCDM model, the factor f(ΩM) ≈ Ω0.55
M and is only weakly dependent on the

cosmological constant (Lahav et al. (1991)). The acceleration vector itself is given

by

(2.6) g(r) = Gρ̄

�
δM(r�)

r� − r

|r� − r|3 d
3r� ,

where δM(r) = [ρM(r)− ρ̄] /ρ̄ is the density contrast of the mass perturbations at

the point r.

Of course, we do not directly observe the mass distribution, but rather objects

(usually galaxies) that trace the mass distribution. Assuming constant linear bias

(which is expected to be a good approximation at large scales and for fixed galaxy

type), δg = b δM , and using the fact that for a spherical survey
�

r�−r
|r�−r|3 d

3r� = 0, the

peculiar acceleration becomes

(2.7) g(r) =
G

b

�
ρg(r

�)
r� − r

|r� − r|3 d
3r� .

Following Bilicki, Chodorowsky, and Jarrett, we create the parameter β ≡ f(ΩM)/b,

in which case we can write

(2.8) v ∝ β g ,

which demonstrates a result we will make use of in this thesis, despite the fact that it

does not concern flux-weighted dipoles specifically: namely, in linear theory, peculiar
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velocity is directly proportional to peculiar acceleration, and in particular, the peculiar

velocity of the Local Group (the motion that makes the dominant contribution to

the CMB kinematic dipole) is directly proportional to the acceleration due to gravity

of the Local Group induced by all the matter in the universe, especially the local (on

the order of 102 Mpc/h and closer) large-scale structure.

Note that in addition to observing galaxies rather than mass itself, we do not

even observe a continuous galaxy density field, but rather discrete objects. Treating

galaxies as point sources, ρg(r) =
�

i Mi δD(r−ri), where δD is the Dirac delta func-

tion and Mi and ri are the mass and the position of the i-th galaxy, the acceleration

due to gravity of the local group becomes

(2.9) g =
G

b

�

i

Mi
r̂i
r
2

i

.

where the origin of the coordinate system is implicitly at the barycenter of the Local

Group.

To see why a flux-weighted dipole is of interest, we put the above into a form that

is useful for actual observational data. Noting that masses of individual galaxies are

not typically known well, but that luminosities are easier to measure, we can write

(2.10) g =
4πG

b

�

i

Mi

Li

Li

4πr2i
r̂i =

4πG

b

�

i

Mi

Li
Sir̂i ,

where the i-th galaxy has an intrinsic luminosity Li and a total flux received of

Si = Li/4πr2i . Hence if we have a sense of how the mass-to-light ratio behaves in a

given band for a given survey, it becomes possible to estimate the acceleration of the

Local Group from two-dimensional data plus photometry. If we finally assume (and

this is of course a large assumption, though a very commonly made one) that the

mass-to-light ratio is the same for all objects in the survey, Υ = �M/L�, we finally
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obtain

(2.11) g =
4 πGΥ

b

�

i

Sir̂i .

In words, the flux-weighted dipole takes the position vectors of the objects in a

survey, weights according to their fluxes (viewed as a proxy for mass), and adds

them together. See Bilicki, Chodorowsky, and Jarrett for some details and caveats

to working with this formulation, but the outline above captures the basic reason

why the flux-weighted dipole is a quantity of interest: by keeping radial information

on objects in a survey by means of tracking their apparent magnitudes, it is possible

to obtain a measure of the direction and strength of the acceleration of the Local

Group due to the Newtonian gravitational attraction from objects in the survey. Both

gravity and flux go as 1/r2, so light flux can be used as a proxy for gravitational force

of attraction in the limit of constant M/L. The flux-weighted dipole from 2MASS

is in the direction (l, b) = (264.5◦, 43.5◦) ± (2.0◦, 4.0◦) (Maller et al. (2003); note

the rather serious discrepancy between the published result and the arXiv version);

the flux-weighted dipole from 2MRS is in the direction (l, b) = (251◦, 38◦) (Erdogdu

et al. (2006)) in the Local Group frame, or (245◦, 39◦) in the CMB frame.

2.2.2 2D-Projected Dipole: Local-Structure Dipole

For the rest of this section, and for almost the entirety of the rest of this thesis, I

focus on what I term the 2D-projected dipole, which is the quantity that is usually

indicated by the isolated use of the word “dipole.” This quantity relies on objects

at any given redshift being projected on the celestial sphere (hence “2D-projected”)

with no weighting scheme.

For a survey with very large (hundreds of Mpc- to Gpc-scale) volume, the universe

is at least close to homogeneous and isotropic on the scales relevant for the survey.
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We naturally expect that any dipole signal in such a large-volume survey will be

strongly suppressed. However, on much smaller scales, where the universe is not at

all homogeneous and isotropic, dipole signals should naturally emerge in any survey of

objects that trace large-scale structure at all, and certainly in any galaxy survey. To

take a particularly simple example, there is a large dipole in the galaxy distribution

if we survey only objects within the Local Group.

But even if a survey encompasses structure on scales of tens of Mpc, we fully

expect that given the non-uniformity of nearby structure, there should be a dipole

component in the pattern of galaxies observed on the sky. This dipole component

will be strongest for the smallest surveys, and should die away monotonically (at

least in statistical average) for larger and larger surveys. The effect turns out to be

on the order of 10−1 for scales of tens to a couple hundred of Mpc, meaning that the

fluctuations (contributing to the dipole) in the number of galaxies, as a function of

position on the sky, are on the order of 1/10 the size of the mean number of galaxies

across the sky.

The precise way in which the angular power spectrum C� varies depending on

survey depth in redshift is depicted in Chapter 3, Fig. 3.2. The formalism used to

create these predictions is also explained in Chapter 3. In the figure, all multipoles

out to � = 1000 are plotted, but attention should be focused on the dipole, � = 1.

Note that as the maximum redshift of the survey increases, the amplitude of the

local-structure dipole (expressed as C1) is expected to drop over several orders of

magnitude.

2.2.3 2D-Projected Dipole: Kinematic Dipole

A dipole pattern may also arise due to motion of the Earth with respect to the

astrophysical objects or structure being measured. This is what produces the dipole
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in the cosmic microwave background, and it also contributes to the total dipole in a

measurement of the large-scale structure.

Kinematic Dipole in the CMB

Probably the best-known dipole in all of cosmology is the dipole measured in the

CMB temperature distribution. This dipole, which has an amplitude on the order

of 10−3 times the amplitude of the CMB monopole, arises due to the motion of the

Solar System with respect to the CMB rest frame. This motion is the vector sum of

several different motions, summarized in the table below.

Table 2.1: Motions that give rise to a kinematic dipole in the CMB and large-scale structure.

Motion Approximate Speed (km/s) Direction

Earth around Sun ∼ 30 km/s annually varying

Sun wrt Local Group ∼ 306 km/s (l, b) = (99,−4)± (5, 4)

Local Group wrt CMB ∼ 622 km/s (l, b) = (272, 28)

Overall CMB kinematic dipole ∼ 370 km/s (l, b) = (264.4, 48.4)± (0.3, 0.5)

Values of the kinematic dipole in the CMB are cited with the contribution from

the Earth’s motion around the Sun subtracted out, so that the dipole is due only

to the Sun’s velocity with respect to the CMB (Kogut et al. (1993)). The value of

the Local Group’s peculiar velocity with respect to the CMB is from Maller et al.

(2003) and was computed using the value of the Sun’s velocity with respect to the

Local Group in Courteau and van den Bergh (1999). (When the velocity of the Local

Group with respect to the CMB rest frame is inferred from the measurement of the

CMB dipole, the direction becomes (l, b) = (276, 30)± (3, 3). (Kogut et al. (1993)))

The peculiar velocity predicted from linear-theory ΛCDM is ∼ 470 km/s. Note that

the speed of the Sun with respect to the CMB rest frame would be considerably

greater if not for the fact that the Sun’s velocity vector with respect to the Local

Group points in a direction nearly opposite that of the Local Group’s velocity vector
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with respect to the CMB. Also note that the dominant contribution to the Sun’s

motion with respect to the Local Group is the Sun’s motion around the center of

the Galaxy, which has speed ∼ 220 km/s, and is composed of the Sun’s motion with

respect to the Local Standard of Rest and the LSR’s motion with respect to the

Galactic Center (Itoh et al. (2010) and Courteau and van den Bergh (1999)). The

value of, and error bars on, the CMB velocity dipole are taken from Kogut et al.

(1993).

Kinematic Dipole in LSS

The kinematic dipole in the CMB, which is due to the Sun’s motion with respect

to the CMB rest frame, is observed as a Doppler shifting of the CMB photons.

The effect that gives rise to a kinematic dipole in the large-scale structure is not

quite as direct. Rather, it includes contributions both from the Doppler effect and

relativistic aberration. We first address aberration, following the formalism of Burles

and Rappaport (2006), who derive equations for aberration with the ultimate goal of

showing that aberration of the CMB temperature might be detectable statistically

by Planck, looking at shifts of CMB peaks. While this is not our goal, the formalism

still holds.

We define a spherical-coordinate system with the z-axis in the direction of motion.

If we take the “unprimed” frame to be the CMB frame, and the “primed” frame to be

the frame of the Solar System barycenter, then the azimuthal angle φ is unchanged

between frames: φ = φ
�. However, the polar angle θ is affected as follows:

(2.12) sin θ =
sin θ�

γ(1− β cos θ�)

where β is the relative velocity of the Solar System with respect to the CMB, γ =

(1 − β
2)−1/2 as usual, and θ = 0 corresponds to the direction of forward motion.



22

With the assumption that β is small, which is a good assumption given that CMB

observations show it to be on the order of 10−3, expansion in a Taylor series gives

(2.13) sin θ = sin θ�(1 + β cos θ�).

Finally, we take the arcsin of both sides and expand the arcsin function assuming

small β to obtain

(2.14) θ = θ
� + β sin θ�.

We are ultimately interested in calculating how areas (and volumes) on the celestial

sphere are stretched or compressed, and hence want the quantity dΩ/dΩ�. With that

in mind, we compute

dθ

dθ�
= 1 + β cos θ�(2.15)

sin θdφ

sin θ�dφ� = 1 + β cos θ� .(2.16)

and find in the end that dΩ/dΩ� = (1 + β cos θ�)2. Hence areas and volumes on the

sky, proportional to sin(θ)dθdφ, change as (1 + β cos θ�)2 ≈ 1 + 2β cos θ�.

Itoh et al. (2010) provide a more complete derivation of this, including both the

Doppler effect (which changes frequencies and hence measured magnitudes since we

never measure bolometric magnitudes) and relativistic aberration, and derive the

following expression for the observed angular number density of galaxies n(θ) given

the limiting magnitude mlim:

(2.17) n(θ,m < mlim) = n̄(m < mlim)
�
1 + 2β̃ cosα

�

where

(2.18) β̃ = [1 + 1.25x(1− p)]β.
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Here the intrinsic flux density of a galaxy is assumed to be a power law Srest(ν) ∝ ν
p,

and the intrinsic number counts of galaxies n̄ is

(2.19) n̄(m < mlim) ∝ 10xmlim

where x is a numerical coefficient of order unity. The angle α is the angle between

the angular direction θ and the angular direction of the Earth’s peculiar velocity

v on the celestial sphere, the same as θ
�, but with more convenient notation. The

factor of 2 in 2β̃ above comes from the same source as the square in (1 + β cos θ�)2

earlier. The correction for β̃ in Eq. (2.18) is the contribution of the Doppler effect

to the overall kinematic dipole in observations of LSS.

2.2.4 2D-Projected Dipole: Intrinsic Dipole

In the CMB, the intrinsic dipole corresponding to adiabatic perturbations is zero

(Erickcek et al. (2009)). Isocurvature perturbations can induce an intrinsic dipole,

though we expect that any such intrinsic dipole will be swamped by the 10−3 kine-

matic dipole due to the velocity of the Solar System with respect to the CMB rest

frame. When we switch over from talking about the CMB to talking about large-

scale structure, we expect that there may also be an intrinsic dipole in the LSS.

Given a scale-invariant power spectrum, all modes coming into the horizon at the

present time have the same amplitude, and so there is no reason to expect the LSS

intrinsic dipole to have an amplitude lower than any corresponding intrinsic dipole

in the CMB. Below, we explore possible reasons why an intrinsic dipole might be

higher-amplitude, competing with or even (conceivably) dominating the LSS kine-

matic dipole.

Erickcek et al. (2009) propose a scenario in which the curvaton (particle mediating

a scalar field that may generate fluctuations during inflation without actually driving
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inflation) has a large-scale spatial gradient, which in turn causes variation in the

amplitude of the primordial curvature perturbations, modulating ∆R across the sky.

Hirata (2009) shows how this modulation due to isocurvature perturbations would

transfer to the CMB and large-scale structure, in the latter case causing a dipolar

variation in the abundance of massive haloes (and objects that occupy them). This

inflationary scenario is one scenario that invokes the physics of the early universe

to explain why there might be an intrinsic dipole in the large-scale structure above

and beyond what we naturally expect to be present from typical scale-invariant

fluctuations/adiabatic perturbations laid down in the simplest inflationary scenarios.

While the simplest curvaton-gradient model has been ruled out by Hirata’s analysis

of constraints on the dipole in SDSS quasars (Hirata (2009)), and corresponding

constraints on dipolar modulation of the primordial power spectrum,1 similar but

more complicated scenarios are still possible.

Note that Hirata’s constraints on the primordial dipole amplitude using SDSS

quasars are on the order of 2× 10−2, which corresponds to constraints on the ampli-

tude of the dipole in the quasars themselves roughly an order of magnitude higher.

Hence current constraints on this particular intrinsic-dipole scenario are not down

to the level associated with the kinematic dipole, though this was not a problem

in Hirata’s analysis since that analysis looked specifically for a dipole effect that

would accompany the primordial conditions needed to explain the CMB hemispheri-

cal power anomaly given the curvaton-gradient model, and that would have required

a 10−1 dipole.

Another possibility for generating an intrinsic dipole is that the CMB rest frame

is not the same as the large-scale-structure rest frame. One idea for how such an
1
According to Hirata, any smooth gradient in the amplitude of the primordial curvature perturbations is no more

than 2.7 percent per present-day horizon radius (99 percent confidence); cf. the 11 percent variation required in the

Erickcek et al. model needed for consistency with the CMB hemispherical power anomaly.
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effect might arise is the Grishchuk-Zel’dovich effect (Grishchuk and Zeldovich (1978);

Erickcek et al. (2008a); see also Gunn (1988)); as Turner (1991) explains, if inflation

lasts only a little longer than necessary to solve the flatness and horizon problems,

scales that were superhorizon-sized at the onset of inflation – these scales cannot

be affected by events during or later than the inflationary epoch, and thus contain

imprints of the pre-inflationary universe – may not be much larger than our present

horizon, and thus may have some effect in the current universe. In particular, he pro-

poses that large density fluctuations with wavelengths slightly larger than the Hubble

radius (modes that are “just barely” superhorizon-sized) may exist, and would ap-

pear to us as a density gradient in a particular direction. Such a density gradient

could produce a “tilted universe”: a universe in which all the matter within the Hub-

ble volume gains a peculiar velocity due to the greater gravitational attraction from

one “side” of the universe than the opposite. The effect is equivalent to saying that

the rest frame of the CMB is not the same as the rest frame of large-scale structure:

from the rest frame of the CMB, all matter would have a nonzero average streaming

velocity. This would produce an intrinsic dipole due to relativistic aberration and

the Doppler effect (or, equivalently, it would produce an additional kinematic dipole

on top of that expected from analysis of the CMB) (Itoh et al. (2010)).

The Grishchuk-Zel’dovich effect would also produce an (additional) intrinsic dipole

due to the simple fact of the superhorizon-scale density perturbation. As another ex-

ample of physical mechanisms that would produce an intrinsic dipole, Gordon et al.

(2005) examine a scenario in which there are spatial perturbations in the density of

dark energy from a quintessence field: that is, a late-time effect produces horizon-

scale fluctuations. More generally, Gordon et al. examine a class of models in which

the full fundamental theory is homogeneous and statistically isotropic, but statisti-
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cal isotropy is broken from a given observer’s position because of superhorizon-scale

perturbations that appear as a gradient in density across the sky on the largest ob-

servable scales. Any theory that generates such a variation in density would give rise

to what I have termed an intrinsic large-scale-structure dipole, and the appearance

of the breaking of statistical isotropy. These density variations could, at least the-

oretically (depending on the scenario, and the observational constraints that would

apply to a given scenario), exist on essentially any order of magnitude in δρ/ρ.

There is some reason to take the idea of a tilted universe seriously. Kashlinsky

et al. (2008) investigate the bulk motion of galaxies in the universe out ∼ 300 Mpc/h

and find, somewhat controversially (see, e.g., Keisler (2009)), that there is a coher-

ent bulk flow in their sample. The evidence they develop for this claim comes from

attempting to detect the kinetic Sunyaev-Zel’dovich effect by computing the dipole

of the CMB temperature field evaluated at the positions of galaxy clusters. This

dipole, evaluated as it is in a small number of pixels, does not receive appreciable

contributions from our own motion (i.e., from the CMB kinematic dipole due to the

Sun’s motion with respect to the CMB rest frame), but does receive contributions

from instrument noise, the thermal SZ effect, the intrinsic CMB dipole, and fore-

ground components. However, contributions other than the kinematic SZ effect are,

they argue, accounted for in their analysis, with the thermal SZ effect in particular

canceling out/integrating down when averaged over a large number of clusters. Their

conclusion is that the dipole in CMB temperature evaluated at cluster positions is

due to the kinetic SZ effect due to the bulk flow of the cluster sample. If this effect

is authentic, then it fits well with the tilted-universe scenario: the bulk motion is

detectable in large-scale structure but does not generate a primordial dipole CMB

component.
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2.2.5 Types of Dipoles: Review

The following table visually classifies the types of dipoles outlined above, and

summarizes some of the work that has been done observationally investigating the

presence of such dipoles using various cosmological observations.

Table 2.2: Review of types of dipoles and where they are profiled in this chapter.

local-structure dipole kinematic dipole intrinsic dipole

flux-weighted dipole Sec. 2.2.1 N/A N/A

2D-projected dipole Sec. 2.2.2 Sec. 2.2.3 Sec. 2.2.4

In summary, when we observe some tracer of large-scale structure (galaxies,

quasars, gamma-ray bursts, etc.), we may observe a dipole in counts. If the dipole

we are observing is what I have called the 2D-projected dipole – that is, a dipole

in surface density of the object – then contributions to that dipole may come from

(1) the local-structure dipole, (2) the kinematic dipole (which is due to the Doppler

effect and relativistic aberration), and (3) an intrinsic LSS dipole. There are a couple

observations to make about these effects:

• In the limit of very high redshift, the local-structure dipole is expected to

go to zero amplitude, the kinematic dipole is expected to go to amplitude

∼ v/c ∼ 10−3 and align with the direction of the CMB dipole, and the intrinsic

dipole could take on a wide variety of values depending on certain theoretical

considerations.

• For structures/galaxies at relatively small redshifts, the local-structure dipole

amplitude >> the kinematic dipole amplitude. However, even though the kine-

matic dipole is swamped by the local-structure dipole, we expect that these two

dipoles should point in somewhere close to the same direction. While no par-

ticular level of agreement is guaranteed, the fact remains that local structure is
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what accelerates us in the direction that the kinematic dipole points. This is

why, in linear theory, the velocity of the Local Group is proportional to its accel-

eration due to gravity. However, since the 2D-projected dipole takes no radial

information into account, it is not a true measure of gravitational attraction or

acceleration, but only a partially reliable proxy.

2.3 Looking for Dipoles in Large-Scale-Structure Surveys

The search for dipoles in objects that (in some way) trace the large-scale structure

of the universe can be performed using data from several completed surveys. One

example is the Two-Micron All-Sky Survey (2MASS) (Skrutskie et al. (2006)), which

completed its near-infrared observations in 2001. 2MASS has more than 99 percent

sky coverage and includes both a point-source catalogue and an extended-source

catalogue; the 1.6 million extended sources are of interest here since nearly all of

them are extragalactic (and those which are not can be easily removed by getting

rid of known artifacts and using judicious color cuts to take care of the rest). The

survey’s completeness is nearly uniform outside the Galactic plane for magnitudes

below 13.5 in the Ks band. The survey’s sky coverage and completeness make it

an excellent choice for the sort of work explored in this thesis, since they reduce

the amount of work necessary to get rid of instrumental artifacts in searching for

violations of statistical isotropy.

The 2MASS Redshift Survey (2MRS) (Huchra et al. (2011)) also provides an excel-

lent opportunity to perform tests of dipole patterns in objects of known redshift. The

2MRS team has assigned redshifts to over 40,000 2MASS extended sources, nearly

all of which are within the range 0 < z < 0.1, covering 91 percent of the sky (the

Galactic plane is masked). Previous tests have worked with the flux-weighted dipole
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in 2MRS (Erdogdu et al. (2006)), but have not explored the various contributions to

the 2D-projected dipole.

Gamma-ray bursts (GRBs) from the Burst and Transient Source Experiment

(BATSE; part of the Compton Gamma-Ray Observatory; Paciesas et al. (1999))

catalog also serve as a useful testing ground for dipolar modulation. The number of

GRBs in BATSE, while only on the order of 103 and hence much smaller than the

number of galaxies in 2MASS, is still substantial enough to provide useful constraints

on the dipole. While Tegmark et al. (1995) have already produced the power spec-

trum of an earlier version of the BATSE catalogue, the more robust technique for

determining the dipole using only real-space quantities, outlined in the next chapter,

serves as a useful update to previous results, determines the direction as well as the

magnitude of the dipole, and answers the question of whether the GRB distribu-

tion has been measured sufficiently well to distinguish it as a tracer of large-scale

structure.

Finally, the NRAO VLA Sky Survey (NVSS) (Condon et al. (1998)) contains

nearly 1.8 million extragalactic sources, observed in the radio portion of the spectrum.

Our techniques contextualize and update the work of Blake and Wall (2002), who

modeled the contributions of many of the most distant sources in NVSS to the dipole,

and compared the result with the CMB dipole.

Accounting for systematics is necessary in each of these surveys. In all cases, one

must deal with contamination from the Galactic plane. The GRB maps are arguably

the most systematics-free of all the datasets we analyze. Confusion with sources

within our Galaxy, such as soft gamma repeaters (SGRs), is extremely unlikely,

though the positions of GRBs are not typically well-localized. In part because the

detection threshold and energy range of the CGRO satellite were altered several times
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during the mission, however, we cut out some sources and also check for variation

of the dipole results with Galactic latitude, in this survey as in the others. If a

determination of the amplitude of the dipole is consistent no matter how much of

the Galactic plane is excised from the distribution of objects (performing isolatitude

cuts of varying sizes is the consistency test we perform), this is an indication that

confusion with Galactic sources (which would of course be concentrated near the

Galactic plane) is minimal and, for our purposes, negligible.

In the case of the 2MASS/2MRS results, it will be necessary not only to account

for possible star-galaxy confusion near the Galactic plane, and also address the issue

of varying sky coverage, but also to explicitly account for extinction. The extinction

maps of Schlegel et al. (1998), which give the distribution of dust along lines of sight

in our sky, will be useful for these purposes. The pattern of extinction in these maps

can be marginalized over and thus prevented from interfering with determinations

of dipole amplitude and direction. Similarly, the 408 MHz map of Galactic radio

emission in Haslam et al. (1981) and Haslam et al. (1982) can be used as a template

in the case of NVSS, where the danger is not extinction but rather confusion between

extragalactic sources and radio emission within our own Galaxy.

In short, the rest of this thesis will explore how to use different surveys with

different systematics to compare theoretical predictions with observational results

in dipole patterns observed in different classes of objects observed on our sky. We

select surveys with very wide sky coverage, ideally almost full-sky coverage, because

for a fixed depth, the number of modes available scales as the fraction of the sky

covered, fsky. This is useful especially for beating down cosmic variance in theoret-

ical predictions, which as we will see, is the dominant source of uncertainty in our

comparisons of observations with theory (observational results tend to be much more
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tightly constrained than theoretical predictions, since we are working at very low �).

Previous research on dipoles in similar surveys will be profiled as different types of

surveys are brought up.



CHAPTER III

Formalism for Detection of Dipoles and Tests of the Dipole
Estimator

This chapter outlines the formalism that will be used to search for dipoles in

actual data from extragalactic sources in radio, infrared, and gamma rays.

3.1 Formalism for Detecting Dipoles

Some forays have already been made into tests of statistical isotropy, and dipoles

in particular, using measurements of large-scale structure. Many estimators for the

dipole have been employed, some of which do better jobs than others at naturally

incorporating sky cuts, allowing for systematic effects to be accounted for, etc. The

estimator used by Hirata (2009) in testing the WMAP hemispherical power anomaly

(referenced in the previous chapter) using quasars detected by the Sloan Digital Sky

Survey is an ideal estimator for determining the amplitude and direction of a dipole

in counts of objects (not just quasars) on the sky under conditions of cut skies and

in the presence of systematics.

Consider a dipolar modulation on the sky with some amplitude A in a (unit)

direction d̂. We may write the observed density field N of the objects in question as

a function of direction n̂ as

(3.1) N(n̂) = [1 + A(d̂ · n̂)]N̄ + �(n̂)

32
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where N̄ is the intrinsic statistically isotropic field and � combines random and

instrumental noise. If we momentarily drop the � term, we find

(3.2) N − N̄ = AN̄(d̂ · n̂) → δN

N̄
= A(d̂ · n̂).

Reinstating a term corresponding to systematic errors, the fluctuations in density

as a function of direction can be written as the sum of contributions from a dipole,

fluctuations due to systematics, and a mean offset (Hirata (2009)):

(3.3)
δN

N̄
(n̂) = Ad̂ · n̂+

�

i

kiti(n̂) + C.

Here ti(n̂) are possible systematics templates in the sky map (such as an extinction

map), the coefficients ki give the amplitudes of the contributions of these systematics

to the observed density field, and the presence of the monopole term, C, allows us

to account for covariance between the monopole and other estimated parameters,

especially covariance between the monopole and any systematic templates.

It is then straightforward to write down the best linear unbiased estimator of the

combination (d, ki, C) with corresponding errors. The procedure is as follows: First,

we rewrite the above equation as

(3.4)
δN

N̄
(n̂) = x ·T(n̂)

where x = (dx, dy, dz, k1, ..., kN , C), T(n̂) = (nx, ny, nz, t1(n̂), ..., tN(n̂), 1), and n
2

x +

n
2

y + n
2

z = 1.

The best linear unbiased estimator of x is

(3.5) x̂ = F
−1
g

where

(3.6) gi =

�
Ti(n̂)δN

Ω(n̂)d2n̂.
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and

(3.7) Fij = N̄
Ω

�
Ti(n̂)Tj(n̂)d

2n̂.

where N
Ω ≡ dN/dΩ is the number of galaxies per steradian. To actually compute

these quantities with discretized data, it is convenient to work with a data map and a

random map, the latter of which is simply a set of randomly chosen directions/points

n̂R on the unit sphere:

(3.8) gi =
�

D

Ti(n̂D)−
ND

NR

�

R

Ti(n̂R)

(3.9) Fij =
ND

NR

�

R

Ti(n̂R)Tj(n̂R)

where ND and NR represent galaxy counts rather than the number of galaxies per

steradian as in the continuous case.

Note that the component of g corresponding to the monopole term in Equation

(3.3), which we will refer to as gC , must be zero, even if the sky is cut. This can

be seen in the analytic formula for g by noting that we are integrating fluctuations

relative to the mean, where the mean is determined from whatever portion of the sky

is being integrated over. In the formulation where we discretize the celestial sphere,

gC = ND − (ND/NR)(NR) = 0; gC represents the monopole of the fluctuations from

the mean on the cut sky, which must be zero. Hence, the only way the monopole

term C in Equation (3.3) can be nonzero is by picking up on the covariances between

variables.

We prove that the estimator is unbiased, using the continuous formalism. Com-

bining Eq. (3.2) and Eq. (3.6) in the continuous case,

(3.10) g = AN̄
Ω

�
n̂(n̂ · d̂)d2n̂.
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The vector g contains information about whatever dipole signal there may be. Spe-

cializing to the case where the dipole is in the z-direction,

(3.11) �gx� = AN̄
Ω

�
nx(cos θ) sin θdθdφ = AN̄

Ω

�
sin θ cosφ cos θ sin θdθdφ = 0

where we have used the fact that the dipole is in the z-direction to replace n̂ · d̂ with

cos θ. By similar calculation gy = 0 and

(3.12) �gz� = (4π/3)AN̄Ω = A
N̄

3
.

More generally, gz = (N̄/3)A |d̂|z, where |d̂|z is the z-component of the unit vector

of the dipole modulation.

The Fisher matrix is

Fij = N̄
Ω

�
ninjd

2n̂

= N̄
Ω

�
(sin θ cosφ, sin θ sinφ, cos θ)(sin θ cosφ, sin θ sinφ, cos θ) sin θdθdφ

= (4π/3)N̄
ΩI

=
N̄

3
I

where I is the identity matrix.

So

(3.13) �x̂� = F
−1 �g� = 3

N̄
(I)AN̄

3





|d̂|x

|d̂|y

|d̂|z




=





dx

dy

dz





so that the estimator is, as expected, unbiased.

To show explicitly how we calculate the Fisher matrix Fij in the discrete formal-

ism, we take Fzz as an example:

(3.14) Fzz =
ND

NR

NR�

i=1

nzinzi =
ND

NR

NR�

i=1

z
2

i =

�
ND

NR

�
(NR)

�
z
2
�
= ND

�
z
2
�
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where we have used z to designate the z-coordinate of the vector pointing to the

center of the pixel in which count i is found. Since �z2� = 1/3 over the entire sphere,

we have Fzz = ND/3 (for the entire celestial sphere) in the limit of sufficiently large

number of counts in the random map to have suppressed Poisson noise.

The matrix Fij is the Fisher matrix, and hence the covariance matrix is Cov(x̂) =

F
−1. By the Cramer-Rao inequality, the best-case marginalized errors on parameters

pi = {dx, dy, dz, k1, ..., kN , C} are

(3.15) σmarg,i =
�

(F−1

ii );

inverting F automatically mixes all the elements together and takes into account

how they covary. Meanwhile, the best-case unmarginalized errors are

(3.16) σunmarg,i = 1/
�
Fii.

Note that the errors on our estimates of the dipole are based on the shape of the sky

cut, the input systematic templates, and the number of data points ND.

As a side note, the correlation between parameters pi and pj is

(3.17) ρij =
F

−1

ij�
(F−1

ii F
−1

jj )
.

This formalism is useful, and an improvement upon previously used dipole-finding

techniques, for several reasons. First, the real-space estimator employed here is

arguably more convenient to implement than multipole-space estimators employed

in previous analyses (e.g., Frith et al. (2005a), Blake and Wall (2002), Baleisis et al.

(1998), etc.). Many analyses use pseudo-C� to deal with sky cuts, while sky cuts are

very straightforward to deal with in this formalism (see Sec. 3.2 for further details).

Finally, estimating the coefficients ki allows one to very naturally incorporate any

systematics templates one suspects might be relevant and ensure that they do not
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interfere with estimation of the dipole. This form of component separation allows

one to isolate the different contributions to the observed fluctuations in counts, and

separate those contributions into actual dipole plus systematic effects. Any pattern

put into this formalism as a systematic template will be marginalized over in the

determination of dipole amplitude and direction Ad̂.

Note that in all this formalism, we never combine the components of the dipole;

we just acquire the components of the dipole (dx, dy, dz), and the associated errors

(σx, σy, σz). Combining the components by squaring, summing, and taking the square

root of the sum would create a biased estimator of the dipole amplitude A. Instead,

once we have the magnitude and direction of the best-fit dipole dbest ≡ Ad̂, we can

construct a marginalized likelihood function for the amplitude A (again following

Hirata):

(3.18) L(A) ∝
�

exp

�
−1

2
(An̂− dbest)Cov

−1(An̂− dbest)

�
d
2n̂

where d
2n̂ indicates integration over all possible directions on the sphere. In this

equation, for a given amplitude A, we take the best-fit dipole dbest as a given, and

then compare each direction n̂ (with the given amplitude) with the best-fit dipole.

The likelihood function is a Gaussian in A for fixed direction n̂, by construction,

but may not be Gaussian when marginalized over direction. That marginalization

occurs in the equation above when we integrate over all n̂, giving us the likelihood

of a particular amplitude A marginalized over all directions, given the best-fit dipole

dbest “selected” by the data. Posterior analysis will then show where 95 percent of

the weight lies.

Given that we ultimately work discretely, with a celestial sphere that is pixellized

using HEALPix routines (Górski et al. (2005)), the likelihood turns into a sum over
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pixels:

(3.19) L(A) ∝
�

exp

�
−1

2
(An̂− dbest)Cov

−1(An̂− dbest)

�
∆Area

The factor ∆Area will come out of the summation since all pixel areas are equal

in HEALPix and all that matters is the ratio of likelihoods rather than the abso-

lute values of likelihoods, so we literally sum over all the pixels in order to get the

marginalized L(A). We drop the prefactor on the likelihood that includes covariance

since the covariance does not depend on parameters.

Finding the likelihood distribution as a function of direction, L(n̂), follows from an

exactly analogous procedure, but we sum over all possible amplitudes associated with

a given pixel rather than over all possible pixels associated with a given amplitude.

3.1.1 Converting From Dipole Amplitude A to Angular Power Spectrum C1

Here we show that there is a simple relationship between the angular power spec-

trum dipole C1, familiar from several areas of cosmology, and the amplitude A of

the dipole computed above. Without loss of generality, we assume that the dipole

points in the positive z direction and write the fluctuation in counts in two ways:

(3.20)
δN

N
(n̂) = An̂ · d̂ = A cos θ = a10Y10(n̂)

where Y10 =
�
3/(4π) cos(θ). Therefore,

(3.21) a10 =

�
4π

3
A.

The power spectrum C1 contribution is then given by

(3.22) C1 ≡
�

1

m=−1
|a1m|2

2 · 1 + 1
=

a
2

10

3

and thus

(3.23) C1 =
4π

9
A

2
.

For the purposes of order-of-magnitude calculations, the rule of the thumb is C1 ∼ A
2.
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3.2 Commentary on the Formalism

This formalism has several noteworthy features:

• It allows very naturally for arbitrary sky cuts: all that is necessary is to remove

pixels (which is NOT the same as setting these pixels equal to zero) from both

the data map and the random map when performing the dipole analysis. When

the sky is cut, the dipole becomes coupled to other multipoles, and the errors on

the detection of dx, dy, and dz derived from the Fisher matrix correspondingly

increase to account for this.

• It allows for straightforward incorporation of arbitrary pixellization. The scale

of the pixellization should not matter, because Poisson noise is on the scale of

the pixellization, which is much smaller than the scale of the dipole, and Poisson

noise in larger pixels means a smaller effect (goes as 1/
√
N), so the Poisson noise

cancels out. However, different pixellization schemes can affect the size, shape,

and nature of a mask if there is any sky cut, and when discrepancies appear

between dipole results using different pixellization schemes, it is virtually always

traceable to this.

• It allows for the possibility of A > 1. This may seem counterintuitive since it

implies negative counts in some pixels. However, even though it is true that

counts cannot go negative in real data, it is still possible for a model in which

some pixels have negative counts to be the best fit to the data.

One simple sanity check that we perform: If a pure-dipole map is created with

the dipole pointing in the z-direction, and this map is used as a template t(n̂), the

effect is that the detection of the dipole in the z-direction, dz, gives an unreliable

number, while the error bar in the z-direction, σz, blows up to a much larger number



40

than dz, so that (S/N)z = dz/σz << 1. Also, the correlation ρzk between dz and

the template coefficient k becomes 1.0. The same pattern holds if we replace the

z-direction with the x- or y-direction. A dipole template in a given direction takes

out any component of the dipole detection in that direction.

Another note when applying this formalism: In order to do a realistic comparison

of theory with observation, we must take bias into account. The formalism presented

above can only detect dipoles in the distribution of galaxies or other astrophysical

objects that serve as (presumably biased) tracers of large-scale structure, not in

the underlying matter (dark plus baryonic) distribution itself. Therefore, when we

compare observations with theory, we will always apply a bias correction to the

theoretical prediction before comparing with observations.

See Appendix B for other simple test cases/sanity checks in which this formalism

is applied to maps with a pure dipole and a pure monopole.

3.3 Systematics Templates

Figure 3.1 shows the systematics templates ti(n̂) that we use in order to ensure

that systematic effects do not mimic the effect of an actual dipole on the objects we

are observing. The templates are the extinction map of Schlegel et al. (1998) and

the map of Galactic synchrotron radiation of Haslam et al. (1981) and Haslam et al.

(1982).

The Haslam et al. map is a 408 MHz radio continuum map of the entire sky

that combines data from four different surveys and is dominated by synchrotron

emission. Information about foreground emission is important when dealing with a

radio survey such as NVSS, and we can apply this map as a systematic template

since NVSS could plausibly pick up non-extragalactic signal from this emission.
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The SFD map is an intensity map of the sky at 100 microns, a reprocessed compos-

ite of the COBE/DIRBE and IRAS/ISSA maps, that presents emission dominated

by the same dust that causes extinction at many wavelengths – most notably in the

optical. The resolution is on the order of a few arcminutes, and so the SFD map

can in general be used to reliably derive extinction due to dust, assuming a standard

reddening law. This works best away from the plane of the Galaxy, since within

the Galactic plane dust conditions tend to fluctuate much more strongly on small

scales than they do away from the Galactic plane (with the possibility of multiple

dust temperature distributions, variable grain sizes, etc.). However, since we work

almost exclusively well away from the Galactic equator, we do not expect this to be

an issue. We apply the template to 2MASS and 2MRS in particular, since we expect

that dust extinction is a particularly worrisome potential source of non-extragalactic

signal or other corruption of the results of these surveys.

Both the Haslam and SFD maps are nearly parity-even in Galactic coordinates,

as the Galaxy is itself nearly parity-even, so when the sky is symmetrically cut (as it

typically is in the test cases of Appendix B as well as the real data from 2MASS and

2MRS in chapter 4), extinction is not likely to contribute to, or diminish, a dipole-

like (parity-odd) signal, at least not in the z-direction. However, we still include it

as a much-needed precaution against a known source of systematic error.

3.4 Theoretical Predictions

The angular power spectrum of density fluctuations of halos is usually expressed

within the Limber approximation, where the contribution of modes parallel to the

line of sight is ignored. In this approximation, the angular power spectrum is given
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Figure 3.1: Top: The 100-micron intensity map of Schlegel et al. (1998), HEALPix resolution
NSIDE=128. The map is used to derive the extinction due to dust in the Galaxy. Bottom: The
408 MHz map of Haslam et al. (1981)/Haslam et al. (1982), HEALPix resolution NSIDE=512. The
map, dominated by synchrotron emission, is a useful template when working with a radio survey
such as NVSS. (Note that in each case, the dynamic range of the map has been restricted so that
the structure of the map, especially the structure at high Galactic latitudes, can be seen clearly.
The Galactic Bulge is of course brighter at both 100 microns and 408 MHz than other Galactic
longitudes.)
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by

(3.24) C� =
2π2

�3

� ∞

0

dz
W

2(z)

r(z)2H(z)
∆2

�
k =

�

r(z)
, z

�
,

where ∆2(k) ≡ k
3
P (k)/(2π2) is the dimensionless power spectrum, r(z) is the co-

moving distance, and H(z) is the Hubble parameter. The weight W (z) is given

by

(3.25) W (z) =
b(z)N(z)� zmax

zmin
N(z)dz

,

where zmin and zmax are the lower and upper end of the redshift range, and N(z) is

the radial distribution of galaxies.1 We adopt the tabulated values, or else functional

form, of N(z) directly from the respective surveys that we study.

However, we are interested in the dipole � = 1 where the Limber approximation

is not accurate anymore (it is accurate at � � 10); see Fig. 3.2. Therefore, we adopt

the exact expression for the power spectrum; using notation from (e.g.) Hearin et al.

(2011), this is

C� = 4π

� ∞

0

d ln k∆2 (k, z = 0) I2(k)(3.26)

I(k) ≡
� ∞

0

dz W (z)D(z) j�(kχ(z))(3.27)

where χ(r) is the radial distance, and χ(z) = r(z) in a flat universe, the case that

we consider. Here D(z) is the linear growth function of density fluctuations, so that

δ(z) = D(z)δ(0), where D(0) = 1. Note that, over the shallow range for 2MASS

we can assume that b(z) is constant, and factor it outside of Eqs. (3.26) and (3.27),

but over the much deeper range for NVSS the bias may vary with redshift, and we

adopt the expression for W (z) from Ho et al. (2008) that implicitly integrates bias

and number density as per Eq. (3.25). This is explained in detail in Chapter 5.
1
Note that a sometimes-used alternative definition of n(z) refers to the spatial density of galaxies, and contains

additional volume factors; e.g. Hu and Jain (2004). Note also that our W (z) is equivalent to the quantity f(z) from

Ho et al. (2008).
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To produce the fiducial theoretical predictions, we consider the standard cos-

mological model with the following parameter values: matter density relative to

critical ΩM = 0.25, equation of state parameter w = −1, spectral index n = 0.96,

and amplitude of the matter power spectrum lnA where A = 2.3 × 10−9 (corre-

sponding to σ8 = 0.8) defined at scale k = 0.002 Mpc−1. The power spectrum

∆2(k, z) ≡ k
3
P (k)/(2π2) is calculated using the transfer function output by CAMB.

We do not vary the values of cosmological parameters, since they are measured to

sufficient accuracy that any shifts in predicted dipole amplitude that could occur

due to realistic changes in cosmological parameters are tiny in comparison with cos-

mic variance given the finite sky coverage and relative shallowness of the surveys we

employ (as we have explicitly verified).

The power spectra are shown in Fig. 3.2. Note the substantial, order-unity, differ-

ence between the exact and approximate (Limber) expressions at � = 1. Clearly, the

exact expression requires solving the double integral while the Limber approximation

involves only a single integral, but we only need evaluate the power spectrum once

(for each survey) at � = 1, so this does not present a difficulty.
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Figure 3.2: A plot of the angular power spectrum C� predicted for a galaxy survey with a peak in
the galaxy redshift distribution at z = 0.6 and the given maximum depth zmax. We focus attention
on the dipole, � = 1: for these purposes, this plot gives C1/π, equal to

4
9A

2, so that A is just
3/2 times the square root of whatever is plotted in this graph for C1. For this particular redshift
distribution, the local-structure dipole becomes subdominant to the kinematic dipole for around
zmax ∼ 1.0. For higher zmax, we should get convergence to the kinematic dipole plus any intrinsic
dipole that might be present. The peak in the radial profile of galaxies at z ∼ 0.6 corresponds
roughly to parameters for the Dark Energy Survey (DES). Bias b = 1.0 is assumed throughout.
The dotted curves correspond to the power spectrum within the Limber approximation (low �) and
assuming linearity (high �); the solid curves correspond to the more accurate set of assumptions
where the Limber approximation is relaxed and nonlinearity is taken into account.



CHAPTER IV

Dipoles in the 2-Micron All-Sky Survey (2MASS) and the
2MASS Redshift Survey

4.1 Previous Results

The Two Micron All Sky Survey (2MASS), which imaged 99.998 percent of the

celestial sphere (Skrutskie et al. (2006)), provides an excellent starting point in test-

ing for dipoles in tracers of large-scale structure. This survey includes two main

catalogs, the point-source catalog (PSC) and extended-source catalog (XSC). The

latter is of interest here, since it includes roughly 1.6 million sources, nearly all of

which are extragalactic.

2MASS used two 1.3-m equatorial Cassegrain telescopes, one in the Northern

Hemisphere and one in the Southern Hemisphere (Mt. Hopkins, Arizona; Cerro

Tololo, Chile), to observe in the J , H, and Ks bands, corresponding to wavelengths

of 1.25, 1.65, and 2.16 µm, respectively. The XSC contains sources that are extended

with respect to the instantaneous point-spread function (Skrutskie et al. (2006)), in-

cluding galaxies and Galactic nebulae. The S/N=10 sensitivity limits are met by

sources as bright or brighter than 15.0, 14.3, and 13.5 mag in the J , H, and Ks

bands, respectively, and (very importantly for our dipole-related considerations) ex-

hibit a mean color difference of less than 0.01 mag between hemispheres, meaning

that the photometry is highly uniform between hemispheres. The reliability (corre-

46
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sponding to the ratio of the number of genuine extended sources to the total number

of sources, spurious or genuinely extended, in the dataset) of the XSC is greater than

99 percent for Galactic latitude |b| > 20◦. Some extended sources in the catalog are

not extragalactic, though these can be easily removed with the right color cuts (as

detailed later in this chapter).

A small subset of the 1.6 million extended sources in the 2MASS XSC were as-

signed redshifts in the 2MASS Redshift Survey (2MRS), a catalog which includes

position and redshift information for over 40,000 galaxies present in the original

2MASS sample. In this chapter, we apply the dipole-detecting formalism outlined

in Chapter 3 to the entire 2MRS catalog, as well as to appropriate subsets of the

2MASS XSC sources.

Erdogdu et al. (2006) and Maller et al. (2003) have calculated the flux-weighted

dipoles (see Sec. 2.2.1) for 2MRS (a 23,000-galaxy subset thereof, actually, with

Ks < 11.25 – a preliminary version of the catalog) and 2MASS, respectively. This

stands in a longer tradition of attempting to calculate flux-weighted dipoles from

near-infrared surveys, since near-infrared light closely traces the mass distribution

of large-scale structure. For instance, Rowan-Robinson et al. (2000) calculate a

flux-weighted dipole from the IRAS PSCz Redshift Survey, which had redshifts for

over 15,000 IRAS galaxies (at 60 µm; cf. the wavelengths of 2MASS, over an order

of magnitude shorter). The IRAS PSCz (zmax ∼ 0.1), 2MRS (zmax ∼ 0.1), and

2MASS XSC (z̄ > 0.07) studies all find tolerably small discrepancies between the

direction of the flux-weighted dipole (and thus the acceleration of the Local Group)

and the CMB velocity dipole that partially results from that acceleration (velocity

of the Local Group being proportional to acceleration of the Local Group in linear

theory). (As noted before, the motion of the Sun with respect to the Local Group also
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contributes to the kinematic dipole, but the direction is nearly opposite the direction

of the Local Group’s motion with respect to the CMB rest frame, and hence changes

the magnitude of the velocity vector but does not substantially change its direction.)

The number-weighted dipole of Erdogdu et al. (2006) comes closer than the flux-

weighted dipole to mimicking the quantity that we calculate here, but the number-

weighted dipole, like the closely related flux-weighted dipole, is another quantity

that seeks to measure the acceleration of the Local Group due to surrounding large-

scale structure, but instead of using flux as a proxy for mass as in the flux-weighted

dipole, the number density of galaxies in a given direction on the sky is assumed to

serve as a good proxy for mass. Our goals and aims, as well as the precise quantity

we calculate, are different: We seek to measure not an acceleration, but rather the

simple 2D-projected dipole, which in the case of the relatively nearby survey 2MASS

(and 2MRS, as a subset of 2MASS), is dominated completely by the contributions

from the local-structure dipole (see Sec. 2.2.2).

The entire power spectrum of 2MASS has been calculated by Frith, Outram, and

Shanks, which means that at least one measure of the 2D-projected dipole that we

explore here has already been obtained. We compare our results to this previous

result later in this chapter. However, we do not regard our result as a simple repli-

cation of the previous result (and, in fact, we note substantial disagreement): we

compute not just the amplitude of the dipole, but also its direction; we use an esti-

mator specifically designed to be the best unbiased estimator for the dipole; and we

place the 2MASS dipole into a larger context of exploring the various contributions

to dipoles, and testing observational results against theoretical predictions, in a wide

variety of surveys.



49

4.2 Dipole in 2MRS

We begin with the 2MASS Redshift Survey, the densest all-sky redshift survey to

date (Erdogdu et al. (2006)). The 2MRS team (Huchra et al. (2011)) measured red-

shifts of 43,533 bright (Ks < 11.75) sources with E(B−V ) ≤ 1 mag and |b| ≥ 5◦ (for

30◦ ≤ l ≤ 330◦; |b| ≥ 8◦ otherwise). Sources were carefully screened to ensure that

all were genuinely extragalactic sources and do not have compromised photometry.

As explained below, we err on the conservative side and make a symmetric cut at

|b| < 8◦ for all Galactic longitudes l, which eliminates roughly 1700 of the galaxies

in the survey.

The results for the dipole amplitude in this survey are strongly expected to agree

with theoretical predictions. Given the relatively small volumes surveyed (and the

fact that we are dealing with the very large-scale � = 1 mode), cosmic variance is

very large, and so a discrepancy between theory and observation would require highly

anomalous observations. We find, even with relatively cursory checks, that there are

no serious discrepancies between theory and observation for 2MRS. Nevertheless, in

the coming sections, we profile the various tests performed on the data, and the

results for both dipole direction and amplitude, in the interests of presenting results

for this survey as something of a model (in addition to being an important test in its

own right): this is a dataset with well-controlled systematics and very little chance of

giving anomalous results, where we can test out several different types of systematic

checks, to gain intuition for what results should look like when we perform similar

tests on surveys at higher redshifts and/or with less well-understood systematics.

This survey is essentially ready to be analyzed “straight out of the box,” mean-

ing that major systematic errors have already been addressed (especially Galactic
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Figure 4.1: Top: All sources in the 2MASS Redshift Survey that escape the |b| < 8◦ cut. The mean
redshift in the survey is approximately z̄ = 0.028. Even by eye, it is clear that the dipole due to
local structure has not died away at these scales. In particular, the supergalactic plane is still fairly
clearly visible in the data (see, e.g., Maller et al. (2003)). (Note that the dynamic range of this plot
has been limited so that structures outside the supergalactic plane are also visible.) Bottom: A
rough plot of the radial distribution of 2MRS galaxies. The data are put in redshift bins [0, 0.01),
[0.01, 0.02), ..., [0.09, 0.10), where the plot shows the number of galaxies in each bin as a function
of bin center.
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extinction), and we already have a sample of extragalactic sources with uniform sky

coverage outside the Galactic plane. (The latter is important since a lack of uniform

completeness across the sky could, if not properly accounted for, mimic the effect of a

dipole.) More careful attention must be paid to these matters in the 2MASS sample

as a whole, and in other surveys, but 2MRS requires only that we cut out pixels (in

both the data map and the random map to which it is compared; see Chapter 3)

within 8 degrees of the Galactic equator, |b| < 8◦. This is trickier than it may at

first seem, given that pixels whose centers are above 8 degrees, and thus escape a

straightforward cut of pixels with centers below 8 degrees, still may have area below

8 degrees, especially if the pixelization is coarse, as in the cases of HEALPix (Górski

et al. (2005)) NSIDE=8 or 16.1 We adopt NSIDE=128 for the rest of this thesis,

except where otherwise noted, and also cut conservatively so that pixels with any

area at all with |b| < 8◦ are cut.

4.2.1 Observational Constraints on Dipole Amplitude as a Function of Redshift

Therefore, with |b| < 8◦ excised from the map (see Fig. 4.1), we can apply the

formalism outlined in Chapter 3 directly to different subsets of the survey. We pix-

elize the data using HEALPix, meaning that we take the Galactic (or, in the case of

the 2MASS and NVSS surveys that we analyze later in this thesis, equatorial) coor-

dinates given in survey data and assign the given galaxy to the pixel corresponding

to those coordinates. Fig. 4.2 gives the likelihood of the dipole amplitude, L(A),

for different subsets of the entire survey, reaching out to zmax = 0.02, 0.04, 0.06, 0.08,

and 0.10 (where the last value in that list represents the entire survey except for 25

sources at an assortment of higher redshifts).
1
HEALPix, short for Hierarchical Equal Area isoLatitude Pixelization, is a software package for pixelizing the

2-sphere. Each pixel covers the same surface area as every other pixel, and pixel centers occur on a discrete number

of rings of constant latitude. The NSIDE parameter controls the resolution of the pixelization, with the total number

of pixels being equal to 12*NSIDE
2
.
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Figure 4.2: Likelihood curves for different maximum redshifts in 2MRS. Any galaxies with |b| < 8◦

are removed from the sample, regardless of Galactic longitude l. Compare Fig. 4.5; the plot above
shows how the observed dipole amplitude Apeak is found (by finding the location of the peak in
likelihood) and how the corresponding measurement error bars are determined (by calculating the
68 percent confidence intervals on these likelihood curves).

Note that the behavior is as expected in several regards:

• The dipole amplitude A starts off larger and grows smaller as we go out further

in redshift.

• A converges to a certain value. This should happen simply because we run out

of sources as we go to higher and higher redshift (e.g., 41,446 sources are at

z < 0.06; the total number of sources with z < 0.10 is 43,506.)

• Because the redshifts in this sample are relatively low in cosmological terms,

going out only to z ∼ 0.10, we expect that the dipole amplitude should remain

on the order of 10−1, and it does.

Although 2MRS should be relatively systematic-free, we proceed to perform straight-

forward tests for two types of systematic effects: Galactic extinction as characterized

by the maps of Schlegel et al. (1998), and star-galaxy confusion or other systematics

that vary as a function of Galactic latitude b.
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4.2.2 Comparison of Dipole Parameters With and Without Extinction Template

As discussed in Chapter 3, if we wish to take Galactic extinction into account,

the formalism we are employing to find dipole amplitudes and directions allows for

very straightforward incorporation of the SFD maps as a systematic template. The

2MRS maps are already extinction-corrected, so this is much more of a sanity check

than anything else.

The results are best presented in the form of a direct comparison, in the following

table. The first column gives the Galactic latitude b of the cut; the second column

identifies any systematic template present; the third gives the HEALPix NSIDE

parameter; the fourth gives the number of sources that were still available after the

cut was made; the fifth gives the dipole amplitude with highest likelihood; the sixth

and seventh give l and b of the best-fit dipole; and the eighth and ninth give the 68

and 95 percent confidence intervals on the amplitude of the dipole. The confidence

intervals are calculated by taking the likelihood distributions for the amplitude, such

as those pictured in the previous plot, and adding values of A to the confidence

interval until 68 (95) percent of the area under the L(A) curve is filled in. Entries

in this table take into account the entire 2MRS sample, 43,506 galaxies (before the

symmetric cut in Galactic latitude) with 0.00 < z < 0.10.

Table 4.1: Comparison of dipole parameters with SFD template vs. without SFD template, for 2MRS.

|b| ≥ Systematics NSIDE N Apeak l b 68 percent CI 95 percent CI

8.0 none 128 41834 0.1245 228.0 38.7 0.116 - 0.1325 0.108 - 0.141

8.0 SFD Dust 128 41834 0.1185 222.3 38.3 0.11 - 0.1265 0.102 - 0.135

The results change only slightly when the SFD template is added, and not in

a way that is at all statistically significant, given that the 68 percent confidence

intervals for dipole amplitude overlap. The fact that the dipole amplitude drops
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slightly with addition of the template is an indication that a very small (and non-

significant) amount of the dipole power in the 2MRS map can be attributed to the

pattern set up by the distribution of dust in our Galaxy.

4.2.3 Dipole Parameters as a Function of Sky Cut

With the SFD extinction template in place, and again using the entire 2MRS

sample out to z = 0.10, we may also vary the location where the cut in Galactic

latitude is placed. Verifying that the placement of the cut (as long as it is kept at

least as aggressive as the |b| < 8◦ cut) does not affect the results beyond widening our

error bars serves as a check for any source of systematic error that varies as a function

of Galactic latitude. Most notably, any star-galaxy confusion that might creep into

the survey (very unlikely in the case of this particular survey) would vary strongly

as a function of Galactic latitude, with the density of stars dropping precipitously

as one moves away from the Galactic equator, and so this test serves to verify that

star-galaxy confusion is not a major contributor to the detection of a dipole. It also

helps to guard against the possibility that variations in sky coverage (see Sec. 4.2.8)

affect the dipole signal. (Sky coverage is better at higher Galactic latitudes, since

extended sources cannot be observed very close to very bright stars – less than 2

percent of the area of a typical high-latitude sky is masked by stars, as noted by

Erdogdu et al. (2006).)

Note that as the sky cut becomes more and more aggressive, we expect the error

bars on the observed value of A to become wider (simply because we have less data

and therefore looser constraints), but we expect the best-fit/peak-likelihood value of

A itself to remain consistent with values found given less aggressive sky cuts. If A

shifts in such a way that more aggressive sky cuts yield amplitudes inconsistent with

amplitudes from maps with less aggressive sky cuts, this is a fairly good indication
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Figure 4.3: How the likelihood curves shift as we cut more and more aggressively. This is for the
entire 2MRS survey out to zmax = 0.10. Note that for the plot of theoretical and observed values
of the dipole amplitude A as a function of zmax (see Fig. 4.5) with fsky = 0.10, the cosmic-variance
band goes up to approximately A = 0.60, so there is nothing anomalous about having a larger value
for A with very aggressive sky cuts.

that star-galaxy confusion or another systematic effect that varies with Galactic lat-

itude is at play. Note that going out to higher redshift tends to give smaller values

for A, but this is not because the volume is greater (otherwise, we would get larger

values for A in making more aggressive angular cuts) – rather, it is because larger

radial scales mean that the universe is closer to having approached homogeneity and

isotropy. In other words, the angular dimensions (and thus angular cuts) are not

what determine the amplitude of the dipole. However, for very aggressive cuts, we

are left with far less data than we are with minimal cuts, and this means that (a)

the “measurement error” on the observation becomes greater, and, even more im-

portantly, (b) the cosmic variance associated with the theoretical prediction becomes

much greater. Due to (b) in particular, a much wider range of peak-likelihood values

for the amplitude becomes consistent with theory, and with the observed values from

less aggressive cuts, as we cut the sky more aggressively.

Results for different sky cuts are found in Fig. 4.3. The results are all consistent
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with one another given that cosmic variance comes into play. See also Table A.1 for

detailed comparison of the different sky cuts.

Note that even without taking the larger cosmic variances into account, the mea-

surements for the smaller cuts (|b| < 30◦ and below) are all consistent with one

another: even the slightly anomalous |b| < 30◦ cut has a 68 percent confidence inter-

val that very nearly overlaps with the 68 percent confidence interval for the |b| < 8◦

and |b| < 15◦ cuts. The only two of the four smallest cuts that stand in any signifi-

cant tension with one another are |b| < 15◦ and |b| < 30◦, where the peak amplitude

associated with the |b| < 15◦ cut lies outside the 95 percent confidence interval for

the |b| < 30◦ cut, but we still have substantial overlap of 95 percent confidence in-

tervals here, and in any case, cosmic variance has increased in the |b| < 30◦ cut to

the point where it must be taken into account. The same is true for the apparent

inconsistencies associated with |b| < 45◦ and |b| < 60◦: when we take cosmic variance

into account, it becomes clear that there is a much wider range of acceptable values

for Apeak when the sky is aggressively cut than is immediately apparent from the

above table. See Fig. 4.4 for a visual representation of this, and see next section for

more details about comparisons of theory with observations.

4.2.4 Dipole Amplitude, Theory vs. Observation, as a Function of Redshift

Now that we have established basic consistency among dipole determinations with

different sky cuts (with the proviso that the most aggressive cuts are reconciled within

cosmic-variance limits, as explained further in this section), we go back to the least

restrictive cut, at |b| < 8◦, and keep the SFD template in place. We proceed to

compare theory and observation in dipole amplitude as a function of redshift in

2MRS.

In calculating theoretical values, it is important to note (again; this was also noted



57

Figure 4.4: Results for the dipole amplitude as a function of cut in Galactic latitude b. Here
bcut indicates that |b| < bcut was cut out of the map. Notice the very wide cosmic-variance band
(yellow shaded region) around the theoretically predicted value for the dipole amplitude, and the
consistency of all observed values within cosmic-variance limits. The small error bars indicate
measurement errors: red represents a 68 percent confidence interval; blue represents a 95 percent
confidence interval. These errors are tiny in comparison with cosmic variance.

in Chapter 3) that bias must be included in theoretical predictions in order for these

predictions to be directly comparable to observational results. Frith et al. (2005a),

in a paper on the power spectrum of 2MASS, find the bias in the 2MASS Ks band

to be 1.39± 0.12, employing a technique that uses constraints on the galaxy power-

spectrum normalization as well as previous constraints on σ8. We therefore adopt

1.4 as the value of the bias for both 2MRS and 2MASS in general. The qualitative

conclusions of the rest of this chapter do not depend strongly on the precise value

adopted for the bias. (Note that, for constant bias b, dipole amplitude A ∝ b.)

There are cosmic-variance errors on all theoretical predictions:

(4.1) δC� =

�
2

(2�+ 1)fsky
C�.

We can relate C� to the amplitude A via

(4.2) C1 =
4π

9
A

2

and so doing error propagation to get the cosmic-variance error on the amplitude,
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we have

(4.3) δA =
1

2

�
2

3fsky
A.

This allows us to plot cosmic-variance uncertainties in both C1 and A. The basic

result of doing so is shown in Fig. 4.5. Note that the errors on the observations are

very small in comparison with cosmic variance. Therefore, for the rest of this sec-

tion, we consider measurement errors negligible and focus only on how observational

results compare with theory within the bounds of cosmic variance.

The dipole amplitude, both theory and measurement, decreases as redshift in-

creases, exactly as it should given our previous arguments that averaging over more

structure at larger distances yields lower values of the dipole. Whether the am-

plitude is expressed as A or as C1, the observational results are consistently lower

than the theoretical expectations. If these measurements for different zmax were all

independent, there would be a highly significant inconsistency between theory and

observation, but the measured values are highly correlated since samples with higher

zmax contain all samples with lower zmax.

More specifically, correlations between a bin i going out to zmax,1 and another bin

j going out to zmax,2 are calculated as

(4.4) Cov [Cii, Cjj] =
2

2l + 1
C

2

ij,

where Cij is proportional to [Wi(z)Wj(z)] (W (z) is the weight function for each

population) and similarly for Cii and Cjj. Then the correlation coefficient is

(4.5) ρ = Cov(Cii, Cjj)/
�

Cov(Cii, Cii)Cov(Cjj, Cjj) = C
2

ij/(CiiCjj)

Correlations between 2MRS samples range from 0.422 (between the full (0.00 < z <

0.10) sample and the smallest (0.00 < z < 0.01) sample), to 0.805 (between the
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Figure 4.5: Top: Comparison of observations with theory for the dipole amplitude, as a function
of how much of the 2MRS sample is included (0.00 < z < zmax). All observed values are found
including the SFD template, and with a cut at |b| < 8◦. For the purposes of calculating theoretical
predictions, we take fsky = 0.8568. (This value is calculated by noting that we have removed all
pixels with any area at all below the |b| < 8◦ cut.) Bottom: The same results, only with the dipole
power C1 rather than dipole amplitude A. See Chapter 3 for details of the procedure to convert
between A and C1.
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full sample and the second-smallest (0.00 < z < 0.02) sample), to well over 0.99 for

many combinations of samples. (This is also the reason why all bins have similar

significance as compared with one another.) Therefore, rather than being a 10-sigma

inconsistency between theory and observation, Fig. 4.5 represents only slightly more

than a 1-sigma discrepancy. The next section will find the precise “discrepancy”

rigorously.

4.2.5 Stricter Comparison of Theory and Observation for Dipole Amplitude

Given a Gaussian field on the celestial sphere with observed angular power spec-

trum C
obs

� , the power is χ2-distributed, and the likelihood of a given theoretical value

C
th

� is

(4.6) lnP (Cth

� |Cobs

� ) =
∞�

�=0

2�+ 1

2

�
−C

obs

�

C
th

�

+ ln
C

obs

�

C
th

�

�
− lnCobs

� .

(see, for example, Chu et al. (2005)).2 Here the observed quantity C
obs

� is treated as

a realization of the theoretical value C
th

� . For � = 1, this simplifies to

(4.7) lnP (Cth

1
|Cobs

1
) =

3

2

�
−C

obs

1

C
th

1

+ ln
C

obs

1

C
th

1

�
− lnCobs

1

Again, we treat this as a likelihood, so that P is a function of the theoretical model

C
th

1
, with the observed quantity held fixed. Then, as usual, we can plot the likeli-

hood of a parameter value (in this case, theoretical Cth

1
) and see where our “actual”

theoretical Cth

1
falls with respect to that distribution. In each redshift bin, we could

generate a different likelihood distribution based on the observation, and then com-

pare to the actual Cth

1
in each case. However, because of the very high correlations

between redshift samples, we gain very little by doing tomography in this way, and

2
This expression can be derived by noting that the random variable Y = (2�+1)

Cobs
�

Cth
�

is χ2
-distributed with 2�+1

degrees of freedom. Inserting this expression for Y into the general expression for a χ2
distribution, and then using

the fact that P (Y )dY = P (C�)dC�, it is relatively straightforward to show that the proportionality for P (C�) given

in Chu et al. (2005) holds, and from there the expression for the log-likelihood given above immediately follows.
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Figure 4.6: Posterior probability of theoretical C1 given observed C1 as a function of the theoretical
value, for the full sample of 2MRS galaxies. The observed C1 determines the likelihood distribu-
tion for Cth

1 , and we can then compare the ΛCDM value (vertical magenta line) for Cth
1 to that

distribution. The ΛCDM value is not an outlier in the theoretical distribution, and hence we say
that theory matches observation here.

so we only perform this analysis on the full 2MRS sample, 0.00 < z < 0.10. The

results are shown in Fig. 4.6.

Whether we calculate a simple signal/noise ratio to compute the significance of

C
th

1
results given C

obs

1
, as in Fig. 4.5, or whether we use the more sophisticated

(and correct) comparison of Fig. 4.6, the qualitative conclusion is the same: the

ΛCDM prediction matches observations within appropriate cosmic-variance limits.

Note that the reason why these two strategies do not match up quantitatively is

that the signal/noise strategy assumes cosmic variance is symmetric, while using

the P (Cth

1
|Cobs

1
) distribution takes into account the asymmetry of cosmic variance,

particularly at the very low � at which we are working. This is also why significances

in C1 and A do not match up with one another exactly.
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4.2.6 Observational Constraints on Dipole Direction as a Function of Redshift and
Sky Cut

Up to this point, we have been focusing on the dipole amplitude and comparing

theoretical and observed amplitudes. The direction of the dipole, however, is also a

quantity of considerable interest.

As discussed in Chapter 2, there are three major types of dipoles that could

contribute to any detected dipole in objects that trace large-scale structure: the

local-structure dipole, the kinematic dipole, and the intrinsic dipole. At the scales

probed by 2MRS, we expect the local-structure dipole to completely dominate other

contributions, since it is on the order of 10−1 while the kinematic dipole falls two

orders of magnitude below this and the intrinsic dipole may very well fall even further

below that. Therefore, there is no reason to expect that the direction of the 2MRS

dipole should align with the direction of the CMB dipole, as we would expect it to

do if the kinematic dipole were dominant at these scales.

That said, it should not be at all surprising if the 2MRS local-structure dipole

points somewhere near the CMB kinematic dipole. The reason for this has to do with

what generates the motion that gives rise to the kinematic dipole. As discussed in

Chapter 2, the total velocity of the Sun with respect to the Local Group is directed

along almost the same line as the velocity of the Local Group with respect to the

CMB rest frame, but in the opposite direction. So the direction of the Sun’s total

motion with respect to the CMB rest frame is essentially the same as the direction of

the Local Group’s motion with respect to the CMB rest frame, but the speed is lower

than that of the Local Group since the contribution of the Sun’s motion with respect

to the Local Group gets subtracted off. The Local Group moves in a certain direction

with respect to the CMB rest frame because of the gravitational pull of structure in
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the relatively nearby universe. The acceleration due to gravity of the Local Group, as

determined via flux-weighted dipole measurements, is directed less than 10◦ away on

the sky from the direction of the velocity of the Local Group (Maller et al. (2003)).

Therefore, insofar as the local-structure dipole gives information about the clustering

of local structure and the direction of the acceleration due to gravity of the Local

Group, it is expected that it should point in at least the same general direction as

the CMB kinematic dipole, which is generated in part by the velocity of the Local

Group induced by its acceleration due to gravity. Since the local-structure dipole is

a 2D-projected quantity rather than one that preserves radial information, it is not

a perfect indicator of where gravitational pulls on the Local Group are coming from.

But we do expect the direction of the local-structure dipole to feel some influence

from the direction of the CMB kinematic dipole.

The observational results for the direction of the dipole are displayed in Fig. 4.7.

The results align with the qualitative expectations detailed above. It turns out that

the 2MRS dipole direction is indeed not consistent with the direction of the CMB

kinematic dipole, but still within the same basic region of sky.

Note that the constraints on the dipole direction are actually tighter for the very

small 0.00 < z < 0.01 sample than for the full sample of 2MRS galaxies, despite

the fact that the number of sources is an order of magnitude smaller. This is not

anomalous since the higher-redshift sources actually decrease the prominence of the

dipole in local structure, producing a result with roughly half the total signal/noise

as in the case where we take the zmax = 0.01 subsample.

The best-fit direction for the 2MRS dipole is (l, b) = (228.0◦, 38.7◦). Erdogdu

et al. (2006) find that the 2MRS number-weighted dipole (the quantity they analyze

that is “closest” to our dipole) is at (l, b) = (218◦, 33◦) in the CMB frame, in close
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Figure 4.7: Top: Likelihood as a function of direction, marginalizing over amplitude. This plot
shows the likelihood constraints on the dipole for 2MRS redshift shells 0.00 < z < 0.01 (leftmost
multicolored oval), 0.00 < z < 0.03 (uppermost multicolored oval), and 0.00 < z < 0.10 (rightmost
multicolored oval), all with NSIDE=128 and a cut for |b| < 8◦, with the SFD dust systematic
template incorporated. The color scale represents normalized likelihood as a function of direction.
The single-colored disc that overlaps with one of the multicolored likelihood ovals represents the
direction of the CMB kinematic dipole, with error bars exaggerated to a circle of 2 degrees in order
to make the position clearly visible on the map. Bottom: Confidence intervals for the direction of
the dipole in the full 2MRS survey (using NSIDE=64), with the position of the CMB dipole shown.
Agreement was not expected, but it is reassuring that the 2MRS projected dipole does lie in the
same general region of sky as the CMB dipole.
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Figure 4.8: This map, a projection in Galactic coordinates, shows supergalactic latitude SGB in
its color-coding. The dark red strip corresponds to the region within 1 degree of the supergalactic
equator.

agreement with our results.

4.2.7 Cutting the Supergalactic Plane

As a final check, we wish to know how much of the dipole signal in 2MRS is

coming from the vicinity of the supergalactic plane (SGP), a planar structure in the

local galaxy distribution (Lahav et al. (2000)). We therefore progressively excise

more and more of the SGP and see how much the amplitude of the dipole dies

away. We compare this to the effect of excising similar areas from the vicinity

of the supergalactic poles. We expect that there should be more sources near the

supergalactic plane, and that the dipole should die away much more quickly when

the supergalactic plane is excised than when similar areas around the supergalactic

poles are excised. Supergalactic coordinates SGB and SGL are defined in analogy to

Galactic b and l, where SGL is the azimuthal coordinate, and SGB=0 corresponds

to the middle of the supergalactic plane, so we care only about making cuts in SGB.

This check will become more important as we proceed to perform our analysis on
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surveys that probe much larger radial distances than does 2MRS, as the structure

associated with the supergalactic plane will only contribute to the dipole on rela-

tively nearby scales, and the effect should diminish as we probe to larger and larger

redshifts.

In table form, we find the results in Table A.2 when we use the usual |b| < 8◦

Galactic cut and also include a cut around the supergalactic plane (first part of the

table, with |SGB| ≥ in the first column) or a cut around the supergalactic poles

(second part of the table, with |SGB| < in the first column). The second column,

fsky, gives the fraction of the sky that remains when we perform the given cut.

Abstracting the key results, we now directly compare cuts around the supergalac-

tic plane with cuts of similar area around the supergalactic poles. We calculate

fsources, the fraction of the total number N of sources that remain when we perform

the given cut. The cuts in SGB (less than 2.0, 5.0, 10.0, 20.0; greater than 74.82,

65.90, 55.73, 41.15) were chosen so that equal areas around the plane and around the

poles would be cut if there were no cut in Galactic b (as in our tests on the BATSE

catalog; see Chapter 5). Since there is a cut in Galactic latitude here, fsky does

not match up exactly between the cuts around the supergalactic plane and poles,

but the values are still close, and in any case they are normalized in the fsources/fsky

calculation; we employ the same cuts for all surveys tested in this thesis.

Table 4.2: Key patterns in cutting in supergalactic coordinates, for 2MRS.

|SGB| ≥ fsky N fsources
fsources
fsky

Apeak |SGB| < fsky N fsources
fsources
fsky

Apeak

0.0 0.86 41834 1.00 1.17 0.12

2.0 0.82 39964 0.96 1.16 0.11 74.82 0.84 41234 0.99 1.17 0.12

5.0 0.78 37124 0.89 1.14 0.11 65.90 0.81 39867 0.95 1.18 0.12

10.0 0.70 32673 0.78 1.11 0.10 55.73 0.74 36882 0.88 1.20 0.12

20.0 0.55 24799 0.59 1.08 0.08 41.15 0.59 30321 0.72 1.22 0.14

Note the following, referring to Table 4.2:
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• The fraction of sources associated with the supergalactic plane is greater than

the fraction of sources associated with the supergalactic poles for every fsky.

This is our first indication that a greater-than-random portion of the dipole

signal comes from the vicinity of the supergalactic plane.

• The ratio fsources/fsky, which gives a measure of how overdense the uncut portion

of the sky is, dwindles steadily as we cut more and more of the SGP, but increases

as we cut more and more area around the supergalactic poles. Therefore, as

expected, there are more sources near the supergalactic plane than near the

supergalactic poles, and this is true essentially regardless of how much of the

area around the plane/poles is cut.

• The dipole amplitude steadily dies away as we cut more and more of the area

around the supergalactic plane, but it does not do so as we cut equivalent area

around the supergalactic poles. This is another indication that the dipole signal

comes preferentially from the vicinity of the SGP.

• The dipole amplitude actually becomes higher when we remove most of the sky

that is more than 20 degrees away from the supergalactic plane (the cut which

removes all but |SGB| < 41.15◦). This makes sense given that we have removed

much of the structure that smooths out the dipole and left only the structure

near the supergalactic plane that contributes strongly to the dipole.

In general, we conclude that more of the dipole signal comes from the area of the

supergalactic plane than from the vicinity of the supergalactic poles. This serves

as a good check that the source of the dipole signal in the relatively local structure

surveyed by 2MRS is generally where we expect it to be. When we perform analyses

of higher-redshift objects in Chapter 5, the supergalactic plane should not “show up”
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as it has here.

4.2.8 2MRS: Conclusion

We conclude our analysis of the dipole signal in 2MRS by pointing out that

all results are consonant with theoretical expectations. This comes as no surprise

given that 2MRS was the most well-controlled and well-understood of the surveys

we analyze here, and was being treated exhaustively as something of a model for our

other analyses.

It should also be noted that we have verified that the results above do not change

appreciably when corrections are made for the 2MASS coverage map (see Sec. 4.3).

We now proceed to apply our dipole analysis to the full 2MASS dataset.

4.3 Dipole in 2MASS

We now analyze the full 2MASS survey in a manner similar to how we analyzed the

very well-characterized 2MRS subsample. The challenges associated with analyzing

2MASS as a whole are greater, in part because the full sample of 2MASS galaxies

(1.6 million extended sources) does not have uniform completeness across the entire

sampled sky. To remove this problem, we must make judicious cuts based on the

photometry.

As shown in Fig. 4.9, the biggest issue in connection with survey completeness

is that the selection function has a sharp discontinuity for galaxies with Ks-band

magnitude greater than roughly 13.5. We therefore cut out all these sources, roughly

2/3 of the sample, at the outset, and consider only that portion of the survey with

nearly uniform completeness over the entire sky (with the exception of the Galactic

plane), that is, sources with Ks < 13.5.

Second, we excise the Galactic plane as we did for 2MRS, but must make a more
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Figure 4.9: Left side: All 2MASS sources, in equatorial and Galactic coordinates. Note the very
strong discontinuity in the selection function, visible in both images (especially in the top image,
where it appears as a horizontal line), at declination around 20 degrees. Right side: 2MASS sources
with Ks-band magnitude less than 13.5 (with limited dynamic range in the Galactic-coordinates
plot to bring out structure more clearly). The survey has nearly uniform completeness when this
criterion is imposed.

aggressive cut in order to ensure that star-galaxy confusion does not come into play.

Maller et al. (2005), in a paper that computes the galaxy angular correlation function

and three-dimensional power spectrum of 2MASS, as well as Skrutskie et al. (2006)

in the main paper profiling 2MASS, note that the 2MASS XSC is highly reliable

and complete for |b| > 20◦ (more than 98 percent galaxies rather than stars at these

latitudes), but that star-galaxy confusion is an increasingly large problem at lower

latitudes: the XSC is 10 percent stars for 5◦ < |b| < 20◦; and within the Galactic

plane, |b| < 5◦, there is additional contamination by artifacts (10 to 20 percent) and

Galactic extended sources (∼ 40 percent) including globular clusters, open clusters,

planetary nebulae, and giant molecular clouds (Jarrett et al. (2000b)). In particular,

Maller et al. cross-correlate the 2MASS stellar density nstar with the XSC galaxy

density as a function of the latitude of a symmetric (in Galactic coordinates) cut and
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find that including XSC objects with |b| < 15◦ gives a galaxy-star cross-correlation

that is higher in amplitude than the galaxy-galaxy autocorrelation, suggesting the

presence of multiple-star systems mistakenly identified as extended sources. However,

this excess signal goes away for a cut of |b| < 20◦. Cutting at |b| < 20◦ ensures less

than 2 percent contamination from Galactic sources (Maller et al. (2005)). Frith

et al. (2005a) likewise find that a cut of |b| < 20◦ is satisfactory.

Third, we use the XSC confusion flag (cc flg) to eliminate known artifacts

(diffraction spikes, meteor streaks, infrared airglow, etc.).

Fourth, again following Frith et al. (2005a), as well as Maller et al. (2005), we also

cut out bright (Ks < 12.0) objects with (J −Ks) colors that are outside the range

[0.7, 1.4]. This is a conservative measure designed to get rid of a final set of objects

which are in the 2MASS XSC but which are not extragalactic sources. This removes

a few thousand sources.

Fifth, as explained later, we take the 2MASS sky coverage into account. The

XSC does not have completely uniform sky coverage given the presence of bright

stars and other foreground objects that make it more difficult for the telescopes to

detect extended sources in particular directions, and so although this the pattern of

sky coverage is highly parity-even (following the shape of the Galaxy) and unlikely to

mimic a dipole in any way (part of why it made no difference to the 2MRS results),

we still take this into account in the present analysis.

Sixth and finally, K-corrections (corrections to magnitudes in a given passband

that are made necessary by the fact that light can redshift into or out of a given

range of wavelengths) for the Ks band can make a non-negligible difference in the

calculation of a flux-weighted dipole or other quantity that depends on specifics of

photometry. However, in this case we do not need to take them into account, because
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they are actually accounted for in our predictions: K-corrections are tied to the same

(pseudo-)Doppler effect that helps to generate the kinematic dipole (see Chapter 2),

and so accounting for them in observational results as well would amount to double-

counting.

All photometric cuts are applied to 2MASS isophotal magnitudes – not total

magnitudes, which are an extrapolated quantity and viewed as less reliable for the

purposes of this kind of analysis. While many analyses which use 2MASS data ac-

tually use the extrapolated magnitudes (since, according to Jarrett et al. (2003), the

isophotal magnitudes underestimate total luminosity by 10 percent for early-type and

20 percent for late-type galaxies), we stick here with the more conservative isophotal

magnitudes, especially since the cut at Ks < 13.5 is much surer to accomplish its

purpose if the more conservative magnitude estimates are used. It is worth noting

that the 2MRS team used isophotal magnitudes in their sample selection (Huchra

et al. (2011)).

With these photometric cuts applied, we are ready to proceed with the analysis.

While no spectroscopic redshifts are available for the 2MASS XSC as a whole, and

the photometric redshifts that do exist are not particularly reliable, considerable

information is available about the overall radial distribution of 2MASS galaxies. In

particular, Frith et al. (2005a) and others give the 2MASS radial selection function

as

(4.8) n(z) =
3z2

2(z̄/1.412)3
exp

�
−
�
1.412z

z̄

�3/2
�

with z̄ = 0.074 for Ks < 13.5 and z̄ = 0.050 for Ks < 12.5. With these values

of z̄, we can determine theoretical predictions for the local-structure dipole (which

is still dominant by two orders of magnitude over other contributions to the dipole

at these scales) for these two photometric cuts. Combined with the 2MRS sample,
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Figure 4.10: Plot of the radial distribution of 2MASS galaxies as a function of redshift. Three
different mean redshifts are shown, one which corresponds to the 2MRS distribution (the actual
2MRS n(z) is plotted in blue), and the other two of which correspond to photometric cuts in the
full 2MASS survey of Ks < 12.5 and Ks < 13.5.

which follows this same form for the selection function quite closely (see Fig. 4.10)

and corresponds to approximately z̄ = 0.028, we can perform a comparison of theory

and observation for multiple subsamples of the entire 2MASS catalog.

The total number of galaxies in the 2MRS catalog for z < 0.1 is 43,506. For

Ks < 12.5, there are 127,030 galaxies, or 89,980 if we cut |b| < 20◦. For Ks < 13.5,

there are 542,201 galaxies, or 381,586 for |b| < 20◦.

It should be noted that some previous results concerning the 2MASS galaxy dis-

tribution stand in some tension with ΛCDM predictions. For example, Frith et al.

(2005b) point out that the angular correlation function and angular power spectrum

of 2MASS galaxies (under cuts reasonably similar to the ones we perform here) dis-

play fluctuations that are 3-5 sigma out of line with ΛCDM predictions. We focus

attention here on the dipole alone, which of course sacrifices a certain amount of

information with respect to what could be gained from analysis of the entire power

spectrum, but also lends itself to much better and more detailed analysis of contri-

butions to the signal at this one multipole.
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4.3.1 Systematic Checks: Extinction and Sky Coverage

In 2MRS, extinction corrections were already applied to the magnitudes of the

galaxies, but in 2MASS, the catalog values for the magnitudes are not corrected for

extinction. This means that it becomes much more important in this case to make

sure that we have adequately controlled for the effects of extinction. Of course,

once we have a sample of objects to which to apply the dipole-detecting formalism,

magnitudes do not matter, but magnitudes do matter in determining which objects

get into the sample in the first place. We find that several thousand galaxies that

do not make the Ks < 13.5 cut before extinction correction do make the cut when

magnitudes are corrected for extinction. (Note that extinction corrections always

bring magnitudes down, since sources appear dimmer due to extinction, and so are

assigned higher brightness/lower magnitude when corrected for extinction.)

We have performed various extinction corrections, experimenting with slightly

different extinction coefficients for the 2MASS Ks band (0.367 from Ho et al. (2008);

0.302 from the analogous UKIRT value in Schlafly and Finkbeiner (2010); cf. 0.35,

which is used by Erdogdu et al. (2006), following Cardelli et al. (1989)). We find that

the results when extinction corrections are applied directly are essentially identical

to the results obtained when the SFD dust systematic template is applied as it was

to the 2MRS maps, so we explicitly present only the SFD-template results here.

Table 4.3 compares the no-template vs. template cases for Ks < 13.5 and for

Ks < 12.5. As should be clearly visible from a quick glance at the values in the

table, very little changes when the SFD template is included, and there is substantial

overlap even of the 68 percent confidence intervals for each of the no-template cases

with each of the corresponding SFD-template cases. We conclude that although

the results shift slightly, and therefore it is worth keeping the SFD template in our
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Table 4.3: Comparison of dipole parameters with SFD template vs. without SFD template, for
2MASS, for two different limiting K-band magnitudes.

For objects with Ks < 13.5:

|b| ≥ Template NSIDE N Apeak l b 68 percent CI 95 percent CI

20.0 none 128 386008 0.0890 303.4 7.3 0.086 - 0.0922 0.0828 - 0.0952

20.0 SFD 128 386008 0.0882 305.0 4.5 0.085 - 0.0912 0.082 - 0.0944

For objects with Ks < 12.5:

|b| ≥ Template NSIDE N Apeak l b 68 percent CI 95 percent CI

20.0 none 128 91008 0.0848 275.0 28.2 0.0785 - 0.0908 0.0725 - 0.0968

20.0 SFD 128 91008 0.0812 276.3 25.9 0.0752 - 0.0875 0.0692 - 0.0935

analysis, extinction does not have a substantial impact on the dipole results. This

is as expected based on considerations of how extinction affects 2MASS coverage, as

outlined in Jarrett et al. (2000a) and Jarrett et al. (2000b).

Coverage Maps

Uniform completeness in an infrared survey like 2MASS is impossible due to

the presence of foreground stars. In some directions, the presence of foreground

stars makes observation of distant background galaxies impossible. Sky coverage,

which ranges from 0 to 1 within a given pixel, tends to be well above 0.98 for the

high-Galactic-latitude sky. Data products from 2MASS include coverage maps (see

http://www.ipac.caltech.edu/2mass/releases/allsky/doc/sec2 6f.html) that indicate

coverage as a function of direction.

We convert these maps into the same HEALPix pixelization scheme we use to

pixelize all the surveys in this thesis, including 2MASS itself. Each HEALPix pixel

contains at least 4, and up to 19, “subpixels” associated with the pixelization of the

coverage maps on the 2MASS site, so resolution is not an issue. See Fig. 4.11.

There are several ways in which we could take these coverage maps into account

in our analysis. First, we could mask out all HEALPix pixels that have an average
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coverage less than some threshold (the threshold is usually chosen as 0.98 in the

literature; see, e.g., Ho et al. (2008)). Second, we could mask out all pixels that

have any subpixel with coverage less than some threshold. Third, we could use the

entire coverage map as a systematic template. We have not found a case in which

it makes anything even close to a statistically significant difference which of these

strategies we choose, so we choose the option that is simplest and arguably best:

we use the entire coverage map as a systematic template. This has the advantage

of not privileging any particular threshold, but rather taking the variation in cov-

erage over the entire sky into account evenhandedly. This accounts for the actual

pattern of observations on the sky and weights them accordingly (cf. our treatment

of the BATSE exposure function in Chapter 5). In any case, given that the coverage

map closely follows the shape of the Galaxy (foreground stars are, after all, our pri-

mary concern), and the Galaxy is nearly parity-even, we do not expect coverage to

contribute significantly to the (parity-odd) dipole anyway; results are very much in

accord with these expectations.

The results in this section do not change appreciably when the coverage map is

applied as a template.

4.3.2 Systematic Checks: Sky Cut and Supergalactic Plane

We perform the same cuts in Galactic latitude as we did for 2MRS, but with

the expectation that the most reliable results will come for the |b| < 20◦ cut rather

than |b| < 8◦ as in the case of 2MRS. See Tables A.3 and A.4. See Fig. 4.12 for a

visual capture of the results in these tables, with cosmic variance on the theoretical

prediction taken into account.

The basic conclusion here, as in the case of 2MRS, is that in no case are results very

far outside of the limits expected given cosmic variance. It is somewhat interesting
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Figure 4.11: Maps of sky coverage in 2MASS. (1) Sky coverage as a function of direction for the
entire sky, in HEALPix pixelization, NSIDE=128. We use this map as a systematic template in the
dipole formalism. (2) In this map, pixels are set to zero when any subpixel has coverage less than
0.98 (pessimistic case). Pixels are set to one otherwise. (3) In this map, pixels are set to zero when
the average coverage in the pixel is less than 0.98 (optimistic case). Pixels are set to one otherwise.
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Figure 4.12: Top: 2MASS sources with Ks < 13.5, dipole amplitude as a function of bcut. Bottom:
2MASS sources with Ks < 12.5, dipole amplitude as a function of bcut. See Fig. 4.4 for a fuller
discussion of the significance of this type of plot.
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that the 2MASS Ks < 13.5 case, the largest and therefore (we would predict) best-

constrained subset of the 2MASS survey to which we apply our dipole analysis,

displays a pattern unlike that of the 2MRS and 2MASS Ks < 12.5 subsets, where

instead of giving the largest value for the amplitude in the case of the most aggressive

cut, the largest value of A comes with the |b| < 45◦ cut. However, this is still not

anomalous, and in fact cosmic variance is still sufficiently large at these scales that it

would have been very surprising had there been a genuine anomaly. In any case, there

is not a strong enough dependence on cut to indicate any serious contamination from

star-galaxy confusion or other systematic effects that vary with Galactic latitude, so

we follow Skrutskie et al. (2006), Frith et al. (2005a), and others in taking |b| < 20◦

as our fiducial cut.

We also perform the same test as in the 2MRS case where we cut in supergalactic

latitude SGB. For Ks < 13.5, the full results are presented in Table A.5. Meanwhile,

for our much smaller sample of brighter 2MASS sources, Ks < 12.5, we end up

with the results presented in Table A.6. We create summary tables giving the key

patterns, as we did for 2MRS in Table 4.2. Results are presented for Ks < 13.5 and

Ks < 12.5 in Table 4.4.

There are certain trends worth noting in these results:

• The observations that we made for 2MRS again (generally) hold here: in particu-

lar, fsources/fsky decreases monotonically as more and more of the supergalactic

plane is excised, and the ratio increases (almost) monotonically as more and

more of the area around the supergalactic poles is excised.

• We will see in Sec. 4.3.4 that the direction of the dipole seems (at first glance)

to be anomalous in the Ks < 13.5 fiducial case since there is a strong mismatch

with the 2MRS and Ks < 12.5 cases, but note that the best-fit dipole direction
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Table 4.4: Comparison of dipole parameters when performing various cuts in supergalactic coordi-
nates, for 2MASS, for two different limiting K-band magnitudes.

For objects with Ks < 13.5:

|SGB| ≥ fsky N fsources
fsources
fsky

Apeak |SGB| < fsky N fsources
fsources
fsky

Apeak

0.0 0.65 386008 1.00 1.53 0.09

2.0 0.63 368077 0.95 1.52 0.08 74.82 0.65 385740 1.00 1.53 0.09

5.0 0.59 342390 0.89 1.51 0.07 65.90 0.64 378368 0.98 1.53 0.09

10.0 0.52 301028 0.78 1.50 0.06 55.73 0.60 355464 0.92 1.53 0.09

20.0 0.39 225502 0.58 1.49 0.05 41.15 0.49 295090 0.76 1.55 0.09

For objects with Ks < 12.5:

|SGB| ≥ fsky N fsources
fsources
fsky

Apeak |SGB| < fsky N fsources
fsources
fsky

Apeak

0.0 0.65 91008 1.00 1.53 0.08

2.0 0.63 86657 0.95 1.52 0.07 74.82 0.65 90951 1.00 1.53 0.08

5.0 0.59 80177 0.88 1.50 0.05 65.90 0.64 89203 0.98 1.53 0.08

10.0 0.52 70212 0.77 1.48 0.05 55.73 0.60 83805 0.92 1.53 0.08

20.0 0.39 52528 0.58 1.48 0.04 41.15 0.49 69923 0.77 1.55 0.08

monotonically decreases in l and increases in b as more and more of the super-

galactic plane is cut, bringing the Ks < 13.5 result into greater alignment with

the other results. This will be discussed further in Sec. 4.3.4.

4.3.3 Dipole Amplitude as a Function of Redshift/Photometric Cuts

Taking as most reliable the case with a cut for |b| < 20◦, and keeping the SFD

template in place, we proceed to compare theoretical predictions with observational

results for the dipole amplitude for the two different magnitude cuts we have used,

Ks < 13.5 and Ks < 12.5, which correspond to z̄ = 0.074 and 0.050, respectively.

Again, the 2MRS sample corresponds to z̄ = 0.028, and we include this data point

in our comparisons as well.

See Fig. 4.13 for results. Note that measurement errors are once again tiny in

comparison with cosmic-variance errors.

The magnitude of the dipole in 2MASS has, of course, been calculated previously
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Figure 4.13: Top: Results for the dipole amplitude in the 2MASS survey, as a function of mean
redshift z̄ of the galaxy sample. The lowest-z̄ sample corresponds to the 2MRS galaxies with
|b| < 8◦ cut out; the middle sample to Ks < 12.5 with |b| < 20◦ cut out in the 2MASS XSC; the
highest-z̄ sample to Ks < 13.5 with |b| < 20◦ again cut out in the 2MASS XSC. Cosmic variance
is shown in the most pessimistic |b| < 20◦ case for all of the samples. Bottom: We again compare
the ΛCDM value for Cth

1 with the expected distribution of Cth
1 given the observed value, in this

case for the Ks < 12.5 sample. Regardless of which way we compare measurements with theory,
we have demonstrated sound agreement between theory and observation for all three subsamples
of 2MASS.
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as part of computations of the entire power spectrum. In particular, Frith et al.

(2005a) give C1 ≈ 0.004 for both Ks < 13.5 and Ks < 12.5. This value converts to

A ≈ 0.054; cf. our values of A = 0.088 ± 0.003 and A = 0.081 ± 0.006 (68 percent

confidence) for Ks < 13.5 and Ks < 12.5. While the Frith et al. value would be

just as unremarkable as ours in comparisons with theory (both our value and Frith

et al.’s are within the two-sigma cosmic-variance error bars), the discrepancy in

observational results is noteworthy. The Frith, Outram, and Shanks result is based

on a harmonic-space estimator applied to all �. Given that our estimator for the

dipole amplitude is in real space and provides a very natural way to account for both

sky cut and systematic effects, we put considerable faith in the result given here.

4.3.4 Dipole Direction as a Function of Redshift/Photometric Cuts

In Fig. 4.14, we present the results for the dipole direction in both the Ks < 13.5

and more conservative Ks < 12.5 cases. Once again, dipole amplitudes are on the

order 10−1 while the kinematic dipole is expected to be on the order 10−3, so no

particular agreement with the direction of the CMB dipole is expected. We do expect

the Ks < 12.5 sample to give a direction relatively close to that of the 2MRS dipole,

given the overlap in the samples, and Ks < 13.5 to give a result close to Ks < 12.5.

In fact, we would regard it as anomalous if the results were not all consistent with

one another, if the samples were genuinely sampling the same population – larger

samples would simply have smaller error bars than smaller samples. However, the

populations being sampled are different, given that the structure associated with

z̄ = 0.028, 0.050, and 0.074 are quite distinct from one another. So even internal

inconsistencies (between different values of z̄) are tolerable, though still in need of

some explanation.

We find in practice that the direction of the Ks < 13.5 dipole is actually quite
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Figure 4.14: (1)Results for the dipole direction for the 2MASS XSC, Ks < 13.5, with a cut elim-
inating |b| < 20◦, and applying the SFD map as a systematic template. (2) The same, but with
Ks < 12.5. (3) Confidence intervals to go with (1) and (2), with the CMB kinematic dipole direction
indicated.
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substantially (> 3σ) inconsistent with the direction of the Ks < 12.5 dipole. One

possible explanation involves extinction corrections: if we do not extinction-correct

the magnitudes in the 2MASS XSC, we preferentially throw away galaxies near the

Galactic plane, since those are the ones that would more easily make the cuts (because

they are actually intrinsically brighter than they appear given the presence of dust)

if we were to extinction-correct. However, we find, as discussed in Sec. 4.3.1, that

explicitly extinction-correcting the magnitudes has the same effect as applying the

SFD template to the uncorrected magnitudes: that is, it changes the direction very

little, and in fact pulls both the Ks < 13.5 and Ks < 12.5 results slightly higher in l

and slightly lower in b, though these changes are unimportant.

A better explanation is the straightforward conclusion that the Ks < 13.5 and

Ks < 12.5 samples really are sampling substantially different populations, even

though the latter is a (small; roughly 1/5 the size) subset of the former. This is

confirmed in the patterns observed in the previous section where we progressively

excise the supergalactic plane and poles. As more and more of the SGP is excised

in the Ks < 13.5 sample, the best-fit l decreases and the best-fit b increases, moving

closer to the Ks < 12.5 full-sample l and b. This is a good indication that Ks < 13.5

simply picks up more and different structure associated with the SGP than does the

Ks < 12.5 sample.

4.4 Conclusions From Subsets of 2MASS

We draw the basic conclusion that there are no anomalous results in applying tests

of dipole amplitude and direction to subsets of the 2MASS dataset and comparing

these results with theoretical predictions.



CHAPTER V

Dipoles in BATSE/CGRO and NVSS

We now proceed to more critical tests using higher-redshift objects that might

begin to probe the kinematic dipole, as these objects exist at scales on which the

local-structure dipole should have become comparable to, or even smaller than, the

kinematic dipole.

5.1 Introduction

We begin this chapter by considering surveys that detect very high-energy photons

(X-ray and gamma-ray), and then address the opposite end of the spectrum (radio)

in the second half of the chapter.

First, a brief note on X-ray data. Flux-weighted dipoles have been previously

calculated using the soft X-ray band (< 2 keV) data from ROSAT and the hard X-

ray (2-10 keV) background data as observed by HEAO1-A2. For example, Plionis and

Georgantopoulos (1999) use the 1.5 keV (∼ 0.8 nm) ROSAT All-Sky Survey (RASS)

data to calculate a flux-weighted dipole, and Scharf et al. (2000) perform a similar

analysis on HEAO1-A2. Contamination is a major issue for both analyses. At the

time of publication of these studies, only roughly three-quarters of the unresolved

X-ray flux in the soft and hard bands had been accounted for (by extrapolation

of objects resolved in deep fields) (Scharf et al. (2000)), and theoretical modeling

84
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of populations contributing to the unresolved flux (AGNs, starburst galaxies, hot

IGM in rich clusters, etc.) remained difficult. In the case of hard X-rays, Scharf

et al. argue that at least a third of the structure in the data may be Galactic in

origin (associated especially with the bulge), and soft X-rays are even more strongly

contaminated by Galactic emission. Treyer et al. (1998) point out that in the soft

band, Galactic emission is present as a contaminant at all scales; the hard band is

better, but Treyer et al. still rely on the Galactic hard-band emission model of Iwan

et al. (1982) to predict that for Galactic latitude > 20◦, the variations in flux due to

Galactic emission are less than 3 percent.

All told, it is very difficult to remove the foreground in X-ray all-sky surveys

successfully without some relatively uncertain modeling, without fairly serious sus-

picion of contamination, and without removing a good deal of the background too

(especially in the soft band; Plionis and Georgantopoulos (1999) estimate that Virgo

contributes as much as 20 percent to the dipole amplitude in RASS). Theoretical

predictions would also be difficult to make without a well-understood redshift distri-

bution, especially given that the populations contributing to the X-ray background

are not especially well-modeled. Hence we stay away from attempting to perform

X-ray analyses here.

Some authors have searched for a dipole in the XRB to the extent that it is

possible to do so. The results that Scharf et al. find in hard X-rays for the flux-

weighted dipole basically align with theoretical predictions of what they refer to as

the Compton-Getting effect (another name for the kinematic dipole, following a pa-

per by Compton and Getting (1935) on the effect on cosmic-ray intensity of Earth’s

motion through the Milky Way). More recently, Boughn et al. (2002) analyzed the

same (HEAO1-A2) dataset and found a limit (95 percent confidence) on the ampli-
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tude of any intrinsic dipole at 5× 10−3. However, given the difficulty of definitively

separating extragalactic from foreground/Galactic emission in this dataset, and other

problems already noted, significant uncertainty attends any analysis in X-rays, so we

note all these results without making heavy use of them in the remainder of this

thesis. Similarly, other populations of objects detected at the very high-energy end

of the spectrum, including blazars and clusters of galaxies detected with gamma-ray

satellites (see, e.g., Ando et al. (2007)), may be good targets for dipole searches in the

long term, especially once their bias is better-understood and future surveys provide

better statistics for the given target population; but we do not pursue those here.

For analysis of a 2D-projected dipole (i.e., not flux-weighted; see Chapter 2) in

very high-energy surveys, we turn instead to gamma-ray bursts. GRBs are the most

powerful explosions known in the universe, though their exact nature and progenitor

objects remain under some debate, and their redshifts are difficult to measure since

GRB observations are not well-localized (see Fig. 5.1) and redshifts can only be

measured from their afterglows, which must be matched up with the position of the

original GRB, a highly nontrivial task given the error bars on the position of a typical

GRB. A review of previous research on the dipole in the GRB distribution, as well

as presentation of results using the formalism outlined in Chapter 3 and applied to

the BATSE catalog, is presented in Sec. 5.2.

In Sec. 5.3, we move to the low-frequency end of the spectrum and present results

from the NRAO VLA Sky Survey (NVSS), a radio survey with nearly 1.8 million

extragalactic sources (Condon et al. (1998)). This survey presents an excellent op-

portunity to actually test for the presence of the kinematic dipole and possibly the

intrinsic dipole in large-scale structure. NVSS has more potentially non-negligible

systematics to control for than the other surveys we use, but it also has higher



87

potential payoff because of its combination of depth and sky coverage.

5.2 Dipole in BATSE

5.2.1 Previous Work on the Isotropy of GRBs

Up through the mid-1990s, there was a long history of assessing the isotropy of

GRBs in an attempt to infer whether they were cosmological or Galactic sources

(or a combination thereof). For example, Maoz (1993) argued in 1993 that gamma-

ray bursts could be shown to exist in an extended Galactic halo, some 130-270

kpc away from Earth, by detecting slight but well-defined deviations from spherical

symmetry predicted for such a halo population. While his analysis did indeed suggest

that GRBs were nearby intergalactic objects, he argued that comparison with more

specific models would be necessary before considering the case closed.

In a similar spirit, Briggs et al. (1995) argued persuasively that the population

of GRBs could not be Galactic, based on their observed isotropy. This study found

that the Galactic dipole and quadrupole moments (calculated very straightforwardly

as �cos θ� and
�
sin2

b− 1/3
�
) did not differ significantly from those predicted for

an isotropic distribution. The majority of GRB models that assumed GRBs are

a Galactic population were found to be in > 2σ tension with the detected dipole

and quadrupole moments, and hence the conclusion of this research was that GRBs

are more isotropic than observed Galactic populations, suggesting either a nearby

intergalactic or, more likely, cosmological source.

Scharf et al. (1995) compute a fluence-weighted dipole (where fluence is flux in-

tegrated over the timespan of the burst) in analogy to the flux-weighted dipoles

discussed in previous chapters of this thesis. Combining fluence-weighted dipole

information with straightforward 2D-projected dipole measurements (i.e., including

photon count information) better distinguishes a velocity dipole (due, as usual, to the
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Doppler effect and relativistic aberration) from other possible sources of anisotropy.

This kind of test is supplementary to the tests we perform here.

The current consensus that GRBs are cosmological is based not only on the con-

siderations discussed above and the absence of even a weak band corresponding to

the Milky Way in the GRB distribution (Tegmark et al. (1995)), but also (and espe-

cially) on the observation of optical, X-ray, and radio counterparts to GRBs that are

clearly extragalactic (e.g., Paciesas et al. (1999); van Paradijs et al. (1997); Fruchter

et al. (1999); Metzger et al. (1997)). Given the extragalactic origins of GRBs, we

can understand the dipole that should exist in GRBs as being due to the same ef-

fects that give rise to a dipole in other sources we have analyzed. As far back as

the mid-1990s, Maoz (1994) predicted the dipole in the clustering of GRBs, com-

bining the effects of relativistic aberration and the Doppler effect. These estimates

are somewhat uncertain, but we too are unsure how precisely GRBs trace large-scale

structure (e.g., if they can be described as a single population with a single bias,

and so forth). Maoz finds that the amplitude of this (kinematic) dipole is of order

A ∼ 10−2 (to within uncertainties of a factor of two), which is still an order of mag-

nitude larger than the CMB dipole, but much closer than the sources we dealt with

in the previous chapter. Maoz estimated that a large (of order 104) sample of GRBs

would be necessary to detect the predicted dipole, and given that current catalogs

offer only on the order of 103 bursts, we do not expect an unequivocal detection.

That said, we nevertheless run our tests, given that useful constraints can be placed

on the maximum possible dipole amplitude even if we cannot confidently detect a

dipole in currently available GRB catalogs. We will discuss Maoz’s estimates further

when we discuss observational results in Sec. 5.2.

We perform our tests on GRBs in the BATSE catalog, data taken by the Compton
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Gamma-Ray Observatory. The BATSE (Burst and Transient Source Experiment)

instrument onboard CGRO detected gamma-ray bursts within the nominal range of

50 to 300 keV. Other GRB datasets are available, including those from SWIFT and

Fermi (known previously as GLAST), but we use the BATSE catalog because it has

the most sources for an all-sky survey.

The most recent published catalog of GRBs from BATSE is the 4B catalog, which

has 1637 sources and includes all confirmed GRBs from the start of the mission

through August 1996. There is also a “current” catalog with over 2700 sources,

but this is unpublished and subject to change. In the 4B catalog, there are several

complicating details that are worth noting in regard to what bursts make it into the

catalog and which do not.

BATSE employed scintillators sensitive to gamma rays from ∼ 25 to 2000 keV. A

burst triggered the instrument when gamma-ray count rates exceeded some minimum

threshold relative to background in two or more of the eight detector modules, within

some energy range (Paciesas et al. (1999)). Nominally, that energy range was 50-300

keV, but on the order of 30 percent of BATSE’s observing time was spent with one

of several trigger energy ranges different from this. In addition, while the minimum

detection threshold in count rates relative to background was 5.5 sigma as a baseline,

this value also changed many times over the course of the experiment, and was not

always the same for different time intervals (BATSE tested count rates at 64, 256,

and 1024 ms intervals).

A different trigger energy range essentially represents a distinct burst experiment,

and a different detection threshold also changes the parameters of the experiment in

an important way. However, we argue that the time variation in BATSE’s ability to

detect gamma-ray bursts is not sufficiently great to affect our results on the dipole,
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especially given the lack of statistics for the BATSE sample of 1637 bursts. Kommers

et al. (1997) performed a search for gamma-ray bursts and other gamma-ray transient

phenomena with peak fluxes below (by a factor of ∼ 2) the flux necessary to count as

a detection, and also with energies outside the nominal 50-300 keV. They found that

the direction and intensity distributions of 91 likely GRB candidates not included

in the final BATSE catalog imply that biases associated with the trigger mechanism

do not significantly affect the completeness of the catalog. In addition to this result,

there is no reason to expect that changes in experimental parameters would have

a particular effect on the dipole quantity we investigate here. We note especially

that changing trigger criteria and energy ranges do not appreciably increase the

chances that GRBs will be confused with Galactic sources (e.g., soft gamma repeaters

(SGRs)), so contamination remains minimal; and any changes in trigger criteria apply

uniformly over the entire sky, so there is no obvious reason why this would induce a

dipole pattern. We therefore proceed to analyze the full catalog without accounting

for these changes.

However, one other experimental parameter is important for our dipole analysis:

sky exposure in BATSE varies as a function of declination (BATSE spent different

amounts of time looking at different declinations). We create a template out of

the exposure function (see Fig. 5.1) and use this template as one of the systematic

templates ti in the dipole formalism outlined in Chapter 3. This corresponds to

weighting pixels according to how much time the satellite spent observing a given

area of the sky: compare, for example, Scharf et al. (1995). The choices we make

here, to ignore changes in trigger criteria but take the exposure function into account,

corresponds to the choices made in the paper by Tegmark et al. (1995) calculating

the angular power spectrum of the BATSE 3B catalog, which found no evidence of
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deviations from isotropy on any angular scale. Our present tests can be regarded

as updates (since we use the 4B catalog, which contains > 500 more bursts than

the 3B) of Tegmark’s, with focus on the dipole using a better estimator that more

naturally incorporates sky cuts and systematic templates. (Note that Tegmark et

al. also impose a weighted averaging scheme in harmonic space to account for the

very large position errors associated with GRBs (on the order of degrees, orders

of magnitude larger than typical position errors associated with galaxies). This is

unnecessary in our case given that the dipole probes scales much larger than the

uncertainties in GRB positions.)

The redshift selection function for GRBs is still only poorly understood, though

better statistics are consistently being built up. GRBs come from even higher red-

shifts on average than NVSS sources (see Sec. 5.3) (e.g., Xiao and Schaefer (2009)),

however, so we can confidently say that regardless of the precise distribution, the

local-structure dipole will be subdominant in comparison with the kinematic dipole

(given that it is already subdominant for NVSS sources), and so we consider only

the kinematic dipole as a theoretical expectation below.

5.2.2 Systematic Checks and Dipole Amplitude

The positions of GRBs detected by BATSE are shown in Fig. 5.1. Again, they

are not very well-localized; the positions typically have error bars on the order of

degrees. The GRBs do not appear to cluster in any particular way by eye, but we

apply our usual tests to see whether this holds up rigorously.

In considering what systematic templates to put in place, maps of Galactic fore-

grounds are unnecessary. In particular, inclusion of the SFD dust template is un-

necessary since gamma rays are highly penetrating and not subject to appreciable

dust extinction. We have explicitly verified that the difference between the results
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Figure 5.1: Top: GRB positions as recorded by BATSE, with error bars indicated as light cir-
cles/ovals around the GRBs; pixellized at HEALPix NSIDE=64 (dynamic range limited to 2 even
though a few pixels have 3 counts in them). Bottom: The BATSE exposure function, which varies
with declination, in Galactic coordinates.
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including SFD template and not including SFD template is completely negligible.

In principle, there is the possibility of confusion with soft gamma repeaters (SGRs)

or other sources of gamma rays (pulsars, terrestrial gamma-ray flashes, black holes,

etc.). This is highly unlikely given that GRBs are easy to distinguish from other

gamma-ray sources based on spectral and time-domain data. However, any fore-

ground objects that might contaminate a pure GRB sample are expected to vary

with Galactic latitude, and since there is no reason not to do so, we run our usual

test of progressively excising the Galactic plane. However, we expect no issues with

astrophysical foregrounds given the relatively clean nature of GRBs as a source; in

fact, no sky cut at all should be necessary.

In all tests below, the systematic template we do use, as alluded to above, is the

BATSE exposure function, which varies significantly with declination, mimicking

(partially) a dipole (see Fig. 5.1). This is a very important template to include,

as some of the results presented below change both quantitatively and qualitatively

(e.g., statements we would make about the supergalactic plane are different) if this

template is not taken into account.

Given that cosmic variance should be much smaller on these scales than it was for

2MASS, we expect when we vary Galactic b that all results will be consistent with all

other results within the measurement error bars, regardless of sky cut. Results for

varying Galactic b are given in Table A.7. From the corresponding figure, Fig. 5.2,

it is clear that all results are indeed consistent with all other results within the

measurement error bars. As expected, there is no detectable signal that varies with

Galactic latitude.

We now proceed to run the usual test cutting the supergalactic plane. It should

be noted that for some cuts, a dipole is detected at marginal significance in this
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Figure 5.2: Dipole amplitude in BATSE as a function of bcut. Note that all measurements of the
dipole amplitude for different Galactic cuts are mutually consistent, and are consistent with zero
as well. Measurement errors in the form of 68 and 95 percent confidence intervals are shown; they
tend to grow (naturally) with the aggressiveness of the cut.

series of tests if the BATSE exposure function is not taken into account. Any kind of

detection of the supergalactic plane in gamma-ray bursts would be very surprising

given the complete lack of any association between GRBs and the local structure

represented by the SGP (which goes out to something on the order of z ∼ 0.02

or 0.03, depending on estimates; see Lahav et al. (2000)), but the result turns null

when we account for the exposure function. See Tables A.8 and especially 5.1 for

the results of cutting in supergalactic latitude.

Table 5.1: Key patterns in cutting in supergalactic coordinates, for BATSE gamma-ray bursts.

|SGB| ≥ fsky N fsources
fsources
fsky

Apeak |SGB| < fsky N fsources
fsources
fsky

Apeak

0.0 1.00 1637 1.00 1.00 0.00

2.0 0.97 1577 0.96 1.00 0.00 74.82 0.97 1582 0.97 1.00 0.00

5.0 0.91 1495 0.91 1.00 0.05 65.90 0.91 1504 0.92 1.01 0.00

10.0 0.83 1333 0.81 0.99 0.06 55.73 0.83 1362 0.83 1.01 0.00

20.0 0.66 1060 0.65 0.98 0.00 41.15 0.66 1122 0.69 1.04 0.00

We find another null result, which is good considering that detection of the su-

pergalactic plane in GRB data would be a highly unusual find, and would almost
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Figure 5.3: Likelihood function for dipole direction, marginalizing over amplitude A, for the entire
BATSE catalogue of 1637 GRBs, no cut in Galactic b, with the BATSE exposure function used as
a systematic template. There are essentially no constraints on the dipole direction in BATSE data.

certainly indicate something problematic about our analysis. Notice that the direc-

tion of the dipole jumps around a good deal as a function of where we place the cut,

which is no surprise given the looseness of constraints on dipole direction from the

BATSE data (see Sec. 5.2.3).

5.2.3 Dipole Direction and Conclusion

The still-relatively-small number of gamma-ray bursts (1637) in the BATSE cata-

log places only the loosest of constraints on the direction of the dipole. See Fig. 5.3.

All but a very tiny patch of sky (centered around (l, b) = (5◦, 20◦), and extend-

ing a little under 10 degrees in radius) is within the 3-sigma confidence interval for

the direction of the dipole, and the CMB kinematic dipole direction (which is an

appropriate direction of comparison in this case, since the kinematic dipole should

dominate contributions to the dipole for GRBs) is only marginally outside the 1-

sigma confidence interval.

In all, the BATSE data places useful constraints on the dipole amplitude, but
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not direction, in GRB data. Our results, while they are not yet strong enough to

allow for the detection of the expected kinematic dipole, do place constraints on

our ability to distinguish BATSE GRBs as a tracer of large-scale structure, and also

constrain any intrinsic dipole in the large-scale structure that would manifest itself

in the distribution of GRBs on our sky: at 95 percent confidence, A < 0.105 for

the intrinsic dipole. We have also, in effect, performed several sanity checks on the

BATSE dataset, showing that the supergalactic plane is undetectable (as expected)

using our analysis, that the Galaxy does not show up at all in the data (which is in

line with previous studies of the GRB distribution), and that the BATSE exposure

map must be taken into account in order for these tests not to turn up anomalous.

We would of course still like to see constraints on the intrinsic dipole much better

than those available from GRBs, those constraints being on the order of 10−1. For

this, we turn to the radio survey NVSS.

5.3 Dipole in NVSS

For a long time, it was assumed that the distribution of radio sources was, like that

of GRBs, indistinguishable from isotropic and unclustered (e.g., Webster (1976)). In

fact, even if the distribution of radio sources was not intrinsically isotropic, radio

sources have a large range of intrinsic luminosities, and so structures would nat-

urally wash out when sources were projected onto the sky and radial information

was removed (Baleisis et al. (1998)). However, recent results, especially using the

NRAO VLA Sky Survey (NVSS), have detected clustering in radio sources, and in

particular, a dipole.
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5.3.1 Previous Work

Several attempts at calculating the dipole in radio sources have been made in

recent years.

Baleisis et al. (1998) present theoretical predictions and observational results for

the dipole in the Green Bank 1987 and Parkes-MIT-NRAO (PMN) catalogs. The

combination of these catalogs gives ∼ 40, 000 sources with flux > 50 mJy at 4.85

GHz. They find that the magnitude of the dipole is an order of magnitude larger

than expected from the contributions of large-scale structure (analogous to our local-

structure dipole) and the kinematic dipole. However, they are plagued by several

systematic errors. First, they find that the two catalogs they used have a mismatch in

flux. While they correct for this, it is hard to do so with high precision and confidence.

They also note that the radio sources in their catalogs are likely drawn from multiple

populations, though this is true of any analysis that uses radio sources, and is not a

crippling problem if the redshift distribution is sufficiently well-understood.

Blake and Wall (2002) attempt to measure the kinematic dipole alone in NVSS

(see also Blake et al. (2004) for analysis of the rest of the angular power spectrum

in NVSS). They make efforts to remove the contribution of what they refer to as

the “clustering dipole,” the dipole that when flux-weighted gives a measure of the

acceleration of the Local Group, and when unweighted matches up with our local-

structure dipole. They claim that the clustering dipole should die away by z < 0.03

(based on results from the Rowan-Robinson et al. (2000) analysis of the IRAS PSCz

dipole, though the results of Erdogdu et al. (2006) call this convergence into question)

and contribute roughly A ∼ 2 × 10−3 to the total amplitude of the total dipole, if

it is not removed as they attempt to do. (Note that we have converted from their

peak-to-trough “amplitude” δ to our peak-to-zero amplitude A).
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Blake and Wall measure the remaining dipole – which would ideally be a kinematic

dipole only, but which will in reality take contributions not only from local structure

beyond what IRAS observed, but also from more distant large-scale structure, as

we show below – by expanding the angular distribution of sources in spherical har-

monics and measuring the harmonic coefficients a�,m for the dipole, quadrupole, and

octopole, including all m values. Inclusion of higher harmonics is necessary because

of the lack of full-sky coverage. They find that a dipole model (with the quadrupole

and octopole that would be expected of an initially pure dipole on a sky that gets

cut) is a good fit by χ
2, and find good agreement with the direction of the CMB

velocity dipole (which they cite as θ = 97.2± 0.1◦,φ = 168.0± 0.1◦, which converts

to (l, b) = 264.3◦, 48.1◦).

We take the Blake and Wall results as the most reliable previous result, and

compare our results to theirs. However, we do have reason to expect that our estimate

of the dipole will be more reliable than theirs; in particular, we do a great deal more

to take systematic effects into account than they do in their analysis, using our real-

space estimator. We also do not attempt to remove local sources as they do, since our

objective is to compare our observational results to the full dipole signal expected

from theory, which includes both a local-structure and a kinematic contribution.

Since we are not flux-weighting, local sources do not contribute preferentially to the

dipole, and so we can afford to leave them in the analysis.

Singal (2011) has performed the most recent analysis in this vein. He attempts

to address only the kinematic dipole, creating maps of randomly distributed radio

sources, then applying a correction to the random map in accord with the effects

of relativistic aberration and the Doppler effect due to motion with respect to the

rest frame of the radio sources (i.e., the frame in which the sources are distributed
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isotropically), and doing a best-fit analysis comparing these maps with the actual

distribution of NVSS sources. His results are suspicious, as he finds truly exorbitant

speeds for the Local Group (on the order of 1700 km/s). This becomes more un-

derstandable given that the way in which he accounts for the sky cut, particularly

the hole in NVSS at declination < 40◦, is suspect (he simply cuts out dec > 40◦ as

well in order to counterbalance the hole at < 40◦). Also, his method of detecting

the dipole does not account for coupling between the dipole and other multipoles on

the cut sky, and also neglects any contribution from the local-structure dipole to the

results.

5.3.2 Theoretical Predictions

For NVSS, we must be careful to include in our theoretical predictions the con-

tributions of not only the local-structure dipole, but also the kinematic dipole. It

is no longer the case, as it was for 2MASS and 2MRS, that the kinematic dipole is

swamped by two orders of magnitude by the local-structure dipole. Rather, the two

are on the same order of magnitude, as also recognized by Baleisis et al. (1998) and

Blake and Wall (2002).

The local-structure contribution is calculated in the same way as always. This

part of the prediction will vary somewhat depending on what redshift distribution

n(z) we use. Dunlop and Peacock (1990) derived n(z) for several different flux cutoffs,

though the results for the dipole amplitude and the redshift distribution itself are

somewhat robust to changes in the flux cutoff since radio galaxies display such a

wide range of intrinsic luminosities (Baleisis et al. (1998); Blake et al. (2004) note

specifically that for the NVSS frequency of 1.4 GHz, the clustering of radio galaxies

is not strongly dependent on flux for fluxes between 3 mJy and 50 mJy). The

redshift distribution developed by Ho et al. (2008) as a best model for NVSS avoids
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several drawbacks of the Dunlop and Peacock distribution, especially the assumption

that bias is redshift-independent and the heavy reliance on the functional form of

the luminosity function rather than data in constraining the redshift distribution.

However, without repeating Ho et al.’s rather sophisticated analysis, we are left

unable to calculate the redshift distribution for flux cuts different than the 2.5 mJy

cut that they use.

Still, remembering that the predictions are not strongly tied to the flux cutoff, we

follow Ho et al. in modeling the NVSS redshift distribution as follows:

(5.1) W (z) =
α
α+1

z
α+1
∗ Γ(α)

beffz
α
e
−αz/z∗

where the function W (z) = b(z)n(z), where b(z) is the bias as a function of redshift

and n(z) (Π(z) in Ho et al.) is the probability distribution for the galaxy redshift.

Ho et al. give beff = 1.98, z∗ = 0.79, and α = 1.18 as best-fit parameters. Using all of

this, we find that for this distribution, the contribution of the local-structure dipole

to the total dipole in NVSS is A = 9.8× 10−4 = 0.98× 10−3.

Meanwhile, the kinematic dipole may be calculated as follows. We recall from

chapter 2 (see equations Eq. (2.17) ff.) that for a large-scale-structure survey, rela-

tivistic aberration and the Doppler effect modify the observed angular number den-

sity of galaxies n(θ) in the following way:

(5.2) n(θ) = n̄

�
1 + 2β̃ cosα

�

where x, p, and β̃ are explained in chapter 2. Since we could also write

(5.3) n(θ) = n̄ [1 + A cosα]

where the amplitude of the dipole is A (cf. the first equation of chapter 3), we match

up the equations and use expressions from chapter 2 to write

(5.4) A = 2β̃ = 2[1 + 1.25x(1− p)]β.
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where the first term in brackets essentially represents the contribution of relativistic

aberration and the second term represents the contribution of the Doppler effect.

From the CMB, β = v/c = 1.23×10−3. Meanwhile, x and p (exponents in the power

laws for the intrinsic number counts of galaxies as a function of limiting magnitude,

and for the intrinsic flux density of a galaxy as a function of frequency, respectively;

see Sec. 2.2.3) are not known precisely, but can be estimated.

This expression is equivalent to that used by Blake and Wall (2002) (converting

from their δ to our A = δ/2):

(5.5) A = [2 + x(1 + α)] β

with the substitution in Eq. (5.4) x → 2x/5 and p → −α. (The latter substitution

is a straightforward matter of notation; the first has to do with switching from

magnitudes to fluxes.1) We follow Blake and Wall (for NVSS) and also Baleisis et

al. (who were not working with NVSS, but who did work with radio catalogs) and

take x ≈ 1 and α ≈ 0.75, which yields finally

(5.6) A ≈ 4.6× 10−3
.

This is the contribution of the kinematic dipole to the total dipole. Adding this to

the contribution from the local-structure dipole, we expect the total dipole to have

amplitude A = (4.6 + 1.0) × 10−3 = 5.6 × 10−3. If we find a result that is outside

cosmic-variance errors from this value, and this is not a systematic effect, we might

invoke the presence of an intrinsic dipole as an explanation.
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Figure 5.4: (1) All sources in NVSS, in Galactic coordinates. Note the “hole” in the data for
declinations less than 40 degrees, and the declination-dependent striping (visible in this coordinate
system as a series of “wavy” stripes going outward from the pattern set by the declination-dependent
hole in the data). (2) Sources with flux greater than 15 mJy. The spurious power goes largely away
with this flux cut, and can no longer be seen by eye. (3) The distribution of bright (> 2500 mJy)
sources in NVSS. Pixels that are within 0.6 degrees of a bright source are set to zero in this map,
while all other pixels have a value of 1.0. (Dynamic ranges are restricted in both of the first two
maps so as to better show structure.)

5.3.3 Present Work

We turn first to examining the systematics that need to be accounted for in the

NVSS data. See Fig. 5.4 for reference.

First, the survey did not observe below a declination of 40 degrees. For our

purposes, the pixellization around this “hole” in declination is especially important

to pay attention to, as we find that a sky cut for pixels with centers at dec < 40◦

gives vastly different results for the dipole amplitude and direction than a cut at

dec < 37◦ at low-resolution pixellization (NSIDE=16). We work at much higher
1
In our original notation, which follows Itoh et al. (2010), the number of galaxies detected by the survey is

proportional to 10
xmlim , where mlim is the limiting magnitude of the survey. In Blake and Wall (2002), the number

of galaxies is proportional to S−x�
, where S is flux, and we have added a prime to distinguish variables named x.

Equating S−x�
with 10

xmlim (up to a proportionality constant) and using the fact that S ∝ 10
−2mlim/5

, we have

that 2mlimx�/5 = xmlim, or x = 2x�/5. Blake and Wall give x� ≈ 1.



103

resolution (NSIDE=128), where the effect is not as strong, but we still cut all pixels

with dec < 37◦ just to be safe. We choose that particular number following Smith

and Huterer (2010), and also because this appears to be a good conservative choice

if we want to completely avoid problems associated with the hole in declination.

Second, faint sources very close to bright sources cannot be reliably detected. We

therefore mask out a 0.6◦ radius around all sources brighter than 2500 mJy, following

Ho et al. (2008). Blake and Wall do not perform this same masking, although they

do remove known local sources.

Third, we use the Haslam map of 408 MHz Galactic emission as a systematic

template, as discussed in Chapter 3.

Fourth, there is declination-dependent “striping” in the maps, which appears

even by eye if no flux cut is imposed. This problem stems from the fact that the

NVSS observations were made using two different configurations of the VLA, the

D configuration for observations between declinations of −10◦ and +78◦, and the

DnC configuration for declinations between −40◦ and −10◦, and above +78◦. The

striping is readily apparent by eye for the full catalog, but is invisible by eye and

largely absent even in more rigorous tests for fluxes above ∼ 15 mJy (see Blake and

Wall (2002)). We therefore begin by examining the stability of our dipole results as

a function of flux cut.

We find that neither the direction nor the amplitude of the dipole is stable for

different flux cuts. This is as expected for fluxes less than 15 mJy, since the striping

artifact gradually dies away as the lower flux threshold is increased from zero up to

15 mJy. But for fluxes above 15 mJy, the fact that the dipole remains unstable is

a problem. Increases in the amplitude, such as those seen in Table A.9, might be

due to the influence of the local-structure dipole, which could come into play more
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strongly for these brighter (and therefore at least somewhat more local) sources.

Fluctuations in the direction such as those in Table A.9 (the best-fit l ranges from

219.1 to 234.3, and the best-fit b ranges from 11.9 down to -0.2) could also be the

result of the local-structure dipole, though this seems unlikely since the b coordinate

in particular moves away from the direction of the local-structure dipole that we

have seen in previous tests using 2MASS as we go to brighter and brighter sources

(higher and higher flux thresholds) in NVSS.

Rather than trusting the results of Table A.9, we turn instead to a more ag-

gressive cut in declination, which makes use of only one subset of the NVSS maps,

corresponding to the D configuration of the VLA: that is, we remove all portions of

the sky with declination less than -10◦ or greater than 78◦. These results show a

great deal more stability in the direction of the dipole for flux cuts above 5 mJy, and

certainly above 15 mJy. See Table A.10 for complete results; visually, the results are

plotted and compared to those of Blake and Wall in Fig. 5.5.

We verify in Table A.11 that the results are stable as a function of cut in Galactic

b for the fixed case of a flux cut at 25 mJy. This provides our usual test for contam-

ination that varies as a function of Galactic latitude, and helps justify our choice of

|b| < 15◦ for our cut. Again, though the observational results are not consistent with

one another within measurement error bars, the very aggressive sky cuts used here

mean small fsky and thus large cosmic variance.

We regard the result with a flux cut at 15 mJy and |b| < 15◦ as paradigmatic,

since it provides the best compromise between a large number of sources (getting

more sources requires getting into flux ranges where the results are less trustworthy)

and having stable results for the dipole (instability in the dipole amplitude for more

aggressive flux cuts likely being due to the presence of the local-structure dipole,
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which would tend to be more strongly present for brighter sources). We therefore

compute cuts around the supergalactic plane (see Table A.12; the results are ex-

tremely stable this time, with the ratio fsky/fsources changing by less than 1 percent

in all but one of the SGB cuts we study) with this result as the fiducial, and com-

pute our likelihood distribution P (Cth

1
|Cobs

1
) based off this case. We also calculate

the direction of the dipole for this same case, and compare with the CMB kinematic

dipole. Results appear in Fig. 5.6. The final plot of this chapter is Fig. 5.7, which

depicts the different cuts used in various portions of the analysis for NVSS.

We find that for an observed dipole amplitude of A = 0.0272, the theoretical value

of A = 0.0056 is not consistent with observations, at well over 99 percent confidence.

The reasonable implication is that the dipole we are measuring in the NVSS map

is partially spurious. There are several possible sources of this spurious signal: the

two most likely are that the declination-dependent striping may not be wholly taken

care of in the maps we test, even with our aggressive flux cuts (observational error);

or that local sources contribute more strongly to the local-structure dipole than our

theoretical modeling allowed for, thus lifting the local-structure dipole’s contribution

to the order of 10−2 rather than 10−3 (theoretical error). The latter seems especially

likely given that the theoretical prediction for the dipole amplitude was computed

using a flux cut of 2.5 mJy, while the observational results were computed using a flux

cut of 15.0 mJy. Although the theoretical predictions are ideally fairly robust to flux

cuts, this is an order-of-magnitude difference in flux and therefore likely to change the

theoretical predictions at least somewhat, adding back in the local-structure dipole

that we expected to be subdominant. Unfortunately, our observational results are

unreliable when we use the same flux cut as assumed in theoretical predictions, which

is probably due to the peculiar nature of the NVSS maps, with their declination-
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Figure 5.5: Amplitude as a function of flux cut, with error bars. We show both our results and
those from Blake and Wall (2002). We include the Haslam et al. map of 408 MHz Galactic emission
as a systematics template, and remove |b| < 15◦ and dec greater than 78 degrees/less than -10
degrees. We suspect that the upward trend in the results is due to the presence of local structure
in the NVSS map we test, since local structures preferentially have higher fluxes. Blake and Wall
cut out this local structure in an effort to search for the kinematic dipole only, so it is expected
that our results differ from theirs, and give a higher signal. Note also that our cut in declination
is different than that of Blake and Wall; this is in an effort to remove all artifacts stemming from
the declination-dependent striping of NVSS corresponding to two different configurations of the
VLA in which NVSS data was acquired. The apparent agreement between theoretical predictions
and the Blake and Wall results is partially misleading, in that the theoretical prediction includes
contributions from both the kinematic dipole and the local-structure dipole, but Blake and Wall
were attempting to measure only the kinematic dipole.

dependent striping.

All this said, it is clear that radio surveys of this sort are an excellent setting for

the tests we perform, and we look forward to maps from, e.g., LOFAR and SKA to

perform similar tests.
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Figure 5.6: (1) Likelihood of dipole direction in NVSS, marginalizing over amplitude. (2) The
CMB dipole direction is over 3 sigma away from the best-fit NVSS dipole direction. This is not a
problem, however, since the NVSS dipole amplitude A ∼ 10−2 still, and we expect the CMB dipole
to come into play only at the level of dipole amplitudes A ∼ 10−3. These plots all correspond to
the case in which sources have flux greater than 15 mJy, only declinations between −10◦ and 78◦

are kept, and |b| < 15◦ is cut.
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no cut; only bright sources cut

|b| < 15◦; |b| < 30◦

|SGB| < 5◦; |SGB| < 20◦

|SGB| > 65.90◦; |SGB| > 41.15◦

dec < −37◦; dec < −10◦ or dec > 78◦

same as immediately above but with |b| < 15◦ and |SGB| > 41.15◦ also cut

Figure 5.7: Various cuts employed in the analysis of the NVSS map. The background map is the
NVSS map with all the sources that have flux greater than 15 mJy.



CHAPTER VI

Summary and conclusions

In this dissertation, I have focused on what might be called the most straightfor-

ward tests of statistical isotropy in large-scale structure – looking for dipole signals

in existing surveys over a wide range of wavelengths. In turns out that, despite the

relative straightforwardness of the tests themselves (Chapter 3), the results must

be carefully interpreted, as dipole signals take contributions from several different

sources, some of which are theoretically quite well-understood (local-structure and

kinematic dipoles), and others of which may be much less well-understood (intrinsic

dipole) (Chapter 2). Observational results in infrared (2MRS/2MASS; Chapter 4),

gamma rays (CGRO/BATSE; Chapter 5), and radio (NVSS; Chapter 5) turn up

no seriously unexpected results, in either dipole amplitude or dipole direction. As

long as we are careful to take all sources of dipole signal into account in our the-

oretical modeling, the observational results are in line with theoretical predictions.

Rigorous tests of this sort, while they ultimately turn up no unexpected results,

are valuable tests of current cosmological models, as they add new wavebands in

which rigorous tests of statistical isotropy have been conducted, and ensure that

statistical isotropy is probed at different epochs, using different surveys with differ-

ent systematics. Combined with similar tests using maps of the cosmic microwave

109
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Table 6.1: Summary of most reliable single results from each survey. From left to right in the table
appear the name of the survey, the redshift range probed by the survey, the fraction of the sky
covered, the number of sources available in the most reliable subset of the dataset, the observed
dipole amplitude with error bar, the theoretical dipole amplitude (with cosmic-variance error bar
if applicable), the direction of the best-fit observed dipole in Galactic coordinates (l, b), and the
most important systematic effect (in some cases, out of several candidates) that must be taken into
account in attempting to detect a dipole in the dataset.

Survey Redshift fsky N Aobs Ath (l, b)obs

2MRS 0 < z < 0.1 0.86 41,834 0.118± 0.009 0.311± 0.122 (222.3◦, 38.3◦)

2MASS 0 < z � 0.2 0.65 386,008 0.088± 0.003 0.084± 0.033 (305.0◦, 4.5◦)

BATSE z̄ � 2 1.00 1637 < 0.056 (68% CL) [unc. prediction] [weak constraints]

NVSS z̄ ∼ 1 0.42 211,487 0.027± 0.005 0.0056 (214.5◦, 15.6◦)

background, these measurements impose interesting constraints on models of, and

physical processes during, cosmological inflation. We provide a summary of the most

basic results, which are elaborated upon heavily in the body of the thesis, in Table

6.1.

Other surveys may provide interesting candidates for these same kinds of tests in

the future. Sloan luminous red galaxies (LRGs) are a sufficiently clean dataset that

these tests may be applicable and workable there (see, e.g., Abate and Feldman (2012)

for a related test). Also, survey results that have yet to be released may be useful.

The Wide-field Infrared Survey Explorer (WISE), which produced a preliminary data

release in April 2011 and has full-survey results forthcoming now, covers more than 99

percent of the sky (Wright et al. (2010)). Tests performed on WISE would be similar

to tests performed on 2MASS, but would update 2MASS results with a more recent

and much deeper survey. As the X-ray background becomes better-understood, this

may also serve as an increasingly valuable test of statistical isotropy and setting in

which to attempt to detect dipole signals. The Dark Energy Survey (DES) will be

useful in probing the distribution of galaxies to high redshift, and will have sufficient

sky coverage to make the tests presented here useful. In microwaves, dipole signals
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might be detectable in maps of the gravitational lensing of the CMB, which provide

a very good tracer of mass. Finally, new radio surveys such as LOFAR and SKA

will probe orders of magnitude more sources down to far lower flux thresholds than

NVSS (see, e.g., Crawford (2009)), and would provide very valuable updates to NVSS

results on the dipole amplitude and direction. The kinematic dipole, both direction

and amplitude, should be unambiguously detected in these surveys.
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APPENDIX A

Tables

The tables provided here give useful information for reference should detailed ques-

tions arise about exact cutoffs for confidence intervals, peak amplitudes, numbers of

sources, best-fit dipole directions, etc.

Table A.1: Comparison of dipole parameters with different sky cuts, for 2MRS.
|b| ≥ Systematics NSIDE N Apeak l b 68 percent CI 95 percent CI

8.0 SFD 128 41834 0.1185 222.2 38.3 0.11 - 0.1265 0.102 - 0.135

15.0 SFD 128 36610 0.1220 238.9 38.0 0.113 - 0.131 0.1045 - 0.1405

20.0 SFD 128 32644 0.1180 252.2 40.5 0.1085 - 0.128 0.099 - 0.137

30.0 SFD 128 24844 0.1007 192.5 75.5 0.0925 - 0.1098 0.0842 - 0.1187

45.0 SFD 128 14079 0.1823 257.6 56.6 0.1673 - 0.1973 0.1545 - 0.2138

60.0 SFD 128 6735 0.2940 205.8 39.6 0.258 - 0.3315 0.228 - 0.372

Table A.2: Cutting in supergalactic coordinates, for 2MRS.
|SGB| ≥ fsky Systematics NSIDE N Apeak l b 68 percent CI 95 percent CI

0.0 0.86 SFD 128 41834 0.1184 222.2 38.3 0.11 - 0.1268 0.102 - 0.1352

2.0 0.82 SFD 128 39964 0.1092 213.9 31.3 0.1004 - 0.1176 0.092 - 0.126

5.0 0.78 SFD 128 37124 0.1055 202.6 22.4 0.0965 - 0.1145 0.0875 - 0.123

10.0 0.70 SFD 128 32673 0.0965 201.9 11.9 0.0875 - 0.106 0.078 - 0.115

20.0 0.55 SFD 128 24799 0.0805 217.3 8.0 0.0705 - 0.09 0.061 - 0.0995

|SGB| < fsky Systematics NSIDE N Apeak l b 68 percent CI 95 percent CI

74.82 0.84 SFD 128 41234 0.1185 222.2 38.3 0.11 - 0.127 0.102 - 0.1355

65.90 0.81 SFD 128 39867 0.1175 219.5 41.4 0.109 - 0.126 0.1005 - 0.1345

55.73 0.74 SFD 128 36882 0.1160 224.9 47.5 0.107 - 0.125 0.0985 - 0.134

41.15 0.59 SFD 128 30321 0.1380 220.0 29.3 0.125 - 0.151 0.113 - 0.164

Table A.3: Results as a function of cut in Galactic b for 2MASS, Ks < 13.5.
|b| ≥ Systematics NSIDE N Apeak l b 68 percent CI 95 percent CI

8.0 SFD 128 496415 0.0674 289.8 10.3 0.0648 - 0.0698 0.0624 - 0.0724

15.0 SFD 128 433261 0.0786 296.3 6.8 0.0758 - 0.0814 0.073 - 0.0842

20.0 SFD 128 386008 0.0882 305.0 4.5 0.085 - 0.0912 0.082 - 0.0944

30.0 SFD 128 294795 0.1137 338.0 4.0 0.1098 - 0.1176 0.1059 - 0.1218

45.0 SFD 128 170985 0.1824 344.0 13.4 0.1761 - 0.189 0.1698 - 0.1953

60.0 SFD 128 78499 0.0952 6.1 25.9 0.0826 - 0.1078 0.0712 - 0.121
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Table A.4: Results as a function of cut in Galactic b for 2MASS, Ks < 12.5.
|b| ≥ Systematics NSIDE N Apeak l b 68 percent CI 95 percent CI

8.0 SFD 128 116400 0.0797 245.3 26.8 0.0746 - 0.0848 0.0695 - 0.0899

15.0 SFD 128 101940 0.0836 259.5 25.2 0.0779 - 0.0893 0.0722 - 0.0947

20.0 SFD 128 91008 0.0812 276.3 25.9 0.0752 - 0.0875 0.0692 - 0.0935

30.0 SFD 128 69809 0.0724 350.0 43.4 0.0656 - 0.0792 0.0592 - 0.0864

45.0 SFD 128 39544 0.1120 339.4 57.1 0.1036 - 0.1212 0.0960 - 0.1308

60.0 SFD 128 18336 0.1820 156.9 32.3 0.1580 - 0.2072 0.1352 - 0.2324

Table A.5: Results as a function of cut in supergalactic latitude SGB for 2MASS, Ks < 13.5.
|SGB| ≥ fsky Systematics NSIDE N Apeak l b 68 percent CI 95 percent CI

0.0 0.65 SFD 128 386008 0.0882 304.9 4.5 0.085 - 0.0912 0.082 - 0.0944

2.0 0.63 SFD 128 368077 0.0792 303.5 5.1 0.076 - 0.0824 0.0728 - 0.0856

5.0 0.59 SFD 128 342390 0.0700 302.0 7.4 0.0666 - 0.0734 0.0632 - 0.0766

10.0 0.52 SFD 128 301028 0.0550 295.7 12.5 0.0514 - 0.0586 0.0478 - 0.0622

20.0 0.39 SFD 128 225502 0.0538 293.4 12.6 0.0493 - 0.0583 0.045 - 0.0628

|SGB| < fsky Systematics NSIDE N Apeak l b 68 percent CI 95 percent CI

74.82 0.65 SFD 128 385740 0.0882 304.8 4.4 0.085 - 0.0912 0.082 - 0.0944

65.90 0.64 SFD 128 378368 0.0866 310.2 6.2 0.0836 - 0.0898 0.0804 - 0.0928

55.73 0.60 SFD 128 355464 0.0888 323.9 8.4 0.0858 - 0.092 0.0826 - 0.095

41.15 0.49 SFD 128 295090 0.0894 327.5 3.3 0.0862 - 0.0928 0.0828 - 0.096

Table A.6: Results as a function of cut in supergalactic latitude SGB for 2MASS, Ks < 12.5.
|SGB| ≥ fsky Systematics NSIDE N Apeak l b 68 percent CI 95 percent CI

0.0 0.65 SFD 128 91008 0.0812 276.3 25.9 0.0752 - 0.0875 0.0692 - 0.0935

2.0 0.63 SFD 128 86657 0.0668 266.6 25.6 0.0605 - 0.0731 0.0542 - 0.0791

5.0 0.59 SFD 128 80177 0.0548 249.0 28.8 0.0484 - 0.0612 0.0424 - 0.0676

10.0 0.52 SFD 128 70212 0.0500 230.9 26.3 0.0436 - 0.0568 0.0372 - 0.0632

20.0 0.39 SFD 128 52528 0.0448 243.5 16.9 0.0376 - 0.0524 0.0304 - 0.0596

|SGB| < fsky Systematics NSIDE N Apeak l b 68 percent CI 95 percent CI

74.82 0.65 SFD 128 90951 0.0812 276.4 25.9 0.0752 - 0.0875 0.0692 - 0.0935

65.90 0.64 SFD 128 89203 0.0752 285.2 31.7 0.0692 - 0.0812 0.0632 - 0.0872

55.73 0.60 SFD 128 83805 0.0760 307.8 37.7 0.0704 - 0.082 0.0644 - 0.0876

41.15 0.49 SFD 128 69923 0.0760 283.8 26.9 0.0688 - 0.0832 0.062 - 0.0904

Table A.7: Results as a function of cut in Galactic b for BATSE.
|b| ≥ Systematics NSIDE N Apeak l b 68 percent CI 95 percent CI

0.0 Exposure 128 1637 0.0000 179.5 -15.8 0.0 - 0.0555 0.0 - 0.105

5.0 Exposure 128 1481 0.0000 175.3 -20.4 0.0 - 0.051 0.0 - 0.1005

10.0 Exposure 128 1331 0.0000 252.7 -17.3 0.0 - 0.051 0.0 - 0.1005

15.0 Exposure 128 1190 0.0000 315.3 -17.2 0.0 - 0.057 0.0 - 0.1125

20.0 Exposure 128 1073 0.0000 223.9 -44.4 0.0 - 0.0555 0.0 - 0.111

30.0 Exposure 128 802 0.0000 149.5 -14.1 0.0 - 0.0675 0.0 - 0.138

45.0 Exposure 128 475 0.0280 249.6 -19.1 0.0 - 0.154 0.0 - 0.3045

60.0 Exposure 128 215 0.1750 203.0 -14.8 0.0 - 0.378 0.0 - 0.714

Table A.8: Results as a function of cut in supergalactic latitude SGB for BATSE.
|SGB| ≥ fsky Systematics NSIDE N Apeak l b 68 percent CI 95 percent CI

0.0 1.00 Exposure 128 1637 0.0000 179.5 -15.7 0.0 - 0.0555 0.0 - 0.105

2.0 0.97 Exposure 128 1577 0.0000 172.1 -10.9 0.0 - 0.0615 0.0 - 0.1155

5.0 0.91 Exposure 128 1495 0.0480 160.2 -24.3 0.0 - 0.084 0.0 - 0.1425

10.0 0.83 Exposure 128 1333 0.0600 159.3 -8.4 0.0 - 0.096 0.0 - 0.16

20.0 0.66 Exposure 128 1060 0.0000 177.4 -17.8 0.0 - 0.078 0.0 - 0.144

|SGB| < fsky Systematics NSIDE N Apeak l b 68 percent CI 95 percent CI

74.82 0.97 Exposure 128 1582 0.0000 167.9 -18.0 0.0 - 0.0525 0.0 - 0.102

65.90 0.91 Exposure 128 1504 0.0000 166.3 -21.2 0.0 - 0.0525 0.0 - 0.1035

55.73 0.83 Exposure 128 1362 0.0000 112.6 -17.8 0.0 - 0.054 0.0 - 0.108

41.15 0.66 Exposure 128 1122 0.0000 213.0 -18.6 0.0 - 0.07 0.0 - 0.148
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Table A.9: Results in NVSS as a function of flux cut (fluxes given in the first column, in mJy). The
Haslam systematics template is taken into account (H), the areas around bright sources are masked
(B), and dec < −37◦ is cut.
flux > b ≥ Systematics NSIDE N Apeak l b 68 percent CI 95 percent CI

2.5 15.0 HB 128 1164141 0.0212 185.5 13.7 0.0192 - 0.0232 0.017 - 0.0252

5.0 15.0 HB 128 688024 0.0238 173.1 26.5 0.0212 - 0.0264 0.0186 - 0.029

10.0 15.0 HB 128 415841 0.0256 199.5 15.6 0.0222 - 0.029 0.0188 - 0.0324

15.0 15.0 HB 128 299438 0.0296 219.1 11.9 0.0256 - 0.0336 0.0218 - 0.0376

20.0 15.0 HB 128 233565 0.0366 224.6 8.9 0.0322 - 0.0412 0.0276 - 0.0456

25.0 15.0 HB 128 190476 0.0406 226.5 9.0 0.0355 - 0.0454 0.0307 - 0.0505

30.0 15.0 HB 128 160396 0.0415 225.1 9.0 0.0361 - 0.0469 0.0307 - 0.0523

35.0 15.0 HB 128 138109 0.0418 230.9 3.8 0.0361 - 0.0478 0.0301 - 0.0535

40.0 15.0 HB 128 120780 0.0475 234.3 -0.2 0.0412 - 0.0538 0.0349 - 0.0601

Table A.10: Results in NVSS as a function of flux cut (fluxes given in the first column, in mJy). The
Haslam systematics template is taken into account (H), the areas around bright sources are masked
(B), and areas outside −10◦ < dec < 78◦ are cut.

flux > b ≥ Systematics NSIDE N Apeak l b 68 percent CI 95 percent CI

(no cut) 15.0 HB 128 921443 0.0482 273.1 -30.7 0.0452 - 0.051 0.0424 - 0.054

2.5 15.0 HB 128 830017 0.0286 258.2 -23.1 0.0256 - 0.0314 0.0228 - 0.0344

5.0 15.0 HB 128 489002 0.0178 205.0 17.1 0.0146 - 0.021 0.0114 - 0.0242

10.0 15.0 HB 128 294538 0.0250 210.1 13.8 0.021 - 0.0292 0.017 - 0.0332

15.0 15.0 HB 128 211487 0.0272 214.5 15.6 0.0224 - 0.032 0.0178 - 0.0366

20.0 15.0 HB 128 164658 0.0345 209.5 17.1 0.0291 - 0.0399 0.0237 - 0.0453

25.0 15.0 HB 128 134211 0.0375 210.5 16.2 0.0315 - 0.0435 0.0255 - 0.0492

30.0 15.0 HB 128 112985 0.0387 209.5 16.0 0.0321 - 0.0453 0.0255 - 0.0516

35.0 15.0 HB 128 97126 0.0384 214.0 14.8 0.0312 - 0.0452 0.0244 - 0.0524

40.0 15.0 HB 128 84851 0.0448 217.9 12.4 0.0376 - 0.0524 0.03 - 0.0596

Table A.11: Results in NVSS as a function of cut in Galactic b, for a flux cut of 25 mJy. The Haslam
systematics template is taken into account (H), the areas around bright sources are masked (B),
and areas outside −10◦ < dec < 78◦ are cut.

flux > b ≥ Systematics NSIDE N Apeak l b 68 percent CI 95 percent CI

25.0 15.0 HB 128 134211 0.0375 210.5 16.2 0.0315 - 0.0435 0.0255 - 0.0492

25.0 30.0 HB 128 92709 0.0516 197.5 8.5 0.042 - 0.0612 0.0324 - 0.0704

25.0 45.0 HB 128 55978 0.0707 196.7 5.6 0.0539 - 0.0868 0.0371 - 0.1029

25.0 60.0 HB 128 24375 0.1440 163.1 10.7 0.105 - 0.1815 0.066 - 0.2175

Table A.12: Results in NVSS as a function of cut in supergalactic latitude SGB for a flux cut of 15
mJy. The Haslam systematics template is taken into account (H), the areas around bright sources
are masked (B), and areas outside −10◦ < dec < 78◦ are cut.
|SGB| ≥ fsky Systematics NSIDE N Apeak l b 68 percent CI 95 percent CI

0.0 0.42 HB 128 211487 0.0272 214.5 15.8 0.0224 - 0.032 0.0178 - 0.0366

2.0 0.41 HB 128 203357 0.0285 207.3 20.0 0.0237 - 0.0333 0.0189 - 0.0381

5.0 0.38 HB 128 191247 0.0273 212.7 16.3 0.0225 - 0.0321 0.0177 - 0.0369

10.0 0.34 HB 128 172079 0.0270 211.3 17.3 0.0219 - 0.0318 0.0171 - 0.0369

20.0 0.27 HB 128 135501 0.0237 211.7 18.6 0.0183 - 0.0291 0.0129 - 0.0348

|SGB| < fsky Systematics NSIDE N Apeak l b 68 percent CI 95 percent CI

74.82 0.42 HB 128 210135 0.0273 213.8 15.5 0.0225 - 0.0321 0.0177 - 0.0366

65.90 0.41 HB 128 204083 0.0297 216.1 15.5 0.0249 - 0.0345 0.0201 - 0.0393

55.73 0.37 HB 128 185801 0.0297 220.1 13.5 0.0243 - 0.0351 0.0189 - 0.0402

41.15 0.30 HB 128 147897 0.0156 246.7 13.4 0.0090 - 0.0231 0.0027 - 0.0306
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APPENDIX B

Simple Tests of Dipole-Detecting Formalism

In this appendix, we report the results of various sanity checks performed using

the dipole-detecting formalism outlined in Chapter 3. Several other tests have been

performed, including similar tests on a map with dipole amplitude A = 0 (that is,

a map that includes only a monopole with shot noise), and the formalism passes all

these tests as well as it passes the sample tests presented here.

First, we examine the effects of introducing a template and then progressively

excising the Galactic plane. This mimics tests we perform on all the actual datasets

used in this thesis. In this case, we apply the formalism to a map with a pure dipole,

shown in Fig. B.1.

The pure-dipole map has a dipole with amplitude A = 0.1, in the direction (l, b) =

(61.38◦, 33.37◦). The total number of “counts” in the map is 100,000, corresponding

to 100,000 galaxies in a survey. From the first two rows of Table B.1, we note

that applying a systematics template (in this case, the 408 MHz map of Haslam

et al., corresponding to the systematics template we use when applying the dipole

formalism to NVSS maps) may expand the error bars ever so slightly, but essentially

has no effect – which is good, given that the map we are testing is an artificial one and

should have no contribution that in any way mimics the pattern of 408 MHz emission

in the Galaxy. The information in the rest of Table B.1 is more clearly visible in
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Figure B.1: We first apply this dipole-detecting formalism to a map with a pure dipole of amplitude
0.1, in the direction (l, b) = (61.38◦, 33.37◦) (a randomly chosen direction). The pure-dipole map
is shown here.

Fig. B.2, which shows that as we excise more and more of the Galactic plane, the

results behave appropriately: the results are all consistent with the correct value of

dipole amplitude A = 0.1 within measurement error bars, which themselves grow

larger as a function of how much of the sky is cut.

Table B.1: Comparison of dipole parameters with different cuts in Galactic latitude, for a pure dipole
of amplitude 0.1, in the direction (l, b) = (61.38◦, 33.37◦).

|b| ≥ Systematics NSIDE N Apeak l b 68 percent CI 95 percent CI

0.0 none 128 100000 0.1000 61.4 33.4 0.095 - 0.105 0.089 - 0.11

0.0 Haslam 128 100000 0.100 61.4 33.4 0.094 - 0.105 0.089 - 0.111

10.0 Haslam 128 82031 0.099 61.4 33.4 0.093 - 0.106 0.086 - 0.113

20.0 Haslam 128 65364 0.099 61.4 33.3 0.09 - 0.107 0.083 - 0.116

30.0 Haslam 128 49218 0.098 61.4 33.4 0.088 - 0.109 0.078 - 0.12

45.0 Haslam 128 28568 0.095 61.4 33.4 0.079 - 0.112 0.065 - 0.129

60.0 Haslam 128 13183 0.081 61.5 33.4 0.059 - 0.112 0.045 - 0.148

We also perform tests to make sure that asymmetric sky cuts do not cause unex-

pected problems, and that explicit marginalization over the quadrupole and octopole

is not necessary. In Table B.2, we present sample results from such tests. The results
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Figure B.2: Dipole amplitude as a function of how much of the Galactic plane is cut. The Haslam
systematics template is taken into account. The map being tested has a pure dipole of amplitude
0.1, in the direction (l, b) = (61.38◦, 33.37◦). Note that all results are consistent with the correct
dipole amplitude, and that the error bars grow with increasingly aggressive sky cuts.

hold constant the fairly aggressive sky cut of Galactic |b| < 30◦ and declination < 37◦

and > 78◦ (in imitation of NVSS-related sky cuts), and apply the Haslam systematic

template as well as a quadrupole (a21) and octopole (a30) template. Adding the

quadrupole and octopole templates changes the results by the order of 1-2 percent,

which is reassuring since (a) the results should change slightly, given that the sky cut

should couple modes at least somewhat, and (b) the results change so little that the

effect is essentially negligible. We have also performed several other tests to make

sure that higher multipoles do not contribute appreciably.

Table B.2: Comparison of dipole parameters with different systematics templates, given a sky cut
excluding |b| < 30◦ and declinations less than -37.0 degrees or greater than 78 degrees (as in our
NVSS results), for a pure dipole of amplitude 0.1, in the direction (l, b) = (61.38◦, 33.37◦).

|b| ≥ Systematics NSIDE N Apeak l b 68 percent CI 95 percent CI

30.0 none 128 41306 0.097 61.4 33.4 0.087 - 0.107 0.078 - 0.118

30.0 Haslam 128 41306 0.097 61.4 33.4 0.085 - 0.109 0.073 - 0.12

30.0 Haslam+a21 + a30 128 41306 0.096 61.4 33.3 0.083 - 0.11 0.069 - 0.123
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APPENDIX C

Coordinate-System Rotations in HEALPix

C.1 Rotating Coordinate Systems

This appendix serves as a very brief note regarding a certain artifact introduced

by rotating pixels between equatorial and Galactic coordinates in HEALPix. The

upper two plots in Fig. C.1 show the azimuthal coordinate l (left) and the coordinate

b (right) of each pixel center in HEALPix, with resolution parameter NSIDE=128.

Using either the HEALPix rotation routine rotate coord or the IDL Astronomy Li-

brary routine glactc, it is straightforward to convert between equatorial and Galac-

tic coordinates. In the figure, we display (in Galactic coordinates) the results of

rotating from equatorial to Galactic coordinates: declination (left) and right ascen-

sion (right) of each HEALPix pixel center, in Galactic coordinates, are shown. The

pixelization artifacts are not introduced by either rotation routine, but are rather a

problem associated with trying to do a one-to-one match of pixel centers in differ-

ent coordinate systems, regardless of the rotation routine used. The routines both

successfully rotate a given set of unpixelized equatorial coordinates to their corre-

sponding unpixelized Galactic coordinates, but when pixel centers are being rotated,

it occasionally happens (and the pattern is a regular one, as can be seen clearly in

the figure) that two pixel centers in equatorial coordinates map into a single pixel
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Figure C.1: Plotted are, respectively, the Galactic l, the Galactic b, the dec, and the ra of each point
in Galactic coordinates. The “holes” in the bottom two plots, where pixels are incorrectly set equal
to zero, represent pixels where the rotation from equatorial coordinates to Galactic coordinates fails
to map anything into certain Galactic pixel centers.

in Galactic coordinates, or that nothing maps into a given pixel in Galactic coordi-

nates. One must therefore rotate a set of equatorial coordinates (say, of galaxies on

the sky) to Galactic coordinates before pixelizing in Galactic coordinates rather than

pixelizing in equatorial coordinates and then rotating from equatorial to Galactic.

In brief: rotate then pixelize; do not pixelize then rotate.



121

Bibliography

Abate, A. and Feldman, H. Detected fluctuations in sloan digital sky survey luminous

red galaxy magnitudes: bulk flow signature or systematic? Monthly Notices of the

Royal Astronomical Society, 2012.

Ando, S., Komatsu, E., Narumoto, T. and Totani, T. Angular power spectrum of

gamma-ray sources for glast: blazars and clusters of galaxies. Monthly Notices of

the Royal Astronomical Society, 376(4):1635–1647, 2007.

Aurich, R. and Lustig, S. Can one reconstruct masked CMB sky? arXiv:1005.5069,

2010.

Baleisis, A., Lahav, O., Loan, A. and Wall, J. Searching for large-scale structure in

deep radio surveys. Monthly Notices of the Royal Astronomical Society, 297(2):545–

558, 1998.

Bennett, C. L., Halpern, M., Hinshaw, G., Jarosik, N., Kogut, A., Limon, M., Meyer,

S. S., Page, L., Spergel, D. N., Tucker, G. S., Wollack, E., Wright, E. L., Barnes, C.,

Greason, M. R., Hill, R. S., Komatsu, E., Nolta, M. R., Odegard, N., Peiris, H. V.,

Verde, L. and Weiland, J. L. First Year Wilkinson Microwave Anisotropy Probe

(WMAP) Observations: Preliminary Maps and Basic Results. ApJS, 148:1–27,

2003.

Bennett, C. L. et al. Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP)

Observations: Are There Cosmic Microwave Background Anomalies? Astrophys.

J. Suppl., 192:17, 2011.

Bilicki, M., Chodorowski, M., Jarrett, T. and Mamon, G. Is the two micron all sky

survey clustering dipole convergent? The Astrophysical Journal, 741:31, 2011.



122

Blake, C., Ferreira, P. and Borrill, J. The angular power spectrum of nvss radio

galaxies. Monthly Notices of the Royal Astronomical Society, 351(3):923–934, 2004.

Blake, C. and Wall, J. Detection of the velocity dipole in the radio galaxies of the

nrao vla sky survey. Arxiv preprint astro-ph/0203385, 2002.

Boughn, S., Crittenden, R. and Koehrsen, G. The large-scale structure of the x-ray

background and its cosmological implications. The Astrophysical Journal, 580:672,

2002.

Briggs, M., Paciesas, W., Pendleton, G., Meegan, C., Fishman, G., Horack, J.,

Brock, M., Kouveliotou, C., Hartmann, D. and Hakkila, J. Batse observations

of the large-scale isotropy of gamma-ray bursts. Arxiv preprint astro-ph/9509078,

1995.

Burles, S. and Rappaport, S. Detecting the aberration of the cosmic microwave

background. The Astrophysical Journal Letters, 641:L1, 2006.

Cardelli, J., Clayton, G. and Mathis, J. The relationship between infrared, optical,

and ultraviolet extinction. The Astrophysical Journal, 345:245–256, 1989.
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