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ABSTRACT 
 
Chair: Rodney D. Fort 
 
 

The following work extends the breakpoint literature regarding annual attendance 

and the impact of outcome uncertainty at the aggregate level to the National Basketball 

Association, National Football League, and National Hockey League as well as at the 

team level in these three leagues and Major League Baseball.  Attendance series for each 

league under consideration are not stationary overall but are stationary with breakpoints.  

However, evidence for the presence of a unit root—with or without breaks—is mixed 

across teams within and between North American leagues.  Break points correspond in 

believable ways to historical occurrences in these leagues and the cities in which many of 

the franchises reside.  Ultimately, the impact of competitive balance varies across both 

leagues and teams with respect to the time path of stadium attendance, with mixed 

evidence for Rottenberg’s uncertainty of outcome hypothesis.  I present implications of 

breaks and balance effects and suggest future research on attendance estimation in North 

American professional sports, including further econometric treatment for a fully 

specified model of long-term stadium attendance that may be censored due to sellouts. 
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CHAPTER 1 

Introduction 

 

1.1 Background, Objectives and Overview of Relevant Literature 

 In understanding determinants of attendance in North American professional 

sports, the bulk of work in Sports Economics and Sport Management has largely 

evaluated balance effects on attendance at the league-level (Schmidt and Berri, 2001, 

2002, 2004; Coates and Harrison, 2005; Fort and Lee, 2006; Lee and Fort, 2008).  Further 

work in this area has been limited to short-term competitive balance and attendance 

demand issues for Major League Baseball (MLB) franchises (Meehan, Nelson and 

Richardson, 2007; Tainsky and Winfree, 2010a).  Thus, very little is understood about the 

long-term behavior of game attendance of individual teams and its relationship to 

competitive balance.  Though short term snapshots in time are informative, a full 

treatment of complete individual team attendance series may help to inform league-level 

policy in which owners have varying objectives in diverse markets that change 

dramatically over time.  In addition, previous empirical work investigating Simon 

Rottenberg’s Uncertainty of Outcome Hypothesis (UOH, 1956) in North America has 

overwhelmingly involved analysis of baseball attendance. 1  Although there have been 

                                                           
1 Siegfried and Eisenberg, 1980 (MiLB); Baade and Tiehen, 1990; Domazlicky and Kerr, 1990; Knowles 
and Sherony, 1992; Bruggink and Eaton, 1996; Coffin, 1996; Kahane and Shmanske, 1997; Schmidt and 
Berri 2001, 2002, 2004; Butler, 2002; Winfree, McCluskey, Mittlehammer and Fort, 2004; Coates and  
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some attendance demand studies involving other North American sports leagues (Jones 

and Ferguson, 1988; Paul, 2003; Schmidt and Berri, 2004; Leadley and Zygmont, 2006; 

Coates and Humphreys, 2007; Winfree and Fort, 2008), much of the attendance research 

in the National Basketball Association (NBA), National Football League (NFL) and 

National Hockey League (NHL) has focused on fan substitution, stadium honeymoon 

effects, discrimination, and impacts of labor disputes.  However, few studies have 

attempted to directly estimate the impacts of each of the multiple dimensions of 

uncertainty on league and team attendance, as well as track these attendance levels and 

their relationship to league policies and other events.   

Overall, empirical research has disagreed on the influence of the UOH in practice.  

Szymanski (2003) reviews the findings of a number of studies, many of which find 

conflicting results with respect to fan interest and the UOH.  As Lee and Fort (2008) note, 

there is a possibility that leagues have managed balance well enough that there is not a 

discernible effect on demand as represented by gate attendance numbers.  This leaves 

room for further empirical research, and more recent investigations have found some 

evidence for interest in certain types of competitive balance (Lee and Fort, 2008; 

Meehan, Nelson & Richardson, 2007; Rascher & Solmes (2007); Soebbing (2008)). 

 Gauging determinants of demand for attendance at the league level is a valuable 

endeavor in and of itself for evaluating league policy and choice variables for team 

managers, but the variability in preferences for uncertainty of outcome at the team level 

is another important aspect of league survival (Lee & Fort, 2008).  Understanding how 

fans respond to this balance on an individual team basis can shed light on where the net 

increase or decrease in league attendance—with respect to competitive balance and 



 

3 

 

uncertainty of outcome—may be derived.  The primary purpose of this work, however, is 

to fill the gaps in the baseball, football, basketball, and hockey literature with a full time 

series treatment of league attendance in order to evaluate large shocks in attendance 

through long-term tracking, and secondarily to assess the validity of the predictions by 

UOH and its multifaceted nature. 

Uncertainty itself is often discussed in terms of a direct causal factor in fan interest, 

when much of its effect (if indeed there is any effect) could in fact be a mediating factor 

in aggregate fan hope for each home team.  Knowledge of the effects of UOH at the team 

level can help to inform practitioners both how uncertainty mediates this “fan hope” and 

how it may directly influence interest and excitement for a league with teams in 

heterogeneous markets.  Measuring these effects separately is a difficult (if not 

impossible) task without survey research, but a team-level treatment of the different 

realizations of competitive balance and uncertainty may inform ticket pricing—holding 

constant these variables—and provide further knowledge of the preferences of fans 

toward winning and uncertainty within each market.  Of course, attendance is only one 

aspect of demand for baseball and I do not evaluate the full revenue function for each 

franchise in this analysis.  Certainly, the effects of balance on television contracts and 

viewership are also an important and continually evolving aspect in the demand for North 

American professional sports leagues.  Nevertheless, the information regarding trends in 

attendance contained in this work is an important precursor to understanding 

determinants of a full sports league demand function for team managers and executives 

within their own respective market.  In addition, empirical understanding of the varying 

market characteristics that drive team owner decisions will help to inform league level 
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decision making, where these owners with different objective functions must agree on 

league policies while balancing self-interest based on their own market conditions.  

Finally, the econometric considerations here inform further panel and cross-sectional 

analyses at the league and team level.  These additional considerations are pivotal to 

understanding demand for attendance in the leagues considered here, as the limited 

treatment of dependent variable complications—for example, sellouts result in censored 

data—ultimately call for further analysis accounting for the properties exhibited here. 

The following work extends the previously cited literature with a long-term time 

series analysis of league attendance in the NBA, NFL and NHL, and franchise attendance 

in MLB, and in these three mentioned leagues.  The empirical process allows for an 

estimation of attendance shocks that may be related to league policy or other historical 

events and qualitative evaluation of the relationship of these shocks to any sudden 

changes in competitive balance.  Qualitative evaluation of attendance shocks for shared-

market sports teams may additionally shed light on the possibility of fan substitution and 

fixed sports entertainment demand within individual regions.  Knowledge of possible 

sport substitutes is an important yet mostly uncharted area of sports economics and sport 

management research.  Winfree et al. (2004), Winfree and Fort (2008), Winfree (2009a) 

and Rascher et al. (2009) have performed informative analyses investigating this topic, 

but only provide some empirical estimation of substitution between two sports (NBA and 

NHL).  Winfree (2009b) follows this line of literature with a further empirical 

investigation of competition between same-owner teams within the same market for all 

four major North American leagues.  As this latest research emphasizes, understanding 

the competition between shared-market franchises from different leagues has 
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implications not only for team managers, but also antitrust.  This issue will be discussed 

in more detail later. 

 

1.2 A Brief Description of the North American Sports League 

 A background of the theory and literature regarding professional sports leagues in 

North America and assumptions behind the study of sports leagues as profit-maximizing 

firms should prove instructive before assessing the influences that uncertainty may have 

on these objectives and policies over such a long period.  The bulk of economic modeling 

of professional sports—and ultimately its influence on demand and attendance 

estimation—stems from Simon Rottenberg’s seminal piece “The Baseball Players’ Labor 

Market” (1956).  Professional sport in North America is likely best described as a profit-

maximizing business, but both Rottenberg (1956) and Neale (1964) highlight how the 

unique nature of sporting competition requires its own development within the economic 

modeling literature.  The work of Rottenberg (1956) describes the landscape of the 

market for baseball playing talent in a world of the reserve clause, which at that time 

subjected players to monopsony exploitation by binding a player to a single team for the 

entirety of his career.  However, for the purposes of this work, the effects of the reserve 

rule itself are of less interest than the reason owners claim that it was instituted in the first 

place: to preserve competitive balance.  El-Hodiri and Quirk (1971) follow this path, 

developing some of the early economic models of pro sports following the original 

institution of the MLB draft.  Much of the resulting work has aimed at describing how 

sports leagues function as independent franchises with specific needs for collaboration—

converging upon collusive agreements—and the theoretically optimal sports product 
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(Fort and Quirk, 2011; 2010).  The uniqueness of sport described by Neale (1964) is of 

great interest to the majority of those involved in the relatively young fields of Sports 

Economics and Sport Management.    

 The defense of the reserve rule, and one reason for the unique antitrust treatment 

extended to baseball in the earlier part of the 20th Century, is the idea that league survival 

relies heavily on an equal distribution of talent among teams in the league: a key topic 

within the following empirical attendance estimation.  It seems inevitable that some 

franchises will be placed in “better” markets than others and, combined with exclusive 

territory rights to bar entry by other teams, will have more resources to purchase talent 

and dominate the league for sustained periods.  While “better market” can often mean a 

larger population, Rottenberg is careful to note that a number of factors go into the 

demand for baseball (or sports in general), including population, income, team rank, ease 

of travel to the stadium, and closeness of substitutes within that market.  Competitive 

balance can play an important role in league survival, but Rottenberg explains that the 

reserve clause and special antitrust treatment are likely unnecessary due to the ability for 

teams to reassign property rights of players within the league.  Ultimately, these policies 

redistribute revenues from player cost to the owners’ bank accounts.  Fort and Quirk 

(1995) reiterate Rottenberg’s conclusions in a more modern light with respect to the true 

objectives of owners and specific league policies that claim to be in place to preserve 

balance.  Whether or not the antitrust treatment is necessary, understanding the influences 

of uncertainty and balance on attendance demand is an important part of managing both 

the league and its franchises optimally under profit-maximizing objectives. 



 

7 

 

 This supposed need for a reasonably equal distribution of talent across these 

variable markets stems from the required cooperation among independent franchises in 

order to produce a sporting event, and the need for each of the teams in the league to 

survive in order to be able to continue to produce competitive games.  If a single team 

dominates a league, it could be detrimental to the survival of the smaller market teams, 

ultimately forcing these teams out of business.  Neale (1964) offers an additional 

understanding of the differences between the economics of a standard firm and those that 

face sports team owners and league organizers.  He presents an anecdote about the need 

for exciting competition in order for all firms to survive, using an entertaining example 

referring to the historically dominant New York Yankees, “’Oh Lord, make us good, but 

not that good,’ must be their prayer” (pp. 2).  Neale describes professional sports leagues 

as a special case of the multi-firm plant—with all firms providing the same inputs 

(talent)—with an ultimate joint product: the true World Champion.  Given the similar 

inputs, but joint production resulting in a reduction in costs for both, Neale ultimately 

views sports leagues as cartels.  As a whole, this characterization tends to overstate the 

cartelization of the major leagues in North America, as not all aspects of league 

organization and behavior can be characterized in this way.  However, it is useful to 

discuss this in the context of demand for attendance, as variable market demand can 

influence the policies that leagues implement to ensure survival.  These issues can mask 

the true motivations of team owners, as described in the literature on Rottenberg’s 

Invariance Principle.  I more formally revisit this motivation in Section 1.5. 

 As Neale describes, the centralization of sports leagues can have the expected 

effect of increasing profits, but may also maximize output.  In this case, it is argued that 
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supply and demand intersect at a point where a monopoly league produces the most 

universal championship: something that could only be produced through a cooperative 

effort among multiple franchises within the sport.  Although cooperation can be useful in 

producing sport—and is likely more efficient with respect to the production of games and 

rules structures—the idea that sports are natural monopolies that require centralization in 

all aspects of the sports business (restricting the talent market, apparel and television 

rights, etc.) has been challenged in a number of instances (the most recent prominent 

court case being American Needle vs. NFL (2010)).  Much of the formal economic 

modeling stemming from these issues has investigated claims with respect to cooperative 

league behavior for on-field competition, the appropriateness of collusive single-entity 

business activities, and the unique antitrust treatment extended toward professional sports 

leagues (namely, Major League Baseball) in North America. 

 The unique requirement that each team in a league maintain a high enough level 

of talent to stay in business and attract fans leads us to an important subject of 

Rottenberg’s seminal work—and a core theory in the analyses presented here—known as 

the Uncertainty of Outcome Hypothesis.  As the theory goes, fans prefer to see their home 

team win games, but also have interest in uncertainty (closeness of competition) for both 

the game and season outcomes.  Under the UOH, we expect that not knowing the 

outcome of a sporting contest or season is positively related to fan demand and overall 

league interest.  But the mediating role of uncertainty in team-level fan interest is also in 

play, as it allows more fans to have hope for a favorite teams’ success.  Therefore, the 

UOH is twofold in that it notes the immediate importance of uncertainty itself (suspense) 

to fan interest, as well as the need for every team to maintain a respectable talent level—
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as determined by their home fans—to keep from going under and ultimately causing the 

disbandment of a league.   

Through the distribution of talent, the UOH plays an important role in modeling 

the North American Sports League and the behavior by individual teams under league 

surveillance.  This distribution of talent is not only important with respect to individual 

game outcomes, but also the uncertainty of pennant races and championship races within 

seasons.  Neale (1964) coins this latter non-game-level interest in uncertainty the 

“League Standing Effect” and explains how the pennant race itself can result in 

excitement for fans in addition to the game.  This idea comes into play in the empirical 

analysis presented here and introduces the multi-faceted nature of uncertainty in 

professional sports.  More recent analysis has extended the UOH to dynasties and the 

propensity for certain teams to win year after year (Butler, 1995).  I consider this 

realization of balance within this work, but it is important to note that Rottenberg did not 

address this in his initial development of the UOH. 

 In the first year of the new millennium, Major League Baseball’s Blue Ribbon 

Panel reported that competitive imbalance would be detrimental to the survival of the 

league, echoing some of Rottenberg’s early thoughts regarding uncertainty of outcome.  

The Blue Ribbon Panel Report eventually led to the new revenue sharing structures 

agreed upon in 2002, including what is now deemed “The Yankee Tax” (Levin, Mitchell, 

Volcker & Will, 2000).  Though some of the conclusions in the Blue Ribbon Panel have 

met skepticism, the idea that “chronic competitive imbalance” could cause a league to fail 

(Levin et al., 2000, pp. 1) may have merit with respect to Rottenberg’s UOH.  If fan 

interest in individual teams wanes over times of severe imbalance, the UOH would lead 
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us to believe that those teams that are unable to compete on the field may also no longer 

be able to sustain a profitable business.  Thanks to the unique nature of professional 

sports, this can affect the larger market franchises as well, as their own survival is 

dependent upon the survival of their opponents (competitors). 

 While MLB attendance has thrived over the decade and a half since the 1994-95 

work stoppage—and a multitude of teams (22) have been successful at reaching the 

World Series since 1990—grumblings of Yankee dominance have not ceased in recent 

years, as fans and small market owners alike have demanded policies to mitigate the 

perceived decreasing balance in MLB.  The concern for Major League Baseball is not a 

particularly new one, as former Cleveland Indians owner—and soon to be Chicago White 

Sox owner—Bill Veeck stated in 1958, “The symptoms of near disaster are plain enough: 

The Yankees make an almost annual farce of the AL pennant race…Interest in big-league 

baseball is on the downgrade.  So is attendance, generally, in spite of glowing Yankee, 

Brave, and Dodger figures,” (Fort, 2006).  American League attendance actually was in 

slight decline at this point, but National League attendance was gradually increasing after 

a massive rebound following the end of World War II in 1945 (Lee & Fort, 2008).  There 

is, therefore, some validity in Veeck’s claims at the time; however, the decreasing 

attendance in the American League shortly recovered and began increasing steeply in 

1962.  Additionally, despite Veeck’s implication regarding the league’s balance, Lee and 

Fort (2005) find that the competitive balance in MLB has continued its gradual 

improvement over the history of both the National and American Leagues.  It is also 

worth noting that during Veeck’s short tenure as owner—1946 through 1949—his 

Indians managed a World Series win, followed by 6 consecutive seasons of 92 wins or 
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more after his sale of the team.  And, despite his statements above, Veeck led a group of 

investors that purchased the American League’s Chicago White Sox in 1959.  It suffices 

to say that public claims by team owners should be taken with caution and investigated 

empirically before making rash conclusions regarding league policy.  If revenues and 

attendance were so terrible, what would motivate Veeck to purchase one of these teams 

less than a year later? 

 The NFL experienced similar—and possibly even more—success with respect to 

revenues and attendance since 1990, but unlike MLB the league has been praised for its 

ability to create balance and standings turnover.  Further work by Fort and Lee (2007) 

finds improvements in balance for NFL and NHL during the history of the league from 

trends and structural changes in balance; however, the NBA has gone against the grain 

and has experienced decreasing balance trends recently.  This brings up an interesting 

dichotomy for sports leagues and the possibility of differing preferences for balance 

levels across leagues.  Understanding how these differences affect attendance in each 

league will help to inform both league managers—in informing league policy—and team 

managers, who may use the information regarding UOH to both optimize performance on 

the field (ice; court) and maximize profits in the front office. 

 

1.3 Fan Preferences in Professional Sport 

 In addition to his work in uncertainty of outcome, Rottenberg (1956) made some 

of the first contributions to the literature in the area of demand for professional sport as 

well (Fort, 2005).  Other early works on demand include Demmert (1973) and Noll 

(1974).  As mentioned above, recent analyses have focused more closely on the demand 
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aspect of Sports Management and Economics using a number of methods for short-term 

analysis.2  Longer term treatments of attendance demand have been limited.3  However, a 

full time series treatment of all leagues at both the league and team level is lacking from 

the literature. 

 Fan interest in sport is commonly modeled as demand for attendance dependent 

on a number of factors including—but not limited to—ticket/concession price, income, 

population, availability and closeness of substitutes, convenience and travel costs, and 

tastes and preferences.  Interestingly, studies have shown that teams price tickets in the 

inelastic portion of demand (see Fort (2004) and Krautmann and Berri (2007) for a full 

review of this literature), but this is likely a result of maximization of profits through joint 

determination of concessions and tickets prices.  Tastes and preferences themselves are 

made up of a number of factors and are likely extremely heterogeneous across fans.  

These factors may include home team quality, visiting team quality, interest in the 

entertainment experience (stadium novelty, alternative game entertainment and 

promotions, on-field entertainment and athleticism), and outcome uncertainty.  It is 

important to highlight that the UOH considers preferences of fans, leaving this portion of 

work less informed by formal economic theory.  Ultimately, the idea that outcome 

uncertainty is positively related to demand for attendance—as originally posited by 

Rottenberg—is a hypothesis that should be further empirically tested.  It is a unique 

aspect of demand not found in other places, as the creation of uncertainty is a joint 

                                                           
2 Baade and Tiehen, 1990; Domazlicky and Kerr, 1990; Knowles, Sherony and Haupert, 1992; Paul, 2003; 
Coates and Harrison, 2005; Coates and Humphreys, 2007; Meehan, Nelson and Richardson, 2007; Paul and 
Weinbach, 2007; Rascher and Solmnes, 2007; Soebbing, 2008; Lee, 2009; Davis, 2009; Lemke, Leonard 
and Tlhokwane, 2010; Tainsky, 2010; Tainsky and Winfree, 2010a, 2010b) 
3 Schmidt and Berri, 2001, 2004; Krautman and Hadley, 2006; Matheson, 2006; Lee and Fort, 2008; 
Pivovarnik, Lamb, Zuber and Gandar, 2008; Krautmann, Lee and Quinn, 2010 
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product on the field of play (and likely influenced in certain respects from the front office 

of the league).  

Uncertainty of outcome is ultimately realized through the competitive balance of 

a league; however, the reader must keep in mind that although the distribution of talent 

itself (balance) and the UOH are inseparable, there is an important distinction between 

the two individual concepts in practice (Fort & Maxcy, 2003).  Research under the 

umbrella of the UOH has a foundation in fan response to balance, while those involved in 

pure competitive balance research are focused on measurement and influences on the 

actual distribution of talent.  These are of course complementary to one another, but the 

distinction is important in defining the goals of the research at hand.  The secondary 

purpose of this dissertation falls under the former characterization, evaluating balance 

impacts on attendance for sports leagues.  The primary purpose here is understand long-

term behavior of, and large shocks in, attendance at different levels of aggregation and 

their relationship to significant historical and league policy events. 

 At present, there seems to be little agreement on the strength of the UOH in North 

American Professional Sports.  As noted earlier, Szymanski (2003) finds mixed results 

with respect to the influence of UOH, and ultimately concludes that it has little, if any, 

effect on interest in sports.  However, work up to this point has not investigated all 

aspects of uncertainty in all leagues, and a majority of study has been performed at the 

aggregate league level.  Understanding the full scope of the UOH calls for investigation 

at both the league and team level of attendance in order to understand the heterogeneous 

preferences for uncertainty and how this uncertainty and individual team quality interact 

with one another to attract fans to sporting events.  Before addressing this empirical 
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evaluation, a more formal model of the North American league is presented in order to 

explicitly describe the mechanisms behind balance and Rottenberg’s predictions with 

respect to uncertainty of outcome and league policy. 

 

1.4 Formal Modeling of the North American Professional Sports League 

In this section, I present a simple model of a league of profit-maximizing sport 

franchises, much of which is adapted from Fort and Quirk (2007; 1995) and El-Hodiri 

and Quirk (1971).  For North American Leagues, the majority of the modeling literature 

assumes that owners are profit-maximizing with respect to their own individual team, 

with gate revenues related to team quality and the market size of each team (in contrast to 

the view that European sports franchise owners are utility/win maximizing subject to 

some constraints, one important aspect differentiating model assumptions across 

continental leagues).  In other words, gate revenues are increasing in the probability of a 

home team win and the market size of that team.  The team quality is determined by a 

stock of playing skill units, with some relationship between units of talent and overall 

team strength.  In the absence of revenue sharing or other league restrictions, the simplest 

single team gate revenue function for a single game with respect to home team quality is 

defined by, 

 

𝑅𝑖𝐺 =  𝑅𝑖𝐺�𝑤𝑖(𝑡𝑖, 𝑡𝑗)�, 

 

with season profits denoted, 
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𝜋𝑖 = �𝑅𝑖𝑗𝐺 (𝑤𝑖(𝑡𝑖, 𝑡𝑗)) − 𝑐𝑤𝑖

𝑛

𝑖≠𝑗

, or, 𝜋𝑖 = �𝑅𝑖𝑗𝐺 (𝑃𝑖𝑗(𝑡𝑖, 𝑡𝑗)) − 𝑐𝑤𝑖

𝑛

𝑖≠𝑗

 

 

 In this notation, gate revenues for team i are the total of all single game gate 

revenue for team i’s home games against all other teams.  Each single game’s gate 

revenue is a function of the quality (with win percent as a proxy for quality) of the home 

team (𝑤𝑖) and the market size of the home team.  Team quality is increasing in t, talent on 

the home team, and home gate revenues increase in 𝑤𝑖 with decreasing marginal returns 

for investment in winning. 

 It is important to note here that the cost of talent, c, does not imply a constant 

marginal cost model.  While not formally exhibited in this work, the cost of talent is 

determined by the standard tatonement process.  Prices are “announced” and talent 

purchase decisions are made at the margin for both teams.  The endogenous 

determination of cost of talent may also be exhibited through Figure 1.1.  Here, assume 

that the two teams end up at points B and C.  If so, then there is an incentive for the small 

market team to sell talent to the larger market team (as long as there is nothing to inhibit 

the flow from one team to another).  This exchange will happen until both teams reach 

the equilibrium at point A.  The process ultimately determines c as in any standard 

economic model, and this result is treated as given throughout the modeling process here. 

The subsequent notation, 𝑃𝑖𝑗, is taken from El-Hodiri and Quirk (1971), and 

represents the production function (contest success function, CSF) with respect to talent 

levels of both teams (i.e. the probability of the home team winning a single matchup, 

given each team’s proportion of talent of the total between team i and team j) defined as, 
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𝑃𝑖𝑗 =  
𝑡𝑖

�𝑡𝑖 + 𝑡𝑗�
. 

 

 At this juncture, the imposition of different CSFs can complicate the model, and I 

proceed with a more simple one-to-one interpretation that is the standard in the literature 

as follows (Fort & Winfree, 2009).  In the characterization of NALs as “closed leagues”, 

when one team adds talent, it can only come at the expense of another team in the league.  

This will be important in more specific equilibrium models that look at the distribution of 

talent and results of league policies like revenue sharing, salary caps, and luxury taxes.  

In this case, win percent is determined by the proportion of talent on each team relative to 

the rest of the league, therefore normalizing total talent to 1.  By first imposing the 

“adding up constraint” in professional sports, or the idea that the on-field competitive 

outcome is inevitably zero-sum, we find:  

 

�𝑤𝑖 =  
𝑛
2

𝑛

𝑖=1

 , or,
𝜕𝑤𝑖

𝜕𝑡𝑖
= −

𝜕𝑤𝑗
𝜕𝑡𝑗

. 

  

The zero-sum result for a league simplified to two teams—a method popularized 

by Quirk and Fort (1992) and Fort and Quirk (1995)—is that 𝑤𝑖 = 1 − 𝑤𝑗, directly 

implying our Pij from before, and includes relative quality only within the model 

(Marburger (1997) and Kesenne (2000) consider further absolute quality specifications).  

The closed league characterization differs from that of many European or other 

international leagues like soccer, where the talent pool expands beyond a single league.  
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If a team in League A contracts talent from another League B, the talent available to the 

other teams in League A is not affected (though, the absolute level of talent is increased 

and the win percentages can be altered if a single team increases its talent level).  In this 

case, a league may be defined as having an elastic supply of talent.  Because of the closed 

nature of the majority of NALs, the talent supply in leagues analyzed here is defined as 

perfectly inelastic, and the modeling comes under the assumption that each talent choice 

is a best response to the other teams’ talent choice(s) with the talent elasticity restriction, 

 

𝑑𝑡𝑖
𝑑𝑡𝑗

=  
𝑑𝑡𝑗
𝑑𝑡𝑖

= −1, 

 

a natural result of the normalization of the sum of league talent to 1.  I proceed with the 

above assumption, following the general model specified in previous literature.  With this 

specification, the logit contest success function is formally assumed away, and owners 

buy win percent in best response to the rest of the league in the static case.  To show this, 

first take the derivative of Pij (or simply the derivative of win percent with respect to 

talent in the two-team production function for win percent, 𝑤𝑖 = 𝑡𝑖
𝑡𝑖+𝑡𝑗

),  

 

𝜕𝑤𝑖

𝜕𝑡𝑖
=
𝑡𝑖 + 𝑡𝑗 − �1 +

𝑑𝑡𝑗
𝑑𝑡𝑖

�

�𝑡𝑖 + 𝑡𝑗�
2 . 

  

Substituting from above for 
𝑑𝑡𝑗
𝑑𝑡𝑖

 and the previous result of a fixed supply, 𝑡𝑖 + 𝑡𝑗 = 1, 

 



 

18 

 

𝜕𝑤𝑖

𝜕𝑡𝑖
= 1 . 

 

 In other words, there are no scale effects in the relationship between talent and 

winning.  Of course, any sort of more complex relationship between talent investment 

and win percent is an important issue related to the production function in sports, which 

has been of interest in more recent literature (Fort and Winfree, 2009).  Here, I begin by 

considering the purchase of win percents by franchise owners as in the classical literature 

in order to provide a smooth transition from the characterization above.  The cost of 

talent is treated as given and constant for the classical models of NALs, with equilibrium 

at a point where the marginal revenues of adding talent equal the marginal cost of adding 

talent for all teams.  This can be seen from a simple, two-team case with profits denoted 

(with Team i as the large-market team from here on), 

 

𝜋𝑖 = 𝑅𝑖𝑗𝐺 �𝑤𝑖(𝑡𝑖, 𝑡𝑗)� − 𝑐𝑤𝑖 , and,𝜋𝑗 = 𝑅𝑗𝑖𝐺�𝑤𝑗(𝑡𝑗 , 𝑡𝑖)� − 𝑐𝑤𝑗,  

 

 Where—with our simplifying assumptions about talent and winning—first order 

conditions follow simply as, 

 

𝜕𝑅𝑖
𝜕𝑤𝑖

− 𝑐 = 0 ,𝑎𝑛𝑑,
𝜕𝑅𝑗
𝜕𝑤𝑗

− 𝑐 = 0 . 

 

 As expected from theories of profit maximization, teams choose the winning 

percentage at which the marginal revenue from increasing their talent level is equal to the 
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marginal cost of buying one more unit of talent.  Therefore, marginal revenues are equal 

at c* for both teams at equilibrium.  Because we assume that demand is greater in the 

larger market, Team i buys more talent than Team j, and the league is unbalanced.  The 

unbalanced notion implies that 𝑤𝑖 > 𝑤𝑗, which can be further exacerbated by local 

television markets and the demand for non-shared luxury box revenues becoming more 

prominent in new stadium deals. 

 This model will lay the foundation for the empirical evaluations presented 

throughout this dissertation, as well as for further exhibitions regarding the effectiveness 

of policy in controlling balance.  It is important to note that the work here discusses only 

North American leagues.  Further applications to European and other sports leagues 

require further considerations to talent in a league.  For more formal exhibition of these 

league models, the reader is referred to the excellent work by Kesenne (2000a; 2000b; 

2001; 2006), Szymanski (2003; 2004; 2006) and Szymanski and Kesenne (2004). 

 

1.5 Owners’ Defense of League Policies and the Invariance Principle 

 Team owners and league managers often proclaim that policies such as the 

amateur draft and gate revenue sharing are implemented in order to preserve competitive 

balance and fan interest in the league.  However, another important insight in 

Rottenberg’s piece is the Invariance Principle (IP).  Before the publication of the Coase 

Theorem (Coase, 1960), Rottenberg recognized the difficulty in defending the reserve 

rule as a way to ensure equal talent distribution and preserve uncertainty-of-outcome.  

The rule and its defense, it turns out, was likely to be nothing more than an excuse to 

redistribute profits to owners from players.  He postulated that if the contracted exclusive 
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right to a player’s talent can be exchanged, then there is little to keep that talent from 

flowing to its most highly valued use, irrespective of who owns the rights.  In the end, 

teams will facilitate this flow as long as it is profitable for them to do so.  Rottenberg 

notes that the IP is not restricted to the reserve clause, as the Amateur Player Draft should 

have similar results: once players are drafted and bargaining takes place between the 

drafting team and the draftee, these contracts are ultimately sold from a smaller market 

team to a larger market team with a constraint of decreasing marginal returns to talent 

investment for the purchasing team (i.e. not all of the talent will end up in the larger 

market). 

 The ultimate result of the IP, and an important conclusion with respect to the 

antitrust treatment extended to MLB, is that talent would be similarly distributed with or 

without the reserve clause (free agency) or draft.  Of course, this hypothesis is subject to 

the restriction that transactions costs are the same—or negligibly different—in either case 

(Daly and Moore (1981) provide an alternative view of this proposition).  Therefore, the 

talent distribution does not depend on who holds the rights to the player talent (player or 

team), as long as these rights can be sold.  The true motivation behind the reserve clause 

seems to have been ensuring monopsony exploitation of baseball players, rather than a 

more equal distribution of talent across the league that team owners insisted on using as a 

defense of the rule.  Most economists would recognize this as the weak version of the 

Coase Theorem, but Fort (2005) and Sanderson and Siegfried Sanderson (2006) give 

Rottenberg the due that is oft ignored within the Sports (and more general) Economics 

literature, despite the publication of “The Baseball Players’ Labor Market” a full four 

years prior to Ronald Coase’s famous 1960 addition “The Problem of Social Cost”.  That 
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is not to discredit Coase and his immeasurable contributions to the field of Economics 

with the additions regarding efficient allocation through these exchanges without 

transactions costs (and of course the importance of considering them), but Rottenberg 

was the first to imply the final outcome.  As Fort (2005) describes, the IP itself leads to 

the need for an interesting test as to the magnitude of transactions costs in NALs.  If little 

changed after free agency began its reign with respect to the distribution and movement 

of talent, then it may be that the magnitude of the transactions costs within professional 

sport are not large enough to inhibit the hypothesized consequences of the IP.  Depending 

on fan preferences, player movement may or may not have impacts on attendance 

differentially across sports markets.  Of course, evaluating the magnitude and influence 

of these costs on player movement and its impact on fan interest would be an interesting 

addition to the following empirical evaluation; however, I do not specifically visit these 

issues empirically in this work. 

 Before continuing on to the formal NAL modeling with regards to the IP, it is 

important to note that Rottenberg ends his piece by offering his thoughts on pooled 

revenue sharing and salary caps in a free talent market.  His thoughts foreshadow much 

of the discussion in the following modeling literature such as El-Hodiri and Quirk (1971), 

Fort and Quirk (1995), Vrooman (1995), Szymanski (2003; 2004), and Fort and Quirk 

(2007), and Winfree and Fort (2012) in developing formal economic theories about talent 

and revenue (re)distribution, enforceability of salary caps and alternative methods of 

compensation, and the importance of both absolute and relative quality to fans.  The 

importance of Rottenberg’s work stretches beyond the UOH and IP, much of which is 

comprehensively reviewed in Fort (2005).  The formal modeling that has stemmed from 



 

22 

 

the abundant observations of the father of sports economics, Simon Rottenberg—and the 

later additions of Walter Neale and others—have built a broad foundation for popular 

topics throughout the history of the field of Sports Economics. The next sections follow 

from this traditional economic model of sports leagues presented in Section 1.3 and its 

application to the Invariance Principle. 

 

1.5.1 League Policies and the Invariance Principle 

 El-Hodiri and Quirk (EQ, 1971) present one of the early formal models of 

professional sports in order to investigate the legitimacy of baseball’s unique treatment 

with respect to United States antitrust laws.  The authors consider any tendencies for 

baseball toward more equal playing strengths with both the player draft and the reserve 

clause under the direction of Rottenberg’s seminal piece.  This work incorporates 

Rottenberg’s UOH within the revenue specification, claiming that, “As the probability of 

either team winning approaches one, gate receipts fall substantially,” (pp. 1306).  

Therefore, as exemplified in the previous section, each team has the incentive to become 

better than their opponents, but not too much better.   

 EQ discusses gate revenues in the context of Rottenberg’s UOH, or that visiting 

team quality is also of interest, and the model for home gate revenues in an n-team league 

are specified as, 

 

𝑅𝑖𝐺 =  �𝑅𝑖𝑗𝐺
𝑛

𝑗≠𝑖 

�𝑃𝑖𝑗(𝑡𝑖, 𝑡𝑗)�. 
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 In this description, each single game’s gate revenue is a function of the relative 

quality of the home and visiting team and the market size of the home team, as presented 

in Section 1.3.  Revenues are increasing in the quality of the home team and profits are 

maximized at some optimal probability of the home team winning, 𝑃𝑖𝑗∗ > 0.5, subject to 

the CSF mentioned earlier (the logit most commonly used in the literature). 

 Because the purpose of this section is to review the most pertinent elements of 

prior modeling, the reader is referred to El-Hodiri and Quirk (1971) for the specifics of 

their calculations of the time-path of competitive balance under different league policies.  

Rather, I summarize the pertinent findings with respect to the impositions on the 

decisions model facing franchise owners according to the authors.  The most important 

conclusion reached from this model is that, under conditions where teams in a league 

have varying returns to winning and the ability to purchase contracts from competing 

teams, a league will not converge on an equal distribution of talent over time.  This is in 

support of Rottenberg’s IP, in which individual teams will have an incentive to buy talent 

from others if ownership of the player in question would disproportionately increase 

profits for the buying team.  The result under the reserve clause: a continued unequal 

distribution of talent across the league. 

 EQ go further to state that, in a situation where the returns to talent investment for 

all teams are (roughly) equal, the league would converge to a place where the teams are 

of generally equal playing strength.  Of course this result would rely on the league 

allowing more than a single team in markets that could sustain them, which to this day 

has not been the case (for example, MLB placing only two teams in New York when it 

could almost surely sustain more).  Finally, EQ propose that, given a constant supply of 



 

24 

 

talent and varying market sizes, the league should be of relatively equal playing strength 

under the reserve rule only if contract sales are forbidden (and talent comes from a 

reverse order draft).  This would reduce the ability to move players for profit, for large-

market teams to sign players first (due to the draft), and ultimately result in teams being 

mostly of equal strength across time.  The authors conclude that, while professional 

sports may require antitrust exemption for certain activities, the antitrust exemption of 

MLB up to that point would have done little to push the league toward equal playing 

strength among teams.  This would lay the foundation for much of the modeling within 

the proceeding literature as league policies changed substantially with respect to the 

reserve rule in the coming years. 

 Fort and Quirk (FQ, 1995) and Vrooman (1995) echo EQ’s results with a static 

approach to the problem that is more easily interpreted.  Using the standard two-team 

model from FQ, we see in Figure 1.1 that there is a divergence from equilibrium (B and 

C) under the reserve rule when contract sales are not permitted.  In this case, the smaller 

market team would prefer to sell contracts to the larger market team and the talent level 

competitive balance would converge on A, while the price of talent would fall to c*.  

Therefore, in the case where contract sales are permitted, the small market team will 

continue to sell talent to the large market team up to A.  The result is as predicted in EQ: 

the cost of talent is reduced from c to c* in Figure 1.1 and players are exploited.  Note 

that in the figure, the cost of talent is horizontal at c and c*, and equilibrium occurs when 

MR=c* as standard profit-maximization conditions would suggest. 

 Following the presentations of EQ in 1971—and preceding FQ and Vrooman in 

1995—Daly and Moore (1981) and Daly (1992) present a dissenting view with respect to 
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the Coasian world without transaction costs inferred by Rottenberg in professional sports.  

Daly and Moore question the validity of the assumption that individual decision makers 

(team owners) do not consider the external effects in resource allocation when making 

decisions.  They also suggest that there are additional costs to selling rights of players 

from team to team that may have effects on the application of the Invariance Principle.  

The authors propose that these owners will be overseen by a league entity that would 

cooperate to do what is best for the league.  In other words, the league as a whole would 

encourage a distribution of talent that would be most beneficial for all owners, rather than 

a single owner.  The point is further made that fan confidence—referred to as “contest 

legitimacy” (Daly, 1992)—relies on balance and rational owners should consider 

continued fan interest when making profit-maximizing decisions. This seems like a 

reasonable criticism and is related to the UOH, as league collaboration exists in order to 

ensure the survival of all teams. 

 

1.5.2 Gate Revenue Sharing and Competitive Balance 

 In addition to modeling the ultimate consequences of the reserve clause from the 

perspective of the Invariance Principle, EQ also specifically consider gate revenue 

sharing in their work in order to incorporate it into their final conclusions.  Below, EQ 

represent the percentage of gate receipts collected by the home team with the α 

parameter: 

 

𝑅𝑖𝐺 =  𝛼�𝑅𝑖𝑗
𝐺𝑖

𝑛

𝑗≠𝑖 

�𝑃𝑖𝑗(𝑡𝑖, 𝑡𝑗)� +  (1 − 𝛼)�𝑅𝑗𝑖
𝐺𝑗

𝑛

𝑗≠𝑖 

�𝑃𝑗𝑖�𝑡𝑗 , 𝑡𝑖��, 
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 Here, we can see that a proportion each team’s revenue function also depends on 

the receipts from games played at other teams’ parks.  FQ follow with an updated view of 

competitive balance in a more modern world of free agency in professional baseball and 

adapt this revenue function for local (Li) and national (N) television revenues in the static 

case.  With this, we return to a variant of our original basic revenue function from above, 

 

𝑅𝑖 =  𝛼�𝑅𝑖𝑗
𝐺𝑖

𝑛

𝑗≠𝑖 

�𝑍𝑖𝑗(𝑡),𝐴𝑖� + (1 − 𝛼)�𝑅𝑗𝑖
𝐺𝑗

𝑛

𝑗≠𝑖 

�𝑍𝑗𝑖(𝑡),𝐴𝑗� + �𝑅𝑖𝑗
𝐿𝑖(

𝑛

𝑗≠𝑖 

𝑍𝑖𝑗(𝑡),𝐴𝑖) +
𝑁
𝑛

, 

 

 Where, 𝑍𝑖𝑗  defines the simplified version of 𝑃𝑖𝑗 from earlier as the difference 

between the win percents of the competing teams, Ai indicates the drawing potential of 

each market, and each owner chooses 𝑍𝑖𝑗∗ (𝑤𝑖
∗,𝑤𝑗∗)  given c* in equilibrium to maximize 

profits based on their own market conditions.  National revenue is shared equally among 

teams and its value determined exogenously.  Local television revenue is considered 

unshared with its value determined by the market of each team and the closeness of 

competition between teams i (strong-drawing) and j (weak-drawing).  FQ simplify the 

above using a two-team league first without local television revenues.  I use a simplified 

version here; first define, 

 

𝑅𝑖𝑗
𝐺𝑖 =  Game Revenue from Team i′s home park and, 

𝑅𝑗𝑖
𝐺𝑗 =  Game Revenue from Team j′s home park.  
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We find that the profit functions for teams i and j are given by: 

 

𝜋𝑖 = 𝛼𝑅𝑖𝑗
𝐺𝑖(𝑤𝑖,𝑤𝑗) + (1 − 𝛼)𝑅𝑗𝑖

𝐺𝑗(𝑤𝑗,𝑤𝑖) +
𝑁
2
− 𝑐𝑤𝑖, 

𝜋𝑗 = 𝛼𝑅𝑗𝑖
𝐺𝑗(𝑤𝑗,𝑤𝑖) + (1 − 𝛼)𝑅𝑖𝑗

𝐺𝑖(𝑤𝑖,𝑤𝑗) +
𝑁
2
− 𝑐𝑤𝑗 . 

 

And employing our previous assumptions, first-order conditions follow: 

 

𝛼
𝜕𝑅𝑖
𝜕𝑤𝑖

− (1 − 𝛼)
𝜕𝑅𝑗
𝜕𝑤𝑗

− 𝑐 = 0, 

𝛼
𝜕𝑅𝑗
𝜕𝑤𝑗

− (1 − 𝛼)
𝜕𝑅𝑖
𝜕𝑤𝑖

− 𝑐 = 0. 

 

 It follows that the sharing coefficients drop out of the equation, MRi = c* = MRj, 

(c* < c) in equilibrium, and players receive lower salaries (Figure 1.2).  This result 

hinges on the idea that revenue sharing equally affects the marginal revenue for each of 

the teams, resulting in a shift downward in Figure 1.2, and reducing the demand for talent 

(and ultimately the price of it).  The fall in talent cost is due to the disincentive to invest 

in winning because a proportion of the revenue function of each team relies on the 

success of the other team in drawing fans.   

 FQ extend this to an n-team league with the full specification of revenues above 

(non-shared local TV revenue).  Ultimately, the idea that the distribution of talent will 

remain the same does not necessarily hold depending on the way that local television 

revenues are (are not) shared.  Using these revenues in sharing may help to subsidize 
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small market teams substantially, given the systematic responsiveness of local television 

revenue to the market size and quality of the home team.  The net revenue implications 

for the league—as well as the distribution of profits—depend on the nature of the sharing 

rules of gate and television (National and Local) revenue sharing and incentives for 

owners to reinvest in the competitive market for talent.  When local TV and gate 

revenues are subject to the same sharing rules, league-wide profits are larger, as it would 

lower salary costs while pushing the league toward a distribution of talent that would 

maximize revenues (pp. 1289). 

Szymanski (2003; 2004) argues that past literature has not correctly interpreted 𝑡𝑖
𝑡𝑗

, 

implying that it cannot be consistent with a Nash (equal to zero) and representative of the 

implication that for every unit of talent that Team i invests in, it comes directly from 

Team j (equal to -1) in a non-cooperative environment.  He suggests that using an 

additional specification for investment in talent, 𝑧𝑖, is needed in what is deemed to be a 

non-cooperative talent market game.  The claim is that the IP may no longer hold under 

gate revenue sharing.  This defines the exchange between Szymanski (2003; 2004; 2006), 

Szymanski and Kesenne (2004), Eckard (2006), Fort and Winfree (2009), Quirk and Fort 

(2007).  Winfree and Fort (2012) reconcile the model in order to conform with Nash 

conjectures by including an additional choice variable—investment in talent—in the 

modeling of team decision-making.  Ultimately this specification exhibits that the IP can 

still hold under certain conditions for closed leagues.  Winfree and Fort (2012) introduce 

a third dimension into the model—remaining with the two team simplification.  With this 

specification, the authors let 𝑡1 = 𝑡1(𝑧1, 𝑧2), where 𝑧𝑖 denotes the investment made in 

talent level for each team.  Similarly, 𝑡2 = 𝑡2(𝑧2, 𝑧1).  Following Winfree and Fort, I 
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remain at a general level for the modeling under these specifications, with the CSF and 

team profit functions, respectively, defined as: 

 

𝑤𝑖 = 𝑤𝑖 �𝑡𝑖�𝑧𝑖, 𝑧𝑗�, 𝑡𝑗�𝑧𝑗 , 𝑧𝑖�� and 𝜋𝑖 = 𝑅𝑖(𝑤𝑖) − 𝑧𝑖, 𝑖 = 1, 2. 

 

 Here, 𝜕𝑅1
𝜕𝑧1

= 𝜕𝑅2
𝜕𝑧2

 determines the Nash equilibrium along with the adding up 

constraint, 𝑤1 + 𝑤2 = 1 from before.  This model allows the characterization of talent 

elasticity both Nash equilibrium and Nash conjectures.  In this case, 𝜕𝑧1
𝜕𝑧2

= 𝜕𝑧2
𝜕𝑧1

= 0, and 

𝑑𝑅1
𝑑𝑤1

𝜕𝑡1
𝜕𝑧1

= 𝑑𝑅2
𝑑𝑤2

𝜕𝑡2
𝜕𝑧2

.  For the complete details of reaching this result, the reader is referred 

to Winfree and Fort (2012).  Ultimately, it can be shown that the IP does not necessarily 

hold in a closed (or open) league.  However, under certain assumptions, (𝑑𝑅2
𝑑𝑤2

𝜕𝑡1
𝜕𝑧1

=

𝑑𝑅1
𝑑𝑤1

𝜕𝑡2
𝜕𝑧2

, which holds if the marginal product of talent investment across owners equates 

that of the market, such that  𝜕𝑡1
𝜕𝑧1

= 𝜕𝑡2
𝜕𝑧2

) the model above collapses to the original FQ 

model (1995), and the IP holds.  Of course, the validity of these assumptions is an 

empirical matter, eliciting further disagreement from Szymanski (2012).  In the end, the 

purpose of this work is not to confirm or reject the IP, but to lay out the foundation and 

justification for the empirical work presented here. 

 

1.5.3 Salary (Payroll) Caps, Luxury Taxes and Competitive Balance 

 Unlike gate revenue sharing, FQ and Vrooman disagree on the impact of payroll 

caps in professional sports.  While FQ state that enforceable caps should tend to improve 
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balance, Vrooman views it simply as a preconceived approach to control player costs 

with little effect on balance.  The assumptions behind the cap discussed in FQ come from 

the NBA payroll cap which allows a certain percentage of overall revenues to be spent on 

player salaries and bonuses.  There is a simple assumption here in which the total profits 

are greater under the cap than under free agency—something that seems reasonable for a 

profit-maximizing group.  Assuming that the cap is set in a way that all teams spend 

exactly the cap, we end up with Figure 1.3 as the result.  In this case, the weak drawing 

team gains the triangle ABDE in profits, whose area exceeds that of DFG.  Similarly, the 

strong drawing team gives up the triangle AHI, but this is offset by the rectangle cc*HG 

from the lowered cost of talent.  Therefore, all teams can gain in this situation.  However, 

enforcement could be an issue (FQ, 1995)—and this has been the story in the NBA, 

where certain loopholes have allowed many teams to spend above a “soft” cap.  Other 

ways of circumventing a cap could simply be due to amenities available for players in 

larger markets, which are not directly accounted for in a cap of payrolls.  From Figure 

1.3, we can see the reason: larger market teams have more revenue generating potential 

from the talent on the small-market team and have the incentive to push balance back 

toward the equilibrium point. 

 Vrooman, on the other hand, suspects that caps would have little effect on balance 

even if they were enforceable.  Under his scenario, the entire league contributes the same 

amount of payroll, resulting in zero marginal costs of winning, and ultimately leading to a 

revenue-maximizing league.  Vrooman asserts that with the entire league acting as a 

single firm, the best players will simply end up in markets where the non-sports salary 

income is the highest.  Because player costs are constant, this could lead to more 
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imbalance than without the cap since there are not decreasing profits with talent 

investment for a cap set well below MR=MC.  If the additional non-salary income is not 

paid by the franchises, they are not subject to these increasing costs to hire more 

superstars than would otherwise come to the large market team.  The extent to which this 

would be the case is likely better suited for empirical investigation about the preferences 

of players to play in markets like New York and Los Angeles.  Using NFL as a very 

simple observational example (which does use a relatively hard cap among other policies 

for revenue redistribution), we see top players like Peyton Manning making significant 

non-sports income in smaller markets, raising questions about the latter conclusion that 

an enforceable cap would actually make balance worse.  Even with this observational 

example, there still seems to be plenty of reason to believe that larger markets would 

produce more sponsorship and endorsement opportunities on average and at least attract 

more superstars at the margin. 

 However, Vrooman’s original assertion that balance would not change under the 

cap may possibly hold in a case where improving balance would not increase revenues 

for the entire league.  Under the assumption that a more balance league would increase 

revenues, even a collusive firm would seem to want to maximize these revenues by 

ensuring the policy is developed to do so.  If the league is already at a revenue-

maximizing balance point, then Vrooman’s theory as to the ultimate result makes more 

sense, as the cap is instituted in a way that does not change balance, but simply lowers 

costs across the league.  This is again left up to empirical analysis, and optimal balance in 

specific leagues is considered theoretically in Fort and Quirk (2010; 2011) from the 

perspective of owners versus a league planner looking to maximize welfare.  Thus far, it 
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seems that the caps in the NBA have done little to promote balance to date (Fort and Lee, 

2007), either due to enforceability or by poor design.  The overwhelming consensus on 

the institution of an enforceable salary cap in the context of most North American 

leagues seems to be a path toward more balanced play. 

 An interesting variant of the payroll cap is the current luxury tax imposed in 

MLB, referred to as the “competitive balance tax”.  Figure 1.4 shows the change in 

balance from A to B, along with a reduced cost of talent similar to that of the payroll cap 

and revenue sharing policies.  While FQ does not explicitly model the payroll tax, 

Vrooman considers this possibility in a footnote, and Marburger (1997) directly considers 

the luxury tax.  The first theoretical result here is that the slope of the marginal revenue 

curve for the large market team is reduced, leading to more competitive balance than we 

would otherwise expect.  This is because the larger market team has its marginal revenue 

function become (1 − 𝑠)𝑀𝑅𝑖, and therefore the marginal revenue from investing in talent 

is lowered for this owner.  The additional result is again a lowered cost of talent, since the 

demand for talent within the league is lowered due to the tax on the large-market team.   

 The extent to which balance is affected depends largely on the number of teams 

affected by the tax and the rate of the tax.  The tax rate and level at which payroll must 

exceed to be subject to the tax must be chosen carefully.  If the threshold or tax rate are 

set too high or too low, the new policy may have very little effect on the demand for 

talent and ultimately not significantly change balance.  In addition, the lower wages to 

players could reward small market teams for having less talent than before depending on 

how the taxes are redistributed (Marburger, 1997).  MLB has a loose league requirement 

about reinvestment of shared revenues that again runs into an enforceability problem (as 
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teams aren’t necessarily incented to reinvest in talent based on their own MR curves).  

The league has recently chastised the Florida Marlins for not reinvesting revenue sharing 

into the talent market, but the enforcement of this request is as questionable as proposed 

by FQ under a standard NBA-type salary cap. 

In MLB’s most recent collective bargaining agreement, this tax has been applied 

to the amateur draft and its growing signing bonuses as well.  The impact that the tax 

would have on competitive balance seems rather small, though does seem to reduce the 

incentive for amateurs to “hold out” for larger signing bonuses.  This new league policy 

is not considered here, though economic models of impacts of the newest collective 

bargaining agreement would be quite interesting, as much of the agreement addresses pay 

schemes for amateur players negotiated by a labor union (MLBPA) which does not 

necessarily represent their interests. 

 

1.6 Summary of Following Work 

The rest of this dissertation uses the lessons provided in the theory of sports 

leagues above, and continues as follows.  In the following chapter, I discuss past work in 

the time series treatment of professional sports attendance and the UOH.  Chapter 3 

describes the general methodology for the work presented in this dissertation. Chapter 4 

presents a full empirical analysis for each of the leagues (NBA, NFL and NHL) while 

Chapters 5, 6, 7 and 8 present the franchise level investigations (MLB, NBA, NFL and 

NHL, respectively).  Finally, Chapter 9 summarizes implications and limitations of the 

research, concluding with suggestions for future work beyond the scope of that exhibited 

here. 
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FIGURE 1.1: Talent Distribution Under the Reserve Clause (Free Agency) 
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FIGURE 1.2: Talent Distribution Under Home-Away Gate Sharing 
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FIGURE 1.3: Talent Distribution Under Payroll Cap 
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FIGURE 1.4: Talent Distribution Under Luxury Tax for Large Market Team 
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CHAPTER 2 

Time Series Analysis in Professional Sport 

 

2.1 Introduction 

 Here, it is important to first revisit the distinction between time series tracking of 

competitive balance, and time series treatment of attendance demand and its relationship 

to balance and uncertainty, as in Fort and Maxcy (2003).  There is a large collection of 

past work that tracks the time series of competitive balance over the long term (Fort and 

Quirk, 1995; Humphreys, 2002; Schmidt and Berri, 2004b; Lee and Fort, 2005; Fort and 

Lee, 2007; Fort and Lee, forthcoming).  Understanding the time path of balance is 

important in and of itself with respect to policy considerations; however, its relationship 

to attendance allows for further analysis of the appropriate level of balance for a league.   

 Further work with respect to competitive balance and attendance has used 

approaches such as first differences and autoregressive techniques (AR, ARIMA, ARCH, 

GARCH, VAR) in order to estimate influences of variables from population and income 

to taste and preferences on attendance.  However, these models may be limited.  The 

work by Bai and Perron described in the following section allows for level data analysis 

for those series that are stationary with breaks (henceforth, the BP Method) and to clearly 

understand the influence of these variables on economic outcomes for teams and leagues.  
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Davis (2009) shows that GARCH or OLS may be a reasonable specification for a model 

of attendance demand; however, a purely linear model may not correctly account for 

exogenous shocks in attendance found through the BP Method, especially in longer 

attendance series.  This added ability to estimate breaks in both levels and trends may 

affect not only coefficient estimates for uncertainty variables, but may also provide more 

information about impacts of historical events or policy implementations by leagues that 

is not accounted for in a standard ARCH model.  The BP approach has only been used for 

a single league (MLB) at the league aggregate level of attendance and the UOH, leaving 

unexplored areas of the time series properties of the NBA, NFL and NHL at the league 

level.  In addition, further application of the BP Method at the franchise level should help 

to inform each of the four league-level analyses and enhance the understanding of 

attendance demand, league decision making and the Uncertainty of Outcome Hypothesis. 

 

2.2 Preliminary Treatment and Recent Advances 

 When working with time series data, there are a number of important issues to 

account for in order to appropriately estimate regression coefficients over the time path of 

a dependent variable.  Fort and Lee (2006) lay out a schematic for this process for 

baseball attendance (Figure 2.1).  This schematic allows the researcher to follow a logical 

path in the time series procedure to ensure that the maximum amount of information can 

be extracted from modeling the data series.  Each of the steps in the schematic is 

explicitly described in the following sections with regards to the data evaluated in this 

work. 
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The standard first step in time series analysis is to test for a unit root in the data, 

usually using one or a combination of the Augmented Dickey-Fuller (ADF), Phillips-

Perron (PP) or Dickey-Fuller Generalized Least Squares test (DFGLS; Elliot, 

Rothenberg, and Stock, 1996).  If the presence of a unit root is rejected, one may proceed 

with treating the series as stationary and apply one of many time series modeling 

approaches.  However, if data are found to be non-stationary, then first differences will 

likely result in analysis on a stationary series once second-order serial correlations are 

accounted for.  Unfortunately, first differences and some traditional autoregressive 

modeling techniques can limit the analysis and straightforward interpretation of 

regression coefficients, as I will briefly discuss in the following section. 

 Standard unit root tests assume that data are distributed around a mean (level) 

throughout the time series data (allowing a trend), which can limit the power of these 

tests in the presence of a one-time structural change (Perron, 1989).  However, recent 

advances have allowed for the testing of stationarity with one or two breaks (Zivot and 

Andrews, 1992; Lee and Strazicich 2001, 2003, 2004) using the Zivot Andrews (ZA) or 

Lagrange Multiplier (LM-1 and LM-2) tests.  These tests detect structural change(s) in 

the data over time and segment the series into regimes for which stationarity is assessed.  

The latter (LM-1 and LM-2) are shown to have more appropriate size and power 

properties and are the best choice for this analysis.  Breaks may be found in either levels 

or trends with the tests, and methodology follows in the footsteps of Perron in 

establishing a solution to the previously commonly held belief that macroeconomic time 

series are generally non-stationary. 
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As a relatively simple example, we can use a white noise series at 300 equally 

spaced time points in order to visualize the occurrence of mean-shift structural change.  

For the first 100 time points, the data vary around a mean of zero with normal errors.  

However, at time point 101, the data abruptly jumps up—an “exogenous shock” as 

described in Perron (1989)—but continues to follow the same path at this higher level 

(see Figure 2.2).  This would suggest that the data generating mechanism is the same, 

while the shift was created by an exogenous factor.  Standard tests, such as the ADF test, 

may not detect the fact that the data are stationary within each of the regimes around this 

shock.  However, the LM-2 test would likely find this series to be stationary with two 

exogenous level shifts at time points 100 and 200.  The idea behind these tests is to assess 

stationarity by separating these shocks from the noise function around the mean.  Perron 

(1989) exhibits this issue using the Great Crash of 1929 and the Oil Price Shock of 

1973—both considered exogenous—and quarterly GNP data.  The ability to model the 

data as stationary with breaks is advantageous for any series that may be broken into 

stationary regimes due to structural change or for stationary data with breaks that must be 

accounted for before estimating standard linear models.  Of course, modeling the actual 

location and size of the break is an important part of properly estimating the coefficients 

and their respective statistical significance.  However, while these tests roughly estimate 

break dates, the breaks must be more precisely estimated in a subsequent step in the 

analysis. 

 Perron (1989) first discusses the modeling of data with breakpoints, and Bai and 

Perron (1998; 2003) take the structural change analysis one step further, developing a 

technique to estimate least squares regressions with dates and sizes of structural change 
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in both level and trend simultaneously (BP Method).  Lee and Fort (2005; 2006; 2007; 

2008) pioneer the BP Method in sports research for both the tracking of competitive 

balance for the four major North American leagues, as well as testing the Uncertainty of 

Outcome Hypothesis and its relationship to attendance at the Major League Baseball 

league-level aggregate.  The BP Method applied to stationary data or break-stationary 

data allows for up to five break dates in level and/or trend along with the ability to 

separately estimate covariate coefficients across regimes (and ultimately the stationary 

process occurring between breaks).  Allowing only some predictors (in this case, level 

and trend) to change across regimes is particularly important for shorter series with 

multiple structural changes to preserve degrees of freedom in the modeling procedure.  I 

follow the Fort and Lee schematic for the analysis of data for those series found to be 

stationary with breaks (Steps 1, 2.1, 2.1A, and 2.2 in Figure 2.1) in the remaining 

chapters.  Those series found to be nonstationary are left for further analysis beyond the 

scope of this work. 

 

2.3 Attendance Series as Stationary Processes 

 I begin the analysis by evaluating the unit-root properties of each series at the 

league and franchise levels as shown in Figure 2.2.  Analyzing stationarity is a useful 

exercise in itself for a few reasons.  First, if attendance is non-stationary, then the use of 

level data (e.g., demand estimation using panel data) may lead to biased estimates and the 

direction of the bias is unknown.  Using European football, Davies, Downward, and 

Jackson (1995) were the first to show that ignoring time series behavior in sports data 

could lead to spurious correlations, posing special problems for demand analysis and 
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policy prescriptions.  Jones, Schofield, and Giles (2000) extended these observations.  In 

addition, a technique such as taking first differences of the elements of a time series is a 

useful but limited approach to a non-stationary series (e.g., no elasticity estimates can be 

had from first differences).  However, as noted in Fort and Lee (2006), if the data are 

stationary then standard regression applications to level data are appropriate (for 

example, taking logs gives direct elasticity estimates).  For this reason, the authors 

suggest first testing the attendance series for significant breaks—or shocks—and 

determining if the data are stationary between these breaks. 

If this subsequent unit-root test with endogenously specified break points rejects 

non-stationary behavior, level-data analysis is restricted by the limits of stationarity—that 

is, to the data between specific break points in the time series.  Lee and Fort (2008) take 

the analysis of annual league-aggregate MLB attendance in this direction.  Finally, if the 

unit-root test with endogenously specified break points fails to reject non-stationary 

behavior, data transformation such as taking first differences may be required in order to 

perform additional regression analysis. 

Following this line of reasoning, each league and team-level attendance series will 

be tested against the null of a unit-root using the Augmented Dickey-Fuller and Phillips-

Perron tests with both a constant and a trend variable.  The numbers of lags are 

determined by minimization of the Schwartz-Bayesian criterion for the ADF test, and by 

the truncation suggested by Newey and West (1994) for the PP test.  Unit-roots are 

further verified using the generalized least squares Dickey-Fuller test as described in 

Elliot, Rothenberg, and Stock (1996) for all leagues and franchises. 
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Leybourne, Mills and Newbold (1998) highlight the possibility of spurious 

rejections with standard unit-root tests when breaks occur near the ends of a non-

stationary series.  Therefore, I employ the two-break minimum LM unit-root test to 

support any result from the ADF and PP tests (Lee and Strazicich, 2001; 2003; 2004) 

using GAUSS code generously provided by Professor Junsoo Lee.  The results are further 

confirmed using the test in Zivot and Andrews (1992), but are not reported here. 

As in Lee and Fort (2008), the LM unit-root test statistic with exogenously 

specified break points is obtained from the regression: 

 

 

∆ ty = ′ δ ∆ tZ +ϕ t −1˜ S + tε , 

 

where 

 

t˜ S = ty − x
˜ ψ − tZ ˜ δ + tε , t = 2,…, T; 

 

˜ δ  are the coefficients in the regression of 

 

∆ ty  

on 

 

∆ tZ , with Zt representing a vector of exogenous variables; 

 

x
˜ ψ  is given by 

 

1y − 1Z ˜ δ ; 

and y1 and Z1 denote the first observations of yt and Zt.  εt is the error term, assumed N(0, 

σ2).  As in Perron (1989), in the most general model (changes in level and trend) with two 

breaks, Zt is described by [1, t D1t, D2t, DT1t, DT2t]', where Djt = 1 for TBj  TBj + 1 for j 

= {1, 2}, and zero otherwise, DTjt = 1 for t  TBj + 1 for j = {1, 2}, and zero otherwise, 

and TBj stands for the time period of the breaks (Lee and Strazicich, 2003).  Following 

results from this procedure, I employ a one-break minimum LM unit-root test (Lee and 

Strazicich, 2001) for series that are not rejected at the highest level with the two-break 

test.  This is advisable given that the two-break test can adversely affect the power to 

reject the null hypothesis in the presence of a single break (Lee and Strazicich, 2003).  
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This last step clearly identifies those team-level attendance time series that remain to be 

treated under (for example) first differences in subsequent regression analysis.   

From this stage of the analysis, one may discern whether strike years have an 

impact on the underlying assessment of stationarity of team-level attendance time series.  

Ultimately, unit root tests are performed for both the original data and this adjusted 

version for all leagues and teams to evaluate the differences between real data and the 

“counterfactual” data in which the effects of a labor dispute are minimal.  I note that, of 

course, this does not necessarily mirror a league in which labor disputes were non-

existent, as impacts from these disputes may have been experienced both before and after 

the actual work stoppage event.  While break dates are roughly estimated in the unit root 

with breaks procedure, the subsequent BP Method is needed in order to more accurately 

assess the breaks present in the attendance series (Figure 2.2). 

 

2.4 Structural Change and Demand for Attendance 

 Due to limitations within the empirical estimation procedures proposed, 

breakpoint estimation is not employed for current franchises with less than 40 years of 

existence, as the statistical power of the model is significantly reduced with shorter series 

(Bai and Perron, 2006).  However, I do assess the presence of a unit root for shorter 

franchise level series.  For those league and team series of appropriate length in which a 

unit-root is rejected, or rejected with breakpoints, I apply the approach of Bai and Perron 

(1998, 2003; I thank the authors for making their GAUSS code available online) allowing 

changes in both levels and trends as first described in Perron (1989).  This model 

parallels that of the AL and NL aggregate approach in Lee and Fort (2008).  For the BP 
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procedure, Bai and Perron (2003) consider the following regression model with m breaks 

(and m + 1 regimes): 

 

𝑦𝑡 =  𝑥𝑡′𝛼 + 𝑧𝑡′𝛽𝑗 +  𝑢𝑡, t = Tt-j + 1,…, Tj, j = 1,…, m+1. 

 

 In the above model, the dependent variable at time t is yt with disturbance ut, 

while 𝑥𝑡(𝑝 × 1) and 𝑧𝑡(𝑞 × 1) are vectors of covariates and α and βj are the 

corresponding vectors of coefficients.  The indices (T1,…, Tm) are treated as the unknown 

breakpoints.  The model above indicates a partial model when 𝑝 > 0, and a pure 

structural change model when 𝑝 = 0.  Under the partial model, only the coefficients for 

zt are allowed to vary, while the coefficients for xt remain constant across regimes (Bai 

and Perron, 2003). 

 The dependent variable of interest is Team or League Average Per-Game 

Attendance.  I again note that although attendance is often used as a demand proxy, it 

does not capture the full demand for sport in an age of mass media and large television 

contracts.  Therefore, it is important to keep in mind that these simplistic models estimate 

attendance and are not necessarily demand estimations for the team or league’s entire 

“sports product”.  There are other issues that allow limited information from these 

simplistic models.  In particular, the BP Method cannot account for censored data 

(sellouts).  These issues have recently been theoretically considered by Qu and Perron 

(2007).  In addition, important demand covariates like ticket prices are subsumed in a 

generic time trend throughout. Cross-sectional time series approaches where more data 
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are available will prove enlightening and complementary to the current empirical 

analysis. 

 In Chapter 3, I address more specific issues with the data used within this work, 

including sample size, variance estimation, and covariate considerations.  Additionally, I 

discuss the treatment of labor stoppages and franchise moves throughout the histories of 

each data set.  Finally, I will expand further on some of the econometric issues that I have 

alluded to above. 
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FIGURE 2.1: Time Series Modeling Schematic 
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FIGURE 2.2: Random Data Generating Process with Exogenous Shocks 
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CHAPTER 3 

General Methodology 

 

3.1 Predictor Variables and Measurement Issues 

 Uncertainty of outcome is realized in the form of competitive balance measures 

when considered in attendance estimation for professional sports.  This notion of league 

balance and uncertainty may be manifested in multiple ways, including game uncertainty, 

playoff uncertainty, and consecutive season uncertainty (Cairns, 1987; Sloane, 1976).  

Game uncertainty (GU) refers to the closeness of games, while playoff uncertainty (PU) 

refers to the closeness of pennant/championship races.  Finally, consecutive season 

uncertainty (CSU) refers to the occurrence of dynasties in a given league (Butler, 1995; 

Lee & Fort, 2005).  Although there have been calls for (Zimbalist, 2002) and attempts at 

capturing (Humphreys, 2002) these constructs in a single form, each of these measures of 

balance may prove vital to league success and cater to fan preferences for balance in 

different ways if the UOH holds in sporting competition (Fort, 2003; Fort & Maxcy, 

2003).  For this reason, I will consider all three realizations of uncertainty as separate 

measures within each league and franchise attendance model constructed. 

 The attendance models employ the GU measure “Tail Likelihood” (TL) from Fort 

and Quirk (1995) and Lee (2004; 2006) using data regarding teams in the upper and 

lower tails of the distribution of win percentages in the respective league.  This measure 
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assumes fans are more responsive to changes in the extremes of the distribution and 

measures the frequency of teams in these tails.  As TL increases, this indicates a tighter 

distribution of win percent, and GU has increased in the given season (see Appendix E 

for the specifics of its calculation).  The UOH would imply that an increase in TL would 

be related to an increase in attendance.  This measure has been used extensively in the 

literature on sports economics across a number of leagues; however, Owen (2011) 

describes the disagreement over using a binomial-based idealized standard deviation of 

win percent in leagues with a non-zero possibility of a draw.  In this analysis, the NHL 

falls into a category of leagues in which ties are a common occurrence (I assume that the 

probability of a tie in the NFL is essentially zero, despite the technically non-zero 

possibility).  Despite some small changes in the measure, I proceed with the standard 

binomial approach to TL using win percent for the NHL, as Owen shows that quantitative 

differences in using this estimation approach are minimal.  In addition, the interest of this 

demand analysis regards the changes in balance across seasons for the same sport league, 

rather than a comparison of the value of the measure itself across leagues. 

 Measures for PU (WinDiff) and CSU (Corr) are also included in the attendance 

demand regression models.  The calculation of WinDiff is outlined in Lee and Fort 

(2008), and is made up of the average difference in winning percentages between division 

winners and runners-up in each season, as well as the difference between the “last team 

in” and the “first team out” for each league or division (see Appendices F through I for 

the specifics of calculation of WinDiff for each league).  As WinDiff decreases, the 

division races between the winner and first team out of the playoffs is closer, and PU has 

increased for the given season.  UOH would predict attendance to increase with a 
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decrease in the WinDiff measure.  It is important to note that given the changing rule 

structures for each league over the course of the attendance series, the calculation of 

WinDiff varies throughout the analysis.  Again, although there are minor issues with 

using win percent for calculating WinDiff in the NHL, they likely have little to no effect 

on the outcome of the model estimations here (Owen, 2011).  I also employ an alternative 

analysis using the number of points back for the NHL, but the results (available upon 

request) do not differ substantially from the win percent metric.  Therefore, I proceed 

with using one half win for ties in the WinDiff measure for the NHL for the remainder of 

this work. 

 The CSU measure (Corr) consists of the correlation between each team’s winning 

percentage in the current season and its own average winning percentage over the 

previous three seasons, similar to that of Butler (1995) and Lee and Fort (2008).  Higher 

Corr, indicates that same teams are dominant over time, and CSU from year-to-year is 

declining (the full calculation of Corr is exhibited in Appendix E).  Based on UOH, we 

would expect a decrease in the Corr measure to be associated with an increase in league 

attendance.  While there is some correlation between these three measures of competitive 

balance, calculation of the variable inflation factor for the breakpoint models indicates 

that multicollinearity is of little concern (league balance variable inflation factors were 

below five, a suggested threshold implying multicollinearity).  Therefore, I continue with 

including all variables within each regression. 

 The last competitive balance measure considered, coined the Competitive Balance 

Ratio (CBR), comes from Humphreys (2002).  This measure combines within and across 

season balance in a single measure, and includes aspects of both Game Uncertainty and 
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Consecutive Season Uncertainty.  This measure is included only in the breakpoint 

estimation for MLB franchises.  After further consideration, the conflation of across and 

within season balance in this measure makes it more suitable for balance comparisons 

across leagues than attendance estimation for a single league across seasons.  Therefore, I 

do not proceed with CBR for any models involving the NBA, NFL or NHL.  For more 

information on the calculation of this measure, the reader is referred to Appendix E and 

Humphreys (2002). 

 Finally, I include each team’s seasonal winning percentage (W%) as an additional 

input variable for the franchise level regressions.  While fans may be directly responsive 

to competitive balance and uncertainty at the league level, fans likely care about their 

own team quality first with overall balance as a secondary component to individual team 

interest.  Under this assumption, El-Hodiri and Quirk (1971) first discuss the idea that the 

optimal probability of a home team win would be between 0.5 and 1.  Of course, the 

coefficient estimate from the team quality variable must be approached with significant 

caution, as the direction of its causality can become convoluted in interpretations.  Teams 

likely choose their quality in the long run (Fort & Quirk, 1995), rather than respond to 

short-term attendance shocks.  Davis (2008), however, finds a significant relationship 

between team quality and team attendance, with the direction of causation going from the 

former to the latter using a VAR model.  I assume W% is well-suited to control for the 

expected fan interest in individual teams, as the balance measures control for the changes 

along the time path of balance in each league when estimating attendance.  Because the 

primary interest of this investigation is the historical tracking of attendance given the 

league’s balance, W% is used simply to control for baseline team interest based on 
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quality in each respective season.  Since attendees early in a season have little to 

benchmark the current year’s success, it is likely that the previous season’s success will 

have a stronger effect than the current one at these points.  However, the current season 

success is likely more influential later in the season.  Therefore, ancillary regression 

models are also estimated, which include a one-year lagged win percent variable.  A 

detailed description of the calculation of all of the variables included in this dissertation 

can be found in Appendices E through I. 

 Because there is some variation in home games played over seasons, Team and 

League Average Per-Game Attendance is used as the dependent variable of interest 

(TAPG and LAPG, respectively) by dividing the total attendance for the season by the 

number of games hosted by each franchise in each year.  At the annual league and team 

level, strike years are included in the eventual analysis of the determinants of attendance.  

Each league has had a work stoppage or labor dispute at some point in its respective 

history.  Therefore, I make use of both the raw attendance per game (APG, used as a 

generalization to both TAPG and LAPG from here on) and an adjusted version of each 

series in which years containing labor disputes or work stoppages are imputed using a 

simple local linear regression approach (LLR).  In this approach, APG for those years in 

which a labor dispute occurred consists of a weighted average APG of the seasons just 

before and just following the year in question, as well as those games played within the 

year in question, if in fact games were played in that season (this is not the case for the 

2004-2005 NHL season).  While previous literature has made use of indicator variables to 

denote strike years (Schmidt and Berri, 2002, 2004; Coates and Harrison, 2005), this can 

adversely affect detection of long-term structural change elsewhere in the data where the 
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series may be partitioned into short subsamples by the indicator variables (Lee and Fort, 

2007).  The subsamples generated may be so short that endogenously specified break 

points cannot be determined.  This also ensures that later breakpoint estimation is not 

falsely influenced by the short-term shocks that may result from a work stoppage, as 

previous research has found short-term effects of strikes, rather than long-term, and the 

interest of the current research lies more with the long-term structural changes.  However, 

I use both the adjusted and unadjusted APG in order to assure robustness of results from 

the BP procedure.  Only the results of the adjusted data are presented here, with the 

ancillary analysis on the raw data available upon request.  For the team level regressions, 

further considerations were needed for data imputation.  These further considerations are 

discussed more thoroughly in the respective section for each league and team in Chapter 

6 (NBA), Chapter 7 (NFL) and Chapter 8 (NHL). 

 Given that the NBA, NHL and some teams from MLB and NFL in this analysis 

have relatively short attendance series (limited to no less than 40 years), I account for size 

and power issues using a trimming parameter that restricts regimes between breaks to a 

minimum length Bai and Perron, 2006). In estimating attendance models using the BP 

Method, care must be taken with respect to the choice to account for changes in variance 

across regimes.  The failure to reject the presence of a unit root without accounting for 

breaks may be related to both a change in mean and variance across time.  

Heteroskedasticity can play a role in error variance estimation and ultimately statistical 

inference if not properly accounted for.  In the series analyzed here, I first employ the BP 

approach without accounting for the possibility of changing error distributions across 

regimes.  Although more breaks may be estimated using this approach (see Bai and 



 

56 

 

Perron, 2006), the significance of the sequential tests could be affected by changing 

variance across regimes.  Some of the models show evidence of time-dependent variance 

in the errors, suggesting that a more robust model—allowing for heterogeneous error 

estimates—may be more appropriate. 

 Additionally, some models are sensitive to the imputation of years in which work 

stoppages took place.  Large spikes or troughs in covariates that are concurrent with 

strike years or estimated structural changes tend to adversely affect coefficient estimates 

in the league-level regressions.  Both sign and significance of coefficients on balance 

measures in the regression tend to be influenced due to small changes in the data at the 

league level.  Ultimately, both homogeneous and heterogeneous error variance estimation 

models are reported at the league and team levels, but the majority of discussion will 

involve only the latter. 

 I follow by estimating each of the models, allowing for heterogeneity of errors 

across regimes for the sequential tests for structural change.  This resolves most of the 

issues with respect to time-dependent errors in the regression estimates, as there do not 

seem to be systematic errors within each of the regimes for each of the models.  Given 

the multiple variance estimates, I set the trimming parameter to allow no less than 10 

observations per regime for the heterogeneous models.  For example, if a break is 

detected in an attendance series (with a length of 40 years) in 1970, then the procedure 

will not allow a new break anywhere in the interval from 1960 through 1980.  This 

ensures that the procedure does not estimate the variance of a regime with very few data 

points.  For those teams with attendance series longer than 100 data points (MLB only)—

and for the homogeneous variance models—I use a trimming parameter of 𝜀 = 0.15.  
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Series with considerably fewer observations have the parameter set to 𝜀 = 0.20 𝑜𝑟 𝜀 =

0.25 in the heterogeneous model estimation.  This specification also means that the 

maximum number of estimated breaks for the shorter series is 2 or 3, while the procedure 

allows up to a maximum of 5 breaks for the longer series and in the homogeneous error 

variance models.  Bai and Perron (2006) discuss this issue in more detail.  An additional 

consequence of specifying multiple variance estimations is that breaks may not be 

estimated as closely together as with the homogeneous models.  However, this may be 

advantageous in that the model does not attempt to over-fit such short series by 

estimating spurious breaks because of the limited information about mean reversion of 

the data.  The BP approach could run into this difficulty if the process is modeled as 

changing structurally, when in fact it would have reverted to the original mean (level) 

without a break in the shorter series. 

 

3.2 Further Econometric Issues 

 Along with issues in variance estimation and sellout (censoring) problems, there 

are other econometric limitations with the breakpoint regression estimations in their 

current form.  In the league-level regressions for NBA, NFL and NHL, there is some 

concern of correlated errors with respect to Game Uncertainty as measured by Tail 

Likelihood.  Because the BP procedure is a simultaneous estimation of breaks and 

regression coefficients, using errors robust to heteroskedasticity is a complicated 

programming issue beyond the scope of the current empirical analysis (as is the difficulty 

with sellouts and censoring of attendance data for some teams).  In fact, Bai and Perron 

(1998) mention this problem early on in their work developing the BP Method. 
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 It is important to also note that using a trend in the long-term regressions is not a 

replacement for attempting to understand influences of economic factors like ticket prices 

and general wealth in a given market.  Teams could be adjusting ticket prices based on 

the included variables (like team quality and outcome uncertainty/balance) and this 

would not be accounted for in the simplistic approach described here.  The fact that 

tickets could be priced based on these covariates could reduce the amount of information 

gathered through a simplistic model, as any attendance variation that may have occurred 

due to changes in competitive balance and uncertainty could be mitigated by team 

managers attempting to maximize profits under these changing conditions.  Therefore, I 

emphasize that the following analysis is not a demand estimation per se, but a look at 

attendance over time controlling for the changing characteristics of the league. 

 Finally, while qualitatively evaluating structural change is a useful endeavor 

itself, this sort of speculation can only reach so far.  Further “quasi-experimental” 

methods that include more economic variables—such as discontinuity designs using 

panel data—would be complementary to the work proposed here.  However, the 

structural changes found using the BP Method can inform future work regarding policy 

implications in professional sports leagues in North America. 

 As an overview, the methodology explained in this section will first be applied to 

the remaining leagues at the aggregate level: NBA, NFL and NHL.  From there, each of 

the four major North American Leagues will undergo franchise level breakpoint analysis 

with the considerations listed here.  While aggregate information is important for the 

league, the latter will help to understand underlying influences of both breaks and interest 

in uncertainty of outcome.
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CHAPTER 4 

NBA, NFL and NHL League Aggregates 

 

4.1 Introduction 

 Following previous work at the league aggregate level for Major League Baseball 

(Lee and Fort, 2008), I proceed with modeling demand for attendance and test the UOH 

for the National Basketball Association, National Football League and National Hockey 

League.  These three leagues have largely been ignored in the attendance tracking 

literature due to the immediate availability of baseball data in many cases, as well as the 

relative stability of MLB franchises when compared to these other leagues.  Additionally, 

the importance of understanding differences between leagues and preferences of fans of 

these leagues can lend support for both UOH and fan substitution.  Finally, because 

balance is a league level concern—and owners posit that policies are implemented 

through league agreement—it is important to understand the aggregate effects of 

uncertainty of outcome on league revenues.  Once these are established, further 

understanding of these effects at the individual franchise level will be complementary to 

this initial empirical analysis, shedding light on the collective decisions made by owners 

to implement these policies.
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4.2 Data Collection 

 The availability of NBA, NFL and NHL data varies, and attendance is not as well-

recorded as that of Major League Baseball.  The data used here come from Sports 

Business Data (2010) and the ESPN league-specific coverage websites (2010), along with 

the respective Sports Reference (2010) websites for each league.  In addition, there is 

some disagreement of available data sources for NHL attendance in certain years.  

Therefore, for the NHL, I average three sources of game attendance for years in which 

multiple estimates are available, including Sports Business Data (2010), Hockey Zone 

Plus (2010), and Andrew’s Dallas Stars Page (2010).  For the league-level analysis, the 

attendance series are specified as the league average per-game attendance (LAPG), rather 

than raw attendance, as the number of games and teams have changed substantially 

throughout the history of each respective league.  LAPG is calculated by dividing the 

total league attendance by the total number of league games played for each year within 

the series.  The number of games for each season was recorded from Sports Business 

Data (2010) and cross-referenced with historical league standings at the respective league 

web pages at Sports Reference (2010) to ensure accuracy.  The length of each series is 

subject to the availability of attendance data.  The NBA series spans from 1955-56 

through the 2009-10 season; NFL attendance data span from 1934 through the 2009 

season; and the NHL series spans from 1960-61 through the 2009-10 season.   

 The NHL is a special case for the unadjusted data.  The 2004-05 NHL lockout 

caused the cancellation of the entire NHL season.  Therefore, both the unadjusted and 

adjusted LAPG for the NHL contain an imputed value for the 2004-05 season, as the 
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measure would otherwise be undefined for that season.  The adjusted NHL data contain 

an additional imputation for the 1994-95 NHL work stoppage. 

 The National Football League attendance series has a few anomalies.  First, while 

the NFL labor dispute in 1987 ultimately resulted in a player strike, owners continued the 

season with replacement players.  Given the likely difference in the absolute quality of 

play (total league talent) during these games, it seems reasonable that attendance would 

not be at the same levels as it would have otherwise been with NFL regulars on the field.  

In addition, the league only played 15 of the scheduled 16 games in the regular season—

though this alone should not affect attendance on a per game basis outside (leaving aside 

effects of known reduced supply on the demand for attendance at the games that were 

held).  For this reason, the NFL adjusted data include an imputed LAPG data point for the 

1987 season.  For unknown reasons, attendance data for the 1992 NFL season are 

universally unavailable.  Therefore both the adjusted and unadjusted data contain an 

imputed data point for the 1992 season using the same LLR approach as described 

earlier.  Finally, the 1982 work stoppage for the NFL resulted in a shorter season, with 

teams playing only nine regular season games.  I use raw LAPG in the unadjusted data 

for these nine games, with an imputed LAPG for the adjusted series for 1982.  Because 

the playoff format for 1982 differed—with an 8 game first round format—PU was 

calculated similarly to that of more recent NFL seasons: including the Wild Card races as 

the difference in Win Percent between the 8th and 9th place teams in the AFC and NFC.  

The final adjustment relates to 2008 and 2009 NFL attendance availability.  While data 

for the majority of NFL games were available for the 2008 and 2009 season, a few teams 

do not report the full season’s home attendance.  For this reason, I simply assume that 



 

62 

 

each excluded game is equal to that team’s average attendance for those games reported, 

and take the overall per-game attendance for the NFL using these totals.  At the team 

level, current teams that played in any of the AAFC, AFL or NFL in its respective history 

include the full attendance series available only for those years in which they played in 

the post-merger NFL. 

 Lastly, the NBA included some data issues to be addressed.  The NBA attendance 

series spans from the 1955-56 season through 2009-10, but it is important to note that the 

NBA did not merge with the ABA until 1976.  Therefore, any LAPG reported for those 

years before the merger includes only teams in the NBA at that time.  In addition, for the 

NBA work stoppage in the 1998-99 season—in which 428 games were cancelled—I 

include an imputed value for the adjusted NBA series similar to the other two leagues.  

Table 4.1 presents decade averages of each of LAPG for each league along with balance 

measures calculated as in Appendices F through I (and Appendix J for Major League 

Baseball).  Figure 4.1 shows the behavior of each of the variables over time for these 

three leagues. 

 

4.3 Unit Root Results 

 For all league attendance series—both adjusted and unadjusted—ADF and PP 

tests fail to reject the presence of a unit root with or without a trend (Table 4.2).  I follow 

with using the Lagrange Multiplier tests for stationarity with breakpoints from Lee and 

Strazicich (2001, 2004).  Beginning with the two-break test, there is evidence to reject the 

presence of a unit root at the 95% critical level for both the adjusted and unadjusted series 

in all three leagues (Table 4.3).  As described in the previous section, if the attendance 
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series are stationary with only a single break, the power of the two-break test may be 

reduced.  Therefore, I apply the one-break test for all leagues to ensure thoroughness, as 

none of the attendance series were rejected at the highest critical level (99%).  Using the 

one-break test, we can reject the presence of a unit root with breaks at the 99% critical 

level for both the NBA adjusted and unadjusted series (Table 4.4).  The only other 

change in significance from the two-break to one-break test is the NFL adjusted series, 

for which there was not enough evidence to reject the presence of a unit root with only a 

single break.  However, unit root presence was rejected with the two-break test, 

indicating that proceeding to the BP Method is still reasonable for this series.  From here, 

I proceed under the assumption that all attendance series are stationary with at least one 

break. 

 

4.4 The BP Method and Structural Change in Attendance 

 Each of the league attendance series are subjected to the BP Method.  The league-

level attendance regressions and estimated breaks come from the following model: 

 

LAPG’lt = zltβli + xltγ + εlt, t = Ti-1 + 1, …, Ti, i = 1, …, m+1. 

 

LAPGlt is league average attendance per game in year t for league l, i indexes the 

ith regime, and the indices (T1,…, Tm) are treated as the unknown breakpoints.  While the 

notation above could indicate the use of a panel model, in this case the BP procedure is 

performed separately for each league due to programming constraints.  The error 

variance for each league can be found in Figure 4.2, with some evidence that errors are 
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not consistent throughout the entire series.  Therefore, both heterogeneous and 

homogeneous models are evaluated for each league.  For the league-level analysis with 

heterogeneous error variance across regimes, the BP specification is described as: 

 

zt = {1, t}, xt = {TL, WinDiff, Corr}, and (q=2; p=3) 

 

for all leagues, with up to two (NBA and NHL) or three (NFL) breaks allowed in the 

model.  In the models with homogeneous error variance across regimes the specification 

is the same, but these allow up to five breaks to be estimated within the data for each 

league. 

In Table 4.5, I report the results of the BP tests for breakpoints within the data.  The 

sequential test with allowance for heterogeneous regime errors indicated one significant 

structural change for the NBA (1987-88), while the NFL (1972 and 1993) and NHL 

(1974-75 and 1994-95) series were found to have two breaks (break dates and confidence 

intervals presented in Table 4.6).  The procedure first tests the number of breaks (one 

through five) against the null of no break in the data.  These are reported as the SupFt(i) 

tests.  Next, the sequential test—SupF(i+1, i)—begins by testing two breaks against a 

single break, three breaks against two breaks, and so on.  The number of breaks chosen 

for the model depends on the results of these tests.  However, it is important to note that 

for the series considered here the number of breaks is limited by the length of regimes 

between breaks.  Therefore, these sequential tests are not always consistent with the 

ultimate number of breaks chosen for the model.  In these cases, the chosen breaks were 
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cross-referenced with a Bayesian Information Criterion procedure (BIC) to ensure 

accuracy of the model. 

The second model, with assumed homogeneous error variance across regimes, finds 

slightly different results for the break dates.  For the NBA, an additional break is found 

near the 1997-1998 season, while there is an additional estimated break in the NHL 

changes from in 1966-67, with a one year change to the second break (1975-76).  Finally, 

the second NFL break moves from 1993 to 1997 for the homogeneous model.  I note that 

very little information can be gleaned from the coefficients in Table 4.7 for level shifts in 

the model.  While the first level coefficient is the intercept at the beginning of the series, 

later shifts must be accompanied by plots for visual inspection of the direction and 

magnitude of these shifts.  For this reason, fitted yearly values of attendance for both of 

the attendance estimations for NBA, NFL and NHL are plotted in Figures 4.3, 4.4 and 

4.5, respectively. 

Figure 4.3 shows that the 1987-88 break point for the NBA dramatically increased 

attendance in both models.  After that, while the trend remained positive, it was not as 

steep as prior to the break point, and the homogeneous error model indicates a flat trend 

following the second break—a slight downward shift—in 1996-97.   

The NFL break point in 1972 shifted attendance slightly downward and the trend 

declined while the break point for 1993 included no shift but an increase in trend 

thereafter (Figure 4.4). Neither of the post-1972 trends is anywhere near as steep as prior 

to that first break point.  However, the homogeneous error model indicates a slight 

upward shift at the second break in 1997, followed by a similar trend from the last break.   
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Finally, for the NHL in Figure 4.5, the 1974-75 (or, in the homogeneous model, 

1975-76) breakpoint was a dramatic shift downward in attendance in both models, 

followed by the steepest trend in attendance over the sample period.  The second break 

point for the heterogeneous NHL model in 1994-95 involved no detectable shift but 

witnessed a decline in the trend afterward.  However, the lack of a detection of a break in 

1966 for the NHL in this initial model likely affected estimation of balance coefficients in 

the regression.  This is a result of the closeness of this apparent shift to the 1974 shift 

detected in the heterogeneous error model (which requires a certain regime length to 

estimate different variances between regimes).  The homogeneous model estimates an 

additional break in 1966-67, indicating a downward shift that recovered a bit before the 

second downward shift in the 1975-76 season.  From there, the method estimates a 

consistent upward attendance trend that becomes attenuated at the 1994-95 break. 

 

4.5 The BP Method and GU, PU, and CSU 

Coefficients for the competitive balance measures included in both models are 

reported in Table 4.8.  Turning to outcome uncertainty impacts for the NFL, none of the 

three measures of uncertainty of outcome are found to have statistically significant effects 

on attendance levels.  Here, the UOH is rejected at every turn for the NFL.  This makes 

the NFL much like the European leagues as assessed by Szymanski (2003).  Fort and 

Quirk (2011) also suggest that this may be due to the smaller inventory of 16 regular 

season games in the NFL.  There are other issues to be addressed with modeling NFL 

attendance, not the least of which is an issue with the econometric specification of 

censored data due to sellouts that could result in underestimation of coefficients.  This 
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should be addressed in future work on demand analysis for the NFL using cross-sectional 

tobit models that take into account the attendance breaks found here. 

The second striking result is that GU matters for the NBA and in a way that fails to 

reject Rottenberg’s UOH.  As TL rises, so does attendance.  If the NBA owners care 

about balance because fans do, then they are better off facilitating games with close 

competition.  Why this shouldn’t also be the case for the rest of the North American 

leagues remains for future work to determine (Lee and Fort, 2008, find little evidence for 

Rottenberg’s UOH with respect to GU in MLB). 

Next, PU matters for the NBA, but in a way that rejects the UOH—a decrease in 

WinDiff reduces attendance.  So, the NBA is unlike MLB in this regard (Lee and Fort, 

2008).  If leagues care about balance because fans do, then owners in the NBA and the 

NHL are better off without close regular season races to the playoffs.  Determining just 

why fans feel this way in the NBA and NHL remains for future work, and may be 

explained through asymmetrical increases in attendance for large winning markets in 

these seasons.  Lastly, the homogeneous error variance model indicates a significant 

influence of Corr on attendance in a way that is consistent with Rottenberg: when the 

same teams win year after year, the NBA is estimated to experience a decrease in 

attendance for this model. 

For the NHL heterogeneous error variance model, CSU and PU matter for the NHL 

in a way that reveals hockey fans prefer dynasties and playoff races with wider margins.  

As Corr and WinDiff increase, CSU and PU worsen, but attendance increases with this 

worsening of balance.  However, it is likely that this result for the NHL is due to the 

inability of the BP Method to handle two closely adjacent break points.  In 1967-68, the 
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NHL doubled in size from 6 to 12 teams.  This expansion had an effect on the 

competitive balance of the league, especially for CSU measured by Corr.  The Corr 

measure during the first three years of expansion includes only the six original NHL 

teams in its calculation, as the expansion teams do not have the required three years’ 

worth of win data to include in the measure.  This calculation issue made the CSU 

variable drop considerably for these three years only, returning to previous levels once all 

teams have available data to include in the calculation.  This may account for the 

statistically significant effect found for CSU in the NHL.  The BP Method is unable to 

model the entire dip in attendance as an exogenous shock because of its temporal 

proximity to the following break in 1974-75 (in the model with heterogeneous variance 

across regimes).  The attendance decrease is therefore attributed to the large 

“improvement” in the CSU measurement during this time and the related preference for 

dynasties.  In a separate model where constant variance is assumed across regimes, the 

BP Method does indeed choose the NHL attendance dip in 1966-67 as an exogenous 

shock.  However, its magnitude does not account for the entire change, and dynasties are 

again revealed as a preferred choice by hockey fans. 

Still, all-in-all, at least at the annual league level, there appears to be variation in the 

importance of outcome uncertainty—and the type of outcome uncertainty—that matters 

for attendance.  This suggests that there are truly interesting and insightful differences to 

be discovered among fans of the major North American sports leagues. 
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4.6 League Histories and Structural Change 

Better historians will be able to add to the offerings on historical episodes for future 

investigations, but I offer what I can to the historical relevance of structural changes in 

each league.  For the NBA, the related history that occurs to us for the 1987-88 break 

point concerns expansion and the transition from the Magic-Bird era to the Jordan era.   

The Charlotte Hornets and Miami Heat joined the league for the 1988-89 season and the 

Orlando Magic and Minnesota Timberwolves were added the very next season, 1989-90.  

Ultimately, the NBA added a large Florida market to their league through Orlando and 

Miami.  In addition, three teams moved to new arenas after the 1987 season—Detroit, 

Milwaukee and Sacramento.  While the calculation of LAPG accounts for increase in the 

number of games, each of these moves nearly doubled seating capacity for these teams.  

This break also coincides with the end of the Magic-Bird era (Kareem Abdul Jabbar and 

Magic Johnson would retire shortly; Bird just after them) and the beginning of the 

Michael Jordan phenomenon (he entered the league in 1984-85 but was a mature NBA 

player at this time).  Detroit would win two championships, but then it was all about 

Jordan and the Bulls.  The shape of expansion suggests a shift of the type in Figure 4.3 (at 

“T1”).  The changing of the guard from Magic-Bird to Jordan could end up helping 

explain the shift as well.  However, since NBA attendance does not seem to respond to 

dynasties, some other explanation would need to be explored for reduced but still positive 

trend in NBA attendance after 1987-88.  The second break detected in 1993-94 has a flat 

trend that follows, indicating that NBA attendance demand may have reached its peak or 

that reported attendance is at or near capacity just following the labor issues in both the 

NHL and MLB.  However, the homogeneous model seems to indicate a slight negative 
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effect of the 1998 labor dispute for the NBA.  This presents issues for demand 

estimation—and further work regarding this issue is recommended—but the upward shift 

may also open questions of the possibility of fan substitution from these two sports to the 

NBA.  While previous work has found little evidence of hockey-to-basketball substitution 

(Winfree and Fort, 2008) it would be interesting to revisit the question with respect to 

professional baseball and basketball. 

The earlier break point for the NFL is proximate to the AFL-NFL merger (first 

season, 1970) at the lower end of the break point confidence interval.  In addition, a rival 

league—the World Football League—was established in 1974, but folded in 1975, and 

may have had an effect on NFL attendance during this short period.  Fort and Lee (2007) 

also find a break point in NFL competitive balance at this time, but the finding here is 

that NFL attendance does not respond to any type of competitive balance.  Thus, while 

the calculation of LAPG accounts for an increase in the number of games, there can still 

be residual impacts on fan tastes for the “new” NFL.  There also was a 42-day training 

camp strike that may have soured the fans for that season.  For the later trend change, the 

break point season 1993 is the first season where both expanded free agency and the 

salary cap were in place.  While it is well documented that not much happened to balance 

due to this institutional change, it is quite possible that fans found these impositions to 

their liking.  In addition, 1993 marked the first NFC contract to new entrant FOX, 

expanding the number of games on TV and introducing a host of viewer-friendly on-

screen innovations in FOX broadcasts. 

For the NFL homogeneous model, the 1966 flattening of attendance coincides with 

the first Super Bowl (played in January of 1967).  While the Super Bowl has become a 



 

71 

 

national event in this day and age, it may not have had the support from NFL fans early 

on.  Because this analysis includes only NFL attendance in those years before the NFL-

AFL merger, any inferences on Super Bowl popularity by fans of the AFL and its teams 

must be left for further investigation.  The final break detected for the NFL comes in 

1981, where the attendance trend begins to increase again.  This break coincides with 

labor disputes in both the NFL and MLB, but one must take note that there was also a 

significant change in the way the game was played during this time.  Joe Montana was 

drafted in 1979, while Dan Marino became the first quarterback to throw for 5,000 yards 

in a single season in 1984.  These were two of the most prominent quarterbacks in NFL 

history, at least up to that point in time.  During this time, the importance of quarterbacks 

in the offensive game was being recognized, and passing increased significantly 

throughout the 1980s—from 159 yards per game in 1978 to 211 in 1989 and 230 in 2011 

(Football Reference, 2012).  This increase in attendance may indicate that fans have 

preferences for the high-excitement passing game in comparison to the traditional, hard-

nosed rushing attack. 

Finally, for the NHL, the only real rival league threat in the NHL’s history, the 

WHA (1972-73 to 1978-79), was proving economically troublesome at precisely the time 

of this break point.  Bobby Hull had switched to the WHA for its first season and was 

joined, probably not coincidentally given the break point, by Gordie Howe for the 1973-

74 season.  Youngsters Wayne Gretzky and Mark Messier joined the WHA for the 1978-

79 season.  When it ceased operations after the 1978-79 season, four WHA teams merged 

into the NHL (Edmonton Oilers, New England Whalers, Quebec Nordiques and 

Winnipeg Jets).  NHL attendance made a quick recovery near the end of the WHA and it 
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experienced an upward trend from this point through the 1993-94 season.  The second 

structural break coincides with the 1994-95 owner lockout that shortened the season to 48 

regular season games.  Even adjusting LAPG for the 1994-95 lockout, perhaps there was 

an aftermath to the first major labor-management conflict in hockey.  Interestingly, 

however, the BP method does not detect any similar response by hockey fans for the 

2004-05 lockout in either the heterogeneous or homogeneous model.  This may be due to 

the closeness of this season to the end of the attendance series, as the BP Method does not 

allow for break estimation within a certain distance from the endpoints.  Lastly, the initial 

break detected in the homogeneous model indicates a large downward shift in 1966 at the 

time of significant expansion for the league.  Whether this is a product of poor attendance 

in these new markets (especially for the Golden Seals), a lack of interest thanks to further 

competition for the Original Six, or a combination of both is difficult to say.  While the 

expansion seemed to have resulted in a dip in attendance, the league recovered quickly 

just before the second break near the formation of the WHA. 

 

4.7 Economic Significance of Outcome Uncertainty 

Statistical significance does not guarantee economic significance.  Therefore, I take 

an approach that incrementally improves balance measures in the leagues to estimate the 

effects this would have on its attendance and stadium revenues, as in Lee and Fort 

(2008).  The revenue data are from Team Marketing Report for 2009 from Sports Data 

(2010).  For GU, statistically significant for the NBA, I improve TL by the average 

change in the measure from year to year.  For PU, statistically significant for the NBA 

and NHL (heterogeneous model), the gap of the playoff race is closed by a single game.  
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Finally, for CSU—statistically significant for the NHL in the heterogeneous model and 

the NBA in the homogeneous model—I improve Corr to indicate teams are somewhat 

less dominant over time.  Resulting changes in attendance are determined, and I apply the 

correctly normalized dollar values from the Team Marketing Report data for 2009.  The 

results are in Table 4.9 (NBA) and 4.10 (NHL). 

If the NBA were able to take action that improved GU while somehow decreasing 

PU in these incremental fashions, the league would enjoy a 0.85 percent increase in 

revenues from the former and a 0.45 percent increase in revenues from the latter.  While 

statistically significant, this result indicates that the economic significance of outcome 

uncertainty to the NBA is minimal, about $16,594 per game or $680,354 for 41 home 

games for a team.  However, according to the homogeneous model, this change in 

revenues is doubled if the league can improve CSU as well.  This would seem to require 

extreme micro-level management for an increase in, at most, 1.7 percent in total league 

revenues. 

Exactly the same approach and logic also reveals that the statistical significance 

of PU and CSU for the NHL ends up relatively trivial, economically.  If the NHL were 

able to take action that improved PU and CSU in the incremental fashion devised here, 

the result would be about a 1.68 percent increase in league revenues translating into 

$878,343 per team for 41 home games.  However, this is based on the model with 

heterogeneous variance across regimes.  For the alternative model, neither coefficient is 

statistically significant for the NHL. 
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4.8 Summary and Conclusions 

I use the BP Method to assess the time series behavior of annual league attendance 

per game for the NBA, NFL, and NHL.  The series are all non-stationary, but stationary 

with break points.  This result should be of interest to statistical analysts using level data.  

If they wish to avoid spurious correlation outcomes, they should exercise caution and use 

the stationary subsets of the attendance data we identify.  In addition, there is believable 

correspondence between various historical occurrences and the direction of shifts and 

trend changes in these North American leagues, suggesting cross-section/time series 

investigation of merger, expansion, the presence of rival leagues, changes in player era 

dominance in the NBA and NHL, and how the imposition of salary caps and free agency 

impact fan perceptions. 

I also estimate the effects of Game Uncertainty and Playoff Uncertainty addressed 

directly by Rottenberg, and Consecutive Season Uncertainty—which he did not 

address—on gate attendance in each of these leagues.  Under the current treatment, none 

of them matter for NFL attendance.  The same is true of GU in the NHL and CSU in the 

NBA.  Further, when one of these types of outcome uncertainty is statistically significant 

for annual league attendance, the evidence on Rottenberg’s hypothesis is mixed at best.  

Playoff Uncertainty matters for both the NBA and NHL, and CSU matters for the NHL, 

but in a way that rejects Rottenberg’s hypothesis.  Only GU in the NBA is statistically 

significant and fails to reject the UOH.  Almost certainly these results will prove 

interesting in all further cross-section/time series assessments of the role of fan 



 

75 

 

preferences in attendance demand.  It would also be interesting to extend these findings 

relate to television demand as a next step in the analysis. 

It is important to note that this analysis does not consider sellouts for league-

aggregate attendance, and this could be one reason for the null finding with respect to the 

effects of balance measures on NFL attendance.  More work is needed to evaluate the 

effects of uncertainty on NFL attendance because of this issue.  Unfortunately, the 

breakpoint method only allows for ordinary least squares regression at this point in time, 

and further evaluation of the statistical properties of the breakpoint method are necessary 

for pushing forward with the technique for other regression specifications.  Further 

inspection at the franchise level for some teams—especially in the NFL—would certainly 

be enhanced by an added consideration of sellouts in a limited dependent variables 

framework.  This is recommended in the short term, between breaks found in the data 

presented here. 

Nonetheless, despite the statistical significance of the estimated outcome 

uncertainty coefficients, the economic significance tends to be minimal.  Marginal 

alterations in outcome uncertainty can improve league revenues by 1.34 percent in the 

NBA and 1.63 percent in the NHL.  It may be that the leagues in this analysis have 

managed balance well enough that it does not negatively affect fan interest in the league. 

Given that balance seldom matters—and when it does it does not matter much—

leads to some final research suggestions.  There is now ample evidence that outcome 

uncertainty matters very little for North American pro sports in the way Rottenberg 

suggested.  However, Rottenberg’s is the typical logic espoused by team owners, acting 

through their league, as justification for policy impositions like the draft, revenue sharing, 
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and salary caps.  If not for the sake of balance, then why are the policies actually 

supported?  Economists are well equipped to examine the distributional consequences of 

these policies between players and owners, and some owners and others.
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TABLE 4.1: Decade Averages for LAPG and Balance Measures (NBA, NFL and NHL) 
 
League/Measure 1930's 1940's 1950's 1960's 1970's 1980's 1990's 2000's Overall Avg. 
NBA LAPG   4,778 5,714 9,644 12,110 15,836 17,204 11,436 
NBA TL   0.24143 0.02209 0.20135 0.05249 0.04432 0.10475 0.11171 
NBA PU   0.08235 0.09243 0.07622 0.07073 0.06100 0.06664 0.07590 
NBA CSU   0.40989 0.55819 0.28533 0.65375 0.60459 0.48786 0.50078 
NFL LAPG 18,205 26,521 31,211 44,349 54,326 54,048 57,732 64,478 47,432 
NFL TL 0.18876 0.16654 0.49508 0.47047 0.86188 1.36331 1.04093 0.99809 0.72494 
NFL PU 0.13792 0.12595 0.0959 0.14083 0.12145 0.09318 0.10666 0.11890 0.11652 
NFL CSU 0.64674 0.48338 0.38231 0.42758 0.51756 0.35743 0.35435 0.34454 0.42832 
NHL LAPG 

   
12,658 12,837 13,842 15,539 16,879 14,351 

NHL TL 
   

0.17446 0.08124 0.52115 0.64654 0.66000 0.41668 
NHL PU 

   
0.06925 0.08830 0.07628 0.05511 0.04150 0.06609 

NHL CSU 
   

0.52700 0.76185 0.63050 0.48290 0.45656 0.57176 
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TABLE 4.2: League-Level ADF and PP Tests 
 
League  NBA NBA Adj. NFL NFL Adj. NHL NHL Adj. 
T (seasons)  55 55 76 76 50 50 
        
ADF (p) Constant -0.880 (2) -0.883 (1) -1.919 (1) -2.017 (1) -1.206 (1) -1.210 (1) 
ADF (p) Trend -1.282 (1) -1.287 (1) -2.231 (1) -2.233 (1) -2.674 (1) -2.682 (1) 
        
PP (l) Constant -0.963 (3) -0.965 (3) -1.700 (3) -1.774 (3) -1.401 (3) -1.399 (3) 
PP (l) Trend -1.418 (3)** -1.406 (3) -2.174 (3) -1.905 (3) -3.000 (3) -2.987 (3) 
Data unadjusted for strikes.   
p: the number of lags  
l: lag truncation.  
***, **, * = significant at 99%, 95%, and 90% critical levels, respectively. 
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TABLE 4.3: League Level LM Test 
 
Team 𝑘� 𝑇�𝑏 𝑡̂𝛾𝑗 Test Statistic Critical Value Break Points 
NBA 7 1972/73, 1996/97 3.958***, -1.170 -5.771** λ = (0.33, 0.76) 
NBA Adj. 7 1972/73, 1996/97 3.959***, -1.050 -5.714** λ = (0.33, 0.76) 
      
NFL 3 1966, 1986 -0.279, 5.711*** -6.071** λ = (0.43, 0.70) 
NFL Adj. 3 1972, 2000 -4.703***, 3.590*** -6.076** λ = (0.51, 0.88) 
      
NHL 6 1973/74, 1985/86 -4.463***, 6.066*** -6.347** λ = (0.28, 0.52) 
NHL Adj. 6 1973/74, 1985/86 -4.427***, 6.056*** -6.323** λ = (0.28, 0.52) 
Data unadjusted for strikes.  𝑘� is the optimal number of lagged first-difference terms included in the unit root test to correct for serial correlation.  
𝑇�𝑏 denotes the estimated break points.  𝑡̂𝛾𝑗 is the value of DTjt for j = 1,2.  See Lee and Strazicich (2003) Table 2 for critical values.  ***, ** = 
significant at 99% and 95% critical levels, respectively. 
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TABLE 4.4: League Level LM Test 
 
Team 𝑘� 𝑇�𝑏 𝑡̂𝛾𝑗 Test Statistic Critical Value Break Points 
NBA 7 1992/93 3.882*** -5.255*** λ = 0.69 
NBA Adj. 7 1992/93 3.811*** -5.182*** λ = 0.69 
      
NFL 0 1972 -2.217** -4.892** λ = 0.51 
NFL Adj. 8 1980 -3.412*** -3.431 λ = 0.62 
      
NHL 3 1976/77 -3.056*** -4.638** λ = 0.34 
NHL Adj. 3 1976/77 -2.990*** -4.580** λ = 0.34 
Data unadjusted for strikes.  𝑘� is the optimal number of lagged first-difference terms included in the unit root test to correct for serial correlation.  
𝑇�𝑏 denotes the estimated break points.  𝑡̂𝛾𝑗 is the value of DTjt for j = 1,2.  See J. Lee and Strazicich (2003) Table 2 for critical values.  ***, **, * = 
significant at 99%, 95%, and 90% critical levels, respectively. 
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TABLE 4.5: League Level Sequential Break Point Test Results 
 

League SupFt(1) SupFt(2) SupFt(3) SupFt(4) SupFt(5) UDmax WDmax 

NBA (Het.) 200.41*** 114.62***    200.41*** 200.41*** 
        
NBA (Hom.) 173.22*** 116.31*** 117.52*** 146.87*** 190.49*** 190.49*** 348.87*** 
        
NFL (Het.) 239.40*** 162.98*** 117.42***   239.40*** 239.40*** 
        
NFL (Hom.) 309.56*** 194.75*** 160.09*** 132.37*** 117.68*** 309.56*** 309.56*** 
        
NHL(Het.) 68.73*** 33.98***    68.73*** 68.73*** 
        
NHL (Hom.) 71.62*** 80.27*** 128.25*** 164.21*** 205.57*** 205.57*** 376.48*** 
 

League SupF(2/1) SupF(3/2) SupF(4/3) SupF(5/4) Breaks 

NBA (Het.) 2.92    1 
      
NBA (Hom.) 35.81*** 35.81*** 35.81*** 11.52 2 
      
NFL (Het.) 13.39** 14.84**   2 
      
NFL (Hom.) 24.49*** 24.29*** 7.77 10.84 2 
      
NHL(Het.) 50.80***    2 
      
NHL (Hom.) 58.00*** 14.11** 25.54*** 10.11 2 
***Significant at the 99% critical level 
**Significant at the 95% critical level 
*Significant at the 90% critical level
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TABLE 4.6: League Level Break Test Results (Adjusted) 
 
League T1 T2 T3 
    
NBA (Het.) 1987-1988   
 [86-87, 88-89]   
    
NBA (Hom.) 1987-1988 1997-1998  
 [86-87, 88-89] [96-97, 00-01]  
    
    
NFL (Het.) 1972 1993  
 [71, 73] [91, 94]  
    
NFL (Hom.) 1972 1997  
 [71, 73] [96, 99]  
    
    
NHL (Het.) 1974-1975 1994-1995  
 [73-74, 75-76] [93-94, 96-97]  
    
NHL (Hom.) 1966-1967 1975-1976 1994-1995 
 [65-66, 66-67] [74-75, 76-77] [93-94, 95-96] 
    
Notes:  90% confidence intervals are in []. 
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TABLE 4.7: League Level Breakpoint Regression Results 
 

League α1 β1 α2 β2 α3 β3 α4 β4 
         

NBA (Het.) 298 2453 71 13326     
 (30.26)*** (6.04)*** (4.06)*** (16.63)***     
         
NBA (Hom.) 299 2,554 236 7,168 35 10,195   
 (33.45)*** (6.93)*** (4.80)*** (3.81)*** (0.87) (7.61)***   
         
NFL (Het.) 1118 13182 334 38041 675 17335   
 (35.90)*** (12.47)*** (4.58)*** (10.03)*** (6.25)*** (2.31)**   
         
NFL (Hom.) 1,116 12,823 316 38,288 406 36,160   
 (36.99)*** (12.28)*** (5.88)*** (12.51)*** (2.44)** (3.13)***   
         
NHL (Het.) 144 10611 229 6407 122 10272   
 (4.51)*** (24.52)*** (9.01)*** (7.90)*** (3.78)*** (6.89)***   
         
NHL (Hom.) 621 9,912 131 11,217 215 7705 102 11,839 
 (7.59)*** (23.40)*** (1.96)* (16.26)*** (9.62)*** (9.59)*** (4.14)*** (9.96)*** 

         
***Significant at the 99% critical level 
**Significant at the 95% critical level 
*Significant at the 90% critical level 
αM and βM refer to the slope and intercept coefficients for regime M, respectively. 
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TABLE 4.8: League Level Breakpoint Regression Results 
 

League γTL (GU) γWindiff (PU) γCorr3 (CSU) 𝑹�𝟐(𝑹𝟐) 
     

NBA (Het.) 2337 6953 -636 0.990 
 (3.86)*** (2.62)** (-1.79)* (0.991) 
     
NBA (Hom.) 2,086 6,885 -805 0.992 
 (3.94)*** (2.80)*** (-2.44)** (0.993) 
     
NFL (Het.) 1013 5004 -1107 0.984 
 (1.21) (1.00) (-1.05) (0.986) 
     
NFL (Hom.) 1,307 5,030 -507 0.985 
 (1.60) (1.03) (-0.48) (0.987) 
     
NHL (Het.) 412 7488 1062 0.919 
 (1.33) (2.12)** (3.20)*** (0.982) 
     
NHL (Hom.) 186 -2,939 887 0.955 
 (0.80) (-0.95) (2.86)*** (0.965) 

     
***Significant at the 99% critical level 
**Significant at the 95% critical level 
*Significant at the 90% critical level 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

85 

 

TABLE 4.9: NBA Economic Impact of Outcome Uncertainty Measures 
 

 NBA (Het.) NBA (Hom.) 
Value GU PU GU PU CSU 

2009 LAPG 17,132 17,132 17,132 17,132 17,132 
2009 Var. 0.030 0.073 0.030 0.073 0.550 
Coef. Est.a 2,337 6,953 2,086 6,885 -805 
Elasticity 0.004 0.030 0.004 0.029 0.026 
ΔVariableb 0.064 0.012 0.064 0.012 0.171 
Inc. Factor 213.33% 16.44% 213.33% 16.4% 31.1% 
ΔLAPG 146.2 -84.5d 135.2 -82.5 137.4 
% ΔLAPG 0.85% -0.49% 0.79% -0.48% 0.80% 
Rev. Per Attc $71.93  $71.93  $71.93 $71.93 $71.93 

Δ Game Rev. $10,516  -$6,078 $9,725 -$5,934 $9,883 

a. Coefficient taken from Model 1 and follow the approach of Lee and Fort (2008, pp. 291). 
b. All measure changes imply an improvement in balance. 
c. Revenue per attendee data come from Team Marketing Report Fan Cost Index (2009). 
d. Italic font indicates disagreement with Rottenberg’s Uncertainty of Outcome Hypothesis. 
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TABLE 4.10: NHL Economic Impact of Outcome Uncertainty Measures 
 
 NHL (Het.) NHL (Hom.) 
Value PU CSU CSU 

2009 LAPG 17,476 17,476 17,746 
2009 Var. 0.061 0.378 0.378 
Coef. Est.a 7,488 1,062 887 
Elasticity 0.026 0.023 0.019 
ΔVariableb 0.012 0.184 0.184 
Inc. Factor 19.67% 48.68% 48.7% 
ΔLAPG -89.4 195.7 -163.3 
% ΔLAPG -0.51% -1.12% -0.93% 
Rev. Per Attc $75.14 $75.14 $75.14 

Δ Game Rev. -$6,718 -$14,705 -$12,271 
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FIGURE 4.1: Time Path of Adjusted LAPG and Competitive Balance Measures 
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FIGURE 4.2: Residuals for League Level Heterogeneous vs. Homogeneous Models 
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FIGURE 4.3: Fitted NBA TAPG 
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FIGURE 4.4: Fitted NFL TAPG 
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FIGURE 4.5: Fitted NHL TAPG 
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CHAPTER 5 

Major League Baseball Franchises 

 

5.1 Background  

 While Lee and Fort (2008) employ the BP Method for aggregate Major League 

Baseball attendance, there is much to be learned from proceeding with its application at 

the franchise level.  I fill this gap in the literature in this chapter, as well as for the other 

three major leagues in the following three chapters .  The addition of the franchise level 

analysis informs the statistically significant positive effect from Lee and Fort for the 

Playoff Uncertainty variable on attendance.  Applying a similar approach at the team 

level may further show why only PU was found to be statistically significant and how 

this relates to the teams that are the most successful on the field.  In addition, it could be 

that at the aggregate, fans are not particularly interested in game level or consecutive 

season uncertainty; however, this may differ across franchise markets and also relate to 

the success of each individual team.  For example, results here show that—holding 

constant team quality—fans of the Red Sox find a low level of CSU particularly 

abhorrent: no surprise given the Yankee dynasties of years past.  These relationships will 

be expanded upon in later sections.  The following section describes the data collection 

process and results from the franchise level BP models for Major League Baseball. 
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5.2 Data and Methods 

 As in the previous chapter, the data used for this portion of the analysis come 

from multiple sources.  The attendance and team win percent data for each of the MLB 

franchises come from Sports Business Data (2009) and are cross-referenced at Baseball-

Reference (2009).  I recorded the number of home games (used to calculate per-game 

attendance) from Retrosheet (2009), and verified team standings, expansion, and location 

changes with the previous two sources.  Summaries of Team Average Per Game 

Attendance (TAPG), American and National League balance measures, team win 

percents, and the history of games back from the playoffs and number of postseason 

appearances can be found in Tables 5.1 through 5.5, respectively. 

 As before, the eventual breakpoint methodology requires lags of particular length, 

precluding analysis of recent expansion teams in (Arizona, Colorado, Florida, and Tampa 

Bay) and the most recent franchise move (Montreal to Washington, D.C.).  Team 

attendance series consist of thirteen American League (AL) franchises, twelve National 

League (NL) franchises and one franchise that has spent time in both leagues (the 

Milwaukee Brewers).  For those franchises that have relocated, I begin the attendance 

series in the first year of the most recent location.  For example, the San Francisco Giants 

series spans from the year of the franchise’s move in 1958 through the 2009 season.  The 

original New York Giants team is considered a separate franchise and is not used for this 

analysis.  Further the derivatives of the two versions of the Washington Senators (1901-

1960 and 1961-1971)—the Texas Rangers and the Minnesota Twins—are considered 

separate franchises from either Senators team.  I continue with modeling only current 

http://www.retrosheet.org/
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franchises found to be stationary in the precursory tests for the presence of a unit-root or 

unit-root with breakpoints. 

 To adjust for work stoppages, MLB franchise attendance totals in 1981, 1994 and 

1995 are averaged with the years preceding and following the season in which there was 

a labor dispute, and this is referred to as the adjusted data.  This is again a simple LLR 

approach with equal weighting on each year, similar to that of the league aggregate 

approach in the previous chapter. 

Following the unit-root analysis, those team attendance series found to be 

stationary were subjected to the BP Method as described in Chapter 3.  The team level 

attendance regression and estimated breaks come from the following model: 

 

TAPG’ft = zftβfi + xftγ + εft, t = Ti-1 + 1, …, Ti, i = 1, …, m+1. 

 

TAPGft is team average attendance per game in year t for franchise f, i indexes the ith 

regime, and the indices (T1,…, Tm) are treated as the unknown breakpoints.  Although the 

notation above could indicate the use of a panel model, in this case the BP Method is 

performed separately for each franchise due to limitations in the methodology and to 

evaluate the heterogeneous impacts at the team level.  As in Lee and Fort (2008), I 

estimate two separate models for MLB franchise attendance to evaluate the multi-faceted 

nature of competitive balance: Game Uncertainty (GU), Playoff Uncertainty (PU), and 

Consecutive Season Uncertainty (CSU).  The first model (Model 1) is described as 

follows: 
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zt = {1, t}, xt = {TL, WinDiff, Corr, W%}, and (q=2; p=4) 

 

 The second model (Model 2) employs Humphrey’s “Competitive Balance Ratio” 

(CBR, 2002) in addition to WinDiff.  The use of CBR combines elements of both GU and 

CSU, and it is therefore included in a model only with PU as to avoid redundancy in the 

model.  Win percent is again included for the reasons stated above.  In this model: 

 

zt = {1, t}, xt = {CBR, WinDiff, W%}, and (q=2; p=3) 

 

 For both models, coefficients on the time trend and level are allowed to change 

across regimes, whereas the coefficients pertaining to the competitive balance and team 

quality variables are not.  These are classified as the partial model in Bai and Perron 

(2003).  I proceed with an ancillary model for baseball franchise attendance that includes 

an additional one year lagged team quality variable (W% in the previous season).  I 

perform this for both Model 1 and Model 2, and refer to these as Model 1B and Model 

2B.  The notation above is identical with the exception that there is an additional 

independent xt variable within the model.   

 Finally, for each of the Model 1 estimations, I also employ the BP Method with 

homogeneous error variance across regimes, as described in the previous section, as well 

as with a one year lagged win percent covariate for each franchise.  The results of each of 

these additional regressions are presented in Appendix A.  For brevity, from here on I 

narrow the discussion to only Model 1 and Model 2 with heterogeneous variance 

estimates and current season win percent.  While there were some break date changes 



 

96 

 

across models, they were relatively minor and the statistical significance and direction of 

balance coefficient estimates are virtually identical.  Fitted plots of each model for each 

team are excluded from this dissertation, but are available upon request. 

There were some instances where the estimated model did not agree with the 

results of the sequential test, in which case I cross-referenced the chosen model with both 

the Bayesian Information Criterion and the Schwarz Criterion provided by the BP 

Method output.  This was usually needed only for those attendance series with very small 

breaks or for those series with initially estimated breaks in too close of temporal 

proximity for the subsequent regression model.  From here I focus the discussion on the 

adjusted data for sixteen teams, as model differences between the real and adjusted data 

were negligible.  The results of the Bai and Perron sequential testing procedure can be 

found in Table 5.12 for Model 1 and Table 5.14 for Model 2.  The San Diego Padres 

were found to have no breaks using the BP Method.   While unit root tests indicated a 

stationary series with breaks, the breaks may be too small for the method to detect.  The 

Padres’ ADF and PP tests indicate very little evidence for rejecting a unit root for this 

series without breaks, so it may be misleading to continue with ordinary least squares 

(OLS) treating the attendance series as level data. 

 

5.3 Unit Root Results 

There is substantial agreement between the ADF and PP tests with respect to Major 

League Baseball franchise attendance.  Both reject unit root (indicating trend stationarity) 

at the 95% level or higher for five teams—the Chicago White Sox, Cincinnati, Detroit, 

Pittsburgh, and St. Louis (Table 5.6).  For these five teams and the remaining 21 non-
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stationary series, I follow with two-break LM tests of stationary behavior with 

endogenously specified break points.  The two-break LM tests reject non-stationary 

behavior at the 99% level for ten additional teams (Table 5.7).  The remaining eleven 

(Atlanta, Chicago Cubs, Houston, Kansas City, Los Angeles Angels, Minnesota, New 

York Mets, New York Yankees, Philadelphia, San Diego, and San Francisco) were 

subjected to the one-break LM test (Table 5.8).  The results reject non-stationary 

behavior at the highest level for the Chicago Cubs, Houston, San Diego, and San 

Francisco.  In addition, the Minnesota and New York Mets series—for which the unit-

root null is not rejected with the LM two-break test—is rejected at the 95% level with the 

LM one-break test.  Reasonably, only Atlanta, Kansas City, Los Angeles Angels, New 

York Yankees, and Philadelphia unadjusted series remain for eventual treatment under 

something like first differences. 

Following the same steps on the data adjusted for potential impacts of strikes 

produces some different outcomes.  For the ADF and PP tests, the only difference is 

failure to reject non-stationary behavior for St. Louis (Table 5.9).  The two-break LM test 

with endogenously specified break points indicates rejection of non-stationary behavior 

(95% level or higher) for eleven of the remaining 22 series (Table 5.10).  Continuing with 

the one-break LM test for the remaining eleven series (Atlanta, Chicago Cubs, Cleveland, 

Houston, Kansas City, Los Angeles Angels, Minnesota, Montreal, New York Mets, New 

York Yankees, and Texas), the test indicates rejection of the null of non-stationary 

behavior at the 95% level or higher for five additional franchises (Table 5.11).  For the 

adjusted data, Atlanta, Kansas City, Los Angeles Angels, Minnesota, Montreal, and the 
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New York Yankees remain for subsequent treatment under something like first 

differences. 

Staying just with the adjusted data results (Tables 5.10 and 5.11), I turn to only 

brief observations on these break points since the clear indication for all but a few teams 

is further investigation of the significance and qualitative impact of break points under 

the BP Method.  Only a few teams have been in their current locations long enough to 

have break points much before the 1970s (St. Louis, Boston, and Chicago Cubs).  The 

1970s saw breaks for just a few (New York Mets, Philadelphia, San Francisco, and 

Baltimore).  Nearly all of the action in terms of break points is from the 1980s to the end 

of the sample (eight teams in both the 1980s and 1990s).  Again, a full analysis of break 

location for each team requires the BP Method, provided in the following section. 

 

5.4 Breakpoint Analysis and Uncertainty of Outcome Results 

 For both models, the procedure finds break dates in common with Lee and Fort’s 

(2008) league level analysis for many teams under consideration (Tables 5.13 and 5.15).  

First, a number of teams experienced attendance breaks near the end of World War II, 

consistent with the AL and NL aggregate findings, likely due to the end of World War II 

and the return of a large number of soldiers to the U.S. (many of them players—like Ted 

Williams—who also increased the absolute quality of the game on the field).  Model 1 

indicates that eight of the teams in existence before 1950 experienced a large attendance 

break in 1945 or 1946 (excluding only the Chicago Cubs), while Model 2 revealed that 

seven teams had a breakpoint in these years (excluding both the Cubs and the Chicago 

White Sox).  I also find a number of common breakpoints (and confidence intervals for 
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the breaks) in the range from 1927 to 1932, indicating that there may have been an effect 

of The Great Depression on some fans’ ability to attend games at the time.  Interestingly, 

this was not apparent in the aggregate MLB analysis of Lee and Fort (2008).  However, 

Lee and Fort (2005) do estimate structural change in Major League Baseball’s 

competitive balance series near the Depression Era for both the NL and AL. 

There are some breakpoints detected during extended periods of on-field success 

near Strike Years, indicating a longer term structural change in attendance following a 

short-term shock for some teams.  Despite imputing strike years with a local linear 

regression, about half the team attendance series experienced shifts or trend changes in 

attendance levels following (or just before) one of the significant strike events in MLB 

history (1981 and 1994-1995).  After the labor disputes, I find that many teams 

experienced a rapid recovery in attendance levels even after estimated breaks (Boston and 

Philadelphia, for example).  Previous work has found that shocks are relatively short term 

near work stoppages (Schmidt and Berri, 2002, 2004; Coates and Harrison, 2005), and 

this analysis seems to confirm that while there tends to be a short-term attendance dip 

following a strike, the trend behavior of attendance can change dramatically even after 

these short-term level changes to make up for this shift.  The coefficients and significance 

for each of the trend (αM) and level (βM) changes can be found in Table 5.16 and Table 

5.18 for Models 1 and 2, respectively.  It is important reiterate that while the trend 

coefficients can be read directly off the table, the shift estimates are not as clear.  The 

first level coefficient (represented by β1) can be interpreted as the initial intercept of the 

least squares regression.  However, the following shift coefficients do not necessarily 

represent the change that took place at the given structural change.  For this reason, the 
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reader is referred to Figures 5.1 through 5.8, which plot the estimated Model 1 and Model 

2 for each of the sixteen franchises, respectively. 

Model 1 and Model 2 indicate similar competitive balance preferences to that of 

Lee & Fort (2008), in that the most common statistically significant uncertainty of 

outcome measure of attendance is Windiff (PU).  The coefficient for PU is significant at 

the 5% level or higher for four teams in Model 1 (Chicago Cubs, Cincinnati Reds, Los 

Angeles Dodgers, and Philadelphia Phillies) and four teams in Model 2 (Chicago Cubs, 

Houston Astros, Los Angeles Dodgers, and Philadelphia Phillies).  The negative direction 

of the coefficients is as expected for all of these teams with respect to the predictions of 

the UOH (or, an increase in attendance with a closer pennant race).  There is a significant 

estimated effect of Tail Likelihood (GU) only for Boston, Cincinnati and Detroit, with the 

sign of the coefficient reversed from UOH expectations for Boston and Cincinnati.  The 

estimated coefficient for Corr (CSU) is significant only for Boston (5% level) and 

Houston (1% level).  The sign on this coefficient is in the expected direction for the Red 

Sox, but in the opposite direction that would be predicted by the UOH for the Astros.  

Finally, in Model 2, the estimated coefficient for CBR is statistically significant only for 

the Chicago White Sox and Detroit Tigers at the 1% level.  Coefficients for balance 

measures and win percent can be found in Tables 5.17 and 5.19 for Models 1 and 2, 

respectively. 

It is interesting to see the differential effects of balance across markets.  It seems 

likely that much of this is related to the fact that uncertainty at the league level mediates 

the aggregate “hope” for individual fans, as found in Lee and Fort (2008).  In other 

words, the fact that the pennant race is tighter means that more fans are rooting for their 



 

101 

 

favorite team(s) with a chance at the playoffs for a longer period in the regular season.  

Therefore, each of these teams likely sees an increase in attendance from the increase in 

quality and playoff chances, rather than purely from a direct relationship to uncertainty.  

This is not to say that the uncertainty itself does not create further excitement, and 

interactive effects should prove instructive in shorter term cross-sectional models.  

Further evaluation of this mediating hypothesis is recommended within a statistical 

framework that can test for direct and indirect effects. 

 Finally, the values of the measures of fit are relatively high for the models fitted, 

which is common in this sort of time series modeling.  Lee and Fort (2008) note that the 

time trend likely accounts for omitted variables such as ticket prices and population 

changes; however, this should not impact the competitive balance coefficient estimates, 

as the significance of the trend variable would simply be transferred to the significance of 

the structural variables—such as market size and ticket price—if we were to include them 

in the model.  Certainly these structural variables are of interest, and this is a shortcoming 

of the simplistic approach used here for long-term attendance.  Unfortunately, there is 

very little consistency in the economic data for such a long period of analysis—especially 

for individual market areas—and any subsequent short-term analysis of fan behavior that 

includes these variables would be a welcome complement to the current investigation.  

Over such a long period, the structure of urban sprawl also likely has had an effect on the 

definition of markets for professional sports leagues, making the inclusion of these 

factors even more difficult. 

 A further analysis of the economic implications (gained/lost fans and cost of 

attendance) of fluctuations in league balance measures indicate that while some 
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coefficients are statistically significant, the practical implications of such changes for 

team gate revenues tend to be minimal.  This result echoes the conclusions from Lee and 

Fort (2008) for the league aggregate approach in Major League Baseball (see Tables 

5.20, 5.21 and 5.22 for GU, CSU and PU, respectively).  For the coefficients of each of 

the uncertainty measures, I apply a variant of the ‘Incremental Approach’ first described 

in Lee and Fort (2008), and initially revisited here in Chapter 4.  To reiterate, for PU, the 

Incremental Approach involves decreasing the average number of games separating the 

playoff races by a single game.  For the 2009 season, the average difference in the 

National League playoff races was about 5.35 games (0.033 in win percent for a 162 

game season), and I reduce the difference to 4.35 games (now 0.027, a reduction of 0.006 

in Windiff) to assess impacts on attendance for each team. 

 For GU and CSU, I take a more abstract approach to the incremental estimates.  

For the Incremental Approach I use the average season-to-season change in each 

measure.  In the case of the GU measure, in 2009 the value was 0.094 for the AL, with an 

average historical yearly change of 0.115 (in absolute value) and a “historically most 

balanced” value of 0.815.  For the NL, 2009 Tail Likelihood was at 0.472, with an 

average historical yearly change of 0.143 (in absolute value) and a “historically most 

balanced” value of 1.081. 

 Finally, the CSU measure for 2009 was 0.703 and 0.449 for the AL and NL, 

respectively, indicating that in the AL the same teams have been more dominant against 

their counterparts in recent years than those in the NL over theirs.  I apply a similar 

Incremental Approach here as for GU.  For the American League, the average change in 

CSU over the course of our series is 0.201 (in absolute value), with a minimum historical 
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value of -0.197.  In the National League, the average change from year to year has been 

0.215, with a minimum historical value of -0.536.  The results of these estimates for each 

team and the accompanying balance input can be found in Tables 5.20, 5.21 and 5.22 for 

GU, CSU and PU, respectively. 

 Beginning with the Boston Red Sox (2009 TAPG of 37,811), Model 1 indicates 

that an improvement in GU using the Incremental Approach is associated with a change 

of about 325 fans per game (0.86%) for the Red Sox.  It is important to keep in mind that 

the coefficient for GU is reversed from the predictions of Rottenberg’s UOH, indicating a 

decrease in attendance with closer game uncertainty.  However, the model unsurprisingly 

reveals that Red Sox fans tend to have a seemingly appropriate aversion to teams 

dominating over time, given their rivalry with the historically dominant New York 

Yankees.  The Incremental Approach for improving CSU is associated with an increase 

of 389 (1.03%) fans per game, still rather small overall. 

 For the Chicago Cubs, we find Model 1 estimates a significant coefficient for 

Playoff Uncertainty.  Continuing with the Incremental Approach, the model estimates an 

increase of about 194 fans per game, (0.49% for a 2009 TAPG of 39,610).  For Model 2, 

the coefficient estimate for PU is about 37% less, indicating an even smaller effect of 

Windiff. 

 I also find significant effects of both PU and GU for the Cincinnati Reds.  With a 

2009 TAPG of 21,579, the estimated attendance changes are 69 fans (0.32%) for an 

incremental change in PU, and a change of 156 (0.39%) fans for the incremental change 

in GU.  While the coefficient for PU is in the expected direction for the UOH, the 

coefficient on GU indicates a decrease in fans with an improvement in game uncertainty. 
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 For the Detroit Tigers Tail Likelihood coefficient (2009 TAPG of 31,693), using 

the average change in TL, I find a change in TAPG of about 506 fans per game (or 

1.60%).  The direction of the coefficient indicates an increase in fans with an 

improvement in game uncertainty. 

 Model 1 estimates a statistically significant effect of CSU, while Model 2 

indicates a significant effect of PU on Astros attendance.  Using the Incremental 

Approach for the CSU coefficient, there is a predicted decrease of 1,162 (3.73% of a 

2009 TAPG of 31,124) fans per game using the average yearly improvement in CSU.  

Keep in mind that these apparent fan preferences indicate a reversal in sign from the 

expectations of UOH, as we would expect dynasties to negatively affect uncertainty of 

outcome and.  Considering the Houston Astros are not a historic perennial powerhouse, 

these results are somewhat surprising.  There may be issues with this shorter series at 

play here, similar to those affecting the balance coefficients in the league level National 

Hockey League model from Chapter 4, though the homogeneous version of Model 1 does 

not confirm this speculation.  For Playoff Uncertainty (using the coefficient in Model 1 to 

remain consistent), implementing the Incremental Approach indicates an increase of 298 

fans per game (0.96%).  This result is consistent with the Uncertainty of Outcome 

Hypothesis. 

 The attendance effect of Playoff Uncertainty is shown to be statistically 

significant for the Los Angeles Dodgers—not to be confused with the Brooklyn 

Dodgers—in Model 1 as well.  Using the Incremental Approach, a one game 

improvement in the closeness of the playoff race is associated with an increase of about 

445 fans per game (0.96% of a 2009 TAPG of 46,440).  In Model 2, the coefficient is 
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also statistically significant, indicating a similar increase in fans per game associated with 

the associated improvement in Windiff. 

 Finally, for Philadelphia, I find statistically significant coefficients for PU.  The 

elasticity estimates indicate that reducing the 2009 playoff standings by a single game 

would increase Phillies attendance by 267 fans per game (0.60% of a 2009 TAPG of 

44,453) for Model 1.  For each of the balance measures across all models, it seems that 

the practical implications of changes in the balance measures with respect to attendance 

levels are small at best. 

 Very few of the team attendance levels in this analysis revealed significant effects 

of competitive balance as measured by Windiff, Tail Likelihood, Corr, or CBR.  These 

findings confirm some of the findings in aggregated approaches by Lee and Fort (2008) 

and Krautmann and Hadley (2006).  While Lee and Fort (2008) find evidence of an 

attendance effect only for Playoff Uncertainty, the current research provides further 

evidence for the possibility that fans in some places are also sensitive to both Game 

Uncertainty (as in Soebbing, 2008) and Consecutive Season Uncertainty (as in 

Krautmann et al., 2008). 

 These results suggest that while some fans show a preference for more balance, 

others seem to prefer less, and many have little response with respect to the decision to 

attend a baseball game (holding constant team quality).  This has interesting implications 

for the UOH and the conclusions made by Major League Baseball’s Blue Ribbon Panel 

that fans invariably prefer uncertain outcomes to relatively known ones.  However, this 

does not mean that the UOH is invalidated.  It very well could be that MLB has managed 

certain balance elements well enough that its effect at the extremes is not detectable in 
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these models with respect to fan decisions to attend games (Lee and Fort, 2008).  There is 

also the possibility that teams adjust ticket prices in season based on the balance of the 

league and the team’s current standing.  The estimations presented here do not fully 

account for this sort of dynamic pricing behavior.  And I do find significant effects of 

balance on certain teams in the league.  Certainly, the effects of balance on television 

contracts and viewership are an important consideration in sports league fan behavior 

(see Alavay, Gaskell, Leach and Szymanski, 2006; Buriamo and Simmons, 2008; 

Tainsky, 2010). 

 In addition, if a team is consistently finishing in the bottom half of the standings, 

we would expect much of the variation in attendance levels to be caught through the Win 

Percent measure in the model.  For example, if only a single team were finishing very 

low in consecutive years, while the rest of the league is very balanced, we may expect to 

only see effects of quality in this single team’s attendance record, as there is little 

uncertainty as to whether or not they will prosper over the rest of the teams in the league.  

Under this scenario, there may still be little variation in the balance measure for the 

league.  Because the league is highly balanced overall in this hypothetical situation, there 

could be a net increase in the aggregated attendance for MLB despite the loss of fans in 

the flailing team’s market.  This is one important advantage to understanding balance 

effects at both the aggregated and disaggregated level.  At the league level, it very well 

may be beneficial to have “designated” losing teams and winning teams in order to 

provide a net gain in revenues, as long as the low-level teams are sustainable at their 

revenue levels.  As a whole, the analysis here as well as in Lee and Fort (2008) and 

Meehan et al. (2007) seems to indicate that the relationship between Playoff Uncertainty 
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in baseball and attendance at the league level is related to balance through a larger 

number of teams with higher win percent, rather than directly related to the interest in the 

uncertainty itself.  Hope and expectation may be a better characterization of this 

phenomenon.  Most likely, the New York Yankees will attract more in revenues than the 

Kansas City Royals with a World Series win.  Switching the performances of the 

Yankees and Royals for prolonged periods may result in a net decrease in revenues and 

attendance for Major League Baseball, given the relative market sizes of these two teams.  

Fort and Quirk (2010) discuss this theoretical issue for single game ticket leagues in more 

detail. 

 Since we expect fans to first care about their own team success with balance as a 

secondary component to attendance (El-Hodiri and Quirk, 1971), these results are not 

particularly surprising.  On average a low-level team with a better chance of winning 

each of its games would indicate an improvement in both GU and home team win 

percent.  Based on the UOH, we would expect this to increase attendance levels for that 

team due to both an increase in uncertainty and an increase in home team quality.  

However, this simplistic model seems to account the change to win percent alone for a 

majority of franchises.  For inferior clubs, once fans give up on their team’s playoff 

prospects, they may turn to preferring absolute quality of play on the field rather than 

relative quality (Meehan et al., 2007).  After all, a Kansas City Royals and Pittsburgh 

Pirates matchup may not sound very appealing to many fans, despite the relative 

competitiveness of the two franchises.  Conversely, a Royals and Yankees matchup may 

well attract significant Royals (and local Yankee) fans due to the absolute quality of the 

visiting team.  Fans of other teams may prefer to see their home team win every game.  
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Recent work by Davis (2009) and Meehan et al. (2007) have begun to investigate these 

preferences in more detail in shorter term cross-sectional analyses. 

 Additionally, we may not expect a close pennant race to increase attendance for a 

team not involved in that pennant race for most of the season.  When many teams are 

close to winning a pennant, there seems little reason to believe that there would be an 

attendance increase for those teams not involved in that race.  A team within the pennant 

race could experience higher attendance levels if they are both very good and barely 

holding off a competitor, and the aggregate of many of these teams may be net beneficial 

for aggregate MLB attendance.  Lee and Fort (2008) mention this phenomenon in their 

aggregate approach, as much of the PU effect could be coming only from those few 

teams involved in the pennant race.  Therefore, at the team level, much of the excitement 

found in close pennant races may be accounted for by the inclusion of win percent when 

that team is in fact entrenched in the race for the playoffs. 

 These effects of the inclusion of win percent in the model could also be the case 

for CSU, as fans of the continually dominant team would be predicted to continue to 

attend at high levels, while fans of the continually losing team may cease to attend at all.  

In this investigation, I find little pattern with respect to home team quality characteristics 

for those franchises with a significant coefficient for any of the competitive balance 

measures.  However, I was unable to include the Yankees attendance series in our 

analysis because of concerns over its time series properties.  Interestingly, the Boston 

Red Sox are the only long-tenured team to show a preference for improvement in 

Consecutive Season Uncertainty, indicating a possible effect of the Yankees dynasty on 

the Red Sox revenue potential.  This is true even when controlling for the quality of the 
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Red Sox, indicating that fans in Boston may be especially sensitive to Yankee 

dominance.  In a related fashion, it seems reasonable to expect Yankee fans to show 

preferences for low CSU, given the history of Yankee Dynasties over the past 100 years.  

When the Yankees go on the road, this could increase attendance by fans who value 

absolute quality, as opposed to relative quality of the two competing teams.  Ultimately, 

it could be optimal for the league to have a consistently dominant New York Yankees 

team when attempting to maximize revenues across the league. 

 The evidence here suggests that the prediction of El-Hodiri and Quirk (1971)—

that the optimal probability of winning for a given home team is somewhere between 0.5 

and 1—may need more consideration, and may differ across markets and certain time 

points within a season depending on the playoff race.  As mentioned earlier, recent work 

has been headed in this direction (Meehan et al., 2007).  Variability in fan preferences is 

important to both team and league managers with respect to ticket pricing and league 

policy, respectively.  The simplistic model discussed here would be well served with the 

addition of further analysis—accounting for exogenous breaks, of course—of varying fan 

preferences at the game level in order to assess how the predictions of the UOH differ 

across markets and absolute quality of visiting teams and the implications of this with 

respect to league organization.  Extending the work here to this consideration is a planned 

next step for empirical research. 

 

5.5 Breakpoint Regression Results 

 The breakpoints estimated from Model 1 and Model 2 coincide with significant 

events not only in U.S history, but also league and individual team history.  The 
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following subsections illustrate specific time lines of significant events near breakpoints 

for each of the franchises in the analysis.  Much of the historical information provided 

comes from extensive searches through Wikipedia (in a general sense for links to 

reputable sources), USA Today and The New York Times.  The size and direction of 

each structural change in both levels and trends can be gleaned from Figures 5.1 to 5.8. 

 

5.5.1 Baltimore Orioles 

 The Baltimore Orioles have common breakpoints of 1974 and 1991 in both 

Models 1 and 2.  In 1973 and 1974, Baltimore made the playoffs only to lose the AL 

Pennant to the Oakland Athletics in both seasons.  This success may explain some of the 

upward attendance level shifts and trend changes during the 1970s through 1991.  The 

season following 1991 brought forth another massive uptick in attendance for the Orioles, 

as Camden Yards opened in 1992, immediately following the 1991 AL MVP Award of 

Cal Ripken, Jr.  Since this massive peak, Orioles attendance has been trending sharply 

downward. 

 

5.5.2 Boston Red Sox 

 The 1918 Boston break point estimated in Model 1 occurs near the end of World 

War I, and this seems to be the most likely explanation for the structural change at this 

time.  Similarly, the 1945 break occurs at the end of World War II, a finding common to 

many of the teams analyzed here.  In both models, the Boston Red Sox have a breakpoint 

estimated for the year 1966.  This structural shift seems relatively straight forward, as 

there is an enormous jump in attendance following the 1966 season.  In 1967, the Red 
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Sox were in a 4-team race for the AL Pennant almost to the final game, riding Carl 

Yastrzemski’s Triple Crown to the top of the standings.  It seems that this extraordinary 

year had a longer-term impact on attendance than one would initially expect, though there 

could be other causes of this large change that I am unaware of.  The final estimated 

break occurs in 1993 for Model 1.  This is shown as a slight downward blip in attendance 

in Figure 5.1; however, there is a rapid recovery just after the shift.  Given the labor strife 

in the 1994/1995 season, this finding seems to support the findings of Schmidt and Berri 

(2002) that strikes cause short-term effects in fan interest. 

 

5.5.3 Chicago Cubs 

 In 1917, the Cubs hired William Veeck, Sr. (father of Bill Veeck) who brought 

the team 3 pennants (1918, 1929 and 1932).  Looking at Figure 5.1, we can see a sharp 

upward trend during this time, with a large drop off just after the 1932 season.  Given the 

fact that the Cubs won the NL pennant in that season, it seems that the city of Chicago 

was particularly susceptible to the Great Depression, indicated by this large downward 

attendance shift.  Cook County significantly cut back on government employed workers, 

and nearly went bankrupt.  In addition, the neighboring city of Gary, Indiana and its steel 

industry were hit particularly hard after the crash in 1929.  It is not surprising that the 

Cubs would see the effects of these events in their attendance levels despite their success 

on the field in those years immediately preceding the 1932 season. 

 Each of the two models indicate breaks in the 1950’s (1955 in Model 1 and 1950 

in Model 2).  Each of these breaks is associated with a downward shift in attendance 

during this period.  However, Model 1 indicates an upward trend after this negative level 
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shift for Cubs attendance, while Model 2 indicates a negative trend following the 

downward level shift in 1950.  The 1950’s were a bad time for the Cubs franchise, and 

marked a time when even players on the team had little confidence in the team’s potential 

(player/manager Phil Cavarretta was fired after publicly admitting the team would not 

finish above 5th place in 1954 (Goldstein. 2010)). 

 Finally, the Cubs franchise also has breakpoints estimated in 1967 in Model 2 and 

in 1983 for both models.  These final two breakpoints indicate a large upward level shift 

in attendance for both breaks (Figure 5.5).  The 1967 season marked a year in which the 

Cubs rebounded from a 103 loss season.  Again in 1984, the Cubs had a strong squad, 

winning their first pennant since 1945. 

 

5.5.4 Chicago White Sox 

 Though the White Sox have a structural shift estimated for the 1927 season, it is 

difficult to attribute this completely to the Great Depression given its relatively early 

onset.  Outside of this explanation, it is unclear why Chicago’s American League team 

saw such a change. The Depression effect hypothesis seems reasonable, given the similar 

downward shift found in the Chicago Cubs model.  Like the Cubs and many other teams, 

the White Sox also experienced a large upward jump in attendance following World War 

II in 1945, according to Model 1. 

 The White Sox also have breaks in 1975 and 1993.  The years surrounding the 

1975 breakpoint were of significant turmoil for the White Sox franchise.  The notoriously 

innovative Bill Veeck purchased the team in 1975 after the Seattle Pilots lawsuits that 

almost moved the storied franchise to the West Coast.  Veeck put the team in shorts in 
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1976 and held open tryouts in 1978, only adding to the marketing gimmicks he is known 

well for.  As I will discuss later, Bill Veeck had a tendency to make an appearance at 

other breakpoints in franchise histories as well.  At this particular break, there is a large 

sudden increase in attendance that persists as a trend with significant variability through 

2009.  However, in Model 2 there is a breakpoint estimated for the 1993 season, 

indicating a possible effect of the work stoppage in the following seasons.  While the 

White Sox eventually recovered, they seem to have been hit harder by the strike than 

other teams included in this analysis. 

 

5.5.5 Cincinnati Reds 

 Both of the models discussed here estimate the same break dates for the 

Cincinnati Reds: 1945 (as in most other long-tenured teams near the end of WWII) and 

1969.  In 1969, Hamilton County agreed to build a new stadium to keep the Reds from 

moving to San Diego.  The following year is known as the start of the “Big Red 

Machine” and the hiring of manager Sparky Anderson in 1970—a year in which the Reds 

lost to the Baltimore Orioles in the World Series after a very successful season.  The 

1978 and 1979 seasons saw the dismantling of the popular “Big Red Machine”, and it is 

easy to see a dramatic downward spike in attendance just after this season.  However, the 

models did not estimate any structural shifts during this time, indicating that the Reds 

recovered relatively quickly in subsequent seasons. 
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5.5.6 Cleveland Indians 

 For the Cleveland Indians, Models 1 and 2 estimate essentially the same breaks 

within the attendance series.  The 1945/1946 change coincides with many of the other 

teams seeing a large spike in attendance after the end of World War II.  Looking at the 

true attendance data, it seems that there was an enormous shift upward following the end 

of WWII before attendance quickly regressed to low levels for Cleveland following the 

reign of Bill Veeck (who bought the team in 1946 and sold it in 1949) and a World Series 

title.  During his short tenure as owner of the Cleveland Indians, Veeck broke the AL 

color barrier by signing Larry Doby in 1947 and Satchel Paige in 1948, concurrently 

moving the team into Cleveland Municipal Stadium full time (and winning the World 

Series in 1948).  While the stadium was not new at the time, the Indians had been playing 

the majority of their games at League Park, with a capacity of just over 21,000.  

Municipal stadium had a capacity of 78,000 for Indians games.  Veeck’s proclamation 

that attendance levels were dwindling for his own team seems to be a reasonable concern 

for the years following his tenure as owner, but it is unclear why such a large attendance 

increase was not sustained by Cleveland as it was for many of the other teams who saw a 

similar increase after World War II (especially apparent in the National League). 

 Indians attendance did not begin to trend slowly trend upward until the break 

estimated in 1963/1964.  The upward trend is surprising, given that the era from 1960 

through 1990 was a dismal time for the Indians in which the team did not finish above 3rd 

place in any season during that span.  This period in Indians history even sparked the 

making of a series of disparaging comedies about the ineptitude of the franchise.  Finally, 

the beginning of the 1990s sparked another enormous uptick in attendance for the Indians 
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(1991/1992 break date).  This coincides with the opening of the brand new Jacobs Field 

and a wildly successful Indians franchise featuring the likes of Manny Ramirez, Jim 

Thome and Albert Belle.  This success was short-lived, however, as attendance again 

regressed quickly as the 21st century progressed through its first decade. 

 

5.5.7 Detroit Tigers 

 It is well-known that the manufacturing industry in Detroit was hit hard by the 

depression, and it is no surprise that the Tigers saw the effects of this as indicated by a 

breakpoint estimated in 1929.  However, this downward shift was found only in Model 1, 

and does not seem to have been sustained for long afterward.  While there was a slight 

recovery in attendance after the end of the Depression Era, the Tigers saw a large shift 

upward with the end of WWII.  Both models estimate a breakpoint in the range of 1967 

to 1969 for the Tigers.  The 1967 break coincides with one of the closest AL Pennant 

races in history; however, the Tigers were unable to hold off the Boston Red Sox.  

Detroit’s baseball mainstay continued to have solid draws in spite of this, as attendance 

increased steadily until shortly before the player strike in the early 1990s. 

 According to Model 1, 1989 signaled a large downward shift in attendance levels 

(a shift for Model 2 was estimated for 1991, with a confidence interval spanning back to 

1989).  Tigers attendance has recovered nicely and has seen a generally upward trend 

since the work stoppage.  Tigers attendance was particularly volatile through the 1990s 

and 2000s, as Detroit lost 103 games in 1989—marking one of the worst seasons in 

franchise history—and continued their futility throughout much of the decade.  Following 

a miraculous 95 win season in 2006, and subsequent World Series birth, attendance 
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rebounded dramatically.  Unfortunately, the break point regression model restricts the 

estimation of breakpoints within a certain time period of each endpoint, so the effects of 

these later events would need to be estimated in another fashion or when more data is 

available for those seasons well after 2009. 

 

5.5.8 Houston Astros 

 Model 1 and 2 estimate vastly different breakpoints for the Houston Astros' 

attendance series.  The Model 1 break (1973) does not seem to coincide with any 

significant team events, but indicates a downward shift followed by an upward trend in 

attendance.  In Model 2, structural changes are estimated not to have occurred until much 

later in the franchise’s history.  After the 1997 season, this regression indicates a massive 

upward shift in attendance for the Astros, coinciding with a very successful run of 6 

playoff appearances from 1997 through 2005 and the opening of their new stadium in 

2000 (then named Enron Field). 

 

5.5.9 Los Angeles Dodgers 

 For the Los Angeles Dodgers, Models 1 and 2 estimate a large structural shift in 

1974.  For the first part of the Dodgers’ 1958 move to Los Angeles, the team experienced 

a general downward trend in attendance; however, in 1974, this changed dramatically.  

The 1973 season signaled a very large upward shift in attendance, followed by a gradual 

trend through the 2009 season.  The 1973 season began the 8 year tenure of a Dodgers’ 

star infield that would stay together through the 1981 season, reaching 2 World Series 

during that time. 
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5.5.10 Milwaukee Brewers 

 The breaks estimated in the Milwaukee Brewers attendance series differ across 

Models 1 and 2.  Model 1 finds two breaks—one in 1983 and one in 1993—while Model 

2 estimates breaks for only the 1990 season.  In Model 1, the 1983 break identifies what 

seems to be a slight downward shift in attendance levels.  This is a strange event 

considering the Brewers reached their first and only World Series in 1982 (a feat they 

have not achieved since that year).  The team was relatively successful from the 1978 

season through this time, while those seasons after 1982 had mixed results.  With most of 

the teams in this analysis, appearing in the World Series has often been associated with a 

large upward shift in attendance, but Milwaukee was particularly poor after its World 

Series loss in ’82.   

 As with many of the teams in this analysis, the BP Method estimates that the 

Brewers experienced a downward shift near the 1994-95 work stoppage (in 1993), 

followed by a rapid recovery through the 2009 season.  In Model 1, the trend after the 

player strike is relatively consistent with the exception of a large spike in the data, likely 

due to the opening of Miller Park in 2001.  However, Model 2 indicates a significant 

break—a downward shift—just after the opening of the stadium.  Taken together, these 

findings seem to lend support to the idea of the rather short-lived honeymoon effect of a 

new stadium. 
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5.5.11 New York Mets 

 The models for the New York Mets estimate two common breakpoints for 1975 

and 1993.  Both breaks are associated with a downward shift in attendance, the second of 

which occurs after a period of success for the Mets franchise in the 1980’s. The 1993 

season was abysmal for the Mets, a year in which they lost 103 games and experienced a 

very large downward shift after the 1993 season.  This shift may have been enhanced by 

the strike shortened seasons of 1994 and 1995, after which the team has experienced an 

upward trend in attendance levels through the 2009 season. 

 

5.5.12 Oakland Athletics 

 For the Oakland Athletics, I find two similar breaks in each model in 1981 and 

1993.  These both coincide with the major labor disputes in Major League Baseball.  

Interestingly, these breaks shift in opposite directions: upward following the 1981 work 

stoppage, and then downward near the 1994 player strike.  In addition, the 1993 season 

represented a difficult year for the A’s, as they finished last in the American League and 

experienced a downward shift.  The Athletics do not seem to recover from the attendance 

decrease following the breakpoint in 1994 until the turn of the century and the reign of 

Billy Beane as general manager. 

 The sharp trend from the mid-1980’s through the end of the decade coincides with 

a significant speculation made by Lee and Fort (2008), who found a large break in the 

aggregate American League attendance estimation.  The 1987 season marked the 

beginning of the “Bash Brothers Era” in Oakland, and the American League saw a very 

large increase in home run hitting during that year.  Oakland reached the playoffs four out 
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of the five seasons from 1988 to 1992, sweeping their cross-town rivals—the San 

Francisco Giants—in the infamous 1989 “Earthquake Series”.  The end of this run 

coincides with the steep drop-off as indicated by the structural break in 1993. 

 

5.5.13 Philadelphia Phillies 

 Both models for the Philadelphia Phillies indicate breaks at 1945 and 1970 in the 

attendance series.  In addition, Model 1 estimates a third break following the 1930 

season.  The first two estimated breaks, at 1930 and 1945, are concurrent with the 

previously discussed historical events of the Great Depression and World War II.  There 

is a large level shift in attendance after the 1970 season: the final season the team was 

housed in Connie Mack Stadium.  In 1971, the Phillies moved to Veteran’s Stadium, 

where they remained until the opening of Citizen’s Bank Park in 2004.  However, the 

honeymoon effect does not seem to be apparent for the move to Veteran’s Stadium, and 

the Phillies sustained relatively high levels of attendance through the entirety of their stay 

there. 

 

5.5.14 Pittsburgh Pirates 

 The Pittsburg Pirates models have common breakpoints in 1927 preceding the 

Great Depression, near the end of World War II (1945/1946) and in 1961.  Model 1 

estimates an addition break for the team in 1987.  The structural change in 1927 just prior 

to the Great Depression indicates a significant shift downward in attendance levels.  

Pittsburgh’s steel industry was hit particularly hard; however, the fact that this drop 

occurs before this historical event makes it difficult to make confident conclusions 
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regarding this break.  The final common breakpoint for the Pirates falls in 1961, a year 

after winning the World Series and just as Roberto Clemente rose to prominence for the 

team.   

 Finally, Model 1 estimates a break in 1987.  While Lee and Fort (2008) found a 

shift for AL attendance in 1987, this shift was absent for the NL.  Perhaps the upward 

shift in attendance may be explained by the emergence of Barry Bonds (a rookie in 

1986).  While Bonds was a very good player in his early years, he did not reach the epic 

performance he is most well-known for until later in his career (and in fact did not hit 30 

or more home runs until his 5th season in Major League Baseball).  This leaves room for 

another explanation. 

 

5.5.15 San Francisco Giants 

 Both models for the San Francisco Giants estimated similar breaks in 1975.  

While the Giants experienced a gradual attendance decline after its move to San 

Francisco in 1958, the BP procedure estimates an upward shift followed by an increasing 

attendance trend after the 1975 season.  The team was sold to Bob Lurie the in 1976, 

saving them from a move to Toronto and possibly reenergizing fan interest for the team 

afterward.  While the 1970’s were not particularly successful for the Giants on the field, 

perhaps remaining in San Francisco had restored fan confidence in the franchise as the 

hometown team for the city’s residents.   
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5.5.16 St. Louis Cardinals 

 For the St. Louis Cardinals, both Model 1 and Model 2 estimate significant 

breakpoints for the post-WWII years (1945).  They also share a similar breakpoint at 

1981/1982, indicating a possible effect of the labor stoppage of 1981 and subsequent 

restructuring of the playoffs for that season.  Interestingly, there is a large upward 

attendance shift after the 1981 work stoppage for the Cardinals, which is sustained along 

with a strong trend upward through 2009.  In addition to the 1981 strike, St. Louis 

acquired shortstop legend Ozzie Smith just before the 1982 season, and went on to win 

the World Series that year. 

 I also find a breakpoint estimated at 1964 for Model 1.  The 1964 break follows 

the World Series Championship won by the Cardinals that year.  Figure 5.4 exhibits a 

large shift upward in attendance that only slowly decreased to the 1981 strike season, at 

which point it jumped up significantly.  It’s also important to note that in 1966, the 

Cardinals moved to Busch Memorial Stadium.  A recent World Series victory and a new 

stadium could very well have created a perfect storm for a large sudden increase in 

attendance levels in the mid-1960s.  While this break is not found for Model 2, an 

additional structural shift is estimated for the 1921 season.  However, there does not seem 

to be any significant reasonable explanation for this break, and likely has to do with the 

predicted negative trend near the beginning of the Cardinals attendance series for Model 

2.  
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5.6 Summary and Conclusions 

In this chapter, I evaluate the time series behavior of franchise attendance in 

Major League Baseball and its relationship to Uncertainty of Outcome as described by 

Rottenberg.  All in all, the analysis here finds scant evidence of any large influence of 

uncertainty of outcome as it pertains to attracting fans to the ballpark.  While a few teams 

were found to have significant effects of certain uncertainty measures—with PU being 

the most common, as in Lee and Fort (2008)—the models presented here tend to indicate 

that fans are less worried about balance throughout the league and more interested in 

whether or not their home team will be able to compete in the given season. 

Despite the statistical significance of the estimated outcome uncertainty 

coefficients, the economic significance tends to be minimal.  Marginal alterations in 

outcome uncertainty can improve team revenues in MLB by at most one percent 

(excluding the strange case of the Houston Astros, for which further evaluation is 

suggested).  While leagues may have managed balance well enough that it does not affect 

attendance numbers for teams, it seems that it would be difficult for league balance to 

become truly detrimental to league survival based on the results here. 

Again, while large historical events like World War II had significant influences on 

franchise attendance, most shifts or fluctuations in the number of fans at each game tend 

to be most related to team performance, new stadiums and generalized increases in 

interest in professional baseball over time.  There is additional evidence that some teams 

experienced more harm by work stoppages than others; however, they tend to be minimal 

across the entire league.  For those series which are found to be non-stationary, a further 

cross-sectional analysis using other time series and differencing methods is 
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recommended.  In addition, as with the league-level analysis, a further evaluation of the 

impact of sellouts on possibly downward biased coefficient estimates for a few teams 

would be complementary to this analysis (for example, the Boston Red Sox and Chicago 

Cubs).
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TABLE 5.1: MLB Franchise TAPG by Decade 
 
Team 1900's 1910's 1920's 1930's 1940's 1950's 1960's 1970's 1980's 1990's 2000's 1901-2009 
ATL       16,960 10,570 16,531 36,685 32,194 23,356 
BAL      11,952 12,228 13,685 23,676 41,716 30,997 23,073 
BOS 6,033 6,172 4,285 6,329 12,328 14,684 14,300 22,230 24,863 29,560 34,919 16,064 
CHC 6,045 5,223 10,529 11,300 11,565 11,235 11,008 16,942 21,629 29,329 37,460 15,749 
CHW 6,578 7,312 8,119 5,378 9,257 14,518 13,445 13,948 18,641 25,705 27,066 13,698 
CIN 4,241 3,709 6,178 5,696 7,936 9,693 11,169 26,647 21,261 26,735 25,732 13,631 
CLE 4,072 4,950 7,169 6,385 14,091 15,907 9,402 10,517 12,898 31,611 28,506 13,312 
DET 3,628 6,020 9,888 9,390 15,224 15,284 15,832 18,461 24,032 19,140 28,024 15,097 
HOU       16,182 15,340 20,858 23,479 34,812 22,326 
KCR       11,005 17,391 27,551 21,761 19,456 21,234 
LAD      25,260 27,135 30,385 39,416 38,330 42,589 35,209 
LAA       11,476 15,445 31,550 26,319 36,453 24,420 
MIL        13,803 22,409 19,891 29,183 21,184 
MIN       16,359 11,285 18,822 21,290 24,604 18,368 
MON       14,970 15,520 22,873 17,112 10,287 17,223 
NYM       19,969 20,811 26,079 24,942 37,066 26,015 
NYY 4,857 4,727 13,665 11,820 18,494 20,872 16,537 19,591 28,537 28,949 46,743 19,938 
OAK 

      
9,849 9,507 20,243 22,644 24,113 18,685 

PHI 3,482 4,305 3,508 3,033 6,907 11,934 11,019 23,780 26,354 26,276 32,151 13,982 
PIT 4,652 3,793 8,341 4,814 10,394 11,443 12,519 15,688 14,418 20,208 22,065 11,731 
SDN 

      
6,333 13,361 19,756 23,015 30,538 21,294 

SEA 
       

12,594 12,418 28,025 36,044 24,323 
SFG 

     
17,498 17,459 11,024 16,745 23,050 38,478 21,203 

STL 3,703 3,319 6,233 5,193 10,170 12,935 17,376 18,507 28,985 32,804 40,362 16,442 
TEX 

       
14,043 17,635 31,804 29,539 23,740 

TOR 
       

19,410 26,636 40,632 24,696 29,632 
A.L. 4,809 4,997 7,796 6,445 11,235 13,360 12,606 14,824 22,015 27,892 29,160 14,189 
N.L. 4,366 4,203 7,248 6,686 10,478 13,348 15,578 18,215 22,897 27,794 31,304 14,833 
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TABLE 5.2: MLB Decade Averages for All Balance Measures 
 
Measure 1900’s 1910’s 1920’s 1930’s 1940’s 1950’s 1960’s 1970’s 1980’s 1990’s 2000’s Overall 

A.L. TL 0.038 0.045 0.064 0.018 0.103 0.055 0.166 0.267 0.364 0.395 0.167 0.154 
A.L. CSU 0.499 0.458 0.628 0.747 0.616 0.742 0.638 0.558 0.433 0.337 0.560 0.568 
A.L. PU 0.027 0.051 0.050 0.072 0.045 0.040 0.047 0.041 0.035 0.045 0.038 0.045 

A.L. CBR 0.763 0.806 0.894 0.901 0.882 0.864 0.790 0.744 0.795 0.818 0.817 0.826 

N.L. TL 0.006 0.101 0.090 0.072 0.047 0.146 0.148 0.294 0.393 0.339 0.543 0.200 
N.L. CSU 0.690 0.396 0.690 0.685 0.631 0.693 0.494 0.603 0.298 0.178 0.429 0.520 
N.L. PU 0.082 0.062 0.032 0.029 0.043 0.038 0.030 0.040 0.038 0.038 0.033 0.042 

N.L. CBR 0.733 0.706 0.804 0.800 0.821 0.875 0.818 0.820 0.860 0.857 0.857 0.815 
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TABLE 5.3: MLB Win Percent by Decade 1901-2009 
 
Team 1900's 1910's 1920's 1930's 1940's 1950's 1960's 1970's 1980's 1990's 2000's Overall 
ATL       0.517 0.450 0.457 0.595 0.551 0.513 
BAL      0.436 0.565 0.590 0.512 0.512 0.431 0.513 
BOS 0.514 0.569 0.386 0.461 0.550 0.528 0.475 0.556 0.525 0.523 0.568 0.514 
CHC 0.600 0.546 0.523 0.576 0.475 0.434 0.456 0.487 0.471 0.476 0.499 0.502 
CHW 0.550 0.529 0.474 0.443 0.460 0.545 0.528 0.468 0.485 0.525 0.529 0.503 
CIN 0.473 0.470 0.518 0.432 0.496 0.481 0.536 0.592 0.499 0.520 0.463 0.499 
CLE 0.516 0.488 0.511 0.534 0.518 0.585 0.486 0.460 0.455 0.531 0.504 0.508 
DET 0.509 0.525 0.489 0.531 0.537 0.476 0.546 0.490 0.535 0.452 0.450 0.503 
HOU       0.428 0.492 0.522 0.523 0.514 0.498 
KCR       0.423 0.528 0.529 0.468 0.415 0.483 
LAD 

     
0.513 0.545 0.565 0.526 0.513 0.532 0.536 

LAA 
      

0.470 0.484 0.500 0.475 0.556 0.498 
MIL 

       
0.458 0.514 0.478 0.457 0.476 

MIN 
      

0.540 0.505 0.468 0.463 0.532 0.501 
MON 

      
0.321 0.464 0.518 0.499 0.454 0.483 

NYM       0.381 0.473 0.523 0.494 0.504 0.478 
NYY 0.491 0.466 0.606 0.629 0.602 0.620 0.549 0.555 0.547 0.548 0.596 0.567 
OAK       0.523 0.520 0.512 0.497 0.550 0.521 
PHI 0.473 0.508 0.369 0.379 0.378 0.495 0.473 0.503 0.500 0.471 0.525 0.462 
PIT 0.634 0.488 0.568 0.529 0.486 0.398 0.528 0.568 0.469 0.498 0.421 0.507 
SDN       0.321 0.415 0.486 0.487 0.474 0.461 
SEA        0.386 0.429 0.493 0.517 0.471 
SFG      0.529 0.560 0.493 0.493 0.508 0.528 0.517 
STL 0.382 0.433 0.533 0.588 0.615 0.502 0.550 0.495 0.528 0.488 0.564 0.518 
TEX        0.477 0.461 0.519 0.479 0.484 
TOR        0.343 0.522 0.515 0.497 0.496 
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TABLE 5.4: MLB Average Games Back From Playoffs by Era 
 
Team AL/NL (1901-1968) Div. Era (1969-1993) WC Era (1994-2009) 
ATL 16.83 18.48 2.38 
BAL 18.63 8.56 18.13 
BOS 20.93 10.48 4.06 
CHC 17.65 16.64 11.16 
CHW 19.50 15.72 7.28 
CIN 21.83 8.26 11.16 
CLE 16.94 23.58 6.47 
DET 17.86 14.02 20.13 
HOU 29.86 14.44 4.75 
KCR 

 
11.02 20.94 

LAD 9.23 8.64 4.38 
LAA 23.50 15.98 7.19 
MIL 

 
17.13 15.06 

MIN 13.75 14.54 10.59 
MON 

 
15.96 15.68 

NYM 41.21 14.74 9.16 
NYY 9.54 10.40 0.38 
OAK 21.00 10.32 8.38 
PHI 29.05 14.76 10.28 
PIT 17.13 9.80 19.31 
SDN 

 
23.02 11.72 

SEA 
 

24.15 9.94 
SFG 7.00 14.74 6.44 
STL 17.48 12.44 5.00 
TEX 

 
16.93 11.79 

TOR 
 

14.82 14.19 
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TABLE 5.5: MLB Franchise Playoff Appearances by Era 
 
Team AL/NL (01-68) Div. Era (69-93) WC Era (94-09) Total % of Seasons 
ATL 0 5 12 17 38.6% 
BAL 1 7 2 10 17.9% 
BOS 8 4 9 21 19.3% 
CHC 10 2 4 16 14.7% 
CHW 5 2 4 11 10.1% 
CIN 4 8 2 14 12.8% 
CLE 3 0 8 11 10.1% 
DET 8 3 1 12 11.0% 
HOU 0 2 6 8 16.7% 
KCR 

 
6 0 6 14.6% 

LAD 4 6 7 17 32.7% 
LAA 0 3 6 9 18.4% 
MIL 

 
2 1 3 7.5% 

MIN 1 4 5 10 20.4% 
MON 

 
0 1 1 2.8% 

NYM 0 4 3 7 14.6% 
NYY 29 4 15 48 44.9% 
OAK 0 10 5 15 35.7% 
PHI 2 6 3 11 10.1% 
PIT 7 9 0 16 14.7% 
SDN 

 
1 4 5 12.2% 

SEA 
 

0 4 4 12.1% 
SFG 1 3 4 8 15.4% 
STL 12 4 8 24 22.0% 
TEX 

 
0 4 4 10.5% 

TOR 
 

5 0 5 15.2% 
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TABLE 5.6: MLB Franchise ADF and PP Tests (Unadjusted) 
 
Team   ATL BAL BOS CHC CHW CIN CLE 
T (seasons)  44 56 109 109 109 109 109 
ADF (p) Constant -1.772 (1) -1.189 (0) 0.558 (6) -0.015 (3) -0.251 (7) -1.696 (0) -1.960 (0) 
ADF (p) Trend -2.757 (1) -1.171 (0) -2.234 (6) -1.826 (3) -4.747 (1)*** -3.494 (3)** -3.096 (1) 
P-P (l) Constant -1.496 (3) -1.204 (3) -0.397 (4) -0.390 (4) -1.879 (4) -1.613 (4) -2.110 (4) 
P-P (l) Trend -2.354 (3) -1.290 (3) -3.230 (4)* -2.268 (4) -4.220 (4)*** -3.535 (4)** -2.922 (4) 

Team   DET HOU KCR LAD LAA MIL MIN 
T (seasons)  109 48 41 52 49 40 49 
ADF (p) Constant -1.028 (5) -0.394 (7) -2.139 (0) -0.745 (7) -1.393 (0) -1.849 (0) -2.014 (5) 
ADF (p) Trend -5.318 (1)*** -2.482 (7) -2.023 (0) -2.532 (3) -2.430 (0) -3.283 (0)* -3.192 (5) 
P-P (l) Constant -1.953 (4) -1.973 (3) -2.112 (3) -1.823 (3) -1.283 (3) -1.439 (3) -1.785 (3) 
P-P (l) Trend -4.770 (4)*** -3.289 (3)* -1.950 (3) -3.446 (3)* -2.424 (3) -3.225 (3)* -2.618 (3) 

Team   MON NYM NYY OAK PHI PIT SD 
T (seasons)  36 48 107 42 109 109 41 
ADF (p) Constant -2.214 (0) -1.239 (7) -0.945 (0) -1.778 (4) -0.200 (2) -0.896 (7) -1.421 (5) 
ADF (p) Trend -2.374 (0) -3.625 (6)** -2.605 (0) -3.003 (3) -2.953 (0) -5.448 (4)*** -3.239 (0)* 
P-P (l) Constant -2.269 (3) -2.095 (3) -0.934 (4) -2.025 (3) -0.276 (4) -2.434 (4) -2.195 (3) 
P-P (l) Trend -2.392 (3) -2.535 (3) -2.781 (4) -2.154 (3) -2.960 (4) -5.135 (4)*** -3.248 (3)* 

Team   SEA SF STL TEX TOR 
T (seasons)  33 52 109 38 33 
ADF (p) Constant -2.527 (6) -1.445 (0) -0.323 (1) -1.475 (5) -2.576 (7) 
ADF (p) Trend -1.585 (6) -2.730 (7) -3.722 (0)** -1.282 (8) -2.667 (7) 
P-P (l) Constant -1.074 (3) -1.286 (3) -0.184 (4) -1.946 (3) -1.498 (3) 
P-P (l) Trend -1.862 (3) -2.481 (3) -3.571 (4)** -2.281 (3) -1.338 (3) 

Data unadjusted for strikes.  p: the number of lags; l: lag truncation.   
***, **, * = significant at 99%, 95%, and 90% critical levels, respectively. 
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TABLE 5.7: MLB Franchise Two-Break LM Test (Unadjusted) 
 
Team 𝐤̂ 𝐓�𝐛 𝐭̂𝛄𝐣 Test Statistic Critical Value Break Points 
ATL 8 1982, 1990 0.164, 4.956*** -4.884 λ = (0.39, 0.57) 
BAL 8 1978, 1990 0.113, 5.311*** -6.662*** λ = (0.45, 0.66) 
BOS 4 1944, 1959 4.240***, -4.416*** -6.115*** λ = (0.40, 0.54) 
CHC 3 1951, 1985 -4.151***, 4.154*** -5.692** λ = (0.47, 0.78) 
CHW 3 1950, 1976 -1.038, 0.211 -6.5254*** λ = (0.46, 0.70) 
CIN 6 1960, 1970 -2.413**, 4.137*** -6.447*** λ = (0.55, 0.64) 
CLE 8 1959, 1991 -0.502, 5.627*** -6.333*** λ = (0.54, 0.83) 
DET 8 1981, 1996 2.342**, -0.240 -6.332*** λ = (0.74, 0.88) 
HOU 8 1981, 1994 0.037, 5.545*** -6.136** λ = (0.42, 0.69) 
KCR 8 1987, 2002 -6.735***, 1.134 -5.216 λ = (0.46, 0.83) 
LAD 8 1978, 1991 5.841***, 3.174*** -7.201*** λ = (0.40, 0.65) 
LAA 7 1986, 2001 0.545, 3.683*** -4.480 λ = (0.53, 0.84) 
MIL 7 1982, 1999 -5.646***, 7.029*** -6.587*** λ = (0.33, 0.75) 
MIN 6 1982, 1995 5.056***, -4.012*** -5.853** λ = (0.45, 0.71) 
MON 5 1982, 1992 -0.363, 5.262*** -6.587*** λ = (0.39, 0.67) 
NYM 6 1982, 1997 1.471, -2.312** -4.861 λ = (0.44, 0.75) 
NYY 2 1961, 1994 -1.207, 3.653*** -4.649 λ = (0.55, 0.86) 
OAK 7 1987, 1996 5.514***, 4.786*** -6.736*** λ = (0.48, 0.69) 
PHI 7 1972, 1992 4.429***, -4.859*** -6.010** λ = (0.66, 0.84) 
PIT 5 1945, 1986 3.994***, 2.140** -6.991*** λ = (0.41, 0.79) 
SD 4 1991, 2004 -5.200***, -0.084 -6.224** λ = (0.56, 0.88) 
SEA 8 1990, 1994 -0.523, 7.304*** -9.114*** λ = (0.42, 0.55) 
SF 7 1970, 1984 -2.979***, 5.628*** -6.089** λ = (0.25, 0.52) 
STL 8 1927, 1983 -2.680***, 5.876*** -6.195*** λ = (0.25, 0.76) 
TEX 5 1984, 1993 -2.520**, -8.091*** -7.405*** λ = (0.34, 0.58) 
TOR 8 1990, 2004 4.085***, 4.089*** -7.039*** λ = (0.42, 0.85) 
Data unadjusted for strikes.  𝑘�  is the optimal number of lagged first-difference terms included in the unit 
root test to correct for serial correlation.  𝑇�𝑏 denotes the estimated break points.  𝑡̂𝛾𝑗 is the value of DTjt for j 
= 1,2.  See Lee and Strazicich (2003) Table 2 for critical values.  ***, ** = significant at 99% and 95% 
critical levels, respectively. 
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TABLE 5.8: MLB Franchise One-Break LM Test (Unadjusted) 

Team 𝐤̂ 𝐓�𝐛 𝐭̂𝛄𝐣 Test Statistic Critical Value Break Points 
ATL 8 1989 4.251*** -4.388* λ = 0.55 
CHC 2 1955 -2.368** -5.207*** λ = 0.50 
HOU 7 1994 4.800*** -5.454*** λ = 0.69 
KCR 7 1990 -4.535*** -4.481* λ = 0.54 
LAA 8 1982 -0.967 -4.352* λ = 0.45 
MIN 6 1976 -0.676 -4.731** λ = 0.33 
NYM 6 1997 -1.799* -4.715** λ = 0.75 
NYY 2 1994 3.292*** -4.247* λ = 0.86 
PHI 5 1949 -1.824* -4.1000 λ = 0.45 
SD 8 1980 3.184*** -5.338*** λ = 0.20 
SF 7 1984 5.775*** -6.022*** λ = 0.52 
Data unadjusted for strikes.  𝑘� is the optimal number of lagged first-difference terms included in 
the unit root test to correct for serial correlation.  𝑇�𝑏 denotes the estimated break points.  𝑡̂𝛾𝑗 is the 
value of DTjt for j = 1,2.  See J. Lee and Strazicich (2003) Table 2 for critical values.  ***, **, * = 
significant at 99%, 95%, and 90% critical levels, respectively. 
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TABLE 5.9: MLB Franchise ADF and PP Tests (Adjusted) 

Team  ATL BAL BOS CHC CHW CIN CLE 
T (seasons)  44 56 109 109 109 109 109 
ADF (p) Constant -1.749 (1) -1.174 (0) 0.610 (6) 0.048 (3) -2.525 (7) -1.628 (0) -1.944 (0) 
ADF (p) Trend -2.656 (1) -1.119 (0) -2.194 (6) -1.775 (3) -4.833 (1)*** -3.521 (3)** -3.004 (1) 
P-P (l) Constant -1.479 (3) -1.203 (3) -0.376 (4) -0.330 (4) -1.807 (4) -1.604 (4) -2.108 (4) 
P-P (l) Trend -2.290 (3) -1.270 (3) -3.153 (4)* -2.203 (4) -4.124 (4)*** -3.522 (4)** -2.935 (4) 

Team   DET HOU KCR LAD LAA MIL MIN 
T (seasons)  109 48 41 52 49 40 49 
ADF (p) Constant -1.019 (5) -0.401 (7) -2.089 (0) -0.742 (7) -1.355 (0) -1.672 (0) -1.688 (4) 
ADF (p) Trend -5.350 (1)*** -2.651 (7) -1.967 (0) -2.475 (3) -2.281 (0) -2.923 (0) -2.846 (4) 
P-P (l) Constant -1.943 (4) -1.905 (3) -2.083 (3) -1.806 (3) -1.291 (3) -1.336 (3) -1.676 (3) 
P-P (l) Trend -4.789 (4)*** -3.229 (3)* -1.917 (3) -3.431 (3)* -2.315 (3) -2.898 (3) -2.544 (3) 

Team   MON NYM NYY OAK PHI PIT SD 
T (seasons)  36 48 107 42 109 109 41 
ADF (p) Constant -1.974 (0) -2.684 (1)* -0.886 (0) -2.354 (1) -0.524 (0) -0.385 (8) -1.743 (5) 
ADF (p) Trend -2.236 (2) -3.204 (1)* -2.536 (0) -2.533 (1) -2.904 (0) -5.588 (2)*** -2.308 (5) 
P-P (l) Constant -2.078 (3) -2.087 (3) -0.896 (4) -1.935 (3) -0.198 (4) -2.304 (4) -2.128 (3) 
P-P (l) Trend -2.218 (3) -2.541 (3) -2.732 (4) -2.052 (3) -2.892 (4) -4.927 (4)*** -2.890 (3) 

Team   SEA SF STL TEX TOR 
T (seasons)  33 52 109 38 33 
ADF (p) Constant -3.105 (6)** -1.395 (0) 0.226 (3) -1.847 (0) -1.624 (1) 
ADF (p) Trend -1.518 (6) -2.702 (7) -3.482 (0)** -1.450 (0) -1.481 (1) 
P-P (l) Constant -1.030 (3) -1.260 (3) -0.063 (4) -1.843 (3) -1.504 (3) 
P-P (l) Trend -1.515 (3) -2.476 (3) -3.320 (4)* -1.347 (3) -1.345 (3) 

Data adjusted for strikes.  p: the number of lags; l: lag truncation.   
***, **, * = significant at 99%, 95%, and 90% critical levels, respectively. 
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TABLE 5.10: MLB Franchise Two-Break LM Test (Adjusted) 
 
Team 𝐤̂ 𝐓�𝐛 𝐭̂𝛄𝐣 Test Statistic Critical Value Break Points 
ATL 2 1985, 1994 0.947, 0.550 -5.198 λ = (0.45, 0.66) 
BAL 8 1978, 1990 0.391, 5.365*** -6.740*** λ = (0.45, 0.66) 
BOS 4 1944, 1959 4.147***, -4.261*** -5.973** λ = (0.40, 0.54) 
CHC 2 1955, 1986 -2.373**, 1.452 -5.524* λ = (0.50, 0.79) 
CHW 1 1931, 1967 1.271, -1.250 -6.214** λ = (0.28, 0.61) 
CIN 4 1960, 1970 -2.274**, 3.842*** -6.852*** λ = (0.55, 0.64) 
CLE 6 1959, 1991 -0.534, 4.771*** -5.471* λ = (0.54, 0.83) 
DET 1 1981, 1996 2.411**, -0.284 -6.343** λ = (0.74, 0.88) 
HOU 1 1972, 1998 -3.004***, 2.663** -5.254 λ = (0.23, 0.77) 
KCR 6 1988, 1999 -6.358***, 0.857 -5.558* λ = (0.49, 0.76) 
LAD 8 1980, 1991 3.469***, 5.141*** -6.611*** λ = (0.44, 0.65) 
LAA 5 1983, 2001 2.096**, 2.858*** -4.376 λ = (0.45, 0.84) 
MIL 6 1980, 2000 2.573**, -6.512*** -7.454*** λ = (0.28, 0.78) 
MIN 6 1982, 1995 4.921***, -3.945*** -5.525* λ = (0.45, 0.71) 
MON 4 1980, 1986 1.661*, 1.245 -5.591* λ = (0.33, 0.50) 
NYM 6 1982, 1997 1.547, 2.844*** -4.716 λ = (0.44, 0.75) 
NYY 2 1961, 1998 -2.199**, 1.994** -4.582 λ = (0.55, 0.90) 
OAK 7 1982, 1986 0.517, 4.771*** -7.524*** λ = (0.36, 0.45) 
PHI 7 1972, 1992 4.569***, -5.042*** -6.215** λ = (0.66, 0.84) 
PIT 5 1944, 1986 4.831***, 0.917 -6.943*** λ = (0.40, 0.79) 
SD 4 1990, 2005 -5.086***, 0.082 -5.879** λ = (0.54, 0.90) 
SEA 0 1989, 2002 6.049***, -4.796*** -6.391** λ = (0.39, 0.79) 
SF 8 1972, 1984 -2.416**, 5.457*** -6.086** λ = (0.29, 0.52) 
STL 8 1927, 1983 -2.797***, 6.104*** -6.423*** λ = (0.25, 0.76) 
TEX 5 1982, 1996 -3.740***, 0.246 -4.941 λ = (0.29, 0.66) 
TOR 4 1987, 1998 5.405***, -6.140*** -7.230*** λ = (0.33, 0.67) 
Data adjusted for strikes.   𝑘�  is the optimal number of lagged first-difference terms included in the unit root 
test to correct for serial correlation.  𝑇�𝑏  denotes the estimated break points.  𝑡̂𝛾𝑗 is the value of DTjt for j = 
1,2.  See J. Lee and Strazicich (2003) Table 2 for critical values.  ***, **, * = significant at 99%, 95%, and 
90% critical levels, respectively. 
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TABLE 5.11: MLB Franchise One-Break LM Test (Adjusted) 

Team 𝐤̂ 𝐓�𝐛 𝐭̂𝛄𝐣 Test Statistic Critical Value Break Points 
ATL 2 1991 2.785*** -4.295* λ = 0.59 
CHC 2 1955 -2.318** -5.162*** λ = 0.50 
CLE 6 1991 3.564*** -4.576** λ = 0.83 
HOU 7 1995 3.941*** -4.600** λ = 0.71 
KCR 0 1979 -1.940* -3.086 λ = 0.27 
LAA 8 1982 -1.207 -4.448* λ = 0.45 
MIN 6 1976 -0.366 -4.320* λ =0.33 
MON 8 1976 0.708 -4.149 λ = 0.22 
NYM 8 1969 -2.262** -4.636** λ = 0.17 
NYY 2 1962 -1.464 -4.098 λ = 0.56 
TEX 6 1991 3.046*** -4.948** λ = 0.53 
NOTE: 𝑘� is the optimal number of lagged first-difference terms included in the unit root test to 
correct for serial correlation.  𝑇�𝑏 denotes the estimated break points.  𝑡̂𝛾𝑗 is the value of DTjt for j 
= 1,2.  See J. Lee and Strazicich (2003) Table 2 for critical values.  Data adjusted for strikes.  
***, **, * = significant at 99%, 95%, and 90% critical levels, respectively. 
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TABLE 5.12: MLB Franchise Model 1 Break Point Test Results (Heterogeneous) 
 
Team SupFt(1) SupFt(2) SupFt(3) SupFt(4) SupFt(5) UDmax WDmax SupF(2/1) SupF(3/2) SupF(4/3) SupF(5/4) Breaks 

             
BAL 214.05a 179.72a    214.05a 250.21a 80.80a    2 

             
BOS 61.22a 131.84a 96.00a 105.81a 75.32a 131.84a 188.02a 117.74a 29.84a 29.84a  4 

             
CHC 156.74a 138.53a 106.57a 114.65a 86.77a 156.74a 203.72a 27.39a 31.20a 9.41  3 

             
CHW 17.26a 15.83a 21.54a 26.52a 23.81a 26.52a 52.29a 43.92a 43.92a 13.38c  2 

             
CIN 157.01a 102.66a 84.40a 82.63a 70.28a 157.01a 157.01a 32.19a 31.04a 31.06a 5.36 2 

             
CLE 56.08a 44.08a 47.56a 44.56a 39.10a 56.08a 85.86a 15.78b 35.29a 12.22 7.81 3 

             
DET 21.76a 20.58a 30.89a 27.69a 24.29a 30.89a 53.33a 14.52b 28.64a 16.26b  4 

             
HOU 16.92a 12.19a    16.92a 16.97a 5.68    1 

             
LAD 38.44a 34.76a    38.44a 48.38a 8.64    1 

             
MIL 12.08b 14.10a    14.10a 19.63a 17.85a    2 

             
NYM 34.32a 54.72a    54.72a 76.18a 40.54a    2 

             
OAK 35.31a 21.95a    35.31a 35.31a 11.40b    2 

             
PHI 86.27a 72.57a 57.35a 50.96a 45.75a 86.27a 100.45a 51.10a 51.10a 34.97a 10.78 3 

             
PIT 15.95a 38.05a 30.98a 32.45a 24.67a 38.05a 57.67a 62.30a 51.30a 45.76a  4 

             
SDN 7.98 9.50c    9.50c 12.27b 10.99b    0 

             
SFG 96.07a 53.18a    96.07a 96.07a 3.47    1 

             
STL 160.13a 151.07a 137.00a 108.22a 83.68a 160.13a 205.03a 47.16a 17.05b 6.02  3 

a. Significant at the 99% critical level 
b. Significant at the 95% critical level 
c. Significant at the 90% critical level 
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TABLE 5.13: MLB Franchise Model 1 Estimated Break Dates (Heterogeneous) 
 
Team T1 T2 T3 T4  Team T1 T2 T3 T4 

           
BAL 1974 1991    LAD 1974    

 [73, 75] [90, 92]     [73, 76]    
           

BOS 1918 1945 1966 1993  MIL 1983 1993   
 [17, 20] [44, 46] [65, 67] [92, 95]   [82, 85] [90, 94]   
           

CHC 1932 1955 1983   NYM 1975 1993   
 [30, 33] [54, 58] [82, 90]    [74, 76] [90, 94]   
           

CHW 1945 1975    OAK 1981 1993   
 [42, 46] [73, 76]     [80, 82] [92, 95]   
           

CIN 1945 1969    PHI 1930 1945 1970  
 [43, 46] [68, 70]     [24, 31] [44, 46] [69, 71]  
           

CLE 1946 1964 1992   PIT 1927 1946 1961 1987 
 [44, 47] [63, 66] [90, 93]    [25, 28] [43, 47] [56, 63] [84, 89] 
           

DET 1929 1945 1967 1989  SFG 1975    
 [27, 40] [43, 46] [66, 69] [84, 90]   [74, 76]    
           

HOU 1973     STL 1945 1964 1981  
 [71, 75]      [44, 46] [62, 65] [80, 83]  
           

*Brackets denote 90% confidence interval for break date 
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TABLE 5.14: MLB Franchise Model 2 Break Point Test Results (Heterogeneous) 
 
Team SupFt(1) SupFt(2) SupFt(3) SupFt(4) SupFt(5) UDmax WDmax SupF(2/1) SupF(3/2) SupF(4/3) SupF(5/4) Breaks 

             
BAL 197.39a 149.94a    197.39a 208.75a 39.28a    2 

             
BOS 79.52a 156.08a 114.26a 95.55a 52.17a 156.08a 197.44a 46.05a 8.90 8.90  2 

             
CHC 189.70a 147.00a 109.03a 113.78a 100.49a 189.70a 220.64a 15.75b 20.95a 20.61a  4 

             
CHW 34.99a 39.81a 26.81a 26.88a 22.06a 39.81a 50.36a 46.49a 23.53a 23.53a  2 

             
CIN 150.13a 97.41a 86.30a 75.68a 47.77a 150.13a 150.13a 30.65a 29.69a 12.57  2 

             
CLE 63.61a 52.30a 53.33a 46.00a 39.22a 63.61a 86.11a 40.73a 24.16a 12.61 12.61 3 

             
DET 20.85a 38.09a 32.21a 26.00a 19.36a 38.09a 48.21a 14.76b 12.29 7.08  3 

             
HOU 20.60a 13.05a    20.60a 20.60a 4.59    1 

             
LAD 42.67a 38.48a    42.67a 53.57a 10.32    1 

             
MIL 12.28b 17.53a    17.53a 24.41a 4.13    1 

             
NYM 34.02a 48.85a    48.85a 68.01a 35.35a    2 

             
OAK 36.14a 26.67a    36.14a 37.12a 15.60a    2 

             
PHI 97.84a 68.20a 57.50a 49.21a 45.21a 97.84a 99.26a 63.11a 63.11a 35.37a 9.75 2 

             
PIT 46.73a 39.11a 32.43a 35.55a 18.67a 46.73a 63.17a 48.39a 48.39a 46.21a  3 

             
SDN 8.67 10.46c    10.46c 13.51b 9.31c    0 

             
SFG 86.32a 45.80a    86.32a 86.32a 3.97    1 

             

STL 187.42a 151.52a 139.97a 112.68a 70.19a 187.42a 209.48a 31.07a 22.46a 16.47b  3 
a. Significant at the 99% critical level 
b. Significant at the 95% critical level 
c. Significant at the 90% critical level 
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TABLE 5.15: MLB Franchise Model 2 Estimated Break Dates (Heterogeneous) 
 
Team T1 T2 T3 T4  Team T1 T2 T3 T4 

           
BAL 1973 1991    LAD 1974    

 [72, 74] [90, 92]     [73, 75]    
           

BOS 1945 1966    MIL 1990    
 [44, 46] [65, 67]     [85, 91]    
           

CHC 1932 1950 1967 1983  NYM 1975 1993   
 [30, 33] [49, 52] [66, 68] [82, 88]   [74, 76] [92, 94]   
           

CHW 1927 1993    OAK 1981 1993   
 [26, 28] [81, 94]     [80, 82] [92, 95]   
           

CIN 1945 1969    PHI 1945 1970   
 [43, 46] [68, 70]     [38, 46] [69, 71]   
           

CLE 1945 1963 1991   PIT 1927 1945 1961  
 [42, 46] [62, 65] [89, 92]    [26, 28] [43, 46] [59, 62]  
           

DET 1946 1969 1991   SFG 1975    
 [45, 47] [68, 72] [82, 92]    [74, 76]    
           

HOU 1997     STL 1921 1945 1982  
 [96, 99]      [19, 25] [44, 46] [81, 84]  
           

*Brackets denote 90% confidence interval for break date 
 
 



 

 

 

1
3
9 

TABLE 5.16: MLB Franchise Model 1 (Heterogeneous) Breakpoint Regression Results 
 
Team α1 β1 α2 β2 α3 β3 α4 β4 α5 β5 
BAL -204 2077 1225 -26700 -1237 84764     
t-value (-1.75)c (0.69) (8.90)a (-4.28)a (-9.24) a (10.32)a     
BOS -273 3039 109 -2009 -310 26286 447 -16389 653 -39416 
t-value (-2.50)b (1.69)c (2.35)b (-1.21) (-4.41)a (5.56)a (9.84)a (-3.97)a (6.66)a (-3.98)a 
CHC 403 -14086 487 -24063 301 -20001 611 -40652   
t-value (7.09)a (-5.19)a (5.96)a (-5.12)a (5.24)a (-4.78)a (7.84)a (-5.42)a   
CHW 49 -8267 -130 6361 325 -22701     
t-value (1.05) (-2.73)a (-1.71)c (1.24) (5.56)a (-3.88)a     
CIN 38 -7064 4 -1453 142 1133     
t-value (1.09) (-3.13)a (0.04) (-0.31) (3.59)a (0.24)     
CLE 91 -9668 -1040 58480 264 -21410 -849 104045   
t-value (2.07)b (-3.02)a (-6.36)a (5.71)a (3.17)a (-2.94)a (-4.58)a (5.27)a   
DET 382 -17136 176 -14823 -439 23042 218 -15110 976 -90325 
t-value (5.47)a (-6.64)a (1.23) (-2.51)b (-4.81)a (4.21)a (2.39)b (-1.98)c (8.52)a (-7.84)a 
HOU 92 -952 661 -13594       
t-value (0.22) (-0.16) (8.87)a (-1.84) b       
LAD -180 8012 210 12408       
t-value (-1.20) (1.50) (3.98)a (2.17) b       
MIL 1138 -1390 167 7335 1346 -27724     
t-value (4.18)a (-0.23) (0.44) (0.81) (6.55)a (-3.30)a     
NYM -571 -3916 1032 -34387 1581 -67034     
t-value (-2.08)b (-1.28) (5.96) a (-6.31) a (7.91)a (-7.82)a     
OAK 221 -11109 1034 -16529 312 -9027     
t-value (1.05) (-2.63)b (4.17)a (-3.12)a (1.88) c (-1.40)     
PHI 144 -12260 469 -25518 -57 -830 213 -7983   
t-value (1.45) (-3.43)a (2.19)b (-2.91)a (-0.56) (-0.13) (4.05)a (-1.50)   
PIT 238 -13545 311 -20816 -183 10885 180 -15082 191 -11002 
t-value (3.15)a (-5.05)a (3.09)a (-4.68)a (-1.25) (1.41) (2.75)a (-2.73)a (1.82)c (-1.03) 
SFG -642 -3553 835 -27287       
t-value (-3.63)a (-0.56) (11.54)a (-5.07)a       
STL -70 -4857 -40 3558 -100 1485 462 -20641   
t-value (-1.83)c (-2.74)a (-0.43) (0.62) (-0.92) (1.76)c (8.62)a (-4.01)a   
a. Significant at the 99% critical level. b. Significant at the 95% critical level. c. Significant at the 90% critical level. αM and βM  
refer to the slope and intercept coefficients for regime M, respectively 
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TABLE 5.17: MLB Franchise Model 1 (Heterogeneous) Regression Coefficients 
 
Team TL CSU PU W% 𝑹�𝟐 (𝑹𝟐)  Team TL CSU PU W% 𝑹�𝟐 (𝑹𝟐) 
             
BAL 2066 1059 21525 19037 0.964  LAD 2934 -950 -71092 40454 0.842 
t-value (0.99) (0.64) (1.37) (3.15)a (0.970)  t-value (1.50) (-0.65) (-3.51)a (4.34)a (0.863) 
             
BOS -2959 -1949 -1592 13481 0.974  MIL -2038 -3176 6475 24473 0.794 
t-value (-2.22)b (-2.22)b (-0.27) (4.59)a (0.977)  t-value (-0.73) (-1.19) (0.20) (2.04)b (0.841) 
             
CHC 1008 321 -30218 29134 0.941  NYM -157 3045 -27969 69400 0.870 
t-value (0.68) (0.36) (-3.26)a (7.52)a (0.947)  t-value (-0.06) (1.62) (-1.10) (9.17)a (0.895) 
             
CHW 3699 -1422 3095 29418 0.831  OAK -3671 -4609 -35819 46882 0.886 
t-value (1.54) (-0.91) (0.27) (6.13)a (0.845)  t-value (-1.38) (-1.99) c (-1.49) (7.49)a (0.911) 
             
CIN -3465 376 -19632 25238 0.923  PHI -151 -925 -36253 36026 0.908 
t-value (-2.21)b (0.42) (-1.99)b (6.36)a (0.930)  t-value (-0.07) (-0.77) (-2.68)a (6.94)a (0.917) 
             
CLE 1069 2622 -8773 24129 0.893  PIT 1717 1102 -17650 28571 0.872 
t-value (0.41) (1.52) (-0.75) (4.23)a (0.904)  t-value (1.16) (1.26) (-1.91)c (7.43)a (0.888) 
             
DET 5386 -1034 -701 35046 0.894  SFG 110 1545 -39149 46152 0.867 
t-value (2.62)b (-0.78) (-0.08) (9.21)a (0.907)  t-value (0.04) (0.83) (-1.60) (4.35)a (0.885) 
             
HOU 679 5403 -48255 33875 0.766  STL 1622 1405 -4703 21090 0.971 
t-value (0.22) (2.77)a (-1.71)c (2.42)b (0.800)  t-value (1.24) (1.77)c (-0.58) (5.57)a (0.974) 
             
a. Significant at the 99% critical level 
b. Significant at the 95% critical level 
c. Significant at the 90% critical level 
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TABLE 5.18: MLB Franchise Model 2 (Heterogeneous) Breakpoint Regression Results 
 
Team α1 β1 α2 β2 α3 β3 α4 β4 α5 β5 
BAL -234 7925 1259 -22091 -1251 90986     
t-value (-1.53) (0.63) (9.22)a (-2.09)b (-10.96 ) a (6.93)a     
BOS 72 3227 -412 35800 402 -9802     
t-value (2.12)b (0.54) (-4.57)a (3.43)a (14.67)a (-1.84)c     
CHC 336 -15542 711 -35967 -144 3045 91 -6753 620 -45077 
t-value (6.57)a (-3.36)a (6.91)a (-5.51)a (-1.29) (0.32) (0.77) (-0.65) (11.15)a (-5.86)a 
CHW -115 -38524 351 -55113 631 -86550     
t-value (-1.00) (-4.94)a (10.57)a (-5.44)a (3.44)a (-4.27)a     
CIN 51 -5760 -40 2648 125 3213     
t-value (1.33) (-1.18) (-0.48) (0.34) (3.13)a (0.50)     
CLE 127 -5181 -1009 62396 273 -17042 -765 100555   
t-value (2.24)b (-0.57) (-5.90)a (3.75)a (3.25)a (-1.79)c (-4.53)a (5.04)a   
DET 48 -36345 -140 -18841 185 -33934 814 -97172   
t-value (0.93) (-4.78)a (-1.37) (-1.52) (1.88)c (-3.75)a (7.75)a (-7.50)a   
HOU 240 21135 228 31208       
t-value (2.68)a (1.10) (0.60)a (1.09)       
LAD -211 22408 242 26228       
t-value (-1.29) (1.64) (4.64)a (1.97) c       
MIL 736 16134 1099 -193       
t-value (3.06)a (0.57) (6.26)a (-0.01)       
NYM -500 27644 1037 -1279 1666 -37161     
t-value (-1.91)c (1.59) (6.06) a (-0.07) (8.81)a (-2.02)c     
OAK 140 -3875 1159 -11568 274 -41     
t-value (0.63) (-0.18) (4.43) a (-0.55) (1.70)c (-0.00)     
PHI 90 -11957 -50 -1783 219 -8932     
t-value (1.74)c (-1.56) (-0.50) (-0.16) (4.29)a (-0.99)     
PIT 262 -18176 219 -21897 -97 1840 340 -30548   
t-value (3.34)a (-3.41)a (1.91)c (-3.15)a (-0.68) (0.22) (11.28)a (-5.11)a   
SFG -697 10022 838 -14069       
t-value (-3.68)a (0.63) (12.62)a (-0.94)       
STL -184 -498 -116 283 265 -8756 453 -15885   
t-value (-1.77)c (-0.10) (-1.54) (0.05) (6.88)a (-1.32) (7.44)a (-1.94)c   
a. Significant at the 99% critical level. b. Significant at the 95% critical level. c. Significant at the 90% critical level. αM and βM  
refer to the slope and intercept coefficients for regime M, respectively 
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TABLE 5.19: MLB Franchise Model 2 (Heterogeneous) Regression Coefficients 
 
Team PU CBR W% 𝑹�𝟐 (𝑹𝟐)  Team PU CBR W% 𝑹�𝟐 (𝑹𝟐) 
           
BAL -21237 -5085 18197 0.964  LAD -75596 -12501 34271 0.838 
t-value (1.35) (-0.37) (3.11)a (0.970)  t-value (-3.74)a (-0.89) (3.90)a (0.857) 
           
BOS -4808 -5108 11623 0.968  MIL 16502 -34007 40496 0.757 
t-value (-0.78) (-0.74) (4.27)a (0.971)  t-value (0.51) (-0.96) (3.41)a (0.795) 
           
CHC -19173 6037 25636 0.957  NYM -28589 -38510 70678 0.874 
t-value (-2.55)b (1.09) (7.49)a (0.962)  t-value (-1.15) (-1.71) c (9.30)a (0.895) 
           
CHW -4094 40971 27271 0.820  OAK -28352 -10151 41588 0.872 
t-value (-0.36) (4.08)a (5.53)a (0.834)  t-value (-1.17) (-0.39) (6.45)a (0.897) 
           
CIN -16774 -3006 26421 0.921  PHI -26087 1436 32824 0.907 
t-value (-1.85)c (-0.46) (6.58)a (0.927)  t-value (-2.21)b (0.16) (6.39)a (0.914) 
           
CLE -5674 -5430 25575 0.894  PIT -17072 4323 31520 0.861 
t-value (-0.51) (-0.48) (4.59)a (0.904)  t-value (-1.92)c (0.65) (8.40)a (0.874) 
           
DET -3000 29924 34157 0.887  SFG -36766 -16714 48973 0.921 
t-value (-0.33) (3.12)a (9.12)a (0.898)  t-value (-1.52) (-0.97) (5.16)a (0.934) 
           
HOU -60458 -22605 28296 0.757  STL -8596 -3688 22413 0.964 
t-value (-2.14)b (-0.97) (2.10)b (0.788)  t-value (-0.99) (-0.61) (5.44)a (0.967) 
           
a. Significant at the 99% critical level 
b. Significant at the 95% critical level 
c. Significant at the 90% critical level 
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TABLE 5.20: MLB Franchise Economic Implications of Game Uncertainty 
 
 BOS CIN DET 
    
2009 TAPG 37,811 21,579 31,693 
    
2009 GU 0.094 0.472 0.094 
    
GU Coef. Est.a -2,959* -3,465* 5,386* 
Elasticity 0.007 0.043 0.013 
    
ΔGUb 0.115 0.143 0.115 
Inc. Factor 122.92% 30.30% 122.92% 
    
ΔTAPG -325.3d -281.1 506.4 
% ΔTAPG -0.86% -1.30% 1.60% 
    
Rev. Per Attendc $81.61 $36.19 $51.26 
    
Δ Game Rev. -$26,550 -$10,174 $25,959 
    
a. Coefficient taken from Model 1 and follow the approach of Lee and Fort (2008, pp. 291). 
b. All measure changes imply an improvement in balance. 
c. Revenue per attendee data come from Team Marketing Report Fan Cost Index (2009). 
d. Bold Italic font indicates disagreement with Rottenberg’s Uncertainty of Outcome Hypothesis. 
Coefficients found to be statistically significant in Model 1 are indicated with an asterisk (*). 
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TABLE 5.21: MLB Franchise Economic Implications of Consecutive Season Uncertainty 
 
 BOS HOU 
   
2009 TAPG 37,811 31,124 
   
2009 CSU 0.703 0.449 
   
CSU Coef. Est.a -1,949* 5,403* 
Elasticity 0.036 0.078 
   
ΔCSUb -0.201 -0.215 
Inc. Factor 28.59% 47.88% 
   
ΔTAPG 389.2 -1,162.4 
% ΔTAPG 1.03% -3.73% 
   
Rev. Per Attendc $81.61 $52.48 
   
Δ Game Rev. $31,762 -$61,003 
   
a. Coefficient taken from Model 1 and follow the approach of Lee and Fort (2008, pp. 291). 
b. All measure changes imply an improvement in balance. 
c. Revenue per attendee data come from Team Marketing Report Fan Cost Index (2009). 
d. Bold Italic font indicates disagreement with Rottenberg’s Uncertainty of Outcome Hypothesis. 
Coefficients found to be statistically significant in Model 1 are indicated with an asterisk (*). 
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TABLE 5.22: MLB Franchise Economic Implications of Playoff Uncertainty 
 
 CHC CIN LAD PHI 
     
2009 TAPG 39,610 21,579 46,440 44,453 
     
2009 PU 0.033 0.033 0.033 0.033 
     
PU Coef. Est.a -30,218* -19,632* -71,902* -36,253* 
Elasticity 0.026 0.017 0.051 0.032 
     
ΔPUb -0.006 -0.006 -0.006 -0.006 
Inc. Factor 18.79% 18.79% 18.79% 18.79% 
     
ΔTAPG 193.5 68.9 445.0 267.3 
% ΔTAPG 0.49% 0.32% 0.96% 0.60% 
     
Rev. Per Attendc $76.25 $36.19 $55.41 $54.98 
     
Δ Game Rev. $14,755 $2,495 $24,657 $14,695 
     
a. Coefficient taken from Model 1 and follow the approach of Lee and Fort (2008, pp. 291). 
b. All measure changes imply an improvement in balance. 
c. Revenue per attendee data come from Team Marketing Report Fan Cost Index (2009). 
Coefficients found to be statistically significant in Model 1 are indicated with an asterisk (*). 
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FIGURE 5.1: Fitted MLB TAPG for BAL, BOS, CHA and CHN (Model 1, Heterogeneous) 
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FIGURE 5.2: Fitted MLB TAPG for CIN, CLE, DET and HOU (Model 1, Heterogeneous) 
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FIGURE 5.3: Fitted MLB TAPG for LAD, MIL, NYM and OAK (Model 1, Heterogeneous) 
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FIGURE 5.4: Fitted MLB TAPG for PHI, PIT, SFG and STL (Model 1, Heterogeneous) 
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FIGURE 5.5: Fitted MLB TAPG for BAL, BOS, CHA and CHN (Model 2, Heterogeneous) 
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FIGURE 5.6: Fitted MLB TAPG for CIN, CLE, DET and HOU (Model 2, Heterogeneous) 
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FIGURE 5.7: Fitted MLB TAPG for LAD, MIL, NYM, OAK (Model 2, Heterogeneous) 
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FIGURE 5.8: Fitted MLB TAPG for PHI, PIT, SFG and STL (Model 2, Heterogeneous) 
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CHAPTER 6 

National Basketball Association Franchises 

 

6.1 Justification 

 As with Major League Baseball, understanding the intricacies of the effects of 

uncertainty on franchise level attendance can help to inform those results at the league 

level for the NBA.  In addition, research regarding franchise-level estimation of 

attendance in the NBA has been relatively sparse, especially compared to its baseball 

counterpart.  Finally, a full estimation of all possible teams in all four major leagues can 

add to our understanding of fan substitution between sports, specifically using diverging 

attendance shifts for same-market teams in different leagues.  Analysis of NFL and NHL 

will follow in Chapter 7 and Chapter 8, respectively.  Whether or not same market teams 

in different sports are competitors with one another is surely an important issue with 

respect to not only demand at the league and team level, but may have implications for 

competition and antitrust research in sport (Winfree, 2009a, 2009b).  Therefore, this 

section evaluates structural change and the importance of uncertainty of outcome 

variables on team-level data in the NBA.  Data for analysis of teams in the NBA were 

used for the aggregate league-level investigation, and therefore come from the same 

sources with only a few exceptions.  The reader is referred to earlier sections for a 
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general description of this data.  For the NBA franchise-level analysis here, I again use 

TAPG as defined in the analysis of MLB franchises (Chapter 5). 

 

6.2 Data and Methods 

 For the team-level analysis, the BP model is defined exactly as in the 

Model 1 MLB franchise attendance analysis: 

 

zt = {1, t}, xt = {TL, WinDiff, Corr, W%}, and (q=2; p=4) 

 

for each team in each league.  Again, I estimate an ancillary model as above with an 

additional lagged win percent variable (NBA Model B).  Given the lack of coherent 

application of CBR in the regression models, I neglect to include this measure for the 

NBA (and subsequent leagues at the franchise level).  Models with both heterogeneous 

and homogeneous variance are estimated; however, I continue with a full discussion of 

only the heterogeneous error variance models.  The latter are provided in Appendix B. 

The requirement of lags of particular length again comes into play, leaving only 

some teams subject to the analysis performed here.  For example, this consideration 

excludes the Baltimore Bullets/Wizards from analysis, despite the relatively short 

relocation distance.  However, one NBA team that moved within the last 5 years with a 

length meeting the requirements for the breakpoint methodology preceding the move is 

included in the initial unit root analysis (Seattle Supersonics).  With this single exception, 

for those franchises that have relocated I begin the attendance series in the first year of 

the most recent location using the same parameters as in the MLB franchise level 
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analysis.  I will continue with modeling only current franchises found to be stationary in 

the preliminary analysis of unit-roots and unit-roots with breakpoints. 

 There are a few additional considerations for the franchise-level data in the NBA.  

For the adjusted series, the individual franchises are imputed just as the league-level 

NBA attendance in Chapter 4.  To reiterate, I take a weighted average of the years just 

before and just following years in which a labor dispute takes place (for the NBA, 1998-

99).  Only National Basketball Association attendance (rather than ABA attendance) is 

included in the regression estimations.  This consideration ultimately excludes the 

Indiana Pacers and San Antonio Spurs (Dallas Chaparrals) from the analysis despite the 

fact that these franchises opened for business in 1967.  As with MLB franchises in the 

previous chapter, teams that move from one location to another are considered a new 

franchise at the new location. 

 The NBA contains twelve (12) individual franchises with attendance series of 

sufficient length (40 years) for the breakpoint analysis.  Descriptive statistics regarding 

TAPG and win percent for each of the franchises can be found in Table 6.1. 

 

6.3 Unit Root Results 

 Turning to the unit root results, nine of twelve unadjusted attendance series were 

found to be stationary or stationary with breakpoints.  Tables 6.2 through 6.7 present the 

unit root results for the unadjusted and adjusted data.  Stationary series include the 

Atlanta Hawks, Boston Celtics, Cleveland Cavaliers, Detroit Pistons, New York Knicks, 

Philadelphia 76ers, Phoenix Suns, Portland Trailblazers, and Seattle Supersonics (pre-

Oklahoma City Thunder, treated as a current franchise for this analysis).  In addition, 
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ADF and PP tests indicate some evidence of the Los Angeles Lakers attendance series 

being stationary without breaks; however, the DFGLS test did not indicate evidence for 

rejection of a unit root for this series (available upon further request).  Therefore, I 

proceed with treating only those found to be stationary with breaks above as stationary 

data for the BP Method, the results of which are presented in the following sections.  

Given the similarity between the adjusted and unadjusted results, I limit discussion and 

regression estimation with only the adjusted data from this point forward. 

 

6.4 Uncertainty of Outcome Results 

 Results of influence of uncertainty of outcome were mixed across franchises 

analyzed in this chapter.  This is the case both for the direction and size of the effect, and 

there is again little evidence for comprehensive confirmation of Rottenberg’s UOH.  This 

section discusses those franchises with statistically significant coefficients (Table 6.11) 

estimated for the uncertainty measures as well as the economic significance of these 

estimated effects (Table 6.12).  To summarize, none of the estimated coefficients for the 

realizations of outcome uncertainty included in these models were universally in favor of 

Rottenberg’s UOH.  While Atlanta and Philadelphia both had statistically significant 

coefficients for GU, Atlanta’s fans tend to prefer less balance (Table 6.11).  In both 

instances, the manipulation in Tail Likelihood described in Chapter 4 did not change team 

revenues by more than 2.35% for either team (Table 6.12). 

For PU, both Cleveland and New York were found to have significant effects of 

the WinDiff measure.  However, the direction of the effect again differs across the two 

franchises.  While Cleveland fans seem to have a revealed preference for tighter playoff 
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races, Knicks fans have tended to enjoy larger gaps between playoff and non-playoff 

teams.  This could indicate a propensity for New York fans to attend in years where they 

have been a sure playoff contender.  For the case of PU, the one game change in the 

playoff race did not affect either team’s revenues by more than 1.2% per game. 

Lastly, three teams were found to have significant effects of CSU: Cleveland, 

Philadelphia and Seattle.  Fans of the former Seattle Supersonics tended to avoid 

attending games when balance was better.  On the other hand, Cleveland fans tend to be 

most sensitive to overall balance changes in the league, preferring more Playoff 

Uncertainty and Consecutive Season Uncertainty.  As you can see in Table 6.12, the 

change in CSU applied here had a much larger influence on revenues than the change in 

the other two measures, increasing revenues for teams by as much as 4.45%.  All in all, 

evidence for the UOH is again mixed for franchises in the NBA. 

 

6.5 Breakpoint Regression Results 

 The following subsections of this chapter individually discuss the breakpoints 

estimated in each of the franchises considered in the NBA.  Common breaks include 

those following stadium and arena moves.  Championships have tended to have larger 

effects than attributed to just regular season success, resulting in further sustained upward 

shifts in attendance for many teams.  Not surprisingly, a number of NBA teams saw 

attendance shifts in the 1980s, which was found in the aggregate analysis as well.  

Further details of franchise breaks follow, and a time plot of each team can be found in 

Figures 6.1 through 6.3. 
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6.5.1 Atlanta Hawks 

 Both of the estimated breaks—upward shifts—for the Atlanta Hawks coincide 

with the start of exciting and relatively successful teams.  In 1985, a young team starring 

Spud Webb and Dominique Wilkins won 50 or more games in four consecutive seasons, 

while in 1995 there was another run of 50-plus win seasons.  However, there may be 

more to the shift in 1985, as Ted Turner had the team play a number of games in New 

Orleans in the 1984-85 season.  Similar to the Atlanta Braves, the Hawks’ market 

encompassed much of the South.  Turner’s attempt at reaching westward seems to have 

been relatively successful given the increase in attendance during this time. 

 

6.5.2 Boston Celtics 

 The 1960-61 season began a steeper upward trend for the Celtics, which also 

marked the beginning of coach Red Auerbach and star Bill Russell’s run of 

Championships.  In addition, the Celtic fielded the first all-black starting lineup during 

this time, perhaps capturing a minority demographic in the Boston market.  The second 

break occurred in 1973 and coincides with and upward shift in attendance following a 

year in which Boston won 68 games, followed by an NBA Championship the following 

season. Lastly, the Celtics experienced another upward shift in the 1994-95 season, 

followed by a slight downward trend.  This likely has to do with moving out of the 

Boston Garden and expanded seating in a new venue.  
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6.5.3 Cleveland Cavaliers 

Only a single break was found for the Cavaliers, realized as a very large upward 

shift after the 1984-85 season.  The team returned to the playoffs in 1985 after a 

somewhat dismal run of seasons, and continued its success through the early 1990s as 

well.  As can be seen in Figure 6.1, the team saw a downward trend following this 

success up until they drafted LeBron James.  However, it seems that the changes in 

attendance during this time can be chalked up to simple win percent and/or balance 

measures rather than any exogenous break in attendance trends. 

 

6.5.4 Detroit Pistons 

 Not surprisingly, the Detroit Pistons also experience a large upward shift during a 

time of high attendance and the opening of a new arena (The Palace of Auburn Hills).  

Attendance nearly tripled from this large shift.  As any astute NBA fan would note, Isiah 

Thomas was drafted in 1981 and was the spark of a run of very successful Pistons teams 

in the 1980s, culminating with back-to-back NBA Championships in 1989 and 1990.  

The combination of these two factors seemed to have vaulted the success of Detroit to a 

new level. 

 

6.5.5 New York Knicks 

 The 1968-69 season was the first time the Knicks had seen the playoffs since 

1953.  They followed this up with an NBA Championship in 1969, which coincides with 

the large upward shift in attendance during this time.  While attendance trended 
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downward after this peak, it again shifted up once the team won a division title in 1988, 

the first for the franchise in 18 years. 

 

6.5.6 Philadelphia 76ers 

The 76ers experienced an upward shift in attendance after drafting superstar Allen 

Iverson, with some ensuing success.  While the team never won a title, Iverson was 

arguably one of the most exciting players in the game at the time.  This seems to be the 

best explanation for the upward shift after the 1998-99 season for the Sixers. 

 

6.5.7 Phoenix Suns 

 The Phoenix Suns are another team that experienced a shift in attendance 

concurrent with both a move to a new arena (America West Arena, now US Airways 

Center) as well as the arrival of a team superstar.  Charles Barkley arrived in Phoenix in 

1993 and immediately won the league Most Valuable Player Award.  Consistent with 

past research on arena honeymoon effects, attendance has trended downward since the 

opening of the new arena that season. 

 

6.5.8 Portland Trailblazers 

After a steep upward trend in attendance for the Portland Trailblazers, things 

leveled off following the 1979-80 season.  The Blazers may be a team particularly 

affected by the censoring issue mentioned earlier, as their 1977 NBA Championship 

began a sellout streak of 814 consecutive games.  This ended in 1995 when they moved 
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to a new, higher capacity facility.  As would be expected, the team experienced a large 

upward shift after the 1994-95 season when they moved to the 20,000 seat Rose Garden. 

 

6.5.9 Seattle Supersonics 

 Finally, the Seattle Supersonics seemed to have some devastating effects of a 

terrible 1980-81 as their start player, Gus Williams, sat out the season because of a 

contract dispute.  The team experienced a massive downward shift in attendance during 

this time—cutting attendance to nearly a third of its previous levels.  While the team saw 

an upward trend afterward, until the years just before a move to Oklahoma City, 

attendance levels never recovered to those before the 1981-82 season. 

 

6.7 Summary and Conclusions 

 All in all—as with the previous two chapters—the evidence for fan interest in 

uncertainty of outcome continues to be mixed at best.  While the economic influence of 

balance measures seems to be larger on average in the NBA—namely for CSU—the 

direction of the effect varies across teams and the type of uncertainty evaluated.  This 

leaves us with an interesting picture of sports leagues and calls for further evaluation.  

While some franchises seem to have incentives to encourage balance, others have 

experienced positive attendance changes in years when balance is lower.  Cleveland and 

Philadelphia stand out as teams with fans that prefer more balance across the different 

measures of uncertainty, while Atlanta, New York and Seattle tend to have fans 

interested in less balance depending on the measure considered.  This echoes the league 

level findings for basketball, in which fans prefer balance in different directions 
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depending on the type of uncertainty realization considered.  While fans tend to like close 

game play (TL) and turnover from year to year (CSU), there seems to be some preference 

for having an overly dominant team in each season (PU).  While this of course has 

important implications for marketing to fans, it again alludes to the importance of 

understanding how decisions come about as a league.  Unlike MLB, teams in the NBA 

tend to experience shifts more related to championship wins than historical events.  

Nearly all of the upward breaks found in the franchise level data in the NBA can be 

reasonably explained by league championships or the building of new stadiums.  As 

would be expected from the league-level analysis, the 1980’s were a particularly 

prosperous time for the NBA, as it grew across both smaller and larger markets.
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TABLE 6.1: NBA Franchise TAPG and W% by Decade 

 
Team 1950's 1960's 1970's 1980's 1990's 2000's Overall 

ATL TAPG  4,597 6,889 10,450 13,481 14,740 11,066 

ATL W% 

 

0.585 0.465 0.537 0.553 0.399 0.493 

BOS TAPG 5,665 6,479 10,888 14,911 16,071 16,969 11,690 

BOS W% 0.623 0.679 0.615 0.711 0.454 0.542 0.599 

CHI TAPG 

 

4,807 9,914 12,587 21,268 20,742 15,099 

CHI W% 

 

0.410 0.523 0.479 0.644 0.416 0.506 

CLE TAPG 

  

7,895 9,568 16,928 18,063 13,113 

CLE W% 

  

0.416 0.404 0.534 0.518 0.468 

DET TAPG 3,392 3,913 6,815 16,903 19,260 20,352 12,910 

DET W% 0.416 0.390 0.448 0.568 0.503 0.588 0.495 

LAL TAPG 

 

9,014 13,665 15,962 16,299 18,953 14,778 

LAL W%  0.580 0.609 0.724 0.620 0.634 0.634 

MIL TAPG  6,988 9,930 11,856 15,743 16,155 13,115 

MIL W% 

 

0.506 0.592 0.631 0.418 0.463 0.525 

NYK TAPG 6,520 10,275 16,787 13,603 19,178 19,182 14,114 

NYK W% 0.530 0.429 0.533 0.463 0.613 0.399 0.496 

PHI TAPG 

 

5,570 9,969 13,490 14,597 17,342 12,616 

PHI W% 

 

0.627 0.490 0.645 0.390 0.493 0.523 

PHO TAPG 

 

5,395 8,970 11,836 18,076 17,535 13,690 

PHO W% 

 

0.336 0.520 0.534 0.633 0.600 0.561 

POR TAPG 

  

9,997 12,707 16,642 18,392 14,434 

POR W% 

  

0.439 0.565 0.631 0.506 0.535 

SEA TAPG 

 

5,617 13,300 12,098 15,556 15,483 13,421 

SEA W% 

 

0.323 0.497 0.516 0.643 0.478 0.523 
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TABLE 6.2: NBA Franchise ADF and PP Tests (Unadjusted) 
 

Team   ATL BOS CHI CLE DET LAL 

T (seasons)   42 61 44 40 53 50 
ADF (p) Constant -1.442 (1) -0.744 (1) -1.763 (1) -1.513 (1) -1.234 (1) -2.967 (1)** 
ADF (p) Trend -3.136 (1) -2.602 (1) -2.107 (1) -2.639 (1) -1.834 (1) -3.737 (1)** 
P-P (l) Constant -1.471 (3) -1.189 (3) -1.567 (3) -1.566 (3) -1.147 (3) -3.018 (3)** 
P-P (l) Trend -3.190 (3) -3.277 (3)* -2.357 (3) -2.511 (3) -1.896 (3) -3.392 (3)* 

        

Team   MIL NYK PHI PHO POR SEA 

T (seasons)   42 61 47 42 40 41 
ADF (p) Constant -1.604 (1) -1.686 (1) -2.628 (1)* -1.395 (1) -1.634 (1) -2.982 (1)** 
ADF (p) Trend -1.877 (1) -3.105 (3) -3.268 (1)* -2.035 (1) -2.635 (1) -2.753 (1) 
P-P (l) Constant -2.558 (3) -1.482 (3) -2.255 (3) -2.095 (3) -1.699 (3) -2.701 (3)* 
P-P (l) Trend -3.083 (3) -2.058 (3) -2.404 (3) -2.334 (3) -2.739 (3) -2.486 (3) 

***, **, * = significant at 99%, 95%, and 90% critical levels, respectively. 
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TABLE 6.3: NBA Franchise Two-Break LM Test (Unadjusted) 

Team 𝐤̂ 𝐓�𝐛 𝐭̂𝛄𝐣 Test Statistic Critical Value Break Points 
ATL 3 1984/85, 2001/02 3.815***, -3.621*** -5.940** λ = (0.40, 0.81) 
BOS 0 1959/60, 1980/81 -2.934***, -0.645 -5.941** λ = (0.18, 0.52) 
CHI 3 1978/79, 1994/95 3.055***, -1.560 -5.042 λ = (0.30, 0.66) 
CLE 6 1990/91, 1996/97 2.288**, -2.427** -5.608* λ = (0.53, 0.68) 
DET 6 1979/80, 1996/97 5.585***, -5.281*** -6.307** λ = (0.43, 0.75) 
LAL 7 1972/73, 1983/84 -5.666***, 4.761*** -5.534* λ = (0.26, 0.48) 
MIL 0 1983/84, 1990/91 -1.868*, -0.823 -4.759 λ = (0.38, 0.55) 
NYK 5 1962/63, 1979/80 4.044***, -3.653*** -5.750** λ = (0.23, 0.51) 
PHI 2 1981/82, 1998/99 -5.274***, 3.546*** -6.006** λ = (0.40, 0.77) 
PHO 8 1981/82, 1990/91 -4.804***, 5.926*** -7.419*** λ = (0.33, 0.55) 
POR 8 1987/88, 1993/94 -3.769***, 4.578*** -5.824** λ = (0.45, 0.60) 
SEA 8 1980/81, 1991/92 -7.290***, 6.968*** -7.379*** λ = (0.34, 0.61) 
Data adjusted for strikes.   𝑘� is the optimal number of lagged first-difference terms included in the unit root test to correct for serial correlation.  𝑇�𝑏 
denotes the estimated break points.  𝑡̂𝛾𝑗 is the value of DTjt for j = 1,2.  See J. Lee and Strazicich (2003) Table 2 for critical values.  ***, **, * = 
significant at 99%, 95%, and 90% critical levels, respectively. 
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TABLE 6.4: NBA Franchise One-Break LM Test (Unadjusted) 

Team 𝐤̂ 𝐓�𝐛 𝐭̂𝛄𝐣 Test Statistic Critical Value Break Points 
ATL 3 1993/94 -0.500 -4.9849** λ = 0.62 
BOS 0 1973/74 -0.377 -5.002** λ = 0.41 
CHI 8 1992/93 2.624*** -4.163 λ = 0.61 
CLE 7 1989/90 2.845*** -6.374*** λ = 0.50 
DET 6 1982/83 3.892*** -5.162*** λ = 0.49 
LAL 7 1982/83 -3.692*** -4.028 λ = 0.46 
MIL 0 1998/99 -1.945* -3.602 λ = 0.74 
NYK 5 1989/90 0.232 -4.941** λ = 0.67 
PHI 7 1973/74 3.209*** -4.380* λ = 0.23 
POR 7 1987/88 -2.566** -4.725** λ = 0.45 
NOTE: 𝑘�  is the optimal number of lagged first-difference terms included in the unit root test to correct  
for serial correlation.  𝑇�𝑏  denotes the estimated break points.  𝑡̂𝛾𝑗 is the value of DTjt for j = 1,2.   
See J. Lee and Strazicich (2003) Table 2 for critical values.  Data adjusted for strikes.   
***, **, * = significant at 99%, 95%, and 90% critical levels, respectively. 
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TABLE 6.5: NBA Franchise ADF and PP Tests (Adjusted) 
 

Team   ATL BOS CHI CLE DET LAL 

T (seasons)   42 61 44 40 53 50 
ADF (p) Constant -1.605 (1) -0.739 (1) -1.762 (1) -1.505 (1) -1.235 (1) -2.965 (1)** 
ADF (p) Trend -3.536 (1)* -2.579 (1) -2.090 (1) -2.633 (1) -1.837 (1) -3.727 (1)** 
P-P (l) Constant -1.466 (3) -1.188 (3) -1.566 (3) -1.562 (3) -1.147 (3) -3.012 (3)** 
P-P (l) Trend -2.945 (3) -3.281 (3)* -2.337 (3) -2.501 (3) -1.895 (3) -3.384 (3)* 

        

Team   MIL NYK PHI PHO POR SEA 

T (seasons)   42 61 47 42 40 41 
ADF (p) Constant -1.604 (1) -1.686 (1) -2.632 (1)* -1.395 (1) -1.624 (1) -3.008 (1)** 
ADF (p) Trend -1.862 (1) -3.105 (3) -3.281 (1)* -2.035 (1) -2.563 (1) -2.785 (1) 
P-P (l) Constant -2.558 (3) -1.482 (3) -2.256 (3) -2.095 (3) -1.702 (3) -2.707 (3)* 
P-P (l) Trend -3.078 (3) -2.058 (3) -2.406 (3) -2.332 (3) -2.695 (3) -2.491 (3) 

***, **, * = significant at 99%, 95%, and 90% critical levels, respectively. 
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TABLE 6.6: NBA Franchise Two-Break LM Test (Adjusted) 

Team 𝐤̂ 𝐓�𝐛 𝐭̂𝛄𝐣 Test Statistic Critical Value Break Points 
ATL 7 1980/81, 1986/87 3.266***, -5.317*** -6.331*** λ = (0.31, 0.45) 
BOS 0 1959/60, 1980/81 -2.969***, -0.664 -5.983** λ = (0.18, 0.52) 
CHI 8 1982/83, 1999/00 3.519***, -5.465*** -5.049 λ = (0.39, 0.77) 
CLE 6 1989/90, 2003/04 2.266**, -1.132 -5.659* λ = (0.50, 0.85) 
DET 6 1979/80, 1996/97 5.554***, -5.245*** -6.270** λ = (0.43, 0.75) 
LAL 7 1972/73, 1983/84 -5.717***, 4.846*** -5.578* λ = (0.26, 0.48) 
MIL 0 1983/84, 1990/91 -1.884*, -0.803 -4.778 λ = (0.38, 0.55) 
NYK 5 1962/63, 1979/80 4.044***, -3.653*** -5.750** λ = (0.23, 0.51) 
PHI 2 1981/82, 1998/99 -5.319***, 3.572*** -6.043** λ = (0.40, 0.77) 
PHO 8 1981/82, 1990/91 -4.783***, 5.897*** -7.382*** λ = (0.33, 0.55) 
POR 7 1985/86, 1993/94 -2.970***, 4.493*** -5.888** λ = (0.40, 0.60) 
SEA 8 1980/81, 1991/92 -7.883***, 7.551*** -7.978*** λ = (0.34, 0.61) 
Data adjusted for strikes.   𝑘� is the optimal number of lagged first-difference terms included in the unit root test to correct for serial correlation.  𝑇�𝑏 
denotes the estimated break points.  𝑡̂𝛾𝑗 is the value of DTjt for j = 1,2.  See J. Lee and Strazicich (2003) Table 2 for critical values.  ***, **, * = 
significant at 99%, 95%, and 90% critical levels, respectively.
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TABLE 6.7: NBA Franchise One-Break LM Test (Adjusted) 

Team 𝐤̂ 𝐓�𝐛 𝐭̂𝛄𝐣 Test Statistic Critical Value Break Points 
BOS 0 1973/74 -0.393 -5.021** λ = 0.41 
CHI 8 1992/93 2.633** -4.176 λ = 0.61 
CLE 7 1989/90 2.908*** -6.269*** λ = 0.50 
DET 6 1982/83 3.892*** -5.155*** λ = 0.49 
LAL 7 1982/83 -3.900*** -4.247* λ = 0.49 
MIL 0 1998/99 -1.866* -3.573 λ = 0.74 
NYK 5 1989/90 0.232 -4.941** λ = 0.67 
PHI 7 1973/74 3.210*** -4.395* λ = 0.23 
POR 7 1987/88 -2.498** -4.713** λ = 0.45 
NOTE: 𝑘�  is the optimal number of lagged first-difference terms included in the unit root test to correct  
for serial correlation.  𝑇�𝑏  denotes the estimated break points.  𝑡̂𝛾𝑗 is the value of DTjt for j = 1,2.   
See J. Lee and Strazicich (2003) Table 2 for critical values.  Data adjusted for strikes.   
***, **, * = significant at 99%, 95%, and 90% critical levels, respectively. 
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TABLE 6.8: NBA Franchise Model Break Point Sequential Test Results (Heterogeneous) 
 
Team SupFt(1) SupFt(2) SupFt(3) UDmax WDmax SupF(2/1) SupF(3/2) Breaks 
         
ATL 15.02*** 20.72***  20.72*** 28.85*** 17.13***  2 
         
BOS 58.65*** 42.82*** 42.05*** 58.65*** 86.77*** 14.56** 13.26** 3 
         
CLE 32.57*** 26.36*** 32.57*** 36.70*** 10.73**   1 
         
DET 49.87*** 36.61***  49.87*** 50.97*** 7.68  1 
         
NYK 100.08*** 100.78*** 76.56*** 100.78*** 133.06*** 19.54*** 5.01 2 
         
PHI 37.19*** 23.29***  37.19*** 37.19*** 6.53  1 
         
PHO 124.07*** 74.07***  124.07*** 124.07*** 2.88  1 
         
POR 84.54*** 75.29***  84.54*** 104.82*** 144.85***  2 
         
SEA 89.50*** 46.44***  89.50*** 89.50*** 2.43  1 
“***” Significant at the 99% critical level 
“**” Significant at the 95% critical level 
“*” Significant at the 90% critical level
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TABLE 6.9: NBA Franchise Model Break Dates (Heterogeneous) 
 
Team T1 T2 T3 

    
ATL 1985-86 1995-96  

 [84-85, 86-87] [94-95, 98-99]  
    

BOS 1960-61 1973-74 1994-95 
 [59-60, 61-62] [70-71, 74-75] [89-90, 95-96] 
    

CLE 1984-85   
 [83-84, 85-86]   
    

DET 1982-83   
 [80-81, 83-84]   
    

NYK 1968-69 1987-88  
 [66-67, 69-70] [86-87, 90-91]  
    

PHI 1998-99   
 [97-98, 99-00]   
    

PHO 1991-92   
 [90-91, 92-93]   
    

POR 1979-80 1994-95  
 [78-79, 80-81] [93-94, 95-96]  
    

SEA 1981-82   
 [80-81, 82-83]   
    

*Brackets denote 90% confidence interval for break date
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TABLE 6.10: NBA Franchise Model Breakpoint Regression Results (Heterogeneous) 
 
Team α1 β1 α2 β2 α3 β3 α4 β4 
ATL 253.59 2797.64 -140.97 14249.91 14.23 13213.29   
t-value (4.10)*** (2.33)** (-1.29) (4.75)*** (0.15) (3.45)***   
BOS 27.21 1503.04 365.84 -3531.57 208.41 2998.18 -68.86 17961.97 
t-value (0.36) (2.07)** (6.14)*** (-2.49)** (6.04)*** (1.89)* (-1.28) (6.33)*** 
CLE 87.93 4492.79 152.00 9125.38     
t-value (0.88) (2.72)*** (3.50)*** (4.04)***     
DET 294.56 -1703.76 55.29 12808.46     
t-value (5.00)*** (-0.89) (1.15) (4.49)***     
NYK 436.48 -2268.58 -329.75 19554.25 139.22 6860.07   
t-value (8.07)*** (-1.35) (-5.12)*** (7.02)*** (2.79)*** (2.12)**   
PHI 395.76 157.85 -432.78 32042.24     
t-value (15.92)*** (0.11) (-3.07)*** (5.22)***     
PHO 324.41 3032.93 -113.51 18344.77     
t-value (9.75)*** (3.10)*** (-2.68)** (9.44)***     
POR 625.30 2524.33 -30.00 7716.57 -116.66 17878.52   
t-value (5.34)*** (2.26)** (-0.54) (4.85)*** (-2.01)** (7.16)***   
SEA 790.74 -364.77 296.49 -2071.08     
t-value (9.62)*** (-0.26) (8.56)*** (-0.99)     
*** Significant at the 99% critical level 
** Significant at the 95% critical level 
* Significant at the 90% critical level 
αM and βM refer to the slope and intercept coefficients for regime M, respectively
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TABLE 6.11: NBA Franchise Model Balance and W% Coefficients (Heterogeneous) 
 
Team TL PU CSU W% 𝑹�𝟐 (𝑹𝟐) 
      
ATL -4561.71 2662.63 -1964.98 6181.94 0.919 
t-value (-2.11)** (0.37) (-1.47) (3.54)*** (0.937) 
      
BOS 1385.24 3416.26 -310.26 5434.97 0.972 
t-value (1.38) (0.79) (-0.62) (5.37)*** (0.977) 
      
CLE -766.02 -20683.06 -5123.60 14837.77 0.933 
t-value (-0.28) (-2.22)** (-2.85)*** (7.31)*** (0.945) 
      
DET -5071.77 2021.47 -483.54 9426.68 0.940 
t-value (-1.61) (0.21) (-0.30) (4.02)*** (0.948) 
      
NYK 2530.10 15057.65 635.27 7278.62 0.945 
t-value (1.75)* (2.32)** (0.83) (3.92)*** (0.953) 
      
PHI 5392.75 4301.21 -3694.38 9095.13 0.919 
t-value (2.42)** (0.51) (-3.02)*** (6.73)*** (0.932) 
      
PHO -155.63 7636.85 -939.51 6010.38 0.964 
t-value (-0.10) (1.47) (-0.96) (4.91)*** (0.970) 
      
POR -2121.08 9198.59 96.64 8499.86 0.958 
t-value (-1.24) (1.63) (0.09) (6.07)*** (0.968) 
      
SEA 571.04 -10282.88 2564.20 12442.80 0.893 
t-value (0.27) (-1.35) (1.99)** (7.00)*** (0.911) 
      
*** Significant at the 99% critical level 
** Significant at the 95% critical level 
* Significant at the 90% critical level 
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TABLE 6.12: NBA Franchise Level Economic Implications 
 

 Game Uncertainty Playoff Uncertainty Consecutive Season Uncertainty 
Team ATL PHI CLE NYK CLE PHI SEA 

2009 TAPG 16,546 14,225 20,562 19,501 20,562 14,225 13,355 (2007) 
2009 Variable 0.030 0.030 0.073 0.073 0.550 0.550 0.285 (2007) 
Coef. Est.a -4,562 5,393 -20,683 15,058 -5,124 -3,694 2,564 
Elasticity 0.008 0.011 0.073 0.056 0.137 0.143 0.055 
ΔVariableb 0.064 0.064 0.012 0.012 0.171 0.171 0.171 
Inc. Factor 213.3% 213.3% 16.4% 16.4% 31.1% 31.1% 60.0% 
ΔTAPG -2823d 334 246 -179 876 633 -441 
% ΔTAPG -1.71% 2.35% 1.20% -0.92% 4.26% 4.45% -3.30% 
Rev. Per Attendc $73.78 $67.47 $72.47 $102.79 $72.47 $67.47 $57.46 (2007$) 

Δ Game Rev. -$20,828 $22,521 $17,842 -$18,410 $63,491 $42,682 -$25,323 (2007$) 
a. Coefficient taken from model with heterogeneous errors across regimes and follow the approach of Lee and Fort (2008, pp. 291). 
b. All measure changes imply an improvement in balance. 
c. Revenue per attendee data come from Team Marketing Report Fan Cost Index (2009). 
d. Italic font indicates disagreement with Rottenberg’s Uncertainty of Outcome Hypothesis.
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FIGURE 6.1: Fitted NBA TAPG for ATL, BOS, CLE and DET (Heterogeneous) 
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FIGURE 6.2: Fitted NBA TAPG for NYK, PHI, PHO and POR (Heterogeneous) 

 



 

 

 

1
7
8 

FIGURE 6.3: Fitted NBA TAPG for SEA (Heterogeneous) 
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CHAPTER 7 

National Football League Franchises 

 

7.1 Introduction/Justification 

 As with the NBA, understanding the behavior of individual franchise attendance 

in the National Football League can help to understand the break locations and fan 

behaviors at the league level.  Given the lack of significant effects of competitive balance 

on attendance levels found throughout the history of the NFL, we must further evaluate 

whether this is an aggregate effect (increases for some teams, and decreases for others) or 

a result due to actual lack of interest in uncertainty as a whole.  As a preview, individual 

those franchises with statistically significant balance effects have fans with preferences 

almost exclusively for uncertainty of outcome.  Additionally, teams experienced similar 

large increases in attendance that seem to be related to structural changes in the way the 

game was played (for example, increases in use of the forward pass and offense).  These 

and other linkages will be discussed in Section 7.5 in more detail. 

 

7.2 Data and Methods 

The methods used here are identical to those used in Chapters 5 and 6 (NFL 

Model B reports results from an ancillary regression including lagged win percent as a 
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predictor).  Results from additional models (error variance considerations) are exhibited 

in Appendix C.  In addition to the league-level NFL data treatment in Chapter 4, there are 

various unique data considerations for a number of franchises.  First, the number of home 

games in each season changes for teams early on in league history (as in the NBA).  

Therefore, the number of home games for each team was collected individually from Pro-

Football Reference (2010) to ensure accurate calculation of TAPG.  Data for the 1992 

and 1998 seasons at the team level are imputed due to unavailability, while only 15 

games were played in 1987 and only 9 in 1982 due to labor issues.  The adjusted data 

impute the years containing work stoppages as with the league-level data; however, 

imputations for the 1992 and 1998 seasons are included in both the adjusted and 

unadjusted franchise attendance series.   

As with the NBA, rival American Football League (AFL) and All-American 

Football Conference (AAFC) team attendance numbers are excluded from this analysis.  

Those teams which merged with the NFL from the AFL or AAFC are only used for years 

in which they participated in the NFL.  For example, the Miami Dolphins’ attendance 

series spans from 1970 through 2009, despite their 10-year tenure in the 1960’s with the 

AFL.  However, in the lagged win percent models—presented in Appendix C—each of 

these teams has their previous year’s AFL or AAFC win percent as the t-1 win percent in 

the model for the first time point in the NFL series.  Similarly, for those teams whom 

played the previous season in a different location, the win percent for the team in that 

location is used as the t-1 win percent for the first year in their respective new home.  The 

first year of existence of each team is not used in the lagged win percent models, and the 

regression estimation begins with the second year in existence (and the t-1 win percent 
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from the inaugural season as a covariate).  Finally, teams in the NFL with a history of 

temporarily leveraging the Los Angeles market are also excluded (i.e. Rams and 

Raiders).   

 Some years for specific teams are missing reported attendance numbers at each of 

the sources listed here: the Chicago Bears (1961 and 1962), Green Bay Packers (1952), 

New York Giants (1953 and 1958), Philadelphia Eagles (1938), Pittsburgh Steelers 

(1938, 1944, 1951, 1952, 1953, 1957 and 1965) and Washington Redskins (1938, 1939, 

1951, 1957, 1960, 1962 and 1965).  For those missing seasons which have a preceding 

and following year attendance number reported, a similar weighted average approach is 

taken as with the 1992 and 1998 seasons.  However, for those teams with multiple 

consecutive missing data (Bears 1961-62, Steelers 1951-53 and Redskins 1938-39), an 

alternative approach is taken in which a simple linear trend is calculated through those 

seasons. 

 The Pittsburg Steelers require additional consideration for their early years.  

Along with significant missing early attendance data, the Steelers spent two separate 

seasons merged with the Philadelphia Eagles (1943, nicknamed the “Steagles”) and the 

Chicago Cardinals (1944, nicknamed “Card-Pitt” or “Carpets”).  In these seasons—while 

the Steelers’ played home games at Forbes Field in Pittsburgh—the teams played some 

home games at Shibe Park in Philadelphia (4 games) and Wrigley Field and Comiskey 

Park in Chicago (1 and 2 home games, respectively). In 1943, only two home games were 

played at Forbes Field, while three were played there in 1944.  For the 1943 season, 

TAPG for the Steelers is calculated using only those games played at Forbes Field (and 

only those at Shibe Park for the Eagles).  However, data for Forbes in 1944 was 
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unavailable; therefore, the 1944 TAPG reported is the average attendance for the three 

games played in Chicago in the unadjusted data.  For the adjusted data, a weighted 

average of the years before and after the season—as well as the Chicago-based 

attendance numbers—are included for 1944. 

The NFL contains twenty (20) individual franchises with attendance series of 

sufficient length (40 years) for the breakpoint analysis.  Descriptive statistics regarding 

TAPG and win percent for each of the franchises in each league can be found in Table 

7.1. 

 

7.3 Unit Root Results 

Of the twenty NFL teams considered, fifteen were found to be stationary or 

stationary with breakpoints (Tables 7.2 through 7.7), including the Atlanta Falcons, 

Buffalo Bills, Chicago Bears, Cincinnati Bengals, Denver Broncos, Detroit Lions, Kansas 

City Chiefs, Miami Dolphins, Minnesota Vikings, New York Giants, Philadelphia 

Eagles, Pittsburg Steelers, San Diego Chargers, San Francisco 49ers, and Washington 

Redskins.  There was some discrepancy for the unit root analyses on the adjusted and 

unadjusted data, with the LM-1 unit root test indicating rejection of a unit root with a 

single break for the New York Jets.  However, given that no other test rejected the 

presence of a unit root for the Jets series (adjusted or unadjusted) I proceed as treating the 

franchise attendance series as non-stationary, and do not apply the BP procedure here. 

Finally, the BP procedure ultimately estimates no breaks in the Buffalo Bills and 

San Diego Chargers attendance series.  Therefore, no subsequent breakpoint regressions 

are estimated for these franchises as the preliminary unit root tests do not indicate 
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stationarity without breaks.  Most likely, the breaks indicated from the LM tests were too 

small in size for the BP Procedure to estimate them as significant structural changes (as 

with San Diego Padres series in Chapter 5).  Further investigation into these attendance 

series is recommended for future work in addition to those franchises for which a unit 

root is not rejected with or without breaks. 

 

7.4 Uncertainty of Outcome Results 

 Results of the influence of uncertainty of outcome were again mixed across 

franchises analyzed in the NFL as with the previously discussed leagues.  Interestingly, a 

number of teams in the NFL were found to have significant effects of outcome 

uncertainty, despite the null finding at the league level (Table 7.11).  This exhibits the 

importance of understanding the variation in fan preferences across markets in individual 

leagues in order to shed light on collective decision-making by team owners, rather than 

the net effect across teams as a whole.  While the net effects of UOH tend to be 

insignificant for the league, owners in different markets will have different incentives for 

balance based on the results of the models presented here.  For example, fans of Atlanta, 

Denver, Miami and Minnesota tend to prefer closer distributions of win percent in the 

league as implied by the franchise-level regression models.  However, the owner of the 

Washington Redskins seems to have some small incentive to avoid creating a balanced 

league in some respects (Table 7.12). 

 For PU, however, only three teams were found to have significant effects of 

Windiff: Denver, Miami and Minnesota.  The direction of the coefficient for Miami and 

Minnesota is switched from that of the Game Uncertainty variable for each team, 
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indicating disagreement with Rottenberg’s UOH.  Unlike evaluation of most other effects 

of uncertainty of outcome on attendance, revenue changes for Miami do not seem to be 

trivial with a one game improvement in the playoff race, resulting in nearly a 7.5% 

decrease in revenues per game.  For Denver and Minnesota, the magnitude of the effect is 

much smaller (both below 3% of revenues in either direction). 

 Finally, CSU has statistically significant attendance effects for Kansas City, 

Philadelphia and Washington, with the coefficient estimate for Kansas City in 

disagreement with Rottenberg’s UOH.  The change in preference for Washington seems 

to indicate that while fans prefer a wider spread of win percent in season, they do enjoy 

significant turnover across seasons.  Again, the economic significance of this variable is 

relatively small for those fans that enjoy turnover; however, the change in Chiefs 

revenues is somewhat non-trivial at 3.52% (or a decrease of about $265,000 per game 

with the marginal improvement in CSU). 

 

7.5 Breakpoint Regression Results 

Similar to the aggregate NFL analysis, individual teams also saw attendance shifts 

during the rise of the quarterback during the 1980s.  Those teams which claimed a star 

quarterback their own—like the Miami Dolphins’ Dan Marino—saw large shifts.  It 

seems that the change of play style was truly exciting for fans as a whole.  Other 

attendance shifts seem to be tied to increases in stadium capacity and sustained team 

success or failure.  The following sections discuss the structural change for each of the 

NFL franchises under analysis here, and the reader is referred to Figures 7.1 through 7.4 

for visual inspection of these attendance changes. 
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7.5.1 Atlanta Falcons 

Beginning discussion of NFL franchises, the Atlanta Falcons experience a single 

upward shift in 1989 followed by a positive trend, after experiencing a declining trend 

throughout most of the team’s history.  The Falcons acquired Deion Sanders in 1989 and 

moved to the Georgia Dome in 1992.  The exciting—and often mouthy—Sanders and 

new stadium seem to have attracted extra fans to the gate for the team. 

 

7.5.2 Chicago Bears 

As with the Falcons, the historic Chicago Bears franchise has only a single 

estimated attendance break throughout its history, corresponding to a change in the trend 

in 1948.  While the team experience positive trends in attendance throughout its history, 

the trend leveled off a bit after this season. This is likely due to the team’s decline in 

success after a dominating decade in the 1940s. 

 

7.5.3 Cincinnati Bengals 

 After the merger of the AFL and NFL, the Cincinnati Bengals saw a sharp 

decreasing attendance trend until their first breakpoint in 1979.  Following this season 

Bengals attendance changes course, trending upward until the next break in 1991 at 

which point it shifts down and continues its upward path.  The Bengals made two Super 

Bowl appearances in the 1980s, losing to the San Francisco 49ers both times.  However, 

the end of 1990-91 season marked the death of Paul Brown and 14 consecutive losing 
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seasons.  Despite this, the team—just as the NFL as a whole—experienced upward 

trending attendance through much of the 1990s and early 21st century. 

 

7.5.4 Denver Broncos 

The 1982 season marked the end of a large upswing in Broncos attendance at 

Mile High Stadium.  After a small downward shift, attendance has slowly increased 

through today for Denver.  The team likely hit a point of near sellouts during this period, 

as John Elway arrived in 1982 to lead successful Broncos teams for nearly two decades. 

 

7.5.5 Detroit Lions 

While it is rather unbelievable in this day and age, the Detroit Lions were a very 

successful team in the 1950s.  After the 1951 season the team experienced a large upward 

attendance shift likely due to back-to-back NFL Championships in 1952 and 1953.  

While Detroit’s attendance has generally trended upward following this large shift, the 

team has experienced significant volatility in gate attendance, as can be seen in Figure 

7.2. 

 

7.5.6 Kansas City Chiefs 

The Kansas City Chiefs generally experienced a negative trend in attendance after 

the AFL-NFL merge, but this seemed to change with the hiring of coach Marty 

Schottenheimer in 1988.  During this time, the team saw a large positive break in 

attendance followed by a string of sustained success on the field and 155 consecutive 

sellouts from 1991 through 2009.  The team’s Arrowhead Stadium seems to have had a 
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short honeymoon effect when it opened in 1972, though the BP Procedure was unable to 

estimate breakpoints so close to the ends of the attendance series. 

 

7.5.7 Miami Dolphins 

 As mentioned in the aggregate NFL analysis, pass-happy offenses seem to have 

excited fans about football.  The Miami Dolphins, led by Dan Marino beginning in 1983, 

were arguably the most prominent passing team in the NFL during the 1980s and into the 

1990s.  In 1983 the team experienced an upward shift followed by a slight positive trend 

through the next break in 1995, another positive attendance change.  Interestingly, there 

do not seem to be any large effects of the opening of Joe Robbie Stadium in 1987, though 

the team did experience a small spike near this time.  Marino broke multiple career 

passing records in 1995, including total yards, touchdowns and completions.  After the 

1995 season attendance trended downward with a string of mediocre Dolphins teams. 

 

7.5.8 Minnesota Vikings 

 With a move to the Hubert H. Humphrey Metrodome in 1981, the Minnesota 

Vikings saw an increase of about 12,000 fans per game.  The Metrodome increased 

stadium capacity compared to the Vikings old home and the team saw a relatively flat 

trend following the shift.  A second shift of about the same size came after the 1996 

season.  This is best explained by a record-breaking 1998 (just outside the estimated 

confidence interval) team that featured Randy Moss, Chris Carter and Randal 

Cunningham. 
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7.5.9 New York Giants 

 The New York Giants are well known to have played in the “Greatest Game Ever 

Played” in 1958 against the Baltimore Colts.  This game was one of six NFL 

Championship appearances for the team from 1956 through 1963.  The 1956 

Championship was the only game won by the Giants, and the team had an enormous 

increase in attendance following this season.  The 1958 game is often credited with 

increasing interest in the NFL, as it was the first aired nationally on NBC.  It seems, 

however, that the Giants experienced substantial increased interest just before this game 

was even played. 

 

7.5.10 Philadelphia Eagles 

Just as the Giants saw a huge increase in fans after their championship win, the 

Philadelphia Eagles experienced a positive shift in attendance after their 1960 NFL 

Championship.  The team managed to sustain this level of attendance until a smaller 

downward shift in 1981 after losing to Oakland in the Super Bowl. 

 

7.5.11 Pittsburg Steelers 

With the exception of two small downward shifts in 1955 and 1986, the 

Pittsburgh Steelers have enjoyed a relatively consistent upward slope in gate attendance 

since the 1930s.  The team had significant struggles during the 1950s and mid-to-late 

1980s until the hiring of Bill Cowher in 1992.  These prolonged periods of on-field 

disappointment seem to have affected fan interest in the team. 
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7.5.12 San Francisco 49ers 

 The San Francisco 49ers model indicates a very large shift downward in 1960, 

followed by a somewhat consistent upward trend through today.  The formation of the 

AFL in 1960 may have had a significant impact on the team’s interest, as it had initially 

been the only major professional football team west of Dallas.  With the formation of the 

AFL, two teams were added in California, one of which was just across the bay in 

Oakland.  This competition cut 49ers attendance nearly in half for a period up until the 

AFL-NFL merger. 

 

7.5.13 Washington Redskins 

Finally, the Washington Redskins have experienced two significant upward 

attendance shifts throughout franchise history.  The first occurred in 1962, the year just 

after the opening of RFK Stadium.  IN this same year, the federal government warned the 

ownership of the team to desegregate.  Ultimately, the team became the last NFL 

franchise to integrate in 1962.  The combination of a new stadium and attraction of 

African American consumers likely explain much of this break.  Another arena move 

sparked a large shift upward (1995) in attendance when the team left RFK for Jack Kent 

Cooke Stadium (now FedEx Field) in 1997.  Not only did attendance shift upward, but 

since this time has been followed by a very steep upward trend through the 2009 season. 

 

7.6 Summary and Conclusions 

 Unlike the league aggregate analysis regarding the NFL, I find a number of 

statistically significant effects of uncertainty of outcome at the team level.  Surprisingly, 
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there is an apparent overwhelming interest in more balance (with few exceptions) for 

those fans that are found to care about the three measures used here.  Fans of the 

Washington Redskins are perhaps the most curious, as they tend to prefer more balance 

across seasons while enjoying less in-season uncertainty.  This could be a result of the 

long-standing rivalry with the Dallas Cowboys who have in the past been able to sustain 

successful dynasties.  It may be that fans generally enjoy unbalanced competition within 

the season, with the exception of their heated rival.  As with the apparent Red Sox 

preferences, more empirical research is suggested for directly assessing fan preferences 

with respect to rivalries.  

Overall, this evidence tends to point against the “canceling out” effect of 

preferences across the league, where some fans prefer more balance while others prefer 

less.  However, what this could indicate is an issue in the analysis of coefficients at the 

league level.  Given that only seven teams show any significant effect of the three 

balance measures on attendance, this aggregate effect may not be large enough to mean a 

significant effect at the league level with possible censoring issues over the long period.  

Therefore, the results here indicate that further analysis using censored regression 

techniques may be more enlightening with respect to coefficient estimates.  Nevertheless, 

the size and location of break points in attendance series found here are rather interesting, 

and seem to be associated with similar events as found in the NBA.  Finally, further 

evaluation of the occurrence of breaks and increases in trends are recommended with 

respect to structural changes in offensive play in the league through panel estimations at 

the team level.
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TABLE 7.1: NFL Franchise TAPG and W% by Decade 

Team 1930s 1940s 1950s 1960s 1970s 1980s 1990s 2000s Overall 
ATL TAPG    55,018 50,847 42,244 53,871 65,771 53,350 
ATL  W%    0.216 0.424 0.385 0.450 0.472 0.413 
BUF TAPG     55,071 64,038 73,617 68,673 65,350 
BUF  W%     0.359 0.454 0.644 0.413 0.467 
CHI TAPG 24,609 33,645 42,509 46,430 48,854 57,770 58,970 61,658 47,974 
CHI  W% 0.754 0.753 0.593 0.511 0.417 0.594 0.456 0.506 0.573 
CIN TAPG     51,886 51,709 51,212 61,985 54,198 
CIN  W%     0.521 0.542 0.325 0.428 0.454 
DAL TAPG    45,119 60,361 57,720 64,745 66,019 58,793 
DAL  W%    0.492 0.729 0.526 0.631 0.512 0.578 
DEN TAPG     58,979 73,412 72,762 75,374 70,132 
DEN  W%     0.534 0.598 0.587 0.581 0.575 
DET TAPG 20,448 21,722 48,625 51,498 59,186 59,055 67,572 62,364 50,301 
DET  W% 0.659 0.344 0.584 0.517 0.474 0.405 0.494 0.263 0.457 
GB TAPG 14,669 20,360 23,278 45,587 50,834 52,413 56,644 67,737 43,611 
GB  W% 0.711 0.599 0.327 0.719 0.411 0.445 0.581 0.594 0.548 
KC TAPG     56,304 50,000 75,831 76,430 64,641 
KC  W%     0.439 0.435 0.637 0.437 0.487 
MIA TAPG     62,002 59,463 68,698 70,674 65,209 
MIA  W%     0.730 0.628 0.594 0.494 0.611 
MIN TAPG    40,660 46,858 54,375 57,978 63,872 52,996 
MIN  W%    0.431 0.700 0.509 0.594 0.525 0.554 
NE TAPG     55,493 51,682 51,688 66,767 56,408 
NE  W%     0.453 0.515 0.425 0.700 0.523 
NO TAPG    75,125 59,901 57,963 56,748 65,612 61,107 
NO  W%    0.293 0.296 0.443 0.444 0.519 0.416 
NYG TAPG 29,741 36,322 39,996 62,320 62,387 70,009 72,747 78,620 57,923 
NYG  W% 0.668 0.545 0.651 0.519 0.350 0.531 0.519 0.550 0.541 
NYJ TAPG     52,395 56,905 63,182 77,818 62,575 
NYJ  W%     0.364 0.512 0.406 0.500 0.446 
PHI TAPG 20,100 22,424 26,966 58,267 61,012 61,426 63,990 67,579 50,369 
PHI  W% 0.251 0.555 0.442 0.429 0.394 0.499 0.500 0.647 0.473 
PIT TAPG 11,850 23,578 27,638 32,898 48,381 52,797 54,980 61,605 41,118 
PIT  W% 0.283 0.376 0.463 0.358 0.688 0.514 0.581 0.647 0.497 
SD TAPG     43,631 49,421 57,570 62,229 53,213 
SD  W%     0.409 0.482 0.462 0.531 0.471 
SF TAPG   41,774 38,674 47,391 56,438 62,755 67,409 52,407 
SF  W%   0.539 0.439 0.434 0.673 0.706 0.425 0.536 
WAS TAPG 24,191 33,398 25,027 44,140 53,002 52,322 59,704 84,655 49,247 
WAS W% 0.731 0.619 0.403 0.356 0.639 0.650 0.494 0.438 0.523 
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TABLE 7.2: NFL Franchise ADF and PP Tests (Unadjusted) 
 

Team   ATL BUF CHI CIN DAL DEN DET 

T (seasons)   44 40 76 40 50 40 76 
ADF (p) Constant -1.654 (1) -1.417 (4) -2.208 (1) -1.710 (1) -2.658 (1)* -2.486 (1) -2.428 (1) 
ADF (p) Trend -2.146 (1) -3.928 (1)** -4.234 (1)*** -2.805 (1) -3.061 (1) -2.347 (1) -2.612 (1) 
P-P (l) Constant -2.195 (3) -3.352 (3)** -1.977 (3) -1.842 (3) -2.452 (3) -2.328 (3) -2.371 (3) 
P-P (l) Trend -2.641 (1) -3.421 (3)* -4.266 (3)*** -2.618 (3) -2.832 (3) -2.202 (3) -2.627 (3) 

Team   GB KC MIA MIN NE NO NYG 

T (seasons)   74 40 40 49 40 43 76 
ADF (p) Constant -0.826 (1) -1.207 (2) -2.022 (1) -2.186 (1) -1.681 (1) -2.946 (1)* -1.786 (1) 
ADF (p) Trend -1.953 (1) -2.242 (2) -2.665 (1) -3.949 (1)** -2.331 (1) -2.833 (1) -3.446 (1)* 
P-P (l) Constant -1.078 (3) -1.956 (3) -2.581 (3) -1.763 (3) -3.024 (3)** -3.368 (3)** -1.787 (3) 
P-P (l) Trend -2.797 (3) -2.583 (3) -2.998 (3) -3.344 (3)* -3.259 (3)* -3.223 (3)* -3.902 (3)** 

Team   NYJ PHI PIT SD SF WAS 

T (seasons)   40 73 76 40 60 73 
ADF (p) Constant -1.232 (1) -1.526 (1) -1.098 (2) -1.211 (1) -1.817 (1) -0.408 (1) 
ADF (p) Trend -4.096 (1)** -2.034 (1) -3.284 (1)* -4.193 (1)** -2.975 (1) -1.965 (1) 
P-P (l) Constant -1.585 (3) -1.758 (3) -1.174 (3) -1.239 (3) -2.164 (3) -0.583 (3) 
P-P (l) Trend -4.066 (3)** -2.444 (3) -3.591 (3)** -3.229 (3)* -3.714 (3)** -2.040 (3) 

Data unadjusted for strikes.  ***, **, * = significant at 99%, 95%, and 90% critical levels, respectively. 
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TABLE 7.3: NFL Franchise Two-Break LM Test (Unadjusted) 

Team 𝐤̂ 𝐓�𝐛 𝐭̂𝛄𝐣 Test Statistic Critical Value Break Points 
ATL 8 1985, 1997 -5.068***, 5.811*** -6.952*** λ = (0.45, 0.73) 
BUF 3 1985, 1996 -6.698***, -2.521** -8.037*** λ = (0.40, 0.68) 
CHI 0 1959, 1984 -3.307***, 0.989 -5.848** λ = (0.34, 0.67) 
CIN 6 1986, 1996 6.138***, -3.415*** -7.025*** λ = (0.43, 0.68) 
DAL 2 1972, 2003 -4.889***, -0.293 -5.617* λ = (0.26, 0.88) 
DEN 7 1985, 1994 -8.911***, 3.216*** -9.954*** λ = (0.40, 0.63) 
DET 5 1956, 1973 1.227, 3.799*** -4.949 λ = (0.30, 0.53) 
GB 0 1953, 1969 1.491, -4.260*** -4.641 λ = (0.24, 0.46) 
KC 8 1980, 1996 -8.584***, 9.357*** -11.175*** λ = (0.28, 0.68) 
MIA 7 1989, 2005 4.550***, -5.062*** -6.673*** λ = (0.50, 0.90) 
MIN 8 1971, 1980 -0.859, 5.494*** -5.653** λ = (0.22, 0.41) 
NE 8 1980, 1992 -2.814***, 4.821*** -4.590 λ = (0.28, 0.58) 
NO 7 1981, 1993 4.267***, -4.167*** -5.382* λ = (0.35, 0.63) 
NYG 6 1945, 1957 -5.635***, 6.680*** -6.912*** λ = (0.16, 0.32) 
NYJ 7 1982, 1986 4.329***, 2.610** -5.266 λ = (0.33, 0.43) 
PHI 2 1949, 1960 -5.019***, 5.045*** -7.076*** λ = (0.18, 0.33) 
PIT 0 1946, 1970 -2.396**, 4.069*** -5.351* λ = (0.17, 0.49) 
SD 2 1993, 2002 2.189**, 4.585*** -6.421*** λ = (0.60, 0.83) 
SF 6 1964, 1980 -5.463***, -2.72*** -6.642*** λ = (0.38, 0.78) 
WAS 8 1969, 1995 2.518**, 5.354*** -5.945** λ = (0.45, 0.81) 
Data unadjusted for strikes.   𝑘� is the optimal number of lagged first-difference terms included in the unit root test to correct for serial correlation.  
𝑇�𝑏 denotes the estimated break points.  𝑡̂𝛾𝑗 is the value of DTjt for j = 1,2.  See J. Lee and Strazicich (2003) Table 2 for critical values.  ***, **, * = 
significant at 99%, 95%, and 90% critical levels, respectively. 
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TABLE 7.4: NFL Franchise One-Break LM Test (Unadjusted) 

Team 𝐤̂ 𝐓�𝐛 𝐭̂𝛄𝐣 Test Statistic Critical Value Break Points 
CHI 0 1945 -1.104 -5.413*** λ = 0.16 
DAL 2 1984 -3.013*** -3.478 λ = 0.50 
DET 5 1949 3.417*** -4.486** λ = 0.21 
GB 8 1972 -0.689 -3.674 λ = 0.50 
MIN 8 1995 -1.716* -5.572*** λ = 0.71 
NE 0 1991 -1.465 -3.662 λ = 0.55 
NO 7 1988 3.455*** -4.328* λ = 0.51 
NYJ 4 1981 4.274*** -4.866** λ = 0.30 
PIT 0 1969 -0.245 -4.576** λ = 0.47 
WAS 8 1977 -0.984 -4.507* λ = 0.56 
NOTE: 𝑘�  is the optimal number of lagged first-difference terms included in the unit root test to correct  
for serial correlation.  𝑇�𝑏  denotes the estimated break points.  𝑡̂𝛾𝑗 is the value of DTjt for j = 1,2.   
See J. Lee and Strazicich (2003) Table 2 for critical values.  Data adjusted for strikes.   
***, **, * = significant at 99%, 95%, and 90% critical levels, respectively. 
 
 
 
 
 
 
 
 
 
 
 



 

 

 

1
9
5 

TABLE 7.5: NFL Franchise ADF and PP Tests (Adjusted) 
 

Team   ATL BUF CHI CIN DAL DEN DET 

T (seasons)   44 40 76 40 50 40 76 
ADF (p) Constant -1.709 (1) -1.426 (4) -2.196 (1) -1.653 (1) -2.615 (1)* -2.575 (1) -2.384 (1) 
ADF (p) Trend -2.231 (1) -4.389 (1)*** -4.053 (1)** -2.759 (1) -3.070 (1) -2.444 (1) -2.464 (1) 
P-P (l) Constant -2.067 (3) -3.234 (3)** -1.965 (3) -1.715 (3) -2.437 (3) -2.294 (3) -2.326 (3) 
P-P (l) Trend -2.537 (3) -3.247 (3)* -4.079 (3)** -2.495 (3) -2.794 (3) -1.986 (3) -2.460 (3) 

Team   GB KC MIA MIN NE NO NYG 

T (seasons)   74 40 40 49 40 43 76 
ADF (p) Constant -0.824 (1) -1.249 (1) -2.028 (1) -2.257 (1) -1.686 (1) -3.015 (1)** -1.760 (1) 
ADF (p) Trend -1.905 (1) -2.519 (1) -2.672 (1) -4.027 (1)** -2.493 (1) -2.897 (1) -3.369 (1)* 
P-P (l) Constant -1.079 (3) -1.784 (3) -2.592 (3) -1.742 (3) -2.964 (3)** -3.311 (3)** -1.735 (3) 
P-P (l) Trend -2.730 (3) -2.206 (3) -3.009 (3) -2.916 (3) -3.158 (3) -3.163 (3) -3.654 (3)** 

Team   NYJ PHI PIT SD SF WAS 

T (seasons)   40 73 76 40 60 73 
ADF (p) Constant -1.148 (1) -1.521 (1) -1.098 (2) -1.244 (1) -1.814 (1) -0.433 (1) 
ADF (p) Trend -4.066 (1)** -2.008 (1) -3.268 (1)* -4.309 (1)** -2.962 (1) -2.010 (1) 
P-P (l) Constant -1.321 (3) -1.755 (3) -1.175 (1) -1.190 (3) -2.161 (3) -0.580 (3) 
P-P (l) Trend -3.718 (3)** -2.403 (3) -3.553 (3)** -3.122 (3) -3.701 (3)** -2.035 (3) 

***, **, * = significant at 99%, 95%, and 90% critical levels, respectively. 
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TABLE 7.6: NFL Franchise Two-Break LM Test (Adjusted) 

Team 𝐤̂ 𝐓�𝐛 𝐭̂𝛄𝐣 Test Statistic Critical Value Break Points 
ATL 8 1985, 1997 -4.394***, 5.251*** -6.371** λ = (0.45, 0.73) 
BUF 2 1985, 1990 -5.174***, -2.510** -8.131*** λ = (0.40, 0.53) 
CHI 1 1945, 1987 -3.301***, 1.088 -5.841** λ = (0.16, 0.71) 
CIN 6 1986, 1996 4.892***, -1.538 -5.852** λ = (0.43, 0.68) 
DAL 2 1972, 2003 -4.911***, -0.277 -5.541* λ = (0.26, 0.88) 
DEN 5 1984, 1989 -5.966***, 1.606 -9.450*** λ = (0.38, 0.50) 
DET 8 1959, 1973 1.619, 4.317*** -5.306 λ = (0.34, 0.53) 
GB 0 1956, 1969 1.604, -4.007*** -4.581 λ = (0.28, 0.46) 
KC 8 1980, 1995 -6.674***, 6.732*** -8.229*** λ = (0.28, 0.65) 
MIA 7 1989, 2005 4.523***, -5.178*** -6.625*** λ = (0.50, 0.90) 
MIN 8 1973, 1980 -1.612, 4.877*** -5.593* λ = (0.27, 0.41) 
NE 8 1985, 1966 -3.878***, 4.503*** -4.971 λ = (0.40, 0.68) 
NO 7 1984, 1993 4.644***, -3.970*** -5.297 λ = (0.42, 0.63) 
NYG 6 1945, 1957 -5.682***, 6.625*** -6.850*** λ = (0.16, 0.32) 
NYJ 5 1983, 1995 2.732***, 5.467*** -5.374* λ = (0.35, 0.65) 
PHI 2 1949, 1960 -5.203***, 5.249*** -7.279*** λ = (0.18, 0.33) 
PIT 0 1944, 1948 -3.415***, 1.245 -6.7296*** λ = (0.14, 0.20) 
SD 2 1993, 2002 2.340**, 4.740*** -6.437*** λ = (0.60, 0.83) 
SF 6 1964, 1980 -5.403***, -2.646*** -6.577*** λ = (0.25, 0.52) 
WAS 8 1969, 1995 2.513**, 5.379*** -5.936** λ = (0.45, 0.81) 
Data adjusted for strikes.   𝑘� is the optimal number of lagged first-difference terms included in the unit root test to correct for serial correlation.   
𝑇�𝑏 denotes the estimated break points.  𝑡̂𝛾𝑗 is the value of DTjt for j = 1,2.  See J. Lee and Strazicich (2003) Table 2 for critical values.  ***, **, * = 
significant at 99%, 95%, and 90% critical levels, respectively. 
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TABLE 7.7: NFL Franchise One-Break LM Test (Adjusted) 

Team 𝐤̂ 𝐓�𝐛 𝐭̂𝛄𝐣 Test Statistic Critical Value Break Points 
ATL 3 1988 2.276** -5.435*** λ = 0.52 
CHI 0 1958 -1.011 -5.252*** λ = 0.33 
CIN 6 2003 3.036*** -4.110 λ = 0.85 
DAL 0 1971 -3.462*** -3.156 λ = 0.24 
DET 5 1949 3.522*** -4.472** λ = 0.21 
GB 8 1969 -0.632 -3.799 λ = 0.50 
MIN 8 1976 -1.201 -5.644*** λ = 0.33 
NE 8 2004 0.833 -3.921 λ = 0.88 
NO 7 1988 3.346*** -4.211* λ = 0.51 
NYJ 7 1981 3.253*** -4.446* λ = 0.30 
WAS 8 1978 -1.093 -4.553** λ = 0.58 
NOTE: 𝑘�  is the optimal number of lagged first-difference terms included in the unit root test to correct  
for serial correlation.  𝑇�𝑏  denotes the estimated break points.  𝑡̂𝛾𝑗 is the value of DTjt for j = 1,2.   
See J. Lee and Strazicich (2003) Table 2 for critical values.  Data adjusted for strikes.   
***, **, * = significant at 99%, 95%, and 90% critical levels, respectively. 
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TABLE 7.8: NFL Franchise Model Break Point Sequential Test Results (Heterogeneous) 
 
Team SupFt(1) SupFt(2) SupFt(3) UDmax WDmax SupF(2/1) SupF(3/2) Breaks 

ATL 64.92*** 37.70***   64.92*** 64.92*** 4.55   1 
         
BUF 2.79 3.36   3.36 4.68 3.35   0 
         
CHI 53.75*** 34.43*** 26.70*** 53.75*** 53.75*** 10.94* 1.61 1 
         
CIN 62.09*** 75.58***   75.58*** 105.23*** 24.86***   2 
         
DEN 27.67*** 16.18***   27.67*** 27.67*** 8.09   1 
         
DET 51.80*** 51.94*** 54.19*** 54.19*** 90.33*** 12.16* 27.80*** 1 
         
KC 32.54*** 60.17***   60.17*** 83.78*** 8.38   1 
         
MIA 31.44*** 45.08***   45.08*** 62.76*** 46.88***   2 
         
MIN 15.15*** 7.79**   15.15*** 15.15** 34.83***   2 
         
NYG 72.58*** 53.46*** 34.83*** 72.58*** 72.58*** 6.93 4.98 1 
         
PHI 312.34*** 120.09*** 78.17*** 312.34*** 312.34*** 24.80*** 0.08 2 
         
PIT 37.66*** 30.40*** 24.17*** 37.66*** 40.30*** 16.39*** 10.82 2 
         
SD 7.15 7.11   7.15 9.90 13.84**   0 
         
SF 40.89*** 20.19*** 13.23*** 40.89*** 40.89*** 3.11 6.74 1 
         
WAS 42.50*** 133.95*** 111.76*** 133.95*** 186.31*** 77.66*** 21.19*** 2 

“***”, “**”, “*” indicate statistically significance at the 99%, 95% and 90% critical level, respectively.
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TABLE 7.9: NFL Franchise Model Break Dates (Heterogeneous) 
 
Team T1 T2  Team T1 T2 

       
ATL 1989   MIN 1981 1996 

 [88, 90]    [80, 82] [95, 97] 
       

CHI 1948   NYG 1956  
 [47, 49]    [55, 58]  
       

CIN 1979 1991  PHI 1960 1981 
 [78, 80] [90, 92]   [59, 61] [80, 84] 
       

DEN 1982   PIT 1955 1986 
 [81, 84]    [53, 57] [85, 92] 
       

DET 1951   SF 1961  
 [47, 52]    [60, 63]  
       

KC 1988   WAS 1962 1995 
 [87, 90]    [61, 63] [94, 96] 
       

MIA 1983 1995     
 [82, 85] [94, 96]     
       

*Brackets denote 90% confidence interval for break date 
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TABLE 7.10: NFL Franchise Model Breakpoint Regression Results (Heterogeneous) 
 
Team α1 β1 α2 β2 α3 β3 
ATL -1245 50371 1091 8730   
t-value (-5.82)*** (7.04)*** (4.57)*** (0.87)   
CHI 1320 11225 381 28420   
t-value (6.25)*** (3.42)*** (12.81)*** (11.99)***   
CIN -1919 57851 924 31893 1130 17031.65 
t-value (-6.82)*** (17.05)*** (4.12)*** (6.11)*** (9.62)*** (3.93)*** 
DEN 2195 40331 271 58493   
t-value (7.43)*** (9.77)*** (3.65)*** (11.21)***   
DET 598 15023 275 41217   
t-value (1.56) (2.18)** (3.68)*** (6.76)***   
KC -664 59363 329 63494   
t-value (-2.61)** (8.57)*** (1.46) (6.35)***   
MIA -1385 37111 316 25701 -608 63164 
t-value (-4.70)*** (6.63)*** (1.18) (3.84)*** (-2.73)*** (8.35)*** 
MIN 236 29240 -32 44213.39 -93 55311 
t-value (1.97)** (11.91)*** (-0.21) (8.82)*** (-0.47) (6.69)*** 
NYG 92 31672 414 47848   
t-value (0.47) (6.26)*** (7.03)*** (10.10)***   
PHI 550 19724 276 54328 337 45599 
t-value (4.30)*** (7.04)*** (1.59) (9.23)*** (3.38)*** (6.63)*** 
PIT 1004 8273 1080 -2955 603 13470 
t-value (7.91)*** (3.23)*** (12.06)*** (-0.90) (5.22)*** (1.68)* 
SF 2460 20208 721 20253   
t-value (6.13)*** (5.62)*** (13.78)*** (5.21)***   
WAS 17 29837 193 46869 1950 -45982.83 
t-value (0.13) (8.77)*** (2.22)** (11.96)*** (7.30)*** (-2.62)** 
“***”, “**”, “*” Indicate significance at the 99%, 95% and 90% critical level, respectively/ 
αM and βM refer to the slope and intercept coefficients for regime M, respectively.
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TABLE 7.11: NFL Franchise Model Balance and W% Coefficients (Heterogeneous) 
 
Team TL PU CSU W% 𝑹�𝟐 (𝑹𝟐)  Team TL PU CSU W% 𝑹�𝟐 (𝑹𝟐) 
             
ATL 8275 -16767 7202 9505 0.693  MIN 4287 23728 3564 7622 0.928 
t-value (2.64)** (-0.64) (1.38) (1.74)* (0.743)  t-value (3.19)*** (2.49)** (1.61) (3.54)*** (0.942) 
             
CHI 2019 -3 -967 10241 0.922  NYG -590 -11310 -6102 8498 0.897 
t-value (1.56) (-0.00) (-0.53) (4.75)*** (0.930)  t-value (-0.26) (-0.73) (-1.94)* (2.35)** (0.907) 
             
CIN 1100 9938 -3166 7810 0.718  PHI -2074 -13182 -6577 8210 0.955 
t-value (0.81) (0.83) (-1.45) (3.14)*** (0.893)  t-value (-1.10) (-1.28) (-3.00)*** (3.30)*** (0.960) 
             
DEN 4079 -34153 2598 10534 0.897  PIT 636 4037 -2135 6942 0.952 
t-value (2.26)** (-2.56)** (0.98) (2.93)*** (0.915)  t-value (0.40) (0.44) (-1.11) (2.88)*** (0.958) 
             
DET 3662 -25454 -5232 14327 0.823  SF 2220 8711 -349 9600 0.858 
t-value (1.23) (-1.31) (-1.27) (2.84)*** (0.839)  t-value (1.18) (0.57) (-0.11) (3.20)*** (0.875) 
             
KC -2451 23286 -10075 10381 0.833  WAS -3957 453 -4891 4791 0.960 
t-value (-0.88) (0.91) (-2.12)** (1.76)* (0.863)  t-value (-2.20)** (0.04) (-2.18)** (1.60) (0.965) 
             
MIA 9652 80172 -252 20182 0.847        
t-value (4.76)*** (5.49)*** (-0.07) (5.68)*** (0.882)        
             
*** Significant at the 99% critical level 
** Significant at the 95% critical level 
** Significant at the 90% critical level
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TABLE 7.12: NFL Franchise Level Economic Implications 
 

 Game Uncertainty Playoff Uncertainty Consecutive Season Uncertainty 
Team ATL DEN MIA MIN WAS DEN MIA MIN KC PHI WAS 

2009 TAPG 68,174 75,116 67,543 63,775 84,794 75,116 67,543 63,775 67,514 69,144 84,794 
2009 Variable 0.871 0.871 0.871 0.871 0.871 0.131 0.131 0.131 0.695 0.695 0.695 
Coef. Est.a 8,275 4,079 9,652 4,287 -3,957d -34,153 80,172 23,728 10,381 -6,577 -4,891 
Elasticity 0.106 0.047 0.124 0.059 0.041 0.060 0.155 0.049 0.107 0.066 0.040 
ΔVariableb 0.242 0.242 0.242 0.242 0.242 0.063 0.063 0.063 0.229 0.229 0.229 
Inc. Factor 27.8% 27.8% 27.8% 27.8% 27.8% 48.1% 48.1% 48.1% 32.9% 32.9% 32.9% 
ΔTAPG 2,009 981 2,328 1,046 -966 2,168 -5,036 -1,503 -2,377 1,501 1,116 
% ΔTAPG 2.95% 1.31% 3.45% 1.64% -1.14% 2.89% -7.46% -2.36% -3.52% 2.17% 1.32% 
Rev. Per Attendc $96.45 $102.63 $91.61 $96.73 $110.36 $102.63 $91.61 $96.73 $111.44 $96.88 $110.36 

Δ Game Rev. $193,768 $100,680 $213,268 $101,180 -$106,608 $222,502 -$461,348 -$145,385 -$264,893 $145,417 $123,162 

a. Coefficients taken from model with heterogeneous errors across regimes and follow the approach of Lee and Fort (2008, pp. 291). 
b. All measure changes imply an improvement in balance. 
c. Revenue per attendee data come from Team Marketing Report Fan Cost Index (2009). 
d. Italic font indicates disagreement with Rottenberg’s Uncertainty of Outcome Hypothesis.
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FIGURE 7.1: Fitted NFL TAPG for ATL, CHI, CIN and DEN (Heterogeneous) 
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FIGURE 7.2: Fitted NFL TAPG for DET, KC, MIA and MIN (Heterogeneous) 
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FIGURE 7.3: Fitted NFL TAPG for NYG, PHI, PIT and SF (Heterogeneous) 
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FIGURE 7.4: Fitted NFL TAPG for WAS (Heterogeneous) 
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CHAPTER 8 

National Hockey League Franchises 

 

8.1 Introduction/Justification 

 The final league under evaluation here is the NHL.  The NHL has experienced 

significant rivalry with another league in its history, as exhibited in the league aggregate 

analysis.  While the AFL and NFL coexisted rather well, the NHL and its counterpart the 

WHA were in serious competition during the short period of the WHA’s existence.  

Understanding the influence this may have had on individual franchises is a natural next 

step in evaluating rival threats and league response regarding attracting fans.  The 

significant expansion and team moves in the NHL make it an interesting case to evaluate 

at a micro level; however, only a few teams are analyzed here due to constraints on time 

series length.  Because the “Original Six” teams for the NHL have remained in their 

initial locations for such a long period, they allow evaluation of the impacts of significant 

expansion, as the league doubled in size in 1967 and experienced a number of franchise 

additions later in the twentieth century.  The following sections lay out considerations for 

the data—NHL data is less reliable than that of other leagues, and therefore requires 

further explanation—the results of the analysis, and more practical implications of the 

findings for the league.
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8.2 Data and Methods 

 With the exceptions mentioned below, the NHL franchise data is identical to the 

league-level data in Chapter 4.  The reader is referred to earlier sections for a general 

description of this data.  The dependent variable in the regression models, TAPG, is 

calculated as described in the Chapters 5, 6 and 7.  Again, I estimate an ancillary model 

as before, but with an additional lagged win percent variable (NHL Model B).  Models 

with both heterogeneous and homogeneous variance are estimated; however, I continue 

with a full discussion of only the heterogeneous error variance models.  Results from the 

alternative model fits are provided in Appendix D. 

Additional sources were necessary for the collection of individual franchise 

attendance data in the NHL.  While Sports Business Data (2010) and Andrew’s Dallas 

Stars Page (almost all data from the 1991-92 through 1998-99 seasons) contained a large 

amount of the necessary attendance information, the seasons between 1967 and 1988 for 

a number of teams were curiously missing.  However, I was able to collect attendance 

reports from individual game box scores for each team for these years from The Hockey 

Summary Project (2011).  The majority of the data at the team level have been gleaned 

from this latter source, with the rest filling in missing data points in specific years (1961-

62, 1986-87 to 1989-90 and 1991-92 to 1992-93).   

 Despite the additional data sources, some seasons still had a few game-level 

attendance reports consecutively missing.  For those single missing years for each team, I 

used the average TAPG for the year before and year just following the missing data point.  

In those years that more than 15 game attendance reports are available, I take the average 

attendance of these games as TAPG for that team in the given season.  However, for 
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those years in which there are fewer than 15 games with attendance reported for a given 

team—most of which require consecutive imputations—I take a different approach.  

First, a linear trend is calculated between the points just before and just following the 

consecutive data points.  Then, the imputation for each year is averaged with the 

available game level data for the current season.  The process for year t with only some 

data available—and consecutive missing data—proceeds as follows: 

 

𝑇𝐴𝑃𝐺𝑡 = 0.6 ∗ (𝑇𝐴𝑃𝐺𝑡∗) + 0.4 ∗ (𝑇𝐴𝑃𝐺𝑁 +
𝑇𝐴𝑃𝐺𝑀 − 𝑇𝐴𝑃𝐺𝑁

𝐶
) 

  

Where C is the number of consecutive data points being imputed, 𝑇𝐴𝑃𝐺𝑡∗  denotes the 

average per game attendance calculated from the limited number of box scores in the 

given season, and 𝑇𝐴𝑃𝐺𝑁 and 𝑇𝐴𝑃𝐺𝑀 denote the average per game attendance for the 

given team in the first year prior and first year following the consecutive missing (or 

limited) data, respectively.  A list of those franchises with the specific years imputed in 

the data can be found in Appendix J for all leagues. 

 Adjusted data for NHL franchises is imputed just as with the league-level data 

from Chapter 4, with both adjusted and unadjusted series including an imputation for the 

locked out 2004-05 season.  The only difference between the adjusted and unadjusted 

series is the weighted average for the 1994-95 season, during which there was a labor 

stoppage (an average of seasons just before, during, and after the labor dispute).  I treat 

ties as one half of a win, and use win percent as the team quality covariate for NHL as 

with each of the other sports included in this evaluation.  The uncertainty of outcome 

variables in the team level regressions are, of course, identical to those used at the league 
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level.  The NHL contained eleven (11) individual franchises with attendance series of 

sufficient length (40 years) for the breakpoint analysis.  Descriptive statistics regarding 

TAPG and win percent for each of the franchises in each league can be found in Table 

8.1 (NHL). 

 

7.3 Unit Root Results 

Finally, seven of eleven NHL teams were found to be stationary or stationary with 

breaks (Tables 8.2 through 8.7).  Only the Philadelphia Flyers attendance series was 

found to be universally stationary without breaks (ADF and PP tests), while the LM tests 

reject the presence of a unit root for the Boston Bruins, Chicago Blackhawks, Detroit Red 

Wings, Los Angeles Kings, New York Rangers and St. Louis Blues with a single break.  I 

proceed with evaluating these teams using the BP procedure. 

 

7.4 Uncertainty of Outcome Results 

As with each of the other sports, there are some mixed results regarding the 

impact of balance in the NHL.  Only two of the teams under consideration were found to 

have statistically significant effects of any of the outcome uncertainty measures (Table 

8.11).  These include the Chicago Blackhawks and St. Louis Blues.  While the coefficient 

for GU for the Blackhawks supports the predictions of Rottenberg, other estimates are 

largely in disagreement with the Uncertainty of Outcome Hypothesis.  Playoff 

uncertainty was found to be statistically significant for both Chicago and St. Louis in the 

opposite direction from what UOH would predict.  The same result is found for CSU in 

St. Louis.  The effects on team revenues still tend to be relatively small, though not 
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completely ignorable for St. Louis (Table 8.12).  For both teams, changes in these 

balance measures may result in as much as $40,000 in revenues per game. 

 

8.5 Breakpoint Regression Results 

Breaks at the franchise level in the NHL lend support for those found at the 

league aggregate.  Perhaps not surprisingly given the finding in the aggregate NHL 

analysis, some individual teams saw negative effects during the reign of the WHA.  Other 

breaks tend to occur near sustained periods of success for certain franchises, as found for 

franchises in other leagues in the previous chapters.  Plot for the time series of attendance 

for each team (with breaks exhibited) can be found in Figures 8.1 and 8.2. 

 

8.5.1 Boston Bruins 

The WHA seems to have had significant impacts on the Boston Bruins, as the first 

attendance break coincides with a large downward shift after the 1975-76 season.  Boston 

was hit particularly hard, as longtime star Bobby Orr left the team after this season for the 

Chicago Blackhawks.  While the positive attendance trend recovered following this large 

shift, it became muted in the 1996-97 season and has continued to be a somewhat mild 

slope though the 2009-10 season. 

 

8.5.2 Chicago Blackhawks 

Chicago’s NHL team has had a turbulent attendance history since the beginning 

of the series analyzed here.  While attendance generally trended upward through the 

1950s, the 1963-64 season brought on a large upward shift in attendance, followed by a 
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downward trend.  This was the middle of a successful run for the Blackhawks, as they 

made the Stanley Cup Finals three times from 1961 to 1965.  There is a second large shift 

up for the team in 1981-82, ultimately recovering attendance to the levels found in the 

early 1960s.  The best explanation for this shift may be the team’s unexpected wins in 

two playoff series after inching into the postseason.  In general, Chicago seemed to see a 

large increase in attendance across all local pro sports teams during this time.  This will 

be discussed further in Section 6.6.2. 

 

8.5.3 Detroit Red Wings 

While the Detroit Red Wings had been experiencing a trend upward in 

attendance, they realized a large jump following the 1982-83 season.  The team had 

moved to Joe Louis Arena in 1979, but it seems that the requisite attendance increase was 

delayed somewhat.  The year of the estimated break also marked Little Caesar’s owner 

Mike Illitch purchase of the team.  The Wings subsequently drafted the future Detroit 

hero Steve Yzerman.  While the team had some success in the late 1980s, they did not 

win the Stanley Cup Trophy until the 1990s. 

 

8.5.4 Los Angeles Kings 

Not surprisingly, the 1988 acquisition of Wayne Gretzky seemed to have a large 

effect on Kings attendance, as the BP procedure indicates a large upward break in Kings 

attendance.  While the number of fans at each game trended downward following this 

initial hype, the team experienced a second upward jump coinciding with the move to the 

Staples Center in 1999. 
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8.5.5 New York Rangers 

From the beginning of the New York Rangers attendance series through the first 

breakpoint in 1975-76, the team had experienced a very steep upward trend.  However, 

the WHA likely played a role in the downward trend following this season.  The negative 

trend continued into the early 1990s, where there was an upward shift in 1991-92 when 

the team experienced fluctuating success culminating in a Stanly Cup in 1993-94. 

 

8.5.6 Philadelphia Flyers 

The Philadelphia Flyers seem to have been the team least affected by the 

formation of the WHA, as the team experienced consistent sellouts after back-to-back 

Stanley Cup trophies in 1973-74 and 1974-75.  Before this time, the team’s attendance 

was increasing sharply before leveling off.  In the midst of this flattened trend in 

attendance, the team did experience an upward shift following the 1995-96 season 

coinciding with a Stanley Cup appearance led by Eric Lindros and expansion of seating 

capacity in the new Wells Fargo Center. 

 

8.5.7 St. Louis Blues 

 The St. Louis Blues and its owners are known to have had significant financial 

troubles during the time of the first downward attendance shift in 1976.  This drop in fan 

attendance may have been enhanced by the operation of the WHA.  Fortunately for Blues 

fans, the team was sold to Ralston Purina in 1977 and the team experienced increasing 

attendance, followed by a second shift—this time positive—after the 1989-90 season.  
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The 1990-91 team led by Brett Hull was particularly successful, but was unfortunately 

knocked out of the playoffs before reaching the Stanley Cup Finals. 

 

8.6 Summary and Conclusions 

 Unlike the NFL, NHL fans tend to prefer less balance as indicated both at the 

league aggregate level and at the team level to some extent.  Only fans of the Chicago 

Blackhawks show a response to balance in the direction predicted by Rottenberg, and 

even this is only for the game-level balance measure (TL).  In terms of playoff 

uncertainty, fans of Chicago, Boston and St. Louis tend to prefer a wider difference in the 

playoff race.  The reason for this is unclear using the simplistic analysis employed here.  

Again, the impacts are relatively small economically for each of these teams.  Structural 

change in the for those franchises considered here is generally related to league the 

existence of a rival league (and its downfall) and significant sustained team success not 

explained by win percent alone.  Again, the ability to evaluate demand for attendance in 

the NHL (as with the other leagues) is left for further econometric consideration.
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TABLE 8.1: NHL Franchise TAPG and W% by Decade 

 
Team 1950's 1960's 1970's 1980's 1990's 2000's Overall 

BOS TAPG 11,432 12,451 13,833 13,001 15,179 15,797 13,691 

BOS W% 0.488 0.412 0.689 0.583 0.545 0.524 0.546 

BUF TAPG 
  

15,457 14,639 15,790 17,274 15,790 

BUF W% 
  

0.569 0.553 0.520 0.540 0.545 

CHI TAPG 9,596 15,292 13,913 16,021 18,342 15,814 15,010 

CHI W% 0.366 0.575 0.558 0.491 0.532 0.471 0.482 

DET TAPG 11,703 12,602 12,993 16,755 19,821 19,856 15,757 

DET W% 0.595 0.511 0.410 0.414 0.625 0.650 0.528 

LAK TAPG 
 

8,394 10,947 11,997 14,661 17,127 13,314 

LAK W% 
 

0.373 0.484 0.454 0.484 0.480 0.468 

MON TAPG 13,741 15,101 16,919 16,941 18,578 20,864 17,137 

MON W% 0.609 0.623 0.724 0.606 0.528 0.507 0.580 

NYR TAPG 11,790 14,395 17,405 17,063 17,755 18,137 16,239 

NYR W% 0.443 0.466 0.564 0.503 0.525 0.486 0.497 

PHI TAPG 
 

11,431 16,350 17,084 18,105 19,491 17,316 

PHI W% 
 

0.425 0.627 0.592 0.559 0.537 0.569 

PIT TAPG 
 

6,832 10,603 12,129 15,906 15,588 13,087 

PIT W% 
 

0.403 0.469 0.412 0.586 0.477 0.469 

STL TAPG 
 

13,185 15,637 13,894 17,859 17,364 15,979 

STL W% 
 

0.539 0.445 0.500 0.568 0.494 0.504 

TOR TAPG 13,013 14,923 16,440 16,121 16,215 19,345 16,113 

TOR W% 0.499 0.556 0.506 0.391 0.499 0.510 0.510 
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TABLE 8.2: NHL Franchise ADF and PP Tests (Unadjusted) 
 

Team   BOS BUF CHI DET LAK MON 

T (seasons)   58 40 58 58 53 58 
ADF (p) Constant -1.653 (2) -2.100 (1) -2.886 (1)* -1.192 (1) -1.432 (1) -0.599 (1) 
ADF (p) Trend -3.417 (1)* -2.576 (1) -3.178 (1)* -2.677 (1) -3.955 (2)** -2.648 (1) 
P-P (l) Constant -1.303 (3) -4.231 (3)*** -1.807 (3) -0.997 (3) -1.578 (3) -1.432 (3) 
P-P (l) Trend -3.081 (3) -4.469 (3)*** -2.439 (3) -2.457 (3) -2.965 (3) -3.022 (3) 

       

Team   NYR PHI PIT STL TOR 

T (seasons)   58 43 43 43 58 
ADF (p) Constant -2.336 (1) -3.541 (1)** -2.261 (1) -2.716 (1)* -1.013 (1) 
ADF (p) Trend -1.828 (1) -4.532 (1)*** -3.098 (1) -3.042 (1)* -2.062 (1) 
P-P (l) Constant -2.071 (3) -4.895 (3)*** -1.626 (3) -3.257 (3)** -1.472 (3) 
P-P (l) Trend -1.752 (3) -5.067 (3)*** -2.497 (3) -3.254 (3)* -2.124 (3) 

***, **, * = significant at 99%, 95%, and 90% critical levels, respectively. 
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TABLE 8.3: NHL Franchise Two-Break LM Test (Unadjusted) 

Team 𝐤̂ 𝐓�𝐛 𝐭̂𝛄𝐣 Test Statistic Critical Value Break Points 
BOS 1 1966/67, 1975/76 1.270, -3.684*** -4.944 λ = (0.26, 0.41) 
BUF 0 1981/82, 2005/06 -1.927*, 0.631 -2.611 λ = (0.30, 0.90) 
CHI 7 1984/85, 1987/88 -2.143**, -1.284 -4.200 λ = (0.57, 0.62) 
DET 1 1982/83, 1985/86 4.208***, 1.981** -4.564 λ = (0.53, 0.59) 
LAK 5 1982/83, 2000/01 -1.920*, -1.411 -4.820 λ = (0.44, 0.79) 
MON 1 1974/75, 1979/80 -1.063, -0.731 -2.963 λ = (0.40, 0.48) 
NYR 8 1967/68, 1987/88 1.917*, -0.818 -3.011 λ = (0.28, 0.62) 
PHI 4 1977/78, 1999/00 1.290, -1.906* -2.261 λ = (0.26, 0.77) 
PIT 7 1977/78, 2002/03 1.247, -3.874*** -3.832 λ = (0.26, 0.84) 
STL 7 1979/80, 2003/04 1.841*, -2.197** -4.197 λ = (0.30, 0.86) 
TOR 6 1995/96, 1999/00 -1.154, -3.743*** -2.621 λ = (0.76, 0.83) 
Data adjusted for strikes.   𝑘� is the optimal number of lagged first-difference terms included in the unit root test to correct  
for serial correlation.  𝑇�𝑏 denotes the estimated break points.  𝑡̂𝛾𝑗 is the value of DTjt for j = 1,2.  See J. Lee and Strazicich  
(2003) Table 2 for critical values.  ***, **, * = significant at 99%, 95%, and 90% critical levels, respectively. 
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TABLE 8.4: NHL Franchise One-Break LM Test (Unadjusted) 

Team 𝐤̂ 𝐓�𝐛 𝐭̂𝛄𝐣 Test Statistic Critical Value Break Points 
BOS 1 1974/75 -3.497*** -4.955** λ = 0.40 
BUF 0 1982/83 -3.789*** -4.304* λ = 0.33 
CHI 7 1984/85 -2.720*** -5.182*** λ = 0.57 
DET 1 1982/83 2.799*** -4.539** λ = 0.53 
LAK 8 1983/84 -4.222*** -5.512*** λ = 0.40 
MON 1 1974/75 -1.846* -3.285 λ = 0.40 
NYR 8 1983/84 -6.347*** -6.183*** λ = 0.55 
PHI 4 1980/81 -3.771*** -3.713 λ = 0.33 
PIT 1 1995/96 -2.392** -3.747 λ = 0.67 
STL 7 2003/04 -2.048** -5.292*** λ = 0.86 
TOR 6 1983/84 -2.067** -3.400 λ = 0.55 
NOTE: 𝑘�  is the optimal number of lagged first-difference terms included in the unit root test to correct  
for serial correlation.  𝑇�𝑏  denotes the estimated break points.  𝑡̂𝛾𝑗 is the value of DTjt for j = 1,2.   
See J. Lee and Strazicich (2003) Table 2 for critical values.  Data adjusted for strikes.   
***, **, * = significant at 99%, 95%, and 90% critical levels, respectively. 
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TABLE 8.5: NHL Franchise ADF and PP Tests (Adjusted) 
 

Team   BOS BUF CHI DET LAK MON 

T (seasons)   58 40 58 58 43 58 
ADF (p) Constant -1.616 (2) -2.110 (1) -2.947 (1)** -1.193 (1) -1.421 (1) -0.568 (1) 
ADF (p) Trend -3.521 (1)** -2.591 (1) -3.239 (1)* -2.679 (1) -4.018 (2)** -2.537 (1) 
P-P (l) Constant -1.258 (3) -4.190 (3)*** -1.796 (3) -0.997 (3) -1.572 (3) -1.436 (3) 
P-P (l) Trend -2.988 (3) -4.411 (3)*** -2.428 (3) -2.458 (3) -2.951 (3) -3.031 (3) 

       

Team   NYR PHI PIT STL TOR 

T (seasons)   58 43 43 43 58 
ADF (p) Constant -2.336 (1) -3.547 (1)** -2.261 (1) -2.694 (1) -1.013 (1) 
ADF (p) Trend -1.828 (1) -4.536 (1)*** -3.090 (1) -3.021 (1) -2.062 (1) 
P-P (l) Constant -2.072 (3) -4.898 (3)*** -1.626 (3) -3.261 (3)** -1.472 (3) 
P-P (l) Trend -1.751 (3) -5.071 (3)*** -2.488 (3) -3.258 (3)* -2.124 (3) 

***, **, * = significant at 99%, 95%, and 90% critical levels, respectively. 
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TABLE 8.6: NHL Franchise Two-Break LM Test (Adjusted) 

Team 𝐤̂ 𝐓�𝐛 𝐭̂𝛄𝐣 Test Statistic Critical Value Break Points 
BOS 1 1965/66, 1975/76 0.377, -3.684*** -5.042 λ = (0.24, 0.41) 
BUF 0 1981/82, 2005/06 -1.933*, 0.649 -2.573 λ = (0.30, 0.90) 
CHI 7 1984/85, 1987/88 -2.774***, -1.519 -4.583 λ = (0.57, 0.62) 
DET 1 1982/83, 1985/86 4.209***, 1.982** -4.568 λ = (0.53, 0.59) 
LAK 5 1985/86, 2000/01 -2.107**, -1.607 -4.989 λ = (0.44, 0.79) 
MON 0 1974/75, 1994/95 -1.004, 0.732 -2.684 λ = (0.40, 0.74) 
NYR 8 1967/68, 1987/88 1.955*, -0.823 -3.003 λ = (0.28, 0.62) 
PHI 4 1977/78, 1999/00 1.289, -1.915* -2.265 λ = (0.26, 0.77) 
PIT 7 1977/78, 2002/03 1.222, -3.840*** -3.805 λ = (0.26, 0.84) 
STL 7 1979/80, 2003/04 1.662*, -2.250** -4.138 λ = (0.30, 0.86) 
TOR 6 1995/96, 1999/00 -1.148, -3.745*** -2.620 λ = (0.76, 0.83) 
Data adjusted for strikes.   𝑘� is the optimal number of lagged first-difference terms included in the unit root test to correct  
for serial correlation.  𝑇�𝑏 denotes the estimated break points.  𝑡̂𝛾𝑗 is the value of DTjt for j = 1,2.  See J. Lee and Strazicich  
(2003) Table 2 for critical values.  ***, **, * = significant at 99%, 95%, and 90% critical levels, respectively. 
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TABLE 8.7: NHL Franchise One-Break LM Test (Adjusted) 

Team 𝐤̂ 𝐓�𝐛 𝐭̂𝛄𝐣 Test Statistic Critical Value Break Points 
BOS 1 1974/75 -3.514*** -5.044** λ = 0.40 
BUF 0 1982/83 -3.722*** -4.228* λ = 0.33 
CHI 7 1958/59 -2.934*** -5.556*** λ = 0.12 
DET 1 1982/83 2.800*** -4.543** λ = 0.53 
LAK 8 1983/84 -4.275*** -5.592*** λ = 0.40 
MON 1 1976/77 -1.895* -3.087 λ = 0.43 
NYR 8 1983/84 -6.339*** -6.178*** λ = 0.55 
PHI 4 1980/81 -3.772*** -3.717 λ = 0.33 
PIT 1 1995/96 -2.396** -3.752 λ = 0.67 
STL 7 2003/04 -2.128** -5.342*** λ = 0.86 
TOR 6 1983/84 -2.607** -3.400 λ = 0.55 
NOTE: 𝑘�  is the optimal number of lagged first-difference terms included in the unit root test to correct  
for serial correlation.  𝑇�𝑏  denotes the estimated break points.  𝑡̂𝛾𝑗 is the value of DTjt for j = 1,2.   
See J. Lee and Strazicich (2003) Table 2 for critical values.  Data adjusted for strikes.   
***, **, * = significant at 99%, 95%, and 90% critical levels, respectively. 
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TABLE 8.8: NHL Franchise Model Break Point Sequential Test Results (Heterogeneous) 
 
Team SupFt(1) SupFt(2) SupFt(3) UDmax WDmax SupF(2/1) SupF(3/2) Breaks 
         
BOS 55.90*** 44.71*** 28.19*** 54.90*** 59.03*** 14.45** 5.12 2 
         
CHI 13.42** 20.38*** 21.25*** 21.25*** 35.42*** 15.97*** 13.18* 2 
         
DET 127.20*** 78.98*** 60.44*** 127.20*** 127.20*** 9.38 10.32 1 
         
LAK 13.04** 19.82***  19.82*** 27.59*** 36.95***  2 
         
NYR 92.07*** 78.48*** 70.27*** 92.07*** 117.14*** 55.55*** 4.27 2 
         
PHI 16.36*** 54.70***  54.70*** 76.15*** 217.21***  2 
         
STL 36.71*** 32.03***  36.71*** 44.59*** 26.74***  2 
         
“***” Significant at the 99% critical level 
“**” Significant at the 95% critical level 
“*” Significant at the 90% critical level
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TABLE 8.9: NHL Franchise Model Break Dates (Heterogeneous) 
 
Team T1 T2 

   
BOS 1975-76 1996-97 

 [74-75, 76-77] [92-93, 98-99] 
   

CHI 1963-64 1981-82 
 [62-63, 64-65] [80-81, 82-83] 
   

DET 1982-83  
 [81-82, 83-84]  
   

LAK 1987-88 1998-99 
 [86-87, 88-89] [97-98, 01-02] 
   

NYR 1975-76 1991-92 
 [74-75, 76-77] [90-91, 93-94] 
   

PHI 1976-77 1995-96 
 [75-76, 77-78] [94-95, 96-97] 
   

STL 1976-77 1989-90 
 [75-76, 77-78] [87-88, 90-91] 
   

*Brackets denote 90% confidence interval for break date 
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TABLE 8.10: NHL Franchise Model Breakpoint Regression Results (Heterogeneous) 
 
Team α1 β1 α2 β2 α3 β3 
BOS 156 8357 229 2755 99 8369 
t-value (5.80)*** (11.54)*** (6.43)*** (1.65) (1.65) (2.53)** 
CHI 235 2582 -238 10955 -3 8487 
t-value (1.86)* (2.06)** (-3.57)*** (5.04)*** (-0.10) (3.71)*** 
DET 120 7953 2 15752   
t-value (5.88)*** (8.14)*** (0.08) (13.45)***   
LAK 126 6967 -297 20754 119 10656 
t-value (3.36)*** (7.79)*** (-3.43)*** (7.43)*** (1.27) (2.70)*** 
NYR 305 8848 -111 18944 17 15530 
t-value (17.49)*** (16.62)*** (-3.36)*** (15.31)*** (0.72) (11.37)*** 
PHI 796 10406 31 16556 4 19537 
t-value (9.64)*** (21.18)*** (1.14) (15.66)*** (0.10) (11.70)*** 
STL 16 6385 427 -4931 106 4315 
t-value (0.07) (3.46)*** (3.10)*** (-1.59) (1.74)* (1.36) 
“***”, “**”, “*” Indicate significance at the 99%, 95% and 90% critical level, respectively/ 
αM and βM refer to the slope and intercept coefficients for regime M, respectively
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TABLE 8.11: NHL Franchise Model Balance and W% Coefficients (Heterogeneous) 
 
Team TL PU CSU W% 𝑹�𝟐 (𝑹𝟐) 
      
BOS 137 9888 -595 3953 0.830 
t-value (0.29) (2.04)** (-1.22) (3.74)*** (0.857) 
      
CHI 2230 16762 -1483 14328 0.839 
t-value (2.93)*** (2.05)** (-1.81)* (6.50)*** (0.864) 
      
DET 233 -2814 -360 6458 0.949 
t-value (0.49) (-0.55) (-0.75) (4.84)*** (0.956) 
      
LAK -912 4281 128 4638 0.918 
t-value (-1.67)* (0.65) (0.19) (2.63)** (0.935) 
      
NYR 154 1220 -398 3563 0.954 
t-value (0.51) (0.39) (-1.29) (3.93)*** (0.961) 
      
PHI -158 -1109 626 -546 0.949 
t-value (-0.52) (-0.27) (1.55) (-0.52) (0.960) 
      
STL 526 34837 3520 11457 0.746 
t-value (0.57) (3.05)*** (3.11)*** (4.23)*** (0.800) 
      
*** Significant at the 99% critical level 
** Significant at the 95% critical level 
** Significant at the 90% critical level 
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TABLE 8.12: NHL Franchise Level Economic Implications 
 

 Game Uncertainty Playoff Uncertainty Consecutive Season Uncertainty 
Team CHI CHI STL STL 

2009 TAPG 21,130 21,130 18,760 18,760 
2009 Variable 0.698 0.061 0.061 0.378 
Coef. Est.a 2,230 16,762 34,837 3,520 
Elasticity 0.074 0.048 0.113 0.071 
ΔVariableb 0.222 0.012 0.012 0.184 
Inc. Factor 31.8% 19.7% 19.7% 48.7% 
ΔTAPG 497.2 -199.8d -417.6 -648.7 
% ΔTAPG 2.35% -0.95% -2.23% -3.46% 
Rev. Per Attendc $79.80 $79.80 $58.65 $58.65 

Δ Game Rev. $39,677 -$15,944 -$24,492 -$38,046 
a. Coefficient taken from model with heterogeneous errors across regimes and follow the approach of Lee and Fort (2008, pp. 291). 
b. All measure changes imply an improvement in balance. 
c. Revenue per attendee data come from Team Marketing Report Fan Cost Index (2009). 
d. Italic font indicates disagreement with Rottenberg’s Uncertainty of Outcome Hypothesis.
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FIGURE 8.1: Fitted NHL TAPG  for BOS, CHI, DET and NYR (Heterogeneous) 
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FIGURE 8.2: Fitted NHL TAPG for LAK, PHI and STL (Heterogeneous) 
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CHAPTER 9 

Summary and Conclusions 

 

9.1 Summary and Implications 

The research contained in this dissertation fills gaps in the literature on long-term 

North American professional sports attendance tracking and uncertainty of outcome.  I 

extend the literature on attendance breakpoints to the NBA, NFL and NHL at the league 

level in Chapter 4.  Chapters 5 through 8 are dedicated to evaluating the heterogeneous 

effects of uncertainty at the franchise level for these three leagues and MLB at the 

seasonal level.  This former portion is the most important contribution of this work; 

however, this latter application provide interesting differences across markets important 

for team managers and league managers implementing league policies with interest in 

maximizing interest in the league as a whole.  Past research has found changes in 

attendance at a more micro level with respect to balance, usually when individual games 

have playoff implications.  However, the analysis presented here finds that the 

implications of these changes tend to be minimal at the aggregate level.  However, it is 

important to note the limitations of the methodology here.  Because of a lack of micro-

level analysis, fan interests cannot be fully discerned as they may be in a fully specified 

demand model.  This makes the conclusions with respect to balance limited in their reach 

with respect to managerial implications. Nevertheless, the macro-level implications 
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provide both historical context for future analyses, as well as exhibition of time series 

properties important to this future empirical work. 

Table 9.1 provides a summary of the results from each chapter within this 

dissertation regarding Rottenbeg’s UOH.  Fans of the NBA respond most to Playoff and 

Game Uncertainty and NHL fans seem to be interested in Playoff Uncertainty, while NFL 

fans—at least at the league level—tend to have little preference for any of the uncertainty 

measures included here.  The NHL case exemplifies the importance of correct 

econometric breakpoint method specifications in the shorter series analyzed in the sports 

context.  The team level analysis tells a bit of a different story, and shows the importance 

of evaluating fans across markets.  In these analyses, we see a limited view of fans in 

different markets reacting differently to the changes in uncertainty of outcome.  Why this 

would be the case is relegated to further investigation. Most likely, employing surveys of 

fans in different markets regarding their preferences for different team and league 

characteristics would provide valuable information regarding the preferences of fans for 

more or less competitive balance (uncertainty of outcome). 

Of course, the collection of empirical research here does not necessarily mean 

fans do not care about balance at its extremes.  It may be that market sizes of teams in 

each of these leagues are relatively close as to not affect fan behavior in any significant 

economic way.  If this is so, it may have important implications with respect to analysis 

of optimal league size, given the viable markets for professional teams.  League 

expansion and relocation choice has often been affected by the market rights of its 

individual owners.  Therefore, if many teams are further expanded into smaller markets—

with no third team, for example, in New York—it seems feasible that the extremes of 
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unbalance created here could affect fan interest more than found here.  In order to assess 

this possibility, one would likely have to investigate past leagues with significantly more 

competitive balance issues than is currently found in North American leagues.  

Perhaps more important are the implications for past league policy implied here.  

First, as in Lee and Fort (2008), there tends to be very little sudden impact of league 

policy decisions.  Owners often espouse the idea that implementing rules such as free 

agency and the draft are used in order to preserve competitive balance and ultimately help 

the league to thrive through more fan interest.  However, there is little evidence of 

significant structural change in attendance near these policy changes in any league.  

Rottenberg (1956) and Fort and Quirk (1995) inform us that this is to be expected, as 

moves such as the amateur draft and free agency tend to redistribute profits to owners 

from players, rather than change balance in any way (see Chapter 1 for details).  If 

balance is not changed, then the UOH would predict that fan interest in the league would 

also remain unchanged, ceteris paribus. 

On the other hand, the models presented here show only mixed evidence for 

Rottenberg’s UOH and its subsequent extension to dynasties, which were not initially 

mentioned by Rottenberg.  As mentioned earlier, econometric specifications could have 

some impact on these estimations.  In the analysis presented here, a number of individual 

franchises were found to have coefficients that indicated interest in imbalance in certain 

situations.  Fort and Lee (2006, 2007) inform us that there are also no structural breaks 

near these policy changes, lending further evidence to Rottenberg’s claims regarding the 

invariance principle in North American sports leagues.  Of course, addressing European 

leagues (such as the EPL) are left for further evaluation.   
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9.2 Evidence for Substitution 

 While the direct causal effects of increases in attendance for one franchise on a 

decrease in attendance for another local franchise cannot be extracted from this sort of 

analysis, large shifts in opposite directions may provide preliminary evidence of 

substitution between sports teams within the same market.  Therefore, I briefly discuss 

this possibility here for those markets with multiple sports franchises under analysis.  

These include Atlanta, Boston, Chicago, Cincinnati, Cleveland, Detroit, Los Angeles, 

New York, Philadelphia, Pittsburgh, St. Louis and the San Francisco/Oakland markets.  

Only the Boston, Chicago, New York and Pittsburgh markets have concurrent attendance 

shifts for franchises across leagues, and I limit discussion to these four in this section. 

 

9.2.1 Boston Metropolitan Area 

 As with previous work on years in which there is a labor stoppage, the Red Sox 

saw a temporary downward shift concurrent with the player strike of 1995.  However, 

both the Celtics and Bruins experienced changes in attendance near this time in the 

opposite direction of the Red Sox.  In 1994, the Celtics experienced a small upward shift 

of about 2,000 fans per game, while the Bruins saw a downward shift in 1996 following a 

short spike concurrent with the MLB player strike.  Given that Red Sox attendance had 

decreased for a short duration by about 3,000 fans, it seems that the changes in 

attendance to the other two sports could have accounted for the small dip during this 

time.  The additional space for both the Bruins and Celtics in their new arena, however, 
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seems to be a more plausible reason for these changes than direct fan substitution 

between sports. 

 

9.2.2 Chicago Metropolitan Area 

 In Chicago, something seems to have happened to attendance at sporting events in 

the early 1980s.  While there is little evidence of between-sport fan substitution in the 

city from this analysis alone, fans began attending both Cubs and Blackhawks games at a 

much higher rate beginning in 1983 and 1981, respectively.  Interestingly, the city’s 

population had declined by nearly 18% from 1970 to 1990, while the metro area 

population remained relatively stagnant (increasing less than 3.7% throughout the same 

period).  With the upward shift in White Sox attendance in the mid-1970s, it seems 

reasonable to conclude that interest in sport shifted substantially during this period and/or 

disposable sports income increased for residents of the Chicago area.  Even more 

perplexing is that this era marked a low point in the success of Chicago professional 

athletics teams.  Only in the mid-1980s did the Bulls and Bears begin to have relevant 

levels of success again.  Further work is suggested analyzing this shift in overall sports 

consumption in Chicago and its relationship to disposable income changes in the city. 

 

9.2.3 New York Metropolitan Area 

 While the Knicks and Giants experienced what seem to be attendance shifts 

independent from any other local franchise, the Mets and Rangers experienced two 

concurrent or very close attendance shifts.  The first occurs in 1975, in which the Mets 

saw a downward shift followed by an upward trend, while the Rangers see their 
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attendance trend change in a negative direction.  These shifts seem to be relatively 

unrelated, though it could indicate a slow shift of Rangers fans preferring a successful 

1980s Amazing Mets team.  The next pair of estimated breaks happens in 1993 for the 

Mets (a downward shift) and 1991 for the Rangers (and upward shift).  This later shift 

likely has more to do with the move to Madison Square Garden for the Rangers.  

Whether or not this increase in fans came from those previously enamored with the 

success of 1980s Mets teams remains to be fully analyzed, as with the shifts near this 

time in Boston. 

 

9.2.4 Pittsburgh Metropolitan Area 

 Finally, the analysis presented here suggests that the Steelers and Pirates 

experienced concurrent shifts in the opposite direction near the 1986 and 1987 seasons 

when Barry Bonds and Jim Leyland arrived.  However, contrary to popular belief about 

the struggling Pirates, the shift is in the direction of more fans attending Pirates games 

and fewer heading to Steelers games.  Since this time, both teams have seen an upward 

trend in attendance, though for the Pirates this seems mostly due to the opening of a new 

stadium and subsequent honeymoon attendance spike.  Despite this, it is still generally 

assumed that Pittsburgh sports fans abandoned the Pirates for their NFL counterpart in 

recent years.  While there was no break estimated for either team in the 2000 or 2001 

season, the spike in Pirates attendance and the new stadium may have affected overall 

Steelers attendance, which experienced a very short downward spike during the same 

time.  As a whole, there seems to be only some evidence of substitution between MLB 
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and NFL for sports fans in Pittsburgh, and price changes over this time may prove 

insightful with respect to changes in fan behavior during this time. 

 

As a whole, there is mixed evidence for fan substitution between sports, 

suggesting that substitution may vary depending on the market in which multiple teams 

are located.  More work is suggested with more granular data to evaluate shorter-term 

day-to-day fan substitution in a number of markets. 

 

9.3 Limitations and Suggested Future Research 

As mentioned throughout this work, there are limitations with understanding the 

full effects of coefficients on balance measures in breakpoint regressions.  Because there 

is not currently an implementation of tobit analysis in the breakpoint context, some 

coefficients—especially for those teams with consistent sellouts—will be biased toward 

zero.  This issue may be resolved in a shorter term study with heterogeneous effects of 

balance measures in a censored panel model context.  This is the next step in the 

progression of the chapters presented here, and is already under way.  However, it is 

important to note that there are always sellouts for some tickets.  If we view front row 

seats and bleacher seats as a form of product differentiation by the team (with supply 

physically limited), then accounting for sellout of each separate product would be 

necessary.  As of yet, there are very few studies that fully account for the variation in 

ticket prices and viewing products around an entire stadium.  This would be a fruitful line 

of research in understanding the determinants of fan attendance and understanding the 

influence of sellouts at multiple levels of aggregation with respect to seating location. 
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While the methods in Chapter 3 are sufficient for a first look at varying 

attendance across markets within a given league, understanding the economic factors that 

affect this demand is also an important addition.  Because of data availability, this is 

more appropriate in shorter term demand studies.  For example, teams in the lower half of 

the standings may have fans who attend games to see the opponent.  An in depth analysis 

of home fan interest in visiting team quality would be a natural progression from the 

research in this paper.  Meehan et al. (2007) have taken the research in this direction with 

the National League in MLB. 

 Variability in fans could also arise with respect to the substitutability of 

professional sports leagues may differ depending on the market.  Winfree (2009b) has 

taken the fan substitution research in this direction, and the breakpoint analysis presented 

here provides some limited additional information about the total sports demand in 

specific markets such as Boston and Pittsburgh.  Finally, a further understanding this 

phenomenon would inform team mangers of their direct competitors for entertainment 

dollars and antitrust issues involved in multiple team ownership within a single market.  

Evaluating a shorter term series of attendance, while controlling for other economic 

factors, is a suggested next step.  In this analysis, the researcher could evaluate the impact 

of other teams in a given market using a difference-in-differences approach when a new 

team arrives in town from another league. 

 Of course, substitution of sport fans may not be limited to spectator sport, but also 

sport participation or other entertainment options available within a city.  Because people 

generally have a fixed allocation for entertainment purposes, this could have important 

implications for team relocation decisions for both the public sector looking to provide 
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subsidies as well as leagues and their franchises deciding to venture into new markets.  

Understanding the full scope of the sport industry and the interaction between sport 

participation and spectator sport is a topic I would like to progress toward with the 

analysis here informing structural shifts in the market.  In fact there are important public 

health considerations in this context of sport consumption, in which Sports Economics 

research can play an important role. 

 Lastly, much of the literature regarding attendance and the Uncertainty of 

Outcome Hypothesis discusses uncertainty in a one-dimensional light as directly causing 

attendance changes.  However—as Rottenberg originally states in his seminal work and 

as El-Hodiri and Quirk (1971) model—while uncertainty offers excitement, it seems 

reasonable to believe that a preference for the home team reaching the playoffs would 

dominate preferences for suspense and balance for many fans.  This interactive effect 

seems to be underemphasized in the literature and explicitly separating the two will be 

important if we want to understand the influence of uncertainty itself and the excitement 

it creates.  I recommend evaluation of direct and indirect effects of balance and team 

quality in order to more fully understand the interaction of these factors.  

 All in all, the work here lays a foundation for informed time series analysis on 

professional sports attendance data.  Without accounting for breaks, coefficient standard 

errors could be biased in both aggregate and cross-sectional panel considerations.  From 

the understanding of the time series properties of North American professional sports 

league attendance presented here, researchers will be well-equipped to correctly analyze 

impacts of different factors influencing attendance. 
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TABLE 9.1: Summary of Uncertainty of Outcome Results 

 Support UOH No Influence Inverse UOH 
Leagues GU PU CSU GU PU CSU GU PU CSU 

MLB*  X  X  X    

NBA X  X     X  

NFL    X X X    

NHL    X    X X 

Franchises GU PU CSU GU PU CSU GU PU CSU 

MLB 1 4 1 13 12 14 2 0 1 

NBA 1 1 2 7 7 6 1 1 1 

NFL 4 1 4 8 10 9 1 2 0 

NHL 1 0 0 6 4 6 0 3 1 

*MLB league aggregate taken from Lee and Fort (2008).
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APPENDIX A 
 

MAJOR LEAGUE BASEBALL FRANCHISE ALTERNATIVE MODELS 
 
 

TABLE A.1: MLB Franchise Model 1B Break Point Test Results (Heterogeneous) 
 
Team SupFt(1) SupFt(2) SupFt(3) SupFt(4) SupFt(5) UDmax WDmax SupF(2/1) SupF(3/2) SupF(4/3) SupF(5/4) Breaks 
BAL 185.89a 201.47a    201.47a 280.49a 67.86a    2 

BOS 58.12a 124.03a 110.78a 94.90a 68.07a 124.03a 168.63a 113.65a 28.97a 28.97a  3 

CHC 142.02a 110.63a 104.14a 103.95a 64.64a 142.02a 184.70a 31.36a 32.33a 4.36  3 

CHW 17.63a 17.89a 23.97a 27.52a 22.61a 27.52a 49.63a 40.69a 40.69a 13.23c 2.86 3 

CIN 150.56a 98.71a 82.08a 81.93a 76.91a 150.56a 168.88a 31.06a 30.35a 30.43a 6.88 2 

CLE 47.18a 38.55a 39.78a 36.99a 35.01a 47.18a 76.87a 16.93a 15.38b 11.26 9.77 3 

DET 21.19a 21.89a 36.31a 26.58a 23.66a 36.31a 54.34a 16.09b 26.49a 14.15c  3 

HOU 22.37a 14.80a    22.37a 22.37a 6.42    1 

LAD 40.75a 41.61a    41.61a 57.94a 7.09    1 

MIL 15.72a 18.97a    18.97a 26.42a 4.60    1 

NYM 74.52a 102.41a    102.41a 142.57a 46.71a    2 

OAK 44.64a 45.67a    45.67a 63.59a 13.31b    1 

PHI 83.49a 71.02a 62.48a 55.20a 50.96a 83.49a 111.89a 48.02a 48.02a 31.65a 10.24 3 

PIT 15.13b 38.45a 47.48a 41.00a 28.79a 47.48a 72.85a 84.92a 66.40a 10.35  4 

SFG 103.30a 54.90a    103.30a 103.30a 6.13    1 

STL 129.98a 124.04a 117.59a 90.54a 69.31a 129.98a 175.98a 42.74a 14.47b 7.00  3 
a. Significant at the 99% critical level; b. Significant at the 95% critical level; c. Significant at the 90% critical level 
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TABLE A.2: MLB Franchise Model 1B Estimated Break Dates (Heterogeneous) 
 
Team T1 T2 T3 T4  Team T1 T2 T3 T4 

           
BAL 1974 1991    LAD 1974    

 [73, 75] [90, 92]     [73, 75]    
           

BOS 1918 1945 1986   MIL 1995    
 [17, 20] [44, 49] [84, 89]    [90, 96]    
           

CHC 1932 1955 1983   NYM 1977 1994   
 [30, 33] [54, 58] [82, 89]    [76, 78] [92, 95]   
           

CHW 1945 1965 1993   OAK 1994    
 [42, 46] [63, 66] [91, 95]    [93, 97]    
           

CIN 1945 1969    PHI 1930 1945 1970  
 [43, 46] [68, 70]     [23, 31] [44, 46] [69, 71]  
           

CLE 1946 1964 1992   PIT 1927 1946 1961 1987 
 [43, 47] [63, 66] [90, 93]    [26, 28] [44, 47] [58, 62] [84, 89] 
           

DET 1918 1945 1967 1989  SFG 1970    
 [15, 19] [44, 46] [66, 70] [85, 90]   [69, 71]    
           

HOU 1978     STL 1945 1964 1981  
 [77, 80]      [44, 46] [62, 65] [80, 83]  
           

*Brackets denote 90% confidence interval for break date 
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TABLE A.3: MLB Franchise Model 1B (Heterogeneous) Breakpoint Regression Results 
 
Team α1 β1 α2 β2 α3 β3 α4 β4 α5 β5 
BAL -288 1804 1237 -28840 -117 35178 -1396 91264   
t-value (-3.03)a (0.76) (11.32)a (-5.82)a (-0.50) (3.11)a (-5.05)a (6.16)a   
BOS -273 3039 109 -2008.78 -310 26286 447 -16389 653 -39416 
t-value (-2.50)b (1.69)c (2.35)b (-1.21) (-4.41)a (5.56)a (9.84)a (-3.97)a (6.66)a (-3.98)a 
CHC 403 -14086 487 -24063 301 -20001 611 -40652   
t-value (7.09)a (-5.19)a (5.96)a (-5.12)a (5.24)a (-4.78)a (7.84)a (-5.42)a   
CHW 49 -8267 -130 6360.87 325 -22701     
t-value (1.05) (-2.73)a (-1.71)c (1.24) (5.56)a (-3.88)a     
CIN 38 -7064 4 -1453 142 1132.60     
t-value (1.09) (-3.13)a (0.04) (-0.31) (3.59)a (0.24)     
CLE 91 -9668 -1040 58480 264 -21410 -849 104045   
t-value (2.07)b (-3.02)a (-6.36)a (5.71)a (3.17)a (-2.94)a (-4.58)a (5.27)a   
DET 382 -17136 176 -14823 -439 23042 218 -15110 976 -90325 
t-value (5.47)a (-6.64)a (1.23) (-2.51)b (-4.81)a (4.21)a (2.39)b (-1.98)c (8.52)a (-7.84)a 
HOU 1110 -4738 638 -11818       
t-value (1.74)c (-0.82) (9.81)a (-1.65)       
LAD -268 10918 1093 -4895 343 8970     
t-value (-1.91)c (2.28)b (5.28)a (-0.66) (3.96)a (1.70)c     
MIL 339 -13656 1418 -47260       
t-value (3.11)a (-2.54)b (6.15)a (-5.40)a       
NYM -554 274 52 -997 1521 -59809     
t-value (-4.76)a (0.08) (0.10) (-0.06) (7.59)a (-6.84)a     
OAK 713 -13932 -1361 41140 -170 10484     
t-value (5.63)a (-3.07)a (-4.67)a (4.27)a (-0.38) (0.55)     
PHI 144 -12260 469 -25518 -57 -830 213 -7983   
t-value (1.45) (-3.43)a (2.19)b (-2.91)a (-0.56) (-0.13) (4.05)a (-1.50)   
PIT 238 -13545 311 -20816 -183 10885 180 -15082 191 -11002 
t-value (3.15)a (-5.05)a (3.09)a (-4.68)a (-1.25) (1.41) (2.75)a (-2.73)a (1.82)c (-1.03) 
SFG -564 2185 441 -10248 -8 21689     
t-value (-4.62)a (0.42) (4.32)a (-2.03)b (-0.02) (1.15)     
STL -70 -4857 -40 3558 -100 1485 462 -20641   
t-value (-1.83)c (-2.74)a (-0.43) (0.62) (-0.92) (1.76)c (8.62)a (-4.01)a   
a. Significant at the 99% critical level. b. Significant at the 95% critical level. c. Significant at the 90% critical level. αM and βM  
refer to the slope and intercept coefficients for regime M, respectively. 
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TABLE A.4: MLB Franchise Model 1B (Heterogeneous) Regression Coefficients 
 
Team TL CSU PU W% L1(W%) 𝑹�𝟐 (𝑹𝟐) Team TL CSU PU W% L1(W%) 𝑹�𝟐 (𝑹𝟐) 
              
BAL 1479 1081 18763 15633 9987 0.966 LAD 2962 -1601 -75499 41645 22412 0.863 
t-value (0.71) (0.67) (1.21) (2.52)a (1.78)c (0.972) t-value (1.63) (-1.16) (-3.99)a (4.79)a (2.79)a (0.884) 
              
BOS -2957 -3451 97 22623 8877 0.953 MIL -2599 2649 32693 16875 42576 0.826 
t-value (-1.66) (-3.00)a (0.01) (5.76)a (2.46)b (0.958) t-value (-1.08) (0.90) (-1.09) (1.49) (4.12)a (0.862) 
              
CHC 1142 -93 -28348 24486 12886 0.952 NYM -382 2293 -21382 45052 45679 0.933 
t-value (0.83) (-0.11) (-3.25)a (6.50)a (3.40)a (0.958) t-value (-0.22) (1.70)c (-1.15) (7.12)a (7.34)a (0.948) 
              
CHW 1198 -1773 4111 25139 12123 0.854 OAK -1892 -3878 34973 38158 26774 0.882 
t-value (0.50) (-1.14) (0.39) (5.04)a (2.46)b (0.871) t-value (-0.71) (-1.71)c (1.44) (5.42)a (3.89)a (0.905) 
              
CIN -3357 308 -18876 22548 7587 0.925 PHI -158 -803 -34403 31660 8858 0.909 
t-value (-2.17)b (0.35) (-1.94)c (5.38)a (1.82)c (0.932) t-value (-0.08) (-0.67) (-2.56)b (5.46)a (1.64) (0.920) 
              
CLE 1141 1838 -6723 22518 8172 0.894 PIT 2270 852 -11139 23645 12736 0.885 
t-value (0.44) (1.02) (-0.57) (3.89)a (1.40) (0.906) t-value (1.62) (1.02) (-1.24) (6.00)a (3.18)a (0.901) 
              
DET 5367 -1182 -739 31615 108745 0.904 SFG 1623 181 -38599 48086 26936 0.881 
t-value (2.74)a (-0.90) (-0.08) (8.33)a (2.73)a (0.916) t-value (0.68) (0.10) (-1.68) (4.51)a (2.82)a (0.899) 
              
HOU 642 5758 -49973 32847 22142 0.779 STL 1583 1394 -4812 21021 499 0.971 
t-value (0.23) (2.77)a (-1.83)c (2.46)b (1.66) (0.817) t-value (1.17) (1.74)c (-0.59) (5.47)a (0.13) (0.974) 
              
a. Significant at the 99% critical level 
b. Significant at the 95% critical level 
c. Significant at the 90% critical level 
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TABLE A.5: MLB Franchise Model 1 Break Point Test Results (Homogeneous) 
 
Team SupFt(1) SupFt(2) SupFt(3) SupFt(4) SupFt(5) UDmax WDmax SupF(2/1) SupF(3/2) SupF(4/3) SupF(5/4) Breaks 
BAL 214.05a 179.72a 330.31a 248.04a 243.31a 330.31a 534.24a 80.80a 41.36a 12.60 6.55 3 

BOS 61.22a 131.84a 96.00a 105.81a 75.32a 131.84a 188.02a 117.74a 29.84a 29.84a  4 

CHC 156.74a 138.53a 106.57a 114.65a 86.77a 156.74a 203.72a 27.39a 31.20a 9.41  3 

CHW 17.26a 15.83a 21.54a 26.52a 23.81a 26.52a 52.29a 43.92a 43.92a 13.38c  2 

CIN 157.01a 102.66a 84.40a 82.63a 70.28a 157.01a 157.01a 32.19a 31.04a 31.06a 5.36 2 

CLE 56.08a 44.08a 47.56a 44.56a 39.10a 56.08a 85.86a 15.78b 35.29a 12.22 7.81 3 

DET 21.76a 20.58a 30.89a 27.69a 24.29a 30.89a 53.33a 14.52b 28.64a 16.26b  4 

HOU 21.67a 12.80a 16.26a 19.96a 16.37a 21.67a 35.94a 9.25 6.61 6.66 34.66a 1 

LAD 38.44a 34.90a 34.87a 37.55a 47.09a 47.09a 103.40a 20.36a 7.68 11.47 3.69 2 

MIL 12.08b 17.15a 18.92a 22.71a 13.35a 22.71a 40.35a 17.85a 25.09a 1.72 1.33 2 

NYM 34.32a 54.72a 50.03a 60.10a 46.45a 60.10a 106.79a 40.54a 9.60 4.76  2 

OAK 35.31a 21.95a 26.89a 25.12a 78.69a 78.69a 172.78a 16.80b 16.80b 20.28a 15.75b 2 

PHI 86.27a 72.57a 57.35a 50.96a 45.75a 86.27a 100.45a 51.10a 51.10a 34.97a 10.78 3 

PIT 15.95a 38.05a 30.98a 32.45a 24.67a 38.05a 57.67a 62.30a 51.30a 45.76a  4 

SDN 8.96 10.98b 10.16b 11.28a 9.01a 11.28 20.44a 13.33b 12.95c 29.40a 0.34 0 

SFG 68.12a 72.52a 74.19a 63.98a 50.12a 74.19a 113.68a 37.60a 10.68 3.38 1.47 2 

STL 160.13a 151.07a 137.00a 108.22a 83.68a 160.13a 205.03a 47.16a 17.05b 6.02  3 
a. Significant at the 99% critical level 
b. Significant at the 95% critical level 
c. Significant at the 90% critical level 
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TABLE A.6: MLB Franchise Model 1 Estimated Break Dates (Homogeneous) 
 
Team T1 T2 T3 T4  Team T1 T2 T3 T4 

           
BAL 1974 1991 2001   LAD 1973 1986   

 [73, 75] [90, 92] [00, 02]    [72, 75] [85, 88]   
           

BOS 1918 1945 1966 1993  MIL 1983 1993   
 [17, 20] [44, 46] [65, 67] [92, 95]   [82, 85] [90, 94]   
           

CHC 1932 1955 1983   NYM 1984 1993   
 [30, 33] [54, 58] [82, 90]    [83. 86] [91, 94]   
           

CHW 1945 1975    OAK 1988 2000   
 [42, 46] [73, 76]     [86, 89] [99, 04]   
           

CIN 1945 1969    PHI 1930 1945 1970  
 [43, 46] [68, 70]     [24, 31] [44, 46] [69, 71]  
           

CLE 1946 1964 1992   PIT 1927 1946 1961 1987 
 [44, 47] [63, 66] [90, 93]    [25, 28] [43, 47] [56, 63] [84, 89] 
           

DET 1929 1945 1967 1989  SFG 1977 1999   
 [27, 40] [43, 46] [66, 69] [84, 90]   [76, 78] [98, 00]   
           

HOU 1970     STL 1945 1964 1981  
 [69, 72]      [44, 46] [62, 65] [80, 83]  
           

*Brackets denote 90% confidence interval for break date 
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TABLE A.7: MLB Franchise Model 1 (Homogeneous) Breakpoint Regression Results 
 
Team α1 β1 α2 β2 α3 β3 α4 β4 α5 β5 
BAL -288 1804 1237 -28840 -117 35178 -1396 91264   
t-value (-3.03)a (0.76) (11.32)a (-5.82)a (-0.50) (3.11)a (-5.05)a (6.16)a   
BOS -273 3039 109 -2009 -310 26286 447 -16389 653 -39416 
t-value (-2.50)b (1.69)c (2.35)b (-1.21) (-4.41)a (5.56)a (9.84)a (-3.97)a (6.66)a (-3.98)a 
CHC 403 -14086 487 -24063 301 -20001 611 -40652   
t-value (7.09)a (-5.19)a (5.96)a (-5.12)a (5.24)a (-4.78)a (7.84)a (-5.42)a   
CHW 49 -8267 -130 6361 325 -22701     
t-value (1.05) (-2.73)a (-1.71)c (1.24) (5.56)a (-3.88)a     
CIN 38 -7064 4 -1453 142 1133     
t-value (1.09) (-3.13)a (0.04) (-0.31) (3.59)a (0.24)     
CLE 91 -9668 -1040 58480 264 -21410 -849 104045   
t-value (2.07)b (-3.02)a (-6.36)a (5.71)a (3.17)a (-2.94)a (-4.58)a (5.27)a   
DET 382 -17136 176 -14823 -439 23042 218 -15110 976 -90325 
t-value (5.47)a (-6.64)a (1.23) (-2.51)b (-4.81)a (4.21)a (2.39)b (-1.98)c (8.52)a (-7.84)a 
HOU 1110 -4738 638 -11818       
t-value (1.74)c (-0.82) (9.81)a (-1.65)       
LAD -268 10918 1093 -4895 343 8970     
t-value (-1.91)c (2.28)b (5.28)a (-0.66) (3.96)a (1.70)c     
MIL 1138 -1390 167 7335 1346 -27724     
t-value (4.18)a (-0.23) (0.44) (0.81) (6.55)a (-3.30)a     
NYM -554 274 52 -997 1521 -59809     
t-value (-4.76)a (0.08) (0.10) (-0.06) (7.59)a (-6.84)a     
OAK 713 -13932 -1361 41140 -170 10484     
t-value (5.63)a (-3.07)a (-4.67)a (4.27)a (-0.38) (0.55)     
PHI 144 -12260 469 -25518 -57 -830 213 -7983   
t-value (1.45) (-3.43)a (2.19)b (-2.91)a (-0.56) (-0.13) (4.05)a (-1.50)   
PIT 238 -13545 311 -20816 -183 10885 180 -15082 191 -11002 
t-value (3.15)a (-5.05)a (3.09)a (-4.68)a (-1.25) (1.41) (2.75)a (-2.73)a (1.82)c (-1.03) 
SFG -564 2185 441 -10248 -8 21689     
t-value (-4.62)a (0.42) (4.32)a (-2.03)b (-0.02) (1.15)     
STL -70 -4857 -40 3558 -100 1485 462 -20641   
t-value (-1.83)c (-2.74)a (-0.43) (0.62) (-0.92) (1.76)c (8.62)a (-4.01)a   
a. Significant at the 99% critical level. b. Significant at the 95% critical level. c. Significant at the 90% critical level. αM and βM  
refer to the slope and intercept coefficients for regime M, respectively 



 

 

 

2
4
6 

TABLE A.8: MLB Franchise Model 1 (Homogeneous) Regression Coefficients 
 
Team TL CSU PU W% 𝑹�𝟐 (𝑹𝟐) Team TL CSU PU W% 𝑹�𝟐 (𝑹𝟐) 
            
BAL 2674 -531 7837 24243 0.978 LAD 2388 416 -67546 34837 0.886 
t-value (1.56) (-0.39) (0.61) (4.94)a (0.982) t-value (1.39) (0.31) (-3.92)a (4.25)a (0.906) 
            
BOS -2959 -1949 -1592 13481 0.974 MIL -2038 -3176 6475 24473 0.794 
t-value (-2.22)b (-2.22)b (-0.27) (4.59)a (0.977) t-value (-0.73) (-1.19) (0.20) (2.04)b (0.841) 
            
CHC 1008 321 -30218 29134 0.941 NYM 2779 1369 -24272 58223 0.871 
t-value (0.68) (0.36) (-3.26)a (7.52)a (0.947) t-value (1.08) (0.77) (-0.96) (7.11)a (0.895) 
            
CHW 3699 -1422 3095 29418 0.831 OAK 652 -2554 -10990 40565 0.856 
t-value (1.54) (-0.91) (0.27) (6.13)a (0.845) t-value (0.20) (-0.97) (-0.43) (5.07)a (0.888) 
            
CIN -3465 376 -19632 25238 0.923 PHI -151 -925 -36253 36026 0.908 
t-value (-2.21)b (0.42) (-1.99)b (6.36)a (0.930) t-value (-0.07) (-0.77) (-2.68)a (6.94)a (0.917) 
            
CLE 1069 2622 -8773 24129 0.893 PIT 1717 1102 -17650 28571 0.872 
t-value (0.41) (1.52) (-0.75) (4.23)a (0.904) t-value (1.16) (1.26) (-1.91)c (7.43)a (0.888) 
            
DET 5386 -1034 -701 35046 0.894 SFG -2292 -464 -32040 37221 0.921 
t-value (2.62)b (-0.78) (-0.08) (9.21)a (0.907) t-value (-1.15) (-0.30) (-1.62) (4.29)a (0.935) 
            
HOU -447 6826 -62461 33088 0.781 STL 1622 1405 -4703 21090 0.971 
t-value (-0.15) (3.62)a (-2.23)a (2.45)a (0.814) t-value (1.24) (1.77)c (-0.58) (5.57)a (0.974) 
            
a. Significant at the 99% critical level 
b. Significant at the 95% critical level 
c. Significant at the 90% critical level
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APPENDIX B 
 

NATIONAL BASKETBALL ASSOCIATION FRANCHISE ALTERNATIVE MODELS 
 
 

TABLE B.1: NBA Franchise Model B Break Point Sequential Test Results (Heterogeneous) 
 
Team SupFt(1) SupFt(2) SupFt(3) UDmax WDmax SupF(2/1) SupF(3/2) Breaks 
         
ATL 12.46** 16.45***  16.45*** 22.91*** 11.37*  1 
         
BOS 64.48*** 50.61*** 50.80*** 64.48*** 84.69*** 10.87* 11.53* 2 
         
CLE 30.19*** 25.96***  30.19*** 36.15*** 11.31**  1 
         
DET 44.79*** 53.67***  53.67*** 74.72*** 7.36  1 
         
NYK 143.17*** 133.33*** 123.09*** 143.17*** 205.19*** 13.93** 1.27 2 
         
PHI 65.38*** 53.01***  65.38*** 72.41*** 9.54*  1 
         
PHO 143.63*** 83.26***  143.63*** 143.63*** 2.40  1 
         
POR 96.56*** 70.16***  96.56*** 97.69*** 122.51***  2 
         
SEA 97.39*** 95.98***  97.39*** 133.63*** 12.92**  2 
“***” Significant at the 99% critical level 
“**” Significant at the 95% critical level 
“*” Significant at the 90% critical level
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TABLE B.2: NBA Franchise Model B Break Dates (Heterogeneous) 
 
Team T1 T2 

   
ATL 1985-86  

 [82-83, 86-87]  
   

BOS 1960-61 1973-74 
 [58-59, 61-62] [71-72, 74-75] 
   

CLE 1984-85  
 [83-84, 85-86]  
   

DET 1982-83  
 [80-81, 83-84]  
   

NYK 1976-77 1995-96 
 [75-76, 77-78] [92-93, 08-09] 
   

PHI 1995-96  
 [94-95, 96-97]  
   

PHO 1989-90  
 [88-89, 90-91]  
   

POR 1979-80 1994-95 
 [78-79, 80-81] [93-94, 95-96] 
   

SEA 9181-82 1992-93 
 [80-81, 82-83] [91-92, 93-94] 
   

*Brackets denote 90% confidence interval for break date 
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TABLE B.3: NBA Franchise Model B Breakpoint Regression Results (Heterogeneous) 
 
Team α1 β1 α2 β2 α3 β3 
ATL 276 669 181 5252   
t-value (3.93)*** (0.38) (4.01)*** (2.13)**   
BOS 85 2633 344 -1388 163 6370 
t-value (0.98) (3.25)*** (5.00)*** (-0.85) (9.60)*** (5.34)*** 
CLE 56 4237 156 8140   
t-value (0.53) (2.31)** (3.74)*** (3.57)***   
DET 301 -3965 51 9835   
t-value (5.46)*** (-2.03)** (1.14) (3.43)***   
NYK 567 -5754 328 -5168 248 -1371 
t-value (18.84)*** (-3.64)*** (5.53)*** (-2.67)** (2.58)** (-0.24) 
PHI 400 -1457 -302 24843   
t-value (17.52)*** (-1.18) (-3.69)*** (7.32)***   
PHO 312 3686 -111 18583   
t-value (10.53)*** (3.51)*** (-3.02)*** (10.58)***   
POR 536 2847 -41 7578 -108 17282 
t-value (3.45)*** (2.04)** (-0.71) (4.38)*** (-1.79)* (6.22)*** 
SEA 566 -4593 281 -8566 719 -24258 
t-value (7.53)*** (-3.42)*** (3.10)*** (-3.28)*** (7.57)*** (-5.09)*** 
*** Significant at the 99% critical level 
** Significant at the 95% critical level 
* Significant at the 90% critical level 
αM and βM refer to the slope and intercept coefficients for regime M, respectively
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TABLE B.4: NBA Franchise Model B Balance and W% Coefficients (Heterogeneous) 
 
Team TL PU CSU W% L1(W%) 𝑹�𝟐 (𝑹𝟐) 

ATL -1453 10130 -1659 2748 5039 0.901 
t-value (-0.61) (1.21) (-1.18) (1.27) (1.98)* (0.920) 
       
BOS 1458 5074 669 3773 -1886 0.963 
t-value (1.32) (1.05) (1.13) (3.44)*** (-1.67)* (0.969) 
       
CLE -1643 -18551 -5106 11742 4703 0.934 
t-value (-0.62) (-2.03)** (-2.95)*** (4.85)*** (2.07)** (0.948) 
       
DET -4976 -1798 822 6946 7044 0.948 
t-value (-1.70)* (-0.19) (0.52) (2.94)*** (2.78)*** (0.956) 
       
NYK 680 12358 -946 8370 6490 0.942 
t-value (0.47) (1.84)* (-1.21) (4.32)*** (3.64)*** (0.952) 
       
PHI 6377 2152 -3737 4532 7430 0.944 
t-value (3.43)*** (0.31) (-3.68)*** (2.87)*** (4.76)*** (0.953) 
       
PHO -1739 3918 -2179 3496 3710 0.970 
t-value (-1.22) (0.83) (-2.39)** (2.68)** (3.37)*** (0.976) 
       
POR -1997 8658 39 8169 1026 0.953 
t-value (-1.13) (1.40) (0.03) (4.97)*** (0.58) (0.965) 
       
SEA 91 -12423 3825 15403 9367 0.937 
t-value (0.06) (-2.16)** (3.53)*** (7.93)*** (5.26)*** (0.953) 
“***”, “**”, “*” indicate statistical significance at the 99%, 95% and 90% critical level, respectively. 
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TABLE B.5: NBA Franchise Break Point Sequential Test Results (Homogeneous) 
 
Team SupFt(1) SupFt(2) SupFt(3) SupFt(4) SupFt(5) UDmax WDmax SupF(2/1) SupF(3/2) SupF(4/3) SupF(5/4) Breaks 

             
ATL 15.13b 16.45a 19.20a 28.89a 28.72a 28.89a 52.59a 34.51a 132.32a 132.32a 19.60b 5 

             
BOS 58.66a 40.17a 51.61a 54.27a 44.52a 58.66a 89.02a 24.08a 19.26a 21.10a 4.46 4 

             
CLE 30.87a 28.30a 21.22a 23.22a 25.89a 30.87a 47.42a 15.15b 15.99b 142.04a 15.15c 2 

             
DET 55.30a 47.83a 72.94a 63.03a 62.38a 72.94a 114.24a 19.52a 47.91a 15.71b  10.97 2 

             
NYK 92.07a 119.66a 94.59a 94.50a 100.44a 119.66a 183.94a 44.91a 9.81 29.11a 8.47 3 

             
PHI 62.77a 41.17a 29.75a 27.83a 30.68a 62.77a 62.77a 9.03 3.42 63.16a 7.64 1 

             
PHO 103.96a 93.00a 78.87a 78.72a 82.36a 103.96a 150.83a 37.82a 37.82a 44.30a 44.30a 4 

             
POR 72.47a 80.98a 184.78a 141.85a 143.92a 184.78a 269.03a 195.59a 229.70a 392.61a 338.75a 4 

             
SEA 106.49a 108.95a 95.70a 73.30a 76.41a 108.95a 139.94a 19.40a 11.36 8.98 8.98 2 

             
a. Significant at the 99% critical level 
b. Significant at the 95% critical level 
c. Significant at the 90% critical level 
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TABLE B.6: NBA Franchise Break Dates (Homogeneous) 
 
Team T1 T2 T3 T4 T5 

ATL 1981-82 1985-86 1990-91 1996-97 2001-02 
 [80-81, 82-83] [84-85, 86-87] [89-90, 92-93] [95-96, 97-98] [00-01, 02-03]  
      

BOS 1958-59 1973-74 1994-95 2000-01  
 [55-56, 59-60] [71-72, 74-75] [93-94, 95-96] [99-00, 01-02]  
      

CLE 1976-77 1995-96    
 [75-76 ,77-78] [94-95, 96-97]    
      

DET 1977-78 1987-88    
 [76-77, 78-79] [86-87, 88-89]    
      

NYK 1968-69 1974-75 1983-84   
 [67-68, 69-70] [73-74, 75-76] [82-83, 84-85]   
      

PHI 2003-04     
 [02-03, 04-05]     
      

PHO 1975-76 1991-92 2000-01 2005-06  
 [74-75, 76-77] [90-91, 92-93] [99-00, 02-03] [03-04, 08-09]  
      

POR 1979-80 1987-88 1994-95 2002-03  
 [78-79, 80-81] [70-71, 88-89] [93-94, 95-96] [00-01, 03-04]  
      

SEA 1980-81 1986-87    
 [79-80, 81-82] [85-86, 88-89]    

*Brackets denote 90% confidence interval for break date 
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TABLE B.7: NBA Franchise Breakpoint Regression Results (Homogeneous) 
 
Team α1 β1 α2 β2 α3 β3 α4 β4 α5 β5 α6 β6 
ATL 446 3048 453 -682 -26 12832 161 6714 -975 45158 286 3553 
t-value (7.24)a (2.89 a (1.78) (-0.17) (-0.10) (2.19)b (0.84) (1.36) (-3.62)a (5.03)a (1.86)c (0.62) 
BOS 159 1007 347 -3112 199 3307 -498 39399 219 1445   
t-value (1.99)b (1.65) (8.31)a (-2.89)a (6.89)a (2.49)b (-3.02)a (4.82)a (2.40)b (0.28)   
CLE 735 4253 791 -1013 120 13033       
t-value (2.24)b (2.63)b (10.46)a (-0.62) (1.22) (3.83)a       
DET 100 450 1659 -32845 -10 16385       
t-value (1.41) (0.26) (7.75)a (-6.40)a (-0.18) (5.74)a       
NYK 468 -2839 313 4408 -761 31133 251 337     
t-value (12.08)a (-2.38)b (1.40) (0.83) (-5.92)a (7.54)a (10.32)a (0.21)     
PHI 411 -270 -132 17899         
t-value (21.15)a (-0.22) (-0.47) (1.42)         
PHO 111 3608 199 5499 7 15198 -47 15557 -42 15875   
t-value (0.91) (4.53)a (4.38)a (4.46)a (0.09) (5.50)a (-0.21) (1.93) c (-0.14) (1.29)   
POR 675 4830 -44 11681 58 9637 -185 23923 686 -9064   
t-value (8.81)a (5.79)a (-0.50) (8.33)a (0.57) (3.84)a (-2.02)b (8.24)a (5.53)a (-2.13)b   
SEA 903 -1215 -1419 28544 302 -2412       
t-value (10.91)a (-0.97) (-5.00)a (5.45)a (6.46)a (-1.04)       
a. Significant at the 99% critical level 
b. Significant at the 95% critical level 
c. Significant at the 90% critical level 
αM and βM refer to the slope and intercept coefficients for regime M, respectively 
 
 
 
 
 
 
 
 
 



 

 

 

2
5
4 

TABLE B.8: NBA Franchise Balance and W% Coefficients (Homogeneous) 
 
Team TL PU CSU W% 𝑹�𝟐 (𝑹𝟐) 

ATL -5570 -4630 36 3688 0.963 
t-value (-3.66)*** (-0.86) (0.04) (2.47)** (0.977) 
      
BOS 1199 386 -121 5675 0.981 
t-value (1.41) (0.10) (-0.29) (6.60)*** (0.985) 
      
CLE -2724 -9804 -8236 11017 0.948 
t-value (-0.96) (-1.12) (-5.12)*** (4.99)*** (0.960) 
      
DET 342 5859 -2071 8439 0.959 
t-value (0.12) (0.66) (-1.50) (4.10)*** (0.966) 
      
NYK 1579 4023 483 10300 0.971 
t-value (1.46) (0.83) (0.84) (8.75)*** (0.977) 
      
PHI 4095 10863 -4759 9764 0.937 
t-value (2.06)b (1.42) (-4.20)*** (8.28)*** (0.946) 
      
PHO -419 9100 -625 5339 0.979 
t-value (-0.28) (1.98)** (-0.81) (5.10)*** (0.986) 
      
POR -1247 3630 -1294 4094 0.983 
t-value (-1.08) (0.85) (-1.70) (3.64)*** (0.989) 
      
SEA -717 -4012 2869 12049 0.915 
t-value (-0.36) (-0.54) (2.43)** (6.94)*** (0.934) 
“***”, “**”, “*” indicate statistical significance at the 99%, 95% and 90% critical level, respectively. 
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APPENDIX C 
 

NATIONAL FOOTBALL LEAGUE FRANCHISE ALTERNATIVE MODELS 
 
 

TABLE C.1: NFL Franchise Model B Break Point Sequential Test Results (Heterogeneous) 
 
Team SupFt(1) SupFt(2) SupFt(3) UDmax WDmax SupF(2/1) SupF(3/2) Breaks 
ATL 49.84*** 35.37***  49.84*** 49.84*** 2.99  1 
BUF 2.86 6.12  6.12 8.52 5.26  0 
CHI 51.70*** 33.61*** 26.25*** 51.70*** 51.70*** 7.30 2.57 1 
CIN 40.57*** 34.41***  40.57*** 47.91*** 13.12**  2 
DEN 8.93 12.98***  12.98** 18.07*** 11.76**  1 
DET 46.64*** 35.59*** 45.44*** 46.64*** 75.75*** 13.14** 95.25*** 2 
KC 27.47*** 43.83***  43.83*** 61.02*** 4.17  1 
MIA 38.04*** 44.08***  44.08*** 61.38*** 33.13***  2 
MIN 21.98*** 29.40***  29.40*** 40.93*** 33.84***  2 
NYG 72.10*** 58.35*** 39.40*** 72.10*** 77.04*** 7.07 3.58 1 
PHI 289.47*** 159.05*** 112.36*** 289.47*** 289.47*** 22.04*** 6.48 2 
PIT 28.63*** 36.17*** 22.54*** 36.17*** 47.75*** 22.28*** 12.35* 3 
SD 7.97 7.02  7.97 9.77 5.67  0 
SF 39.08*** 20.88*** 14.84*** 39.08*** 39.08*** 3.13 10.66 1 
WAS 47.77*** 106.41*** 101.79*** 106.41*** 169.69*** 69.80*** 11.78* 2 
“***”, “**”, “*” Indicate significance at the 99%, 95% and 90% critical level, respectively.
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TABLE C.2: NFL Franchise Model B Break Dates (Heterogeneous) 
 
Team T1 T2 T3  Team T1 T2 T3 

         
ATL 1989    MIN 1981 1996  

 [88, 90]     [80, 82] [95, 97]  
         

CHI 1948    NYG 1956   
 [47, 50]     [55, 58]   
         

CIN 1979 1991   PHI 1958 1981  
 [78, 80] [89, 92]    [57, 59] [80, 86]  
         

DEN 1982    PIT 1948 1969 1986 
 [81, 84]     [47, 54] [68, 70] [81, 88] 
         

DET 1950 1985   SF 1961   
 [48, 52] [82, 87]    [60, 63]   
         

KC 1988    WAS 1962 1995  
 [87, 90]     [61, 63] [94, 96]  
         

MIA 1983 1995       
 [82, 84] [94, 96]       
         

*Brackets denote 90% confidence interval for break date 
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TABLE C.3: NFL Franchise Model B Breakpoint Regression Results (Heterogeneous) 
 
Team α1 β1 α2 β2 α3 β3 α4 β4 
ATL -1245 47746 1025 8002     
t-value (-5.43)a (6.20)a (4.17)a (0.79)     
CHI 1348 9449 385 27134     
t-value (6.36)a (2.60)b (12.88)a (10.35)a     
CIN -1988 57462 900 31429 1098 17764   
t-value (-7.30)a (17.08)a (4.05)a (6.09)a (9.27)a (4.12)a   
DEN 2008 38260 276 54612     
t-value (6.23)a (8.80)a (3.76)a (9.27)a     
DET 735 10232 755 23201 659 14554   
t-value (1.78)c (1.38) (4.75)a (3.26)a (2.99)a (0.90)   
KC -624 56467 389 58921     
t-value (-2.46)b (7.80)a (1.71) (5.59)a     
MIA -1479 37315 422 23183 -430 57292   
t-value (-5.24)a (7.04)a (1.63) (3.60)a (-1.89)c (7.47)a   
MIN 114 30080 -83 45217 -9 51087   
t-value (0.98) (13.10)a (-0.62) (9.96)a (-0.05) (6.61)a   
NYG 113 30098 413 46612     
t-value (0.56) (5.02)a (6.98)a (8.67)a     
PHI 245 20116 612 38720 371 40557   
t-value (1.68) (6.88)a (3.97)a (7.55)a (3.74)a (5.85)a   
PIT 1584 3853 523 12574 404 26510 605 11705 
t-value (7.61)a (1.35) (4.05)a (3.26)a (2.27)b (3.21)a (5.58)a (1.58) 
SF 2492 18553 713 19297     
t-value (6.30)a (5.03)a (13.77)a (4.98)a     
WAS 66 27867 180 45667 1938 -46730   
t-value (0.50) (7.33)a (2.07)b (11.39)a (7.29)a (-2.68)b   
“a”, “b”, “c” Indicate significance at the 99%, 95% and 90% critical level, respectively/ 
αM and βM refer to the slope and intercept coefficients for regime M, respectively
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TABLE C.4: NFL Franchise Model B Balance and W% Coefficients (Heterogeneous) 
 
Team TL PU CSU W% L1(W%) 𝑹�𝟐 (𝑹𝟐)  Team TL PU CSU W% L1(W%) 𝑹�𝟐 (𝑹𝟐) 
               
ATL 7494 -15450 8327 9455 7454 0.697  MIN 3768 18140 3652 4491 6339 0.937 
t-value (2.31)b (-0.58) (1.53) (1.69) (1.29) (0.755)  t-value (3.04)a (2.07)b (1.80)c (2.07)b (2.86)a (0.950) 
               
CHI 2026 697 -810 9674 2397 0.923  NYG -381 -9898 -5786 8261 1790 0.896 
t-value (1.57) (0.08) (-0.44) (4.38)a (1.14) (0.931)  t-value (-0.16) (-0.63) (-1.79)c (2.25)b (0.50) (0.907) 
               
CIN 941 4458 -3528 7755 3387 0.864  PHI -826 -16685 -2912 -2736 12314 0.955 
t-value (0.70) (0.36) (-1.62) (3.16)a (1.32) (0.899)  t-value (-0.43) (-1.62) (-1.31) (-0.97) (4.36)a (0.961) 
               
DEN 4799 -33064 2388 11212 4262 0.900  PIT 2283 11241 -2276 1277 4299 0.959 
t-value (2.58)b (-2.50)b (0.91) (3.13)a (1.36) (0.920)  t-value (1.53) (1.25) (-1.23) (0.48) (1.70) (0.966) 
               
DET 853 -32680 -5136 14406 9638 0.848  SF 2087 7860 -879 7708 5033 0.862 
t-value (0.27) (-1.79)c (-1.34) (2.95)a (1.95)c (0.868)  t-value (1.12) (0.52) (-0.28) (2.42)b (1.61) (0.881) 
               
KC -1891 14505 -9238 8288 7397 0.836  WAS -3835 3351 -5362 3386 4033 0.960 
t-value (-0.68) (0.55) (-1.94)c (1.37) (1.26) (0.869)  t-value (-2.14)b (0.32) (-2.37)a (1.07) (1.28) (0.966) 
               
MIA 9026 63819 -1910 18935 6793 0.863         
t-value (4.65)a (4.04)a (-0.59) (5.55)a (2.13)b (0.898)         
               
a. Significant at the 99% critical level 
b. Significant at the 95% critical level 
c. Significant at the 90% critical level 
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TABLE C.5: NFL Franchise Break Point Sequential Test Results (Homogeneous) 
 
Team SupFt(1) SupFt(2) SupFt(3) SupFt(4) SupFt(5) UDmax WDmax SupF(2/1) SupF(3/2) SupF(4/3) SupF(5/4) Breaks 
             
ATL 66.32a 46.79a 38.95a 33.95a 41.14a 66.32a 75.34a 12.98c 14.03c 14.03c 5.61 1 
             
BUF 10.09 7.19 10.99 12.36 7.99 12.36c 20.28a 11.82 35.40a 5.69 5.69 0 
             
CHI 85.84a 54.22a 45.09a 38.52a 35.21a 85.84a 85.84a 9.52 8.70 13.01 13.01 1 
             
CIN 37.74a 53.46a 43.34a 37.45a 32.44a 53.46a 67.09a 21.50a 46.78a 46.78a 46.78a 2 
             
DEN 94.93a 60.06a 61.24a 49.83a 43.13a 94.93a 94.93a 8.38 6.41 3838.7a 3838.7a 1 
             
DET 50.07a 40.29a 55.72a 58.61a 58.25a 58.61a 106.68a 11.74c 49.44a 49.44a 27.96a 1 
             
KC 40.14a 41.31a 32.52a 38.26a 37.83a 41.31a 69.28a 46.73a 63.25a 33.77a 183.29a 3 
             
MIA 24.71a 34.97a 28.63a 28.77a 25.24a 34.97a 47.20a 37.34a 6.16 23.27a 3.08 3 
             
MIN 15.31b 28.67a 41.35a 51.99a 57.82a 57.82a 105.90a 36.90a 41.68a 41.68a 27.00a 5 
             
NYG 73.54a 84.17a 52.23a 56.80a 47.98a 84.17a 105.63a 28.76a 6.72 12.85 11.85 2 
             
PHI 285.39a 193.49a 141.98a 115.13a 98.68a 285.39a 285.39a 18.26a 18.26b 4.98 4.98 2 
             
PIT 25.92a 40.11a 39.64a 39.85a 34.59a 40.11a 65.37a 17.29a 22.80a 28.56a 4.33 2 
             
SD 23.47a 16.64a 20.08a 19.47a 16.96a 23.47a 31.93a 7.41 13.74c 7.34 4.34 1 
             
SF 51.10a 50.41a 53.78a 55.16a 47.17a 55.16a 90.48a 20.32a 8.34 9.53 15.04c 2 
             
WAS 51.67a 152.51a 204.61a 278.70a 250.63a 278.70a 459.02a 133.37a 33.21a 20.80a 20.80a 4 
a. Significant at the 99% critical level 
b. Significant at the 95% critical level 
c. Significant at the 90% critical level 
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TABLE C.6: NFL Franchise Break Dates (Homogeneous) 
 
Team T1 T2 T3 T4 T5  Team T1 T2 T3 T4 T5 

             
ATL 1989      MIN 1964 1981 1986 1996 2000 

 [88, 90]       [63, 65] [80, 82] [85, 89] [95, 98] [99, 01] 
             

CHI 1945      NYG 1946 1956    
 [42, 46]       [45, 47] [55, 57]    
             

CIN 1979 1991     PHI 1960 1981    
 [78, 80] [90, 92]      [59, 61] [80, 84]    
             

DEN 1975      PIT 1954 1969    
 [74, 76]       [53, 55] [68, 70]    
             

DET 1951      SD 1973     
 [47, 52]       [72, 74]     
             

KC 1981 1992 2005    SF 1956 1969    
 [80, 82] [91, 93] [03, 06]     [55, 57] [68, 70]    
             

MIA 1983 1989 1995    WAS 1949 1962 1979 1996  
 [82, 84] [88, 90] [94, 96]     [48, 50] [61, 63] [78, 85] [95, 97]  
             

*Brackets denote 90% confidence interval for break date 
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TABLE C.7: NFL Franchise Breakpoint Regression Results (Homogeneous) 
 
Team α1 β1 α2 β2 α3 β3 α4 β4 α5 β5 α6 β6 
ATL -1245 50371 1091 8730         
t-value (-5.82)a (7.04)a (4.57)a (0.87)         
CHI 676 15070 384 29191         
t-value (2.54)b (4.68)a (14.48)a (13.52)a         
CIN -1919 57851 924 31893 1130 17032       
t-value (-6.82)a (17.05)a (4.12)a (6.12)a (9.62)a (3.93)a       
DEN -305 46621 167 61718         
t-value (-0.56) (14.61)a (4.10)a (17.30)a         
DET 598 15023 275 41217         
t-value (1.56) (2.18)b (3.68)a (6.76)a         
KC -412 56030 3534 -12607 -246 78090 --963 109381     
t-value (-0.89) (8.31)a (7.28)a (-1.17) (-0.67) (5.75)\a (-0.45) (1.31)     
MIA -1548 42760 -1226 56659 1438 3444 -586 65925     
t-value (-5.34)a (7.56)a (-1.53) (3.63)a (1.99)b (0.21) (-2.81)a (9.21)a     
MIN 415 29508 -187 40584 1547 11300 57 45857 872 21181 -287 68974 
t-value (0.59) (12.24)a (-2.26)b (19.88)a (3.07)a (0.90) (0.39) (9.54)a (1.42) (0.89) (-1.53) (8.40)a 
NYG 1949 23051 1101 10642 409 49055       
t-value (5.66)a (4.93)a (2.10)b (1.13) (8.91)a (12.82)a       
PHI 550 19724 276 54328 337 45599       
t-value (4.30)a (7.04)a (1.59) (9.23)a (3.38)a (6.63)a       
PIT 1049 9576 1125 -3326 380 29819       
t-value (8.07)a (3.81)a (5.06)a (-0.50) (8.03)a (7.36)a       
SD 1452 44667 691 36154         
t-value (0.92) (8.26)a (11.97)a (9.33)a         
SF 2322 18684 -2280 66132 640 22822       
t-value (2.96)a (5.13)a (-7.39)a (14.34)a (11.92)a (5.57)a       
WAS 767 26154 947 9420 389 39777 123 48198 1336 -4432   
t-value (3.81)a (9.43)a (5.24)a (2.43)b (2.83)a (9.20)a (1.02) (6.72)a (7.43)a (-0.38)   
a. Significant at the 99% critical level 
b. Significant at the 95% critical level 
c. Significant at the 90% critical level 
αM and βM refer to the slope and intercept coefficients for regime M, respectively 
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TABLE C.8: NFL Franchise Balance and W% Coefficients (Homogeneous) 
 
Team TL PU CSU W% 𝑹�𝟐 (𝑹𝟐) Team TL PU CSU W% 𝑹�𝟐 (𝑹𝟐) 
            
ATL 8275 -16767 7202 9505 0.693 MIN 3366 8211 25 6647 0.978 
t-value (2.64)** (-0.64) (1.38) (1.74) (0.743) t-value (4.01)*** (1.37) (0.02) (4.63)*** (0.985) 
            
CHI 1636 -4752 425 9096 0.935 NYG -198 -15351 -5566 6315 0.938 
t-value (1.38) (-0.57) (0.26) (4.66)*** (0.941) t-value (-0.11) (-1.25) (-2.25)** (2.16)** (0.945) 
            
CIN 1100 9938 -3166 7810 0.860 PHI -2074 -13182 -6577 8210 0.955 
t-value (0.81) (0.83) (-1.45) (3.14)*** (0.893) t-value (-1.10) (-1.28) (-3.00)*** (3.30)*** (0.960) 
            
DEN 4239 -2027 -758 6191 0.944 PIT 1265 4641 -4189 4852 0.956 
t-value (3.35)*** (-0.18) (-0.41) (2.23)** (0.954) t-value (0.88) (0.51) (-2.24)** (1.89)* (0.961) 
            
DET 3662 -25454 -5232 14327 0.823 SD -893 -22352 -3290 13895 0.847 
t-value (1.23) (-1.31) (-1.27) (2.84)*** (0.839) t-value (-0.44) (-1.39) (-1.05) (3.89)*** (0.874) 
            
KC 19 50978 -15610 10047 0.884 SF 1954 26203 -937 9257 0.903 
t-value (0.01) (2.24)** (-3.34)*** (1.88)* (0.917) t-value (1.13) (1.93)* (-0.36) (3.71)*** (0.918) 
            
MIA 9588 72620 -2808 16792 0.869 WAS -2294 -13878 -2682 5200 0.986 
t-value (4.78)*** (5.22)*** (-0.86) (4.49)*** (0.906) t-value (-1.96)* (-2.13)** (-1.80)* (2.56)** (0.988) 
            
*** Significant at the 99% critical level 
** Significant at the 95% critical level 
** Significant at the 90% critical level 
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APPENDIX D 

 
NATIONAL HOCKEY LEAGUE FRANCHISE ALTERNATIVE MODELS 

 
 
TABLE D.1: NHL Franchise Model B Break Point Sequential Test Results (Heterogeneous) 
 
Team SupFt(1) SupFt(2) SupFt(3) UDmax WDmax SupF(2/1) SupF(3/2) Breaks 
         
BOS 61.21*** 49.54*** 55.73*** 61.21*** 92.91*** 17.00*** 7.39 2 
         
CHI 18.16*** 26.16*** 20.82*** 26.16*** 34.70*** 14.54** 15.50** 2 
         
DET 139.43*** 64.50*** 41.79*** 139.43*** 139.43*** 6.52 6.52 1 
         
LAK 9.79* 19.99***  19.99*** 27.83*** 17.45***  2 
         
NYR 75.19*** 63.49*** 49.74*** 75.19*** 83.82*** 50.90*** 5.18 2 
         
PHI 7.17 35.77***  35.77*** 49.81*** 156.23***  0 
         
STL 27.41*** 19.41***  27.41*** 27.41*** 9.25*  1 
         
“***” Significant at the 99% critical level 
“**” Significant at the 95% critical level 
“*” Significant at the 90% critical level
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TABLE D.2: NHL Franchise Model B Break Dates (Heterogeneous) 
 
Team T1 T2 

   
BOS 1975-1976 1998-1999 

 [74-75, 76-77] [95-96, 01-02] 
   

CHI 1967-1968 1981-1982 
 [66-67, 68-69] [80-81, 82-83] 
   

DET 1982-1983  
 [81-82, 83-84]  
   

LAK 1986-1987 1997-1998 
 [85-86, 87-88] [96-97, 01-02] 
   

NYR 1976-1977 1991-1992 
 [75-76, 77-78] [90-91, 94-95] 
   

STL 1985-86  
 [84-85, 89-90]  
   

*Brackets denote 90% confidence interval for break date 
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TABLE D.3: NHL Franchise Model B Breakpoint Regression Results (Heterogeneous) 
 
Team α1 β1 α2 β2 α3 β3 
BOS 148 7957 223 2238 103 7467 
t-value (5.60)*** (11.00)*** (7.51)*** (1.45) (1.35) (1.79)* 
CHI 187 566 -350 10628 26 4482 
t-value (2.06)** (0.47) (-3.45)*** (3.52)*** (0.79) (1.88)* 
DET 143 6726 -28 15966   
t-value (6.35)*** (6.06)*** (-1.01) (14.03)***   
LAK 94 5788 -265 17833 170 6605 
t-value (2.44)** (5.45)*** (-3.20)*** (6.14)*** (1.84)* (1.58) 
NYR 295 8545 -111 18531 21 14898 
t-value (17.25)*** (13.33)*** (-3.04)*** (12.57)*** (0.88) (9.77)*** 
STL -353 8094 141 1487   
t-value (-4.98)*** (4.10)*** (2.86)*** (0.51)   
“***”, “**”, “*” Indicate significance at the 99%, 95% and 90% critical level, respectively/ 
αM and βM refer to the slope and intercept coefficients for regime M, respectively



 

 

 

2
6
6 

TABLE D.4: NHL Franchise Model B Balance and W% Coefficients (Heterogeneous) 
 
Team TL PU CSU W% L1(W%) 𝑹�𝟐 (𝑹𝟐) 
       
BOS 320 9438 -644 2377 2693 0.842 
t-value (0.70) (1.98)** (-1.34) (1.92)* (2.18)** (0.870) 
       
CHI 2534 26078 -1210 11814 6347 0.865 
t-value (3.47)*** (3.34)*** (-1.57) (5.58)*** (2.87)*** (0.888) 
       
DET 267 -5121 -368 5633 2954 0.953 
t-value (0.58) (-1.01) (-0.80) (4.17)*** (2.11)** (0.959) 
       
LAK -420 -526 81 5164 3659 0.923 
t-value (-0.75) (-0.08) (0.12) (3.00)*** (2.16)** (0.942) 
       
NYR 167 1657 -366 3406 892 0.953 
t-value (0.55) (0.51) (-1.16) (3.60)*** (0.88) (0.961) 
       
STL 1112 9454 1831 9273 8268 0.688 
t-value (1.20) (0.89) (1.67) (3.18)*** (2.93)*** (0.749) 
       
*** Significant at the 99% critical level 
** Significant at the 95% critical level 
** Significant at the 90% critical level 
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TABLE D.5: NHL Franchise Break Point Sequential Test Results (Homogeneous) 
 
Team SupFt(1) SupFt(2) SupFt(3) SupFt(4) SupFt(5) UDmax WDmax SupF(2/1) SupF(3/2) SupF(4/3) SupF(5/4) Breaks 
             
BOS 53.99a 36.71a 27.98a 27.41a 25.84a 53.99a 53.99a 22.74a 9.06 7.38 7.38 2 
             
CHI 12.52b 17.99a 24.67a 28.57a 29.67a 29.67a 54.34a 10.99c 17.36b 63.00a 39.29a 3 
             
DET 87.78a 56.57a 65.21a 69.92a 69.99a 87.78a 128.17a 74.34a 74.34a 11.79 13.17 2 
             
LAK 9.81 24.22a 30.46a 34.53a 36.81a 36.81a 67.42a 41.24a 124.09a 124.09a 124.09a 0 
             
NYR 101.43a 87.35a 73.25a 62.13a 52.95a 101.43a 109.63a 57.64a 15.06b 16.22b 17.43b 3 
             
PHI 33.76a 128.13a 91.90a 74.79a 81.11a 128.13a 160.81a 220.58a 5.90 76.95a 5.76 3 
             
STL 58.09a 76.20a 87.51a 52.74a 50.42a 87.51a 127.42a 15.34b 27.26a 15.61b 17.52b 2 
             
a. Significant at the 99% critical level 
b. Significant at the 95% critical level 
c. Significant at the 90% critical level 
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TABLE D.6: NHL Franchise Break Dates (Homogeneous) 
 
Team T1 T2 T3 

    
BOS 1975-76 1999-00  

 [74-75, 76-77] [97-98, 02-03]  
    

CHI 1963-64 1976-77 1982-83 
 [59-60, 64-65] [75-76, 77-78] [81-82, 83-84] 
    

DET 1982-83 1987-88  
 [81-82, 83-84] [86-87, 88-89]  
    

NYR 1975-76 1990-91 1997-98 
 [74-75, 76-77] [89-90, 91-92] [96-97, 98-99] 
     

PHI 1970-71 1974-75 1995-96 
 [69-70, 71-72] [73-74, 75-76] [94-95, 96-97] 
    

STL 1975-76 1989-90  
 [74-75, 76-77] [85-86, 90-91]  
    

*Brackets denote 90% confidence interval for break date 
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TABLE D.7: NHL Franchise Breakpoint Regression Results (Homogeneous) 
 
Team α1 β1 α2 β2 α3 β3 α4 β4 
BOS 156 8322 236 2506 216 1962   
t-value (a6.05)a (12.05)a (8.40)a (1.71) (2.48)b (0.41)   
CHI 213 1973 -104 7743 685 -16394 -8 8124 
t-value (1.80)c (1.68) (-1.09) (3.20)a (2.26)b (-1.88)c (-0.25) (3.81)a 
DET 110 8711 502 -959 -27 18252   
t-value (5.56)a (8.92)a (1.82)c (-0.10) (-0.99) (11.57)a   
NYR 300 8897 106 18806 306 2790 -44 18852 
t-value (16.85)a (16.67)a (-2.94)a (14.02)a (3.01)a (0.62) (-1.00) (7.96)a 
PHI 1757 7783 899 10542 -1 17380 -2 19681 
t-value (11.05)a (15.12)a (5.83)a (11.04)a (-0.06) (30.12)a (-0.12) (21.39)a 
STL 421 5197 -730 93 4815    
t-value (1.81)c (2.89)a (1.92)c (-0.26) (1.59) (1.58)   
a. Significant at the 99% critical level 
b. Significant at the 95% critical level 
c. Significant at the 90% critical level 
αM and βM refer to the slope and intercept coefficients for regime M, respectively 
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TABLE D.8: NHL Franchise Balance and W% Coefficients (Homogeneous) 
 
Team TL PU CSU W% 𝑹�𝟐 (𝑹𝟐) 
      
BOS -22 8678 -493 4115 0.845 
t-value (-0.05) (1.85)* (-1.06) (4.06)*** (0.869) 
      
CHI 2111 22530 -1476 15176 0.859 
t-value (2.87)*** (2.87)*** (-1.93)* (7.38)*** (0.887) 
      
DET -166 -2642 -318 5238 0.954 
t-value (-0.35) (-0.52) (-0.69) (3.87)*** (0.962) 
      
NYR -2 1950 -629 3829 0.954 
t-value (-0.01) (0.62) (-1.97)** (4.06)*** (0.963) 
      
PHI 49 -4257 -240 311 0.985 
t-value (0.29) (-1.82)* (-0.83) (0.49) (0.989) 
      
STL 1004 25782 3189 11852 0.765 
t-value (1.14) (2.36)** (2.93)*** (4.56)*** (0.816) 
      
*** Significant at the 99% critical level 
** Significant at the 95% critical level 
** Significant at the 90% critical level 
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APPENDIX E 
 

CALCULATION OF VARIABLES 
 
 

• LAPG: League Average Attendance Per Game is calculated by the following 
formula: 

 

𝐿𝐴𝑃𝐺 =  
1
𝑇𝑁

�𝐴𝑡𝑡𝑡

𝑇

𝑡=1

. 

 
In this representation, T indicates the total number of teams and N the 

number of games for the given season.  Because there are two teams participating 
in each game, this total number of games must be divided by two for the total 
number of home games played for the league in the given year.  𝐴𝑡𝑡𝑡 represents 
the total attendance for team t for the given season, and aggregate league 
attendance is simply the sum of all these team totals. 

 
 

• TAPG: Team Average Attendance Per Game is calculated similarly to LAPG, but 
must account for possible variation in the number of home games for each team 
(which differs in some seasons).  Therefore, TAPG is calculated from the using, 

 

𝑇𝐴𝑃𝐺 =  
1
𝐻
�𝐴𝑡𝑡𝑖

𝐻

𝑖=1

. 

 
With i indexing each home game for the given team in a given season and 

H representing the total number of home games for the team under consideration. 
 
 

• Win Percent: Win percent is calculated in the usual way, dividing the total 
number of wins by the total number of games played for each team in each 
season.  However, it is important to note the treatment of ties.  In any league, ties 
are considered half a win for each team participating in the contest that ended in 
such a way.  Therefore, Win Percent comes from, 
 

𝑊𝑃 =
𝑊 + 0.5(𝐷)

𝑁
 

 
In this representation, W and D are the number of wins and ties (draws) by 

a given team in a given season.  The length of the season (total number of games) 
is in the denominator as N. 
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• Game Uncertainty: Tail Likelihood is defined as in Lee (2004), and consists of 
the sum of the likelihood of the winning percentages of the top and bottom 20% 
of teams that occurred in the idealized normal distribution from: 

 
𝑇𝐿 =  �𝑓(𝑍𝑟),

𝑟

 

  
where 𝑟 indexes the rank number of top and bottom teams as a percentage of  
teams in the league (i.e. 20% of a 10 team league would result in using the First 
and Second and Ninth and Tenth ranked teams’ winning percentages in the league 
as each ‘tail’), and the function, 𝑓(∙) is the standard normal probability density 
function.  𝑍𝑟 represents the z-score of each team’s winning percentage compared 
to a perfectly balanced league, or 

 

𝑍𝑟 = (𝑊𝑃𝑟−.500)
𝜎

. 
 

And 𝜎 represents the idealized standard deviation under a perfectly 
balanced league from the binomial-based calculation,  

𝜎 =
0.5
√𝑁

 

 
With N representing the season length for the given season.  The index, 𝑟, 

is not always an integer, as 20% of the total number of teams in a league may not 
be an integer.  For example, if there are 14 teams in a given league, the top and 
bottom tails would be represented by ranks 1, 2, and 2.8 and 14, 13 and 12.2, 
respectively.  Therefore, for ranks such as 2.8 and 12.2, 𝑊𝑃𝑖 is calculated using a 
weighted average of the win percent of teams ranked 2nd and 3rd, and 12th and 13th, 
respectively.  TL and all other balance measures are calculated separately for the 
AL and NL in Major League Baseball, and use the entire league for NBA, NFL 
and NHL, respectively. 

 
 

• Playoff Uncertainty: WinDiff is defined differently depending on the league 
playoff structure and season in question.  For a league without wild cards in 
which only the winner of each division is awarded a playoff berth, PU is 
calculated by, 

 
1
𝑛
�𝑊𝑃𝑖1 −𝑊𝑃𝑖2

𝑛

𝑖=1

,  

 
Where 𝑊𝑃1 𝑎𝑛𝑑 𝑊𝑃2 represent the respective 1st and 2nd ranked teams in 

each division, 𝑖 indexes each division, and 𝑛 is the number of divisions in the 
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given league.  With wild  cards, the above equation is adjusted to include an 
additional difference in win percent of  the first team out and the last team in 
the playoffs.  Additionally, if multiple wild cards  are required to come from 
each division, then additional win percent differences are  included in the 
calculation.  For a full description of the changes in playoff structures  across 
leagues and time, see Appendices 2 through 5. 

 
• Consecutive Season Uncertainty: Corr3 is calculated by correlating the current 

year’s team win percents with the average win percent for each team in the 3 years 
prior to the current season.  In other words, it is the correlation of two paired 
vectors containing the 𝑊𝑃𝑡𝑖and 𝑊3𝑡𝑖described by: 

 

𝑊𝑃𝑖,𝑡 = 𝑊% 𝑖𝑛 𝑌𝑒𝑎𝑟 𝑖 𝑓𝑜𝑟 𝑇𝑒𝑎𝑚 𝑡, 𝑎𝑛𝑑 𝜇(𝑊3𝑖,𝑡) =  
1
𝑛
� 𝑊𝑃𝑖,𝑠

𝑡−1

𝑠=𝑡−3

.  

 
Here, 𝑡 indexes the current year and 𝑛 = 3.  The subscript 𝑖 indexes the team for 
which each calculation is made.  For each year under analysis, Corr3 is described 
by, 

 
𝐶𝑜𝑟𝑟𝑖 = 𝐶𝑜𝑟(𝑊𝑃,𝑊3) 

 

𝐶𝑜𝑟(𝑊𝑃,𝑊3) =  
𝑛 ∑𝑊𝑃𝑖,𝑡𝜇(𝑊3𝑖,𝑡) − ∑𝑊𝑃𝑖,𝑡 ∑ 𝜇(𝑊3𝑖,𝑡)

�𝑛∑𝑊𝑃𝑖,𝑡2 − �∑𝑊𝑃𝑖,𝑡�
2

 �𝑛∑𝜇(𝑊3𝑖,𝑡2 ) − (∑𝜇(𝑊3𝑖,𝑡))2
, 

 
Where here n is the number of teams in year t for the league. 

 
• Competitive Balance Ratio: CBR (2002) is taken directly from Humphreys 

(2002) description as a ratio of within and across season balance for a given 
league.  Beginning with the across season standard deviation, 
 

𝜎𝑇,𝑖 = �∑ (𝑊𝑃𝑖,𝑡 − 𝑊𝑃�����𝑖,𝑇)2𝑡

𝑇
,  

 
where the second term in the numerator is each team’s average won-loss 
percentage during T seasons (from 1 to T).  As Humphreys describes, there will 
be a vector of 𝜎𝑇,𝑖, one for each team in the league, and the smaller the value of 
𝜎𝑇,𝑖, the less the variation in team i’s winning percentage during the seasons under 
analysis. 

 
Following with the within-season variation in win-loss percentage, 

Humphreys defines a simple standard deviation such that, 
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𝜎𝑁,𝑡 = �∑ (𝑊𝑃𝑖,𝑡 − 0.500)2𝑡

𝑁
. 

 
Here, 𝜎𝑁,𝑡 is a vector with one value for each season.  Each of these 

vectors is then averaged across all teams and all seasons, respectively: 
 

𝜎�𝑇 =
∑ 𝜎𝑇,𝑖𝑖

𝑁
, 𝜎�𝑁 =

∑ 𝜎𝑁,𝑡𝑖

𝑇
. 

 
 Finally, the competitive balance ratio is constructed using these averaged values, 
 

𝐶𝐵𝑅 =
𝜎�𝑇
𝜎�𝑁

. 
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APPENDIX F 
 

NATIONAL BASKETBALL ASSOCIATION (NBA) PLAYOFF UNCERTAINTY CALCULATION 
 
 
Season Calculation Details 
2006/07 to 2009/10: Average Difference between Top 2 in each Division (3 Divs) for East and West 

 
Average Difference between 8 and 9 seed (Last Playoff Spot) for East and West 

2004/05 to 2005/06: Average Difference between Top 2 in each Division (3 Divs) for East and West 

 
Average Difference between 8 and 9 seed (Last Playoff Spot) for East and West 

1983/84 to 2003/04: Average Difference between Top 2 in each Division (2 Divs) for East and West 

 
Average Difference between 8 and 9 seed (Last Playoff Spot) for East and West 

1976/77 to 1982/83: Average Difference between Top 2 in each Division (2 Divs) for East and West 

 
Average Difference between 6 and 7 seed (Last Playoff Spot) for East and West 

1974/75 to 1975/76: Average Difference between Top 2 in each Division (2 Divs) for East and West 

 
Average Difference between Last 2 in contention for Playoff Spot for East and West 

1970/71 to 1973/74: Average Difference between Top 2 in each Division (2 Divs) for East and West 

 
Average Difference between 2nd and 3rd in each Division (2 Teams from each Div) for East and West 

1966/67 to 1969/70: Average Difference between 1st and 2nd place (Conference Reg. Season Champ) for East and West 

 
Average Difference between 4 and 5 seed (Last Playoff Spot) for East and West 

1955/56 to 1965/66: Average Difference between 1st and 2nd place (Conference Reg. Season Champ) for East and West 

 
Average Difference between 3 and 4 seed (Last Playoff Spot) for East and West 
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APPENDIX G 
 

NATIONAL FOOTBALL LEAGUE (NFL) PLAYOFF UNCERTAINTY CALCULATION 
 
 
Season Calculation Details 

2002 to 2009: 
Average of difference between Each 8 Division Winners and Runner-Up and difference between Last WC Berth (6th) 
and Runner-Up (7th) for NFC and AFC 

1990 to 2001: 
Average of difference between Each 6 Division Winners and Runner-Up and difference between Last WC Berth (6th) 
and Runner-Up (7th) for NFC and AFC 

1983 to 1989: 
Average of difference between Each 6 Division Winners and Runner-Up and difference between Last WC Berth (5th) 
and Runner-Up (6th) for NFC and AFC 

1982: 
Average of difference between Each 6 Division Winners and Runner-Up and difference between Last WC Berth (8th) 
and Runner-Up (9th) for NFC and AFC 

1978 to 1981: 
Average of difference between Each 6 Division Winners and Runner-Up and difference between Last WC Berth (5th) 
and Runner-Up (6th) for NFC and AFC 

1970 to 1977: 
Average of difference between Each 6 Division Winners and Runner-Up and difference of WC Team (4th) and WC 
Runner-Up (5th) for NFC and AFC 

1967 to 1969: Average of difference between Each 4 Division Winners (Capital, Century, Coastal, Central) and Runner-Up in NFL 
1953 to 1966: Average of difference between Each 2 Division Winners (East, West) and Runner-Up in NFL 
1950 to 1952 Average of difference between Each 2 Division Winners (American, National) and Runner-Up in NFL 
1933 to 1949 Average of difference between Each 2 Division Winners (East, West) and Runner-Up in NFL 
1922 to 1932 Difference between NFL Regular Season Champion and Runner-Up 
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APPENDIX H 
 

NATIONAL HOCKEY LEAGUE (NHL) PLAYOFF UNCERTAINTY CALCULATION 
 
 
Season Calculation Details 

1998/99 to 2009/10: 
Average of difference between Each 6 Division Winners and Runner-Up and difference between Last Playoff 
Slot (8th) and Runner-Up (9th) for East and West Conferences 

1993/94 to 1997/98: 
Average of difference between Each 4 Division Winners and Runner-Up and difference between Last Playoff 
Slot (8th) and Runner-Up (9th) for East and West Conferences 

1981/82 to 1992/93: 

Average of difference between Each 4 Division Winners and Runner-Up and difference between Last 
Divisional Playoff Slot (4th in Div.) and Runner-Up (5th in Div.) in Each Division for Clarence-Campbell and 
Prince of Wales Conferences 

1979/80 to 1980/81 
Average of difference between Each 4 Division Winners and Runner-Up and difference between Last Playoff 
Slot (8th) and Runner-Up (9th) for Clarence-Campbell and Prince of Wales Conferences 

1977/78 to 1978/79: 
Average of difference between Each 4 Division Winners and Runner-Up and difference between Last Playoff 
Slot (6th) and Runner-Up (7th) for Clarence-Campbell and Prince of Wales Conferences 

1974/75 to 1976/77: 

Average of difference between Each 4 Division Winners and Runner-Up and difference between Last 
Divisional Playoff Slot (3rd in Div.) and Runner-Up (4th in Div.) in Each Division for Clarence-Campbell and 
Prince of Wales Conferences 

1967/68 to 1973/74: 

Average of difference between Each 4 Division Winners and Runner-Up and difference between Last 
Divisional Playoff Slot (4th in Div.) and Runner-Up (5th in Div.) in Each Division for East and West 
Conferences 

1942/43 to 1966/67: 
Average of difference between Regular Season Champion and Runner-Up and difference between Last Playoff 
Slot (4th) and Runner-Up (5th)  

1938/39 to 1941/42 
Average of difference between Regular Season Champion and Runner-Up and difference between Last Playoff 
Slot (6th) and Runner-Up (7th) 

1926/27 to 1937/38 
Average of difference between Each 2 Division Winners and Runner-Up and difference between Last 
Divisional Playoff Slot (3rd in Div.) and Runner-Up (4th in Div.) in American and Canadian Divisions 
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APPENDIX I 
 

MAJOR LEAGUE BASEBALL (MLB) PLAYOFF UNCERTAINTY CALCULATION 
 
 
Season Calculation Details 
1995 to 2009: Average Difference between 1st and 2nd place for East, Central and West Divisions in NL & 

 
Average Difference between 4th and 5th seed (Last Playoff Spot) in the NL 

 
Average Difference between 1st and 2nd place for East, Central and West Divisions in AL & 

 
Average Difference between 4th and 5th seed (Last Playoff Spot) in the AL 

1994 (no playoffs): Average Difference between 1st and 2nd place for East, Central and West Divisions in NL & 

 
Average Difference between 4th and 5th seed (Last Playoff Spot) in the NL (at strike) 

 
Average Difference between 1st and 2nd place for East, Central and West Divisions in AL & 

 
Average Difference between 4th and 5th seed (Last Playoff Spot) in the AL (at strike) 

1981 to 1993: Average Difference between 1st and 2nd place for East and West Divisions in NL 

 
Average Difference between 1st and 2nd place for East and West Divisions in AL 

1980: 
Average Difference between 1st and 2nd place for East and West Divisions in NL for both season 
halves 

 

Average Difference between 1st and 2nd place for East and West Divisions in AL for both season 
halves 

1969 to 1980: Average Difference between 1st and 2nd place for East and West Divisions in NL 

 
Average Difference between 1st and 2nd place for East and West Divisions in AL 

1901 to 1968: Difference between 1st and 2nd place in NL 

 
Difference between 1st and 2nd place in AL 
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APPENDIX J 
 

YEARS WITH MISSING OR LIMITED ATTENDANCE DATA (NBA, NFL, NHL) 
 
NBA 
 
Boston Celtics (BOS): 1977/78 
 
NFL 
 
All Teams (NFL): 1992 & 1998 
Chicago Bears (CHI): 1961 & 1962 
Green Bay Packers (GB): 1952 
New York Giants (NYG): 1953 & 1958 
Philadelphia Eagles (PHI): 1938 
Pittsburgh Steelers (PIT): 1938, 1944, 1951-1953, 1957 & 1965 
Washington Redskins (WAS): 1938-1939, 1951, 1957, 1960, 1962 & 1965 
 
NHL 
 
Boston Bruins (BOS): 1961/62 
Chicago Blackhawks (CHI): 1956/57-1961/62, 1970/71-1972/73 & 1975/76-1976/77 
Montreal Canadiens (MON): 1958/59-1961/62 & 1986/87-1988/89 
New York Rangers (NYR): 1961/62 & 1986/87-1988/89 
Toronto Maple Leafs (TOR): 1959/60-1961/62 & 1986/87-1987/88
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