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CHAPTER 1

Introduction

This thesis focuses on questions about the properties of symbolic powers of ideals
in Noetherian rings and some related problems. All rings in this thesis are commu-
tative rings with identity.

Given a commutative ring R and a prime ideal P, for a positive integer n, the
nth symbolic power of P (denoted P™) is defined to be the contraction to R of
the expansion of P to Rp, i.e., P = P"Rp N R. An equivalent definition is
P® = {r € R: 3w € R\ Pwr € P"}. P is the smallest P-primary ideal
containing P". Further, if P™ has a primary decomposition (which is true if R is
Noetherian), then, the P-primary ideal that must be used in any irredundant primary
decomposition is P™.

The motivation for the work in this thesis comes from the following four questions

each of which is the basis of an individual chapter.

1. (Eisenbud-Mazur conjecture, chapter 3) Given a regular local ring (R, m) and
a prime ideal P C R, when is P® C mP? Eisenbud and Mazur [EM97] have
constructed examples in every positive characteristic p when R contains a field,
to show that the statement does not hold. They also conjecture that if R

contains a field of characteristic zero, then, the statement is true.



2. (Integral closedness of mI, chapter 2) Given a regular local ring (R, m) and a
radical ideal I C R, when is m/ integrally closed? We will illustrate that this

question is closely related to the Eisenbud-Mazur conjecture.

3. (Uniform bounds on symbolic powers, chapter 4) Given a Noetherian complete
local domain R, is there a positive integer k such that for any prime ideal P C R,

PG C P for all positive integers n?

4. (General contractions of powers of ideals, chapter 5) Given an extension of
Noetherian rings R C S and an ideal J in S what can be said about the
behavior of I,, := J" N R as n varies over positive integers? In particular, when

is ®7°,1, a Noetherian ring?

1.1 Eisenbud-Mazur conjecture

Eisenbud and Mazur [EM97| studied symbolic powers in connection with the

question of existence of non-trivial evolutions.

Definition 1.1.1. Let R be a ring and S be a local R-algebra essentially of finite

type. An evolution of S over R consists of the following data:
e A local R-algebra T essentially of finite type.

e A surjection 7' — S of R-algebras such that if Qp/p and {lg/r denote the
modules of Kéahler differentials of T" over R and of S over R respectively, then,

the induced map Q7/r @7 .S — Qg/g is an isomorphism.

The evolution is said to be trivial if T'— S is an isomorphism.
The question of existence of non-trivial evolutions leads to the Eisenbud-Mazur
conjecture via theorem 1.1.5. We first need a more general definition of symbolic

powers.



Definition 1.1.2. Let R be a ring and [ an ideal in R. For a positive integer n, the

nth symbolic power of I is defined to be
1™ .={reR: % € I"Rp for all P such that P is a minimal prime of I}.

Definition 1.1.3. Let R be a ring and [ an ideal in R. We say [ is an unmized ideal
if every associated prime ideal of I is isolated. In other words, an unmixed ideal has

no embedded prime ideals.

Remark 1.1.4. If I is an unmixed ideal in a ring R, then, IY) = Np(IRp N R) by
definition (where the intersection is taken over the minimal primes P of ) and the

right hand side of this equation is a minimal primary decomposition for I and hence

IW =17.

Theorem 1.1.5. [EM97] Let R be a regular ring. Let (P,m) be a localization of a
polynomial ring in finitely many variables over R. Let I be an ideal of P. If P/I

is reduced and generically separable over R, then, every evolution of P/I is trivial if

and only if I® C mI.
We now state a slightly more general version of the Eisenbud-Mazur conjecture.

Conjecture 1.1.6. (Eisenbud-Mazur) Given a regular local ring (R, m) containing

a field of characteristic zero and an unmized ideal I in R, I® C mlI.

The hypothesis that R be regular is necessary. If R is not regular, Huneke-Ribbe

[HR98] show that there exists a prime ideal P in R for which P® ¢ mP.

Example 1.1.7. [HR98| Let R = k[z,y, 2]/(2* — yz), P = (z,y)R. Then z € R\ P

and zy = 2% € P2 So that, y € P®. However, y ¢ (z,vy,2)P.

Eisenbud and Mazur construct examples in every positive characteristic p to show

that the corresponding statement of conjecture 1.1.6 does not hold.



Example 1.1.8. [EM97| Let k& be a field of characteristic p > 0 and let P be the
kernel of the map

k([z1, ..., z4]] = K[[t]]

. 2 2 2
given by z; — t7°, 1o — tPPHD o — APl g t0HD et f = x’f“xg — xé’“ —

riwh -+, Then f € P? but f ¢ mP, wherem = (21, ..., 74) R and R = k[[zy, ..., 74]].

These counterexamples tend to focus attention on the statement of conjecture
1.1.6 in equal characteristic zero and mixed characteristic. However, it may be
possible that the statement also holds in equal characteristic p with some auxiliary
hypothesis on the ring. We finish this section with some known affirmative results

for the conjecture discussed in [EM97] and [HR9S].

Definition 1.1.9. An ideal I in a ring R is said to be generically a complete in-
tersection if I is an unmixed ideal of height h and I Rp is generated by a regular

sequence of length h in Rp for every minimal prime ideal P of I.

Theorem 1.1.10. /[EM97] Suppose that I is an ideal in a Noetherian ring R gener-
ated by the (n — 1) x (n — 1) minors of an n x (n — 1) matriz M. Suppose that the
depth of I on R is 2 and I is generically a complete intersection in R. If J is the
ideal generated by the entries of any column of the matriz M, then, I® C JI. In
particular if R is local with maximal ideal m and the entries of M are contained in

m, then, I® C ml.

Theorem 1.1.11. [EM97] Let R = k[x1, ..., x,] be a polynomial ring over a field k.
Suppose that I s a monomial ideal in R . If P is a monomial prime ideal such that
I C P, then, for all positive integers d, I\ C P14V In particular, if I is unmized,

with d =2 and P =m = (11, ...,1,) R, we get that I® C mI.

We make the following definition following [Vas04].



Definition 1.1.12. Let (R, m) be a Cohen-Macaulay local ring and let I, J be ideals
in R. I and J are said to be linked if there is an R-sequence x = x1, ..., x,, contained
in I NJ such that J = ()R : [ and I = (z)R : J. We denote this by I ~ J. I,J
are said to be in the same linkage class if there exists a sequence of ideals Iy, ..., I,
such that

An ideal I that lies in the linkage class of a complete intersection ideal is said to be
licca.

Theorem 1.1.13. [EM97] Suppose that (R, m) is a reqular local ring and I C R is a
perfect ideal that is generically a complete intersection. Let J be the ideal generated
by the elements in a row of some presentation matriz over R (or over R/I) of the

canonical module wg,r of R. If I is licci, then, I® < JI. In particular, if the entries

of J are in m, we have that I® Cml.

Theorem 1.1.14. (Kunz) [EM97] Let (R, m) be a reqular local ring and let I be a
proper, unmized ideal that is generically a complete intersection. If I can be generated

by ht(I) 4 1 elements, then, I® C ml.

Theorem 1.1.15. (Huneke-Ribbe) [HRIS] Let (R, m) be a reqular local ring and I
a proper ideal of R such that R/I is normal. If I can be generated by hi(I) + 2

elements, then, I C mli.

Theorem 1.1.16. [EM97] Let R = k[zy, ..., x,] be a polynomial ring over a field k
and let m = (x4, ...,x,)R. Suppose that I is a quasihomogeneous ideal. If char(k) =
0, then, I'D C mIU¥=Y for all positive integers d. In particular, if I is unmized, with
d =2, we get that I'¥) = wmI. Further, if I is radical, then, every evolution of R/I is

trivial.



Theorem 1.1.17. [HR98] Let I be an unmized ideal of height h in a regular local
ring (R, m) of equicharacteristic 0. Assume that the minimal number of generators
of I is h+2 and I3 = 1'1(32) for every prime P with height h + 1 such that I C P.

Then I C mI.

Definition 1.1.18. Let R be a regular local ring and I an ideal of R such that R/I
is Cohen-Macaulay. Then R/ is said to have minimal multiplicity if the multiplicity
of R/I is exactly equal to dim(R) —dim(R/I)+1. R/I is said to have almost minimal

multiplicity if the multiplicity of R/ is equal to dim(R) — dim(R/I) + 2.

Theorem 1.1.19. [HRI8] Let (R, m) be a reqular local ring of equicharacteristic O
and dimension d. Suppose that I is an unmized integrally closed ideal of height d—1.

Assume that I C m?. Then
1. if R/I has minimal multiplicity, I C ml.
2. if R/I is Gorenstein and has almost minimal multiplicity, / 2 C mlI.

1.2 Integral closedness of m/

Eisenbud and Mazur obtain the following result which raises a related question.

Theorem 1.2.1. There exists a reduced, local C-algebra of finite type whose local-

wzation at the origin has a nontrivial evolution if and only if there exists a polyno-

mial f € Cllzy,...,2,]] = R such that f(0) = 0 and f ¢ 1'11\/(887f1 SIVR, where

g eeey al‘n

m = (331, ey l’n)R
The following question is then raised [EM97]:

Question 1.2.2. s there a power series f € Clxy,...,x,]] = R such that f ¢

m(:L, .., %)R, where m = (x1, ..., x,) R (where overline denotes integral closure in



Since for any ideal I in a ring R, we have that I C /I [HS06], a negative
answer to the above question would prove the existence of a non-trivial evolution

by theorem 1.2.1 in the characteristic 0 case. However, it should be noted that

fem( 88_9&]01’ Y1 )R as shown in the next proposition.

ey 8$n

Proposition 1.2.3. Let R = S[zy,...,x,], where S is a Noetherian domain. Let

fe€R. Then f € m(g—gl,..., (%—J:L)R, where m = (x1, ..., ) R.

Proof. Let I = (g—gfl, - %)R. Assume f # 0 for the statement is trivially true
when f = 0 (for I = 0 in this case, and thus, m/ = 0 = 0 since R is a domain).
By the valuative criterion of integral closure (theorem 6.8.3., page 135, [HS06]),
it suffices to show that f € (mI)V for every discrete valuation ring V such that
for some minimal prime ideal P of R, R/P C V C Frac(R/P). Suppose that
f=arit g+ A aprt . ain where ay, ..., Gy € R, ijr € Zso for j € {1,...,m}
and k € {1,...,n}. Let t € V be a uniformizing parameter. Suppose that z; = b;t“,
where b; € V is a unit and ¢; € Z>o. We may assume without loss of generality that
11101+ Fi1nCn < G101+ e, for j € {1,...;m}. Then f = bt'11e1+-Fincn for some
unit b € V. Now since V' is a discrete valuation ring, every ideal is principal. Assume
that mI = :Erg—mfs, where r, s € {1,...,n}. Now we may write that aa—é = dfincrtetinen
for some [ € {1,...,m}, where i;j =1, if j # s and i1 = iz — 1 and d € V is a unit.
Then (mI)V = gergineitetimen Now, if ij1¢1 + oo + ipmCn + € > 51161 + oo + G19Cn,s
then, suppose without loss of generality that i;; > 0 (at least one of 4y, ..., 71, must

be positive since f = btircrtFancn and f =£ (). Then (xl%) = gt Finen ], 5

(m/7)V, which is a contradiction. So 101 + oo+ i Cn + € < i11¢1 F .. 4 G1nCn. Thus,

f= ptiricittimen o tCrti;101+...+ifnCn,V — (m[)v ]

In light of the above discussion, the following question is considered in this thesis.



Question 1.2.4. In a regular local ring (R, m) with an ideal I when is mI C my/I?

Let J be the radical of /. Then it suffices to prove mJ is integrally closed: for if
the latter is true, then, mI C mJ = mJ = mv/I. The question of integral closure
of mJ, where J is a radical ideal has been explored by Hiibl-Huneke in [HHO1]. In
general the ideal m[ fails to be integrally closed even when [ is prime. Huneke shows
that if R = Cl[z,y,2,w]] and f; = 2% —yz, fo = y2? —w?, f3 = 2y° — 22w, f; =
Y — 22y?z, fs = 2° — aytw, fo = 222 — yPw. Then P = (fi, ..., f¢)R is a prime ideal
in R and mP is not an integrally closed ideal, where m = (x,y, z, w) R (example 4.4,
[Hiib99]).

Question 1.2.4 also relates to the question of the existence of non-trivial evolutions

via the following theorem.

Theorem 1.2.5. [Hiib99] Let (R, m) be a reqular local ring and let k be a field such
that char(k) = 0. Suppose that R/k is essentially of finite type and R/m is a finite
extension of k. If I is an ideal such that mI is integrally closed, then, R/I is has no

non-trivial evolutions.
Hiibl and Huneke [HHO1] obtained results for the following cases.

Theorem 1.2.6. [HHO1] Let (R, m) be a Cohen-Macaulay ring of dimension d > 1
and let I be an unmized ideal. Suppose that I is minimally generated by n elements
and let S = R[xy,...,x,] — R(I) be the standard map onto the Rees ring of I with
kernel a. Let a,, denote the ideal generated by all homogeneous forms in a of degree

at most m. Assume there exists an integer m > 2 such that:

1. (0 S | - mS.

2. I™ and I"™*! are integrally closed.



3. depth(R/I™) = 0.
Then I Nml C m/. In particular, if I is integrally closed, then, m/ = m1.

Corollary 1.2.7. [HH01] Let (R, m) be a regular local ring of dimension 3 and let
I be an ideal of height 2 such that I is normal, R/I is Cohen-Macaulay and I is

generically a complete intersection. If a3 C ml, then, ml is integrally closed.

For a Noetherian local ring (R, m), and an ideal I of R define the fiber cone of I
as follows

Fu(I) = @nez  I"/mI" = R(I)/mR(I).

Theorem 1.2.8. [HHO01] Let (R, m) be a Noetherian normal local domain of dimen-
sion d such that R/m is infinite and I be a normal ideal of R. Suppose that I has
analytical spread d. If F,(1) is equidimensional without embedded components, then,

mI™ =mlI™ for all positive integers n.

Corollary 1.2.9. [HH01] Let (R, m) be a normal local Cohen-Macaulay domain such
that R/m is infinite and let I be a normal m-primary ideal with reduction number at

most 1. Then mI"™ is integrally closed for all positive integers n.

Corollary 1.2.10. /[HHO01] Let (R,m) be a normal local Cohen-Macaulay domain
of dimension d and let I be a normal unmized syzegetic ideal of height d — 1 and
analytic spread d. If I is generically a complete intersection and if I has reduction

number 2, then, mI™ = mI™ for all positive integers n.

Corollary 1.2.11. [HH01] Let (R,m) be a regular local ring of dimension 3 and
let I be an ideal of height 2 having analytic spread 3. If Iis generically a complete
intersection, unmized and R(I) is normal and Cohen-Macaulay. Then mI™ = mI»

for all positive integers n.
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1.3 Uniform bounds on symbolic powers of prime ideals

The question of equivalence of symbolic and adic topologies has generated con-
siderable interest in the past two decades. For an unmixed ideal I in Clzy, ..., z4],
Ein-Lazarsfeld-Smith (theorem 2.2, [ELS01]|) proved that if h is the largest height
of an associated prime ideal of I, then, 1" C I" for all positive integers n. Soon
after, Hochster and Huneke (theorem 1.1, [HH02|) improved this result to show that
for a regular ring R containing a field and ideal I of R, if h is the largest height of an
associated prime ideal of I, then, 1" C I™ for all positive integers n. In particular
this implies that there is a uniform bound for the growth of symbolic powers of ideals

in a regular local ring of dimension d in equal characteristic, viz., I(4) C ™.

Theorem 1.3.1. [HH02]) Let R be a Noetherian ring containing a field. Let I be

an tdeal of R and h be the largest height of any associated prime ideal of I.

1. If R is regular, then, I+ C (I+D) for all positive integers n and non-

negative integers k.

2. If I has finite projective dimension 1) C (I™)* for all positive integers n (where

a* denotes the tight closure of an ideal a).

Earlier Swanson [Swa00| had proved that in a Noetherian local ring R, for every
prime ideal P such that the P-adic and P-symbolic topologies are equivalent, there
exists a positive integer h such that P C P™ for all positive integers n. The value
of h, a priori depends on the prime ideal. Huneke, Katz and Validashti obtain the

following uniform result in this direction.

Theorem 1.3.2. [HKV09] Let (R, m) be an equicharacteristic local domain such that

R is an isolated singularity. Assume either that R is essentially of finite type over
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a field of characteristic zero, or that R has positive characteristic, is F-finite and
analytically irreducible. Then there exists an integer h > 1 such that for all prime

ideals P C m, P C P, for all positive integers n

1.4 General contractions of powers of ideals

In the final chapter we study more general contractions of powers of ideals. Given
an extension of Noetherian rings R C S, and an ideal J in S, the goal is to understand
what can be said about the behavior of [,, := J"N R as n varies over positive integers.
Note that if R is a domain, P is a prime ideal in R, S = Rp and J = PRp and
I, = P™.

Note that in general, R = 1o 2 I; 2 I O ... and I,I,, = (J*"NR)(J*NR) C
J" AR = Iy So we can form a graded ring @327, and we would specifically like
to study when @21, is a Noetherian ring. In the case when I, = P™ for some prime
ideal P in R, the algebra @:°,1, is not necessarily Noetherian. Counterexamples are
constructed in [Ree58, Nag60, Rob85, Rob90].

We discuss the case when S = R[z], where z is an indeterminate over R in chapter

1.5 Outline

The main results of this thesis are divided into four chapters, each dedicated to
one of the questions listed at the beginning of this chapter. In chapter 2 we consider
the question of integral closedness of m/. Specifically we obtain a positive result for
the case where [ is an ideal generated by a single binomial and several monomials in
a polynomial ring over a field, where m denotes the unique homogeneous maximal
ideal. We also obtain positive results in a number of other cases. In chapter 3 we

consider the Eisenbud-Mazur conjecture for the case of certain prime ideals in certain
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subrings of a formal power series ring over a field and discuss some computational
results. In chapter 4 we explore the question of uniform bounds on symbolic powers
of prime ideals. Finally in chapter 5 we raise some questions about contractions of
powers of ideals from an overring and obtain some partial results to those questions

for the case of polynomial extensions.



CHAPTER 2

Integral closedness of m/

Let (R, m) be a Noetherian, local ring with maximal ideal m and I be an ideal.
In this chapter, we study the question of integral closedness of mI. We show that
if R is a polynomial ring over a field, m the homogeneous maximal ideal of R and
I an ideal generated by one binomial and several monomials, then, m/ is integrally
closed in R. We also obtain several results on the structure of such ideals. One of
the main results of this thesis is to show that in a Noetherian local ring (R, m), if
I = (ay,...,aq) R is an integrally closed ideal such that ml; C I, for 1 <i < d, where
I; = (a1, ...,d;, ...,aq) R, then, m[ is integrally closed in R. We also prove a graded
analog of this result. Moreover, we define a notion of monomial ideals over a fixed
regular system of parameters for a regular local ring (R, m) and show that if I is a

monomial ideal of this type such that I is radical, then, m/ = mI.

2.1 Monomial Ideals

In this section, we show that for a polynomial ring R = k[xy, ..., z,| and a radical
monomial ideal I in R, (21, ...,2,)! is integrally closed.
We define a monomial in R to be an element of the form x7*...x%" with «; € Z>

for i = 1,...,n. Unless otherwise stated, we will assume that «; > 0 for at least one

i € {1,...,n}, i.e., the monomial under consideration is different from 1. We fix the

13
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following notation. For a monomial p = x7"...20" with o; € Zso for i =1,...,n, in

R, let u#* = m‘lsl.. 20 where §; = 1ifa; >0and §; =0ifa; =0 fori =1,...,n.

Ly

Thus, p* is the squarefree part of p.

Theorem 2.1.1. Let R = k[z1,...,x,] be a polynomial ring over a field k and let I
be a monomial ideal in R. Let m = (1, ...,2,)R. Then mI C mv/1. In particular, if

I s radical, mI s integrally closed.

Proof. Let I be generated by the monomials 1, ..., pg. Let J = (,uf&, e M?)R be the
ideal generated by the squarefree parts of the monomials generating /. Then we have
that /I = J (proposition 4, page 41, [Fr697]). So we have that mI C m.J and hence,
m/ C mJ (remark 1.1.3, page 2, [HS06]). So it suffices to prove, m.J is integrally
closed, since then, mI C mJ = mJ = mv/1.

Suppose that m.J is not integrally closed. Now m.J is a monomial ideal generated
by B := {xz,uf£ ci=1,..,nand j = 1,....d}. Then m.J is also a monomial ideal
(proposition 1.4.2, page 9, [HS06]). Let y be a monomial such that x4 € mJ \ mJ.
For a monomial g in R, let ef denote the exponent of z; in 3. Also, let us rename
the elements of B by f, ..., B, where t = nd. Then, by equation 1.4.5, [HS06|, there

exist rational numbers ¢; for j =1, ..., ¢, such that, ¢; > 0, Eé-:lcj =1 and

(2.1) e > ¥ (ciel).

7

We may reindex the monomials 3; such that ¢; # 0 for j =1, ...,r and ¢; = 0 for
j=r+1,..,t. We may also relabel the indeterminates so that ef' # 0 fori =1,...;s
and e/ = 0 for i = s+ 1,...,n. Then we claim that efj > 1fori=1,..,s and
7=1,....r.

First we note that if x;|5; for some j € {1,...,r}, then, x;|u. For by the inequality

2.1, if x;|B;, then, efj > 1 and thus, e > cje’-gj > 0. In other words, if x;|3; then,

7



15

ied{l,.., s}
This implies that §; is not squarefree for j € {1,...,r} for otherwise we have that
p is a multiple of 3;. Suppose that p = vf; = z/:z:ixu;% for some i € {1,...,n},
j e {1, ...,d} and some monomial v. Thus, u € mJ, contrary to the assumption.
Now suppose we have that eﬁj =0 for some k € {1, ..., s} and some j € {1,...,7}.

Bj B.;
We write that 3; = af* ...z% . Note that the monomials in B are such that the

exponent of every indeterminate is either 0 or 1, with the exception of at most one

indeterminate, which may have an exponent of 2. Since 3; is not squarefree, we must

, ~ Bj B Bi_y P
have, elB(Jj) = 2 for some I(j) € {1,...,s}. Then if §; = z7* ...xlel_’llxlel S

w s
i.€., Bj is the monomial such that xlﬁ} = (; and is thus squarefree, then, 6}- = u
for some w € {1,...,d}, for the only monomials in B which have an indeterminate
with an exponent 2 are those that are product of an indeterminate z, (and hence an
element m) and a squarefree monomial p#* such that x,|u#. However, this implies
that 0; = xpu# is an element of mJ such that x; { 236; for i € {s +1,...,n}
and hence, a;kgj = (3, for some y € {1,...,t}. Moreover, (3, is squarefree since Bj is
squarefree and e,;j = eﬁj = 0. Thus, p is a multiple of 3, and hence u € mJ again
contradicting the supposition.

This proves the claim that efj >1fori=1,...,sand j =1,...,r. Moreover, the
above arguments also show that {8, ..., 8,} = {z1...x_ 12728 11...05 : 1 < k < s} and
in particular, that r = s.

It follows that p = ...z, for since z;|3; for i =1,...,s and j = 1,...,7, 1...24|p
and x; f p for i = s+ 1,...,n by choice of s. If e} > 1 for some [ € {1, ..., s}, then, u
is a multiple of f;, and consequently, u© € mJ contradicting the assumption.

Rewriting the inequality 2.1 for u = x;...x,, there exist positive rational numbers
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C1,...,Cs such that ¢; + co + ... + ¢, =1 and

1=e!'>cel + .. 4 e

2

fori=1,..,s. Now e’ =2ifi = j and efj = 1if ¢ # j. Adding the above set of

i

inequalities as ¢ varies from 1 to s we get that
s>a(s+ )+ +e(s+1)=(c1+...+c)(s+1)=s+ 1.

This is a contradiction. Consequently, there is no monomial p such that u €

mJ \ m.J and thus, mJ = m.J. O

2.2 Ideals generated by monomials and one binomial

Suppose that R = k[z1,...,x,] is a polynomial ring over a field k. Consider the
ideal I = (B, p1, ..., pa) R of R such that § is a binomial and p, ..., ptg are monomials.
Then we show that if I is radical, m/ = mI, where as before m = (21, ..., 2,,) R. Such
ideals have been studied in a different context (to determine their arithmetic rank)
in [Bar07].

Remark 2.2.1. We can focus our attention on the case where g is a pure difference
binomial, i.e., a difference of two monomials, for we can reduce the general problem
to this case. Suppose that I = (ap + bv, pq, ..., pqg) R, where a,b € k\ {0} and
WV, i1, ..., tg are monomials in R. Let k* denote the algebraic closure of k£ and
let S = k*[x1,...,x,]. Now IS = (ap + bv, pi1, ..., p1q)S = (p + a=*bv, py, ..., p1a)S.
Without loss of generality we may assume that p # v else I is monomial ideal and
this case was discussed in the preceding section. So some indeterminate appears with
different exponents in 4 and v. Without loss of generality, assume this indeterminate
to be ;. We may write that g = 2%y  and v = 290, where u,v are the integers

such that z%|p but 2% +  and 2¥|v but 2V { v while ', v are quotients of p, v
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by the corresponding powers of z1. By assumption, u # v. Again, without loss of
generality, assume that v > u. Then consider the isomorphism f :.S — S such that
flz) = “"¥—a"Tbry, f(2;) = x; for i = 2,..,n and f(w) = w for w € k. Then
f(IS) = (u—v,p1,..., ua)S. Now suppose that I is an ideal such that (mS)f(15) is
integrally closed. Then, since f is an isomorphism on S and f(mS) = mS, we have
that (mS)IS = (mI)S is integrally closed. Now, since k* is algebraic over k, k C k*
is an integral ring extension and hence R = k[zy,...,z,] C k*[xy,...,x,] = S is also
integral (exercise 9, page 68, [AM94]). Then, for any ideal J in R, JSNR = J
(proposition 1.6.1, page 15, [HS06]). Thus, mI = mISN R =mISN R = ml. So
it is sufficient to consider the integral closedness of mI, where m is the homogenous
maximal ideal of a polynomial ring over an algebraically closed field and I is an ideal

generated by a pure difference binomial and several monomials.

We now consider ideals in R generated by a pure difference binomial and a set
of monomials. We will characterize ideals of this type that are radical. We first
obtain a necessary and sufficient condition for the principal ideal generated by a

pure difference binomial to be prime.

Proposition 2.2.2. Let R = k[zy, ..., x,] be a polynomial ring over a field k and let
I =(pu—v)R, where p = z{*...x% and v = x*...al" are monomials in R. Then I is
prime if and only if ged(p,v) = 1 and ged(uy, ..., Up, V1, .oy vy) = 1.

Proof. We first show that the condition is necessary. Suppose that a # 1 is a

monomial in R such that o = ged(p, v). Then a+1 and #=*4-1 are non-zero elements

in R/I,but (o« +I)(=2+1)=(u—v)+1=0+1. Thus, R/I is not a domain, so

«

I is not prime. Next, if ¢ = ged(uy, ..., up, v1, ..., v, ). Then xqfl/c...:z:zn/c — xqfl/c...a:fl"/c
is a non-zero element in R/I, which is a zero divisor. So again, [ is not prime.

Now we prove sufficiency. We may assume that there is no ¢ € {1,...,n} such
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u; —v;]
i

that u;,v; > 0 else ged(p,v) = (where | - | denotes the usual absolute value
of a real number) contradicting the assumption that ged(p, v) = 1. We may further
assume that there is no ¢ € {1,...,n} such that u; = v; = 0, else we may just work
in k[xq,...,2_1,Tis1, ..., T,] (for I is prime if and only if ;1 — v is irreducible and the
irreducibility is not affected by working in a polynomial subring in the indeterminates
occurring in g and v). In other words, we have that for every i € {1,...,n}, z;|u or
x;|lv but not both. Set h; = u; — v; for 1 < ¢ < n. Then ged(hy, ..., h,) = 1 since

each h; is equal to either w; or v; in absolute value and ged(uy, ..., Uy, v1, ..., v,) = 1.

Consider the (n — 1) x n matrix M given by

—hy Iy 0 .. .0 0

0

0 0 . . . 0 —=h, hy

Since by assumption h; # 0 for 1 < ¢ < n, M has rank n — 1. Also, if we let
H = (hy,...,h,)T, then, MH is the (n — 1) x 1 zero matrix. Denote the jith entry
of M by Mj; for1 <i<nand1l<j <n-—1. Consider the Laurent polynomial
ring S = kY1, s Yn_1,Y1 -, Yu'y]. Consider the map ¢ : R — S given by ¢(x;) =

My ; Mp_1,;

yp ey, 7" Then ker(¢) is generated by all pure difference binomials z{*...z%" —

28 ...axb such that (ay — by, ..., a, — by)7 lies in the kernel of M considered as a linear

map Z" — 2", i.e., ker(¢) is the toric ideal associated to the map ¢ (lemma 4.1,
page 31, [Stu95|)

In this case, M has rank n — 1, so its kernel is a 1 dimensional Z-module by the
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rank-nullity theorem. Now H € ker(M) and H is not the zero vector. Further, the
entries of H have no common factor. So every element in ker(A/) is a multiple of H.

Suppose that K = (ki,...,k,)" and K € ker(M). If we write K = (k;,..., k)T —

(ki ,....,k;)T, where for an integer z, we define
z ifz>0
2t = ,
0 else
—z if2<0
z = ,
0 else

+ - .
then, since K is a multiple of H, the binomial a:]fl x,"f — Jclfl ...x® is a multiple

of p — v. So ker(¢) is generated by p — v. In other words, I = ker(¢). Finally,

R/I = R/ker(¢) = S. Since S is a domain, [ is prime. O

Corollary 2.2.3. Let R = k[zy,...,x,] be a polynomial ring over a field k and let
I = (ap + bv)R, where p = zi*..x and v = z{'...2" are monomials in R and
a,b € k\ {0}. Then I is prime if gcd(p,v) = 1 and ged(uy, ..., Uy, v1, ..., v,) = 1.
Further, if k is algebraically closed, then, I is prime if and only if ged(p,v) =1 and

Ged(Uyy ooy Up, V1, ooy V) = 1

Proof. We outline an argument similar to remark 2.2.1. Let £* denote the algebraic
closure of k and let S = k*[xq,...,2,]. Then IS = (ap + bv)S = (1 + a 'bv)S.
Since ged(p, v) = 1, some indeterminate appears with different exponents in p and
v, say ;. We may write that u = 2%y’ and v = 2%, where u, v are the integers
such that %[y but 2v™! { 4 and 2¢|v but zv™ { v while 4, v are quotients of p, v
by the corresponding powers of z1. By assumption, © # v. Again, without loss of

generality assume that v > w. Consider the isomorphism, f : S — S such that
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flzy) = “V—=a"tbxy, f(a;) = x; for i = 2,...,n and f(w) = w for w € k. We have
that f(IS) = (u—v)S. By proposition 2.2.2, f(IS) is a prime ideal in S if and only
if ged(p, v) = 1 and ged(uy, ..., Uy, V1, ..., v,) = 1 (this proves the proposition in the
case when k is algebraically closed). Then, since f is an isomorphism, IS is prime.
Now R is a direct summand of S and hence we have that IS N R = [ since every
ideal of R is a contracted ideal with respect to the inclusion R C S (proposition 1,

[Hoc73al). Thus, since contraction of a prime ideal is prime, I is prime. O

We also obtain a criterion for the principal ideal generated by a binomial to be

radical.

Proposition 2.2.4. Let R = k[, ...,x,], where k is a field. Let p,v be distinct
monomials in R and let a,b € k\ {0}. Let I = (ap+bv)R. Then I is radical if and

only if 271 (ap + bv) for 1 <i <mn.

Proof. To prove the condition is necessary, suppose without loss of generality that
x?|(ap+bv). Then, if we denote ' = %, v = %, we have that z1(ay’ +bv') € VI as
(z1(ap +0v"))? = (ap +bv)(ap+bv) € 1. However, a1 (ap +bv') & I as x1(ap +bv")
is an element of a smaller degree than the generator of I.

Now suppose that z? t (apu + bv) for 1 < i < n. We show that (ap + bv)
has no irreducible factor with multiplicity greater than 1. By factoring out the
indeterminates dividing both 4, v we may write that (ap +bv) = @;,...z; (ap’ +bv'),

where pf' = —#— and ' = —%—. Now ged(',v') = 1. It suffices to show that

Tig ooy Tig ooy

(ap’ + bv') has no irreducible factor of multiplicity greater than 1. Suppose that
f € R is an irreducible element such that f2|(ay + bv'). Suppose that {x;,,..., 2}
is the subset of indeterminates such that x;, divides at least one term of f for

1 < h <t and no indeterminate in {z1,...,z,} \ {z, ..., x;,} divides any term in f.
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Then f |8(“gx—jby) for 1 < h <t and none of the partial derivatives a(agx—jb”) are zero
h h

Aap’ +bv)

by choice of z;,. However, ==~ is either 0 or a monomial (since ged(u',v') = 1)

for 1 < i < n. Consequently, the only possibility is f is a monomial. However, if x; is
an indeterminate such that x| f, then, since f2|(ay’ + bv'), 22|(ay’ +bv') and hence
2?|(ap+bv) contradicting the hypothesis. So (au+br) has no irreducible factor with
multiplicity greater than 1.

Finally, suppose that fi, ..., f,, be the distinct irreducible factors of (au+br). Then
we have that I = f{RN...N f,,R. Since (ap+br) is a multiple of each of fi, ..., f,n, we
have that I C fiRN...N f,,R. Conversely, since R is a unique factorization domain
and since f1, ..., f,, are irreducible, every element in f; RN...N f,,, R which is a multiple
of each of f1, ..., f, must be a multiple of fi...f,, = (au+0bv). Thus, fiRN...Nf, R C
I. Now, since fi,..., f,, are irreducible and R is a unique factorization domain,

fiR, ..., fm R are prime ideals, and thus, [ is an intersection of prime ideals and

hence radical. ]

Definition 2.2.5. Let R = k[z1, ..., z,,] be a polynomial ring over a field k. Let u, v
be monomials in R and let a,b € k\{0}. Then we will say that ap+bv is a squarefree

binomial if 22 { (ap + bv) for 1 <i < n.

Lemma 2.2.6. Let R = k[xy,...,x,] be a polynomial ring over a field k. Let a,b €
k\ {0} and let p,v,p, ..., g be monomials in R. Let I = (1, ..., fa, apr + bv)R.
Let J be the ideal generated by the monomials in I, i.e., J = (I N M)R, where

M := {monomials in R}. Then (J : pu) = (J:v).

Proof. Since J is a monomial ideal and p,v are monomials, (J : p),(J : v) are
monomial ideals. In fact they are generated by squarefree monomials since J is

generated by squarefree monomials (section 2.3 [Fr697]). Now suppose that A €
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(J : w\(J : v). We may assume that A is a monomial, for if f is a polynomial in
(J: w)\(J : v), then, at least one term of f must be in (J : p)\(J : v) since (J : p) is
a monomial ideal (and hence homogeneous with respect to the standard multigrading
on R). Then A\u € J. Also, (ap+bv) € I = Aap +bv) = adp+blv € I. So
bA\v € I = Mv € [ and since A\, v are monomials, A\v € J. Hence, A € (J : 1), a
contradiction. Consequently, (J : u) C (J : v). By the same token, (J:v) C (J : u).

Thus, (J : p) = (J : v). O

Lemma 2.2.7. Let R = k[zy,...,x,] be a polynomial ring over a field k. Let
oy Vy [h1, .oy flg b monomials in R and let a,b € k\{0}. Let I = (u1, ..., tta, apr+bv)R.
Let J is the ideal generated by the monomials in I, i.e., J = (I N M)R, where
M = {monomials in R}. Suppose that p,v ¢ J and p # v. Then, if f € R such

that f|(ap+ bv) and a”—}“b” is not a unit in R, we have that f ¢ I.

Proof. Suppose that f is a proper factor of au 4+ bv and f € I. Then f = ripu; +
Tattg +r(ap+bv) for some rq, ..., 74,7 € R. Now, since Q;Lb” is not a unit in R, f is
of smaller degree than ap + b while r(ap 4 bv) has degree at least equal to au + bv.
So terms in 7(ap+ br) are not terms in f. Thus, every term of f is a term in the first
d summands in the expression for f above and hence f € J. Then, since au + bv is
a multiple of f, we have that ap + bv € J. Finally, since J is a homogeneous ideal

with respect to the standard multigrading and g, v are distinct monomials, we have

that au, by € J and hence u,v € J (since a,b # 0), contradicting the hypothesis. So

fel O

We now give a criterion for determining whether an ideal generated by a single
binomial and several monomials is radical. We first give a criterion for the case

when the binomial is a pure difference of monomials and the underlying field of the
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polynomial ring is algebraically closed.

Theorem 2.2.8. Let R = k[zy,...,z,| be a polynomial ring over an algebraically
closed field k. Let p,v, uy, ..., uqg be monomials in R. Let I = (uq, ..., pta, it — V)R.
Let J be the ideal generated by the monomials in I, i.e., J = (I N M)R, where
M = {monomials in R}. Suppose that p,v ¢ J, u # v. Then I is radical if and
only if J is generated by squarefree monomials and p— v is a squarefree binomial (in
other words I is radical if and only if J and (n — v)R are radical).

Ok
(2

Proof. Suppose that I is radical. If y = :vfllx € I with d; € Z-p and dpax =

Omaz =01 gdmaz=0k) ¢ [ Then, since I is

max{d1, ..., 0}, then, (z;,..x;)"m = x (a7’ Ty

radical, z;,...x;, € I. So any monomial in / is a multiple of a squarefree monomial
in . Hence, J is generated by squarefree monomials. A monomial ideal is radical
if and only if it is generated by squarefree monomials (lemma 3, proposition 4, page
41, |[Fr697]), so J is radical. To show that p — v is a squarefree binomial, suppose
without loss of generality that z?|(y — v). Then, if we denote p' = Lov = é,
we have that z,(y —v') € VT as (z,(4 —v"))?> = (W —v)(u —v) € I. However,
xi(y —v') ¢ I by lemma 2.2.7. Hence, y — v must be squarefree.

Now we proceed to prove the converse. Since I is a binomial ideal, /I is also
binomial (here, we need the assumption that k is algebraically closed) (theorem 3.1,
[ES96]). Let aX\ + by € /I, where A, are monomials in R and a,b € k. Say
(aX\ + bn)™ € I for some nonnegative integer m. We may assume that a,b # 0 for
otherwise if say a = 0, then, b = 0 and there is nothing to prove. Further, if b # 0,
then, bn™ € I and hence n™ € I. Then, since n™ is a monomial ™ € J and since
J is radical, n € J C I. So aA + bn = by € I. Similarly, aA +bn € I if a # 0 and
b=0.

We consider two cases: (1) Anp ¢ J and (2) An € J.
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Consider the first case: Ay ¢ J . we have that (a\ + )™ = r(p — v) + s,
where r € R, s € J. We may assume that no term of r is in (J : p), else if 7 is
the sum of terms of 7 such that each term of r is in (J : p), then, we can write
that (aX +bn)™ = (r —r')(p —v) + (s + 7' (u — v)) so that s+ 7 (u —v) € J as
r € (J:p) = (J:v) (where the equality follows from 2.2.6). We claim that no
term of (aA 4 bn)™ is in J, for if X'p™~" € J, then, (A™"n")(AX'n™ ") = X" € J.
However, J is a radical ideal since it is generated by squarefree monomials. So
"™ e J = An € J, a contradiction. So no term of s = (a\ + bn)™ — r(p —v)
isin J, so s = 0. So (aA + bn)™ = r(u — v). Now, by proposition 2.2.4, the ideal
(p —v)R is radical. So (aA+bn)™ € (u—v)R = aX+bpe(u—v)RCI.

Now consider the second case. Since (aA + bn)™ € I and An € J, we have that
(a\)™ + (bn)™ € I. Again we can write that (a\)™ + (bn)™ = r(p — v) + s with
r € R, s € J and no term of r is in (J : ). Suppose that A € J. Then, if n € J,
we have that a\ + bnp € J and hence a\ + by € I. Otherwise, n ¢ J and since J
is radical, ™ ¢ J and thus, (bn)™ ¢ J. Now we can rewrite the above equation
as (a\)™ —s = r(u —v) + (bn)™. Then no term of right hand side is in J and
left hand side is an element of J. Then, since J is a monomial ideal and hence
homogeneous under the standard multigrading, we must have, (a\)™ — s = 0. So
(bn)™ = —r(p—v) € (u—v)R. Since (u—v)R is a radical ideal and b # 0, we have
that n € (u —v)R. Soar+bn € J+ (u—v)R = 1. Similarly, if A ¢ J and n € J,
we have that aX 4+ bn € I. Finally, suppose that \,n ¢ J. Then X n™ ¢ J. So no
term of s = (a\)" 4 (bn)™ —r(u—v) isin J, but s € J by assumption, hence, s = 0.
So we have that (a\)™ + (bn)™ = r(u — v). Let ¢; denote an m' root of —1 for
1 <i<m. Then (a\)™ + (bn)™ = II;(aX + (;bn) = r(u — v) (we use the assumption

that k is algebraically closed). Since p — v divides II;(aX 4+ b(;n) and R is a unique
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factorization domain, we have that p — v = I;ca(aX + (;0n), where A C {1,...,m}.
Say, |A] =t. So r(u—v) = (a\)" + {(bn)" + ¢, where ¢ = I1;c4(; and ¢ is a multiple
of An. We consider two subcases: (a) A € (J : p) and (b) A ¢ (J : p). In case (a)
consider, a’ A\ = rA(u—v) — (A (bn)" — c. Since (J : p) = (J : v) and Ay € J, each
term on the right hand side of this equation is in J. So a!A\*! € J and since J is
radical and a # 0, we have that A € J, which contradicts the assumption. For case
(b), again consider a’\** = rA(pp—v) —CA(bn)t —c\. If r\ € (J : u), then, as in case
(a), A € J, which is a contradiction. So 7\ ¢ (J : u). Rewrite the preceding equation
as a' A\ — rX\(u — v) = (A(bn)! — e\, Thus, each side of the equation must be zero
else the left hand side is not an element of J and right hand side is an element of
J. So a1 = rA(u — v). Now the left hand side of this equation is a k-multiple
of a monomial while the right hand side has at least two terms, which is impossible.
So cases (a) and (b) don’t occur and hence we cannot have, A\,n ¢ J, An € J and
ar+ by e VI
Thus, in all possible cases we have that a\ 4+ bn € I.

So VI = I as required. n

Corollary 2.2.9. Let R = k[xq,...,x,] be a polynomial ring over a field k. Let
[y Uy U1y -y ptg be monomials in R and let a,b € k\{0}. Let I = (py, ..., g, apr+bv)R.
Let J be the ideal generated by the monomials in I, i.e., J = (I N M)R, where
M := {monomials in R}. Suppose that u,v ¢ J and p # v. Then I is radical if and

only if J 1s generated by squarefree monomials and ap + bv is a squarefree binomial.

Proof. The necessity of the condition follows by the same argument as in the first
paragraph of the proof of theorem 2.2.8.
For sufficiency, we will mimic the proof of corollary 2.2.3. Let k* denote the

algebraic closure of k and let S = k*[z1,...,x,]. Then IS = (u1, ..., pta, ap + bv)S =
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(1, -y fta, o + a~bv)S. We may assume that u # v otherwise I is a monomial
ideal and the result follows from the analogous result on monomial ideals. Then
some indeterminate appears with different exponents in p and v, say x;. We may
write that u = 2%y’ and v = 290, where u,v are the integers such that z%|u but
294 and 28|y but 297!+ v while i, v are quotients of p, v by the corresponding
powers of x1. By assumption, u # v. Again, without loss of generality, assume that
v > u. Then consider the isomorphism, f : S — S such that f(z,) = “"¥/—a1ba,
flz;) =z fori =2,..,nand f(w) = w for w € k. Then f(I5) = (1, ..., ta, p —v)S.
As before, since R is a direct summand of S, we have that 1.5 N R = I since every
ideal of R is a contracted ideal with respect to the inclusion R C S (proposition
1, [Hoc73a]). Then, if « is a monomial in IS, since it is an element of R, it is a
monomial in I = 15N R. Thus, the ideal generated by monomials in 1.5 is precisely
JS and JS is generated by squarefree monomials since J is generated by squarefree
monomials. Further, since f is an isomorphism that takes monomials to k-multiples
of monomials, the ideal generated by monomials in f(1S) is f(JS), and thus, it is
generated by squarefree monomials. Also, ;1 — v is a squarefree binomial if and only
if ap + b is a squarefree binomial by definition. Thus, by theorem 2.2.8, f(I5) is
radical. Since f is an isomorphism, IS is radical. Finally, since /SN R = [ and

contraction of a radical ideal is radical, I is a radical ideal. O

Note 2.2.10. Let R = k[z1, ..., x,] be a polynomial ring over a field k. Let u, v, u1, ..., pta
be monomials in R and let a,b € k\ {0}. Let I = (u1, ..., tta, apt + bv)R. Suppose
that J is the ideal generated by the monomials in I, i.e., J = (I N M)R, where
M := {monomials in R}. Suppose that J is generated by squarefree monomials and
ap+by is a squarefree binomial. Note that by corollary 2.2.9, under these conditions,

I is radical.
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Since J is generated by squarefree monomials, we can write that J = N;P;
with 1 < j < r, where P; are the prime ideals in R generated by subsets of
the indeterminates {z1,...,z,} (lemma 3, page 41, [Fr697]). So we can write that
I = (N;P;,ap+br)R. We may further assume that the decomposition of J as inter-
sections of primes of R is irredundant, i.e., P, 2 N;4P; for all [ such that 1 <1 <r.
We claim: [ = N;(P;,ap+ bv)R.

We have that (N; P, ap +bv)R 2 (I; P, ap + bv)R 2 IL;( P, ap + b)) R.

So I = VI = /(N;jP;,ap+bv)R 2O \/T;(P;,ap +bv)R = \/0;(Pj,ap+ )R
(where the last equality follows from exercise 1.13.iii, page 9, [AM94]).

Further, (N; P}, ap+bv)R C (Pj,ap+bv)R for 1 < j <r = (N;P;,au+bv)R C

N;(Pjap+bv)R = \/(N;jPj,ap+ bv)R C /N;(P;,ap + br)R.

Hence, I = /(N;jPj,au+w)R = \/N;(Pj,au+ )R = Nj\/(Pj,ap+bv)R
(where the last equality follows from exercise 1.13.iii, page 9, [AM94]).

For (P;, ap + bv)R the following cases can occur:

L. p¢ P, v ¢ P Now R/P; = K[z, ..., x,], where x;,,...,x;; are those in-
determinates from x,...,z, that are not part of the generating set of P;. Then
(ap + bv)R/P; is radical in R/P; by proposition 2.2.4. So (P;, ap + bv)R, which is
the contraction of (a4 bv)R/P; in R under the canonical map R — R/P; is radical.

2. i, v € Pj: In this case, (Pj,apu + bv)R = P; is prime and hence radical.

3. pePjandv ¢ Pjor p¢ Pjand v € Pj.

We show that the last case cannot occur if J is squarefree. Suppose, without loss
of generality, we have that p € P, and v ¢ P;. We first show that there exists a
(squarefree) monomial X such that P, = (J : A). Now J = N;P; C N;1Pj. So we
have a squarefree monomial, say X such that A € N, P; —N;P; (note that N, P

also defines a squarefree monomial ideal). Then PA C Pi(N;.4FP;) € PiN(NjaP;) =
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N;P; =J. So P, C (J: ). Now (J : \) is a monomial ideal (section 2.3 [Fr697]).
Suppose, there is a monomial A" € (J : A). Then A\ € J C P,. Since A ¢ P; (or else
A € PiN(Nj Pj) = N;P;, a contradiction) and P, is prime, we have that A" € P;. So
(J : A) C P, and hence by the earlier inclusion, P, = (J : A). Now, since p € Py, we
have that A\u € APy C J. Since au+br € I, we have that A(ap+bv) = al\u+biv € I.
Sob\weJ = lweJ = ve(J: )= P, which contradicts the hypothesis.
Thus, the last case above cannot occur.

Thus, we have proved (P}, au+bv)R is radical for all j. So I = N;\/(P},ap + bv) =
N;(P;j, ape + br) proving the claim.

The ideal generated by the monomials in the ideal generated by a binomial and

several monomials can be computed as expressed in the following proposition.

Proposition 2.2.11. Let R = k[zy, .., x,] with k a field. Let I = (p, .., ftq, api+bv) R,
where iy, .., fia, b, v are monomials in R with y # v and a,b € k\ {0}. Let J be the

ideal generated by monomials in I and let J = (uy, ..., pa)R. Then
J=J+(J v+ ).

Proof. Suppose that A € I is a monomial. Then A = rypq + ... + rgpq + r(ap + bv).
Then A must be a k-multiple of a term occurring in one of the summands on the
right hand side of this equation. If A is a k-multiple of a term occurring in one of the
first d summands, then, X is a multiple of y; for some i € {1,...,d} so that A € J'.
Otherwise, A is a k-multiple of a term occurring in r(ap +bv). Since u, v are distinct
monomials, if s is a term in r, then, at most one of sy and sv is a k-multiple of .
Suppose, without loss of generality that su is a k-multiple of A. Then, since sv is
not a k-multiple of A, the coefficient of the underlying monomial of sv in the above

expression for A must be zero and hence, sv € J . In other words, s € (J " v). Then,
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since A is a k-multiple of sy, we have that A € (J' : v)p. By the same analysis, if
sv is a k-multiple of A\, then, \ € (J/ : p)v. Thus, any monomial in I must be a
monomial in J or (J : v)u or (J : p)v. Then, since J is the ideal generated by
monomials in I, we have that J C J + (J : p)v+ (J :v)p.

For the converse we first note that since J is an ideal generated by a set of
monomials in I, by definition, J C J. Now let » € (J' : u) be a monomial. Then
ru € J'. Since ap + bv € I, we have that r(ap + bv) € I. So brv € I and hence
rv € 1. Since r,v are monomials, 7v € .J. So every monomial in (J : p)v is in J.
Further, (J' : ) is a monomial ideal (section 2.3 [Fr697]) and hence so is (J : p)v.
Thus, (J : p)v C J. Similarly, (J : v)up C J. So J + (J : w)v+ (J :v)u C J.

Thus, J = J + (J : v+ (J :v)u. O

2.3 Main lemma

We now present one of the main results of this thesis.

2.3.1 Local and graded versions of the main lemma

Lemma 2.3.1. Let (R, m) be a Noetherian local domain. Let I = (ay,...,aq)R be an
integrally closed ideal. Let I; = (ay, ..., d;,...,aq)R. If mI; C I for 1 <i < d, then,

ml is integrally closed in R.

Proof. We first observe that, mI C I, since mI C I (which follows from the fact that
m/ C [ and remark 1.1.3(2), page 2, [HS06]) and I is integrally closed. In other
words, every element of R that is integral over m/ lies in /. We will show that no
minimal generator of I is integral over m/.

Since (R, m) is a Noetherian local domain, for any ideal a of R, r € @ if and only
if for every discrete valuation ring V' such that R C V C Frac(R) and my N R = m,

where my is the maximal ideal of V', we have that r € al/ (proposition 6.8.4, page
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135, [HS06]). For the purposes of this proof, we will call a discrete valuation ring V'
such that R C V C Frac(R) and my N R = m, where my is the maximal ideal of V
an R-special discrete valuation ring.

Without loss of generality, we may assume that {ai,...,a,} is a minimal set of
generators for I. We first show that no generator a; of I is integral over m/ for
i € {1,...,d}. Suppose that a; is integral over m/ for some i € {1,...,d}. Then, for
every R-special discrete valuation ring V', we have that a; € (mI)V. We may write
that I = I;+a;R. So that, (mI)V = (m[;)V +(ma;)V. Since V is a discrete valuation
ring containing R there is a discrete valuation on Frac(R), say v, such that for any
s € Frac(R), s € V <= v(s) > 0. For any ideal J of V define v(J) = min{v(s) :
s € J}. Then a; € (mI)V = v(a;) > v((mI)V) = min{v((m;)V),v((ma;)V)}.
We will show that v(a;) < v((ma;)V), which would imply that v(a;) > v((ml;)V).
Suppose that m = (by, ..., b;) R. Then (ma;)V = (biay, ..., bia;)V. Since V is a discrete
valuation ring, the ideals of V' are totally ordered under inclusion. So after relabeling
if necessary, we may assume that (b,a;)V C (b_1a;)V C ... C (b1a;)V. So that,
(ma;))V = (bia;)V. Then (ma;)V = (b1a))V = {s € V : v(s) > v((hha;))}. If
v(a;) > v(bia;), then, since v(bia;) = v(b1) + v(a;), we have that v(b;) < 0. We
cannot have, v(b;) < 0 since by € V. So v(b;) = 0. Then b; must be a unit in V
so that mV = (by,...,0,)V = V. This is a contradiction, since if my is the maximal
ideal of V', we have that (my N R)V C my (proposition 1.17(i), page 10, [AM94])
but my N R = m since V is R-special and this implies that (my N R)V = mV =
V C my. So v(a;) < v(bia;) = v((ma;)V). Hence, v(a;) > v((m/;)V) and thus,
a; € (mI;)V. Since this statement is true for every R-special discrete valuation ring
V, we have that a; € mI,. By hypothesis, ml; C I,. So a; € I,. However, this

contradicts the minimality of the generating set {a1, ..., aq} for I for if a; € I;, then,
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I = (a1,..., G5, ...;aq) R = (a1, ...,d;,...,aq) R + a;R = I. This shows that a; is not
integral over m/ for any ¢ such that 1 <17 <d.

Now assume that m/ is not integrally closed. Suppose that a = ria;+...+rqaq € 1
(where 7y, ...,7q € R) such that a € mI —mI. If r; is not a unit for some j € {1, ...,d},
then, since R is a local ring, r; € m. Hence, r;ja; € mI. So that, a —r;a; € ml —ml.
So we may assume that rq,...,7. are units for some e such that 1 < e < d and
Tett,...,7q € m. Then b = riay + ... + rea, € mI — ml. Moreover, {b,ay,as, ..., aq}
is also a minimal set of generators for I. For we have that a; = 7 'b — (r{*(r2as +
o Frear)) € (byas,az,...,aq)R, so I C (b,ay,as,...,aq)R. Conversely, b € I, so
(b,as,as, ...,aq)R C I. So {b,as,as,...,aq} is a generating set for I and since it has
size d, it is a minimal generating set, since in a local ring all minimal generating sets
of an ideal have the same size by Nakayama’s lemma. Then, by the arguments in
the first paragraph, b is not integral over m/, which is a contradiction.

Thus, m/ is integrally closed in R. O

We will need a graded version of lemma 2.3.1. We first make a few definitions

following Huneke and Swanson [HSO06].

Definition 2.3.2. Let G be an abelian monoid. A ring R is said to be G-graded if

the following conditions are satisfied:
1. R = ®4eq Ry, where Ry is a subgroup of R under addition.
2. For each ¢,¢ € G, RR; C R, .

An element r € R will be said to be G-homogeneous of degree (denoted deg) g if
r € R, for some g € G. Anideal I of R is said to be G-homogeneous if I is generated

by G-homogeneous elements in R.
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Remark 2.3.3. Note that if G is an abelian monoid and R is a G-graded ring, then,
Ry is a subring of R. Further, if I is a G-homogeneous ideal and f € I, then, if
f=fi+ ..+ fi, where fi,..., f; are homogeneous, then, fi,..., f; € I. For suppose
that aq,...,aq are G-homogeneous generators of ISo f = ria; + ... + rqay, where
r,....,rqg € R. Writing r;, = Z;erﬁ, where r;; is G-homogeneous for 1 < 7 < my
and 1 <1 < d, we get that f| + ... + f; = ZleZgn:ilrﬁai. Expanding the right hand
side and equating the G-homogeneous components we get that fi, ..., f; are each an

R-linear combination of a4, ...,aq and hence fi,..., f; € I.

We will be interested in the case where G = Z? x Z%, q,r € Z>o, R is a
G-graded k-algebra, where k is a field, By = k and m = ©yee 0} [y is the unique
G-homogeneous maximal ideal® of R. We quote a result needed for the graded version

of the main lemma.

Theorem 2.3.4. Let G = Z? X Z% , q,7 € Z>o. Let I be a G-homogeneous ideal
in a G-graded ring R. Then I is G-homogeneous. Further, if R is Noetherian, then,
the associated primes of I are G-homogeneous and it has a G-homogeneous primary

decomposition (corollary 5.2.3, page 97 and corollary A.3.2, page 395, [HS06]).

Lemma 2.3.5. Let G = Z% x 7%, q,v € Z>o. Let R be a G-graded Noethe-
rian domain with Ry = k, a field and such that m = ®gyeanjoy Ry is the unique
G-homogeneous maximal ideal of R. Let I = (ay,...,aq)R be an integrally closed
G-homogeneous ideal such that {ai, ...,aq} is a G-homogeneous set of generators for
I. Let I; = (a1, ...,ds,...,a0)R. If mI; C I; for 1 < i < d, then, mI is integrally

closed in R.

Proof. As in the proof of lemma 2.3.1, we have that m/ C I. We will show that no

INote that in general @gec\ {0} g need not be an ideal of R. For example, let R = k[, v,y 1] and let deg(z) =
(1,0), deg(y) = (0,1) while deg(a) = 0 for a € k, then, y € Dyeq\ {0} g and if B e\ {0} g were an ideal, it is
closed under multiplication, so y~ly =1 € ®gea\ {0} Fg, which is a contradiction.
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homogeneous minimal generator of I is integral over mI.

Since R is a Noetherian domain, for any ideal a of R, » € @ if and only if for
every discrete valuation ring V' such that R C V C Frac(R) and my N R is a
maximal ideal of R (where my is the maximal ideal of V'), we have that r € al/
(proposition 6.8.4, page 135, [HS06]). We claim that when R is G-graded, where
G =72 X Z%,, q,7 € Z>p, with Ry = k, a field and such that m = @yce\ (0} Fy is
the unique G-homogeneous maximal ideal of R, if a is a G-homogeneous ideal, we
only need to let the discrete valuation rings in the above collection vary over those
centered on the G-homogeneous maximal ideal of R, i.e., over those discrete valuation
rings whose maximal ideal contracts to the homogeneous maximal ideal of R. For
in this case, @ is also G-homogeneous by theorem 2.3.4. Suppose that @ = N._,q;
is an irredundant primary decomposition for @. Then ¢; is also G-homogeneous
for 1 <7 <[ and is thus contained in the unique G-homogeneous maximal ideal m.
Setting S = R\m, we get that S~*(a) = S~1(N'_,qi) = N'_, S~ 'q; (proposition 3.11.v,
page 42, [AM94]). Also, since q; € m, S™!g; is primary for 1 < i < [ (proposition

4.8.ii, page 52, [AM94]) and S—1(a) = S~'(a) (proposition 1.1.4, page 3, [HS06]).
Now S—H(@)NR=S"'@NR=(N_S"qg)"R=n_,(S"'¢NR) =nNi_,q = @,
where the second equality follows from exercise 1.18, page 10, [AM94] and the third
equality follows from (proposition 4.8.ii, page 52, [AM94]). Thus, r € @ if and only if
r € aRy. Further, since R, is a Noetherian local domain, r € aR,, if and only if for
every discrete valuation ring V' such that R, C V' C Frac(Ry,) and my N Ry = MRy,
where my, is the maximal ideal of V', we have that r € (aRy)V (proposition 6.8.4,
page 135, [HS06]). Finally, since R is a domain, Frac(R,) = Frac(R) and by the

previous two statements, r € a if and only if for every discrete valuation ring V' such

that R C V C Frac(R) and my N R = mR, N R = m, where my is the maximal ideal
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of V, we have that r € (aR,)V = aV. This proves the claim. For the purposes of
this proof, we will call a discrete valuation ring V' such that R C V' C Frac(R) and
my N R = m, where my is the maximal ideal of V' an R-special discrete valuation
ring.

The next set of arguments parallel those in the proof of 2.3.1.

We may assume that {ay, ..., a4} is a minimal G-homogeneous set of generators for
I without loss of generality. We first show that no generator ay, ..., aq of I is integral
over m/. Suppose that a; is integral over m/ for some i € {1,...,d}. Then, for every
R-special discrete valuation ring V', we have that a; € (mI)V. We may write that
I = I, 4+ a;R. So that, (mI)V = (m[;)V + (ma;)V. Since V is a discrete valuation
ring containing R there is a discrete valuation on Frac(R), say v, such that for any
s € Frac(R), s € V. <= v(s) > 0. For any ideal J of V define v(J) = min{v(s) :
s € J}. Then a; € (mI)V = v(a;) > v((mI)V) = min{v((m;)V),v((ma;)V)}.
We will show that v(a;) < v((ma;)V), which would imply that v(a;) > v((m;)V).
Suppose that m = (by, ..., b;) R. Then (ma;)V = (bia;, ..., bia;)V. Since V is a discrete
valuation ring, the ideals of V' are totally ordered under inclusion. So after relabeling
if necessary, we may assume that (b,a;)V C (b;_1a;)V C ... C (b1a;)V. So that,
(ma;)V = (b1a;)V. Then (ma,))V = (bya;)V = {s € V : v(s) > v((bya;))}. If
v(a;) > v(bia;), then, since v(bia;) = v(by) + v(a;), we have that v(b) < 0. We
cannot have, v(b;) < 0 since by € V. So v(b;) = 0. Then b; must be a unit in V
so that mV = (by,...,b,)V = V. This is a contradiction since, if my is the maximal
ideal of V| we have that (my N R)V C my (proposition 1.17(i), page 10, [AM94]) but
my N R = msince V is R-special and this implies that (my N R)V =mV =V C my.
So v(a;) < v(bia;) = v((ma;)V). Hence, v(a;) > v((ml;)V), i.e., a; € (ml;)V. Since

this statement is true for every R-special discrete valuation ring V' and since m, [,
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and consequently, m/; are G-homogeneous, we have that a;, € mI;. By hypothesis,
ml; C I;. So a; € I;. However, this contradicts the minimality of the generating set
{ai, ..., aq} for I for if a; € I;, then, I; = (ay,..., G4, ...,aq9) R = (aq, ..., d;, ..., aq9) R +
a; R = I. This shows that a; is not integral over m/ for any ¢ such that 1 <17 < d.
Now assume that m/ is not integrally closed. Suppose that a = ria;+...+rqaq € 1
(where 71, ...,7q € R) such that a € mI —mI. Since m, I are G-homogeneous, so is
m/ and hence m/ is G-homogeneous by theorem 2.3.4. By remark 2.3.3, at least one
G-homogeneous part of @ must be in mI but not in m/. So without loss of generality,
we may assume that a is G-homogeneous. Now, by definition, R = ®yealRy =
Ro® (Byecf0y Ry) = k®m. So we can write that r; = 7;+s;, where r; € mand s; € k
for 1 < i < d. Now suppose that 7;a; # 0 for some i € {1,...,d}. Then (r;a; + s;a;)
is a non-zero summand of a. Since a is G-homogeneous, and since r;, s; must have
different degrees, exactly one of T;&i and s;a; is non-zero. If s;a; = 0 for 1 < i < d,
then, a = r’lal + ...+ r:iad € m/, which is a contradiction. So there exists some 7 €
{1, ..,d} such that s;a; # 0. Without loss of generality, assume that sja; # 0. Then
{b, as, as, ...,aq} is also a minimal G-homogeneous set of generators for I. For we have
that a; = s7'b— (57" (reag +...+74aq)) € (b, az,as, ...,aq) R, so I C (b,as,as, ...,aq)R.
Conversely, b € I, so (b, as,as,...,aq)R C I. So {b,as,as, ...,aq} is a generating set
for I and each generator is G-homogeneous. Further, (as, ..., as)R C I by minimality
of {ai,...,aq}. Finally, if for some [ € {2,...,d}, a; € (b,as,...,dy,...,aq)R, then,
a; = arb+asas+...+ o101 +opai1+...+agag for some g, .. 1, 0, . g € R
Since «a; is a G-homogeneous, we may assume that each of the summands in the
preceding expression is G-homogeneous of the same degree. Then, arguing as earlier

in the paragraph, either a; € kor a;j e mfor j € {1,...., 01— 1,1+ 1,...d}. If oy is a
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unit, we can multiply the above equation by aj's;* to get,
ay = ay sy (ag — ay (b — s1ay) — (agag + ... + ap_1ai_1 + qup1a + ..+ agag))

Then the right hand side of the preceding equation is an R—linear combination of
as, ..., aq, contradicting the minimality of {aq,..,as}. If oy is not a unit, oy € m.

Then we can write that
a; = a1(b— rmay) + cara; + agag + ...+ qpgai1 + agai + -+ agag

Since by assumption this is a G-homogeneous expression for a; and since ayr; €
m, we must have, ayr; = 0. So the right hand side of the above equation is a
R—linear combination of ay,...,a;_1,a;41, ..., ag, again contradicting the minimality
of {ay,...,aq}.

Thus, {b, as, ..., aq} is a minimal set of generators for I and by the arguments in
the first paragraph, b is not integral over m/, which is a contradiction.

Thus, m/ is integrally closed in R. O]

2.3.2 Consequences of the main lemma

We will use lemma 2.3.5 to show that if [ is a radical ideal in a polynomial ring
R generated by one binomial and several monomials, then, m/ is integrally closed,
where m is the standard homogeneous maximal ideal in the ring. First we will
define a non-standard grading on the polynomial ring, which will make such ideals

homogeneous with respect to the grading.

Note 2.3.6. Let R = k[xy,...,x,]|, where k is a field. Let pu = z}*...2% and v =

n
xi'...axkr such that p # v. Let d; = u; —v; for 1 <i <n—1and let h = v, — u,.
We may assume that h > 0 after relabeling indeterminates if necessary. Define a

Z" '-grading on R such that deg(a) = (0,...,0) for a € k, deg(z;) = (0, ..., h, ..., 0)
~—_—

ith position
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for 1 <i <mn-—1and deg(z,) = (dq,...,d,_1). Then, under this grading, we show

that deg(p) = deg(v).

Let deg()); denote the ith component of deg(A) for any monomial A\. Then, for
1< <n—1,
deg(p)i = wih + upd; = wi(vy — Up) + Up (U — V;) = WUy — Uy + UpU; — UyV; =

UiV — U V; = Vp Vi — Up Vi +U0p — V0 = V(U —Up) +0, (0w, —v;) = vih+v,d; = deg(v);

Proposition 2.3.7. With notation as in note 2.3.6, suppose that gcd(h,d;) =1 for
some j such that 1 < j < n —1. Then a pair of distinct monomials have the same
degree if and only if they are of the form A\u?, \v?, where X\ is a monomial and q s

some positive integer.

Proof. Clearly, Au? and Av? have the same degree since ¢ and v have the same degree.
Now suppose that ' = xlflla:z; and V' = :1:11);3:2; are distinct monomials in R
such that deg(u') = deg(v).
Equating components of the degrees, we have that w;h + u,d; = v;h + v, d;. So
(u; — v;)h = (v, — u, )d;. Now there exists an integer j such that 1 < j <n — 1 and
ged(h, d;) = 1. So (u; — v;)h = (v, — u,)d; implies that h divides v, — u,.

Hence, there exists a nonnegative integer ¢ such that

Thus,
U, — qUp = U, — QU = Ty (s8Y).
Therefore, u;L = qu, + r, and U; = qu, + 7.
In fact, ¢ must be positive, for if ¢ = 0, then, v, — u, = 0 by the above equation

and hence, (u; — v;)h = (v, — u,)d; = 0d; = 0. Since h > 0 by assumption, we have
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that u; — v; =0 for 1 <i <n. Hence, ;i =1/, which is a contrary to the supposition
that p', v are distinct.

Also, (u; — v;)h = (v, —u,)d; = hqd;, then, since h # 0, for 1 <i < n — 1, we
have that

u; — v;- =diq = (u; — v4)q.

Thus,

U; —qu; = U; —qu; =T; (Sa}’)-

Hence, u; = qu; + r; and v; = qu; + r;. The above arguments show that these
equations hold for 1 <i <n.
Then ' = a8 g@untrn — (8% gdun) (27 2™) = pI\, where A = z'...al"

/
and v/ = g7 gauetre = (g0 00 (g 2T = vIN. O

Corollary 2.3.8. With notation as in note 2.5.6, suppose that ged(h,dy, ..., d, 1) =
1. Then a pair of distinct monomials have the same degree if and only if they are of

the form Aul, \v¢, where X is a monomial and q is some positive integer.

Proof. 1f ged(h,dy,...,d,—1) = 1, then, there exists an integer j such that. 1 <
j < n—1 and ged(h,d;) = 1. Then, by proposition 2.3.7, we get the desired

conclusion. O

Definition 2.3.9. Let R = k[zy,..,z,] with k a field. Let p = z7*..2% and

v = x{'..al with p # v. Then we define a (u,v)-special grading on R to be

the Z" '-grading on R as in note 2.3.6.

Theorem 2.3.10. Let R = k[zy, ..,x,] with k a field. Let I = (uq, .., pa, ape + bV) R,
where i1, .., g, 1, vV are monomials in R and a,b € k. If I is radical, then, mI is

integrally closed.
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Proof. For an ideal a in R let J, denote the ideal generated by the monomials in a.
We may assume that a,b # 0, u # v, p,v ¢ Jr. For if any of these conditions don’t
hold, then, I is a radical monomial ideal and the statement of the theorem is true
by theorem 2.1.1.

Now G = Z" ! under the usual operation of addition is an abelian monoid.
Then the (u,v)-special grading on R is a G-grading with Ry = R, = k. Fur-
ther, R is a Noetherian domain and m := ®gcq\j0}Rg = (21, ..., %) R is the unique
G-homogeneous maximal ideal of R. To see the latter claim, note that if z7"...x¢" # 1
is a monomial in R, then, using the notation in note 2.3.6, deg(z{*...2%") = (a;h +
apdy, ...;an_1h + apd,_1). Now, since d; > 0 for at least one i € {1,....n — 1}, say
i = j, at least one coordinate in deg(z{*...z%") must be positive, for if a,, = 0, then,
a;h+and; = a;h > 0 for a; > 0 and if a,, > 0, then, ajh+a,d; > 0. Thus, ©gee 01 Ly
contains all monomials other than 1 and hence contains all linear combinations of
monomials. Thus, ®yecc\ 0y Ry = (71, ..., 7n) R as sets and hence m = @gee 0y Ry is
an ideal. Further, since m is generated by monomials, it is G-homogeneous and since
it contains all monomials other than 1, it contains all G-homogeneous ideals. Thus,
m = Dgeq\(0}fly = (21, ..., x,) R is the unique G-homogeneous maximal ideal in R.

Moreover, by note 2.3.6, deg(u) = deg(v) under this grading. Hence, ap + bv is a
G-homogeneous element and [/ is a G-homogeneous ideal. Since [ is a radical ideal, by
corollary 2.2.9, the ideal generated by the monomials in [ is a radical ideal and apu+bv
is a squarefree binomial. So we may write that I = (11, ..., n, au+bv) R, where ny, .., n
are squarefree monomials and J; = (1, ...,n:)R. Let I, = (1, ..., iy ..., M, apu+bv) R.

If I, is radical for 1 < ¢ <'t, then, since a radical ideal is integrally closed (remark

1.1.3.(4), page 2, [HS06|), we have that I,

m s - In,» Jr are integrally closed ideals and

hence mI,, C I,, = I, and mJ; C J; = J; (remark 1.1.3(2), page 2, [HS06]). Then,
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by lemma 2.3.5, m/ is integrally closed in R.

Now suppose that I, is not radical for all i. After relabeling if necessary, we
may assume that [, is not radical for 1 < ¢ < s; < ¢ and [, is radical for
s1+1 < i <t Then we must have that J;, # (n1,...; 7 .., )R by 2.2.9.
Let Jix = (1, .., M, -»m)R. Then, by proposition 2.2.11, Jr, = Jix + (Ji1 :
wv + (Jix @ v)u. We append generators of (J;1 @ p)v,(Jig @ v)p for 1 < i <
s1, say {011,...,0m1} to the list of generators {n,...,n:} of J; and rewrite I =
(M1, s My 6115 ovy Omp, ape + bU)R, since (J;1 @ p)v C ‘]Im' C Jrand (J;q : v)p C

Ji

n C Jr. We may assume that ¢; 1, ..., 0,1 are squarefree since I is radical. Also,

Is,, = (M1, o me, 011, ...,5;71, ces Om1,apt + bv)R = I. Then if

]771'71 = (’I’/l, '-')ﬁi) "‘77775751,17 ...,5m71,a,u —+ bl/)R

are radical for 1 < ¢ < s, the hypothesis of lemma 2.3.5 is satisfied and we have
that mI = mI (note that I,.1 =1, for s +1 < ¢ <t, which are already assumed to
be radical). If I, ; are not all radical, then, we repeat the process in this paragraph.
Explicitly, we may assume that I, ; is not radical for 1 < i < sy < 51 and I,
is radical for sy +1 < i < ¢t. We define J;» similarly and append generators of
(Jiz @ v, (Jia @ v)u for 1 < i < sy, to the list of generators of I. We note
that J;; C J; 2. If the ideals obtained by deleting one generator from the specified
list of generators of I are not all radical, we repeat the above process of augmenting
generators. Since R is Noetherian, the chain of ideals J;; C J; 2 C J; 3 C ... eventually
stabilizes, say at step N, so that J; x are the ideals generated by the monomials in
Iy, Then, since J; x are squarefree by construction, I, x must be all radical by

2.2.9. Then, applying lemma 2.3.5, we get that m[ is integrally closed. [

We will end this section with a couple of further applications of the main lemma
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from the previous section.

Proposition 2.3.11. Let R = k[[z1, ..., x,||, where k is a field. Letm = (x4, ..., z,)R.

Suppose that I = (fi, ..., fa)R is such that either:

e fi,..., fq4 are homogeneous linear polynomials.

e fi,..., fq are irreducible elements of R such that f; and fi,..., fi_1, fiz1, - fa
can be written in terms of distinct sets of indeterminates for all 7 such that

1< <d.

Then m/I is integrally closed.

~

Proof. Here I and I; = (f1,..., fi, ..., fn) R are prime ideals in R and hence integrally
closed. Then mI; C I; = I; (remark 1.1.3(2), page 2, [HS06]). So lemma 2.3.1 applies

and hence m/ is integrally closed in R. [

Proposition 2.3.12. Let R = k[xy, ..., x,]/p, where p is a prime ideal in k[z1, ..., 2]
and k is an infinite field. Suppose that I is an ideal in R that can be minimally
generated by depth(I) elements and that I is integrally closed. Then, for every prime

ideal P € Supp(I), we have that (PI)Rp is integrally closed in Rp.

Proof. Davis proves that any ideal J in R has a minimal basis such that any subset of
this basis of size less than depth(.J) generates a prime ideal in R (theorem 2, [Dav78]).
Let I = (y1,...,ya)R, where d = depth(I) and assume that {y;,...,yq} is a basis
such that every subset of this basis (of size necessarily less than depth(7)) generates
a prime ideal. Then the ideals I; = (y1,..., Ui, ...,yqa)R are prime for 1 < ¢ < d
and hence integrally closed (remark 1.1.3.(4), page 2, [HS06]). Since P € Supp(I),
we have that I € P. Then IRp = (%,...,%)Rp. Now IRp is integrally closed

since [/ is integrally closed (proposition 1.1.4, page 3, [HS06]). Further, the ideals



42

—=[S>

(IRp)i = (%, ...,

integrally closed. Finally, we have that (PRp)(IRp); C (IRp); = (IRp);. Then, by

,..., ) Rp are prime (since /; are prime and I; C P) and hence

lemma 2.3.1, (PRp)(IRp) = (PI)Rp is integrally closed in Rp. O

2.4 Monomial type ideals in regular local rings

Let (R, m) be a regular local ring. Let x = x1, ..., x4 be a fixed regular system of
parameters of R, where d = dim(R). By a monomial over z, we mean an element
of R of the form z{'...z)* with a; non-negative integers for i = 1,...,d. We deem a
monomial over z to be squarefree if 0 < a; < 1 for ¢ = 1,...,d. By a (squarefree)
monomial ideal over z, we mean an ideal generated by (squarefree) monomials over z.
For a monomial p = z{*...z* over z, define the squarefree part of p, u# = x?l...xfld,
where b; = 1 if a; > 1 and b; = 0 if a; = 0. We shall show that for a squarefree
monomial ideal I over z, m[ is integrally closed in R.

Such ideals were considered in [KS03]. In that paper, monomial ideals over reg-
ular sequences contained in the Jacobson radical in a Noetherian ring were defined
analogously. Clearly, our definition above is a special case of this. Among the re-
sults proved in that paper include: the sum, product and colon of monomial ideals
over regular sequences are monomial and under some mild assumptions the integral
closure of a monomial ideal over regular sequences is monomial.

Hiibl-Swanson [HS08| define an analogous notion of monomial ideals over per-
mutable regular sequences in a regular domain such that every subsequence generates
a prime ideal in the ring. Again our definition in the first paragraph is a special case
of this since a regular local ring is a domain and a regular system of parameters is
a permutable regular sequence such that every subsequence generates a prime ideal.

Hiibl-Swanson show that the integral closure of these generalized monomial ideals
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is also monomial and in fact it can be described in terms of the Newton polygon
in a manner analogous to the monomial ideals in polynomial rings. Note that, the
sequence of indeterminates in a polynomial ring over a field in finitely many indeter-
minates, is a special case of the kind of regular sequences considered in [KS03| and
[HS08|. So the results in these papers can be considered as generalizations of the
results on monomial ideals in polynomial rings.

We first prove the following lemma to show that squarefree monomial ideals over

a regular system of parameters is radical.

Lemma 2.4.1. Let (R, m) be a reqular local ring. Let x = x1, ..., 24 be a fized reqular
system of parameters of R, where d = dim(R). Let I = (uy, ..., )R be a monomial

ideal over x in R, where iy, ..., ity are squarefree monomials over x. Then I is radical.

Proof. Let pj = wj,..xj, ., where 1 < ji < ... < jyy) < d and k(j) € {1,...,d}.
Kiyek-Stiickrad prove (proposition 1, [KS03|) that for monomial ideals a, b, ¢ over
regular sequences contained in the Jacobson radical of a Noetherian ring (a + b)N¢ =
(anc¢)+ (bNc). This property is known as the modular law.

Consider J; = (x1,, f2, -y pig) RO (21, 2, ..., ut)Rﬂ..ﬂ(xlk(l),ug, ..., ig) R. Denote

I = (p2, ..., i) R. Then, by the modular law,

(IL’hR + Il) N (.leR + Il) = ((IhR + Il) N (.I12R)> + ((l’hR + Il) N Il)
= ((z, R+ L) N (21, R)) + Iy
= ((z1,R) N (21, R)) + (L Nz, R) + Iy

= ((z, R) N (21,R)) + L1

Now for any principal ideals of R, say a = aR,b = bR, we have that anNb =

(lem(a, b)) R (proposition 1, [KS03])?. Thus, ((z1,R)N (z1,R)) = x1,21,R. So that,

2Note that R is a unique factorization domain here so the notion of lem is well defined. The usual definition
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(x, R+ 1)) N (x,R + 1) = z1,21,R + I,. Proceeding inductively, we have that,
Ji=(x , R+ L)N(z,R+1)N...N (xlm)R—k L) = T1,..-T1,, R+ I = I. Carrying
out an analogous process for the other monomials in the generating set of I, we can
write that I = N(xy,,, ..., 7y, )R, where I(j) € {1,..,k(j)}. Now zy,,.., 7y, is
part of a regular system of parameters in R for any choice of subscripts and thus,
R/(21,4s -+ Tty ) ) R is @ domain. Consequently, the ideals (z1,,,, ..., Zt,,, ) R are prime.

Then [ is an intersection of prime ideals is hence radical. O

Proposition 2.4.2. Let (R,m) be a regular local ring. Let x = w1, ..., x4 be a fized
reqular system of parameters of R, where d = dim(R). Let I = (u1, ..., ) R, where

[, .., e are monomials over x. Then /T = (/ff, ...,M#)R .
Proof. Let p; = 2.2 Let u; = max{u;|1 < j < d}. Then (uf)“ € I

since (uf&)“ is a multiple of u; for 1 < i < t. Set N = uy + ... + uy — t + 1.

Then ((ufﬁ, ol JR)N C I by the pigeonhole principle. Taking radicals, we have

that \/((,uf#, RN = \/(uf&, DR = (pF, . u )R C VI, where the sec-
ond equality follows from lemma 2.4.1. Conversely, since p; is a multiple of ufk,
I C (ufﬁ,...,pf&)R. So taking radicals we have that I C (uf,...,uf)R =

(i, . p)R. Thus, VI = (uff, ..., uf)R. O
Now we are ready to prove the main theorem of this section.

Theorem 2.4.3. Let (R,m) be a reqular local ring. Let x = x1,...,xq be a fized
reqular system of parameters, where d = dim(R). Let I be a squarefree monomial

1deal over x. Then mlI s integrally closed.

Proof. Let I = (uq, ..., i¢) R, where py, ..., u; are squarefree monomials over x. By

lemma 2.4.1, I is radical and hence integrally closed (remark 1.1.3.(4), page 2,

of lem for a unique factorization domain coincides with the definition of lcm in [KS03| for the kind of ideals they
consider.
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[HS06|). Further, by the same lemma, I; = (1, ..., fis, ..., ) R is also radical (and
hence integrally closed) since I; is a squarefree monomial ideal. Then ml; CI, =1,

Then, by lemma 2.3.1, m[ is integrally closed in R. O]

Proposition 2.4.4. Let (R,m) be a regular local ring. Let x = w1, ..., x4 be a fized
reqular system of parameters of R, where d = dim(R). Let I be a monomial ideal

over . Then mI C mv/1.

Proof. Since I C /I, mI C my/I and hence, mI C mv/I. Now lemma 2.4.1 shows
that v/T is a squarefree monomial ideal over z. Then, by theorem 2.4.3, my/I = mv/I.

Thus, mI C mV/1. O

Note the similarity between the above proposition and theorem 2.1.1. Using the
characterization of the integral closure of monomial ideals over a regular system of
parameters in a regular local ring due to Hiibl-Swanson ([HS08|), we can adapt the
proof of theorem 2.1.1 to obtain the preceding two results. Also, we can use lemma

2.3.1 to obtain another proof of theorem 2.1.1.

2.5 Hiibl’s conjecture

In [Hiib99|, Hiibl makes the following conjecture.

Conjecture 2.5.1. Let (R, m) be a regular local ring. Let I be a radical ideal in R.

Let f € I such that f* € I""Y. Then f € mlI.

Hiibl [Hib99] remarks that a positive answer to the above conjecture implies that
any reduced local algebra R/k, essentially of finite type over a field k of characteristic
0 is evolutionarily stable. Note that it is necessary to assume that [ is radical in

conjecture 2.5.1, otherwise we have the following counterexample (remark 1.5.(i),

|Hiih99]) .
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Example 2.5.2. Let R = k[[z,y]] be a formal power series ring over a field k. Let
I = (2%, 2%y, y*)R. Then, if f := 2*y? we have that > = 2% = (2%)(23)(y?)(v?) €

I* but f ¢ mI, where m = (z,y)R.

Epstein and Hochster (theorem 5.4, [EH11|) define the inner integral closure of

an ideal in a Noetherian ring as follows (among other equivalent ways).

Definition 2.5.3. Let R be a Noetherian ring and [ an ideal of R. If f € I and
there is a positive integer n such that f™ € I"*! then, we say f lies in the inner

integral closure of I (denoted I-1).

Then conjecture 2.5.1 says that if (R, m) is a regular local ring and I a radical
ideal in R, then, I-; C ml.
We make the earlier remark due to Hiibl connecting this conjecture to the question

of existence of non-trivial evolutions more precise.

Remark 2.5.4. (Hiibl) [Hiib99] Let k be a field of characteristic 0. A reduced local
algebra R/k, essentially of finite type has no non-trivial evolutions if and only if it

has a presentation R = S/I such that S/k is smooth and I-; C m[.
We now state two positive results for this conjecture due to Hiibl.
Theorem 2.5.5. [Hib99] Let (R, m) be a reqular local ring and let I be an equidi-

mensional radical ideal, which s a complete intersection on the punctured spectrum

of R and that depth(R) > 1. Then I.; C ml.

Theorem 2.5.6. [Hib99] Let (R, m) be a reqular local ring and let I be an equidi-

mensional radical ideal such that R/I2 is Cohen-Macaulay. Then I-.; C ml.

Definition 2.5.7. Let R = S[zy, ..., x,], where S is a commutative ring. A polyno-

mial f € R is said to be quasihomogeneous if there exists an n-tuple of non-negative



47

integers (iy,...,%,) such that f(A"zy, ..., \Nnx,) = X" f(zy,...,x,) for some positive

integer m.

We will show that if R is the polynomial ring over a field, I a radical ideal of R
and if f is a quasihomogeneous element such that f € I., then, f € mI. We first

need the following lemma.

Lemma 2.5.8. Let R = k[z1, ..., z4], where k is a field and let xy, ..., x4 be indeter-
minates over k. Let I C R be a radical ideal. Let f € R satisfy f* € 1" for some

positive integer n. Then
1. If n > 1 and char(k) t n, then, f”_l(g—gi) € I" and hence f(%) S

2. If char(k) { n!, then, 2L € I for 1 <i < d.

Proof. We have that f* € I"*'. So 20 — pn10l ¢ [n Since k is a field

and char(k) t n, we have that f”flg—i € I". Then (f(g—i))”*l € I" and hence
f(%) € L.

. an n an n 8
For the second assertion, we observe that, a(xfg ) e 1. Now a(ng) = (n!)(a—i)"—kfg,

where g = g(f, 2L oy s g%;{). Since f* € I"™! C I and I is radical, we have that

) Ba;? 0a?

f €1, sothat fg € I. Hence, (n!)(2L)" € I. Since char(k) { n!, (2L)" € I. Again,

i ox;

since [ is radical, % el forl<i<d. O

Proposition 2.5.9. Let R = k[xq,...,x4], where k is a field and let x1,...,x4 be
indeterminates over k. Let I C R be a radical ideal and m = (xq,...,xq)R. Let
f € R be a quasihomogeneous element such that f € I.y. If char(k) t (n!)deg(f),

then, f € ml.

Proof. Suppose that n is a positive integer such that f* € I"*!. Since f is quasiho-

mogeneous, by Euler’s formula, (deg(f))f = Ele(deg(xi))xig—ai. As shown in lemma
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2.5.8, g—{i € [ fori=1,...,d. Then, since char(k) { deg(f) and k is a field deg(f) is

invertible in k, we have that f € m/. n



CHAPTER 3

Eisenbud-Mazur conjecture

In this chapter we obtain affirmative results for the Eisenbud-Mazur conjecture

in some special cases.

3.1 Prime ideals in certain subrings of formal power series rings.

In this section we will consider the Eisenbud-Mazur conjecture for the following
case.

Let R = kl[[t, x1, ..., ]| be the formal power series ring over a field k of character-
istic 0, in m+1 indeterminates. Let S = k[[t?, x1, ..., z]]. Let fi(t), ..., fm(t) € E[[t]].
Let Q1 = (z1—f1(t), ..., @m— [ (t)) R and Q2 = (21— f1(—1), ..., T — frn(—1t))R. Then
(1, Q2 are prime ideals that are conjugate under the action of the automorphism on R
given by 0 : R — R, where o(t) = —t and o(z;) = z; for 1 < i < m. Further, Q1, Q>
contract to the same prime ideal, say Pin S, i.e., P = Q1NS = QNS = (Q1NQ2)NS.
Let m = (¢3, 21, ..., 2,)S. We will deem the above set of conditions as hypothesis (*).
Under hypothesis (*), we will show that P? C mP.

This situation is not as special as it may seem. We show, in proposition 3.1.4
below, that for an equicharacteristic, complete local ring S, in order to prove the
Eisenbud-Mazur conjecture for prime ideals, it is sufficient to restrict to prime ideals

P such that dim(S/P) = 1. Further, we show that if S = k[[t, 1, ..., z,,]], where

49
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k is an algebraically closed field of characteristic 0 and P is a prime ideal in S
such that dim(S/P) = 1, then, there exists a positive integer n such that for R =
k[[tw, @1, ..., £,]] there exists a prime ideal Q = (z1 — f1(t7), ..., T — fm (7)) R such
that P = Q N'S. The case discussed in the preceding paragraph is special of this
set-up with n = 2.

3.1.1 Motivation

We first show that if (R, m) is an equicharacteristic complete local ring and if the
Eisenbud-Mazur conjecture holds for height unmixed ideals I such that dim(R/I) =
1, then, it holds for all height unmixed ideals in R. We first need a few preparatory
results starting with an irreducibility criterion for formal power series (page 164,

[Kun05]).

Theorem 3.1.1. [Kun05] Consider the grading on kl[zx,y] (where k is a field) in
which deg(z) =p > 0 and deg(y) = q¢ > 0. Let R = k[[z,y]] and let f € R\ {0}. Let
I(f) denote the homogeneous polynomial of smallest degree (with respect to the above
grading) occurring in f. If for some choice of p,q, l(f) is an irreducible polynomial

in klx,y|, then, f is irreducible in R.

Lemma 3.1.2. Let R = k[[x1,...,x,]|, where n > 2 and k is a field. If r,s are
positive integers such that ged(r,s) = 1, then, the ideal P = (2] — x5)R is prime in

R.

Proof. By theorem 2.2.2, 2} — x5 generates a prime ideal in k[z1, 23] or equivalently
it is irreducible when ged(r,s) = 1. Then, by theorem 3.1.1, ] — x§ is irreducible
in k[[z1,22]] and hence irreducible in R. Then, since R is a unique factorization

domain, ideal P = (x] — z5) R is prime in R. O
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Proposition 3.1.3. Let (R,m) be an equicharacteristic Noetherian complete local

domain of dimension d > 2. Then, for every positive integer n, there exists a prime

ideal P, # 0 in R such that P, C m™.

Proof. Since (R, m) is an equicharacteristic complete local domain, it is module finite
over S = kl[[x1,...,x4]], where k is a field (theorem 4.3.3, page 61, [HS06]). Since
d > 2, by lemma 3.1.2, p, = (27 —25"")S is a prime ideal in S and p,, C (21, ..., 24)"S.

Let P, be a prime ideal in R lying over p,,. Then P, # 0 and P, C m". ]

Proposition 3.1.4. Let (R,m) be an equicharacteristic Noetherian complete local
ring. Let I be an ideal of R such that dim(R/P) > 1 for every associated prime ideal
P of R. If there exists an element v € R such that r € I®® \ mI, then, there exists
an ideal J such that I C J, r € J®\ mJ and dim(R/J) < dim(R/I). Moreover, if
I 1s height unmized J can be chosen to be a height unmized ideal. If I is radical, J

can be chosen to be radical.

Proof. Let I = py N ...Np,, where p; is a P-primary ideal, be the primary decompo-
sition of 1.

By hypothesis dim(R/P;) > 1. Then, by proposition 3.1.3, R/P; has a non-zero
prime ideal, say Q,; such that Q;, C (m/P;)" for all positive integers t. Without loss
of generality we may choose Q,, such that ht(Q; ) = 1. Fix a positive integer ¢ and
let @;+ denote the preimage of Q;, in R. Set ); = ), for brevity of notation. Then
Q; are prime ideals in R such that P, C @Q; C P; +m! for 1 <4 < n. Then we claim
that g, = (i +Q7) : (R\Q;) ={r € R:rs € (p+Q7") for some s € (R\Q;)} are
Q-primary ideals. Firstly, note that /(p; + Q") = \/ (VP +/Q7) =VE+Q; =
V@Q: = Q; (exercise 1.13, page 9, [AM94]). Now, if € ¢;,,, then, there exists

s € R\Q; such that sz € (p;+Q") C @;. Since s ¢ @; we must have z € @;. Further,
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(pi + Q1) C qin C Q. Taking radicals, we get that Q; = \/(pi + Q") C Vim C
VQ; = Q;. Thus, Vim = Q. Suppose that xy € g, ,,, then, there exists s ¢ Q; such
that szy € (pi+ Q7). If & ¢ Q;, then, sz ¢ Q;. Thus, y € (pi+Q") : (R\ Qi) = qim-
Hence, q; ., is Q;-primary.

Next we claim that Nyez.qim = Pi- Let 7 € Nz Gim- Then there exists a
wy, € R\ @ such that rw,, € (pi + Q") for all m € Z-o. Thus, r € Nyez.,(pi +
QT Rg, = Nmez-,(PiRg, + Q7' Rg,). By Krull’s intersection theorem applied to R,
we have that Nyez.,(QF'Rg,) = 0. So r € piRg, N R = p;, where the last equality
follows since p; is primary (proposition 4.8.ii, page 53, [AM94]).

Now, by Chevalley’s theorem applied to R/p;, there exists a function b; : Z~o —
Zq such that q;5,(v) C pi + m? for all positive integers N. Let Jy = Jipy () N N
Gnon(v)- Then Jy C (pr +mY)N..N(p, + m?Y). We claim that Jy C I +m?~¢
for N > 0 and some positive integer ¢ < N. We prove the claim by induction on n.
Suppose that r € (p;+m»)N(po+m?). Then we can write that r = p;+m; = pa+my
for some p; € p; for i = 1,2 and mi,me € m". Then m; — my = ps — p; €
m¥ N (p;+p2). By the Artin-Rees lemma, there exists a positive integer ¢;5 such that
mY 0 (p1 +po) = mV 2 (M2 N (py +pa)) © VA2 (py 4 py) = mN2p; FmNzp,.
So py — p1 € mYM2p; + mNTezp, . Write py — py = m'1 + m;, where m; c miV—eizp,
for i = 1,2. Then p; + m) = p, — m,. Note that the left hand side of this equation
is an element of p; and the right hand side is an element of py. Thus, each side is
an element of p; Npy. Now r = py +my = (p1 +m)) — (m; —my) € (py Np2) +
mY¥ =2 Thus, (p; +mY) N (pe +m?Y) C (p1 Nps) + mV =2 for N > ¢15. Proceeding
inductively, we can show that there exists a positive integer ¢ such that for NV > ¢,
(pr+m™) N0 (pp +mY) C (p1 N...Npy) +mV ¢ Consequently, Jy C I +m?¥~¢.

Fix one such N > c and set J = Jy.
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By construction, dim(R/J) < dim(R/I). Choose u € I®). Then there exists
v € R such that v is not contained in any minimal prime of I and uwv € I%. Since
for all associated primes Q; of J, Q; C P; +m!, by choosing ¢t > 0, we can ensure
that v is not contained in any minimal prime of J. Then vu € J? and u € J®.
Further, if u ¢ mI, we claim that v ¢ mJ. Suppose that u € mJ. Then, by the
preceding paragraph, v € m(I + m"~¢) = mI + m"T!17¢. Write u = v + w, where
vemland w € m¥t1 ¢ Since w € I® C T and v € mI C I, w e I. So
w € mY =N [. By the Artin-Rees lemma there exists a positive integer ¢ such
that for N+1—c > ¢, mV+1=en T = mN+1=c=¢ (m¢ 0 1) € m¥+1=¢=¢ [ C mI. Thus,
for N > 0, u = v+ w € ml, which contradicts the choice of u. Hence, u € m.J. This
proves the first assertion in the proposition.

If I is height unmixed, then, all associated prime ideals of I are minimal and have
the same height. By choice of ); all associated prime ideals of J will also have the
same height, which is 1 higher than the height of I. So J is height unmixed. If I is
radical, we choose the primary decomposition of I as an intersection of it’s minimal
primes and choose the primary decomposition of J as the intersection of the minimal
Q;. So J is radical and by the arguments in the preceding paragraph we obtain the

desired conclusion. O

Now we show that if S = k[[t, z1, ..., 2], where k is a field under some additional
hypothesis explained below and P is a prime ideal in S such that dim(S/P) = 1,
then, there exists a positive integer n such that for R = k[[tw, 21, ..., 2,n]] there exists
a prime ideal Q = (z1 — fl(t%), ey T — fm(t%))R such that P=Q N S.

Since S/ P is a one dimensional Noetherian complete local domain, its integral clo-
sure, S/_P, is a one dimensional normal Noetherian complete local domain (theorem

2.2.5, page 31 and theorem 4.3.4, page 62, [HS06]) and hence regular (theorem 14.1,
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page 198, [Kem10]). Thus, we can identify, S/P = k[[y]] for some indeterminate
y (theorem 15, [Coh46|). Thus, we have an inclusion F' : S/P < K][[y]]. Under
this inclusion, let ¢ — y"u and z; — ¢;(y) for 1 < i < m, where n is a positive
integer and u is a unit in k[[y]]. Write u = uy + f(y), where f(y) is a power series
in y with no constant term and ug € k. Suppose that uo has an nth root in &k (in
particular, this is true if k is algebraically closed and n is invertible in k). Then u
has an nth root in k[[y]], say, v" = u. Consider the automorphism V' : k[[y]] — k[[y]]
given by V(y) = yv~!. Then we have an injective map V o F': S/P < k[[y]], where
t — y" and z; — g;(yv=1). Set fi(y) := g;(yv~'). This induces a surjective map
G : R =k[[tw, 1, ..., xm]] = K[[y]], where t= — y and z; — fi(y). Suppose that the
kernel of G is ). Note that ) is prime in R since k[[y]] is a domain. Further, since
the restriction of G to S is the map sending t — y™ and z; — f;(y), the kernel of G|g
is P. Thus, QNS = P. Finally, we have that Q = (z; — fi(t%), ... T — f(tn))R
since this ideal is clearly in the kernel of G by definition and the quotient of R modulo

this ideal is precisely k[[t]]. This proves our claim.

3.1.2 Problem set-up

Let R = kl[[t, x1, ..., T]] be the formal power series ring over a field k of character-
istic 0 in m+1 indeterminates. Then the fraction field of R, say K, is k((t, 21, ..., Tm)),
the ring of formal Laurent series over the same indeterminates. Let n > 1 be a pos-
itive integer and let S = k[[t", x1, ..., x,]], where n > 1 is a positive integer. The
fraction field of S can be identified with L = k((t", z1, ..., 2,,)). Now R, S are regular
local rings and hence unique factorization domains and hence normal. We show that
the integral closure of S in L is R. An element o € L integral over S is also integral
over R as S C R. However, since R is normal and L C K, we must have o € R. So

the integral closure of S in L is contained in R. For the converse, we first observe
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that R is a module-finite extension of S. For if f € R, then, we may write that
f=S" gt 2y, ..., 1)t where g; € S for 0 <i <n — 1. Thus, R is integral over
S (proposition 5.1, page 59, [AM94]). Thus, the integral closure of S in L is R.

Now assume that k is algebraically closed if n > 2 .We show that K/L is a Galois
extension and compute the Galois group of K/L. K/L is a finite extension since K is
generated over L by 1,¢,....t""!. So K/L is algebraic. Consider p(z) = 2"—t" € Llx].
Then p(x) splits completely in K[z] as p(z) = II}_, (x — ¢/7't). Also, if p(z) splits
in a subfield of K, say F, then, since x — ¢ is a factor of p(x), t € E and hence
K C E. So K = E. Thus, K is a splitting field for p(z). Further, since K/L is a
finite extension and K is a splitting field of a polynomial in L, K/L is normal. Since
the fields have characteristic 0, K/L is separable. So K/L is Galois. Consider the
automorphisms o; of K, where o;(t) = (?7't for j = 1,...,n, where ( is a primitive
nth root of unity and o;(x;) = x; for 1 <4 < m. Any automorphism of K that fixes
L must fix each x; and must map an nth root of " to another nth root of t" and
hence must map ¢ to (!¢ for some j € {1,...,n}. Thus, the Galois group G of K/L
is {01, ..., 00}

Given any prime ideal p in S. Suppose that Q = {qi,...,q;} is the set of prime
ideals of R lying over p. Then G acts transitively on £ (proposition VII.2.1, page
340, [Lan02]).

Now let fi(t), ..., fm(t) € K[[t]] and let Q1 = (x1 — fi(t), ..., Tm — fin(t))R. Then
@)1 is a prime ideal as R/Q = k[[t]], which is a domain. If P = @, NS, the set of
primes lying over P are Q; = (1 — fi(¢Z M), ., @m — f(¢C"H))R for 1 < j <n
since G acts transitively on the set of primes lying over P. It follows that ), N.S =

P=(@Q:iNnSN..n(@Q.,NS)=(@Q:1N..NnQ,) NS forl <j<n.

INote that we could have alternately argued that since the automorphism group of K/L has size n, which is the
degree of the field extension, K/L is a Galois extension.
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We are now ready to show that under the conditions of hypothesis (*) (which is

a special case of the above set up for n = 2), P C (Q?NQ3)NS.

Proposition 3.1.5. Let k be a field, R = k[[t,z1,....,xn]], S = k[[t", z1, ..., zn]].
Let fi(t),..., fm(t) € E[[t]]. If n > 2, assume that k is algebraically closed and let
Q; = (1 — [i(F7), oy — [ (1)) R, where ¢ is a primitive nth root of unity
and j € {1,...,n}. Then PO C (Q'N..NQ")NS, where P = (Q:N..NQ,) NS

and | > max{ly, ..., 1, }.

Proof. The sequences X; = x1 — f1(¢77), oo, i — [ ((771t) are regular sequences
in R for 1 <j<n,since R/(xy — f1(¢7%), ..oz — [i(TT))R = E[[t, i1, ., T |-
Being a domain, the latter ring has no non-zero zero-divisors and the class of z;,1 —
fix1(¢771) is not zero in this ring for 0 < ¢ < m — 1. Also, by the same token,
the ideals @); are prime for 1 < j7 < n. Then we have that QY) = () for every
positive integer r (result 2.1, [Hoc73b]). Thus, the ideals @} are primary for every
positive integer » and 1 < 7 < n. Now the contraction of a primary ideal is primary
(proposition 4.8, page 53, [AM94]). Consequently, the ideals @} N S are primary in
S.

Now \/W = \/Q_;?ﬂ S =Q;NS = P (exercise 1.13, page 9 and exercise 1.18
page 10, [AM94]). Thus, the ideals Q? NS are all P-primary. Hence (QY'N...nQ")NS
is P-primary (lemma 4.3, page 51, [AM94]). Further, P! = ((Q;N...NQ,)NS)  C
(Q1N..NQ,)'NS C (QLN...nQLYINS C (QLN...nQ1)NS. Let g = (QLN...nQM)NS.

Finally, for any irredundant primary decomposition of P!, the P-primary ideal
that must be used is P®. Suppose that P' = PO N P, N ...N P, be an irredundant
primary decomposition, where the Py, ..., P, are primary ideals. Then /Py, ..., /P,
are all distinct and are distinct from P. Further, P 2 n7_ P, and P, 2 PO

i=1,ii

P, for 1 <i < r. We claim that P! = (PONg)NPNPN...NP, is also an irredundant
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primary decomposition (note that P! = P!Nq as P' C q by the preceding paragraph).
For P and q are both P-primary and hence so is P%) N q. So the radicals of all
ideals appearing in the decomposition are all distinct. Also, PYNq 2 Ni_, P, follows
from PY 2 Mi_, ;. Suppose that Py 2 (PYng)n_, ., P=PYN_ ., P)Nq.
Then, since Py 2 PY M, ey Pip we must have Py D q (proposition 1.11.(ii),
page 8, [AM94]). However, taking radicals, we get that \/q = P C /P, = Py,
which is a contradiction. Thus, Py 2 (PY N q) My e Do So the new primary
decomposition is indeed irredundant. Now, since the P-primary component in any

primary decomposition of P' must be P®, we have that P = PO ng. So P® C
g=@Q"n..nQ")NS. O
Corollary 3.1.6. Let k be a field, R = k[[t,z1,....,zn]], S = k[[t*, 21, ..., 2n]]. Let
fi®)s s fn(t) € K[[t]]. Let Qi = (x1 = fi(t), s v — fu(t))R and Q2 = (71 —
fi(=t), oo, — frn(=t))R. Then P? C (Q?2NQ2)NS, where P = (Q:NQ2)NS.

Proof. This is a direct consequence of proposition 3.1.5 withn =2, lp =1, =1 =

2. [l

We will prove the stronger containment (Q% N Q3) NS C mP in the next sections,

which will imply the Eisenbud-Mazur conjecture in this case by corollary 3.1.6.

3.1.3 Computing generators of P

Let the notation be as in hypothesis (*). We may assume that at least one of the
power series fi(t), ..., fm(t) is not even in ¢, i.e., f;(t) # fi(—t) for some i € {1,..,m}.

For suppose that fi(t), ..., fi(t) are even power series. Then
Q2 = (11— fi(=1t), ., 2m — fm(—1)) R = (21 — f1(t), - T — fm(£)) R = Q1.
Also, since t2 € S, fi(t),...,fm(t) € S. Thus, P = QNS = (x1 — fi(t), ..., Ty —

fn(8)S. Also, (QINQ3)NS = QNS = ({(zi—fi(t))(x;— f;(t)) 4,5 € {1, ... m}}) RN
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S = ({(wi — FO) @ — £5(8)) + 1, € {1, ombD)S. Now (5 — Fi(D)(z; — (1) €
m(QNS) since (z; — f;(t)) € mand (x; — f;(t)) € (Q1NS). So (RINQ3)NS CmP
in this case. Then, using corollary 3.1.6, we get that P C mP. So at least one of
fi(t), ..., fm(t) is not even.

Without loss of generality, we may assume that (fi(t) — fi(—t))|(fi(t) — fi(—=1))
and set g;(t) = % for i = 1,...,m (else we may renumber so that the

leading term of fi(t) — fi(—t) has the least non-zero degree). Set a; = x; — f;(t) and

b =x; — fi(—t) fori=1,....m.

Proposition 3.1.7. With the notation as in the preceding paragraph, P = (1 N
@Q2) NS = ({(=bi +b1gi(t) : i = 2,...,m})S + ({tr((z; — fi())(x; — f3(=1))) 4, ) €
{1,...,m}})S (where tr(-) : K — L is the usual trace map).

Proof. We have that by — a1 = fi(t) — fi(=t) and b; — a; = fi(t) — fi(—t) = (f1(t) —
fi(=t)gi(t) = (by — a1)g;(t) for i = 1,...,m.

Let u € Q1 N Q2. Then, for some r;,s; € R, we may write that ©v = X" ;r;a;, =
X sy = X si(ai+ (b —a;)) = Xy si(ai+ (b —a1)gi(t)). Hence, ¥, (1, — 8;)a; =
(by — a1)X™5;9:(t). Note the left hand side of the last equation lies in Q.

Thus, elements of Q1NQ are determined by elements s; € R such that X7 ,s;9:(t) €
Q1 : (b1 —aq), as given any s; satisfying this condition, we may determine the r; from
the preceding equation, thus obtaining an element of )1 N Q.

Since @) is a prime and (by — a1) ¢ @1, we have that Q1 : (b —a1) = Q1. So
elements of Q1 N @y are determined by elements s; € R such that X" ;s;9,(t) € Q.
Modulo ()1, these are the preimages of the elements defining the relations between
g:(t) in R/Qy = k[[t]]. Thus, @1 N Q2 is generated by elements 37" s;b;, where either
s € Q1 for i =1,...,m or X" s,9;(t) represents the zero element in R/Q);. Further,

every element X!",s;b;, where s; € ; for i = 1,...;m lies in ()1Q)2 since b; € Q)
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for i = 1,...,m. Then, since Q1Q2 C @1 N Q2, we have that Q; N (s is generated
over ()1Q2 by elements X s;b; such that X, s,9;(t) represents the zero element in
R/Q;.

Given elements wy, ..., wy € k[[t]] we define a relation among these elements to be a
d-tuple (ay, ..., aq) € k[[t]] such that ajw; + ...+ agwy = 0. The set of such elements
is a submodule of k[[¢]]", which we shall call the module of relations. Note that
since k[[t]] is a principal ideal domain, the module of relations is a free k[[t]]-module.
Now the module of relations between the g;(t) in R/Q1 = k[[t]] is generated by the

following m-tuples (note that g (t) = 1):

1. (g;(t -1 h =2, ... .
(9:(1),0,0, ..., ,0,0,...,0) (where i 7Y

ith position
2. (0,0,..., g;(t) ,0,0,...,0, —g;(t) ,0,0,...,0) (where i # jand i,j € {2,...,m}).
N ———
i*h position jth position

Let, h; = —b; + b1gi(t) = —a; + a19:(t) € Q1 N Q2 (where the equality follows from
b; —a; = (by — a1)g;(t)). The set of relations in (1) correspond to the elements
gi(t)br + 0by + 0bs + ... + (=1)b; + 0b;y1 + 0biyo + ... + 0b,, = b1gi(t) — b; = h; in
(1N Q2. The set of relations in (2) correspond to the elements h;; = 0by +0by + ... +
G (0)b; + 0b;41 + 0b; 19 + ... + 0bj_1 + (—gi(t))b; + 0bj 1 + ... + 0by, = g;(t)b; — g:(2)b;.
Thus, Q1 N Q2 = (ha, hs, ..., by, oz, hog, ooy Ry ooy Bym1.m ) R + Q1Q2 (note hy = 0
and hy; = h;).

However, gi(t)h; — g;(t)hi = gi(t)(=b; + brg;(t)) — g;(t)(=bi + brgi(t)) = g;(£)bi —
gi(t)b; = hy;. Thus, Q1 N Q2 = (he, ks, ..., hyn) R + Q1Q2.

Now we compute (Q1 N Q2) NS = tr(Q; N Q). The trace map applied to the

generators of Q)1 N Qs yields, tr(h;) = tr(—b; + b1g;(t)) = tr(—x; + fi(—t) + (21 —



= 5((—bi + b19i(t)) + (—a; + a19:(t)))
= L+ b))
= —b; +bigi(t)

Next, we have that Q1Q2 = ({(zi — fi(¢))(z; — f;(=t)) : 4,5 € {1,...,m}})R.
Therefore, (Q1 N Q2) NS = (ha, hs, ..., hi)S + ({tr((z; — fi())(z; — f;(—1))) 14, j €

{1,...,m}})S. O

3.1.4 Computing generators of Q% N Q3 (special case)

Again, assume hypothesis (*). For the purpose of computing generators of Q3 N
Q3 we show that it is sufficient to consider power series fi(t), ..., fm(f) containing
only odd powers of t, i.e., those f;(t) that satisfy fi(—t) = —fi(t) for 1 < i < m.
Suppose that fi(t) = 35°a;4t". Then we may write that f;(t) = 252 a; ot +
39 0@ on 1t Set fi o = B2 ja;ont? and fi, = 35 ja; 011"t for the even and
odd parts of f; respectively. Consider the automorphism o of R: o(z;) = x; — fic(t)
and o(t) = t. We have that Q1 = (1 — fi(t), ..., Tm — fm(t))R = (x1 — f1.(t) —
Jr0(t)s oot T — fine(t) = fino(t))R. So that 0(Q1) = (21— f1,0(t), 2 — fao(t), ..., T —
fmo(t))R. Similarly, we have that Q2 = (x1 — fi(—1t),....@m — fi(—1))R = (x1 —
Jre(t) + fro(t), s @m — fime(t) + fino(t))R. So that o(Q2) = (1 + fi(t), x2 +
fa.0(t), e, Tm + fimno(t))R. So the problem reduces to the case where f;(t) are odd
power series.

We rewrite the result of proposition 3.1.7 under this reduction. We have that

9i(t) = ((}018;:;1((:?))) = ]{1((?) Also, —b; + b1gi(t) = —(z; + fi(t)) + (21 + f1(1))gi(t) =
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—x; — fi(t) + 219:(t) + fi(t) = —x; + 216:(t). Thus, P = (Q1NQ2) NS = ({(—b; +
bigi(1)) i = 2,om})S + ({tr((@: — L) — f5(=1) i) € {1,.m}})S =
{(—zi +219:(t)) i =2,...,m}S + {(zix; — filt) f;(t)) = 0,5 € {1,...,m}})S.

For the sake of notational sanity we first illustrate the method for the case when
m = 3 and discuss the generalization after that.

We have that Q1 = (z1 — fi(t), 12 — fo(t), 73 — f3(t)) R and Q2 = (21 + fi(t), v2 +
fa(t), z3 + f3(t))R. Denote f;(t) = fi, a; = x; — f; and b; = z; + f; for i = 1,2,3.
Then Q3 = (a?, a3, a3, asas, ajaz, ajaz)R and Q3 = (b%, 03,03, bobs, b1bs, biby)R. 1If
u € Q¥NQ3, then, we can write that u = r1a?+rya3+7r3a3+ 510203+ 590103+ s3a,as for
some 1, s, € R, h € {1,2,3}. Similarly, u = 7,03 +ryb3 +r3b3 45, bobs + 5501 b3 + 5501 by
for some r,,s, € R, h € {1,2,3}. Now b2 — a} = 4a;f; and byb,, — apa, =
2xp fn + 21, f,y with h,h" € {1,2,3} and h # h'. Equating the two expressions

!

for u, we have that (r; —7))a? + (ry — r5)a3 + (r3 — ry)a2 + (s; — s;)asas + (53 —
sp)mas + (s5 = ss)anay = ri(denfr) + ry(dwafs) + ry(dasfs) + 81200 fs + 203 f5) +
55(271 f3 + 213 f1) + 55(271 fa + 202f1). The left hand side of this equation lies in

. . . !/ / ’ ’ / /
2. hence so does the right hand side. The set of coefficients {r;,ry,73, 8}, S5, S5},

which determine elements of Q% N Q3 are completely determined by the relations on

{421 f1, dxa fo, A3 f3, 220 f5 + 23 fo, 221 f3 + 223 f1, 221 fo + 222 f1} over R/Q7F along

with any 6-tuple of elements in Q2. We now proceed to find the relations on

{4z f1, 420 fo, 43 f3, 200 f3 + 223 fa, 221 f3 + 223 f1, 231 fo + 222 f1 } over R/Q3.

In R/Q? we have the following equations

(3.1) x] =221 f1 — f1,75 = 2aofo — [, 75 = 273f3 — f3

(3.2) m1x9 = x1 fo+xafi — fifo, ka3 = Tafs+x3fo— fofs, x103 = 21 fs+asfi— fifs

Thus, any element of R/Q? can be represented as Fy(t) + Fi(t)z; + Fa(t)x +
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F5(t)zs, where F;(t) € Ek[[t]] for i = 0,1,2,3. Thus, there is a one-one correspondence
between the relations on {4xy f1,4xsfo, 423 f3, 220 f3 + 223 fo, 221 f3 + 223 f1, 221 fo +

2z9f1} over R/Q? and the relations between
E = {4z fi, (4o fr)z, (4o fr)ze, (41 fr)2s,

4zs fo, (4o f2)x1, (42 fo) 22, (422 f2) 23,

4wz f3, (4as f3)1, (423 f3)T2, (423 f3) 23,
2o f3 + 223 f2, (222 f3 + 223 fo) 21, (202 f3 + 223 f2) 20, (272 f5 + 223 f2) w3,
2z f3 + 23 f1, (221 f3 + 223 f1)21, (201 f3 + 223 f1) @2, (221 f3 + 2253 f1) 23,
2x1 fo + 222 f1, (221 f2 + 220 f1) 21, (221 f2 + 222 f1) 0, (271 fo + 222 f1) 73}

over k[[t]]. We rewrite these elements as k[[t]]-linear combinations of z;, x5, 3 and
represent the coefficients of x1, 9, r3 and the term independent of these in a matrix
as follows. We abuse notation and denote the equivalence classes of elements in R

modulo Q7 by the same symbols as the elements themselves.
1. 45(]1f1

(a) 4]31f1 =0+ 4f1[L’1 + 0.7}2 + 0.773.
(b) (41’1f1)$1 = 4f11‘% = 4f1(21’1f1 — f12) = —4f13 + 8f12l’1 + 0.1'2 + O$3.

() (dxyfr)xy = A frvazy = Afr(xy fotaafr— fifo) = =4S fo+AfLfar1+4 fiaa+

01‘3.

(d) (4o1fr)as = A frzyas = Afi(z1 fs +asfr — fifs) = —4fT fs+4f1fsz1 + 0xp +

4f12.2§'3

We represent this data in the following matrix:
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term independent of x1, z9, 3
coefficient of x;

coefficient of o

coefficient of 3
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41 fr
0
4f1
0

0

We capture the above data in matrix M; below,

0

4f1
0

0

—4f} —4ff

S
0

0

(orfyer (Ao fi)ws (Ao fi)es
A Caph —4f
;2 ARk Ahd
0 4f12 0
0 0 4f12

_affy

h AN

412 0
0 iy |

2. 4xofy: We represent elements 4xsfo, (4o fo)x1, (dxsfo)ra, (4xafo)rs as k[[t]]-

linear combinations of i, 9, z3 and collect the coefficients in a matrix form

in an analogous fashion. The associated matrix is

0 afgz Af ARl
0 42 0 0
My, =
s Afifs  SfE Aff
0 0 0 s

3. 4xsf3: We repeat the above process for 4xsfs, (4xsf3)r1, (4xsf3)xe, (423 f3)xs

and the associated matrix is

0

0

0

4fs

4. 21’2f3 -+ 2I3f22

—A4f1f3
Af3
0

4flf3

—Afof3
0
Af3

4fafs

—4f3
0

0

83
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(a) 2xafs + 2x3fo = 0+ 0z + 2f520 + 2 foxs.

(b) (2zafs42x3fo)x1 = 2fsm10942 fox1w3 = 2f3(x1 fotaofi— fifo) +2fo(x1 f5+
w3f1 = fufs) = —4f1fafs + Af2 fsm1 + 2f1 fswa + 21 fows.

(¢) (2zof3+2x3fo)re = 2f323 + 2 fowoxs = 2f3(2x0fo — f3) + 2fo(afs + 23 fo —
fofs) = —4f3f3 + 0x1 + 6 fofszs + 2fFx3.

(d) (2w2f3+2x3f2)vs = 2fsw203+2f275 = 2fs(22fs+a3fa— fofs) +2/2(225f5—

f3) = —Afaf5 + 0x1 + 2f320 + 6 fo fsws.

So the associated matrix is

(0 afiffs AR —AfS?
4
My — 0 fafs 0 0
2f3 2f1f3 6f2f3 2f32
| 2f2 2fife 2f3 6fafs |

5. Working as in the preceding case, the associated matrix for 2x; f342x3 f1, (221 f3+

223 f1)1, (221 f3 + 223 f1) 22, (221 f3 4 223 f1) 23 is

[0 4f2fy —Afifofs —Afif? ]
Mg — 2fs  6fifs 2fafs 213
0 0 4fifs 0
2h 27 2L GRS

6. Finally, the associated matrix for 2z fy + 2xof1, (221 f2 + 229 f1) 21, (221 fo +

229 f1) 2, (221 fo + 229 f1) x5 1S

0
2f2

2h
0

6f1f2
2

0

—Aftfo —4hf3

2f3

6f1f2

0

Afifofs

2f2f3
2f1f3
4f1f




We now consider the matrix M = [MllMQ‘M3|M23|M13|M23].

0 —aff —afffo —afffs 0 —af1f3 —4f3 —af3fs 0 —af1f3 —afafF —af§ 0 —Afifofs —4f3f3 —4f2f3 O —4fffs —4fi1fafs —4f1f3 O —4fEfy —4f1f3 —4f1fafs3

o afy 8fF afife 4f1fz O 452 0 0 0 452 0 0 0 4fy fa 0 0 2f3 6f1f3 2f5 f3 2f2  2fs 6f1f2 2f2 2f9 f3
0 0 452 0 afy 4f1fy 832 4fafs O 0 452 0 2fz3 2f1f3 612 f3 252 0 0 afy1 f3 0 2f;  2f} 6f1 f2 2f1 f3
o o 0 a2 o 0 0 43 Afy Af1fs  4Afafs  8f3 2f2  2f1f2 23 6fafs 2f1 2% 2f1fa  6f1f3 O 0 0 4f1f2

Each column of M encodes the k[[t]]-coeflicients of the elements of . We will compute the k[[t]]-relations on the columns

of matrix M and these will correspond to the k[[t]]-relations on the elements of E. From these we can recover the relations

{4z f1, 42 fo, 43 f3, 200 f3 + 223 fa, 221 f3 + 223 f1, 221 fo + 222 f1 } over R/Q7 .

Multiplying the first row of M by —1, we get that

0 afP affro af?fs 0 Af1f3 4f 4af2f3 0 Af1f2 Afof3 4f§ 0 afifafs 4f3f3 afof? 0 Afffs 4fi1fofs Af1f3 O 4fffe 4f1f2 afifafs

afy 8f% Afi1fy Afif3 O  Af2 0 0 0 af2 0 0 0 4fafs 0 0  2fz 6f1f3 2faf3 22 2fy 6f1f> 213 219 f3
o o aff 0 4fy Af1fo 8f3 4fafs O 0 4f3 0 2f3 2f1f3 6fafs 2f2 0 0 af1 f3 0 2f; 2f} 6fife 2f1f3
[ 0 afZ o 0 0 4ff 4afs 4f1f3 4fof3 83 2f2 2f1f2 23 6faf3 2f1 2f2  2f1f2 6f1f3 © 0 0 4f1f2

Using notation introduced earlier, we write that fo = figs and f3 = fig3. Denote the ith column of the matrix under
consideration by C;. We perform the following column operations on the preceding matrix:
Co —2f1C1, C3 — foC1, Cy — f3C, Cg — f19§01, Cro — f19§01, Cra — f19293C1, Cr7 — %9301, Cis — %fSCla Cro — %f1929301,

Cho — 5/195C1, Co1 — 392C1, Cog — 3 foC1, Coz — 5 f195C1, Cos — 5 f19295C1. We get that

0 af} afffy afff3 0 afif2 af3 af2f3 0 Af1f2 Afof2 Af§ 0 Afifofs Af3f3 Afaf3 0 4f2f3 Af1fafz Af1f5 O Affy Af1f3 Af1fof:
4f1 01 ]('J2 ]('J 3 0 %)2 02 %3 0 %)3 %3 03 0 1023 %3 %3 0 ]03 1023 %)3 0 ]02 102 102‘3
o o a5 0 Afy Af1fy 8f3 4fafs O 0 4f3 0 2f3 2f1f3 Gfafs 2f3 O 0 6f1f3 0 2f1 2f2 6f1f2 2f1f3
0 o o 4aff 0o 0 0 4ff 4fg 4f1f3 4fafs 8fF 22 2f1fa  2f3 6fafs 2f1 2/f 2f1fs 6fifs O 0O 0 4f1f2

We further perform the following column operations on the preceding matrix:
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O3 — 920y, Cy — g3Cy, Cg — 9%027 C7 — 9;’027 Cs — 939302, Cio — 932,02, Ci1 — 929302, Cia — 95’02, Cia — §293Cs, Ci5 — 9%9302,

Ci6 — 9293C2, Cis — g3C2, Cig — g2g3Cs, Cap — g3Cs, Cag — g2Ca, Cog — g53Cs, Coy — g2g3Co. We get that

0 4fi5 0 0 0 0 0 0 0 0 0 0 0 0 ] 0 0 0 0 0 0 0 0 0
4fq 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] 0 0 0 0 0 0
0 0 4ff 0 4fy Af1fy 8f2 4fafz O 0 4f2 0 2f3 2f1f3 6fof3 2f3 0 0 4fifz 0 2f; 2fF 6f1f2 2f1f3
o o o0 4ff o 0 0 4f2 af3 4fif3 4faf3 8F3 2f 2f1f2 2f3 6fafs 2f1 2f% 2f1f2 6f1f3 O O 0 4f1fo

The following column operations are performed on the preceding matrix:
C3—2f1C%1, C5—292C91, Cs—2f2Ca1, Cr—4f192Co1, Cs—2 f19293C51, 011—2f19§(721, Ci13—93Ca1, Cra— f3C51, C15—3 f19293C1,
Ci6 — f193C21, Cig — 2f3C91, Cos — f1C1, Caz — 3f2C51, Coy — f3C51. We get that

0] Altfi3 0 0 000 0 0 0] 0 0 0 0 0 0 0 0 0] 0 0 00 0
4f1 0 0 0 000 0 0 0] 0 0 0 0 0 0 0 0 0 0 0 00 0
0 0 0 0 000 0 0 0] 0 0 0 0 0 0 0] 0 0] 0 2f1 00 0
0 0 04fF 00 0 4fF 4f3 4f1f3 Afafs 8fF 2fa 2f1f2 2f3 6fafz 2f1 2fF 2f1f2 6f1f3 O 0 0 4fify

Finally, the following column operations are performed on the preceding matrix:
Cy1—2f1C17, Cs—2f195C17, C9—2g3Ch7, C1o—2f3C17, C11—2f19293C17, Cra—4 f193C17, C13—g2Ch7, Cra— f2Ch7, Ci5— f195Ch7,
Cie — 3f19293C17, Cis — f1Ci7, Cig — [2Ch7, Coo — 3f3C17, Coq — 2f2C17. We get that

0 4ff’ 0000D0OD0OODODODODODOOO O OOO O OOO
4f1f 00 000O0O0O00DO0O0O0OO0OOODOCO O OOO O OOO
0O 0000O0OO0O0DO0OO0OO0DOO0OO0OO0OO O OOOZ2f 000O0
0O 000OO0O0OO0DOOODOOOOOZ2f;f OOO O O0O0O
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The columns with all entries zero correspond to the relations among the columns.

We list them here:

10.

11.

12.

13.

14.

15.

16.

17.

18.

O34 21,07 — goCy — 2f1Cy = 0.
Oy +2f3C) — 2f1C17 — g3Cy = 0.

. C5 —2g2Co1 + g2C, = 0.

. Cs 4 2f292C1 — g3C5 — 2f,Cy = 0.

. Cr — g3Cy + 4 £193C1 — 4f195C = 0.

. Cs — 9393C2 + 4£19393C1 — 2f19293Cn — 2f195C17 = 0.

Co — 293C17 + g3C1 = 0.

. Cio — 932,02 + 2f19;301 —2f3C7 = 0.

O — 929§C2 + 4f19295301 - 2f19§C21 — 2£19293C17 = 0.

Cio — g3Cy — 4f195C17 + 4f195C1 = 0.

Ci3 — g3C21 + 9295C1 — 92C17 = 0.

Cra — 929302 + 2f19293C1 — f3C91 — f2C17 = 0.

C15 — 9593Ca — 3f19293Co1 + 4f19595C1 — f195C17 = 0.
Ci6 — 9295Ca + 4£19295C1 — f195C21 — 3 f19293C17 = 0.
Cis — g3Cy — f1Ci7 + f3C1 = 0.

Cig + 3f19293C1 — g293C5 — 2f3C5 — f2Ch7 = 0.

Coo + 3f193C1 — g3C5 — 3f3C17 = 0.

Ca — g2C5 — f1Co1 + f192C1 = 0.
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19. Cos + 3f193C1 — g3Cy — 3f5Ca = 0.
20. Coy — 9293C5 4 3f19293C1 — f3C9 — 2f2Ch7 = 0.

Now consider the first relation C3+ 2 foC — goCy — 2 f1Cy1 = 0. The first column cor-
responds to coefficients of 4z f1, the second corresponds to coefficients of (4 f1)x1,
the third corresponds to coefficients of (4x; f1)x2, and finally, the twenty-first column
corresponds to coefficients of 2z fo+2x5 f;. Now this relation over the columns corre-
sponds to a relation on € = {4z f1,4xs fo, 423 f3, 2% f34 223 fo, 221 f3+ 223 f1, 221 fo+

2o f1} over R/Q3. Tf (ay, ao, a3, g, a5, i) is a relation, then,

a; = (coefficient of column (4(i — 1) 4+ 1)) + (coefficient of column (4(i — 1) + 2))x;

+ (coefficient of column (4(i — 1) + 3))xs + (coefficient of column 4i)x3

fori € {1,2,...,6}. The relation over R/Q? corresponding to the first column relation
is then (2 fo—gox1+12,0,0,0,0, —2f;). Proceeding similarly, we get that the relations
corresponding to all column relations. The set of columns of M generate a submodule
of k[[t]]** considered as a k[[t]]-module. Since k[[t]] is a principal ideal domain, every
submodule is in fact free. Therefore, the notion of rank is well defined. From the
final step after performing the above column operations on M we can see that M
has rank 4 and hence the twenty relations above generate the module of relations on
{4z f1, 420 fo, 4x3 f3, 220 f3 + 223 fo, 221 f5 + 23 f1, 221 fo + 222 f1}. We indicate the

corresponding relations over R/Q? in the following table.
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Relation over the columns

Relation on &£ over R/Q3

C3+2f2C1 — g2C2 —2f1C21 =0

(2f2 — g2x1 + 2,0,0,0,0, —2f1)

Ci+2f3C1 —2f1C17 — g3C2 =0

(2fs — gsx1 + x3,0,0,0,—2f1,0)

Cs —2g2C21 +g3C1 =0

(ggv 17 07 07 01 _292)

Co + 2f292C1 — g5C2 — 2f>Ca1 =0

(2f292 — go21,1,0,0,0,—2f5)

Cr —g5C2 +4f1g5C1 — 4f195C21 =0

(4f1.gg - ggwh €2, 07 01 07 _4flg§)

Cs — g393C2 + 4f19595C1 — 2f19293C21 — 2f195C17 = 0

(4flg§.93 - g%g3x17 &3, 07 07 _2flg§7 _2f19293)

Co —293C17 +g35C1 =0

(g§7 07 17 07 _2937 0)

Cio — g3C2 + 2f193C1 — 2f3C17 =0

(Qflgg - g§$170,I1707 _2f370)

C11 — g293C5 + 4f192g3C1 — 2f1g5C21 — 2f1g293C17 = 0

(4119293 — 929321,0,32,0 — 2f1929s, —2f193)

Ci2 — g3C> — 4f1g3C17 + 4f1g3C1 =0

(4f1.g§ - ggwh 07 3, 03 _4flg§a O)

Ci13 — g3Ca1 + g293C1 — g2C17 =0

(92937 07 03 17 —g2, _93)

Cia — g293C2 + 2f19293C1 — f3C21 — f2C17 =0

(2f19293 — 929371,0,0, 21, — f2, — f3)

Cis — g393Ca — 3f19293C21 + 419539301 — f195C17 = 0

(4f1g§g3 - ggg?ﬂrlv 07 07 xz2, _flg§7 _3f19293)

Ci6 — g293Ca + 4f19295C1 — f193C21 — 3f19293C17 = 0

(4119293 — 929321,0,0, 23, =3 f19293, — [193)

Cig — g3C2 — f1C17 + f3C1 =0

(f3 _931‘1,070,07—]‘.1 +I170)

Ci9 4+ 3f19293C1 — g2g3C2 — 2f3C21 — foCi7 =0

(3f19293 — 929321,0,0,0, — f2 + x2, —2f3)

Ca20 +3f193C1 — g3C2 — 3f3C17 =0

(Sflgg - g§$17030707 _3f3 =+ CL‘3,0)

Caz — g2C2 — f1C21 + f162C1 =0

(fig2 — g221,0,0,0,0,z1 — f1)

Cas +3f195C1 — g5C2 — 3f2C21 =0

(Sflgg - g§$17 03 07 07 07 _3f2 + $2)

Cas — 9293C2 + 3f19293C1 — f3C21 — 2f2C17 =0

(3f19293 — 929321,0,0,0, =2 fa, — f3 + x3)

Now the relation (ay, ao, sz, ay, a5, ag) corresponds to the generator of Q% N Q3

given by ay(z1 + f1)? 4+ ag(w2 + f2)* + as(@s + f3)* + au(z2 + fo) (23 + f3) + a5(x1 +

fi)(xs + f3) + ag(z1 + fi)(x2 + f2). Corresponding to the above relations we obtain
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generators of Q3 N Q3 as follows:

1.

2.

3.

10.

11.

12.

13.

14.

15.

11 = (2f2 — gow1 + x2)(z1 + f1)? — 2f1(z1 + f1) (22 + f2).
Yo = (2fs — gsw1 + w3) (w1 + f1)? = 2f1(z1 + fi) (23 + f3).

Y3 = g3(x1 4+ [1)? + (22 + f2)? — 2g2(x1 + f1) (22 + f2).

Y1 = (2fag2 — giw1) (1 + f1)? + w1 (w2 + f2)* = 2fa(21 + f1) (22 + fo).
s = (41195 — girr) (w1 + f1)? + 2o + f2)? — 4f195 (21 + fr) (@2 + fo).

Y6 = (419598 — gigswr)(x1 + f1)? + w3(za + f2)? — 2f195(x1 + fi)(ws + f3) —

2f19293(71 + f1)(z2 + f2).

Yo = g3(x1 + f1)* + (x3 + f3)* — 2gs(z1 + f1)(23 + f3).

- V8= (2flg?2, - 93%)(201 + f1)?* + zi(zs + f3)2 — 2fs(x1 + f1)(zs + f3).

Yo = (4£19205 — g2g571) (01 + f1)? + wa(xs + f3)* — 2f192g3(21 + f1) (23 + f3) —

2f195(x1 + f1)(z2 + fo).
Yo = (4f195 — g5w1) (w1 + f1)? + s(ws + f3)* — 4f1g3((21 + fi) (23 + fs).
Y1 = gog3(x14 f1)2+ (@2 + fo) (w3+ f3) — go (w1 + fr) (23 + f3) — gs(z1+ f1) (22 + fa).

Y12 = (2£19295 — 929321) (21 + f1)? + 21 (@2 + fo) (w3 + f3) — fo(z1 + f1)(zs + f3) —

f3(r1 + fi) (@2 + fa).

Y13 = (4f19§93 - 9%93351)(331 + f1)2 + xo(x9 + fo) (x5 + f3) — f19§<x1 + fi)(ws +

f3) = 3f19295(x1 + f1)(22 + f2).

Y14 = (4f1929§ - 92932,5171)(961 + f1)% + x3(we + f2) (@3 + f3) = 3 f1g293(x1 + f1)(x3+

fs) = fig3((z1 + fi)(z2 + fo).

5 = (fs — gszr) (w1 + f1)? + (21 = fo) (21 + fr)(@s + fa).
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16. 716 = (3f19293—92g371) (T1+f1)*+ (22— fo) (w14 f1) (w3+ f3) =2 fa(w1+ f1) (22 + fa).
17. 17 = (3f195 — giz1) (w1 + f1)? + (w3 — 3f3) (21 + fi) (@3 + fa).

18. 715 = (f192 — g2w1) (21 + f1)? + (21 — fi) (21 + fi) (22 + fo).

19. v19 = (3193 — g321) (21 + f1)? + (w2 — 3fo)(x1 + f1)(22 + fa).

20. v20 = (3f19293 — gagsr1) (w1 + f1)? — 2fo((21 + f1)(23 + f3) + (23 — f3)(21 +

Ji) (@2 + fo).

Since these generators correspond to relations on & ={4x f1,4xs fo, 43 f3, 222 f3 +
23 fo, 271 f3 + 2x3f1, 221 fo + 279 f1} over R/Q?, we need to include the set of gen-
erators of Q?QQ% to get a complete set of generators for Q% N Q3. Thus, Q2 N Q3 =
({vi:i=1,..,20}) R + Q?Q3.

3.1.5 (QINQ3) NS CmP (special case)

We obtain the contraction of Q2NQ3 to S by applying the trace map to each of the
generators of Q?NQ3. We show that each of these generators (Q3NQ3%)NS lies in mP,
thus proving the Eisenbud-Mazur conjecture in this case. Note that we showed earlier
P = ({(=zi+210:i(t) - 0 = 2, m}S + ({(wiz; — fi(t) f5(1)) : 6,5 € {1,.... m}})S.
In the case of three generators, we have that P = (2190 — %2, %193 — T3, 11T —
fifo, v1x3 — fifs, vows — fofs, 22 — f2, 22 — f2 23 — f2)S. We express each generator
of (QINQ3)N S as a linear combination of these generators of P with coefficients in

m.
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tr((2f2 — goxy + @2) (1 + 1) = 2f1 (21 + f1)(22 + f2))
_ 3 2 2 2 2 2
= —SL’lgg -+ .T1$C2 — 2x1f192 + 2$1f2 — a:lfl g2 — SL’Qfl -+ 2$1f1f2
= —xi‘gz + x%xz - 2$%f192 + 2$%f192 - 371f1292 - $2f12 + 25131f1292
= —7(gom1 — T2) + f1(gaw1 — T2)

€ mP

Note that f; is a multiple of ¢ being an odd power series, so that f? is a multiple

of t? and hence, fZ € m.

tr((2f3 — gzz1 + 23) (01 + f1)* — 2f1 (21 + f1)(23 + f3))
_ 3 2 2 2 2
= —ag3 + 2723 — 1 f1 93 + x3f] — 2zw3f1 + 227 f3
= —xf(xlgg - 5103) - f12($193 - 953) — 2z fi(xs — 90193)

€ mP

tr(gy (1 + fi)* + (22 + f2)* = 2g2(21 + f1) (22 + fo))
= 2195 + [195 — 2312290 — 21 foge + 75 + 3
= 2292 + 193 — 2w1w0g0 — 2f2g5 + 45 + fig?
= x%gg — 22122G9 + m%
= T1g5 — 11229y — T1T2g + 75
= 1192(x192 — T3) — 2(X1 g2 — X2)

€ mP
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tr((2f2g2 — gw1) (21 + f1)? + 21 (2 + fo)* = 2fa(ar + fr)(z2 + f2))
—13g5 — 21 f195 + 207 fogo + 217 fag2 + w125 — 2020 fo + a1 f5 — 21 f5
—1g; — 1 f195 + 203 f195 + 2795 + w105 — 2w122 fr92 + 1 [T 95 — 2£7 95
—a5g5 + 1123 — 20122 f192 + 227 15

—21(x192 + 2) (192 — T2) — 221 f192(2 — T192)

mpP

tr((4f195 — gowr) (1 + f1)? + wa(20 + fo)? — 4195 (21 + fr) (22 + f2))
—aigs +4aT frgs — w1 figs + 4179 — dximafrgs — AT fag5 + @5 + w0 f3
—$?9§ + 4x%f19§ - 9€1f129§ + 4f139§’ - 4$1$2f19§ - 4f139§ + IB% + T2 1293
vy — 2193 — w1f1 g3 + w2 figs + 431 frgs — A2 f1g)

(72 — 95192)@% + x1T202 + I%Q%) - ffgg(-rlgg - $2) + 4$1f19§($192 — 1)

mpP
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tr((4f19395 — g3g301)(x1 + f1)* + x3(z2 + fo)?
=2f195(x1 + fi)(zs + f3) — 2f19293(x1 + f1) (22 + f2))
= —a3glgs + 4x2f192g5 — 1 f2g2gs
3.2 2 2 2
+4 179593 — 22123195 — 211 395 — 22122 f19293
2 2 2
—2f1 29293 + w573 + 23 f3
= —2lg39s + 47 fi9595 — 1 [1 9593
3.2 2 3 2
+4f79593 — 2x113 f195 — 2f7 9395 — 2012219293
2129595 + w53 + 73 /195
= —aig39s + 3w — 1119595 + T3 [T G

+227 f1g595 — 2x123f195 + 207 f19393 — 20122 19293

Now —1'?1’9593 + 1’3% = —35%9293(1“192 — Ty) — 12293(T192 — T2) — x%(l“lgz — T3).

So that,

tr((4f19595 — g59371) (21 + fr)* + w3(22 + fo)?

—2f195(x1 + f1) (x5 + f3) — 2f19295(x1 + f1) (@2 + f2))
= —139293(2192 — L) — T1T293(T192 — T2) — 93%(55193 — 13)

—f195(x1gs — x3) + 221 frg5 (193 — 3)

+221 f19293(T192 — 72)

€ mP
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tr(9§($1 + f1)2 4 (23 + f3)° — 2g3(21 + f1) (23 + f3))

= 795+ figs — 2712393 — 21 f3g3 + v+ f7

= 2795 + f195 — 2miwsgs — 2f795 + 23 + f1 93
= x%gg — 2x173g3 + as?,,
= ﬁgg — T1x393 + $§ — 212303

= 2193(2193 — x3) + v3(T3 — 2193)

€ mP

tr((2f195 — gzo1) (1 + fi)* + 1 (s + f3)? — 2f3(21 + fr) (23 + f3))
—55“1’9;? + Qx%flggz, - 371f129§ + 2fi39§ + $1$§ — 2z113f3 + 9€1f§ - 2f1f§
—aigs + 201 f195 — w1 fig5 + 20795 + w125 — 2mawsfigs + a1 figs — 2705
—a5g5 + 2125 + 223 frg; — 21123 f193

—z1(219s5 + 23) (2195 — 3) + 271 f193(2195 — 73)

mpP
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tr((4f19205 — gogiwr)(x1 + f1)* + w2z + f3)?
—2f19295(x1 + fr) (@5 + f3) = 2f195 (21 + fi)(z2 + f2))

= —2°g205 + 477 f109205 — T1f1 G295 + Af7 9005
—22123 f19295 — 21 [39295 — 22122 f105 — 21 [293
+£E2$;2; + -T2f32

= 279205 + 477 f19295 — 71 f1 9295 + 4} 9005
—2x123f19293 — fo’ggggz, — 2371£2f19§ - 2fi9’92932,
+215 + T2f1 03

= —179205 + 1275 + T2 f7 95 — 21 f1 9205

+227 f19205 — 23123 f19293 + 277 f19205 — 22179 f195

Now —90“;’929:? + wﬂg = —210293(7193 — x3) — L1239 (2193 — T3) — $§($192 — ).

So that

tr((4f19295 — g29371) (1 + f1)* + w2(ws + f3)?
—2f19295(x1 + f1) (23 + f3) — 2f195 (21 + f1)(22 + f2))

= —$%9293(95193 — I3) — 2173G2(T193 — T3) — 963(:6192 — )
+a1 [ 95 (02 — 2192) + 221 [19293(2193 — 3)
+221 f1g5 (2192 — 2)

€ mP
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11.

(s

tr((4f195 — gsz1)(z1 + f1)° + z3(zs + f3)° — 4f195 (21 + f1) (25 + f3))
_37:1))93 + 4$%f19§ - $1f129§ + 4f139§ - 4$1I3flg§ - 4f12f39§ + x§ + 133f§

—$?9§ + 430%]0199? - 951f129§ + 4ff’9§ - 4$1$3f1932, - 4f139§ + x% + z3 129§

x3 — 2395 + 423 f1g5 — dvzs frg5 — 21 f1g5 + w3 f193

(23 + z32193 + 2793) (23 — 2193) + 421 f195(T195 — 23) — f193(T195 — 3)

mpP

tr(g2g3(w1 + f1)° + (w2 + fo) (w3 + f3) — galar + f1) (23 + f3)

—g3(z1 + f1)(22 + f2))

219293 + [19295 — 212392 — fif3g2 — 212293 — fif2g5 + T2w3 + fafs
219203 + [19293 — 112392 — [19392 — T17295 — 19298 + T2w3 + 19203
T319203 — T1T3g2 — T1T203 + TaTs

2192(v193 — x3) — ¥2(T193 — ¥3)

mpP
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tr((2f19293 — g29371) (w1 + f1)° + 21(22 + f2)(23 + f3)
—fa(zr + fi)(@3 + f3) — fs(z1 + fi) (22 + f2))

= —219295 + 2207 f19293 — T1 [T 9295 + 27 9295 + 112273
—1173fo — X122 f3 + w1 fof3 — 2f1f2f3

= —a5g2g3 + 207 f19295 — 21 [1 9295 + 219293 + 117973
—123f192 — T122 193 + T1/7 9295 — 279295

= —1i0ags + 21223 + 27 [19295 — 1122 f193

+27 19293 — 1173192

Now —555)9293 + L1273 = —17?93(55192 — Ty) — 1175(2193 — 3). So that,

tr((2f19293 — gogsz) (w1 + f1)? + @1(22 + fo) (23 + f3)
—fo@r + fi)(@s + fs) — fs(or + f1)(22 + f2))

= —27g3(x192 — x2) — T122(w193 — w3) + 1 f193(2192 — 22)
+11f192(2193 — 73)

€ mP
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tr((4/19595 — 9393w1) (w1 + f1)* + 2(22 + f2) (23 + f3)
—f193(x1 + f1) (23 + f3) — 3f19293(x1 + f1) (@3 + f3))
= —2ig505 + 4x7 19593 — T1f7 9595 + 4119595
2 2 2 2
—1123f195 — f1 f395 — 3x122f19293 — 3 f1 29203
+2523 + Tofof3
= —2ig595 + 477 f19595 — T1f1 9595 + 419505
—mix3f195 — [19395 — 3x12219295 — 3119593
2 2
+a523 + T2 f1 9293
= aiw3 — 139505 + 21 [19593 — 173 f195
2 2 2 2 2
+377 f19593 — 3102 19293 + T2 f1 9293 — T1f1 9293
Now 1'%933 - 1’“;’9593 = —93%9392(93192 — T3) — 117293(T192 — T2) — 55%(95193 — x3).
So that,

tr((4£19593 — 939321) (21 + f1)? + @a(w2 + fo) (23 + f3)
—fig3 (1 + fi)(@s + f3) = 3frg295(x1 + f1) (w3 + f3))

= (~2ig392 — 1122g5) (2192 — @2) — 25 (2193 — T3)
+1.f195 (2193 — w3) + 321 f19295(2192 — w2)
+f19293(w2 — 190)

€ mP
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tr((4f19295 — g29501) (w1 + f1)* + z3(22 + f2) (23 + f3)
=3 f1g203(z1 + 1) (w3 + f3) = g3 (1 + fr)(z2 + f2))
= 230202 + 422 f19207 — 11 f2 9005 + AfD 9002
—32173f19293 — 37 fag2gs — 1202.f195
—fffggg + -’E2$§ +x3fafs
= —230205 + 427 [19205 — 21179205 + 479295
—3w123 f19293 — 3f79295 — T172f195
—[19295 + w215 4 T3 7 9293
= 2973 — 239295 + 303 f19295 — 3112310293

+$%f1929§ - $19€2f19§ + 23119293 — $1f12929§

Now 1’2553, - 175“;’92932, = —35%9293(1'193 - $3) - $1$392(5U193 - 353) - 553,(93192 - 552)-

So that,

tr((4f19205 — g20321) (21 + f1)? + x3(22 + fo) (23 + f3)

=3f19205(x1 + fu) (w3 + f3) = frgs (21 + fi) (22 + f2))
= (—21g29s — 212302) (2193 — x3) — 3(2192 — 22)

311 f19293(%193 — w3) + w1 f1g3 (2192 — 2)

+f19293(w3 — 193)

€ mP
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tr((fs — gsz1)(x1 + f1)° + (21 — f1) (21 + f1)(@3 + f3))
_ 3 2 2 3 2 2
= x93+ 21f193 — 21 figs + figs +xiws — s Fafifs — fifs
= —$?93 + fb"%flgza - 931f1293 + ff’gza + 93%553 — 13 fi + $1f1293 — ffgg
_ 3 2 2
= —x7g3 + xix3 + 27 f193 — 1173 f1
= —xj(z193 — x3) + 21 f1(T195 — 73)

€ mP

tr((3f19293 — g29371) (%1 + f1)°
+(z2 — fo) (@1 + fi) (23 + f3) — 2f3(z1 + fi)(z2 + f2))
= —219293 + 327 f19293 — 1 /19203 + 37 9295 — w173 f19
— [T f392 — 22122 frgs — 27 fags + w1223 + 2. f1 [
= _37?9293 + 3$%f192g3 - $1f129293 + 3]"?9293 — 1123[192
—[19392 — 20122 f193 — 2f7 9298 + 11225 + T2 f7 g3
= —27g205 + T179w3 + 27 f1295 — 1123 f192

+2273 f19293 — 22122 f193 + T2 f1 93 — 21 f1 G203

Now _$?9293 + 12223 = —I?93($192 — %9) — 122(x193 — x3). So that,

tr((3f19293 — gogam1) (a1 + f1)?

+(z2 — fo) (21 + fi) (23 + f3) = 2f5(21 + fi)(22 + f2))
= —1g3(192 — T2) — 2122(2195 — x3) + 21 fig2 (2195 — 73)

+221 f1gs(2192 — @2) + figs(z2 — 2192)

€ mP
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tr((3f195 — g3a1) (w1 + f1)° + (w3 — 3fs) (a1 + fr)(z3 + f3))

—13g; + 351 f195 — w1 /195 + 3195 — Br1xsfigs — 3f7 fsgs + 1125 + w3 f1fs
—a3g3 + 323 f195 — 21 /795 + 3f1 95 — Bvixsfigs — 3f795 + w125 + 23 [T g3
—a3g3 + x103 + 327 f195 — 3a1xsf195 + 23 /195 — v1 193

—21(2193 + x3) (1193 — x3) + 31 frgs(219s — x3) + [rgs(xs — w193)

mpP

tr((f1g2 — g221) (21 + f1)? + (21 — f1) (21 + f1) (22 + f2))
_ 3 2 2 3 2 2
= =119 + 1 f192 — v1fi g2 + fU g2 + X112 — w2 f1 + W1 frfo — [T fo
= _37?92 + x%f192 - -751f1292 =+ f1392 + 953352 — 1122 f1 + $1f1292 - f1392
_ 3 2 2
= —I1g2 + T{Ty + 77 f192 — T172f1
= —xf(xng — ) + 21 f1(7192 — 22)

€ mP

tr((3f195 — ga1) (w1 + f1)° + (w2 — 3fo) (1 + fr)(z2 + fa))

—a3g5 + 321 frgs — w1 [795 + 31795 — 3r1wafige — 3[T 292 + w125 + 22 f1 fo
—a5g5 + 321 195 — a1 f795 + 31195 — Brixafige — 3195 + m1x} + 22 fT 9o
—23g5 + x125 + 321 f195 — 3122 f192 + T2 f1 92 — 11 /195

— 21 (2192 + 22) (2192 — T2) + 3T1 f192(2192 — T2) + fTg2(2 — 2192)

mpP
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20.

tr((3 19295 — g29571) (21 + f1)* = 2fa((21 + fi) (23 + f3)
+(xs — f3) (1 + fi) (22 + f2))

= —1g2g3 + 377 f19295 — 21 /19293 + 319293 — 22123 192
—2/7 392 — 2122 f193 — [1 293 + 212273 + T3f1 fo

= —a3g2g3 + 371 f19295 — X1 f1 9295 + 319295 — 22123 f192
—2/79392 — T172f193 — [ 9293 + T1725 + 23 [T g

= —23gags + 117273 + 277 f19293 — 22173 f1G0
+7 f19293 — 2122193 + T[T 92 — 21 /79293

Now —555)9293 + L1273 = —17?93(55192 — Ty) — 1175(2193 — 3). So that,

tr((319293 — g20311) (w1 + f1)? = 2fo((21 + fr) (23 + f3)
+(xs — f3) (1 + fi) (22 + f2))

= —27g3(x192 — x2) — 1122 (2193 — w3) + 221 fr92(2195 — 23)
+1.f195(2192 — 2) + figa (w3 — 2195)

€ mP

Finally, we need to show that the generators of (Q2NQ3) NS arising by applying the
trace map to Q3Q3 also lie in mP. We have that Q1Q3 = {(z; — fi)(z; — f;)(xy +
Jo)wy + fp) vid g, =1,2,3}.

We have that
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tr((zi — fi)(z; — fi)(@y + fi/)(xj' + fj/))
= wxyxixy + fifyr;ey +xixy fify — fivy fivy
—fixpx;fyp —xify fjey —xifpxifo + fify [ify
= TTyx;xTy — fixi’fj$j’ + fifi’l"jl"j’ - $ifi’fjxj'
txiwy fify — fiwpxify —xifyxifp + fifo Fify
= x/x/(aczx] fify) + fifyxjoy — xify fizy
+xixy fify — fivpxifp — fo £y (vizy — fify)
= xyTy (wix; — fif;) + fifyxjay —vixprey + xivpxey — i fy fjay
‘g fify — vivp ey +vivprgey — fiwpxify — fofy (xiz; — fif;
= gy (@ — i) + ay ify — wiag) + v (aow, — fo )
+wixy (fify —wjwy) +wpx(viwy — fify) — fo [y (wivg — fif;)

€ mpP

Note, f; f; are is a multiple of t? and hence in m as fy, [ are odd power series.
Thus, every generator of (Q?NQ3)N S is in mP, showing (Q? N Q%) NS C mP as

promised.

3.1.6 Computing generators of Q? N Q3 (general case)

We extend the methods of section 3.1.4 to compute the generators of Q2 N Q3 for

any number m of generators of (J;. In this case, we seek relations on

E = (4z1fr, o 4 fon, 221 fo + 200 f1, .0, 200 frn + 220 f1, 202 f3 + 223 fo, ..,

2I2fm —+ mefg, ceey 2xm—1fm -+ 2xmfm—1)
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over R/Q?. Denote a typical relation by the vector

(Oél, ey Oy QU125 vy Oy Q23 oevy Qi -, am—l,m)-

As before, we can express every element of R/Q? as a k[[t]]-linear combination of
Z1, ..., Ty. We associate the matrix M of coefficients in k[[t]] with the set £ as we

did in the case when m = 3. Corresponding to each element in £, we will have

m(m+1) '

5 So we have

m + 1 columns of coefficients. Now || = m + m(";_l) =
that w columns in M. Performing column operations as before, we can
show that M has rank equal to the number of rows, which is m + 1, giving rise to

m(mTH)Z —(m+1)= (m_l)(m;r D2 relations. We indicate these relations below.

1. The m — 1 relations with oy = ¢2, o; = 1, ay; = —2g;, where 1 < i < m.
2. The m — 1 relations with oy = ¢;(f1 — x1), a1; = ©1 — f1, where 1 <i < m.

3. The (TTL— 1)(m—2) relations with o] = gzgj(?)fl —IL’l), Q1 = Ty —fj, a1 = —sz,

where 1 < i # j < m.

4. The (m — 1)(m — 2)/2 relations with oy = ¢,9;(2f1 — z1),00; = —f;,0qj =

—fi,a;j = x1, where 1 <1 # j < m.

5. The (m — 1)(m — 2)/2 relations with a; = g;9;, 1 = —g;,1; = —gi, 5 = 1,

where 1 < i # j < m.

6. The (m — 1)(m — 2) relations with oy = ¢?g;(4f1 — x1), s = —3f19i9;, 1; =

_flgi27aij = x;, where 1 < i # j < m.
7. The m — 1 relations with a; = ¢g?(3f1 — 11), a1; = z; — 3 f;, where 1 <1 < m.

8. The m — 1 relations with a; = ¢;(2f1 — x1) + x;, 1y = —2f1, where 1 < i < m.
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9. The m — 1 relations with oy = ¢2(4f; — 1), = x5, s = —4f19?, where
l<i<m.

10. The m — 1 relations with oy = ¢2(2f) — 1), a5 = T1, y; = —2f;, where 1 < i <
m.

11. The (m—l)(m—2) relations with o] = g?gj (4f1—5171), Qp = Tj, 03 = _2f1gigj7 a1 =

—2f197, where 1 < i # j < m.

12. The (m — 1)(m — 2)(m — 3)/2 relations with

p

a1 = ,9i9k(2f1 — 1), o = T, o = — f1g5, 005 = —f19; where 1 <k <i<j<n

a1 = 9,9i9k(2f1 — 1), o = T, i = — f195, 005 = —f19; where 1 <i <k <j<n-

a1 = 9,9i9k(2f1 — 21), i = T, i = — f195, 0451, = —f19; where 1 <i<j<k<n
\

So we have accounted for all the 6(m — 1) 4+ 4(m — 1)(m — 2) + Z=Lm2m=3) _

(m=Dlm A )mE2) 1olations.

The corresponding generators of Q% N Q3 are as follows.

1. The m — 1 generators gZ(z1 + f1)* + (x;i + fi)? — 2g:(x1 + f1)(x; + fi), where

1< <m.

2. The m — 1 generators g;(fi — z1)(x1 + f1)* + (z1 — f1)(z1 + f1)(z; + f;), where

l<i<m.

3. The (m —1)(m — 2) generators ¢;g;(3f1 —x1)(x1 + f1)* + (x; — f;) (@1 + f1)(z; +

fi) + —=2fi(x1 + f1)(z; + f;), where 1 <i # j < m.

4. The (m—1)(m —2)/2 generators ¢;g;(2f1 — 1) (@1 + f1)* — fij(@x1+ f1) (@ + fi) —

filz + fi)(x; + f;) + x1(xi + fi)(z; + fj), where 1 < i # j <m.

5. The (m — 1)(m — 2)/2 generators g;g;(z1 + f1)? — gj(z1 + f1)(xi + fi) — gi(x1 +

fi)(x; + f;) + (xi + fi)(z; + f;), where 1 <i # j < m.
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. The (m — 1)(m — 2) generators g?g;(4f1 — z1) (@1 + f1)* — 3f19:9;(x1 + f1)(@; +

fi) = figi(ws + fi)(z; + f3) + iz + fi) (4 f;), where 1 <@ # j < m.

The m — 1 generators ¢7(3f1 — 21)(x1+ f1)* + (x: — 3fi) (x1 + f1) (i + fi), where

1l<i<m.

. The m — 1 generators (g;(2f1 — 1) + ;) (z1 + f1)> — 2f1(z1 + f1)(z; + f;), where

l<i<m.

. The m—1 generators g2 (4f1 —x1)(z1+ f1)? +xi(xi+ i) =4 f197 (21 + f1) (x:+ 1),

where 1 < i <m.

The m — 1 generators ¢?(2f — 1) (1 + f1)? +z1(z; + f;)? = 2fi(xr + fL) (@ + i),
where 1 <17 < m.

The (m—1)(m—2) generators gZg;(4f1—x1)(x14 f1)? +z;(@i+ f;)* —2f19:9; (x1+
) (@i + fi) = 2f1g2(x1 + f1)(x; + f;), where 1 < i # j < m.

The (m — 1)(m — 2)(m — 3)/2 generators ¢;g;gx(2f1 — z1)(x1 + f1)* + (2 +
)@+ f;) — frgi(ae + fo)(x + fi) = figi(ze + fu)(z; + ;).

(Q2NQ3) NS CmP (general case)

As in the special case of three generators, we apply the trace map to each of the

generators of Q? N Q3 above along with the generators of Q?Q? to get the generators

for (@3 N Q3) NS and show that each of these generators lies in mP. Since the

computations are essentially identical to the special case of three generators discussed

earlier, we relegate these computations to the appendix. This completes the proof

that P C mP in the general case.
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3.2 Some computational results using Macaulay2

In this section we verify a few specific cases of the Eisenbud-Mazur conjecture
using the computational algebra package Macaulay2.

We consider prime ideals in polynomial rings over Q (since Macaulay2 allows
direct computations in such rings). We will describe these prime ideals as kernels of
certain maps to another polynomial ring. Let R be a polynomial ring over Q, let
m be the homogeneous maximal ideal of R and let P be a prime ideal in R. The
symbolic square of P, P® is computed by computing a primary decomposition of
P? and then finding the P-primary ideal. Then we use a Macaulay2 subroutine for
checking whether P C mP. We first describe an illustrative Macaulay?2 code below
with a polynomial ring in 3 variables. Statements followed by -- are explanatory

comments and are not part of the code.

R=QQ[x1,x2,x3] -- Polynomial ring over the rationals in 3 variables.
M=ideal (x1,x2,x3) -- Homogeneous maximal ideal in A.
S=QQ[t] -- Target ring.

(a,b,c,d)=(5,7,9,11)

f=map(S,R,{t"a,t"b,t"c+t~d}) -- Homomorphism R->S given by x1->t~a,x2->t"b,x3->t"c+t"d.
P=kernel f -- Prime ideal for which the Eisenbud-Mazur conjecture is to be verified.
Q=primaryDecomposition P"2 -- Set of primary ideals in a primary decomposition of P~2.
m=#Q -- Number of elements in the primary decomposition of P~2.

i=0; while i<m do (

if P==radical Q#i then PS2=Q#i;

i=i+1;)

-- Loop to determine the symbolic square of P, assigned to the variable PS2.

conj=isSubset (PS2,M*P) -- Assigns ’true’ to ’conj’ if the symbolic square is contained in MxP.

The Eisenbud-Mazur conjecture holds in the given instance if the boolean variable
“conj” has value “true”. We illustrate below the cases for which the program was used.

The Eisenbud-Mazur conjecture was verified to be true in all cases.

1. The conjecture was verified in the following case for 5 < n < 16: R =

Q[z1, w2, 73], S = Q[t], f: R — S such that f(z1) =", f(z2) = tn+17f($3) =
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tn-‘r? + tn+3.

2. The conjecture was verified in the following case for 5 < n < 51, n odd: R =

Qler,@2,35), S = Qt], £ R — S such that f(z,) = 7, f(z2) = "2, f(z5) =

tn+4 + tTL+6'

3. The conjecture was verified in the following case for 3 < n < 20: R =
Qlw1, 22, 23], S = Q[t], f: R — S such that f(z1) = 1", f(x2) = t"*?, f(x3) =

tn72 _|_ tn+1 )

4. The conjecture was verified in the following case for 3 < n < 20: R =
Q[w1, w9, 23], S = Qlt], f: R — S such that f(z1) =", f(z2) = "2, f(23) =

tn—2 + tn—i—?.

5. The conjecture was verified in the following case for 3 < n < 20: R =

Qlx1, 9, 23], S = Q[t], f: R — S such that f(x1) = t", f(x2) = t"2, f(x3) =

tn—2 + t2n+7 )

6. The conjecture was verified in the following case for 3 < n < 20: R =

Qler,ws,35), S = Q] £ R — S such that f(z,) = 7, f(z2) = "2, f(z5) =

tn72 + t3n+1 .

7. The conjecture was verified in the following case for 3 < n < 20: R =

Q['rlax27$3]a S = Q[ﬂ? f : R — 5 such that f(xl) = tn7f<x2) = tn+27f<x3) =

tnf2 ‘I’ t3n+7‘
3.3 An alternative version of the Eisenbud-Mazur conjecture

In the introduction we discussed another result of Eisenbud and Mazur about the

existence of non-trivial evolutions. We repeat it here for convenience.
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Theorem 3.3.1. [EM97] There exists a reduced local C-algebra T of finite type
whose localization at the origin has a non-trivial evolution if and only if there exists

a polynomial f € R = Cl[xy, ..., x,]] without constant term such that f ¢ mI, where

m = (21, 2)R, = \J(2L, . 2R

This theorem motivates the following version of the Eisenbud-Mazur conjecture.

Conjecture 3.3.2. Let R = C[[zy,...,x,]], m = (z1,...,z,)R. If f € m, then,

Ox1’ """ Oz

feml, where I = \/(a—f o 2R,

The conjecture is true if f is regular, for in this case I = R. It is also true if f has
an isolated singularity (for in this case f € m? and I = m) or if f is quasihomogeneous
(by Euler’s formula, f € mI). Eisenbud and Mazur show that the conjecture holds
when the singular locus of f is a curve. More generally the conjecture is shown to
hold when the embedding dimension of the reduced singular locus of f is less than
4. In case of embedding dimension 4, the conjecture has been shown to hold if the
reduced singular locus of f is Gorenstein or licci [EM97].

We show that the conjecture holds for a family of polynomials.

Proposition 3.3.3. Let R = k[[x1,...,x,]] be a ring of formal power series over
a field k (or alternately let R = k[xy,...,z,] be a polynomial ring over k). Let

f=alal +a2al 4+ 4 28 tabe 4 a2 Then, if (ay...an + (=1)"71by..by,) is

invertible in k, f € mI, where m = (xq,...,2,)R and I = (% IR

17 ceey axn

Proof. Denote % by f;. Then f; = bia:?i’lla:?ifl + aizvfifleijf for 1 < i < n, where

we define x,1 := x1,a,41 = a1,b,11 := by and xg := x,,00 = a,,by = b, for

brevity.
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Then we have that

(ay...a, + (—1)”_1b1...bn)x‘1‘1x32 = Qy...apT1 f1 — b1Go...Ap_1Tp frt

blag...an,gbn,lxn,lfn,l — ...+ (—1)nilb1b3...bnﬂf2f2.

Then, if (a;...a, + (—1)""'by...b,) is invertible in k, we have z{'z5 € mI. Expressing

other terms similarly, we get that xfzxfff emJ for 1 <i<n. Hence, f eml. [



CHAPTER 4

Uniform bounds on symbolic powers of prime ideals

In this section we consider the question of uniform bounds on the growth symbolic
powers of prime ideals.

An important stepping stone in proofs of the results in [Swa00] and [HKV09] is to
show that, under the corresponding assumptions on the local ring (R, m), there exists
a positive integer h (uniform in the latter case), such that for every prime ideal P of
R, P C m™. We shall prove that for a Noetherian complete local domain (R,m)
there exists a function 5 : Z-o — Z-o (depending on the ring but independent of
any prime ideal in the ring), such that for any prime ideal P in the ring, we have
that P™) C m” for all positive integers n. The main ingredient in the proof is the
strong approximation theorem, which first appeared in [Art69]| (without this name)
and was later generalized first by Popescu and Pfister [PP75] and then again by
Popescu [Pop86].

Another case in which we are able to get a uniform bound on the growth of
symbolic powers is the following: suppose that R C S is a module-finite extension
of domains and R is normal while S is regular, equicharacteristic. Then, under mild
conditions on R, S, there exists a positive integer ¢ such that for any prime ideal P

in R we have that P C P™ for all positive integers n.

92
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4.1 Strong approximation

In the paper [Art69] where Artin proved his famous approximation theorem, the

following stronger theorem was also proven.

Theorem 4.1.1. [Art69] Let n, N,d,c be non-negative integers. Let k be a field
and let F = (f1,..., fm) be polynomials in R = klxy,...,xn,y1,...,yn|. Let d be an
upper bound for the degrees of all the polynomials in F'. Then there is a non-negative
integer valued function B(n, N,d,c) with the following property: given polynomials

7= (U1, UN) € kl[z1, ..., ;] such that
F(zy,....,2,,7) = 0 mod (21, ..., 7,)° R

there are elements Z = (z1, ..., 2n) € k[x1, ..., x,])~ (where ™ denotes the henselization

at the homogeneous maximal ideal) solving the system of equations
£F=0

and such that z; = y; mod (1, ...,x,)°R.

This result later was generalized by Pfister and Popescu [PP75]. We first make

the following definition used in their article.

Definition 4.1.2. Let R be a Noetherian ring and let I be an ideal in R. Then
the pair (R, I) is said to satisfy the strong approximation property if the following
condition holds:

For every system of polynomials £ over R there exists a function Bp : Zsg — Z~o
such that for every positive integer ¢ and for every system of elements 77 of R such
that F(7) = 0 mod I?(), there exists a system of elements of Z in R such that

F(zZ)=0and Z=7y mod I
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Now we can state the result of Pfister and Popescu. We will call Sp the Artin

function for the system of polynomials F for the pair (R, I).

Theorem 4.1.3. [PP75] If (R, m) is a Noetherian complete local ring, then, the pair

(R, m) satisfies the strong approximation property.

Popescu obtained a further generalization (corollary 4.5, [Pop86]) stated in the

following theorem.

Theorem 4.1.4. [Pop86] Let (R, m) be an excellent Henselian local ring. Then the

pair (R, m) satisfies the strong approzimation property.

We use the strong approximation property to obtain a uniform bound for symbolic
powers of prime ideals in certain Noetherian rings.

We make another definition.

Definition 4.1.5. Let (R, m) be a Noetherian local ring. Let 9(R) = dimpg/m(m/m?)
(the embedding dimension of R). For a Noetherian ring A, not necessarily local,

define 6(A) = max{0(Ap) : P a prime ideal in A}.

The following proposition due to Hochster (proposition 3.8, [Hoc71|) illustrates

some properties of 4.

Proposition 4.1.6. [Hoc71] Let A be a Noetherian ring. If B is a residue class ring
or localization of A, then, 6(B) < §(A). If B is a reqular local ring, 6(B) = dim(B).
If B is an extension of A generated by r elements, then, 6(B) < §(A)+r and equality

holds if B = Alxy, ..., x,], where x4, ...,x, are indeterminates over A.

From the above proposition it immediately follows that if R is a ring essentially
of finite type over a homomorphic image of a regular local ring, then, §(R) < oc.
We quote another result due to Hochster (proposition 3.10, [Hoc71]), which will

be needed for the proof of the subsequent theorem.
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Theorem 4.1.7. [Hoc71] Let R be a normal Noetherian domain such that §(R) < oo.
Let K = Frac(R) and L be a finite Galois extension field of K. Let S be the integral
closure of R in L. Then there exists s € Z~q such that for each prime ideal () of S

and eachn € Zwg, a € Q" NR = a* € (QNR)™,

Theorem 4.1.8. Let (R, m) be an excellent Henselian reqular local ring of dimension
d. Let K = Frac(R) and let L be a finite Galois extension field of K. Let S be the
integral closure of R in L. Then there exists a function v : Z~o — Z~g, such that for

any prime ideal Q in S, we have that Q) C meS for all positive integers c.

Proof. Let P = (Q N R, which is a prime ideal. There are a finite number of prime
ideals of S that lie over P say @1, ..., @, with @1 = Q. The Galois group G of L/K
acts transitively on this set of prime ideals (proposition VII.2.1, page 340, |[Lan02]).

Suppose that a € QW\{0}. If G = {g1, ..., gm}, the norm function N': S — R
acts on s € S as follows: N'(s) = g1(s)-...- gm(s). Then N(a) € QW) N R. Since R is
a regular local ring, it is a unique factorization domain and hence normal (corollary
2.2.20, page 70, [BH93|). Further, since R is a regular local ring, 6(R) = d < oc.
Then, by theorem 4.1.7, there exists a positive integer s (independent of @) such
that A'(a)® € PW).

Now, since R is a regular local ring, given an ideal I of R, we have that [»+d-1 C "
by a version of the Briangon-Skoda theorem (theorem 2.1, [LT81]). In particular,
m~+d-1 C m" for all positive integers n. Further, since R is a regular local ring, for
every prime ideal p we have that p™ C m™ (page 9, [Hoc71]).

Since R is a excellent, Henselian, local ring, the pair (R, m) satisfies the strong
approximation property by theorem 4.1.4. Let Sr be the Artin function for the
pair (R,m) for a system of polynomials F. Set N = s(fg(c) +d — 1) for some

positive integer ¢. We have that PW) = pP(Be(+d=1) C msbr+sid=1) So Af(a)® €
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mPe(©)+sd=1)  Now, if b € I' for some ideal I, then, b satisfies the monic equation
! — b = 0 and is thus integral over I. Thus, N(a) € mPE(+d-T, Then, by the
Briangon-Skoda theorem quoted in the preceding paragraph, we get that N(a) €
mPEOFd—T C mbe(e),

Now S is a finitely generated R-module (corollary V.4.1, page 265, [ZS75]). Let
a1,...,au be a set of generators for S as an R-module. Suppose that a = riay+...+r,a4
for some 7y, ..., € R. Then g;(a) = r1g;(a1) + ... + r19:(cy) for i = 1,...,m. Now we
can write that g;(a;) = 51,00 + ... + 8oy for 1 <i<m, 1 <j<tand sg;; € R
for 1 <7 <m, 1 <7k <t Further, since oo, are elements in S for 1 < j, &k <t we
may express each of these products as R-linear combinations of a;,...,a;. Using the
expressions for g;(a;) and repeatedly using the expressions for a;ay, we can express
N(a) = gi(a) - ... - gm(a) = Fioq + ... + Fiy, where Fi, ..., F; are polynomials in
71, ..., with coefficients in R (the coefficients of Fi, ..., F} are functions of s, ; and
the coefficients of aq,...,a; in the linear expressions for a;ay). By the preceding

paragraph, N'(a) € mP2(). Set F = {F}, ..., F;} and denote Sz by 3. Therefore,
Fioag + ... + Fiay € mﬁ(c) - mﬁ(c)S

So we must have, Fy, ..., F, € m?(9S. Since R is a regular local ring, all powers of the
maximal ideal are integrally closed in R (section 1, page 142, [HRWO05]). Then, since
Fi,...F, € R, we have that Fy,...,F, € m*©SNR CmfOSNR = mble) = mA©)
(where the first equality follows from proposition 1.6.1, page 16, [HS06]).

We shall now show that a € m®S. We consider two cases: (1) rq,...,7, € m€
and (2) r; ¢ m¢ for some j € {1,...,t}. In case (1), a = ria; + ... + oy € mS.
Now consider case (2) and suppose that r; ¢ m® for some j € {1,...,¢t}. Then, since
F;(r1,...,m) = 0 mod mP© for 1 < j < t, by the strong approximation property

for the pair (R, m) (theorem 4.1.4), there exists a set of elements, say, sy,...,8 € R
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such that Fj(sq,..,s;) = 0 for 1 < j < t and s = r, mod m°. Since N(a) =
Fioq+ ...+ Fyay, we get that N (syaq + ...+ s;0¢) = 0. Set b = syay + ...+ 8. Then,
since N (D) is the product of conjugates of b and S is a domain, N'(b) = 0 if and only
if b=0. Sob=0. Now a = b mod m°S, so a € m®S. This proves the claim.
Finally, let v(c) = ds(B(c) +d—1). Note that the system of polynomials F, ..., F}
depends only on the coefficients in the expressions g;(a;) for 1 <i<m, 1< j <t
and the coefficients in the expressions for aj o for 1 < j,k < ¢. Fixing the choice
of these expressions, the function f is independent of any prime ideal in S (note
that d, s only depend on R). Then, since a € Q¥?) = g € m°S, we have that

QW) C meS. O

Corollary 4.1.9. Let (R,m) be a complete Noetherian local domain. Then there
exists a function n : Loy — Z~q, such that for any prime ideal P in R, we have that

PO©) C me for all positive integers c.

Proof. Let dim(R) = d. If R is equicharacteristic, then, R is a module-finite extension
of the formal power series ring k[[z1, ..., x4]],, where k is a field. In mixed characteristic
R is a module-finite extension of V[[z1, ..., z4_1]], where V is a complete Noetherian
discrete valuation domain (theorem 4.3.3, page 61, [HS06]). In the former case set
T = k[[z1,...,24]] and in the latter case set T' = V[[z1, ..., x4-1]]. Let K = Frac(T)
and L = Frac(R).

Since R is a module-finite over T', L/ K is a finite extension. If L/K is a separable
field extension', then, it can be extended to a finite, Galois extension (for example
we may take the normal closure of L/K) (theorem 1.6.13, page 69, |[Lev08|). Say
K C L C M, where M is a finite, Galois extension field of K. Let S be the integral

closure of T'in M. Then, by theorem 4.1.8, there exists a function v : Z~q — Z~q such

1This will necessarily be the case in equal characteristic zero and mixed characteristic.
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that for any prime ideal @ in S we have that Q®(¢) C 9°S for all positive integers
¢, where MM = (xy,...,24)T. Note that since T' C R is a module-finite extension,
it is integral and hence R C S (lemma 2.1.9, proposition 2.1.10, page 26, [HS06]).
Thus, R C S is an integral extension (corollary 2.1.12, page 27, [HS06]). Let P be
any prime ideal in R. Since R C S is integral there exists a prime ideal p in .S such
that p N R = P (theorem 5.10, page 62, [AM94]). Then P®() C p() C 9nes.
Thus, P¥©) C MeS N R. Now MM C m (theorem 4.3.3, page 61, [HS06]). So
P¥©) C meSNR. Further, S is finitely generated as an R-module since S is module-
finite over T' (corollary V.4.1, page 265, |ZS75]) and " C R. Thus, by the Artin-Rees
lemma, there exists a positive integer a such that m°SN R = m“*(m*SNR) C m“*
for all positive integers ¢ > a. Set n(c) = v(c+ a). Then P"(€) C me.

Suppose that L/K is not a separable field extension. Then K, L must have prime
characteristic, say p and R is a complete local ring in equal characteristic p. Then
there exists an F-finite, local ring (R", mr) faithfully flat over R such that mR" = mr.
Further, since R is module-finite over T' = k[[xy, ..., z4]], R" is module-finite over

~ 1
k'([z1, ..., 24)]. Set T = kV[[zy, ..., 24]]%. Let y; = x7° for 1 < i < d, where ¢ is a

)

.
€

positive integer. Set R = R'[y1,...,yq] and T" = k'[[y1, ..., y4]], where k' = (kV)?".
Then R’ is module-finite over T" for some e > 0 (proof of theorem 4.3, page 23,
[Hoc75]). Fix one such e. Then, if we let K = Frac(T") and L' = Frac(R'), then,
L'/K' is a finite, separable field extension. This can be extended to a Galois field
extension as before. Say K’ C L' C M, where M  is a finite, Galois extension
field of K'. Let S" be the integral closure of T in M. Then, by theorem 4.1.8,
there exists a function v : Zsg — Zsg such that for any prime ideal Q in S" we

have that Q(9) C 9M'°S’ for all positive integers ¢, where MM = (y1,...,ya)T . Now

2For a discussion of the construction and properties of R, consult section 6.11 in [Hoc94].
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MW C M, where M = (z1,...,24)T. Then QW) C MeS". Let P be a prime
in R'. Then PR’ is prime in R'. Since S’ is the integral closure of 7" in M  and
R’ is module-finite (hence, integral) over 7", the extension R C S’ is also integral.
Consequently, there exists a prime ideal Qp in S such that PR = Qp N R'. Then
pidrre) C (PR ) C QW) C gnes’. Thus, ¥ C meS’ N RY. Now,
since k' is F-finite, T is F-finite (example 2.1, [BMS08]). Then 7" is module-finite
over T. Further, S" is module-finite over 7" (corollary V.4.1, page 265, [ZS75|). Thus,
S’ is module-finite over T. Finally, T C R' and hence S’ is module-finite over R'.
Now P C gmes’ N RY = m&S N R, where myp is the maximal ideal in R'.
By the Artin-Rees lemma, there exists a positive integer b such that mgS' N RY =
m%‘b(m%S/ NR) C mffb for all positive integers ¢ > b. Thus, P¥(# ) C m%‘b. Set
n(c) = v(dp®(c +b)). Then PO C m&. Finally, given a prime ideal P in R, there
exists a prime ideal, say Pr, lying over P in R' (proposition B.1.1, page 399, [HS06]).
Then P(9) C PF("(C)) C m& = m°RY. Thus, Pm©) C m°R"' N R. Then, since R is
faithfully flat over R, m°R" N R = m® (theorem 4.74.(2), page 150, [Lam98]). Hence,

PO©) C me. O

A modification of the argument in the proof of theorem 4.1.8 shows the failure
of the strong approximation property in excellent, Henselian, regular local rings in
general (hence, in particular, for complete regular local rings). We explore this in
the next theorem.

In [Pop86] Popescu asks the following question: Let R be a Noetherian ring and
I an ideal such that R is complete with respect to the [-adic topology. Does the pair
(R, I) necessarily satisfy the strong approximation property? A counterexample is

shown in [Spi94]|. We present the following theorem in the same spirit.
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Theorem 4.1.10. Let (R, m) be an excellent Henselian regular local ring. Let P be
a prime ideal of R such that P # m. Then the pair (R, P) does not satisfy the strong

approximation property.

Proof. Let K = Frac(R) and let L be a finite non-trivial Galois extension of K. Let
G be the Galois group of L/ K. Let S be the integral closure of R in L. Suppose that
@1, ..., Q, are the set of distinct prime ideals of S lying over P. Since R is a regular
local ring, it is a unique factorization domain, hence, normal (corollary 2.2.20, page
70, [BH93|). So G acts transitively on the set {Q1, ..., @, } (proposition VII.2.1, page
340, [Lan02]).

We may choose a € Q%N) \ U{Q2,...,Q,}. Such an element exists because by
the prime avoidance theorem if QgN) C UW{Q2,...,Qn}, then, QgN) C Q; for some
i € {2,...,n}. Then Q¥ C Q; and taking radicals we get that Q; C @Q;. Since
@1, Q; both lie over P, by the lying over theorem, we get that ()1 = @);, which is a
contradiction. If G = {g1, ..., gm}, the norm function N’ : S — R acts on s € S as
follows: N'(s) = g1(s) - ... - gm(s). Then N'(a) € Q1™ N R. Since R is a regular local
ring, it is a unique factorization domain and hence normal (corollary 2.2.20, page 70,
[BH93|). Further, since R is a regular local ring, §(R) = d < co. Then, by theorem
4.1.7, there exists a positive integer s such that A'(a)® € P™).

Now the suppose that the pair (R, P) does satisfy the strong approximation prop-
erty with the Artin function S for a system of polynomials F. Set N = s(8g(c)+d—
1) for some positive integer c. We have that PV) = PBr()+d=1)) C ysbe(c)+s(d=1)
(where the containment follows from the fact that P®"Y) C m" as R is a regular local
ring). So N(a)® € m*Pe(+s(d=1)  Now, if b € I' for some ideal I, then, b satisfies
the monic equation 2! — b' = 0 and is thus integral over I. Thus, N (a) € PBe(e)+d-—1,

Now S is a finitely generated R-module (corollary V.4.1, page 264, [ZS75|). Let
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a1,...,a4 be a set of generators for S as an R-module. Suppose that a = ria1+...+ra4
for some 7y, ..., € R. Then g;(a) = rigi(o1) + ... + 1:9:(ay) for i = 1,...,m. Thus,
we can write that g;(o;) = sy 00 + ... + s 504 for 1 <7 < m, 1 < j <t and
skij € Rfor 1 <i<m,1 < jk <t Further, since a;a; are elements in S for
1 < j,k <t, we may express each of these products as an R-linear combination of
ai,...,o4. Using the expressions for g;(«;) and repeatedly using the expressions for
ajoy, we can express N (a) = gi(a) - ... - gm(a) = Frag + ... + Fiay, where Fi, ..., F;
are polynomials in 7y, ..., with coefficients in R (the coefficients of Fi,..., F; are
functions of sy, ; and the coefficients of oy, ..., oy in the linear expressions for a;ay).

By the preceding paragraph, N'(a) € PPe(©+d=1 Set F = {F, ..., F;} and denote 3p

by 8. So Fiay + ... + Fyoy € PB+d=1 C pBle)+d-1G  So we must have, [y, ..., F, €

PB)+d=18  Then, since Fy, ..., F, € R, we have that

F,.. F € PB+d-19 N R C PB+d-19 N R = PBe)+d-1 — pp(c)+d-1

(where the first containment follows from persistence of integral closure and the
first equality follows from proposition 1.6.1, page 16, [HS06]). Further, since R is a
regular local ring, given an ideal I of R, we have that I"*4-1 C " by a version of
the Briangon-Skoda theorem (theorem 2.1, [LT81]). In particular, Prtd-1 C P for
all positive integers n. So Fi, ..., F, € P%©).

Then we claim that a € P°S. We consider two cases: (1) r1,...,7 € P° and (2)
r; ¢ P°¢ for some j € {1,...,t}. In case (1), a = moy + ... + . € P°S. Now
consider case (2) and suppose that r; ¢ P¢ for some j € {1,...,t}. Then, since
F;(ry,...,7¢) = 0 mod PA) for 1 < j < t, by the strong approximation property
for the pair (R, P) (theorem 4.1.4), there exists a set of elements, say, $1,...,5; € R
such that Fj(sq,..,s;) = 0 for 1 < j < t and sy = r, mod P°. Since N(a) =

Fiag+ ...+ Fyay, we get that N (syaq + ...+ s;04) = 0. Set b = syay + ...+ 8. Then,
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since AV (b) is the product of conjugates of b and S is a domain, N'(b) = 0 if and only

ifb=0. Sob=0. Now a = b mod P°S, so a € P°S. This proves the claim.
However, this contradicts the choice of a since P¢S C ()1N...NQ, and by the choice

of a, a ¢ U{Qs,...,Q,}. So the pair (R, P) cannot satisfy the strong approximation

property. O

4.2 Uniform bounds for an isolated singularity

We are able to obtain a linear bound for the growth of contractions of symbolic
powers of prime ideals from certain integral extensions of an isolated singularity. We
will need a couple of results from literature before we can state this proposition.

Huneke-Katz-Validashti obtain a linear bound for the growth of symbolic powers

of prime ideals in an isolated singularity (corollary 3.10, [HKV09]).

Theorem 4.2.1. [HKV09] Let (R, m) be an equicharacteristic local domain such that
R is an isolated singularity. Assume that R is either essentially of finite type over a
field of characteristic zero or R has positive characteristic, is F-finite and analytically
wrreducible. Then there exists a positive integer h > 1 with the following property:
for every prime ideal P of R such that P # m, P C P™ for all positive integers

n.

Note 4.2.2. Note that we can disregard the condition P # m in theorem 4.2.1 since

hn) _

m( m C m" for all positive integers n.

We will also need a uniform Briangon-Skoda theorem due to Huneke (theorem

4.13, [Hun92|).

Theorem 4.2.3. [Hun92] Let R be a Noetherian reduced ring. Suppose that R

satisfies one of the following:
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1. R is essentially of finite type over an excellent Noetherian local ring.
2. R is characteristic p and F-finite.

3. R is essentially of finite type over Z.

Then there exists a positive integer k such that for all ideals I of R, I* C I"* for
all positive integers n > k.

We can now state and prove our result.

Proposition 4.2.4. Let (R,m) be an equicharacteristic local domain such that R
1s an isolated singularity. Assume that R is either essentially of finite type over a
field of characteristic zero or R has positive characteristic, is F-finite and analytically
irreducible. Let K = Frac(R) and L be a finite Galois extension field of K. Suppose
that S is the integral closure of R in L. Then there exist positive integers r, k such
that for any prime ideal Q of S we have that Q™ N R C (Q N R)"~* for all positive

integers n > k.

Proof. Suppose that a € Q™) N R. Then, by theorem4.1.7, there exists a positive
integer s independent of Q such that a®* € P®), where P = QN R. Set N = hsn for
some positive integer n, where h is as in theorem 4.2.1. Then PN) = p(hsn) C ps»
(where the containment follows from theorem 4.2.1 and note 4.2.2). So a® € P*".
Now, if o' € I' for some ideal I, then, b satisfies the monic equation z! — ' = 0
and is thus integral over I. Thus, a € P". Finally, since R satisfies the hypothesis
of theorem 4.2.3, there exists a positive integer, say k such that for all ideals I of
RI"CI"* Soac P*C P"* Thus, Q"™ NR C(QnN R)"* for all positive
integers n > k. Setting r = hs, we get that QU™ N R C (Q N R)"* for all positive

integers n > k. ]
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Corollary 4.2.5. Let (R,m) be an equicharacteristic local domain such that R is
an isolated singularity. Assume that R is either essentially of finite type over a field
of characteristic zero or R has positive characteristic, is F-finite and analytically
irreducible. Let K = Frac(R) and L be a finite Galois extension field of K. Suppose
that S s the integral closure of R in L. Then there exists a positive integer ¢ such
that for any prime ideal Q of S, we have that QY N R C (Q N R)™ for all positive

integers n.

Proof. By proposition 4.2.4, there exist positive integers r, k such that for any prime
ideal @ of S, we have that QU™ N R C (Q N R)"* all positive integers n. Thus,
QU N R C (QN R)". Since nk > k, we have that QUmk) C Qhs(n+k)  Qet

c=7rk+1)toget QNRC(QNR)" O

4.3 Uniform bounds for normal subrings of equicharacteristic, regular
rings

In the previous sections, we obtained uniform bounds for symbolic powers of

prime ideals in integral extensions of certain rings using the uniform bounds for

symbolic powers of prime ideals in the base ring. In this section, we explore the

other direction. We obtain bounds for symbolic powers of prime ideals in normal

subrings of equicharacteristic, regular rings using the bounds in the overring. We

first need a couple of lemmas.

Lemma 4.3.1. Let R C S be an integral extension of domains. Let P be a prime
idealin R. Let J = {s € S : s"+p1s" '+...4p, = 0 for some n and some p; € P,1 <
i <n} (i.e. J is the set of elements of S that satisfy a monic polynomial with non-

leading coefficients in P). Then J is a radical ideal of S and in fact, vV PS = J.

Proof. Let uw € J and v € S. Then u satisfies a monic polynomial with non-leading



coefficients in P. Say, u" + pyu" ' + ... + p, = 0 with p; € P for 1 < i < n. Also,

since S' is integral over R, v satisfies a monic polynomial with coefficients in R. Say,

Vo 4, =0 withr; € Rfor 1 < j <m. Set f(z) =a"+piz" ' +...+p,

and g(z) = 2" +riz" ' + ...+ 1,,. Then f(z) is the characteristic polynomial of the

n X n matrix U € R™*" given by

—D1
1

0

—P2
0

1

—Pn—-1

—DPn

and g(x) is the characteristic polynomial of the m x m matrix V' € R™*™ given by

0

0

—Tp—1

1

_rm

0

Then u is an eigenvalue for U and v is an eigenvalue for V. So uv is an eigenvalue

for U ®p V. For if u, v are eigenvectors corresponding to v and v respectively, then,

(U@rV)(u@pv)=Up@r Vv =upu®r v =uv(Qrv).

Then U ®z V is as follows.



U®rV

pir1
—p1

P1Tm

p2T1
—p2

—pa

P2Tm

Tm

PnT1

—Pn

PnTm

—Pn

901
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So ww is the root of the characteristic polynomial (say h(z)) of U ®g V. Thus,
h(z) is the determinant of M = x1,,,, — U ®r V (where [,,, is the identity matrix
of size mn). Expanding along the first row of M we observe the coefficient of every
term of the characteristic polynomial arising from the product of the entries (1,1)
of M for i > 1 with the corresponding minors is an R-linear combination of p;ry
and hence lies in P. We need to account for the product of the (1,1) entry of M
with the corresponding minor. To compute the (1,1) minor we can expand along
the second row and observe that the contribution of the product of the (1,1) entry
with the corresponding minor is the leading monic term ™" and lower degree terms
with coefficients in P. So uv is the root of a monic polynomial with non-leading
coefficients in P. Thus, the set J is closed under multiplication by elements of S.

Now suppose that w,v € J. Then considering P as a subring of S (without
identity), we see that u,v are integral over P. So Plu,v] is a finitely generated P-
module. Hence, Plu + v] is contained in a finitely generated P module and thus,
u+wv € J. Thus, J is closed under addition?.

Finally, if v € J and v +piu™ '+ ... +p, = 0 with p; € P for 1 < i < n,
then, multiplying this equation by (—1)", we get that (—u)" + (—p;)(—u)" ' + ... +
(—1)"p, = 0, which is a monic equation for —u with non-leading coefficients in P. So
J is an ideal of S. Further, if u™ € J for some m, we have that (u™)" + py (u™)" ! +
...+ pn = 0, which may be rewritten as «™" + pyu™™ Y + ... +p, =0. Sou € J, and
thus, J is a radical ideal. Clearly any element in P satisfies a monic linear polynomial
with the non-leading coefficient in P, so P C J and thus, PS C J and since J is

radical, we have that +PS C J. Conversely, if uw € J and v +pu™” '+ ... +p, =0

3 Alternately, we may prove that J is closed under addition as follows: suppose that w,v € J, then, u,v satisfy
monic polynomials with coefficients in P. So u,v are eigenvalues of matrices U € R"*™ and V € R™*™ as before
with their first rows consisting of entries in P. Then u + v is the eigenvalue of N = U Qg I, + I, ® g V, where
Iy, I, are identity matrices of size m, n respectively. Then u + v is a root of M = det(xImn — N). Expanding M as
before we get the desired result.
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with p; € P for 1 < i < n, then, u* = —pju™ ! — ... —p, € PS. So u" € PS and
hence, u € vV PS. Thus, J =+ PS. O

Lemma 4.3.2. Let R be a ring and I, J be ideals of R such that there exists a positive
integer n such that for any element r € I, we have that r™ € J. If n! is invertible in

R, then, I C J.

Proof. Any element of I"™ is a finite sum of products of n elements of I. So it suffices
to prove that for any elements ry,...,7, € I, we have that I ;r, € J. Now, by the

multinomial theorem,

(r1 + ...+ Tn) = Ek1+...+kn=n(m)ﬂi=1ri

Then we can write that n!II?_r; = (11 4+ ... +7)" — Si<cicn(r + oo+ +ri+ oo+
’f’n)n + Zlgi#jgn(rl + ..rio + Ti+1 + T + Tj+1--- + ’l“n)n — ...+ Elgign(—l)nilrin.
Now every term on the right hand side of the preceding equation lies in J since the

nth power of every element of I lies in J. So n!II}' ;r; € J. Assuming, n! is invertible

in R, we get that I ;r, € J. Thus, I" C J. O]

Proposition 4.3.3. Let R C S be a module-finite extension of domains. Let L =
Frac(S) and let K = Frac(R). Then L/K is a finite extension and let § = [L : K].

Let P be any prime ideal in R. Then (v PS)° C PS.

Proof. The arguments in this proof mimic those in proposition 3.10, [Hoc71]. Con-
sider J={s€ S:s"+ps" ' +..+p =0 for some n and some p; € P,1 <i < t}.
By lemma 4.3.1, J = v/PS. If s € S is any element, its minimal monic polynomial
over K, say fmin(x), has all its coefficients in R (theorem 2.1.17, page 29, [HS06]).
Further, if s € v/PS it satisfies a monic polynomial with non-leading coefficients

in P since J = vPS. Then f(z)|f(z), and consequently, all the non-leading
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coefficients of fy;n(x) must be in P (lemma 8.31, page 111, [Pes96]). Suppose
that foin(z) = 2t + prat™t + ...+ p. Then s' + pyst=t + ... + p, = 0 and thus,
st = —pist=t — ... —p, € PS. Since § = [L : K], the degree of the minimal monic
polynomial of any element of L over K is at most 6. In particular, [ < . So s° € PS.

Thus, V/PS is an ideal such that for every element s € V' PS , we have that

s® € PS. Then, by lemma 4.3.2, (v/PS)° C PS. O

Theorem 4.3.4. Let R C S be an extension of domains such that S is finitely gener-
ated over R by r elements. Assume that R is normal and S is reqular, equicharacteris-
tic, dimension d < co. Assume that r! is invertible in S. Then there exists a positive
integer h such that for any prime ideal P of R, we have that P C (P"~41S)N R

and P C P for all positive integers n.

Proof. Let P be a prime ideal in R and let (1, ..., Q,, be the prime ideals of S lying
over P.

We claim that @Qq,...,Q,, is the set of minimal primes of PS. We have that
P C @Q; since ); lies over P and hence, PS C ;. If ) is a prime ideal of R such
that PS C @ € Q;, then, PC PSNRCQNRCQ;,NR=PFP. Sowe must have
equality throughout and thus, ) N R = P. So by the lying over theorem, we have
that Q = @Q;. So @1, ..., Q. are minimal over PS. Conversely, if Q' is any minimal
prime ideal of P.S, then, since P C Q', @ N R = P’ is a prime ideal in R containing
P. Then, by the going down theorem, there exists a prime ideal () in S such that
Q C Q and Q N R = P. However, this contradicts the minimality of Q" as a prime
ideal containing PS since P C PS C Q C Q. So the set of minimal prime ideals of
PS is precisely {Q1, ..., Qm}. In particular, vPS = Q1 N ... N Qp.

Now for any prime ideal of p of S with height h, we have that p(*® C p™ for all

positive integers n (theorem 2.1, [HHO7]). In particular, we have that p(@) C p", and
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thus, Q,(;d") C Q" for 1 < i < m. Suppose that u € P for some positive integer
n. Then there exists w € R\ P such that wu € P%. Therefore, w € S\ Q; for if
w € Q; then, w € Q; N R = P, which contradicts the choice of w. Hence, wu € Q%"
for 1 < i < m. Thus, u € din). Then u € din) N..nE c QrN..nQ". So
u™ e QF...Qr . Since S is module-finite over R, the number of prime ideals of S lying
over a prime ideal of P is at most the number of generators of S as an R-module,

viz., r. In particular, m < r. Consequently, v € Q7...Q,. Now

Q7..Qn = (Q1-.Qm)" € (Q1N...N Q)" = (VPS)".

Thus, u" € (v PS)".

Thus, if u € P then, v € (v/PS)™ for every positive integer m. Replacing
m by r2n, we get that u € P’ implies that u” € (vV/PS)”". Let L = Frac(S) and
let K = Frac(R). Now, since R C S is a module finite extension with S generated
by 7 elements as an R-module, the extension L/K is finite and [L : K] < r. It
follows from proposition 4.3.3 that (v/PS)”™ C (PS)™. So u" € (PS)™. Thus,

u satisfies the monic equation z" — u” = 0 over (PS)"™. Hence, u € (PS)". Now
(PS)r C (PS)"~4*! for all n > d (theorem 2.1, [LT81]). Thus, u € (PS)" 4. Also,
since u € R, we have that u € P"~4*1S N R. So PW@’n) C pr—dt1§ N\ R Set h = dr?

to get Phn) C pr—dtln R,

Finally, u € (PS)"N R = P"SN R = P" by (proposition 1.6.1, page 15, [HS06]).

Hence, PUr*n) C Prn_j.e., Phn) C P, O

Corollary 4.3.5. Under the hypothesis of theorem 4.3.4, if R further satisfies the
hypothesis of theorem 4.2.3, then, there exists a positive integer ¢, such that for any

prime ideal P of R, we have that P\ C P™ for all positive integers n.

Proof. By theorem 4.3.4, there exists a positive integer h, such that for any prime
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ideal P of R, we have that P""") C Pn_ If R further satisfies the hypothesis of theorem
4.2.3, then, there exists a positive integer k independent of P such that Pn C P"*
for all positive integers n > k. Thus, P" C P"*  Hence, PM"+k) C P for
all positive integers n. Since h,k > 1, we have that nhk > hk. Consequently,
plhnthnk) . plhnthk) C pr Setting ¢ = h(k + 1), we get that P C P" for all

positive integers n. O

We end this section with a couple of results on uniform bounds in certain integral

extensions of normal domains.

Proposition 4.3.6. Let R be a normal Noetherian domain. Let K = Frac(R) and
L be a finite Galois extension field of K. Let S be the integral closure of R in
L. Then there exists a positive integer § such that if P is a prime ideal in R with
a unique prime ideal, say Q, of S lying over P, then, Q™) C P"Sp N S (where

Sp = (R\ P)71S) for all positive integers n.

Proof. In this set-up, S is a finitely generated R-module (Corollary V.4.1, page 265,
[ZS75]). Further, L = Frac(S) (proof of theorem V.7, page 264, [ZS75]) and L/K is
a finite extension. Let [L : K] = § Then, by proposition 4.3.3, (v/PS)? C PS.

We show that Q = +/PS. Suppose that q is a minimal prime of PS. Then
qN R =p and since ¢ 2 PS, p O P. Then, by the going down theorem, there exists
a prime ideal Q in S such that ¢ 2 Q and QN R = P. Since @ is the only prime
ideal lying over P, we have that Q = (). However, since  is a minimal prime of PS
and (Q O P and hence () 2 PS, we must have, g = ). Thus, @ is the only minimal
prime of PS and hence, Q = v/ PS.

Thus, we have that Q° C PS.

Let R = Rp, P = PRp, W =R\ P, S =W~1S, Q =QS". We claim that S’



112

is a local ring with maximal ideal Q". For Q@ NR = WY QNR) = W~'P = P’
Hence, Q' is maximal (corollary 5.8, page 61, [AM94]). Further, m # Q' is a maximal
ideal in S', which implies that m N R is maximal (corollary 5.8, page 61, [AM94]),

so that mN R = P'. Then mN S # Q (corollary 3.11.iv, page 41, [AM94]), and
mMNS)NR=mNR=mNR)NR=P NR=P.

However, this contradicts the hypothesis that there is only one prime ideal of S lying
over R. This proves the claim.
Let a € Q) for some positive integer n. Then there exists an element w € S\ Q

such that wa € Q™ C P™S. Then wa € P"SpNS. Now Q' = QS = W~'Q =

W-Y(V/PS) = /W-L(PS) = VP'S'. Further, P"Sp = P™S’, so that /P"Sp =

VP"S =+PS =Q. Since vVP"Sp = Q' is maximal in S', P"Sp is Q -primary
(proposition 4.2, page 51, [AM94]) and hence, P"Sp N S is Q-primary (proposition

4.8.ii, page 53, [AM94]). Hence, a € P"SpN S. Thus, Q) C P"SpN S. ]

Proposition 4.3.7. Let R be a normal Noetherian domain. Let K = Frac(R) and
L be a finite Galois extension field of K. Let S be the integral closure of R in L.
Let G be the Galois group of L/K. Let Q be a prime ideal in S and let P = Q N R.
Let H be the subgroup of G that stabilizes (). Let QQq,...,Q; be the set prime ideals
in S lying over P with Q = Q.. Let L' be the subfield of L consisting of elements
of L fized by every element in H. Let ST be the integral closure of R in L. Then
there exists a positive integer § independent of Q such that Q™) C PiSp, NS, where
Py =QnSH and Sp, = (S¥\ Py)~1S. Further, PI({n) is generated by those elements

PI({") that do not lie in any of QN SH, ..., Q, N SH.

Proof. The extension L/L is Galois with Galois group H. We also have Frac(S) =

L (proof of theorem V.7, page 264, |ZS75|). Since H acts transitively on the set
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of prime ideals in S lying over Py ((proposition VII.2.1, page 340, [Lan02|) and H
stabilizes @, @ is the only prime ideal in S lying over Pg. Also, S is the integral
closure of S* in L, since every element of L integral over S is integral over R and
hence lies in S by transitivity of integral dependence. Conversely every element of S is
integral over R and hence over S*. Then, by proposition 4.3.6, there exists a positive
integer § such that for every positive integer n we have that Q" C PrSp, NS (in
fact from the proof of proposition 4.3.6 it follows that 6 = [L : L¥]).

Now let J be the ideal generated by those elements P[(f ) that do not lie in any
of QN SH, ... Q;NSH. Then Pg‘) C J U (U_,(Q; N SH). Therefore, by the prime
avoidance lemma, either P}In) C Jor PI(}) C Q; NS for some i € {2,....t}. The
latter case cannot be true, for then, taking radicals we get that Py C Q;N.S™. Then,

since (), ); lie over P, we have that
QNR=(QNS Y NR=PyNR=P=Q;,NR=(Q;NSTYNR.

Then, since S is integral over S and Py, Q; N S lie over the same prime with the
former contained in the latter, by the lying over theorem, Py = @Q; N S¥. Hence,
Q, Q; lie over the same prime ideal in S. This is a contradiction, since the Galois
group of L/L¥ is H and hence H acts transitively on the set of prime ideals lying
over any prime ideal in S. However, by hypothesis, H stabilizes (). Hence, we must

have that PI({" ) C J, and since J C PI(;L), by definition, we get that PgL )= . O



CHAPTER 5

Results on general contractions of powers of ideals

In this chapter we examine a few questions on more general contractions of powers

of ideals in a ring from an overring. Given an extension of Noetherian rings R C S,
and an ideal I in S, we would like to understand the growth behavior of I" N R as
n varies over positive integers. In particular, we would like to study when the ring
2o(I" N R) is Noetherian. We obtain some results for the case when S = R[z],
where x is an indeterminate over R. We consider the following question: if [ is an
ideal in R[z], when is it true that I" N R = (I N R)"? We show that this is false
in general if R is polynomial ring over a field in more than 1 indeterminate. We
also show that the rings ®5°,(/™ N R) are Noetherian for certain kinds of ideals I
generated by one binomial and several monomials in polynomial rings R in several

indeterminates over a field.

5.1 Contractions of powers of ideals versus powers of contractions of
ideals

Question 5.1.1. Let R be a Noetherian ring and x an indeterminate over R. If I

is an ideal in R[z|, when is it true that I"N R = (INR)" for all positive integers n?

We can find counterexamples to question 5.1.1 in all polynomial rings K [x1, ..., 2,],

where n > 1 and K is a field of characteristic zero. For example, if R = K|z, a,b],

114
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S = K]la, b], where K is a field of characteristic 0 and I = (2*+a, ax, br), then, it can
be shown that I?NR = (a*b, a®)S and INR = (a?, ab)S. Then a® € (I’NR)\(INR)>.

We prove a generalization of this example in the following proposition.

Proposition 5.1.2. Let R = K|z, y,y1, ..., Yd4), S = K|y, y1, ..., Ya), where K is a field
and char(K) = 0. Let I = (z*+y, yz, g1, .., fom@, N1y ooy M) Ry WHETe i1, ...ty M1, vy T

are monomials in S and k is a positive integer. Let J, = 1" NS. Then

Jn = (WY 1Y s o /Y15 m) "SR/ 00S) O (1, -,m0)" ).

Further, J, is generated by monomials of the form y“ﬂﬂ _il_"'_imuil...pﬁ,(b”n]“...nft,

where i1, ..., iy, U, Uy, ..., Uy are non-negative integers such that 0 < iy + ...+ 1, < {ﬂ

and u+u; + ... +u = n.

Proof. We first show that J, is a monomial ideal. Consider a Z‘;Q grading on R,

where deg(z) = (1,0, ...,0), deg(y) = (k,0,...,0) and

deg(y;) = (0, ..., 0, k ,0,...,0).
(i42)th position

Then all monomials are homogeneous and so is z* + y (of degree (k,0,...,0)). Thus,
I is a homogeneous ideal in R with respect to this grading. So the ideals I™ are
also homogeneous for all positive integers n. Consider the induced grading on S.
Then the ideals J,, are also homogeneous. However, the induced grading on S is the
standard multigrading on .S and under this grading the only homogeneous elements
are monomials and hence the only homogeneous ideals are monomial. So J, is
monomial for all positive integers n.

We now show that each of the purported generators of J, is actually an element of
Jn. We may write that (y,n1,...,m)™"S = ({y"n*..n tu+uy + ... + vy = n})R. Fix

non-negative integers u, uy, ..., u; such that u4+wu; +... +u; = n and let g = ny*..n".
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Fix a positive integer n and non-negative integers i, ..., i,, such that 0 < i1 +...41,, <
’—%-‘ Let n = [%W — 41 — ... — i, Finally, let n +u = a.

We have that

o, i1 o, i1

Yt B = (@ )ty
—aM ey <a> () () . () = () TR

Note that (2" +y)* € I* = I"™ and n = [%] —i; — ... — i, > 0 @S iy + ... +ip < [4].
Also, f € I"t-+u  Hence, (F + y)7ult.. puimp3 € [ntutwtedu — prin Copn
Also, 2F*! = 2(aF +y) — (yx) € I. So (yx) ()™ ...(ppmx)im (2P 1) (%15 c
pitivtectimttumi= [ Drwbetue _ pututotu — [0 Qo the right hand side of the
above equation lies in 1. So y*ult..uimB € I" NS = J,.

Let J,, = (Y /Y ta /s oo o /Y5 M1 ooy 1) S[Y) N S) N (g, 71, ooy me)™S). Note
that each ideal in this intersection is a specialization of I" (to x = {/y and to x = 0).
Consequently, .J, C J,. Now any monomial in J, is a multiple of a monomial in
S[¥/y] of the form

(W/9) (i 9) (/)i
where j1, ..., jm, U1, ..., Uy are non-negative integers such that j+j;+...+j,, +vi+...+
vy =n and j+ (WTJ”"‘W +vi4...+v, >n. Let v=74+71+...+Jm. Then we have
that v4+v1+...4v;, =n and j+ (ﬂ +v1+...+v; > n. Equivalently, 7+ [ﬂ +n—v>n
orv—7) < {ﬂ, e, it +im < {%w . The exponent of y in such a typical monomial
is j4 [LEAL=tn ] = p— (034 o4 v) = (it et ) [ 2] =0 =1 — o — G+ [ 2]
In other words, every monomial in J, is a multiple of a monomial of the form
Tl L T

where j1, ..., jm, V1, ..., Uy are non-negative integers such that j; + ... + j,, < {E-‘ and

v+ v + ...+ v, = n. Now, by the preceding paragraph, each of these monomials
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is in .J,. So we have that J = .J,. This completes the proof of the proof of the

proposition. 0

We now prove another proposition about the behavior of ideals in polynomial

rings under elimination of variables.

Proposition 5.1.3. Let R = k[z1, ..., Tm, Y1, ..., Yn| be a polynomial ring over a field
k. Let fi,..., fi be monomials in R such that fi,..., f; is a reqular sequence (equiv-
alently, any indeterminate 1, ..., Ty, Y1, ..., Yo divides at most one of fi, ..., f;). Let
A=k[fi,....fi) CR. Let S = k[y1,...,yn]. We may assume, without loss of general-

ity, fi,....f; € S and fij11, ..., fr € S for some j € {1,...,t}. Let T = k[fj+1,..., fi]-

Let I be an ideal in A. Then IRNS =(IRNT)S.

Proof. Consider the lexicographic monomial order on R, denoted <, where y,, < ... <
Y1 < Ty < ... < r7 and impose the induced order on R, A, T. Let I = (g, ...,94) be
an ideal in A such that ¢y, ..., g4 is a Grobner basis for I.

We claim that g, ..., g4 is a Groébner basis for IR. Let ing(f) denote the initial
term of an element f in a ring R with respect to a given monomial order. The set of
monomials in A is a subset of monomials in R since fi, ..., f; are monomials. Since
the monomial ordering on A is induced from R, we have that in4(g) = ing(g) for
all g € A. In particular, ini(g;) = ing(g;) for 1 <1 < d. Further, since fi,..., f; is
a regular sequence of monomials in R, ged 4 (u,v) = gedg(p, v) for any monomials
p,v € A Let Ay = gedy(ina(g),ina(g;)) and Afl = gedg(ing(g:), ing(g;)). Then
we have that Af;. = Aﬁ for 1 < 4,5 < d. Let G;; = %gi — %gj, where
Aij = Ay = Al for 1 <i,j < dand in(g;) = ina(g;) = ing(g;) for 1 < i < d. Then,
by the Buchberger criterion, there is a standard expression for G;; with respect to

g1, ---, ga such that the remainder in the standard expression is zero for 1 <1 # j < d.
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So we may write that

Gij = Zi_1qijwgr (%)
where ¢ € A and if g1 # 0, then, ina(gijrgx) < ina(Gy;). Then (*) holds in
R and since ing(g) = ing(g) for all g € A, we have that ing(g;jrgx) < ing(Gi;). So
(*) is a standard expression for Gy; in R for 1 < ¢ # j < d. Thus, the G;; have
standard expressions with respect to g1, ..., g4 with zero remainder in R and hence
by the Buchberger criterion, g1, ..., gq is Grobner basis for I R.

Now, by the elimination theorem, /RN S is generated by {g, ..., g4} N.S. Also, by
elimination theorem, I N7 is generated by {g1, ..., ga} NT. However, by construction,
{91, 9430 S =491, ..., 94} NT. Thus, (INT)S = ({91, .., 94} NT)S = ({1, .-, 94} N
S)S=IRNS.

Now, since fi, ..., fi is a regular sequence, A C R is flat (proposition A.73, page
313, [Vas04]). Further, since (f1,..., fi)R C (1, ., o, Y1, s Ym)R S R, A C R is
faithfully flat. So for any ideal J in A, J = JRNA. Then INT = (IRNA)N
T = IRNT, where the last equality follows from 7" C A. Then, by the preceding

paragraph, IRNS =(INT)S = (IRNT)S. O

5.2 Finite generation of certain Rees rings with respect to contracted
ideals

Let R[z] be a polynomial ring in one indeterminate over a ring R. Let I be an ideal
of R. Let J, = I" N R. Then Jo,Jo, = (I™ N R)(I™ N R) C I"*™ AR = Jy, sn..
Thus, the set of ideals {J,}nez., With Jo = R is a filtration. We now raise the

following question.

Question 5.2.1. Let R[z| be the polynomial ring in one indeterminate over a ring

R. Let I be an ideal of R. Let J, = I"NR. Is the ring R® J; ® Jo @ ... Noetherian?
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We show that the answer to question 5.2.1 is yes for the ideals considered in

proposition 5.1.2.

Proposition 5.2.2. Let R = K|z, y,y1, ..., Y4), S = K|y, y1, ..., ya], where K is a field
of characteristic 0. Let I = (x*+y, yx, pnx, ..., @, M1, .y M) R, Where iy, .., fhon, M1, -, N
are monomials in S and k is a positive integer. Let J, = I N S. Then the ring

R® J, ® JyP ... is Noetherian.

Proof. We show that JxJx = Jny1)r for all positive integers n. We only need to

show that Ji,41)r € JuxJi. By proposition 5.1.2,

- o . U
({yu+[ﬁ—| —u Z’"uzll_._u;;“anl...n;“ Tt ety < [E-‘ U+ U+ .ot u = n})

Then
Joie = ({y T RImemdmdt pmagemies Gy < m VoLt o = nk))
and

= ({yer Tl it e ey g < [%w WA wy + ... +wy = k).
So

Joed), = ({y(u+w)+(m+[%1)—(j1+z1>—...—(jm+zm>Mmzl g FHmguten ok

A - ({y(u+w)+(m+[%1)f(jl+zl)7...f(jm+zm)ﬂgl'1+ll ot ot
(% w

(v+w)+ (v1 +wy) + ... + (v +wy) = (n+ 1)k}).

So to prove Jy11)r € JurJr we need to show that the monomials y“wﬂ nyt.nt,

where u + uj + ... + vy = (n 4+ 1)k belong to J,xJi.. We show this below.



120

Ut __

L N

First suppose that u = ik, where i € {0,...,n+1}. Leta =y
Y= DR+G=Dpvr  p where vy + ... + v, = nk — (i — 1)k. Then a € J,; and y**! =
Tadkd n0..m0 € Jy,. Thus, ay*™t = y*Tipit . nft € JopJp. Note (ik) + vy + ... + vy =
ik +nk — (i — 1)k = (n + 1)k. Thus, ay**tt = yor ] mtntt with u = ik, u, = v,
for 1 <r<tandu-+u; +..+wu = (n+1)k.

Now suppose that v = ik + j, where i € {0,...,n} and j € {1,...,k — 1}. Let
a = y“‘*{%] ntnyt = y it where v + ... + vy = nk — ik. Then a € J,.
Let 8 = ijr[%] ittt =y gt g where wy + ... + w; = k — j. Then 8 € Jg.
Thus, af = y“”ﬂn}“...?ﬁ” with v = 1k + j, v, = v, +w, for 1 < r < t and
utup+...+up = tk+j+(viw) 4. A (vtwy) = ik+j+(v1+. o) H(w +. . Fwy) =
ik+j+nk—ik+k—j=(n+1)k.

This complete the proof of the claim that Jy,11x = JuiJi for all positive integers
n. By induction on n, we get that J,, = (Ji)" for all positive integers n. Then, by

lemma 2.2, [Kur94|, R® J; ® Jo @ ... is Noetherian. O
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APPENDIX A

Al (Q°NQ%) NS CmP (general case) - computations
1M &

Here, we illustrate the computations discussed in section 3.1.7.

tr(g? (z1 + f1)2 4 (zi + £1)* — 20:,((z1 + f) (@i + [)))

= 297+ f197 — 2x1wigi — 2f1 fagi + 2 + [}

= 2ig; + f197 — 2mixig — 21197 + 4 + [19]
= 2197 — 22,29 + 17

= 1197 — 11359 — T12:9; + T

= 119i(x19; — x;) — vi(x19; — 1)

€ mP
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tr(gi(f1 — x1) (21 + f1)° + (21 — f1) (@1 + f1)(@i + )
_ 3 2 2 3 2 2
= =270 +x1f1gi —x1f19i + [{9 +axiv — i fLr i fufi — fi S
= —xigi + x%flgz’ — 151f129i + ffgz' + 93%1?1 —x12;f1 + 331f129i - figgi
= —2ig; + ¥iw; + 23 frgi — T f
= —2}(®19; — i) + 21 fi(T19i — 75)

€ mP

tr(gig;(3f1 — x1) (w1 + f1)? = 2fi((@1 + f1) (25 + f7)
+(z; = fi) (@1 + fi)(i + i)

= —2}gi9; + 321 [19:9; — 1 f19:9; + 3f19i9; — 2312 frg;
=212 fi9: — miwifrg; — f1figs + wwir; + 2 o f

= —219ig; + 371 f19:9; — w1f1 9195 + 317 9i95 — 2125 f19s
—2f29;9i — w12 frg; — f19i9; + wiwix; + x; [T g,

= _x?gigj + T2 + Qx%flgigj — 2317 f195
+37 f19:9; — T2 [195 + T f19i — T1[19:9;

Now, —231¢:9; + v1z2; = —23g;(219; — x;) — v12(x19; — x;). So that,

t0(9:9;(3f1 — 1) (w1 + f1)* = 2fi(z1 + fi) (25 + f;)
+(@j = ) (21 + fo) (@i + fi)

= —aigj(v19i — i) — @219y — 25) + 201 frgi(er9; — )
+a1figi(1gi — @) + figi(a; — 219;)

€ mP
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tr(g:95(2f1 — x1) (1 + f1)? + a1 (2 + fi) (25 + ;)
—filer + f)(@; + f5) = fi(o + fo) (@i + fi))

= —95?91'9]‘ + Qx%flgigj — 5171f129z‘9j + fogigj + 12,7
1w fi —oiwify o fif; — 200 f;

= —xigig; + 243 19,95 — w1 f19i9; + 2P 9i9; + wimiz;
—x12; f19: — T1xi frg; + w1 f19:9; — 2179:9

= —2(gi9; + Tiziwy + 3 f19:9; — 212195

+$%f19i9j — 2175 f19

Now, —a3g,9; + mizix; = —23g;(x19; — x:) — v12:(219; — ). So that,

t(gig; (2f1 — 21) (@1 + f1)* + 2 (@i + fi) (@5 + )
—filwr + fu)(@; + f3) = filer + fu) (@i + i)

= —2igi(r19; — m:) — mwi(w1g; — x5) + 21fi1g;(19: — w5)
+1f19i(219; — ;)

€ mP
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tr(gig;(z1 + f1)° + (s + fi) (@ + f;)
—gi(z1 + fi)(z; + f3) — gi(@1 + fi) (@i + f))
x%gigj + leQigj — 11259, — [1fi9i — v1vi9; — fifig; + vixy + fif;

2 2 2 2 2
219:95 + [19i95 — 01279 — 1959 — 012595 — f1 9295 + x5 + [19:9;
ﬁgigj — T1%;9; — T1T;Gj + Tix;
219i(2195 — 75) — zi(T195 — 75)

mpP

tr(g7g; (451 — x1)(x1 + f1)° + ziw + i) (25 + f))
— 197 (e + [1) (x5 + f5) = 3f19i9; (21 + 1) (25 + f5))
= —xigig; + 471 frgig; — w1 figig; + Af10lg;
—w1z; f197 — [11;97 — 3vzifi9:9; — 311 fi9:9;
—i—x?xj + i fif;
= —wig7g; + 471 f1979; — v1fig79; + 4f1 9795
—mxi 197 — fr9590 — 3wz frgi9; — 3119795
ey + i f19i95
= zjw; —aiglg; + 21 fig79; — mixifig]

+327 f1979; — 3v12: [19:9; + T f19:9; — 11 /1979
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Now, x?%‘ - Iz{’gfgj = —x%gjgi(xlgi —x;) — $1$igj($19i — ) — l’?(ﬂflgj - Ij)~ So

that,

tr(g7g;(4f1 — 1) (x1 + f1)? + (@ + fi) (2 + f;)
—figi (1 + fi) (@5 + f;) = 3f1gigi(z1 + fi) (x5 + f;))

= (—a1g;9 — v12ig;)(219; — 2:) — 2} (2195 — ;)
+a1fig (2195 — 25) + 321f19i9;(219: — 1)
+119i9;(wi — x19:)

€ mP

tr(gi (3f1 — 1) (w1 + f1)° + (wi — 3f;) (1 + f1)(@i + 7))
= —aig; + 301 g} — w1 fig + 3797 — 3wiwifrgi — 317 figi + waai + wiffi
= —xig; + 321 frg] — a1 [} +3f79] — 3wwifrgi — 3197 + mai + wifig
= —xig} + ;] + 3xifig] — 3mawifrg + wifi g — w1 figf
= —zi(21gi + @) (219 — @) + 3w f1gi(219: — ) + [L9i(xi — 1195)

€ mP

tr((g:(2f1 — 21) + @) (21 + f1)* = 2f2((22 + 1) (i + f2)))
= —a3g + 2w — 222 frg; + 200 fi — wo fRgi — wifP 4 201 fofs
= —aig; + vt — 221 frgi + 221 frgi — w1 fLg — wif7 + 220 fLgs
= —af(girr — x;) + f1 (g1 — ;)

€ mP



10.
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tr(g; (41 — 1) (21 + f1)° + ziws + £i)° — 4197 (w1 + o) (@i + i)
—x1g; + 433 frg; — a1 fig; AR — dawifig} — AfLfigi + af i ff
—ig;) + 4zt frg} — w1 f1g) + AfVg) — davxi frg] — A4S + 1l + xifl g}
w; —alg} — i fig) + wifigl + 4al gl — daizifig]

(2 — 219:) (2] + T1239; + 2797) — [107 (219: — 3) + a1 fr97 (195 — 24)

mpP

tr(g7 (2f — @) (@ + 1) + @i + fi)* = 2fi((@1 + fi) (@i + £))

—a3g? — w1 fLg7 + 203 figi + 21 figi + w1 — 2waxi fi + i fE = 201 f7
—a3g7 — a1 f1 g7 + 203 g} 4 21797 + mixl — 2a13 frgi + a1 [T 9] — 211
—23g? + ma? — 2312 frgi + 227 107

—x1(219; + 7)(219; — 1) — 221 f19i(Ti — 2194)

mP
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11.

tr(gig;(4f1 — x1)(x1 + f1)° + iz + fi)?

—2f1g7 (w1 + fu)(aj + f;) = 2f19i9;(x1 + fr) (@i + £i))
= —aiglg; + 421 f1979; — ©1 [ 9} 9;

+4fPgig; — 2xvw; frg7 — 211 fi97 — 20123 f19:9;

=21 figig; + xjw; + x; f}
= —xig7g; + 473 frg7g; — 11119795

+Af gl g — 2125197 — 2f79,97 — 22121 frgig;
~2f19;9; + wiz; + v fig]

= —a3¢2g; + alx; — w1 flglg; + v fig?

+227 197 9; — 2317 fr97 + 227 f1979; — 23125 19,9,

Now, —wi’g?gj + x12$j = _x%gigj ($19i - :Ez) - 931551‘9]‘(515191' - iL“z) - ZE?(xlgj - l’j)-

So that,

tr(g7g;(4f1 — x1) (w1 + f1)* + (i + fi)?
—2f19i2(951 + fi)(x; + f;) — 2f19:9;(x1 + fi) (@ + fi))
= —93%91'93‘ (w19, — x;) — ﬂflmigj(ivlgi —x;) — 33?(55193' - fl?j)
2 2 2
—f19i (v19; — ;) + 221 f1g; (7195 — x5)
+221 f19,9;(219; — ;)

€ mP
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12.

tr(gig;x(2f1 — 21) (x1 + f1) + @il + fi) (25 + f;)
—f1gi(we + fo) (@ + fi) — frgi(oe + fu) (25 + f5))

= —270:9;9k + 223 [1919;9k — 11 9:9; 9k + 217959 9n
txizjan — fiwjrr — fjmize + fifjon — 2fif; e

= —219:9;9% + 223 [r919;9k — 1 £79:959% + 27919, 9%
trwire — [rgiviae — [19520 + 11997 — 219:9;9k

= —T10igi0k + TitiTr — T1f1 99,9k + f19:95

+$%f1919j9k — figiv;x, + x%flglgjgk — frg;mizy

Now, _x?gigjgk‘i‘xixjmk = _x%gigj(xlgk —xy) — 21259 (219 — ) — T TR (219 —
xz) Also, I%flglgjgk - flgixjxk = f19i9j$1($191c - Ik) + f1gi$k($1gj - 90]‘)'
Finally, 21 f1019;9x — frg;ziz = f19i9;21(z198 — 2%) + frgjze(z19; — ;). So

that,

tr(gig;gr(2f1 — 1) (x1 + f1)° + zp(z + f;) (2 + f5)
—J1g5(x + fi) (@i + fi) — frgi(@e + fi) (25 + [5)

= _x%gigj(xlgk - l’k) - 331%91’(%9;’ - %‘) - %'ﬂfk(ﬂflgi - -%)
—119:95 (19K — k) + [19i9;21 (T19K — %) + [19i78(T19; — )
+ fr9:9;01 (2198 — k) + frgjer(T19; — 5)

€ mP

Lastly, we need to show the generators of (Q2NQ3) NS arising by applying the trace
map to Q7Q3 also lie in mP. We have, Q3Q3 = {(x;i— fi)(x; — f;)(wy + fy ) (x4 f) -

ii,4,5 € {1,..,m}}.
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We have,

tr((zs — fi)(z; = ) (@ + fo) @y + fr))
= wyxiry + fifyrjey +xxy fify — fivy fiey
—fiwyxify —xify fjxy —wifpxify + fife fify
= Tilyxixy — fixi’fjxj' + fifi/xjxj' - xifi'fjxj/
‘g fify — fiwvyxify —xifpxify + fify [ify
= wzyxp(wviwy — fify) + fifyxey —xify fiay
txixy fify — fiwpxifp — fo fp(izy — fif;)
= TyTy (wiz; — fif;) + fifi/xjxj/ — LTy LT+ Ty Ty — xifi/fjxj/
twiwy fify — viap ey + vy — fiwprifo — fo fp (i — fifi
= wyxp(viw; — fif;) + xjzp (fify — vizy) + vizp (wpx; — fo fy)
iy (fify —wjry) +xpx(vivy — fify) — fo £y (ivg — fify)

€ mP

Thus, every generator of (Q? N Q3) N S is in mP, showing (Q3 N Q3) NS C mP
as before. So we have shown, using corollary 3.1.6 that under hypothesis (*), P} C

mpP.
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