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Chapter	I	
	

Introduction	
	
	
A.	OVERVIEW	

With	the	advent	of	new	sequencing	technologies	developed	over	the	past	two	

decades,	researchers	have	completely	sequenced	the	genomes	of	a	number	of	

organisms	using	automated	Sanger	sequencing	(Metzker,	2010).	This	“first	

generation”	technology	led	to	the	discovery	of	high	similarities	of	genomic	

sequences	among	organisms,	and	led	scientists	to	question	what	causes	the	

differences	among	organisms.	By	investigating	the	conserved	sequences	among	

species,	many	of	these	highly	conserved	sequence	segments	turned	out	to	be	critical	

for	regulating	gene	expression.	These	regulatory	elements	recruit	multiple	

transcription	factors	to	work	in	concert	in	order	to	direct	target	gene	expression.	

However,	using	traditional	reporter	genes	to	define	the	identity,	location	and	

activities	of	these	regulatory	modules	is	expensive	and	extremely	time	consuming.	

	

Continuously	evolving	sequencing	technology	has	brought	us	to	next	generation	

sequencing	(NGS).	NGS	can	inexpensively	generate	hundreds	of	millions	of	short	

sequence	reads	with	a	single	instrument	run	(Metzker,	2010).	Since	its	introduction,	

NGS	has	been	successfully	applied	to	interrogate	various	aspects	of	cellular	status	

and	biological	processes	on	a	genome‐wide	scale,	including	transcription	factor	



	

	 2

binding	profiles	(Johnson,	et	al.,	2007;	Robertson,	et	al.,	2007),	histone	modification	

status	(Barski,	et	al.,	2007;	Mikkelsen,	et	al.,	2007),	and	gene	expression	level	and	

composition	(Cloonan,	et	al.,	2008;	Lister,	et	al.,	2008;	Mortazavi,	et	al.,	2008;	

Nagalakshmi,	et	al.,	2008;	Wilhelm,	et	al.,	2008).	Algorithmic	details	of	the	many	

different	ChIP‐Seq	analysis	software	tools	differ,	but	all	report	a	score	(usually	with	

statistical	significance)	of	the	binding	strength	for	a	given	protein‐DNA	binding	

event.	However,	these	analyses	do	not	address	the	question	of	whether	the	binding	

is	functional	or	not.	Moreover,	while	analysis	of	replicate	variation	has	been	

incorporated	into	RNA‐Seq	experiments,	no	similar	paradigm	has	been	optimized	

for	ChIP‐Seq	experiments	with	biological	replicates.	Assessment	of	biological	

variation	is	particularly	relevant	to	ChIP‐Seq	experiments	assessing	histone	

modifications,	nucleosome	placement,	or	other	epigenomic	marks	that	may	vary	

significantly	among	tissues	and	individuals.	

	

In	this	thesis,	I	have	analyzed	RNA‐Seq	and	ChIP‐Seq	data	related	to	hematopoiesis.	

Hematopoiesis	serves	as	an	ideal	model	to	study	lineage	commitment,	specification	

and	development	as	orchestrated	by	regulatory	transcription	factor	proteins.	Blood	

cells	are	replenished	daily	throughout	the	lifespan	of	humans	to	elicit	their	basic	

functions	such	as	oxygen	transport	and	immune	protection.	All	classes	of	blood	cells	

are	derived	from	a	rare	pool	of	hematopoietic	stem	cells.	These	hematopoietic	stem	

cells	are	capable	of	both	self‐renewal	and	differentiation	into	all	mature	

hematopoietic	cell	lineages,	including	T	cells	and	erythrocytes.	Transcription	factors	

have	long	been	known	to	play	important	roles	in	these	differentiation	processes.	For	
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example,	GATA‐3	is	recurrently	required	during	T	cell	development,	and	orphan	

nuclear	receptors	NR2C2	plus	NR2C1	have	been	shown	to	play	a	pivotal	role	in	

erythropoiesis	by	binding	to	the	γ‐globin	gene	promoter	and	repressing	its	

expression.	Ectopic	expression	of,	and	malfunction	by,	key	hematopoietic	regulatory	

proteins	contribute	to	multiple	blood	diseases.	For	example,	improper	Gata3	

expression	can	lead	to	T	cell	lymphoma	(Nawijn,	et	al.,	2001;	van	Hamburg,	et	al.,	

2008),	and	sickle‐shaped	red	blood	cells	are	caused	by	a	single	amino	acid	

substitution	in	the	β‐globin	gene.	However,	the	cis	element	that	directs	Gata3	

transcription	during	T	cell	development	in	vivo	is	still	not	fully	characterized.	

Similarly,	cellular	target	sequences	of	NR2C1/NR2C2	are	largely	unknown	but	one	

can	imagine	how	such	knowledge	would	be	desirable	for	developing	anti‐NR2C2	

therapeutics	to	de‐repress	fetal	γ‐globin	expression	to	alleviate	the	painful	

symptoms	and	pathophysiology	of	sickle	cell	disease.	This	thesis	work	was	intended	

to	utilize	data	generated	from	high	throughput	sequencing	technologies	to	help	to	

elucidate	the	mechanisms	of	transcriptional	regulation	in	two	different	

hematopoietic	lineages	and	to	develop	a	robust	software	pipeline	for	analyzing	

ChIP‐Seq	data.	

	

B.	THESIS	CHAPTER	SUMMARY	

i.	Chapter	II	summary	

The	second	chapter	of	my	dissertation	involves	the	description	of	methods	and	

experiments	that	were	designed	to	predict	the	genomic	position	of	a	Gata3	enhancer	

element	(a	contiguous	stretch	of	DNA	nucleotides	of	undetermined	length,	but	
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usually	lying	between	300	and	1,000	base	pairs)	that	specified	its	expression	in	the	

T	cell	lineage	by	integrating	DNA	sequencing	data	with	phylogenetic	conservation	

scores.	Gata3	is	a	transcription	factor	known	for	its	role	in	cooperating	with	other	

transcription	factors	in	an	orchestrated	way	during	the	development	of	certain	

immune	cells	(T	lymphocytes	and	natural	killer	cells).	Precise	control	of	Gata3	

expression	is	critical	for	normal	T	cell	development,	as	ectopic	Gata3	expression	has	

been	shown	to	be	carcinogenic	in	mice.	However,	the	factors	that	regulate	Gata3	

transcription	are	largely	unknown.	In	addition,	GATA‐3	has	been	shown	to	play	

pivotal	developmental	roles	in	many	tissues	and	its	expression	in	those	distinct	cell	

types	is	usually	controlled	by	a	tissue‐specific	enhancer,	often	located	quite	far	from	

the	structural	gene.	By	mapping	chromatin	sites	that	are	hypersensitive	to	DNAse	I	

cleavage	(identified	using	multiple	high‐throughput	technologies),	together	with	so‐

called	regulatory	sequence	potential	scores,	I	helped	to	predict	a	syntenic	sequence	

that	is	conserved	in	mouse	and	human	that	serves	as	a	regulatory	element	for	Gata3	

in	T	lymphocytes.	The	predicted	DNA	sequence	lies	approximately	280	kilobase	

pairs	3’	to	the	Gata3	gene	and	was	confirmed	experimentally	by	Dr.	Sakie	Hosoya‐

Ohmura	in	Dr.	Engel’s	laboratory:	the	evolutionarily	conserved	sequence	is	able	to	

direct	Gata3	expression	at	multiple	stages	of	T	cell	development,	from	immature	

early	T	lineage	progenitors	to	mature	peripheral	T	cells.	This	regulatory	function	

was	demonstrated	using	flow	cytometry	to	show	that	this	cis	element	is	able	to	

induce	the	transcription	of	a	reporter	gene	in	vivo	(in	transgenic	mice)	at	various	

stages	exclusively	during	T	cell	development.	I	performed	additional	imaging	

studies	to	confirm	the	T	cell	specificity	of	this	regulatory	element	for	Gata3	by	
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analyzing	these	same	transgenic	mice	visualizing	the	organs	and	by	whole	animal	in	

vivo	imaging.	

	

ii.	Chapter	III	summary	

The	third	chaper	of	my	research	is	focused	on	identifying	NR2C2	(human	testicular	

receptor	4,	or	TR4)	genome‐wide	DNA	bound	target	sequences	in	four	of	the	human	

ENCODE	(ENCyclopedia	Of	DNA	Elements)	consortium	cell	lines.	TR4	belongs	to	the	

nuclear	receptor	superfamily	and	is	referred	to	as	an	orphan	since	it	has	no	

currently	identified	ligand.	TR4	was	initially	identified	in	testis,	but	was	later	shown	

to	be	expressed	almost	ubiquitously,	including	in	erythroid	cells.	There	are	two	

facets	to	the	roles	TR4	plays	in	directing	target	gene	expression.	TR4	was	

demonstrated	to	be	able	to	regulate	target	gene	expression	in	liver	carcinoma	

HepG2	cells,	while	it	was	also	reported	to	be	able	to	form	heterodimers	with	

another	closely	related	family	member	NR2C1	(or	TR2)	to	function	as	a	repressor	of	

the	human	fetal	γ‐globin	genes,	the	genes	responsible	for	mediating	oxygen	transfer	

in	fetal	erythroid	cells.	The	TR2/TR4	heterodimer	forms	a	complex,	named	direct	

repeat	erythroid‐definitive	(DRED),	that	binds	to	direct	repeat	1	(DR1)	sequence	

motifs	in	the	human	fetal	γ‐globin	gene	promoters.	Furthermore,	inhibition	of	

TR2/TR4	in	mice	as	well	as	in	human	erythroid	cells	has	been	shown	to	lead	to	fetal	

γ‐globin	induction,	a	condition	known	to	alleviate	sickle	cell	disease	(SCD)	

pathophysiology.	Therefore,	TR4	serves	as	an	appealing	target	for	the	development	

of	SCD	therapeutics.	Since	the	identification	of	TR2/TR4	as	a	human	fetal	γ‐globin	

gene	repressor,	Dr.	Engel’s	laboratory	has	focused	on	developing	pharmacological	
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inhibitors	of	TR2/TR4.	Genome‐scale	identification	of	target	genes	regulated	by	TR4	

will	be	vital	to	predict	and	minimize	any	potential	side	effects	of	prescribing	anti‐

TR4	therapeutics	to	human	patients.		

High‐throughput	DNA	sequencing	technologies	coupled	with	bioinformatics	

analyses	were	employed	for	the	first	time	here	to	identify	all	TR4	target	genes	in	

four	established	human	cell	lines.	By	comparing	the	genome‐wide	binding	sites	to	

reference	gene	locations,	I	showed	that	TR4	preferentially	binds	at	gene	proximal	

promoters	and	within	the	first	exon	or	intron	of	the	various	target	genes.	These	

binding	sites	were	enriched	for	the	canonical	nuclear	receptor	binding	sequence	

motif	(so	called	DR,	or	direct	repeat,	elements)	as	well	as	the	ETS	transcription	

factor	family	binding	motif.	The	results	also	suggested	that	TR4	preferentially	binds	

to	genes	playing	crucial	roles	in	RNA	transcription	and	processing.	Subsequent	

bioinformatics	analysis	results	revealed	TR4	binding	at	a	subset	of	targets	may	be	

facilitated	through	the	recruitment	of	ELK4,	an	Ets	transcription	factor	family	

member.	

	

iii.	Chapter	IV	summary	

The	fourth	chapter	of	this	thesis	work	concentrates	on	characterizing	the	changing	

transcriptome	dynamics	during	human	CD34+	hematopoietic	progenitor	cell	

differentiation.	Human	hematopoietic	progenitor	cells	can	be	characterized	by	cell	

surface	expression	of	CD34	and	can	be	obtained	from	various	sources,	such	as	bone	

marrow,	fetal	liver,	umbilical	cord	and	peripheral	blood.	Human	hematopoietic	stem	

cells	are	entirely	within	the	CD34+	compartment,	and	therefore	this	marker	is	used	
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clinically	for	generating	repopulating	cells	for	bone	marrow	transplants.	An	ex	vivo	

CD34+	stem	cell	differentiation	culture	system	has	been	described	that	can	produce	

fully	mature	human	red	blood	cells	when	the	culture	is	supplied	with	appropriate	

cytokine	combinations.	This	culture	system	then	serves	as	an	ideal	model	to	study	

gene	expression	profile	changes	during	normal	erythroid	development	and	

maturation.	Previous	microarray	studies	using	differentiating	CD34+	cells	have	

provided	lists	of	candidate	erythroid	regulators	for	further	investigation.	However,	

due	to	the	hybridization‐based	nature	of	microarrays,	they	have	limited	dynamic	

range.	Here,	a	bioinformatics	analysis	was	performed	to	investigate	the	erythroid	

cell	transcriptome	during	differentiation	using	next	generation	mRNA	sequencing	

technology.	By	confirming	the	data	quality,	I	discovered	that	a	group	of	transcripts,	

including	recognized	erythroid	factors,	are	consistently	expressed	at	a	high	level	

during	differentiation.	Functional	analysis	revealed	that	this	gene	cluster	is	enriched	

with	genes	that	act	in	the	ribosome	pathway	and	on	the	translation	machinery.	This	

gene	group	is	comprised	of	a	number	of	known	erythroid	transcription	factors	along	

with	other	transcription	factors	that	play	currently	unknown	roles	in	

erythropoiesis.	Many	of	the	erythroid	genes,	which	were	shown	to	be	differentially	

expressed	during	CD34	differentiation	using	array	platforms,	were	also	found	to	be	

differentially	expressed	in	our	experiments,	thereby	validating	our	approach.	Going	

further,	we	also	identified	potential	novel	isoforms	of	known	erythroid	

transcriptional	regulators,	such	as	LSD1	and	SOX6.	Additional	lists	of	novel	

intergenic	and	intronic	transcripts	were	also	identified	and	serve	as	candidates	for	
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further	functional	analysis.	This	study	will	provide	an	invaluable	comprehensive	

repository	of	the	differentiating	erythroid	transcriptome.	

	

iv.	Chapter	V	summary	

The	fifth	chapter	of	my	thesis	is	devoted	to	the	development	of	a	computational	

pipeline,	called	PePr	(a	Peak	Prioritization	pipeline),	to	prioritize	the	potential	

protein‐DNA	interaction	sites	of	a	transcription	factor	or	histone	modification	

according	to	their	location	relative	to	gene	structures.	ChIP‐Seq	has	been	widely	

employed	to	identify	in	vivo	protein‐DNA	interactions	or	histone	modifications	on	a	

genome‐wide	scale.	A	growing	number	of	software	applications	have	been	

developed	and	shown	to	successfully	identify	transcription	factor	binding	or	histone	

posttranslational	modifications	from	ChIP‐Seq	experiments.	However,	while	peak	

lists	reported	by	different	programs	tend	to	agree	on	strong	binding	signals,	they	

can	vary	significantly	for	presumptive	weaker	binding	sties.	This	may	be	partially	

due	to	the	fact	that	applications	use	various	background	models	and	statistical	

distributions;	it	is	also	likely	compounded	by	the	fact	that	most	methods	do	not	

model	variation	among	replicates/samples	when	applicable.	In	addition,	little	effort	

has	been	devoted	to	incorporating	external	annotation	into	the	peak	calling	process,	

though	it	has	the	potential	to	be	beneficial.	Importantly,	none	exploit	the	use	of	gene	

structure	location	relative	to	peaks.		

To	address	these	issues	and	to	more	fully	exploit	the	power	of	replicates	and	

external	annotation,	we	developed	PePr,	a	ChIP‐Seq	Peak	Prioritization	pipeline	that	

utilizes	a	sliding	window	approach	with	a	negative	binomial	model	to	accommodate	
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variation	among	biological	replicates.	While	the	negative	binomial	model	has	been	

used	extensively	in	the	analysis	of	RNA‐seq	data,	relatively	few	ChIP‐Seq	pipelines	

have	exploited	this	distribution	(Feng,	et	al.,	2008;	Ji,	et	al.,	2008).	We	further	

extended	our	pipeline	by	incorporating	information	regarding	the	binding	profile	

relative	to	gene	structure	to	prioritize	the	ChIP‐Seq	peaks.	PePr	was	developed	to	be	

flexible	in	that	it	supports	various	input	file	formats	as	well	as	to	provide	options	for	

users	to	control	the	behavior	of	the	peak	calling	process.	We	compared	the	

performance	of	PePr	with	two	other	peak	finding	methods,	ERANGE	and	MACS,	and	

tested	how	well	PePr	prioritizes	binding	sites	that	correspond	to	functional	

regulation	of	gene	expression,	as	determined	by	RNA‐Seq	or	microarrays.	Such	a	

tool	will	benefit	investigators	by	helping	them	to	identify	the	most	important	

functional	sites,	i.e.	those	that	are	potentially	the	most	interesting	for	detailed	

follow‐up,	and	binding	preference	relative	to	gene	structure.	It	will	also	be	

important	in	studies	assessing	significant	differences	in	histone	modification	or	DNA	

methylation	when	comparing	groups	of	individuals.	

	

C.	THESIS	CONTRIBUTION	

In	chapter	2,	I	helped	to	identify	a	regulatory	element	for	Gata3	and	confirmed	the	T	

cell	specificity	by	in	vivo	imaging.	In	chapter	3,	I	analyzed	TR4	ChIP‐Seq	data	in	the	

four	ENCODE	consortium	cell	lines.	Results	suggested	that	TR4	preferentially	binds	

to	gene	proximal	regions	in	a	DR1	sequence	motif,	and	predicted	a	role	for	ETS	

factors	in	TR4	action.	Functional	analysis	suggested	that	TR4	target	genes	are	

involved	in	general	biological	processes.	In	chapter	4,	I	analyzed	RNA‐Seq	data	
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accumulated	from	differentiating	human	hematopoietic	progenitor	cells.	Analysis	

suggested	a	list	of	potential	novel	erythroid	regulatory	factors,	and	revealed	

potential	novel	isoforms	of	known	erythroid	regulatory	proteins.	In	chapter	5,	I	

developed	a	ChIP‐Seq	peak	prioritization	software	pipeline,	which	can	model	

variation	among	biological	replicates	and	prioritize	peaks	based	on	the	binding	

relative	to	gene	structure	by	incorporating	external	annotation.	
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Chapter	II	
	

An	NK	and	T	Cell	Enhancer	Lies	280	Kilobase	Pairs	3’	to	the	Gata3	
Structural	Gene	

	
	
A.	INTRODUCTION	

Maturation	of	T	lineage	lymphocytes	is	one	of	the	most	clearly	defined	pathways	in	

all	of	developmental	biology.	Immature	hematopoietic	cells	from	the	bone	marrow	

migrate	through	the	bloodstream	to	initially	populate	the	thymus.	The	earliest	

detectable	thymic	progenitor	(early	T	lineage	progenitors	[ETP])	cells	differentiate	

uniquely	in	the	thymic	microenvironment	through	several	early	stages	in	which	

neither	the	CD4	nor	CD8	coreceptors	are	expressed	(double‐negative	[DN]	cells,	

stages	2	to	4)	and	thence	into	cells	which	express	both	CD4	and	CD8	(double‐

positive	[DP]	cells)	and	finally	generate	either	CD4	single‐positive	(CD4	SP;	CD4+	

CD8−)	cells	or	CD8	single‐positive	(CD8	SP;	CD4−	CD8+)	cells.	CD4+	thymocytes	have	

the	potential	to	differentiate	into	helper	(Th)	or	regulatory	T	cells,	while	CD8	SP	

cells	are	programmed	to	fulfill	cytotoxic	functions.	These	mature	single‐positive	

thymocytes	exit	the	thymus	to	execute	their	defined	effector	functions	after	

activation	in	the	periphery.	

	

The	zinc‐finger	transcription	factor	GATA‐3	(Ko,	et	al.,	1991;	Yamamoto,	et	al.,	1990)	

is	expressed	throughout	T	cell	development	(Hosoya,	et	al.,	2010),	peaking	in	
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abundance	in	CD4	SP	and	Th2	cells	(David‐Fung,	et	al.,	2006;	Hendriks,	et	al.,	1999;	

Hernandez‐Hoyos,	et	al.,	2003;	Sambandam,	et	al.,	2005;	Tydell,	et	al.,	2007;	Zhang,	

et	al.,	1997;	Zheng	and	Flavell,	1997).	GATA‐3	function	has	been	shown	to	be	vital	

for	the	generation	of	ETP	(Hosoya,	et	al.,	2009),	double‐negative	(DN)	4	stage,	and	

CD4	SP	cells	(Pai,	et	al.,	2003)	and	for	the	differentiation	and	function	of	Th2	cells	

(Pai,	et	al.,	2004;	Zhu,	et	al.,	2004).	While	its	expression	is	critical	for	normal	T	cell	

development,	enforced	ectopic	expression	of	GATA‐3	can	have	catastrophic	

consequences	(Anderson,	et	al.,	2002;	Chen	and	Zhang,	2001;	Nawijn,	et	al.,	2001;	

Nawijn,	et	al.,	2001;	Taghon,	et	al.,	2001;	Taghon,	et	al.,	2007),	such	as	causing	T	cell	

lymphoma	in	transgenic	mice	(Nawijn,	et	al.,	2001;	van	Hamburg,	et	al.,	2008)	and	

converting	DP	cells	into	a	premalignant	state	(van	Hamburg,	et	al.,	2008).	

Additionally,	GATA‐3	plays	a	role	in	the	aberrant	survival	of	T	lymphoma	cells	in	

E2A	mutant	mice	(Xu	and	Kee,	2007).	These	results,	taken	together,	suggest	that	

both	the	timing	and	abundance	of	GATA‐3	must	be	exquisitely	regulated	for	proper	

development	of	the	T	cell	lineage.	

	

Ours	and	many	other	laboratories	have	sought	to	define	how	this	key	T	lymphocyte	

regulatory	protein	is	itself	so	precisely	modulated	during	T	cell	development,	but	

prior	studies	have	failed	to	conclusively	identify	Gata3	transcriptional	cis	elements	

that	are	capable	of	conferring	appropriate	regulatory	properties	to	this	gene	in	vivo.	

In	exploring	the	transcriptional	networks	that	lead	to	proper	T	cell	differentiation,	

potential	trans	upstream	regulators	of	Gata3	have	been	proposed	(Amsen,	et	al.,	

2007;	Fang,	et	al.,	2007;	Maurice,	et	al.,	2007;	Yang,	et	al.,	2009;	Yu,	et	al.,	2009).	
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However,	while	Gata3	proximal	promoter	sequences	are	capable	of	activating	its	

transcription	in	transfection	experiments	(George,	et	al.,	1994),	we	report	here	that	

neither	of	the	Gata3	promoters	(Asnagli,	et	al.,	2002)	is	capable	of	conferring	such	

activity	in	vivo.	Since	previous	studies	have	not	demonstrated	a	functional	

requirement	for	the	direct	association	of	any	of	the	proposed	epistatic	Gata3	

regulators	(Notch/CSL,	c‐Myb,	T	cell	factor	1	[TCF‐1],	and	Dec2)	with	their	cognate	

binding	sites	in	the	Gata3	promoters	through	site	mutagenesis	followed	by	in	vivo	

activity	tests,	the	experiments	described	here	clearly	demonstrate	that	those	

sequences	are	insufficient	for	thymic	T	cell‐specific	expression.	

	

We	and	many	others	have	shown	that	GATA‐3	plays	critical	roles	in	quite	diverse	

developmental	events	(Asselin‐Labat,	et	al.,	2007;	Grigorieva,	et	al.,	2010;	Kaufman,	

et	al.,	2003;	Kouros‐Mehr,	et	al.,	2006;	Kurek,	et	al.,	2007;	Lim,	et	al.,	2000;	

Moriguchi,	et	al.,	2006;	Tsarovina,	et	al.,	2010)	and	that	Gata3	expression	in	those	

tissues	and	organs	is	usually	dictated	by	individual	tissue‐specific	enhancers	

(George,	et	al.,	1994;	Hasegawa,	et	al.,	2007;	Lakshmanan,	et	al.,	1998;	Lakshmanan,	

et	al.,	1999;	Lieuw,	et	al.,	1997).	Here,	we	report	the	identification	of	a	cis	element	

that	regulates	Gata3	expression	during	multiple	stages	of	T	cell	development	and	

that	is	located	far	3′	to	the	Gata3	gene.	This	element	induces	the	transcription	of	a	

reporter	gene	in	vivo	in	thymic	ETP,	natural	killer	(NK),	γδT,	CD4	SP,	and	peripheral	

CD4+	stages	and	thus	its	expression	pattern	reflects	that	of	endogenous	Gata3.	While	

additional	cis	elements	may	be	required	to	fully	support	appropriate	expression	of	

Gata3	during	T	cell	development,	this	distant	element	appears	to	confer	activity	at	
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several	of	the	major	developmental	transitions	that	are	required	for	Gata3	T	cell‐

specific	transcriptional	control	in	vivo.	

	

B.	MATERIALS	AND	METHODS	

i.	Mice	

Transgenic	mice	were	generated	using	standard	techniques	in	the	University	of	

Michigan	Transgenic	Animal	Model	Core	or	using	our	own	instruments.	Bacterial	

artificial	chromosome	(BAC)	or	plasmid	DNAs	were	microinjected	into	(C57BL/6J	×	

SJL)F2	fertilized	oocytes.	Transgenic	lines	were	established	by	crossing	onto	a	CD1	

background.	GATA‐3–enhanced	green	fluorescent	protein	(eGFP)	fusion	cDNA	

knock‐in	mice	(Gata3g/+)	were	generated	previously	(Hosoya,	et	al.,	2009)	(T.	

Moriguchi	et	al.,	unpublished	data).	Gata3z/+	mice	(Hendriks,	et	al.,	1999)	and	

TgB125.LacZ	mice	(the	genome	sequence‐revised	endpoints	are	−451	to	+211	kb,	with	

respect	to	the	translation	start	site)	were	described	previously	(Hasegawa,	et	al.,	

2007;	Lakshmanan,	et	al.,	1998;	Lakshmanan,	et	al.,	1999).	All	animal	experiments	

were	approved	by	the	University	Committee	on	Use	and	Care	of	Animals	of	the	

University	of	Michigan	and	were	performed	according	to	their	guidelines	(IACUC	

approval	no.	8611).	

	

ii.	BAC	recombineering	

The	RPCI‐23	C57BL/6J	mouse	BACs	used	in	this	study	are	described	by	the	

following	endpoints	(±0.5	kbp)	relative	to	the	Gata3	translational	start	site:	43G17,	
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+49/+294;	193E6,	+128/+330;	263A8,	+269/+473.	Modification	of	BAC	clones	was	

performed	as	previously	described	(Khandekar,	et	al.,	2004;	Lee,	et	al.,	2001).	

	

iii.	eGFP	reporter	BAC	recombinants	

The	pGATA‐3–eGFP	fusion	cDNA	plasmid	containing	the	genomic	1b	promoter	

(unpublished	data)	was	digested	with	NcoI	and	self‐ligated	to	remove	only	the	

Gata3	cDNA;	this	is	referred	to	as	the	pG3‐1b.eGFP	plasmid.	pG3‐1b.eGFP	was	

digested	with	EcoRI	and	NotI	to	excise	the	fragment	containing	the	1b	promoter	

(sequences	corresponding	to	bp	−1314	to	+1,	with	respect	to	the	translational	

initiation	site)	and	eGFP	cassette.	A	pG3	BAC‐targeting	vector	(unpublished	data),	

which	contains	an	Frt‐Neo‐Frt	selection	cassette,	the	1b‐LacZ	reporter,	and	two	

homology	arms	that	were	identical	to	two	segments	of	the	SacBII	gene	in	the	

pBACe3.6	vector	backbone,	was	digested	with	EcoRI	and	NotI	to	remove	the	1b‐LacZ	

cassette.	The	EcoRI‐NotI	fragment	of	pG3‐1b.eGFP	and	the	EcoRI‐NotI	fragment	of	

the	pG3	BAC‐targeting	vector	were	ligated	to	generate	the	1b.eGFP	BAC‐targeting	

plasmid.	The	resultant	plasmid	was	digested,	purified,	and	used	for	BAC	

homologous	recombination.	The	recombinant	BAC	clones	were	verified	by	

restriction	enzyme	digest	pattern	and	Southern	blotting	(data	not	shown).	

	

iv.	Deletion	of	TCE‐7.1	from	BAC	43G17	

Two	homology	arms	that	were	located	immediately	adjacent	to	either	end	of	TCE‐

7.1	were	amplified	by	PCR	and	then	subcloned	into	the	pFrtNeo	plasmid,	which	

contains	the	Frt‐Neo‐Frt	cassette	(Khandekar,	et	al.,	2004).	BAC	homologous	



	

	 16

recombination	was	performed	using	the	purified	targeting	fragment	as	described	

previously	(Khandekar,	et	al.,	2004).	The	resultant	recombinant	BAC	(43G17Δ7.1)	

was	verified	by	restriction	enzyme	digestion	and	Southern	blotting	(data	not	

shown).	

	

v.	Construction	of	an	eGFP	reporter	plasmid	containing	TCE‐7.1	

To	prepare	the	1b.eGFP	reporter	plasmid,	the	Neo	cassette	was	removed	from	the	

1b.eGFP	BAC‐targeting	plasmid.	BAC	43G17	DNA	was	digested	with	SalI	and	KpnI.	

The	7.1‐kbp	SalI‐KpnI	fragment	(TCE‐7.1	fragment)	was	gel	purified	and	cloned	into	

the	SalI/KpnI	sites	of	pGEM‐4Z.	The	TCE‐7.1	fragment	was	verified	by	restriction	

digestion	pattern	and	sequencing.	To	generate	the	7.1‐1b.eGFP	reporter	plasmid,	the	

SalI‐KpnI	TCE‐7.1	fragment	from	the	pGEM‐4Z	7.1‐kbp	plasmid,	the	PacI‐SalI	

fragment	of	the	1b.eGFP	plasmid,	and	the	PacI‐KpnI	fragment	of	pNEB193	were	

ligated	together.	The	resultant	7.1‐1b.eGFP	plasmid	was	digested	with	PmeI	and	

KpnI	and	used	for	microinjection.	To	generate	Gata3‐1b	promoter‐only	transgenic	

mice,	the	1b.eGFP	plasmid	was	digested	with	PacI	and	PmeI	and	used	for	

microinjection.	

	

vi.	Flow	cytometry	

Single‐cell	suspensions	of	thymocytes,	bone	marrow,	splenocytes,	or	peripheral	

blood	were	incubated	with	Fc	Block	(BD	Biosciences).	Splenocytes	and	peripheral	

blood	were	hemolyzed	using	NH4Cl	before	incubation	with	Fc	Block.	The	following	

antibodies	(either	from	eBioscience	or	from	BD	Biosciences)	were	then	applied:	
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phycoerythrin‐cyanine	7‐conjugated	(PE‐Cy7)	anti‐CD4	(RM4‐5),	PE–anti‐CD4	

(H129.19),	allophycocyanin	(APC)–anti‐CD8a	(53‐6.7),	biotin–anti‐CD8a	(53‐6.7),	

PE–anti‐CD44	(IM7),	peridinin	chlorophyll	protein‐Cy5.5	(PerCP‐Cy5.5)–anti‐CD62L	

(MEL‐14),	PE–Cy7–anti‐	CD25	(PC61.5),	APC–anti‐c‐Kit	(2B8),	PE–anti‐CD3e	(145‐

2C11),	PE–Cy7–anti‐CD3e	(145‐2C11),	biotin–anti‐CD3e	(145‐2C11),	APC–anti‐

γδTCR	(T	cell	receptor)	(GL3),	biotin–anti‐γδTCR	(GL3),	PE–Cy7–anti‐CD19	(1D3),	

biotin–anti‐CD19	(1D3),	APC–anti‐CD49b	(DX5),	APC–anti‐B220	(RA3‐6B2),	biotin–

anti‐B220	(RA3‐6B2),	APC–eFluor780–anti‐Mac1	(M1/70),	biotin–anti‐Mac1	

(M1/70),	eFluor450–anti‐Gr1	(RB6‐8C5),	biotin–anti‐Gr1	(RB6‐8C5),	APC–anti‐

TER119	(TER‐119),	biotin–anti‐TER119	(TER‐119),	PE–anti‐CD71	(R17217),	

PerCP–Cy5.5–anti‐TCRβ	(H57‐597),	biotin–anti‐TCRβ	(H57‐597),	PE–anti‐CD69	

(H1.2F3),	biotin–anti‐NK1.1	(PK136),	biotin–anti‐CD11c	(N418),	PE–Cy7–anti‐

gamma	interferon	(anti‐IFN‐γ)	(XMG1.2),	APC–anti‐interleukin	4	(anti‐IL‐4)	

(11B11),	PE–Cy7–anti‐Sca1	(D7),	streptavidin	eFluor450.	Immature	T	cells	were	

analyzed	as	previously	described	(Hosoya,	et	al.,	2009).	The	FluoReporter	LacZ	flow	

cytometry	kit	(Molecular	Probes)	was	used	to	analyze	LacZ	expression	according	to	

the	manufacturer's	protocol.	Cells	were	analyzed	on	either	FACSCanto	II	(BD	

Biosciences)	or	FACSCalibur	(BD	Biosciences).	Dead	cells	were	excluded	by	DAPI	

(4′,6‐diamidino‐2‐phenylindole)	or	propidium	iodide.	Acquired	data	were	analyzed	

using	either	Weasel	(WEHI	Biotechnology	Centre),	FlowJo	(Tree	Star,	Inc.),	

FACSDiva,	or	Cell	Quest	(BD	Biosciences)	software.	The	mean	fluorescence	intensity	

(MFI)	of	eGFP	was	normalized	using	the	LinearFlow	green	flow	cytometry	intensity	

calibration	kit	(Molecular	Probes)	in	most	experiments.	These	calibration	beads	
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were	excited	by	488	nm,	and	fluorescence	measurements	were	performed	in	the	

same	manner	as	eGFP	measurements	in	every	experiment.	A	standard	curve	was	

generated	based	on	acquired	calibration	bead	data,	and	eGFP	MFI	of	each	sample	

was	normalized	using	the	standard	curve.	

	

vii.	In	vitro	CD4+	T	cell	differentiation	assay	

CD4+	CD25−	splenocytes	were	purified	using	the	Dynal	mouse	CD4‐negative	

isolation	kit	(Invitrogen)	in	combination	with	affinity‐purified	anti‐mouse	CD25	

antibody	(PC61.5;	eBioscience)	and	cultured	in	Dulbecco's	modified	Eagle's	medium	

(DMEM)	supplemented	with	10%	heat‐inactivated	fetal	bovine	serum	(FBS),	4	mM	l‐

glutamine,	100	U/ml	penicillin,	100	μg/ml	streptomycin,	50	μM	2‐mercaptoethanol,	

25	mM	HEPES,	0.1	mM	nonessential	amino	acids,	and	1	mM	sodium	pyruvate.	

Isolated	CD4+	cells	were	stimulated	with	plate‐bound	anti‐CD3e	antibody	(10	

μg/ml;	145‐2C11;	BD	Biosciences)	and	anti‐CD28	antibody	(10	μg/ml;	37.51;	BD	

Biosciences).	For	nonpolarizing	conditions,	10	ng/ml	recombinant	human	IL‐2	

(PeproTech)	was	added.	For	Th1‐polarizing	condition,	10	μg/ml	anti‐IL‐4	antibody	

(11B11;	BD	Biosciences),	10	ng/ml	IL‐2,	and	5	ng/ml	recombinant	mouse	IL‐12	

(PeproTech)	were	added.	For	Th2‐polarizing	condition,	10	μg/ml	anti‐IFN‐γ	

antibody	(XMG1.2;	BD	Biosciences),	10	μg/ml	anti‐IL‐12	antibody	(C17.8;	BD	

Biosciences),	10	ng/ml	IL‐2,	and	10	ng/ml	recombinant	mouse	IL‐4	(PeproTech)	

were	added.	On	day	4	of	culture,	cells	were	diluted.	On	day	6,	cells	were	

restimulated	with	plate‐bound	anti‐CD3e	and	anti‐CD28	antibodies	for	6	h.	During	

the	last	2	h,	10	μg/ml	brefeldin	A	(Sigma‐Aldrich)	was	added.	Half	of	the	cells	were	



	

	 19

analyzed	using	flow	cytometry	to	evaluate	eGFP	expression,	while	the	other	half	

were	fixed	with	4%	paraformaldehyde,	permeabilized	with	Perm/Wash	buffer	(BD	

Biosciences),	and	used	for	intracellular	staining	to	confirm	differentiation	by	

detecting	IFN‐γ	and	IL‐4	(data	not	shown).	

	

viii.	In	vivo	and	ex	vivo	imaging	

Postnatal	day	4	mice	(anesthetized	with	isoflurane	vapor)	or	fresh	organs	from	

adult	mice	were	analyzed	using	an	IVIS	spectrum	(Caliper	Life	Sciences).	The	

excitation	and	emission	wavelengths	used	in	this	study	were	465	nm	and	520	nm,	

respectively.	Acquired	data	were	analyzed	using	Living	Image	4.0	software.	

	

ix.	Bioinformatics	

Comparisons	of	mouse	genomic	sequences	with	human,	dog,	and	rat	were	

performed	using	VISTA	(http://genome.lbl.gov/vista/index.shtml).	The	information	

describing	the	position	of	DNase	I	hypersensitive	sites	(DHSs)	in	human	CD4+	T	cells	

were	obtained	from	the	UCSC	genome	browser	(Boyle,	et	al.,	2008;	Crawford,	et	al.,	

2006;	Crawford,	et	al.,	2004;	Crawford,	et	al.,	2006;	Xi,	et	al.,	2007).	

	

x.	ESTs	

The	information	regarding	the	two	expressed	sequence	tags	(ESTs)	that	are	located	

within	300	kbp	of	TCE‐7.1	is	as	follows:	AK080422,	Mus	musculus	7‐day	neonate	

cerebellum	cDNA,	RIKEN	full‐length	enriched	library,	clone	ID	A730010B06	

(http://genome.ucsc.edu/cgi‐
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bin/hgGene?hgg_gene=uc008ihc.1&hgg_prot=&hgg_chrom=chr2&hgg_start=95128

45&hgg_end=9519470&hgg_type=knownGene&db=mm9&hgsid=186400201);	and	

AK035738,	Mus	musculus	adult	male	urinary	bladder	cDNA,	RIKEN	full‐length	

enriched	library,	clone	ID	9530097M04	(http://genome.ucsc.edu/cgi‐

bin/hgGene?hgg_gene=uc008ihb.1&hgg_prot=&hgg_chrom=chr2&hgg_start=92741

16&hgg_end=9369303&hgg_type=knownGene&db=mm9&hgsid=186400201).	

	

C.	RESULTS	

i.	Neither	the	Gata3‐1a	nor	‐1b	promoter	confers	T	cell	autonomous	

expression	in	vivo	

Given	our	previous	report	that	sequences	in	the	Gata3‐1b	(gene‐proximal)	promoter	

exerted	differential	T	cell	activity	in	transfection	experiments	(George,	et	al.,	1994),	

we	first	asked	whether	the	same	promoter	was	capable	of	directing	T	cell	

transcription	in	vivo.	Transgenic	mice	were	generated	in	which	an	eGFP	reporter	

cassette	was	directed	by	1b	promoter	sequences	(1b.eGFP),	and	expression	in	T	cells	

was	monitored	by	flow	cytometry.	Surprisingly,	the	reporter	gene	failed	to	be	

expressed	in	T	cells	of	adult	transgenic	(Tg1b.eGFP)	mice	(Figure	1A).	In	contrast,	mice	

expressing	a	germ	line	eGFP–GATA‐3	fusion	protein	(Gata3g/+)	(Figure	1A)	or	a	

germ	line	lacZ	insertion	at	the	Gata3	initiation	codon	(Gata3z/+)	(Figure	1B)	both	

robustly	express	the	reporters	in	T	cells	(Hendriks,	et	al.,	1999;	Hosoya,	et	al.,	2009).	

These	data	demonstrate	that	the	Gata3‐1b	promoter	is	insufficient	to	confer	T	cell‐

specific	transcription	in	vivo	and,	therefore,	that	an	additional	cis	element(s)	is	

required.	
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Figure	1.	Neither	the	Gata3‐1b	promoter	alone	nor	a	662‐kbp	Gata3/LacZ	YAC	containing	
both	1a	and	1b	promoters	recapitulates	GATA‐3	activity	in	thymocytes.	(A)	eGFP	expression	
in	CD4	SP	thymocytes	from	Gata3g/+	mice	(left,	gray	shaded	histogram)	or	Tg1b.eGFP	mice	
(right,	gray	shaded	histogram).	The	black‐line	(open)	histograms	indicate	eGFP	
fluorescence	in	wild‐type	thymocytes.	Data	represent	at	least	three	mice	of	each	genotype.	
(B)	LacZ	expression	in	thymocytes	stained	with	anti‐CD4	and	anti‐CD8	antibodies	was	
examined	by	flow	cytometry.	Each	population	was	gated	as	depicted.	The	gray	shaded	
histograms	indicate	fluorescein	di‐β‐D‐galactopyranoside	fluorescence	(13)	resulting	from	
hydrolysis	due	to	β‐galactosidase	expression	in	either	Gata3‐lacZ	knock‐in	(Gata3z/+)	(17)	
or	B125‐lacZ	YAC	transgenic	(27)	mice,	while	the	black‐line	(open)	histograms	indicate	
expression	in	wild‐type	mice.	These	individual	data	are	representative	of	results	from	at	
least	three	mice	of	each	genotype.	

	

ii.	A	potent	T	cell	element	located	far	3′	to	Gata3	

We	previously	generated	B125	yeast	artificial	chromosome	(YAC)	LacZ	reporter	

transgenic	mice	harboring	662	kbp	of	genomic	DNA	containing	the	33‐kbp	Gata3	

structural	gene	as	well	as	vast	swaths	of	adjacent	5′	(451‐kbp)	and	3′	(211‐kbp)	

genomic	noncoding	sequences	(Figure	1B,	TgB125.LacZ)	(Lakshmanan,	et	al.,	1998;	
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Lakshmanan,	et	al.,	1999).	We	compared	β‐galactosidase	expression	in	the	

thymocytes	of	TgB125.LacZ	mice	and	LacZ	germ	line	knock‐in	(Gata3z/+)	animals.	

Surprisingly,	LacZ	expression	was	not	observed	in	adult	TgB125.LacZ	thymocytes	

(Figure	1B).	In	contrast,	the	Gata3z	germ	line	knock‐in	allele	was	strongly	expressed,	

most	robustly	in	the	CD4	SP	population	that	also	abundantly	expresses	endogenous	

GATA‐3	in	thymocytes	(Figure	1B).	These	data	demonstrate	that	even	662	kbp	of	

contiguous	genomic	sequence,	including	the	gene	and	both	Gata3	promoters,	was	

insufficient	to	direct	Gata3	T	cell	transcription	in	vivo	and	that	the	cis	elements	

required	for	T	lineage	specification	must	be	located	beyond	the	boundaries	of	that	

YAC.	
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Figure	2.	A	candidate	T	lymphocyte	enhancer	element	is	located	far	3’	to	the	Gata3	gene.	(A)	
The	Gata3	gene	and	adjacent	genes	on	mouse	chromosome	2.	The	relative	genomic	
positions	of	the	BAC	and	YAC	clones	examined	in	this	study	are	depicted	graphically.	(B)	
Schematic	diagram	of	the	targeting	cassette	used	to	generate	modified	BACs.	H1	and	H2,	
homology	arms;	Neo,	neomycin	resistance	gene;	G3P,	Gata3	promoter;	SacBII,	SacBII	gene	
present	in	the	vector	backbone	of	the	RPCI‐23	mouse	BAC	library;	CmR,	chloramphenicol	
acetyltransferase	gene	C,	founder	screening	of	BAC‐trap	Tg	embryos.	eGFP	expression	in	
total	thymocytes	recovered	from	E18.5	F0	Tg	embryos	was	analyzed	by	flow	cytometry.	The	
results	of	two	independent	F0	Tg	embryos	for	each	BAC	clone	are	shown;	in	each	case,	a	
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fraction	of	the	thymocytes	expressed	eGFP,	except	from	wild‐type	embryos.	

	

Next,	we	began	to	examine	sequences	lying	even	further	away	using	the	coupled	

BAC/transgenic	(BAC‐trap)	assay	we	developed	and	exploited	previously	to	identify	

several	distant	Gata2	urogenital	enhancers	(Khandekar,	et	al.,	2004).	Three	BACs	

that	overlapped	and	extended	3′	to	the	B125	YAC	(Figure	2A)	were	modified	by	

recombineering	(Lee,	et	al.,	2001)	to	insert	an	eGFP	reporter	gene	directed	by	the	

Gata3‐1b	(gene‐proximal)	promoter	(1b.eGFP)	into	each	BAC	vector	backbone	

(Figure	2B).	The	1b	promoter	was	examined	(instead	of	the	more	distal	1a	

promoter)	in	these	studies	since	more	than	98%	of	peripheral	T	cell	transcripts	

initiate	from	exon	1b	(Yu,	et	al.,	2009).	The	three	recombineered	BACs	were	used	to	

generate	founder	transgenic	animals,	and	robust	eGFP	expression	was	detected	in	

thymocytes	from	multiple	transgenic	animals	(Figure	2C	and	data	not	shown)	using	

all	three	BACs.	Although	eGFP	expression	initially	appeared	to	differ	between	the	

different	BAC	clones,	after	recovery	of	multiple	founders	bearing	each	clone	(and	

after	subsequent	analysis	of	multiple	BAC	transgenic	lines),	we	concluded	that	the	

heterogeneity	was	due	to	mosaic	expression	of	the	transgenes	in	the	founder	

transgenic	mice.	Based	on	the	T	cell‐directed	eGFP	responses	observed	in	this	

founder	screen,	we	immediately	focused	on	the	region	of	overlap	between	the	three	

BAC	clones.	
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Figure	3.	Mapping	conserved	noncoding	sequences	(CNS)	and	DNase	I	hypersensitive	sites	
(DHS)	in	the	overlap	between	two	BAC	clones.	(A)	The	region	of	overlap	(approximately	25	
kbp)	between	BACs	43G17	and	263A8	is	depicted.	(B)	Genomic	sequences	within	the	
overlap	(mouse	chromosome	2,	9,530,005	to	9,504,884)	were	compared	with	the	human,	
dog,	and	rat	genomes,	respectively.	CNSs	are	colored	pink.	(C)	The	DHS	homologies	
corresponding	to	human	CD4+	T	cells	are	depicted	as	gray	rectangles.	Open	arrows	in	panel	
B	indicate	CNSs	that	were	predicted	to	be	potential	regulatory	elements	(i.e.,	high	ESPERR	
scores).	

	

Preliminary	bioinformatic	analysis	revealed	(Figure	3A	and	B)	that	multiple	species‐

conserved	noncoding	sequence	(CNS)	elements	lie	within	the	overlap	

(approximately	25	kbp)	between	the	RPCI‐23	library	BACs	43G17	and	263A8.	We	

further	informed	the	analysis	by	aligning	DHS	data	from	primary	human	CD4+	T	

cells	(Boyle,	et	al.,	2008;	Crawford,	et	al.,	2006;	Crawford,	et	al.,	2004;	Crawford,	et	

al.,	2006;	Xi,	et	al.,	2007)	(Figure	3C);	several	of	the	CNS	were	close	to,	or	

overlapped,	DHS	sites	(Figure	3).	Given	the	close	relationship	between	conserved	

sequence	elements	and	DHS	sequences	with	transcriptional	control,	we	
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hypothesized	that	the	most	highly	conserved	CNS	overlapping	the	DHS	(shown	in	

Figure	3B)	might	serve	as	a	cis	regulatory	element	that	controls	T	cell‐specific	Gata3	

transcription.	

	

iii.	A	7.1‐kbp	genomic	fragment	directs	Gata3	activity	at	multiple	T	cell	stages	

Within	the	25‐kbp	overlapping	BAC	interval,	we	initially	focused	on	a	7.1‐kbp	

SalI/KpnI	restriction	fragment	that	contained	multiple	CNS	elements	and	that	also	

had	high	predicted	regulatory	sequence	potential	(evolutionary	and	sequence	

pattern	extraction	through	reduced	representations	[ESPERR])	scores	(Taylor,	et	al.,	

2006)	(data	not	shown);	additionally,	this	fragment	encompassed	most	of	the	DHS	

(Figure	3),	and	therefore	we	assigned	to	it	the	preliminary	designation	TCE‐7.1	(7.1‐

kbp	T	cell	element).	First,	we	asked	whether	or	not	this	fragment	contained	T	cell	

enhancer	activity	by	deleting	the	corresponding	region	(Δ7.1)	via	recombineering	

from	the	BAC	43G17	clone	into	which	a	1b.eGFP	reporter	cassette	had	already	been	

inserted.	We	chose	to	examine	BAC	43G17	instead	of	the	two	others	simply	because	

we	first	observed	transcription	of	eGFP	reporter	gene	in	thymocytes	of	Tg43G17	mice	

(data	not	shown).	The	deletion	BAC	was	then	used	to	generate	transgenic	mice	

(Tg43G17Δ7.1).	eGFP	fluorescence	was	conspicuously	absent	in	peripheral	CD4+	cells	in	

all	founder	Tg43G17Δ7.1	mice	(0/14	transgenic	mice	expressed	eGFP	fluorescence)	

compared	to	that	in	the	cells	of	the	parental	Tg43G17	mice	(Table	1),	indicating	that	

TCE‐7.1	is	necessary	for	direction	of	reporter	gene	transcription	in	T	cells.	To	ask	if	

that	same	fragment	alone	was	sufficient	to	enhance	T	cell	transcription,	it	was	

linked	to	the	same	1b.eGFP	reporter	cassette	that	was	used	in	the	BAC	vector	
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modification	recombineering	experiments;	this	reporter	was	then	used	to	generate	

founder	transgenic	mice	(Tg7.1‐1b.eGFP).	We	found	that	eGFP	in	peripheral	CD4+	T	cells	

increased	in	all	founder	mice	(6/6)	bearing	TCE‐7.1	linked	to	the	promoter	

compared	to	in	transgenic	mice	bearing	the	1b	promoter	alone	(Table	1).	

Table	1.	
eGFP	expression	in	the	peripheral	blood	of	F0	Tg	mice	
Transgene	 No.	of	mice	with	CD4+ eGFP+ cells/no.	of	mice	with	Tg	(PCR+)

Tg43G17	 7/8
Tg43G17Δ7.1	 0/14
Tg1b.eGFP	 1a/14
Tg7.1‐1b.eGFP	 6/6
aeGFP	expression	was	detected	in	CD4+	cells	and	granulocytes	(Gr1+Mac1+)	in	only	one	
founder	Tg1b.eGFP	mouse.	We	concluded	that	it	was	ectopic	expression	since	the	remaining	
founder	Tg1b.eGFP	mice	never	expressed	eGFP	in	CD4+	cells.	

	

We	next	established	transgenic	lines	bearing	each	of	these	reporters	and	assayed	

the	lines	for	when	(during	T	cell	development)	and	where	(in	which	organs)	the	

transgenes	were	expressed.	We	initially	analyzed	thymocytes	from	multiple	

established	transgenic	lines:	six	lines	of	Tg7.1‐1b.eGFP,	four	lines	of	Tg1b.eGFP,	five	lines	of	

Tg43G17,	and	three	lines	of	Tg43G17Δ7.1.	Thymocytes	were	electrically	gated	into	DN1	to	

DN4,	DP,	CD4SP,	and	CD8SP	stages	using	anti‐CD4,	CD8,	CD25,	and	CD44	antibodies;	

we	found	that	eGFP	was	expressed	in	those	cells	in	all	lines	of	both	Tg43G17	and	Tg7.1‐

1b.eGFP	mice.	In	contrast,	eGFP	expression	was	not	observed	in	the	absence	of	TCE‐7.1	

(data	not	shown).	Based	on	those	pilot	experiments,	we	chose	two	lines	of	each	

construct‐derived	transgenic	mouse	and	examined	their	T	cell	expression	profiles	in	

detail	as	described	in	Materials	and	Methods.	We	found	that	eGFP	was	expressed	in	

CD4SP	CD69+	thymocytes	as	well	as	in	other	stages	of	both	Tg43G17	mice	and	Tg7.1‐

1b.eGFP	mice.	In	contrast,	eGFP	expression	was	essentially	abolished	when	TCE‐7.1	
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was	deleted,	and	expression	reverted	to	the	levels	observed	in	nontransgenic	mice	

(Figure	4	A	and	B	and	data	not	shown).	Moreover,	we	found	that	the	pattern	of	eGFP	

expression	in	Tg43G17	mice	and	Tg7.1‐1b.eGFP	mice	reflected	the	expression	of	

endogenous	Gata3	during	late	stages	of	thymocyte	development	in	which	positive	

selection	and	CD4	versus	CD8	lineage	choice	occur.	
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Figure	4.	A	7.1‐kbp	fragment	(TCE‐7.1)	within	the	BAC	overlap	directs	αβ	T	cell	reporter	
gene	transcription.	(A)	eGFP	expression	in	CD69+	CD4	SP	thymocytes	from	Tg43G17,	Tg43G17Δ
7.1,	Tg7.1‐1b.eGFP,	Tg1b.eGFP,	and	wild‐type	mice.	Data	are	representative	of	results	from	at	least	
three	individual	mice	of	each	genotype.	(B	and	C)	Normalized	mean	fluorescence	intensity	
(MFI)	of	eGFP	in	each	population	of	thymocytes	(B)	and	splenocytes	(C).	MFI	was	
normalized	using	the	LinearFlow	green	flow	cytometry	intensity	calibration	kit	and	
presented	as	percentage	of	relative	fluorescence	of	calibration	beads.	Error	bars	(B	and	C)	
denote	means	±	standard	deviations	(SD).	Two	lines	of	each	construct‐derived	Tg	mouse	
were	examined	(data	not	shown),	and	at	least	three	individual	mice	of	each	Tg	line	were	
analyzed.	Data	represent	a	single	line	from	each	construct‐derived	Tg	mouse.	Note	that	all	
MFI	expression	data	are	presented	on	a	log	scale.	ETP,	lineage‐negative	(Lin‐)	CD25low	c‐
Kithigh;	DN2,	Lin‐	CD25high	c‐Kithigh;	DN3,	Lin‐	CD25high	c‐Kitlow;	DN4,	Lin‐	CD25low	c‐Kitlow;	ISP,	
TCRbetalow	CD8	SP;	CD69‐	DP,	TCRbetalow	CD69‐	DP;	CD69+	DP,	TCRbeta+	CD69+	DP;	CD4	SP	
CD69+,	TCRbeta+	CD69+	CD4	SP;	CD4	SP	CD69‐,	TCRbeta+	CD69‐	CD4	SP;	CD8	SP	CD69+,	
TCRbeta+	CD69+	CD8	SP;	CD8	SP	CD69‐,	TCRbeta+	CD69‐	CD8	SP;	Naïve	CD4+,	CD4+	CD62Lhigh	
CD44low;	Activated/Memory	CD4+,	CD4+	CD62Llow	CD44high;	Naïve	CD8+,	CD8+	CD62Lhigh	
CD44low;	Activated/Memory	CD8+,	CD8+	CD62Llow	CD44high.	

	

Endogenous	Gata3	is	induced	by	T	cell	receptor	(TCR)	signaling	during	positive	

selection	at	the	DP	stage,	and	this	induction	requires	the	activity	of	transcription	

factor	c‐Myb.	After	DP	cells	differentiate	into	intermediate	(CD69+)	CD4	SP	cells,	

endogenous	Gata3	expression	remains	high	and	then	gradually	diminishes	during	

maturation	into	mature	(CD69−)	CD4	SP	cells.	In	contrast,	there	is	no	induction	of	

Gata3	in	intermediate	(CD69+)	CD8	SP	cells,	and	its	level	of	expression	diminishes	

even	further	as	the	cells	differentiate	into	mature	(CD69−)	CD8	SP	cells	(Hernandez‐

Hoyos,	et	al.,	2003;	Maurice,	et	al.,	2007;	Nawijn,	et	al.,	2001).	We	observed	induced	

expression	of	the	MFI	of	eGFP	after	cell	differentiation	from	the	preselection	(CD69−	

DP	cells)	stage	into	CD69+	DP	cells,	where	positive	selection	has	begun,	in	both	

Tg43G17	and	Tg7.1‐1b.eGFP	mice.	eGFP	increased	in	intermediate	CD4	SP	cells	and	

declined	thereafter	in	mature	CD4	SP	cells,	as	does	endogenous	Gata3.	In	CD8	SP	

cells,	eGFP	declined,	again	reflecting	the	endogenous	Gata3	expression	pattern	

(Figure	4B	and	data	not	shown).	These	results	suggest	that	TCE‐7.1	contains	cis	
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information	required	to	direct	the	late	stages	of	Gata3‐regulated	thymocyte	

development.	

	

In	contrast	to	late	thymocyte	development,	some	differences	in	expression	

characteristics	of	the	TCE‐7.1	transgenes	were	detected	at	earlier	stages	than	the	

reported	expression	of	endogenous	Gata3	mRNA	(David‐Fung,	et	al.,	2006;	Tydell,	et	

al.,	2007).	For	example,	Tg7.1‐1b.eGFP	and	Tg43G17	mice	displayed	intense	eGFP	

fluorescence	at	the	ETP	stage	that	gradually	diminished	as	they	differentiated	into	

the	DN2	and	DN3	stages	(Figure	4B	and	data	not	shown).	In	addition,	Tg7.1‐1b.eGFP	

CD69−	DP	thymocytes	expressed	eGFP	more	intensely	than	immature	CD8	SP	(ISP)	

cells,	while	Tg43G17	exhibited	no	difference	between	those	two	populations.	Neither	

is	true	of	GATA‐3	expression	from	the	endogenous	locus	(Figure	4B).	Taken	

together,	we	tentatively	conclude	that	the	cis	element(s)	that	is	required	to	

stimulate	Gata3	transcription	at	the	DN3	stage	(David‐Fung,	et	al.,	2006;	Tydell,	et	

al.,	2007)	or	required	to	negatively	regulate	Gata3	at	the	ETP	stage	must	be	located	

beyond	the	boundaries	of	the	43G17	BAC,	while	additional	regulatory	elements	that	

negatively	regulate	Gata3	at	the	CD69−	DP	stage	or	positively	regulate	it	at	the	ISP	

stage	must	exist	outside	TCE‐7.1	but	may	be	included	within	the	boundaries	of	BAC	

43G17.	

	

We	also	analyzed	splenocytes	to	examine	reporter	gene	expression	in	peripheral	T	

cells	in	greater	detail.	Both	Tg43G17	and	Tg7.1‐1b.eGFP	displayed	higher	eGFP	MFI	in	

naïve	CD4+	cells	than	in	naïve	CD8+	cells,	which	is	similar	to	the	pattern	of	
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endogenous	Gata3.	Those	activities	were	essentially	ablated	in	the	absence	of	TCE‐

7.1	(Figure	4C	and	data	not	shown).	These	results	indicate	that	TCE‐7.1	is	critical	for	

transcription	in	peripheral	T	cells,	although	small	differences	were	detectable.	For	

example,	eGFP	was	higher	in	naïve	CD4+	cells	than	in	activated/memory	CD4+	cells	

of	both	Tg43G17	and	Tg7.1‐1b.eGFP	mice	(Figure	4C),	which	again	does	not	perfectly	

reflect	the	in	vivo	changes	in	GATA‐3	that	occur	during	T	cell	differentiation.	In	

addition,	eGFP	in	naïve	and	activated/memory	CD8+	splenocytes	remained	high	

compared	to	CD4−	CD8−	splenocytes,	especially	in	Tg7.1‐1b.eGFP	mice	(Figure	4C).	

Taken	together,	these	results	demonstrate	that	TCE‐7.1	is	vital	for	transcription	of	a	

Gata3	promoter‐directed	reporter	gene	in	thymocytes	and	in	splenocytes	in	vivo,	

although	the	element	within	TCE‐7.1	may	not	alone	be	sufficient	to	precisely	

recapitulate	all	aspects	of	Gata3	T	cell	expression.	We	therefore	speculate	that	

additional	regulatory	elements	that	negatively	regulate	Gata3	in	peripheral	CD8+	T	

cells	may	exist	outside	TCE‐7.1	but	within	the	43G17	BAC.	

	

In	order	to	determine	whether	TCE‐7.1	contains	the	element(s)	specifying	increased	

Gata3	transcription	in	Th2	cells	but	not	in	Th1	cells	(Zhang,	et	al.,	1997;	Zheng	and	

Flavell,	1997),	we	analyzed	the	expression	of	eGFP	in	CD4+	cells	from	Tg43G17	mice	

under	a	variety	of	cytokine	stimulatory	conditions	(see	Materials	and	Methods).	

After	stimulation,	eGFP	in	CD4+	cells	under	Th2‐polarizing	and	nonpolarizing	

conditions	was	not	significantly	altered,	although	the	cells	did	express	low	levels	of	

eGFP	(Figure	5),	in	keeping	with	the	observed	properties	of	GATA‐3	expression	in	

vivo.	We	confirmed	that	the	in	vitro	polarization	of	these	cells	was	successful	by	
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monitoring	cytokine	induction	(IFN‐γ	and	IL‐4)	(data	not	shown).	In	CD4+	cells	

recovered	from	Tg43G17Δ7.1	mice,	eGFP	was	not	observed.	In	contrast,	Tg7.1‐1b.eGFP	CD4+	

cells	cultured	under	stimulatory	conditions	somewhat	surprisingly	displayed	

greatly	reduced	eGFP	fluorescence	under	Th2‐polarizing	or	nonpolarizing	

conditions	compared	to	that	of	naïve	CD4+	cells.	Moreover,	Tg7.1‐1b.eGFP	cells	under	

Th1‐polarizing	conditions	actually	displayed	higher	eGFP	expression	than	under	

Th2‐polarizing	or	nonpolarizing	conditions	(Figure	5	and	data	not	shown).	Both	

results	contradict	the	GATA‐3	expression	characteristics	observed	in	vivo.	These	

data	suggest	that	TCE‐7.1,	either	in	concert	with	the	Gata3‐1b	promoter	or	even	

within	the	context	of	the	entire	BAC43G17	clone,	does	not	contain	the	regulatory	

element	that	specifies	Gata3	activation	in	Th2	cells	or	in	activated	CD4+	T	cells,	

although	TCE‐7.1	does	contain	an	element	that	is	critical	for	high‐basal‐level	

transcription	in	stimulated	CD4+	cells.	Furthermore,	a	putative	cis	element	that	must	

be	located	outside	the	boundaries	described	by	TCE‐7.1,	but	within	the	boundaries	

specified	by	BAC	43G17,	may	additionally	be	required	for	the	repression	of	Gata3	in	

Th1	cells	and	naïve	CD4+	T	cells.	
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Figure	5.	TCE‐7.1	directs	reporter	gene	transcription	in	stimulated	CD4+	cells.	(A)	
Histograms	of	eGFP	in	naïve	CD4+	splenocytes	and	stimulated	CD4+	splenocytes	under	
various	conditions.	Data	are	representative	of	results	from	at	least	three	individual	mice	of	
each	genotype.	(B)	MFI	of	eGFP	in	naïve	and	stimulated	CD4+	splenocytes	under	various	
conditions.	Note	that	MFI	was	not	normalized	using	calibration	beads	in	this	experiment.	
Error	bars	denote	means	±	SD.	Two	lines	of	each	construct‐derived	Tg	mouse	were	
examined	(data	not	shown),	and	at	least	three	individual	mice	of	each	Tg	line	were	
analyzed.	Data	represent	a	single	line	from	each	construct‐derived	Tg	mouse.	Note	that	MFI	
expression	data	are	presented	on	a	log	scale.	

	

iv.	TCE‐7.1	bears	Gata3	T	and	NK	cell‐specific	regulatory	information	

In	addition	to	its	well‐characterized	roles	in	αβ	T	cell,	sympathoadrenal,	kidney,	

parathyroid,	breast	epithelial,	and	epidermal	development	(Asselin‐Labat,	et	al.,	

2007;	Grigorieva,	et	al.,	2010;	Kaufman,	et	al.,	2003;	Kouros‐Mehr,	et	al.,	2006;	

Kurek,	et	al.,	2007;	Lim,	et	al.,	2000;	Moriguchi,	et	al.,	2006;	Tsarovina,	et	al.,	2010),	

GATA‐3	has	been	shown	to	play	critical	roles	in	the	generation	and	maturation	of	NK	

cells	(Samson,	et	al.,	2003;	Vosshenrich,	et	al.,	2006).	In	addition,	GATA‐3	is	

expressed	in	γδ	T	cells	(Hosoya,	et	al.,	2009)	as	well	as	in	hematopoietic	progenitors	

(Sambandam,	et	al.,	2005),	although	its	function	there	is	not	well	understood.	We	

analyzed	NK	cells,	γδ	T	cells,	and	hematopoietic	progenitors	(lineage−	Sca1+	c‐Kithi	

[LSK])	in	multiple	transgenic	lines	to	ascertain	whether	TCE‐7.1	was	also	active	in	

those	related	lymphoid	lineages.	

	

Somewhat	surprisingly,	robust	eGFP	fluorescence	was	observed	in	thymic	NK	cells	

and	γδ	T	cells	in	both	Tg7.1‐1b.eGFP	and	Tg43G17	mice,	while	mice	bearing	the	7.1‐kbp	

deleted	BAC	Tg43G17Δ7.1	or	mice	bearing	only	the	Gata3‐1b	promoter	failed	to	express	

eGFP	(Figure	6A).	In	contrast	to	GATA‐3‐expressing	cells	(e.g.,	αβ	or	γδ	T	cells	or	NK	
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cells),	other	hematopoietic	lineages	that	do	not	express	endogenous	GATA‐3	also	

failed	to	express	eGFP,	in	both	Tg7.1‐1b.eGFP	and	Tg43G17	mice	(Figure	6A).	Furthermore,	

neither	Tg7.1‐1b.eGFP	nor	Tg43G17	express	eGFP	in	the	early	hematopoietic	progenitor	

compartment	(Figure	6B).	These	results	demonstrated	that	TCE‐7.1	is	active	in	T	

and	NK	cells	but	not	in	other	hematopoietic	lineages	or	progenitors.	
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Figure	6.	Among	hematopoietic	cells,	TCE‐7.1	confers	only	NK	cell	and	αβ	and	γδ	T	cell	
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enhancer	activity.	(A)	Normalized	MFI	of	eGFP	in	erythroid	cells	(TER119+),	B	cells	(CD19+	
B220+	CD3‐),	and	myeloid	cells	(Gr1+	Mac1+)	in	the	bone	marrow,	as	well	as	γδ	T	cells	
(TCRγδ+)	and	NK	cells	(CD3‐	CD19‐	DX5+)	in	the	thymus	are	shown.	Error	bars	denote	
means	±	SD.	Note	that	MFI	data	are	presented	on	a	log	scale.	(B)	eGFP	expression	in	bone	
marrow	hema‐	topoietic	progenitors	(Lin‐	Sca1+	c‐Kithi).	The	shaded	histograms	indicate	
each	Tg	mouse,	while	dashed	lines	indicate	wild‐type	mice.	For	both	panels	A	and	B,	two	
lines	of	each	construct‐derived	Tg	mouse	were	examined	(data	not	shown),	and	at	least	
three	individual	mice	of	each	Tg	line	were	analyzed.	Data	represent	a	single	line	from	each	
construct‐derived	Tg	mouse.	

	

In	order	to	more	globally	examine	whether	the	eGFP	expression	conferred	by	TCE‐

7.1	was	T	cell	specific,	we	examined	Tg7.1‐1b.eGFP	expression	by	IVIS	Spectrum	whole‐

body	in	vivo	imaging.	Robust	eGFP	fluorescence	was	detected	exclusively	in	the	

thymi	of	Tg7.1‐1b.eGFP	neonates	(Figure	7A).	In	contrast,	other	organs	in	these	mice	did	

not	display	expression	above	background	levels;	similarly,	neither	Tg1b.eGFP	nor	wild‐

type	mice	expressed	detectable	eGFP	(Figure	7A	and	data	not	shown).	Ex	vivo	

imaging	of	individual	adult	organs	confirmed	the	conclusions	on	the	living	neonatal	

mice.	As	shown	in	Figure	7B,	eGFP	fluorescence	was	detected	only	in	the	thymi	of	

Tg7.1‐1b.eGFP	mice	but	not	in	other	organs.	In	agreement	with	conclusions	from	the	in	

vivo	imaging,	neither	Tg1b.eGFP	nor	wild‐type	adult	mice	displayed	detectable	eGFP	

expression	(Figure	7B).	These	results	demonstrated	conclusively	that	sequences	

within	TCE‐7.1	direct	exclusive	T	and	NK	cell‐specific	transcription	of	Gata3.	
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Figure	7.	The	TCE‐7.1	enhancer	is	T	cell	specific.	(A)	eGFP	expression	in	living	P4	mice.	Data	
are	representative	of	multiple	pups	examined	in	two	independent	experiments.	(B)	eGFP	
expression	in	various	organs	from	each	genotype	of	adult	mice.	Three	individual	mice	of	
each	genotype	were	analyzed.	B,	brain;	Li,	liver;	H,	heart;	K,	kidney;	Lu,	lung;	St,	stomach;	T,	
thymus;	Sp,	spleen.	In	both	panels	A	and	B,	two	lines	of	both	Tg7.1‐1b.eGFP	and	Tg1b.eGFP	mouse	
were	examined	(data	not	shown).	

	

D.	DISCUSSION	

Here,	we	report	that	a	7.1‐kbp	DNA	fragment	(abbreviated	TCE‐7.1)	located	280	kbp	

3′	to	the	Gata3	gene	contains	cis	information	that	is	critical	for	the	transcription	of	

Gata3,	both	at	multiple	stages	of	T	cell	development	and	in	thymic	NK	cells.	While	

previous	experiments	have	identified	central	roles	for	GATA‐3	at	multiple	stages	of	

T	cell	development	(Hosoya,	et	al.,	2009;	Pai,	et	al.,	2004;	Pai,	et	al.,	2003;	Zhu,	et	al.,	

2004),	it	is	expressed	at	all	stages	that	have	been	examined,	but	its	level	clearly	

differs	markedly	between	developmental	stages	(e.g.,	in	CD4	versus	CD8	SP	cells	or	

in	Th1	versus	Th2	cells)	(Hendriks,	et	al.,	1999;	Hernandez‐Hoyos,	et	al.,	2003;	

Zhang,	et	al.,	1997;	Zheng	and	Flavell,	1997).	Although	several	trans‐acting	factors	

are	believed	to	directly	regulate	Gata3	(Amsen,	et	al.,	2007;	Fang,	et	al.,	2007;	
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Maurice,	et	al.,	2007;	Yang,	et	al.,	2009;	Yu,	et	al.,	2009),	a	coherent	mechanism	

explaining	how	this	information	is	integrated	to	allow	differential,	stage‐specific	

Gata3	expression	at	multiple	stages	of	T	cell	development	in	vivo	has	not	emerged.	

	

The	BAC‐trap	transgenic	assay	utilized	in	this	report	reiterated	the	generality	of	this	

assay,	showing	that	even	a	very	distant	cis	element,	located	more	than	200	kbp	from	

the	structural	gene	(the	amount	of	information	usually	borne	in	a	BAC),	can	be	

identified,	thus	revealing	the	position	of	a	cell‐specific	enhancer	that	is	capable	of	

conferring	transcription	to	a	reporter	gene	at	several	discrete	developmental	stages,	

from	ETP	to	peripheral	CD4+	T	cells,	in	vivo.	The	expression	pattern	of	the	reporter	

was	similar	to	that	of	endogenous	Gata3	even	though	differences	were	documented.	

Since	eGFP	expression	was	not	observed	in	the	absence	of	the	enhancer‐bearing	

fragment,	we	conclude	that	this	element	is	critical	for	transcription	of	the	Gata3	

gene	in	T	lymphocytes.	

	

In	this	study,	both	Tg43G17	and	Tg7.1‐1b.eGFP	displayed	expression	profiles	that	reflected	

almost	perfectly	the	endogenous	Gata3	expression	pattern	in	late	stages	of	

thymocyte	development.	At	the	DP	stage,	the	TCRα	locus	begins	to	rearrange,	and	

subsequently	a	low	level	of	the	TCRαβ	complex	is	expressed.	Those	DP	cells	are	

poised	for	positive	selection,	although	most	of	them	fail	to	emerge	intact	from	

selection:	only	a	few	cells	that	have	an	appropriate	TCR	affinity	are	positively	

selected	and	finally	emerge	to	differentiate	into	either	CD4	SP	or	CD8	SP	cells.	

Endogenous	Gata3	is	induced	at	the	onset	of	positive	selection,	and	its	expression	is	
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controlled	by	TCR	signaling	(Hernandez‐Hoyos,	et	al.,	2003;	Nawijn,	et	al.,	2001).	

Based	on	the	remarkably	similar	expression	patterns	of	endogenous	Gata3,	Tg43G17,	

and	Tg7.1‐1b.eGFP	during	late	thymocyte	development,	we	conclude	that	TCE‐7.1	

contains	the	activity	required	for	development	through	those	stages.	

	

We	found	that	TCE‐7.1	harbors	multiple	putative	transcription	factor	binding	sites	

through	bioinformatic	analyses	(data	not	shown).	Perhaps	not	surprisingly,	

candidate	binding	sites	for	many	transcription	factors	that	are	critical	for	T	cell	

development	can	be	identified	in	this	region.	For	example,	highly	species‐conserved	

sequences	contain	putative	binding	sites	for	transcription	factors	c‐Myb,	Runx,	E2A,	

and	TCF‐1	as	well	as	others.	The	proto‐oncogene	c‐Myb	is	required	for	the	induction	

of	Gata3	following	TCR	signaling,	and	the	binding	of	c‐Myb	to	the	Gata3‐1b	

promoter	is	detectable	in	thymocytes	(Maurice,	et	al.,	2007).	It	is	important	to	

remember	that	this	same	Myb	binding	site	is	present	in	the	B125	YAC,	and	that	the	

YAC‐derived	transgene	was	not	expressed	in	thymocytes.	Moreover,	this	binding	

site	was	absent	in	all	of	the	BAC	and	7.1‐1b.eGFP	reporter	constructs	examined	in	

this	report,	but	nonetheless	the	reporter	gene	was	induced	in	the	T	cells	of	both	

Tg7.1‐1b.eGFP	and	Tg43G17	mice.	Since	the	fragment	bearing	the	T	cell	enhancer	activity	

contains	several	putative	c‐Myb	binding	sites,	it	is	possible	that	these	enhancer	sites	

participate	in	Gata3	induction	by	c‐Myb.	

	

Although	expression	in	both	the	Tg7.1‐1b.eGFP	and	Tg43G17	mice	resembled	that	of	

endogenous	Gata3,	whether	this	element	or	group	of	elements	constitute	a	bona	fide	



	

	 42

cis	element	for	Gata3	has	not	been	conclusively	demonstrated.	Only	two	spliced	

ESTs	other	than	Gata3	are	located	within	300	kbp	of	TCE‐7.1.	Those	two	ESTs,	

AK080422	and	AK035738,	have	been	identified	as	nonprotein‐coding	mRNAs	

(Okazaki,	et	al.,	2002).	AK080422	was	detected	in	a	mouse	neonatal	cerebellum	

cDNA	library,	while	AK035738	was	observed	in	an	adult	male	mouse	urinary	

bladder	cDNA	library.	The	function	of	those	two	ESTs	is	unknown,	and	their	

expression	in	thymocytes	has	not	been	detected.	Taken	together,	assigning	TCE‐7.1	

activity	to	the	Gata3	gene	is	likely	the	most	conservative	interpretation	of	these	

data.	

	

Numerous	interesting	questions	emerge	from	this	study:	does	a	single	element	

within	TCE‐7.1	control	Gata3	expression	in	αβT,	γδT,	and	NK	cells,	or	alternatively	

do	multiple	elements	within	TCE‐7.1	each	regulate	transcription	in	those	distinct	

lineages?	Do	multiple	elements,	perhaps	in	different	combinations,	consort	to	elicit	

proper	stage‐specific	Gata3	activation	during	T	cell	development,	or	do	different	

cofactors,	all	acting	on	a	single	cis	element	within	TCE‐7.1,	function	at	different	

stages	to	confer	the	specificity?	Answers	to	these	fascinating	questions	should	be	

resolved	soon	by	the	many	groups	studying	Gata3	function	in	T	cell	transcription.	

	

Finally,	the	data	predict	that	(one	or	multiple)	sequences	within	TCE‐7.1	must	

collaborate	with	as‐yet‐undiscovered	cis	elements	lying	beyond	the	TCE‐7.1	

boundaries	to	fully	recapitulate	proper	Gata3	expression	in	T	lymphocytes.	TCE‐7.1	

clearly	contains	sequences	that	are	important	for	directing	transcription	in	both	the	
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T	cell	and	NK	cell	lineages.	Further	analysis	of	Gata3	gene	regulation	in	T	cells	

should	help	us	to	not	only	understand	the	complex	mechanisms	of	gene	regulation	

that	are	used	to	confer	T	cell	specificity	to	this	regulatory	network	but	perhaps	

might	also	shed	light	on	the	mechanisms	where	GATA‐3	may	play	an	oncogenic	role	

in	leukemia	and	lymphoma	(Nawijn,	et	al.,	2001;	van	Hamburg,	et	al.,	2008;	Xu	and	

Kee,	2007).	
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Chapter	III	
	

Genome‐Wide	Binding	of	the	Orphan	Nuclear	Receptor	TR4	Suggests	Its	
General	Role	in	Fundamental	Biological	Processes	

	
	
A.	INTRODUCTION	

There	are	an	estimated	1400	site‐specific	DNA	binding	factors	encoded	in	the	

human	genome	(Vaquerizas,	et	al.,	2009).	Although	these	factors	can	influence	

transcription	when	their	binding	sites	are	cloned	in	front	of	core	promoters,	they	

usually	do	not	function	alone.	Most	often,	individual	transcription	factors	

collaborate	to	orchestrate	gene	expression	through	combinatorial	binding	to	

regulatory	regions	in	chromatin	(Farnham,	2009).	These	regions,	termed	cis	

modules,	thereby	activate,	repress	or	otherwise	epigenetically	modify	the	

transcriptional	responses	of	individual	genes.	Elucidating	the	position	and	activities	

of	individual	cis	modules	using	reporter	genes	is	time	consuming	and	expensive.	

With	recent	advances	in	DNA	sequencing	technology,	it	is	now	feasible	to	generate	

global	protein‐DNA	interaction	profiles	by	chromatin	immunoprecipitation	(ChIP)	

followed	by	ultra‐high‐throughput	sequencing	(Park,	2009).	Cis	modules	can	then	

often	be	identified	by	applying	bioinformatics	searches	for	one	or	more	cis	motifs	

recognized	by	unrelated	alternative	factors	near	the	binding	sites	of	the	factor	

analyzed	by	ChIP‐seq	or	by	the	co‐localization	of	bound	sites	for	two	or	more	

unrelated	different	site‐specific	factors.
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Nuclear	receptors	(NRs)	represent	a	special	class	of	transcription	factors	that	direct	

target	gene	transcription	in	a	ligand‐dependent	fashion.	NRs	contain	a	DNA‐binding	

domain	that	recognizes	a	specific	DNA	sequence,	as	well	as	a	ligand	binding	domain	

that	renders	these	factors	environmentally‐dependent	regulators	via	interaction	

with	distinct	cognate	ligands	(Mangelsdorf,	et	al.,	1995).	The	great	majority	of	NRs	

homodimerize	or	heterodimerize	with	another	NR,	and	then	bind	to	two	copies	of	a	

repeated	hexanucleotide	sequence	(called	a	half‐site)	separated	by	variable	spacing	

(Sandelin	and	Wasserman,	2005).	The	half‐site	consensus,	AGGTCA,	can	occur	in	

either	orientation	and	variation	from	the	consensus	allows	numerous	alternative	

binding	sites	of	(probably)	variable	affinity	(Sandelin	and	Wasserman,	2005).	Based	

on	the	number	of	spacer	nucleotides	separating	the	two	half‐sites	and	the	

orientation	of	the	two	half‐sites	relative	to	each	other,	NR	binding	sites	have	been	

categorized	as	direct	repeats	(DR0	‐	DR8),	everted	repeats	(ER0	‐	ER8)	or	inverted	

repeats	(IR0‐IR8)	(Sandelin	and	Wasserman,	2005).	

	

NR2C2	(human	testicular	receptor	4,	TR4,	in	the	older	nomenclature)	belongs	to	the	

nuclear	receptor	superfamily	and	is	termed	an	orphan	receptor	due	to	the	fact	that	

no	ligand	has	been	discovered	(Lee,	et	al.,	2002;	Noy,	2007;	Su	Liu,	2010).	TR4	was	

initially	identified	in	hypothalamus,	prostate,	and	testis	cDNA	libraries,	but	has	since	

been	demonstrated	to	be	broadly	expressed	in	many	physiological	systems	

(Bookout,	et	al.,	2006;	Chang,	et	al.,	1994).	For	example,	TR4	has	been	shown	to	

activate	target	gene	expression	in	liver	carcinoma	HepG2	cells	(Lee,	et	al.,	1997).	In	

contrast,	in	erythroid	cells,	TR4	can	heterodimerize	with	another	closely	related	
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family	member	(TR2,	or	NR2C1)	and	binds	to	a	DR1	(direct	repeats	with	one	

nucleotide	spacer)	element	to	repress	target	gene	transcription	(Omori,	et	al.,	2005;	

Tanabe,	et	al.,	2002;	Tanabe,	et	al.,	2007;	Tanabe,	et	al.,	2007).	The	binding	affinity	of	

the	TR4	homodimer	for	the	DR1	element	in	vitro	is	equivalent	to	that	of	the	TR2:TR4	

heterodimer	(Tanabe,	et	al.,	2007),	and	TR4	mRNA	is	more	abundant	than	TR2	in	

human	erythroid	cells	(Tanabe,	unpublished	observations).	However,	the	broader	

physiological	functions	for,	and	the	in	vivo	genome‐wide	binding	patterns	of,	this	

broadly	expressed	nuclear	receptor	are	obscure.	We	therefore	chose	to	initially	

investigate	genome	wide	TR4	binding	anticipating	that	these	studies	might	reveal	

some	common,	but	also	perhaps	some	tissue‐specific,	metabolic	processes	to	which	

this	factor	contributes.	

	

In	this	study	we	investigated	the	first	genome‐wide	identification	of	cellular	targets	

of	TR4	and	preliminary	characterization	of	TR4	in	vivo	binding	in	multiple	cell	types,	

including	those	in	which	TR4	has	been	suggested	to	be	an	activator	(liver)	and	cells	

in	which	TR4	has	been	suggested	to	be	a	repressor	(blood).	Using	ChIP‐seq,	we	

determined	TR4	in	vivo	binding	in	four	human	ENCODE	cell	lines:	K562	

erythroleukemia	cells,	HepG2	liver	carcinoma,	HeLa	cervical	carcinoma,	and	

GM12878	immortalized	lymphoblast	cells.	TR4	binding	patterns	identified	in	the	

four	diverse	cell	lines	suggest	that	this	factor	controls	cell	metabolism	by	binding	to	

the	proximal	promoter	regions	that	are	common	to	several	hundred	genes.	Motif	

analysis	shows	that	TR4	strongly	prefers	a	DR1	sequence	to	all	other	categories	of	

repeat	elements	in	vivo.	By	integration	of	TR4	binding	data	with	histone	
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modification	patterns	and	other	genomic	structures,	we	predict,	and	then	

experimentally	test,	putative	cis	modules.	

	

B.	RESULTS	AND	DISCUSSION	

i.	Identification	of	genome‐wide	TR4	binding	sites	

With	no	known	ligand	and	few	proposed	binding	sites	in	mouse	and	human	cell	

lines	(Chen,	et	al.,	2008;	Kim,	et	al.,	2005;	Liu,	et	al.,	2007;	Shyr,	et	al.,	2009),	the	

function	of	the	TR4	orphan	nuclear	receptor	was	largely	unknown	when	we	began	

these	studies.	Previous	studies	examined	its	function	in	different	blood	cells	and	

found	that	TR4	bound	to	the	CD36	promoter	in	macrophages	(Xie,	et	al.,	2009)	and	

to	the	GATA1	enhancer	G1HE	(Tanabe,	et	al.,	2007)	in	CD34+	cells,	but	only	after	in	

vitro	differentiation	for	11	days.	To	further	elucidate	biological	roles	for	TR4,	we	set	

out	to	identify	in	vivo	TR4	binding	sites	throughout	the	entire	human	genome	using	

chromatin	immunoprecipitation	followed	by	high	throughput	sequencing	(ChIP‐

seq).	We	wanted	to	compare	its	binding	profiles	in	cells	derived	from	different	

tissue	types.	We	chose	to	identify	TR4	targets	in	cell	types	selected	by	the	ENCODE	

Consortium	(http://www.genome.gov/10005107),	including	human	chronic	

myelogenous	leukemia	cells	(K562),	human	cervical	carcinoma	cells	(HeLa),	

lymphoblastoid	cells	(GM12878),	and	hepatocellular	carcinoma	cells	(HepG2).	By	

characterizing	its	binding	in	these	cell	lines,	we	could	compare	TR4	binding	sites	

with	other	transcription	factor	binding	sites	and	histone	marks	determined	by	other	

ENCODE	groups	examining	these	same	cell	types.	We	first	validated	the	presence	of	

TR4	protein	in	these	cell	lines	by	Western	Blot	analysis.	We	began	our	ChIP	
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experiments	using	the	hematopoietic	cell	line	K562	and	the	liver	cell	line	HepG2,	but	

were	unable	to	confirm	TR4	enrichment	at	targets	previously	published	in	the	

specialized	and	differentiated	hematopoietic	cells.	Therefore,	we	initially	proceeded	

without	having	positive	controls	for	the	ChIP	assays.	We	prepared	sequencing	

libraries	from	ChIP	experiments	from	two	independently	grown	batches	of	HepG2	

cells.	Samples	were	sequenced	using	the	Illumina	GA2	platform	and	ChIP‐seq	data	

were	analyzed	using	the	Sole‐search	software	

(http://chipseq.genomecenter.ucdavis.edu/cgi‐bin/chipseq.cgi;	[21]).	Only	

sequences	that	uniquely	matched	those	in	the	human	genome	were	retained	for	

analysis.	9.7	million	sequence	reads	were	obtained	from	replicate	1	and	8.2	million	

from	replicate	2.	Using	the	Sole‐search	peak	calling	program	with	default	settings	

(FDR	0.0001,	alpha	value	0.001),	1,547	and	2,246	TR4	binding	sites	were	identified	

in	HepG2	cells	for	replicate	1	and	replicate	2,	respectively.	1,243	(80%)	of	the	1,547	

peaks	called	from	replicate	1	were	also	present	in	the	2,246	peaks	called	from	

replicate	2.	This	overlap	demonstrates	good	reproducibility	between	biological	

replicates.	To	obtain	the	final	list	of	2,672	TR4	binding	sites	in	HepG2	cells,	all	reads	

(17.8	million)	from	both	biological	replicates	were	merged.	We	then	performed	TR4	

ChIP	experiments	for	the	other	cell	types	and	used	standard	PCR	to	confirm	

enrichment	at	three	sites	(TNFIAP1,	SCAP,	ECSIT)	previously	identified	in	HepG2	

cells.	ChIP‐seq	libraries	were	then	prepared	from	two	biological	replicates	using	the	

TR4	antibody	resulting	in	23	million	sequence	reads	for	HeLa	cells,	30	million	for	

GM12878	cells	and	16	million	for	K562	cells.	1,767	TR4	binding	sites	were	

identified	in	HeLa	cells,	1,180	TR4	binding	sites	in	GM12878	cells	and	732	TR4	
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binding	sites	in	K562	cells;	see	Figure	8	for	the	binding	patterns	of	TR4	across	the	

entire	chromosome	12	in	all	four	cell	types.	

	

Figure	8.	Comparison	of	TR4	targets	in	4	different	cell	types.	ChIP‐seq	binding	patterns	of	
TR4	(NR2C2)	from	K562,	GM12878,	HeLa,	and	HepG2	cells	are	shown	(A)	for	entire	
chromosome	12	and	(B)	for	target	genes	KRAS	and	TR2	(NR2C1).	The	number	of	tags	
reflecting	the	ChIP	enrichments	is	plotted	on	the	y	axis	and	chromosomal	coordinates	
(hg18)	are	shown	on	the	x	axis.	RefSeq	genes	are	indicated	in	(+)	and	(‐)	orientation.	Target	
genes	KRAS	and	TR2	are	in	(‐)	orientation	as	indicated	by	the	arrows.	

	

The	position	to	which	a	transcription	factor	binds	relative	to	the	start	site	of	

transcription	can	provide	insight	into	how	the	factor	regulates	transcription.	For	

example,	E2F	family	members	bind	to	core	promoter	regions	and	are	thought	to	
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stimulate	transcription	by	interaction	with	the	basal	transcription	machinery	(Fry,	

et	al.,	1999;	Xu,	et	al.,	2007).	In	contrast,	other	transcription	factors,	such	as	GATA1	

or	TCF4	(TCF7L2),	show	significant	binding	to	sites	often	located	more	than	10	kb	

away	from	the	gene	that	they	regulate	(Blahnik,	et	al.,	2010;	Fujiwara,	et	al.,	2009),	

suggesting	that	these	factors	may	regulate	transcription	by	looping	mechanisms.	

Although	the	number	of	TR4	binding	sites	varied	among	the	different	cell	types,	

location	analysis	revealed	that	TR4	preferentially	binds	close	to	the	transcription	

start	sites	of	its	target	genes.	The	majority	of	TR4	binding	sites	(65‐82%)	is	located	

either	in	the	proximal	promoter	(up	to	2	kb	upstream	of	TSS)	or	is	found	within	the	

first	exon	or	first	intron	of	a	RefSeq	gene.	In	HeLa	cells,	36%	of	TR4	binding	

occurred	in	the	proximal	promoter	and	41%	in	the	gene	region,	mainly	in	the	first	

exon	or	first	intron	(Figure	9A	and	9B).	To	further	characterize	TR4	binding	sites,	

TR4	ChIP‐seq	reads	were	organized	into	100	bp	bins	relative	to	the	start	site	of	

transcription.	The	distribution	of	TR4	peaks	relative	to	the	transcription	start	site	

demonstrated	that	the	majority	of	TR4	binding	occurs	between	1	kb	upstream	and	1	

kb	downstream	of	a	TSS	(Figure	9C).	For	example,	1,135	(63%)	of	the	1,767	HeLa	

binding	sites	were	located	within	±	1	kb	from	a	TSS.	This	preference	was	also	

reflected	in	an	elevated	median	height	of	peaks	near	a	TSS;	the	median	peak	value	

was	114	for	peaks	within	±	1	kb	of	a	TSS,	but	only	50	for	peaks	outside	this	range.	

For	the	rest	of	our	studies,	we	therefore	focused	on	the	targets	found	within	1	kb	of	

a	TSS.	This	encompassed	1,154	TR4	binding	sites	for	HeLa,	1,732	for	HepG2,	537	for	

K562	and	535	for	GM12878	cells.	
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Figure	9.	Location	analysis	of	TR4	binding	sites	in	HeLa	cells.	(A)	Shown	is	a	pie	chart	
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indicating	the	distribution	of	called	TR4	peaks.	Categories	are	based	on	the	distance	of	the	
peak	to	the	nearest	RefSeq	gene:	5	d	(10	‐	100	kb	upstream	of	TSS),	distal	promoter	(2	‐	10	
kb	upstream	of	TSS),	proximal	promoter	(<2	kb	upstream	of	TSS),	gene	(exon	or	intron),	3’	
proximal	(<2	kb	downstream	of	the	last	exon),	3’	distal	(2	‐	10	kb	downstream	of	the	last	
exon),	3	d	(10	‐	100	kb	downstream	of	the	last	exon),	and	gene	desert	(>100	kb	from	a	
RefSeq	gene).	(B)	Distribution	of	peaks	found	within	genes.	(C)	Histogram	showing	the	
distribution	of	peak	distances	relative	to	the	transcription	start	site	(TSS)	of	the	nearest	
gene.	Peaks	were	combined	in	100	bp	bins.	

	

A	significant	fraction	of	TR4	binding	sites	was	shared	among	cell	types	(Figure	

8B).	For	example,	out	of	the	537	TR4	binding	sites	in	K562	cells,	504	(94%)	are	also	

occupied	in	HeLa	cells,	471	(88%)	are	also	bound	in	HepG2	cells	and	406	(76%)	are	

also	bound	in	GM12878	cells.	When	comparing	1,157	TR4	binding	sites	from	HeLa	

with	1,732	from	HepG2	cells,	we	found	922	(80%)	were	shared	TR4	target	sites.	We	

next	matched	the	TR4	peaks	to	the	nearest	gene.	In	some	cases	more	than	one	peak	

matched	to	a	given	gene.	As	a	consequence,	the	number	of	TR4	binding	sites	is	

slightly	higher	than	the	number	of	target	genes.	We	compared	1,135	TR4	target	

genes	from	HeLa,	535	from	K562,	530	from	GM12878	and	1,688	from	HepG2	cells	

(Figure	10).	532	target	genes	were	shared	in	at	least	3	cell	types	and	332	target	

genes	were	shared	among	all	four	cell	types.	While	blood	cells	shared	most	of	their	

TR4	targets,	liver	cells	contained	the	largest	number	of	unique	target	genes.	TR4	

may	regulate	genes	important	for	basic	biological	processes	shared	in	multiple	cell	

types,	while	it	may	play	an	additional	role	in	regulating	cell	type	specific	genes.	
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Figure	10.	Overlap	of	TR4	target	genes	in	4	cell	types.	A	target	gene	is	defined	as	the	nearest	
gene	to	a	ChIP‐seq	peak.	In	some	cases	a	target	gene	was	contained	more	than	one	peak.	
Genome‐	wide	TR4	ChIP‐seq	has	identified	535	target	genes	in	K562,	1,688	in	HepG2,	1,135	
in	HeLa,	and	530	in	GM12878	cells	within	±	1	kb	of	a	transcription	start	site.	332	genes	are	
identified	as	common	targets	in	the	4	cell	types.	

	

ii.	TR4	target	genes	are	involved	in	fundamental	biological	processes	

As	shown	above,	the	majority	of	TR4	targets	are	shared	between	different	cell	types.	

To	shed	light	on	the	common	function	of	genes	targeted	by	TR4,	Gene	Ontology	

analysis	was	performed	using	ConceptGen	

(http://conceptgen.ncibi.org/core/conceptGen/index.jsp;	(Sartor,	et	al.,	2010))	to	

identify	the	functional	categories	enriched	in	the	overlapping	targets	in	4	cell	types	

(p‐value	<	0.05,	modified	Fisher's	exact	test).	All	Entrez	Genes	were	used	as	
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background	to	determine	the	significance	of	over‐representation.	Categories	of	TR4	

target	genes	are	highly	enriched	in	fundamental	biological	processes,	such	as	RNA	

metabolism	and	protein	translation	(ribosome)	(Figure	11A).	In	addition,	TR4	may	

also	regulate	cell	type‐specific	genes.	To	test	this	hypothesis,	we	performed	Gene	

Ontology	analysis	on	genes	found	in	only	one	cell	type.	The	number	of	unique	target	

genes	in	K562,	HeLa,	and	GM12878	cells	was	not	sufficient	to	perform	meaningful	

Gene	Ontology	analysis.	However	when	756	TR4	target	genes	specific	to	HepG2	cells	

were	analyzed,	we	found	some	unique	functional	categories	(Figure	11B).	HepG2	

specific	target	genes	were	significantly	enriched	for	ubiquitin	cycle,	nucleosome,	

chromatin	assembly	and	metabolic	processes,	particularly	those	involving	organic	

acid,	carbohydrates,	and	lipids.	Interestingly,	a	few	previous	studies	have	suggested	

a	role	for	TR4	in	gluconeogenesis	(Liu,	et	al.,	2007).	Furthermore,	TR4	may	exert	its	

function	by	sensing	lipids	and	the	presence	of	fatty	acids	was	found	to	enhance	

cofactor	recruitment	to	TR4	(Tsai,	et	al.,	2009)	suggesting	an	important	role	for	

lipids	in	TR4	function.	
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Figure	11.	Functional	enrichment	analysis	of	TR4	target	genes.	(A)	Targets	common	to	all	4	
cell	types	and	(B)	targets	unique	to	HepG2	cells.	Significantly	enriched	gene	ontology	terms	
for	biological	processes	are	shown	on	the	y	axis;	the	x	axis	represents	p‐values	for	each	
enriched	category.	

	

In	recent	years	it	has	become	evident	that	transcription	factors	often	play	dual	roles,	

affecting	activation	as	well	as	repression	of	target	genes.	Previous	studies	have	

implicated	TR4	in	both	activation	and	repression	of	cellular	target	genes	(Lee,	et	al.,	
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2002).	TR4	binds	to	DNA	as	a	homodimer,	but	preferentially	forms	heterodimers	

with	the	orphan	receptor	TR2	(Lee,	et	al.,	1998).	Recently,	a	global	atlas	for	

transcription	factor	networks	has	been	assembled	based	on	physical	protein‐

protein	interactions	using	mammalian	two	hybrid	data	(Ravasi,	et	al.,	2010).	This	

study	identified	TR4	(NR2C2),	Nuclear	Receptor	Interacting	Protein	1	(NRIP1)	

(RIP140),	and	histone	deacetylases	HDAC3	and	HDAC4	as	proteins	interacting	with	

TR2	(NR2C1).	NRIP1	may	function	as	a	corepressor	or	coactivator	depending	on	the	

interacting	protein	(White,	et	al.,	2008).	Furthermore,	post	translational	

modifications	of	TR4	influence	its	interaction	with	cofactors	(Huq,	et	al.,	2006).	

Phosphorylation	of	TR4	is	accomplished	by	MAP	kinases	and	results	in	recruitment	

of	NRIP1.	On	the	other	hand,	dephosphorylated	TR4	recruits	the	coactivator	pCAF.	

We	wanted	to	determine	whether	TR4	target	genes	are	expressed	or	silenced.	For	

this	purpose,	we	matched	TR4	target	genes	in	HeLa	and	HepG2	cells	(1,135	and	

1,688	respectively)	to	their	RNA	expression	values	from	Illumina	expression	arrays	

(Figure	12).	The	median	expression	value	of	TR4	target	genes	in	HeLa	and	HepG2	

cells	(median	expression	value	535	and	504,	respectively)	is	higher	than	the	median	

expression	value	of	all	genes	from	the	HepG2	expression	array	(median	expression	

value	219).	TR4	target	genes	are	also	expressed	at	higher	levels	than	a	set	of	3000	

randomly	selected	genes	from	the	HepG2	expression	array	(median	expression	

value	228).	Based	on	RNA	expression	analysis,	TR4	target	genes	are	generally	

expressed.	
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Figure	12.	Expression	analysis	of	TR4	target	genes.	Box‐and‐	whisker	diagrams	show	the	
range	of	expression	values	of	TR4	bound	genes	in	HeLa	and	HepG2	cells	in	comparison	to	
expression	values	of	all	genes	present	on	the	HepG2	expression	array	and	to	the	set	of	3000	
randomly	selected	genes.	Expression	values	are	plotted	on	the	y	axis.	The	central	line	in	the	
box‐and‐whisker	plots	shows	the	position	of	the	median,	the	upper	and	lower	boundaries	of	
the	box	represent	the	location	of	the	upper	(75th	percentile)	and	the	lower	(25th	
percentile)	quartiles,	respectively.	Data	outliers	are	not	shown.	

	

The	correlation	between	TR4	binding	and	expression	of	target	genes	suggests	that	

TR4	binds	to	open	accessible	chromatin	regions.	To	test	this	hypothesis,	we	

examined	the	epigenetic	signature	at	TR4	binding	sites	using	ChIP‐seq	data	of	

various	histone	marks	in	K562	cells.	Overlap	of	TR4	binding	sites	with	histone	

marks	typical	for	open	and	repressed	chromatin	was	determined	using	the	

gffOverlap	tool	from	Sole‐search	(http://chipseq.genomecenter.ucdavis.edu/cgi‐
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bin/chipseq.cgi;	(Blahnik,	et	al.,	2010)).	A	distance	of	200	base	pairs	between	peaks	

was	allowed	to	take	nucleosome	positioning	into	account.	A	remarkable	534	of	the	

537	TR4	target	sites	in	K562	cells	were	also	occupied	by	H3K4me3,	which	is	a	mark	

for	accessible	chromatin.	No	significant	overlap	with	the	repressive	chromatin	

marks	H3K27me3	or	H3K9me3	was	found	(2	and	5	peaks,	respectively).	It	has	been	

shown	in	yeast	and	also	human	cells	that	transcription	factors	often	bind	in	the	

linker	region	between	nucleosomes	(Lee,	et	al.,	2007;	Park,	2009).	To	determine	

whether	TR4	binding	occurs	in	nucleosome	depleted	regions,	we	analyzed	sequence	

tag	density	for	TR4	and	H3K4me3	binding	relative	to	the	transcription	start	sites	

(Figure	13).	TR4	binding	was	highest	within	100	base	pairs	upstream	of	the	TSS	

while	the	histone	mark	H3K4me3	is	lowest	in	this	region	and	reaching	maximum	

where	TR4	binding	tails	off,	suggesting	predisposition	of	TR4	binding	sites	to	the	

linker	region.	
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Figure	13.	TR4	binding	relative	to	nucleosomes.	Positions	of	the	histone	mark	H3K4me3	
and	TR4	occupancy	are	plotted	for	the	735	genes	bound	by	TR4	in	K562	cells.	Sequence	tags	
in	bins	of	100	base	pairs	are	plotted	on	the	y	axis;	distance	to	transcription	start	site	is	
shown	on	the	x	axis.	

	

iii.	Motif	analysis	suggests	the	importance	of	ETS	family	members	in	TR4	

action	

In	vitro	experiments	have	shown	that	TR4	binds	to	the	direct	repeat	(DR)	of	

AGGTCA,	which	is	the	consensus	binding	site	for	a	number	of	nuclear	hormone	

receptors	including	estrogen	receptor	alpha	and	PPAR.	Further	studies	have	

indicated	that	TR4	can	bind	to	direct	repeats	separated	by	zero	to	five	nucleotides	

(DR0	‐	DR5)	(Kim,	et	al.,	2005;	Lee,	et	al.,	1997;	Lee,	et	al.,	1998;	Tanabe,	et	al.,	

2002).	However,	all	previous	studies	were	performed	using	in	vitro	assays.	We	used	
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the	de	novo	motif	discovery	program	MEME	to	identify	motifs	overrepresented	in	

TR4	binding	sites	to	determine	if	TR4	has	the	same	specificity	in	vivo.	To	allow	

identification	of	DR	elements	and	its	spacing	and	flanking	nucleotides,	the	minimum	

motif	length	was	set	between	12	(length	of	two	half	sites	with	no	spacing	in	

between)	and	20	nucleotides	(length	of	two	half	sites	with	up	to	8	nucleotides	in	

between).	The	canonical	DR	motif	with	one	nucleotide	spacing	(DR1)	was	

significantly	overrepresented	in	all	four	cell	types	with	the	preferred	spacing	

nucleotide	being	an	A	or	G	(Figure	14A).	The	canonical	DR1	motif	accounts	for	about	

150	TR4	binding	sites	(28%	in	K562,	9%	in	HepG2,	13%	in	HeLa,	and	35%	in	

GM12878	cells).	Interestingly,	the	%	of	peaks	having	a	DR1	motif	is	much	higher	in	

the	blood	cell	lines	(K562	and	GM12878)	than	in	the	other	two	cell	types.	The	lack	of	

the	DR1	motif	in	the	remaining	peaks	may	indicate	that	TR4	associates	with	some	

sites	only	indirectly	by	binding	to	a	different	transcription	factor.	
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Figure	14.	Motif	analysis	of	TR4	binding	sites.	(A)	Sequences	for	TR4	binding	sites	located	
within	1	kb	upstream	and	downstream	of	a	TSS	were	retrieved.	Significantly	
overrepresented	motifs	within	TR4	binding	sites	were	identified	by	MEME.	The	number	of	
targets	is	indicated	in	parenthesis.	E‐values	indicate	significance	of	a	given	motif.	Pie	charts	
show	occurrence	of	DR1	alone,	ETS	alone,	DR1	and	ETS,	and	neither	of	these	motifs	within	
TR4	binding	sites.	(B)	DR1	motif	and	ETS	core	motif	are	depicted	in	either	orientation.	
Occurrence	of	DR1	and	ETS	motifs	relative	to	TR4	peak	center	in	HeLa	cells	is	shown	in	a	
histogram.	Peak	frequency	is	plotted	along	the	y	axis;	distance	from	the	peak	center	is	
plotted	on	the	x	axis.	Similar	results	were	obtained	with	the	other	3	cell	types,	histograms	
are	not	shown.	

	

Transcription	factors	often	regulate	expression	of	nearby	genes	in	combination	with	

other	transcription	factors	through	complex	cis	regulatory	modules	(Jin,	et	al.,	

2006).	Our	initial	motif	analysis	revealed	the	significant	recurrence	of	an	ETS	motif	

in	addition	to	the	DR1	element.	Members	of	the	ETS	transcription	factor	family	such	

as	ELK4,	E74A,	and	GABPA	recognize	the	ETS	core	motif	GGAA.	Using	13,010	human	

promoter	sequences,	the	ETS	motif	has	been	identified	as	one	of	those	motifs	

exhibiting	statistically	significant	clustering	near	the	transcription	start	site	

(FitzGerald,	et	al.,	2004).	The	ETS	motif	was	predominantly	found	in	the	promoters	

of	genes	with	essential	cellular	functions,	such	as	ribosomal	genes,	mitochondrial	

ribosomal	genes,	basal	transcription	factor	genes	and	proteosomal	genes.	The	ETS	

motif	is	not	only	found	at	genes	regulating	similar	processes	as	TR4	target	genes,	

but	also	preferentially	occurs	100	base	pairs	upstream	of	a	transcription	start	site.	

The	ETS	motif	occurs	in	a	significant	portion	of	TR4	binding	sites	(35%	in	K562,	

57%	in	HepG2,	53%	in	HeLa,	and	24%	in	GM12878	cells).	Only	about	10%	of	target	

genes	contain	both	the	DR1	and	the	ETS	motif	(Figure	14A).	Combining	both	motifs	

can	account	for	67‐78%	of	TR4	peaks	(70%	in	K562,	78%	in	HepG2,	74%	in	HeLa,	

and	67%	in	GM12878	cells)	suggesting	a	combinatorial	role	for	ETS	family	members	
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in	TR4	function.	Similar	results	were	obtained	using	other	de	novo	motif	discovery	

programs	such	as	NHR‐Scan	(Sandelin	and	Wasserman,	2005)	and	W‐ChIPMotifs	

(Jin,	et	al.,	2009).	

	

It	has	been	postulated	that	the	true	binding	site	for	transcription	factors	should	be	

located	under	the	center	of	the	peak	(Valouev,	et	al.,	2008).	We	analyzed	the	

distribution	of	both	motifs	relative	to	the	center	of	the	TR4	binding	sites	and	found	

that	the	DR1	as	well	as	the	ETS	motif	are	located	under	the	peak	center	(Figure	

14B).	The	close	proximity	of	these	binding	sites	suggests	a	cis	regulatory	network	

involving	TR4	and	ETS	family	members.	

	

iv.	ETS	transcription	factor	ELK4	co‐occupies	TR4	target	sites	

We	wanted	to	test	the	hypothesis	that	TR4	and	a	member	of	the	ETS	family	co‐

localize	with	TR4	in	vivo	using	ChIP‐seq.	Motif	analysis	implicates	the	ETS	family,	

but	does	not	provide	information	as	to	which	family	member	might	bind	to	TR4	

target	sites.	There	is	a	high	degree	of	functional	redundancy	between	different	

members	of	the	ETS	transcription	factors.	Comparison	of	ELK1	and	GABPA	binding	

regions	revealed	redundant	as	well	as	unique	targets	between	the	two	ETS	family	

members	(Boros,	et	al.,	2009;	Boros,	et	al.,	2009).	It	has	also	been	shown	that	ETS	

transcription	factors	interact	with	other	transcription	factors	to	regulate	gene	

expression.	For	example,	ELK1	is	thought	to	function	through	cooperation	with	the	

serum	response	factor	SRF	(Boros,	et	al.,	2009;	O'Donnell,	et	al.,	2008).	ChIP‐chip	

analysis	showed	that	22%	of	all	ELK1	binding	regions	were	also	bound	by	SRF,	
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while	the	majority	of	ELK1	targets	is	SRF‐independent.	

	

To	explore	the	possibility	that	ETS	transcription	factors	might	cooperate	with	TR4,	

we	performed	ChIP‐seq	analysis	of	ELK1	as	well	as	ELK4	in	HeLa	cells	and	binding	

sites	were	determined	using	Sole‐search.	2,312	ELK4	peaks	were	identified	from	21	

million	reads	and	702	ELK1	peaks	were	identified	from	13	million	reads,	with	86%	

of	the	ELK1	sites	also	being	ELK4	binding	sites.	When	we	compared	the	1,135	TR4	

targets	present	within	1	kb	of	a	TSS	with	1,715	ELK4	targets	found	within	1	kb	of	a	

TSS,	a	significant	overlap	of	30%	was	observed	(Figure	15A;	see	Figure	16A	for	

ChIP‐seq	binding	pattern).	To	identify	the	motifs	utilized	for	TR4	recruitment	at	the	

346	TR4	binding	sites	that	are	also	occupied	by	ELK4,	we	performed	motif	analysis	

using	MEME.	The	ETS	motif	was	highly	overrepresented	(E‐value	3.3e‐310),	while	

the	DR1	motif	was	not	(E‐value	2.5e+4)	(Figure	15B).	We	have	thus	identified	a	

TR4‐ELK4	cis	module	that	accounts	for	30%	of	TR4	binding	sites.	These	sites	are	

characterized	by	overrepresentation	of	the	ETS	motif	in	96%	of	the	sites	and	the	

lack	of	a	DR1	element	typically	thought	to	recruit	TR4.	Therefore,	TR4	does	not	

directly	bind	to	DNA	via	a	DR1	element	at	these	sites,	but	appears	to	be	recruited	

through	an	ETS	factor.	We	also	analyzed	the	localization	of	binding	relative	to	gene	

structure	and	found	that	TR4	and	ELK4	display	very	similar	patterns,	with	

maximum	binding	between	500	bp	upstream	and	downstream	of	a	transcription	

start	site	(Figure	15C).	The	occurrence	of	both	factors	at	common	binding	sites	was	

confirmed	by	quantitative	PCR	using	independent	biological	replicates	(Figure	16B).	

Although	we	experimentally	identified	a	cis	regulatory	module	involving	ELK4	at	
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~30%	of	TR4	binding	sites,	the	ETS	core	motif	was	identified	using	bioinformatics	

to	be	within	53%	of	TR4	binding	regions.	It	is	possible	that	other	ETS	family	

members	occupy	these	sites.	It	has	been	shown	that	the	ETS	family	members	ELK	

and	GABPA	shared	half	of	their	binding	sites,	while	the	other	half	were	specific	for	a	

particular	ETS	factor	(Boros,	et	al.,	2009).	Although	further	studies	are	needed,	it	is	

possible	that	ELK4	facilitates	TR4	binding	to	promoter	regions	that	do	not	contain	

the	DR1	motif,	suggesting	the	presence	of	ELK4	dependent	and	ELK4	independent	

modes	of	TR4	action	(Figure	17).	
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Figure	15.	Overlap	of	TR4	and	ELK4	binding	sites	in	HeLa	cells.	(A)	Venn	diagram	shows	the	
overlap	of	TR4	and	ELK4	binding	sites	within	±	1	kb	of	transcription	start	site.	(B)	Motif	
analysis	was	performed	on	the	346	sites	bound	by	both	factors;	the	overrepresented	ETS	
motif	is	shown.	Pie	chart	shows	the	occurrence	of	the	DR1	motif,	ETS	motif	and	neither	of	
these	motifs.	(C)	Histogram	shows	binding	of	TR4	and	ELK4	relative	to	the	transcription	
start	sites.	Binding	sites	were	binned	into	50	base	pair	bins.	Number	of	peaks	is	shown	on	
the	y	axis;	distance	relative	to	transcription	start	site	is	plotted	on	the	x	axis.	
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Figure	16.	TR4	and	ELK4	bind	to	common	target	genes.	(A)	ChIP‐	seq	signal	track	of	TR4	
and	ELK4	enrichment	at	common	and	unique	target	sites	in	HeLa	cells.	TAF1A	promoter	
region	is	bound	by	TR4	only;	C‐FOS	promoter	region	is	occupied	by	ELK4	only,	while	
EXOC2,	SNRPE	and	VPS72	gene	promoters	are	occupied	by	TR4	and	ELK4.	Number	of	
sequence	tags	representing	enrichment	is	plotted	on	the	y	axis.	(B)	ChIP	validation	of	TR4	



	

	 69

and	ELK4	binding	sites	using	qPCR.	Relative	enrichment	was	calculated	over	input	DNA	and	
plotted	on	the	y	axis.	Each	data	point	represents	the	average	of	triplicate	ChIP	experiments.	
Rabbit	IgG	was	used	as	a	non‐specific	control	ChIP.	Promoter	regions	tested	for	ChIP	
enrichment	are	shown	on	the	x	axis.	The	C‐FOS	promoter	region	is	used	as	a	positive	control	
for	ELK4	binding,	CDH1	and	CDH10	promoter	regions	were	used	as	negative	control	
regions	for	both,	TR4	and	ELK4	binding.	

	

Figure	17.	Model	of	TR4‐ELK4	cis	module.	Gene	promoters	bound	by	both	transcription	
factors,	TR4	and	ELK4,	lack	the	DR1	element,	but	contain	an	ETS	motif.	This	suggests	that	
TR4	binding	at	these	sites	is	facilitated	through	an	ETS	family	member	such	as	ELK4,	
possibly	with	the	help	of	a	bridging	protein.	TR4	may	then	augment	ELK4	binding	through	
non‐specific	DNA	association,	as	depicted,	or	by	serving	as	a	non‐DNA	binding	scaffold	for	
additional	accessory	proteins.	

	

C.	CONCLUSIONS	

While	it	had	been	established	that	TR4	plays	a	critical	role	in	embryonic	

development,	differentiation	and	lipid	metabolism,	the	modes	by	which	it	functions	

were	previously	unclear.	To	obtain	a	better	understanding	of	the	TR4	modes	of	

action,	we	used	ChIP‐seq	technology	to	identify	TR4	target	genes	in	vivo	in	multiple	

cell	lines.	This	allowed	us	to	confirm	TR4	binding	in	vivo	to	the	direct	repeat	of	

AGGTCA	separated	by	one	nucleotide	(also	known	as	a	DR1	element)	at	endogenous	

target	sites	in	all	four	cell	types	examined.	Using	de	novo	motif	discovery,	we	found	

that	the	ETS	motif	CCGGAA	was	significantly	overrepresented	in	TR4	binding	sites,	

suggesting	a	role	for	ETS	family	members	in	TR4	action.	To	confirm	the	co‐

occurrence	of	these	two	factors	in	vivo,	we	performed	ChIP‐seq	for	the	ETS	

TR4 ELK4

CCGGAA

?
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transcription	factor	ELK4	and	we	found	that	about	one	third	of	TR4	target	sites	

were	indeed	bound	by	ELK4.	Sites	that	are	bound	by	both	factors	contain	an	ETS	

motif,	but	lack	the	DR1	element	typically	thought	to	recruit	TR4.	These	data	suggest	

that	TR4	may	regulate	specific	subsets	of	target	genes	through	ETS	dependent	as	

well	as	ETS	independent	pathways.	Future	studies	will	focus	on	the	

interdependence	of	these	two	transcription	factors.	Thus	our	approach	of	defining	

genome‐wide	binding	patterns	for	a	factor,	followed	by	motif	analysis	to	suggest	

possible	cis	modules,	and	then	genome‐wide	analysis	of	the	putative	co‐localizing	

factor	has	worked	well	to	identify	a	TR4‐ELK4	cis	module.	

	

Interestingly,	we	identified	TR4	target	genes	that	are	common	to	quite	diverse	cell	

types	(representatives	of	blood,	liver,	and	epidermal	cells).	These	genes	were	

involved	in	fundamental	biological	processes	such	as	RNA	metabolism	and	protein	

translation.	In	addition,	TR4	also	binds	near	genes	that	are	highly	cell	type‐specific.	

For	example,	in	HepG2	cells	TR4	binds	near	genes	that	are	involved	in	organic	acid,	

lipid	and	carbohydrate	metabolism.	TR4	knockout	mice	show	insulin	

hypersensitivity	(Liu,	et	al.,	2007)	and	TR4	can	be	induced	by	certain	essential	fatty	

acids	resulting	in	TR4	activation	followed	by	the	up‐regulation	of	the	apolipoprotein	

E	precursor	(ApoE)	and	cytosolic	phosphoenolpyruvate	carboxykinase	1	PEPCK	

gene	(Huq,	et	al.,	2006),	which	is	thought	to	contribute	to	diabetics‐induced	

hyperglycemia	(Gomez‐Valades,	et	al.,	2006;	Valera,	et	al.,	1994).	Knowing	the	direct	

TR4	binding	sites,	it	will	be	an	interesting	focus	of	future	studies	to	evaluate	the	

pathways	underlying	TR4	action	and	its	possible	role	in	metabolic	diseases.	
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D.	METHODS	

i.	Cell	culture	and	crosslinking	

K562,	HeLa,	HepG2,	and	GM12878	cells	for	ChIP‐seq	were	grown	and	crosslinked	by	

the	National	Cell	Culture	Center	(NCCC)	as	part	of	the	ENCODE	project.	K562	and	

GM12878	cells	were	grown	in	RPMI	supplemented	with	10%	fetal	bovine	serum	

(FBS),	2	mM	L‐Glutamine,	100	U/mL	penicillin‐streptomycin.	HeLa	and	HepG2	cells	

were	grown	in	DMEM	medium	supplemented	with	10%	FBS,	2	mM	L‐Glutamine,	

100	U/mL	penicillin‐streptomycin.	Cells	were	either	processed	for	RNA	isolation	or	

crosslinked	10	minutes	at	a	concentration	of	1%	formaldehyde,	snap	frozen	and	

stored	at	‐80C.	

	

ii.	Chromatin	immunoprecipitation	(ChIP)	assay	and	library	preparation	

ChIP	assays	and	the	libraries	for	Illumina	sequencing	were	prepared	as	described	in	

detail	in	O'Geen	et	al.	2010	(O'Geen,	et	al.,	2010).	Briefly,	chromatin	from	108	cells	

was	diluted	with	5	volumes	IP	dilution	buffer	(50	mM	Tris	pH7.4,	150	mM	NaCl,	1%	

(v/v)	igepal,	0.25%	(w/v)	deoxycholic	acid,	1	mM	EDTA	pH8)	and	incubated	at	4C	

over	night	with	either	50	μl	of	rabbit	anti‐TR4	antibody	(Tanabe,	et	al.,	2007).	300	μl	

protein	A	agarose	beads	were	added	for	2	hours	to	capture	the	immune	complexes.	

Beads	were	washed	three	times	with	IP	dilution	buffer	and	once	with	phosphate‐

buffered	saline.	ChIP	assays	using	20	μl	rabbit	anti‐ELK4	(Santa	Cruz	Biotechnology	

sc‐13030X)	or	20	μl	of	monoclonal	rabbit	anti‐ELK1	(Epitomics	#1277‐1)	were	

performed	using	StaphA	cells	as	described	on	the	Farnham	lab	web	site	
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(http://www.genomecenter.ucdavis.edu/farnham/pdf/FarnhamLabChIP%20Proto

col.pdf).	For	sequencing	experiments,	StaphA	cells	were	only	blocked	with	BSA	and	

the	preclearing	step	was	omitted.	After	reversal	of	crosslinks	and	RNase	treatment,	

ChIP	DNA	was	purified	and	used	directly	for	library	preparation.	

	

iii.	Sequencing	and	data	analysis	

Libraries	were	sequenced	using	the	Illumina	GA2	platform	by	the	DNA	Technologies	

Core	Facility	at	the	University	of	California‐Davis	

(http://genomecenter.ucdavis.edu/dna_technologies/).	The	ChIP‐seq	data	has	been	

deposited	in	the	NCBI	Gene	Expression	Omnibus	(accession	number	GSE24685).	In	

addition,	all	TR4	ChIP‐seq	data	can	be	visualized	and	downloaded	from	the	UCSC	

browser	at	http://www.genome.ucsc.edu/cgi‐

bin/hgTrackUi?hgsid=169984430&c=chr9&g=wgEncodeYaleChIPseq.	Peaks	were	

called	using	the	Sole‐search	software	with	default	parameters	(FDR0.0001,	alpha	

value	0.001)	using	sequenced	libraries	of	matched	Input	DNA	for	each	cell	type	

(Blahnik,	et	al.,	2010).	Peak	overlap	analysis	based	on	chromosomal	coordinates	as	

well	as	location	analysis	were	also	performed	using	the	Sole‐search	software.	Gene	

Ontology	analysis	was	performed	using	ConceptGen	to	identify	the	functional	

categories	enriched	in	the	overlapping	targets	in	4	cell	types.	(p‐value	<	0.05,	

modified	Fisher's	exact	test).	In	addition	to	GO	terms,	other	concepts	were	tested	for	

significant	enrichment	in	the	gene	set.	All	Entrez	Genes	were	used	as	background	to	

determine	the	significance	of	over‐representation.	
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iv.	Motif	analysis	

In	vivo	binding	sequences	from	TR4	peak	files	were	retrieved	from	UCSC	Genome	

Database	(hg18,	March	2006).	Unbiased	motif	analysis	was	performed	using	MEME	

to	identify	statistically	overrepresented	motifs	in	the	TR4	peak	sequences	present	in	

4	cell	types.	The	following	parameters	were	used	"‐dna	‐nmotifs	5	‐mod	zoops	‐

minw	12	‐maxw	20	‐maxsize	2000000	‐revcomp",	which	specify	the	number	of	

motifs	to	search	for,	the	zoops	assumption	(zero	or	one	occurrence	per	peak	

sequence),	the	minimum	motif	length	of	12	(length	of	a	repeat	element	with	no	

spacing	between	two	half	sites),	the	maximum	motif	length	of	20	(length	of	a	repeat	

element	with	8	spacing	nucleotides	between	two	half	sites),	the	maximum	dataset	

size	of	2,000,000	characters.	Sequences	were	searched	in	forward	and	reverse	

orientation.	

	

v.	RNA	preparation	and	Illumina	expression	arrays	

RNA	was	prepared	from	three	independent	cultures	of	106	HeLa	or	HepG2	cells	

using	Invitrogen	Trizol	according	to	the	manufacture's	recommendations.	The	

Illumina	TotalPrep	RNA	amplification	kit	from	Ambion	(AMIL1791)	was	used	to	

generate	biotinylated,	amplified	RNA	for	hybridization	with	the	Illumina	Sentrix	

Expression	Beadchips,	HumanHt‐12.	The	Sentrix	gene	expression	beadchips	used	

for	this	study	consisted	of	a	12‐array,	2	stripe	format	comprising	approximately	48	

k	probes/array.	In	this	collection	24,000	probes	were	from	RefSeq	sequences	and	

24,000	from	other	Genbank	sequences	(see	

http://www.illumina.com/pages.ilmn?ID=197	for	more	details).	Arrays	were	
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processed	as	per	manufacturer's	instructions,	scanned	at	medium	PMT	settings	as	

recommended	by	the	manufacturer,	and	analyzed	using	Bead	Studio	Software	v.	

2.3.41.	Data	was	normalized	using	the	"average"	method,	which	simply	adjusts	the	

intensities	of	two	populations	of	gene	expression	values	such	that	the	means	of	the	

populations	become	equal.	Relative	expression	values	were	calculated	using	an	

algorithm	provided	by	Bead	Studio.	The	expression	array	data	has	been	deposited	in	

the	NCBI	Gene	Expression	Omnibus	(accession	numbers	GSE24419	for	HepG2	and	

GSE19146	for	HeLa	data).	

	

vi.	ChIP	assay	and	quantitative	PCR	(qPCR)	

To	confirm	targets	identified	by	ChIP‐seq,	all	ChIP	assays	were	performed	using	

StaphA	cells.	107	cells	were	used	per	ChIP	experiment	and	adjusted	amounts	of	the	

same	antibodies	and	pre‐immune	serum	(rabbit	IgG)	as	described	above.	

Immunoprecipitated	DNA	was	purified	and	eluted	in	50	μl	water.	1	μl	of	ChIP	DNA	

or	3	ng	of	Input	DNA	were	used	for	qPCR	analysis.	Quantitative	PCR	experiments	

were	performed	at	least	in	duplicates,	from	at	least	two	independent	ChIP	assays	on	

a	Bio‐Rad	DNA	Engine	Opticon	Real‐Time	PCR	System	using	SYBR®	Green	Master	

PCR	Mix	(SIGMA)	according	to	the	manufacturer's	instructions.	Results	were	

analyzed	relative	to	input.	Each	target	site	was	calculated	as	2	to	the	power	of	the	

cycle	threshold	(cT)	difference	between	input	DNA	and	ChIP	samples.	Enrichments	

at	target	sites	are	compared	to	negative/unbound	control	regions	CDH1	and	CDH10.	
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Chapter	IV	
	

RNA‐Seq	Analysis	of	Differentiating	CD34+	Cells	Suggests	Novel	
Isoforms	of	Erythroid	Regulators	

	
	
A.	INTRODUCTION	

Blood	is	a	fluid	tissue	composed	of	blood	cells	and	viscous	liquid	(plasma)	that	is	

replenished	daily	throughout	the	lifespan	of	all	vertebrate	animals.	Blood	cells	exert	

fundamental	functions	to	sustain	human	life,	such	as	delivering	nutrients	and	

transporting	oxygen	and	CO2	to	and	from	tissues,	respectively,	to	be	exchanged	in	

the	lungs.	Human	adult	blood	cells	are	bright	red	due	to	oxygenated	hemoglobin,	

which	is	a	tetramer	consisting	of	two	α‐	and	two	β‐globin	chains	that	tetramerize	to	

form	adult	hemoglobin	(HbA).	The	two	adult	β‐globin	peptides	are	substituted	by	

two	γ	subunits	in	fetal	hemoglobin	(HbF).	A	missense	mutation	in	the	adult	β‐globin	

gene	causes	the	mutant	HbA	(called	HbS)	to	form	long	head‐to‐tail	polymers	that	

lead	to	sickled‐shaped	red	blood	cells,	which	are	normally	smooth,	round	biconcave	

discs.	These	sickled‐shaped	red	blood	cells	are	common	in	patients	with	sickle	cell	

disease	(SCD)	and	cause	pain,	vascular	damage,	organ	morbidity	and	early	death	in	

these	patients.	Remarkably,	increased	fetal	γ‐globin	synthesis	in	sickled	red	cells	

can	inhibit	sickle	polymer	formation	and	hence	alleviate	SCD	pathophysiology	

(Bunn,	1997).	Similarly,	activating	γ‐globin	chain	expression	in	β‐thalassemia	

patients	(who	have	lower	or	absent	‐chains)	is	also	expected	to	ameliorate	the	
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severity	of	the	anemia.	Taken	together,	investigating	erythropoiesis	in	a	model	

system	that	can	recapitulate	normal	erythroid	maturation	can	provide	insights	into	

the	molecular	mechanisms	for	lineage	specification	and	erythroid	development,	and	

hence	should	be	clinically	beneficial	for	the	development	of	therapeutics	to	treat	the	

hemoglobinopathies.	

	

Human	hematopoietic	progenitor	cells	are	characterized	by	surface	expression	of	

the	CD34	antigen,	and	these	CD34+	progenitor	cells	can	be	derived	from	bone	

marrow,	fetal	liver,	umbilical	cord	and	mitogen	mobilized	peripheral	blood	samples.	

Human	CD34+	hematopoietic	progenitors	can	be	induced	to	undergo	erythroid	

differentiation	in	vitro,	and	hence	serve	as	an	excellent	model	system	to	study	

erythroid	lineage	maturation	and	differentiation	(Giarratana,	et	al.,	2005).	A	

growing	body	of	studies	have	utilized	this	in	vitro	differentiation	system	to	

interrogate	the	transcript	expression	profiles	during	erythroid	differentiation	using	

high	throughput	gene	expression	arrays	(Keller,	et	al.,	2006;	Merryweather‐Clarke,	

et	al.,	2011;	Peller,	et	al.,	2009;	Singleton,	et	al.,	2008;	Sripichai,	et	al.,	2009;	

Tondeur,	et	al.,	2010).	These	studies	have	highlighted	the	validity	of	transcriptome	

analysis	using	the	erythroid	differentiation	system	to	predict	candidate	regulatory	

factors	(Keller,	et	al.,	2006)	and	to	identify	co‐regulation	of	genes	during	

erythropoiesis	(Keller,	et	al.,	2006;	Peller,	et	al.,	2009).	In	addition,	the	CD34+	

culture	system	was	used	to	demonstrate	the	effect	of	cytokines	on	fetal	hemoglobin	

expression	via	histone	modification	and	transcription	factor	levels	(Sripichai,	et	al.,	

2009).	A	more	focused	study	also	led	to	the	discovery	of	a	mutation	in	KLF1	that	is	
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associated	with	rare	blood	group	In(Lu)	phenotype	(Singleton,	et	al.,	2008).	A	recent	

study	provided	the	hematology	research	community	with	a	rich	resource	examining	

the	global	erythroid	gene	expression	profile	during	human	erythroid	progenitor	

differentiation	(Merryweather‐Clarke,	et	al.,	2011).	Characterization	of	the	erythroid	

exome	suggested	that	there	exists	increased	alternative	splicing	in	genes	involved	in	

cell	motility	and	immune	response	(Tondeur,	et	al.,	2010).	However,	array	platforms	

are	known	to	have	the	dual	disadvantages	of	restricted	dynamic	range	and	

hybridization	inconsistency.	

	

The	development	of	deep	sequencing	technologies	has	provided	an	alternative,	

unbiased	approach	for	interrogating	the	human	erythroid	transcriptome	during	

terminal	differentiation.	Here,	we	take	advantage	of	next	generation	sequencing	to	

characterize	the	transcriptome	dynamics	of	human	hematopoietic	progenitor	

differentiation.	We	demonstrate	reproducibility	between	replicates,	and	identify	

constitutively	expressed	as	well	as	differentially	expressed	transcripts	during	

differentiation.	We	also	identify	novel	candidate	alternative	isoforms	of	known	

erythroid	regulators	as	well	as	novel	transcripts	lying	within	introns	or	intergenic	

regions.	These	data	should	serve	as	a	valuable	resource	for	further	functional	

analysis	of	human	erythroid	differentiation.	

	

B.	METHODS	

i.	RNA	sequencing	

Two	stages	of	human	CD34+	hematopoietic	progenitor	cells	were	obtained	from	the	
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Fred	Hutchinson	Cancer	Research	Center:	one	stage	was	from	G‐CSF‐mobilized	

peripheral	blood	from	healthy	adult	donors	and	the	second	was	from	umbilical	cord	

blood	cells.	These	adult	or	fetal	cells,	respectively,	were	cultured	ex	vivo	and	induced	

to	differentiate	into	the	erythroid	lineage	pathway	by	the	addition	of	cytokines	

interleukin‐3	(IL‐3),	stem	cell	factor	(SCF)	and	erythropoietin	(Epo).	At	Days	4,	8,	11	

and	14	during	differentiation,	cells	were	collected	and	cDNA	libraries	were	

constructed	according	to	instructions	from	Illumina.	Paired‐end	mRNA	sequencing	

was	subsequently	performed	at	the	University	of	Michigan	sequencing	core	using	

the	Illumina	GA2	platform.	Each	stage	representing	individual	differentiation	time	

points	has	two	biological	replicates.	

	

ii.	Alignments	of	sequence	reads	and	evaluation	of	data	quality	

TopHat	v1.3.3	(Trapnell,	et	al.,	2009)	was	used	to	align	the	sequence	reads	to	the	

human	reference	genome	(version	hg18)	with	default	parameter	settings.	“‐r	40”	

was	used	to	specify	that	the	mean	inner	distance	between	mated	pairs	is	40	bp.	

TopHat	was	run	with	and	without	supplying	gene	model	annotation	for	the	

differential	expression	analysis	without	or	with	novel	gene	and	transcript	discovery,	

respectively.	Pearson	correlation	of	log2‐transformed	FPKM	of	known	transcript	

abundance	between	replicates	and	between	different	samples	was	performed	to	

evaluate	the	data	reproducibility.	

	

iii.	Differential	expression	analysis	

When	performing	differential	expression	analysis	without	novel	gene	and	transcript	
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discovery,	transcript	abundance	was	estimated	using	Cuffdiff,	a	program	included	in	

the	Cufflinks	v1.2.1	software	suite	(Trapnell,	et	al.,	2010),	by	supplying	the	BAM	files	

obtained	from	TopHat	run	with	gene	model	annotation.	To	identify	the	novel	

transcripts	or	splicing	isoforms	from	our	RNA‐Seq	data,	we	used	Cufflinks	v1.2.1	to	

take	output	BAM	files	from	TopHat	(without	supplying	gene	model	annotation)	to	

assemble	transcripts	de	novo.	The	results	from	replicates	were	then	merged	using	

Cuffmerge,	a	program	in	the	Cufflinks	v1.2.1	package,	and	then	Cuffdiff	was	used	to	

perform	differential	expression	analysis.	

	

iv.	Functional	analysis	

Functional	analysis	was	performed	using	ConceptGen	(Sartor,	et	al.,	2010)	to	

identify	the	functional	categories	enriched	in	the	gene	clusters	of	interest	(p‐value	<	

0.05,	modified	Fisher's	exact	test).	In	addition	to	Gene	Ontology	(GO)	terms,	other	

biological	concepts,	such	as	KEGG	(Kyoto	Encyclopedia	of	Genes	and	Genomes)	

pathways	(Kanehisa,	et	al.,	2008)	and	Biocarta	pathways,	were	also	tested	for	

significant	enrichment	among	differentially	expressed	genes.	All	Entrez	Genes	in	the	

RNA‐Seq	analysis	annotation	were	used	as	background	to	determine	the	

significance	of	over‐representation.	

	

C.	RESULTS	AND	DISCUSSION	

i.	Transcriptome	dynamics	during	CD34+	progenitor	cell	differentiation	

Human	CD34+	hematopoietic	progenitor	cells	derived	from	G‐CSF‐mobilized	

peripheral	blood	of	healthy	adult	donors	and	from	umbilical	cord	blood	cells	were	
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cultured	and	induced	to	undergo	differentiation	through	the	erythroid	lineage	with	

hematopoietic	cytokines.	Cells	were	then	harvested	after	4,	8,	11	and	14	days	of	

differentiation.	The	day	4	(D4)	sample	is	comprised	primarily	of	proerythroblasts.	

At	day	8	(D8),	the	sample	consists	of	proerythroblasts	and	basophilic	erythroblasts.	

The	day	11	(D11)	sample	includes	basophilic	erythroblasts	and	polychromatic	

erythroblasts,	while	the	day	14	(D14)	sample	is	composed	primarily	of	

orthochromatic	erythroblasts	and	reticulocytes.	As	the	cells	progressively	go	

through	these	terminal	differentiation	stages,	more	cells	become	enucleated	as	

hemoglobin	synthesis	increases.	

	

Total	RNA	was	extracted	from	each	sample	and	then	sequenced	using	next	

generation	sequencing	technology	to	characterize	the	transcriptome	dynamics	

during	hematopoietic	progenitor	differentiation.	The	total	number	of	reads	as	well	

as	the	number	of	uniquely	mapped	reads	obtained	in	each	sample	within	each	run	is	

summarized	in	Tables	2	and	3.	The	sequence	reads	were	subsequently	mapped	to	

human	genome	version	hg18	with	TopHat	v1.3.3	either	with	or	without	genome	

model	annotation.	On	average,	35	million	paired‐end	sequence	tags	were	obtained	

from	each	biological	replicate	recovered	from	individual	differentiation	stages,	and	

76%	of	these	reads	could	be	uniquely	mapped	to	the	reference	genome.	Transcript	

abundance,	in	FPKM	units	(Fragments	Per	Kilobase	of	transcript	per	Million	mapped	

reads),	was	then	estimated	using	the	Cufflinks	v1.2.1	software	package.	The	number	

of	transcripts	with	FPKM	greater	than	or	equal	to	0	at	each	time	point	is	

summarized	in	Table	4.	
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	 #	of	raw	paired	reads #	(%)	of	uniquely	mapped	
read	pairs	

Adult	D8	 32,076,766	 24,342,115	(75.89%)	

Adult	D14	 35,473,072	 23,528,503	(66.33%)	

Adult	D4	 34,325,400	 27,080,060	(78.89%)	

Adult	D8	 39,051,628	 30,148,239	(77.20%)	

Adult	D11	 36,689,086	 27,836,176	(75.87%)	

Adult	D14	 32,042,933	 23,740,501	(74.09%)	

Fetal	D8	 40,334,656	 31,154,719	(77.24%)	

Fetal	D14	 38,973,369	 29,155,021	(74.81%)	

Table	2.	Raw	read	summary	statistics	for	replicate	1	(Run183).	

	

	 #	of	raw	paired	reads #	(%)	of	uniquely	mapped	
read	pairs	

Fetal	D4	 37,655,738	 30,202,629	(80.21%)	

Fetal	D8	 33,470,686	 26,413,939	(78.92%)	

Fetal	D11	 35,718,063	 27,303,936	(76.44%)	

Fetal	D14	 33,738,634	 25,309,549	(75.02%)	

Fetal	D4	 35,319,610	 27,413,422	(77.62%)	

Fetal	D11	 33,318,145	 25,372,665	(76.15%)	

Adult	D4	 43,530,414	 34,365,085	(78.95%)	

Adult	D11	 34,203,044	 24,341,443	(71.17%)	

Table	3.	Raw	read	summary	statistics	for	replicate	2	(Run270).	

	

	 #	of	expressed	
known	transcripts	
(FPKM	>	0)	

#	of	non‐expressed	known	
transcripts	
(FPKM	=	0)	

Adult	D4	 26,833 11,701
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Adult	D8	 26,158 12,376

Adult	D11	 25,452 13,082

Adult	D14	 25,452 13,082

Total	(Union)	 30,140 16,611

Table	4.	Number	of	expressed	(FPKM	>	0)	and	non‐expressed	(FPKM	=	0)	transcripts	
recovered	from	adult	samples	at	each	time	point.	
	

To	evaluate	the	data	quality	in	terms	of	reproducibility,	we	investigated	the	

correlation	between	biological	replicates	and	between	different	samples	at	each	

time	point.	As	shown	in	Figures	18	and	19,	Pearson	correlation	coefficients	between	

biological	replicates	are	higher	than	the	correlation	coefficients	between	different	

samples.	When	D4	to	D8,	to	D11,	or	to	D14	samples	were	compared,	the	correlation	

coefficients	gradually	decreased;	however,	there	was	no	significant	difference	

observed	when	comparing	transcript	abundance	between	samples	at	adjacent	time	

points.	One	of	the	reasons	may	be	that	each	pair	of	consecutive	time	points	was	too	

close	to	observe	significant	differences	in	gene	expression	changes.		
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Figure	18.	Correlation	between	biological	replicates.	The	pearson	correlation	coefficients	
between	replicates	are	all	above	0.97.	From	top	left,	top	right,	bottom	left,	and	bottom	right,	
each	represents	D4,	D8,	D11,	and	D14	replicates.	Green	points	represent	transcripts	with	
greater	than	1.5	fold	but	less	than	2	fold	difference	between	replicates,	whereas	red	points	
represent	greater	than	2	fold	but	less	than	4	fold,	and	blue	points	represent	greater	than	4	
fold	differences.	

	 	

Figure	19.	Correlation	between	D4	and	D8,	D4	and	D11,	and	D4	and	D14	from	left	to	right.	
The	pearson	correlation	coefficients	are	0.96,	0.95,	and	0.92	respectively.		Green	points	
represent	transcripts	with	greater	than	1.5	fold	but	less	than	2	fold	difference	between	
replicates,	whereas	red	points	represent	greater	than	2	fold	but	less	than	4	fold,	and	blue	
points	represent	greater	than	4	fold	differences.	

	

So‐called	“housekeeping”	genes	are	expressed	at	relatively	constant	levels	and	

ubiquitously,	as	they	typically	perform	fundamentally	important	cellular	metabolic	
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functions.	Similarly,	we	might	expect	crucial	erythroid	regulators	to	also	be	

relatively	abundantly	expressed	during	erythroid	progenitor	differentiation.		

Therefore,	before	identifying	the	differential	transcript	expression	during	

hematopoietic	progenitor	differentiation,	we	focused	first	on	the	transcripts	that	are	

consistently	expressed	at	high	levels	at	each	progressive	stage	to	identify	highly	

expressed	transcripts	at	each	time	point.	Figure	20	shows	the	log2‐transformed	

global	transcript	abundance	at	the	four	time	points	that	were	examined	in	this	

analysis.	We	define	highly	expressed	transcripts	as	those	whose	log2‐transformed	

FPKM	is	greater	than	7,	because	this	resulted	in	a	reasonable	number	of	transcripts	

for	subsequent	functional	analysis.	In	summary,	652,	620,	446,	and	536	transcripts	

met	this	cutoff	at	D4,	D8,	D11	and	D14,	respectively.		

	

Figure	21	shows	a	heatmap	reflecting	the	expression	profile	of	the	most	highly	

expressed	transcripts.	A	core	group	of	308	genes	are	consistently	expressed	at	high	

level	(log2(FPKM)	>	7)	at	all	4	stages.	As	expected,	the	globin	genes	and	GAPDH	are	

all	within	this	group.	Given	their	abundant	expression	during	erythroid	

differentiation,	we	next	asked	what	functions	this	collection	of	genes	might	exert	

during	differentiation.	Functional	analysis	was	initiated	by	identifying	the	enriched	

functional	annotations	within	the	gene	group,	which	revealed	that	the	ribosome	

pathway	was	enriched	according	to	KEGG	pathway	analysis.	Hemoglobin	complex	

and	oxygen	transport	were	also	among	the	highly	enriched	GO	terms,	as	expected	

since	members	of	the	globin	gene	family	are	highly	expressed	throughout	erythroid	

differentiation.	These	observations	were	documented	in	a	previous	study	of	
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erythroid	differentiation	(Merryweather‐Clarke,	et	al.,	2011).	Known	erythroid	

transcriptional	regulatory	proteins	such	as	KLF1,	NFE2,	GATA1,	GFI1B,	and	LDB1,	

were	also	found	to	be	expressed	at	a	consistently	high	level.	Furthermore,	we	

observed	consistently	high	expression	of	serine/arginine‐rich	splicing	factor	2	

(SRSF2),	eukaryotic	translation	elongation	factor	1	alpha	1	(EEF1A1),	and	ribosomal	

protein	S19	(RPS19)	which	were	also	reported	in	the	same	previous	microarray	

study	(Merryweather‐Clarke,	et	al.,	2011).	An	additional	group	of	transcription	

factors	were	also	identified	among	these	constitutively	highly	expressed	genes	but	

their	specific	roles	in	erythropoiesis	remain	unclear.	For	example,	the	transcription	

factor	E2F2	controls	cell	cycle	progression	and	has	been	reported	to	regulate	

maturation	and	terminal	cell	division	during	erythropoiesis	through	GATA‐1	

binding	(Kadri,	et	al.,	2009).	However,	our	data	suggested	that	another	E2F	

transcription	factor,	namely	E2F4,	was	highly	expressed	throughout	erythroid	

progenitor	differentiation.	E2F4	is	a	transcriptional	regulator	of	the	cell	cycle	

program	and	was	reported	to	play	a	role	in	fetal	erythropoiesis	by	promoting	cell	

cycle	progression	and	cellular	proliferation	(Kinross,	et	al.,	2006).	However,	its	

function	in	adult	erythropoiesis	remains	unclear.	Hence	it	may	be	worthwhile	to	

further	investigate	the	role	of	E2F4	in	erythropoiesis.	Regardless,	all	of	these	

transcription	factors	(listed	in	Table	5)	may	be	interesting	potential	candidates	for	

further	investigation.	
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Figure	20.	Global	transcript	abundance	during	erythroid	progenitor	differentiation.	Orange	
dashed	line	indicates	the	cutoff	where	all	transcripts	to	the	right	have	log2(FPKM)	greater	
than	7.	
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Figure	21.	Heatmap	showing	the	expression	profile	of	the	most	highly	expressed	transcripts	
during	erythroid	progenitor	differentiation.	The	expression	values	of	the	most	highly	
expressed	transcripts	are	plotted	such	that	higher	expression	levels	are	in	red	and	lower	
levels	are	in	blue.	Some	transcripts	may	have	expression	level	with	log2(FPKM)	>	7	at	only	a	
subset	of	time	points,	while	others	have	log2(FPKM)	>	7	at	all	4	time	points.	

	
Gene 
Symbol	 RefSeq ID	 D4	 D8	 D11	 D14	
AES	 NM_001130	 181.63	 206.62	 211.80	 172.28	
ATF4	 NM_182810	 238.23	 364.07	 316.36	 323.08	
BTF3	 NM_001207	 317.23	 302.66	 237.00	 203.16	
CALR	 NM_004343	 1111.31	 466.80	 498.88	 396.45	
CSNK2B	 NM_001320	 221.52	 204.89	 175.19	 152.47	
DDX5	 NM_004396	 186.33	 170.52	 165.40	 135.78	
E2F4	 NM_001950	 142.69	 174.93	 231.92	 208.43	
EDF1	 NM_003792	 339.53	 282.18	 268.23	 221.10	
GATA1	 NM_002049	 223.04	 281.74	 296.64	 267.09	
GFI1B	 NM_004188	 212.52	 421.92	 410.84	 389.79	
HDGF	 NM_004494	 241.83	 279.62	 329.80	 268.05	
HMGA1	 NM_145899	 405.81	 425.77	 360.26	 245.20	
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HMGB2	 NM_002129	 293.49	 537.16	 566.18	 532.22	
HNRNPA2B1	 NM_002137	 397.30	 295.21	 292.49	 216.30	
ILF2	 NM_004515	 281.22	 176.75	 176.32	 129.26	
KLF1	 NM_006563	 278.30	 468.13	 571.35	 588.29	
LDB1	 NM_003893	 173.69	 245.55	 195.99	 153.05	
LYL1	 NM_005583	 162.77	 150.88	 168.00	 155.17	
MAZ	 NM_001042539 199.77	 253.06	 199.74	 160.48	
MYBL2	 NM_002466	 172.10	 262.60	 281.31	 244.15	
NFE2	 NM_001136023 165.12	 199.10	 252.66	 328.53	
PFN1	 NM_005022	 1942.02	 1395.24	 1233.23	 808.87	
PHB2	 NM_007273	 293.31	 218.63	 199.62	 151.52	
PTMA	 NM_002823	 351.71	 322.39	 137.18	 161.52	
RAN	 NM_006325	 564.58	 438.59	 457.39	 343.55	
RUVBL2	 NM_006666	 262.67	 251.30	 213.95	 142.57	
SFPQ	 NM_005066	 242.25	 190.45	 183.61	 131.27	
TCEB2	 NM_207013	 200.79	 183.01	 169.23	 151.74	
THOC4	 NM_005782	 287.34	 222.39	 229.15	 166.93	
TRIM28	 NM_005762	 543.97	 413.83	 348.79	 247.08	
UXT	 NM_004182	 168.36	 178.83	 156.71	 137.53	
YBX1	 NM_004559	 730.72	 567.44	 606.78	 461.84	
YWHAH	 NM_003405	 130.40	 189.78	 182.49	 160.30	
	
Table	5.	Highly	expressed	transcription	factors	in	alphabetical	order.	A	list	of	transcription	
factors	was	compiled	from	JASPAR	database	(Bryne,	et	al.,	2008)	and	Genomatix	software	
suite	(Cartharius,	et	al.,	2005).	These	transcription	factors	are	identified	in	adult	CD34+	
progenitor	cells	as	highly	expressed	at	all	4	time	points.	This	table	shows	the	RefSeq	mRNA	
id	of	the	factors	along	with	the	FPKMs	at	each	time	point.	
	

We	next	focused	on	identifying	global	differentially	expressed	transcripts	during	

hematopoietic	progenitor	differentiation.	Known	transcripts	having	at	least	2‐fold	

change	with	a	FDR	<	0.05	between	any	two	consecutive	stages	were	chosen	for	

subsequent	detailed	analysis.	A	total	of	1806	transcripts	were	determined	to	be	

differentially	expressed	based	on	this	criterion.	Unsupervised	hierarchical	

clustering	was	then	performed	on	these	transcripts	to	identify	co‐expressed	gene	

clusters	(Figure	22).	From	the	resulting	heatmap,	we	were	able	to	discern	transcript	

clusters	that	could	be	divided	into	six	major	groups.	Transcript	expression	profiles	
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for	individual	clusters	are	shown	in	Figure	23.	There	are	two	groups	of	genes	

corresponding	to	up	(cluster	2)	and	down	(cluster	4)	regulated	transcripts	within	

the	six	groups.	Members	of	the	globin	transcript	family	fall	within	cluster	2,	and	

many	well	known	erythroid‐restricted	transcription	factors	are	notably	also	found	

within	the	cluster	(e.g.	NFE2,	FOXO3,	EPOR,	BCL6,	EPB49,	KLF3	and	E2F2).	This	

cluster	also	contains	several	transcription	factors	whose	roles	in	erythropoiesis	are	

largely	uncharacterized	and	therefore	serve	as	potentially	interesting	targets	for	

further	investigation.	Functional	annotation	results	suggest	that	oxygen	transport,	

hemoglobin	complex,	apoptosis,	and	heme	biosynthetic	processes	were	enriched	

among	the	transcripts	found	in	cluster	2	(Figure	24).	In	contrast,	downregulated	

transcripts	in	cluster	4	are	enriched	in	biological	processes	such	as	hemostasis,	

immune	system	process,	regulation	of	body	fluid	level,	blood	coagulation,	mast	cell	

activation,	and	myeloid	leukocyte	activation	(Figure	25).	Cluster	4	also	contains	

previously	known	negative	erythroid	regulators	or	factors	whose	expression	

diminishes	during	erythroid	differentiation,	such	as	c‐MYB,	SPI1/PU.1,	FLI1,	and	

RUNX1.	

	

Transcription	factor	binding	sites	enriched	in	the	promoters	(defined	as	‐450	to	+50	

around	the	transcriptional	start	site,	TSS)	of	genes	in	each	cluster	were	predicted	

using	Pscan	software	(Zambelli,	et	al.,	2009).	The	transcription	factors	whose	

binding	sites	are	enriched	within	the	promoter	region	in	clusters	2,	3,	and	4	are	

shown	in	Figures	26,	27	and	28,	respectively.	GABPA	is	the	only	transcription	factor	

whose	binding	motif	is	enriched	in	the	promoter	regions	of	cluster	6	genes.	Some	
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transcription	factors	whose	binding	sites	are	enriched	within	the	promoters	are	

only	expressed	at	modest	levels	during	terminal	differentiation.	Finally,	we	also	

performed	this	transcription	factor	binding	site	analysis	for	highly	expressed	

transcripts	(with	log2(FPKM)	>	7	at	all	4	stages)	and	the	results	are	shown	in	Figure	

29.	

	

	

Figure	22.	Heatmap	showing	the	transcriptome	dynamics	during	differentiation.	The	
transcripts	represented	in	the	heatmap	have	at	least	fold	change	greater	than	2	in	any	pair	
of	consecutive	time	points	with	associated	FDR	less	than	0.5.	All	transcript	abundance	levels	
are	normalized	to	their	abundance	at	D4.	Therefore	the	leftmost	column	representing	D4	is	
black.	The	red	cells	represent	higher	expression	level	while	green	cells	represent	lower	
expression	levels	relative	to	their	D4	expression	levels.	
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Figure	23.	Differential	expression	pattern	of	each	cluster.	The	log2‐transformed	abundance	
of	transcripts	in	the	six	clusters	shown	in	previous	figures	is	plotted.	The	number	of	
transcripts	in	each	cluster	is	shown	in	parentheses.	

	

	

Figure	24.	GO	analysis	of	cluster	2.	The	top	15	enriched	GO	annotation	terms	for	the	genes	
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in	cluster	2	are	shown	here.	The	significance	of	enrichment	is	defined	as	–log10(q‐value).	A	
q‐value	of	0.05	was	used	as	the	significance	cutoff.	These	represent	a	cluster	of	transcripts	
whose	expression	levels	increased	during	terminal	erythroid	differentiation.	

	

	

Figure	25.	GO	analysis	of	cluster	4.	The	top	15	enriched	GO	annotation	terms	for	the	genes	
in	cluster	4	are	shown	here.	The	significance	of	enrichment	is	defined	as	–log10(q‐value).	A	
q‐value	of	0.05	was	used	as	the	significance	cutoff.	These	represent	a	cluster	of	transcripts	
whose	expression	levels	decreased	during	terminal	erythroid	differentiation.	
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Figure	26.	TFBS	enrichment	for	genes	in	cluster	2.	The	significance	of	enrichment	is	defined	
as	–log10(Bonferroni‐corrected	p‐value).	A	significance	cutoff	of	0.05	was	applied	to	the	
Bonferroni‐corrected	p‐value.	The	transcription	factors	shown	in	this	figure	represent	the	
factors	whose	binding	sites	enriched	in	the	cluster	2	promoters.	

	

	

Figure	27.	TFBS	enrichment	for	genes	in	cluster	3.	The	significance	of	enrichment	is	defined	
as	–log10(Bonferroni‐corrected	p‐value).	A	significance	cutoff	of	0.05	was	applied	to	the	
Bonferroni‐corrected	p‐value.	The	transcription	factors	shown	in	this	figure	represent	the	
factors	whose	binding	sites	are	enriched	within	the	cluster	3	promoters.	
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Figure	28.	TFBS	enrichment	for	genes	in	cluster	4.	The	significance	of	enrichment	is	defined	
as	–log10(Bonferroni‐corrected	p‐value).	A	significance	cutoff	of	0.05	was	applied	to	the	
Bonferroni‐corrected	p‐value.	The	transcription	factors	shown	in	this	figure	represent	the	
factors	whose	binding	sites	are	enriched	within	cluster	4	promoters.	
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Figure	29.	TFBS	entichment	for	genes	with	log2(FPKM)	>	7	in	all	4	time	points.	The	
significance	of	enrichment	is	defined	as	–log10(Bonferroni‐corrected	p‐value).	A	
significance	cutoff	of	0.05	was	applied	to	the	Bonferroni‐corrected	p‐value.	
	

The	hedgehog	signaling	pathway	was	first	identified	in	the	fruit	fly	as	a	major	

developmental	signaling	pathway	decades	ago	(Ingham	and	McMahon,	2001;	

Nusslein‐Volhard	and	Wieschaus,	1980).	The	function	of	the	hedgehog	pathway	in	

embryonic	development	is	well	conserved	across	species	and	it	has	also	been	shown	

to	play	a	critical	role	in	cancer	development,	progression	and	metastasis	(Harris,	et	

al.,	2011;	Mar,	et	al.,	2011).	However,	the	role	hedgehog	plays	in	erythropoiesis	is	

poorly	defined	and	remains	controversial	(Lim	and	Matsui,	2010;	Mar,	et	al.,	2011).	

Smoothened	(SMO)	is	a	critical	component	in	this	signaling	pathway	(Lim	and	

Matsui,	2010;	Mar,	et	al.,	2011)	and	we	found	that	SMO	expression	diminishes	
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markedly	(from	FPKM	of	3.34	to	0.01)	during	erythroid	progenitor	differentiation,	

despite	the	fact	that	it	has	been	claimed	by	multiple	groups	that	the	loss	of	SMO	is	

dispensable	for	definitive	hematopoiesis	(Dierks,	et	al.,	2008;	Gao,	et	al.,	2009;	

Hofmann,	et	al.,	2009).	Indeed,	one	group	has	reported	that	the	deletion	of	Smo	has	

an	effect	on	the	recovery	of	spleen	stress	progenitors	from	acute	anemia	(Perry,	et	

al.,	2009).	This	observation	is	in	keeping	with	the	observations	derived	in	our	

experimental	conditions	since	the	CD34+	progenitor	cells	were	cultured	ex	vivo	and	

therefore	were	likely	already	differentiating	under	stress	conditions.	We	speculate	

that	SMO	may	play	a	role	in	erythroid	progenitor	maturation	or	differentiation.	

	

ii.	Novel	isoforms	of	known	erythroid	regulators	

Previous	high	throughput	studies	have	been	conducted	to	characterize	

transcriptome	dynamics	(Keller,	et	al.,	2006;	Merryweather‐Clarke,	et	al.,	2011;	

Peller,	et	al.,	2009;	Singleton,	et	al.,	2008;	Sripichai,	et	al.,	2009;	Tondeur,	et	al.,	

2010).	However,	recently	developed	parallel	sequencing	technology	made	it	

possible	for	unbiased	mapping	and	quantifying	whole	transcriptomes	in	an	

unprecedented	manner.	In	addition	to	being	capable	of	measuring	transcript	

abundance	in	an	unbiased	fashion,	one	of	the	clear	advantages	of	RNA‐Seq	is	the	

ability	to	identify	novel	splicing	events.	

	

After	examining	the	dynamic	patterns	of	transcript	abundance	during	

differentiation	in	the	previous	section,	we	then	focused	on	detection	of	alternative	

splicing	isoforms.		Potential	novel	splice	isoforms	are	identified	in	this	analysis	as	
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assembled	transcripts	that	share	at	least	one	splice	junction	with	a	known	reference	

transcript.	A	total	of	14,993,	14,316,	14,283,	and	14,154	novel	splicing	isoforms	are	

predicted	from	the	D4,	D8,	D11	and	D14	samples,	respectively.	To	our	surprise,	

among	these	predicted	novel	isoforms,	66,	36,	22,	and	35	were	determined	to	be	

specific	to	the	D4,	D8,	D11,	and	D14	transcript	pools,	respectively.	

	

While	it	was	observed	that	splicing	isoform	diversity	decreases	during	neural	

differentiation,	this	gene	level	splice	isoform	analysis	was	actually	performed	on	the	

top	500	abundantly	expressed	genes	and	hence	does	not	capture	the	global	

characteristics	(Wu,	et	al.,	2010).	We	then	performed	the	splice	junction	analysis	on	

all	predicted	novel	isoforms	from	known	genes,	and	Figure	30	shows	this	global	

view	of	the	unique	splice	junction	counts	for	each	gene	that	changed	during	terminal	

differentiation.	220	known	genes	have	a	change	in	their	number	of	unique	splice	

junctions	between	any	two	consecutive	stages	and	hence	are	deduced	to	be	

differentially	expressed	during	differentiation.	There	are	three	known	erythroid	

gene	regulatory	proteins	that	are	predicted	to	have	novel	splicing	isoforms:	KDM1A	

(LSD1),	SOX6,	and	LMO2.	
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Figure	30.	Global	view	of	unique	splice	junction	counts.	Each	row	represents	a	gene	that	has	
a	change	in	its	unique	splice	juctions	between	adjacent	time	points.	Red	represents	more	
unique	splicing	junction	at	the	time	point,	whereas	the	blue	represents	less	unique	splicing	
junction	at	a	time	point.	For	known	genes	whose	unique	splicing	junction	counts	change	
between	any	two	consecutive	stages	during	differentiation,	the	numbers	of	unique	splice	
junctions	at	each	time	point	were	extracted	and	clustered	using	unsupervised	hierarchical	
clustering	to	create	the	above	heatmap.		

	

KDM1A	(LSD1)	was	initially	identified	as	a	component	of	the	CtBP	transcriptional	

repressor	complex	(Ballas,	et	al.,	2001;	Shi,	et	al.,	2003),	but	has	later	been	found	in	

other	complexes,	such	as	NRD	(Tong,	et	al.,	1998),	CoREST	(You,	et	al.,	2001),	and	a	

group	of	HDAC	complexes	(Hakimi,	et	al.,	2002;	Hakimi,	et	al.,	2003;	Humphrey,	et	

al.,	2001).	The	function	of	the	LSD1‐CoREST‐HDAC	complex	was	originally	

characterized	in	non‐neuronal	and	neuronal	precursors	(Ballas,	et	al.,	2001;	Ballas,	

et	al.,	2005;	Battaglioli,	et	al.,	2002),	but	it	has	recently	been	demonstrated	to	play	a	
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role	in	hematopoiesis	(Saleque,	et	al.,	2007).	shRNA‐mediated	knock‐down	of	LSD1	

was	demonstrated	to	inhibit	erythroid	differentiation	(Saleque,	et	al.,	2007)	and	to	

induce	γ‐globin	gene	expression	in	human	primary	CD34+	progenitor	cells	(Shi,	

unpublished	data).	Together	these	lines	of	evidence	suggest	that	LSD1	might	be	an	

appealing	pharmaceutical	target	for	treating	hemoglobinopathies.	Surprisingly,	a	

potential	novel	isoform	of	LSD1	was	identified	in	differentiating	CD34+	cells	(Figure	

31).	In	addition,	by	exploring	the	UCSC	EST	database,	the	structure	of	the	potential	

novel	isoform	was	compatible	with	two	reported	ESTs:	DR762029	and	CN341829.	

Therefore,	it	may	be	of	interest	to	examine	which	isoforms	are	expressed	during	

erythroid	progenitor	differentiation	and	to	analyze	the	specific	function	of	that	

isoform	during	erythropoiesis.	

Figure	31.	Genomic	locus	of	LSD1.	The	square	bracket	indicates	the	range	of	the	peak	height.	
The	pile	up	of	sequence	reads	marked	by	red	box	on	the	left	indicates	that	the	second	
isoform	of	LSD1	is	expressed.	However,	the	region	marked	by	the	red	box	on	the	right	
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disagrees	with	this	isoform.	Taken	together,	these	suggest	a	potential	novel	isoform	of	LSD1	
being	expressed	during	erythroid	differentiation.	

	

SOX6	(aka	SRY	(sex	determining	region	Y)‐box	6)	was	originally	identified	in	a	

mouse	testis	cDNA	library,	but	has	since	been	shown	to	play	an	essential	role	in	the	

development	of	the	central	nervous	system	(Hamada‐Kanazawa,	et	al.,	2004;	

Hamada‐Kanazawa,	et	al.,	2004;	Stolt,	et	al.,	2006),	in	chondrogenesis	(Ikeda,	et	al.,	

2004),	and	for	cardiac	and	skeletal	muscle	cell	differentiation	(Hagiwara,	et	al.,	

2000;	Hagiwara,	et	al.,	2005).	Sox6	was	also	recently	reported	to	be	a	crucial	

regulator	of	murine	definitive	erythropoiesis	(Dumitriu,	et	al.,	2010;	Dumitriu,	et	al.,	

2006)	and	was	shown	to	enhance	human	erythroid	progenitor	differentiation	

(Cantu,	et	al.,	2011).	SOX6	can	also	silence	epsilonY	globin	transcription	during	

murine	definitive	erythropoiesis	(Cohen‐Barak,	et	al.,	2007;	Yi,	et	al.,	2006).	

Therefore,	SOX6	could	also	serve	as	a	therapeutic	target	for	sickle	cell	disease	or	‐

thalassemia	and	counteract	the	sickle	polymerization	by	reactivating	epsilonY	in	

those	patients.	In	differentiating	CD34	erythroid	progenitor	cells,	a	potential	novel	

exon	was	identified	in	my	work	(Figure	32)	and	was	supported	by	a	human	EST,	

BU657066.	
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Figure	32.	Genomic	locus	of	SOX6.	The	square	bracket	indicates	the	range	of	the	peak	
height.	The	peak	of	sequence	reads	marked	by	the	red	box	falls	within	intronic	region	of	all	
the	isoforms	of	SOX6.	This	may	suggest	an	unannotated	exon	of	SOX6	at	D8	through	D14.	

	

LMO2,	LIM	domain	only	2	(rhombotin‐like	1),	was	formerly	called	RBTN2,	RBTNL1,	

and	TTG‐2.	It	was	originally	discovered	through	its	involvement	in	a	chromosomal	

translocation	that	occurs	in	some	adult	T‐cell	acute	leukemias	(Boehm,	et	al.,	1991;	

Foroni,	et	al.,	1992;	Royer‐Pokora,	et	al.,	1991).	The	essential	role	of	LMO2	in	

erythropoiesis	was	first	characterized	in	a	study	in	which	the	gene	was	targeted	for	

inactivation	in	embryonic	stem	(ES)	cells,	and	the	resulting	homozygous	Lmo2	null	

mutant	animals	were	depleted	in	yolk	sac	erythropoiesis	(Warren,	et	al.,	1994).	

Furthermore,	a	complete	block	to	erythroid	development	was	observed	in	Lmo2‐/‐	

ES	cells	or	wild‐type	ES	cells	that	had	been	transduced	with	an	anti‐LMO2	single‐
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chain	antibody	(Nam,	et	al.,	2008;	Warren,	et	al.,	1994).	However,	LMO2	can	also	act	

in	the	opposite	way,	to	also	inhibit	erythroid	progenitor	differentiation,	when	it	is	

overexpressed	(Visvader,	et	al.,	1997).	While	proper	control	of	LMO2	expression	is	

pivotal	for	normal	erythroid	development,	overexpression	of	Lmo2	is	more	likely	to	

have	a	dominant	negative	effect	(Terano,	et	al.,	2005).	A	recent	report	indicated	that	

a	previously	unrecognized	promoter	of	Lmo2	can	mediate	its	expression	(Oram,	et	

al.,	2010),	prompting	us	to	carefully	inspect	the	Lmo2	locus	in	differentiating	

erythroid	progenitors.	Unexpectedly,	a	peak	with	accumulating	sequence	reads	was	

observed	in	an	intron	of	the	Lmo2	gene	(Figure	33),	and	in	vivo	utilization	of	this	

potential	novel	exon	was	also	supported	in	two	reported	human	ESTs:	AV759180,	

AA742325.	

	

Figure	33.	Genomic	locus	of	LMO2.	The	square	bracket	indicates	the	range	of	the	peak	
height.	The	small	peak	of	reads	marked	by	the	red	box	falls	within	the	intron	of	the	longest	



	

	 103

isoform	of	LMO2.	This	may	suggest	an	unannotated	exon	of	LMO2.	

	

iii.	Potential	novel	intergenic/intronic	transcripts	

One	of	the	advantages	of	RNA‐Seq	over	array‐based	platforms	comes	with	the	

unbiased	sequence	of	poly‐A	RNAs.	Therefore,	it	is	speculated	that	with	this	

unbiased	survey	of	the	transcriptome,	we	may	expect	novel	transcripts.	Here	I	

present	a	preliminary	characterization	of	the	potential	novel	transcripts	falling	

entirely	within	introns	or	intergenic	regions.	To	identify	these	two	categories	of	

novel	transcripts	we	started	with	the	entire	list	of	predicted	intergenic	and	intronic	

transcripts	from	the	Cufflinks	package	(5546	intergenic	and	3492	intronic	

transcripts)	and	then	followed	several	steps	to	remove	likely	false	positives.	We	

compared	the	latest	human	gene	annotation	(knownGene)	from	UCSC	with	our	

novel	transcript	list	to	exclude	any	predictions	that	overlap	with	the	latest	known	

genes	annotation.	We	then	looked	at	the	characteristics	of	the	known	transcripts	to	

set	up	criteria	for	refining	the	list	of	predicted	novel	transcripts.	The	characteristics	

considered	involved	the	ORF	length,	number	of	exons,	expression	levels,	repetitive	

sequence	composition,	and	homology.	A	threshold	was	chosen	for	each	

characteristic	such	that	5%	of	the	known	transcripts	do	not	meet	the	threshold,	(5%	

quantile).	The	predicted	novel	intergenic/intronic	transcripts	considered	for	further	

case	study	are	those	that	met	the	threshold	for	all	criteria:	ORF	length	>	384	bp,	

more	than	2	exons,	less	than	30%	of	repetitive	sequences,	>	0.1	average	

conservation	score,	and	expression	levels	greater	than	3.46e‐4,	7.01e‐5,	0,	and	0	

FPKM	in	D4,	D8,	D11,	and	D14.	Applying	these	criteria	to	the	predicted	novel	
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transcripts,	we	obtained	a	final	list	of	potential	novel	intergenic	(31)	and	intronic	

(1)	transcripts.	An	example	of	a	predicted	novel	intergenic	transcript	in	the	final	list	

is	shown	in	Figure	34.	

	

Figure	34.	Genomic	locus	of	a	potential	novel	intergenic	transcript.	The	square	bracket	
indicates	the	range	of	the	peak	height.	This	predicted	novel	transcript	falls	within	intergenic	
region	between	genes	TAMM41	and	SYN2.	
	

D.	CONCLUSIONS	

In	this	report,	we	have	characterized	the	transcriptome	dynamics	of	human	

hematopoietic	progenitor	differentiation	using	RNA‐Seq.		Genes	highly	expressed	

during	erythroid	progenitor	differentiation	were	identified,	including	several	novel	

or	recognized	but	previously	unappreciated	factors.	Differentially	expressed	

transcripts	clustered	into	6	groups,	and	several	transcription	factors	were	identified	

whose	binding	sites	were	enriched	in	distinct	gene	clusters.	By	comparing	the	most	
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immature	D4	to	mature	D14	samples,	genes	downregulated	during	differentiation	

are	most	enriched	in	Rho	GTPase	cell	motility	transcripts,	possibly	reflecting	their	

lessening	requirement	for	mobility/homing	as	the	cells	mature.	In	addition,	these	

downregulated	genes	are	also	enriched	in	mitochondrial,	endoplasmic	reticulum	

and	Golgi	compartments.	This	may	reflect	the	fact	that	mammalian	red	blood	cells	

discard	these	organelles	during	terminal	differentiation.	On	the	other	hand,	genes	

upregulated	during	differentiation	are	enriched	in	heme	biosynthesis	and	

hemoglobin	chaperone	pathways.	Other	enriched	GO	terms	included	oxygen	binding	

and	oxygen	transport	activity.	Potential	novel	isoforms	of	known	erythroid	

regulators	LSD1,	SOX6	and	LMO2	have	been	identified	and	have	supporting	cloned	

ESTs.	In	addition,	using	a	well‐defined	set	of	criteria,	several	novel	transcripts	

expressed	in	these	cells	were	defined.	To	summarize,	these	data	are	consistent	with	

previous	studies	using	microarray	platforms,	but	additionally	provide	unbiased	

transcriptome	profiling	and	splicing	isoform	information.	Therefore,	these	data	

provide	an	excellent	resource	for	further	focused	downstream	analysis	of	

hematopoietic	progenitor	differentiation.	
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Chapter	V	
	

PePr:	A	ChIP‐Seq	Peak	Prioritization	Pipeline	for	Testing	Replicated	
ChIP‐Seq	Data	and	Integrating	External	Annotations	

	
	
A.	INTRODUCTION	

Understanding	the	flow	of	genetic	information	in	living	cells	has	been	under	

extensive	investigation	for	decades.	Determination	of	genome‐wide	binding	

patterns	of	DNA‐associated	proteins	and	genome‐wide	profiles	of	epigenetic	marks	

are	central	to	this	information	flow.	Chromatin	immunoprecipitation	(ChIP)	

followed	by	massively	parallel	sequencing	(ChIP‐Seq)	has	enabled	researchers	to	

generate	genome‐wide	in	vivo	interaction	maps	between	DNA‐associated	proteins	

and	DNA	sequences,	and	achieves	higher	resolution	and	comprehensiveness	than	

previously	used	ChIP‐chip	experiments	(Barski,	et	al.,	2007;	Johnson,	et	al.,	2007;	

Mikkelsen,	et	al.,	2007;	Park,	2009;	Pepke,	et	al.,	2009;	Robertson,	et	al.,	2007).	

	

As	the	cost	of	ChIP‐Seq	experiments	decreases	we	expect	that	relevant	biological	

replicates	will	increasingly	be	studied.	ChIP‐	Seq	has	sparked	the	development	of	

several	computational	methods	for	detecting	the	binding	sites	of	the	

immunoprecipitated	factor	from	ChIP‐Seq	experiments	(Blahnik,	et	al.,	2010;	Boyle,	

et	al.,	2008;	Fejes,	et	al.,	2008;	Ji,	et	al.,	2008;	Johnson,	et	al.,	2007;	Jothi,	et	al.,	2008;	

Kharchenko,	et	al.,	2008;	Mortazavi,	et	al.,	2008;	Nix,	et	al.,	2008;	Robertson,	et	al.,	
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2007;	Rozowsky,	et	al.,	2009;	Tuteja,	et	al.,	2009;	Valouev,	et	al.,	2008;	Zang,	et	al.,	

2009;	Zhang,	et	al.,	2008).	The	background	model	used	by	different	peak	calling	

programs	differs	and	has	included	using	the	Poisson	distribution	(Qin,	et	al.,	2010;	

Zhang,	et	al.,	2008),	the	binomial	distribution	(Ji,	et	al.,	2008;	Nix,	et	al.,	2008),	the	

negative	binomial	distribution	(Feng,	et	al.,	2008;	Ji,	et	al.,	2008),	the	zero‐inflated	

negative	binomial	distribution	(Rashid,	et	al.,	2011),	and	kernel	density	estimation	

(Valouev,	et	al.,	2008).	However,	to	our	knowledge,	none	of	the	peak	calling	

programs	calculates	an	estimation	of	variance	among	biological	replicates.	When	

data	from	biological	replicates	exist,	the	user	is	often	left	to	concatenate	reads	from	

replicates	together.	Nevertheless,	variation	among	independent	biological	replicates	

has	been	observed	to	be	higher	than	that	among	technical	replicates	(Kaufmann,	et	

al.,	2009),	and	this	variation	is	especially	important	in	certain	applications	involving	

epigenomics,	such	as	histone	methylation	or	acetylation.	Recently, DBChIP	(Liang	

and	Keles,	2012)	was	developed	to	identify	differential	binding	from	ChIP‐Seq	data	

and	was	able	to	account	for	replicate	variation	when	applicable.	However,	the	

program	works	with	output	from	existing	peak	finding	programs	and	does	not	take	

into	account	this	variation	during	the	peak‐calling	process.	Therefore	it	does	not	

fully	address	replicate	variation	when detecting	peaks	from	ChIP‐Seq	raw	sequence	

tags. 

	

Moreover,	the	above‐mentioned	programs	report	the	peaks	based	on	statistical	

significance	using	the	ChIP‐Seq	data	alone.	Given	the	numerous	experimental	and	

computational	external	annotation	data	available,	surprisingly	little	effort	is	devoted	
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to	incorporating	this	wealth	of	information.	A	recently	published	peak	finder,	

ZINBA,	is	based	on	a	mixture	regression	framework	and	classifies	genomic	regions	

into	background,	enrichment	or	artificial	zero	count.	ZINBA	has	shown	that	the	

integration	of	external	annotation,	such	as	GC	content,	may	improve	peak	detection	

in	ChIP‐Seq	experiments	(Rashid,	et	al.,	2011).	Therefore,	incorporating	certain	

external	functional	annotations	into	the	ChIP‐Seq	analysis	framework	provides	

additional	information	that	could	potentially	improve	prioritization	of	binding	

peaks.	Here,	we	use	location	of	the	ChIP‐Seq	binding	relative	to	a	gene	as	a	source	of	

prior	information	to	help	better	prioritize	the	ChIP‐Seq	binding	events.	Successful	

identification	of	functional	binding	sites	will	make	better	use	of	the	ChIP‐Seq	results	

for	prioritizing	downstream	investigations	or	validation	studies	that	link	factor	

binding	or	histone	modifications	to	transcription.	

	

Here	we	present	a	novel	ChIP‐Seq	Peak	Prioritization	(PePr)	pipeline	that	takes	into	

account	the	variation	among	biological	replicates	from	ChIP‐Seq	experiments.	This	

pipeline	has	the	option	to	rank	peaks	based	on	their	global	binding	pattern	by	

incorporating	the	location	of	ChIP	enriched	regions	relative	to	gene	structure.	PePr	

also	has	the	advantage	of	being	flexible	enough	to	analyze	either	sharp,	narrow	

peaks	(e.g.	transcription	factors)	or	broad	peaks,	as	is	observed	for	certain	histone	

modifications.	Although	our	method	is	inherently	different	from	other	ChIP‐Seq	

software,	we	chose	two	commonly	used	programs,	ERANGE	(Johnson,	et	al.,	2007;	

Mortazavi,	et	al.,	2008)	and	MACS	(Zhang,	et	al.,	2008)	to	compare	with	our	base	

method	to	ensure	satisfactory	performance.	ERANGE	calculates	fold	enrichment	
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using	control	data	to	assess	background	and	does	not	use	any	statistical	distribution	

for	background	modeling.	MACS	employs	a	dynamic	(local)	Poisson	distribution	to	

capture	local	variances	in	the	ChIP‐Seq	data.	Both	ERANGE	and	MACS	support	

sequence	reads	concatenation	from	several	replicates.	We	applied	these	two	

programs	and	our	method	to	ChIP‐Seq	data	for	the	bZIP	transcription	factor	

Activating	Transcription	Factor	4	(ATF4)	using	ATF4	knockout	cells	as	the	control.	

We	then	applied	our	method	to	ChIP‐Seq	data	for	histone	3	lysine	27	trimethylation	

(H3K27me3)	assessed	on	four	squamous	cell	carcinoma	cell	lines.	The	first	ChIP‐Seq	

data	set,	used	to	evaluate	PePr	performance,	studies	the	role	of	ATF4	in	response	to	

endoplasmic	reticulum	(ER)	stress	and	was	performed	in	parallel	with	RNA‐Seq	to	

assess	gene	expression	changes	in	the	same	samples.	The	other	ChIP‐Seq	data,	using	

antibody	against	H3K27me3,	also	has	gene	expression	data	available	for	the	same	

cells.	We	compared	the	performance	of	our	basic	PePr	implementation	capable	of	

estimating	the	dispersion	factor	of	the	negative	binomial	distribution	to	account	for	

the	biological	variation	among	replicates	(Version	1,	V1)	with	the	implementation	

that	further	incorporates	external	annotation	(Version	2,	V2),	and	with	a	basic	

method	that	also	uses	the	negative	binomial	distribution	but	with	concatenation	of	

reads	from replicates. 

	

B.	METHODS	

i.	Datasets	

a.	ATF4	‐	ChIP‐Seq	and	RNA‐Seq	data	for	ATF4	were	used	in	this	study	to	assess	the	

performance	of	PePr.	Three	biological	replicates	of	ChIP‐Seq	using	Illumina	Genome	
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Analyzer	with	wild‐type	and	ATF4	knock‐out	mouse	embryonic	fibroblast	(MEF)	

cells	treated	with	tunicamycin	were	performed	(one	lane	per	sample)	and	aligned	to	

the	mouse	reference	genome	build	version	mm9	using	ELAND.	The	number	of	reads	

and	percent	aligned	for	each	lane	is	provided	in	Table	6.	In	addition,	two	biological	

replicates	of	RNA‐Seq	using	Illumina	Genome	Analyzer	with	wild‐type	and	ATF4	

knock‐out	MEF	cells	also	treated	with	tunicamycin	were	performed.	(For	further	

details,	see	supplemental	methods.)	For	RNA‐Seq	data	analysis,	Bowtie	was	

employed	to	align	reads	to	the	mouse	reference	genome	(version	mm9)	plus	known	

splice	junctions,	created	by	ERANGE	scripts	and	UCSC	known	gene models	

(Langmead,	et	al.,	2009;	Mortazavi,	et	al.,	2008).	Counts	of	reads	and	RPKM	values	

for	each	gene	were	determined	using	ERANGE	software	and	were	tested	for	

differential	expression	in	R	using	the	limma	package	and	IBMT	method	(Sartor,	et	

al.,	2006).	Testing	was	performed	using	log2‐read	counts	normalized	to	the	total	

number	of	aligned	reads	for	each	sample.	We	then	tested	wild‐type	versus	Atf4	‐/‐.	

The	IBMT	method	is	an	empirical	Bayesian	method	that	provides	improved	

estimates	of	variance	for	experiments	with	small	samples	sizes,	while	taking	into	

account	the	relationship	between	variance	levels	and	the	total	read	count.	The	False	

Discover	Rate	(FDR)	for	each	comparison	was	calculated	using	the Benjamini‐

Hochberg	method. 

	

b.	H3K27	trimethylation	‐	ChIP‐Seq	data	using	antibody	against	H3K27me3	and	

Affymetrix	Human	Genome	U133	Plus	2.0	array	gene	expression	data	were	utilized	

to	evaluate	the	performance	of	PePr	in	analyzing	histone	modification	data.	These	



	

	 111

data	demonstrated	a	high	level	of	variation	among	individuals	and	thus	presents	a	

case	where	we	expect	accounting	for	biological	variation	to	result	in	an	

improvement;	the	data	also	exhibited	broader	peak	width	compared	to	ATF4.	ChIP‐

Seq	using	two	Human	Papillomavirus	(HPV)‐positive	(CaSki	and	UMSCC‐47)	and	

two	HPV‐negative	(UMSCC‐4	and	UMSCC‐74A)	squamous	cell	carcinoma	cell	lines	

were	performed.	Cell	lines	were	cultured	as	previously	described	(Sartor,	et	al.,	

2011),	and	chromatin	immunoprecipitation	and	library	preparation	was	performed	

by	GenPathway	(part	of	Active	Motif,	Carlsbad,	CA)	using	a	commercial	quality	

antibody	specific	for	H3K27	trimethylation.	DNA	was	amplified	according	to	the	

Illumina	ChIP‐Seq	library	construction	protocol,	and	a	region	of	250‐350	bp	was	

excised	from	the	preparative	Agarose	gel.	Sequencing	of	the	four	

immunoprecipitated	samples	and	four	input	DNA	samples	was	performed	at	the	

University	of	Michigan	DNA	sequencing	core	using	the	Illumina	HiSeq	with	50	base	

single‐end	reads.	Raw	reads	were	quality	checked	using	FastQC	and	aligned	to	the	

human	reference	genome	build	version	hg19	using	BWA	with	the	default	

parameters	(Li	and	Durbin,	2009).	The	number	of	reads	and	percent	aligned	for	

each	lane	is	provided	in	Table	7.	Affymetrix	expression	arrays	were	performed	using	

the	same	cell	lines	(available	at	Gene	Expression	Omnibus	#	GSE24089)	and	were	

processed	and	analyzed	as	previously	described	(Sartor,	et	al.,	2011).	

	

ii.	PePr	input	formats	

Our	pipeline	accepts	multiple	formats,	including	SAM,	default	Bowtie	output,	BED	

format,	and	direct	output	from	ELAND	V2	read	aligner	with	the	‐multi	or	‐extended	
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option	specified.	Control	data	is	required.	

	

iii.	PePr	preprocessing	

a.	Removal	of	duplicates	‐	Users	have	the	option	either	to	remove	duplicated	reads	

(which	may	originate	from	PCR	amplification),	or	to	keep	all	mapped	reads.	The	

maximum	number	of	duplicated	reads	allowed	for	a	single	position	can	be	set	by	the	

user	or	determined	by	a	binomial	test	(Zhang,	et	al.,	2008).	

	

b.	Shift	size	calculation	‐	Because	reads	randomly	occur	from	either	the	plus	or	

minus	DNA	strand,	shifting	sequence	tags	towards	the	3’	end	by	half	of	the	

estimated	fragment	length	can	improve	estimation	of	the	precise	protein‐DNA	

interaction	site	(Park,	2009).	For	each	chromosome,	a	shift	size	d	is	determined	by	

maximizing	the	overlap	between	reads	from	forward	and	reverse	strands.	The	

median	of	the	determined	shift	sizes	from	all	chromosomes	is	then	used	to	shift	all	

the	reads	towards	their	3’	direction	by	d.	We	found	this	to	provide	a	stable	estimate.	

The	maximum	shift	size	allowed	is	300	bp.	If	the	estimated	shift	size	d	is	smaller	

than	20	or	when	the	estimated	variance	of	the	shift	size	learned	from	all	

chromosomes	is	greater	than	0.3,	the	shift	size	d	is	set	to	100	bp.	Users	have	the	

option	to	either	use	the	result	of	this	analysis	or	provide	their	own	shift	size	in	the	

next	analysis	step.	

	

c.	Window	size	calculation	‐	A	window	size,	which	provides	the	flexibility	to	

analyze	either	sharp	or	broad	peak	profiles,	is	then	calculated	for	each	chromosome.	
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First,	all	reads	are	assigned	to	non‐overlapping	25‐base	pair	bins.	Then,	for	each	

chromosome,	100	candidate	peak	regions	are	identified	iteratively.	In	each	iteration,	

the	bin	with	the	largest	number	of	reads	is	denoted	as	the	seed	for	candidate	region,	

and	the	region	is	extended	to	flanking	bins	that	harbor	more	than	10%	of	reads	of	

the	seed.		The	width	of	these	regions	each	provides	a	single	estimate	of	the	window	

size.	The	median	of	the	computed	window	sizes	from	all	chromosomes	is	then	used.	

Again,	we	found	that	this	value	was	sufficiently	stable	across	chromosomes.	Users	

have	the	option	to	either	use	the	result	of	this	analysis	or	provide	their	own	window	

size	in	the	next	step. 

	

d.	Normalization	‐	The	number	of	reads	per	window	is	calculated	for	each	sample	

using	a	sliding	window	algorithm	for	all	chromosomes.	For	this	step,	users	have	the	

option	of	using	no	normalization,	a	simple	“scale‐up”	method	that	normalizes	the	

total	number	of	reads	in	each	sample	to	the	maximum	among	all	samples,	or	the	

iterative,	quantile	method	defined	in	the	edgeR	R	package	(Robinson,	et	al.,	2010).	

	

iv.	PePr	peak	detection	

a.	Dispersion	factor	calculation	‐	Our	V1	and	V2	pipelines	use	a	negative	binomial	

model,	which	requires	the	estimation	of	a	common	dispersion	factor	for	all	windows	

and/or	a	dispersion	factor	for	each	window.	The	negative	binomial	distribution	

allows	us	the	flexibility	to	separately	estimate	the	means	and	variance	levels.	Users	

have	the	choice	of	using	a	common	dispersion	factor,	a	local	dispersion	factor	

(estimated	per	window),	or	a	mixed	dispersion	factor,	which	is	defined	as	the	



	

	 114

geometric	mean	of	each	individual	window’s	dispersion	factor	and	the	common	

dispersion.	Users	also	have	the	option	to	remove	windows	with	<	n	reads	before	

estimating	the	common	dispersion	factor	(default:	n=5).	A	table	illustrating	how	this	

parameter	affects	results	on	the	ATF4	dataset	is	provided	in	Table	8.	It	is	assumed	

that	the	read	count	in	each	window	follows	a	negative	binomial	distribution,	such	

that	Xi	~	N.B.	(μi,	σ),	Yi	~	N.B.	(γiμi,	σ)	where	i	=	1,	…,	G	is	the	window	in	the	genome,	

Xi	and	Yi	represent	the	number	of	reads	in	the	ith	window	in	the	genome	from	the	

control	and	the	ChIP	samples	(or	group	1	and	group	2	samples)	respectively,	μi	is	

the	mean	read	level	for	window	i	in	controls	(estimated	by,	 i
 ,		the	average	read	

count	in	ith	window	in	the	genome	from	control	samples),	σ	is	the	common	

dispersion	factor	(or	σi	for	local	or	mixed	dispersion),	and	γi	is	the	fold	change	

between	read	level	in	the	ChIP’d	sample	group	(group	2)	versus	the	control	sample	

group	(group	1)	in	the	ith	window.	γi	,	μi	,	and	σ	are	estimated	using	their	maximum	

likelihood	estimates.	We	then	test	for	significant	differences	in	binding	between	the	

ChIP	and	control	groups	(group	2	versus	group	1)	by	testing	the	hypothesis	H0:	γi	<=	

1	versus	H1:	γi	>	1.	A	histogram	depicting	the	local	dispersion	estimates	for	ATF4	

and	H3K27me3	data	can	be	found	in	Figure	35.	

	

b.	P‐value	and	FDR	calculation	‐	Either	the	generalized	likelihood	ratio	test	(GLRT)	

or	 log‐gamma	estimate	with	 the	Wald	 test	 (Aban,	et	al.,	2008)	may	be	used	 in	V1,	

whereas	 the	 generalized	 likelihood	 ratio	 test	 (GLRT)	 is	 used	 in	 V2.	 For	 the	Wald	

Test,	a	z‐score	for	each	window	is	calculated,	and	parametric	(Benjamini‐Hochberg)	

FDR	is	then	calculated	to	correct	for	multiple	testing.	Empirical	(sample	swap)	FDR	
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is	 also	 calculated.	 For	 the	 GLRT,	 Pi1	and	 Pi0,	 the	 likelihood	 under	 the	 alternative	

hypothesis	 (H1:	γi	>	1)	and	null	hypothesis	 (H0:	 γi	≤	1)	 respectively,	 are	defined	as	

described	in	(Aban,	et	al.,	2008).	

	

Let	 iX 	be	the	average	read	count	 in	the	 ith	window	from	control	(group	1),	and	 iY 	

the	average	read	count	in	the	ith	window	in	the	genome	from	ChIP	(group	2)	sample.	

Then	 1
i
 ,	 the	maximum	likelihood	estimate	for	γi1	under	the	alternative	hypothesis	

(H1:	γi	>	1)	 is	 1
i
 	=	 ii XY / 	when	there	are	more	reads	 in	the	 ith	window	in	the	ChIP	

(group	2)	sample	than	in	control	(KO)	sample,	and	is	otherwise	restricted	to	1.	 0
i
 ,	

the	maximum	 likelihood	estimate	 for	γi0	under	 the	null	hypothesis	 (H0:	γi	≤	1)	 is	1	

when	 there	 are	 more	 reads	 in	 the	 ith	 window	 in	 control	 (group	 1)	 than	 in	 ChIP	

(group	2)	samples,	and	equals	to	 0
i
 	otherwise.	

	

v.	 Incorporating	 peak	 location	 relative	 to	 gene	 structure	 (PePr	 version	 2	

pipeline)	

Our	method	for	incorporating	peak	locations	relative	to	gene	structure	is	data	

dependent.	Thus,	if	no	relationship	exists	between	gene	structures	and	binding	

locations,	PePr	V2	analysis	will	adequately	capture	this.	However,	if	there	is	a	

relationship	between	the	binding	profile	and	location	relative	to	a	gene,	we	will	

capture	this	relationship,	and	provide	a	summary	to	the	user.	We	define	12	bins	as	

genomic	regions	relative	to	gene	structure	as:	5’	UTR,	3'	UTR,	0‐1kb	5',	1‐5kb	5',	5‐

10kb	5',	>10kb,	0‐5kb	3',	5‐10kb	3',	exon1,	intron1,	other	exon,	other	intron	(Figure	



	

	 116

36).	These	bins	are	derived	from	the	UCSC	knownGene	table,	and	genes	residing	

within	another	gene	(whose	transcription	end	site	occured	before	the	other	gene’s	

transcription	end	site)	were	removed	to	avoid	ambiguity	when	assigning	binding	to	

the	defined	bins.	For	ATF4	ChIP‐Seq,	we	used	mm9	and	for	H3K27	ChIP‐Seq,	we	

used	hg19	knownGene	file.		We	define	a	mixture	model	with	its	log‐likelihood	being:	
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where	Pi0	is	the	likelihood	of	γi		≤	1	under	the	null	hypothesis	(H0)	of	no	functional	

binding	and	Pi1	is	the	likelihood	under	the	alternative	hypothesis	(H1)	of	γi	>	1		for	

window	i.	πb(i)1	is	the	marginal	probability	of	binding	under	H1	for	the	ith	window	in	

the	genome	that	belongs	to	bin	b(i).	πb(i)1	is	the	same	as	πbj1	for	every	window	i	

belonging	to	bin	bj,	j	=	1,	…,	12.	After	the	likelihood	calculation,	we	then	calculate	

initial	estimates	of	πbj1	by	the	following	formula:	
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where	Bj	is	the	total	number	of	windows	belonging	to	bin	bj,	j	=	1,	…,	12.	We	take	an	

iterative	approach	by	iteratively	substituting	the	estimated	πbj1	into	the	same	

formula	as	above	to	obtain	new	πbj1	estimates.	As	a	secondary	validation	that	this	

method	converges	appropriately,	we	also	implemented	a	Metropolis	Hastings	

algorithm,	and	our	results	showed	that	this	process	converges	to	that	estimated	by	

the	Metropolis	Hastings	algorithm,	but	with	monotone	convergence	and	quicker	run	

time.	
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Figure	36.	The	twelve	bins	defined	according	to	the	gene	structure	and	used	in	the	mixture	
model	of	PePr	V2.	
	

FDR	is	then	calculated	using	the	Benjamini‐Hochberg	method	from	the	p‐value	for	

specific	window	i.	p‐values	are	calculated	as	follows:	
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Adjacent	significant	windows	with	FDR	less	than	the	default	(0.05)	or	user‐chosen	

value	separated	by	a	gap	of	a	length	of	window	size	are	merged	and	reported	as	a	

peak	along	with	the	peak	length,	read	counts	in	the	peak,	p‐value,	FDR,	nearest	gene	

and	the	bin	assignment.	

	

vi.	Basic	pipeline	

For	comparison,	we	developed	a	basic	peak	finder	that	also	uses	a	negative	binomial	

distribution,	but	that	concatenates	reads	from	replicate	samples	and	then	performs	

the	 above‐mentioned	 processes	 (shift	 size	 and	 window	 size	 calculation).	 The	

difference	 in	 number	 of	 mapped	 reads	 between	 the	 corresponding	 windows	 is	

calculated.	 For	 each	 window,	 the	 number	 of	 reads	 (ni)	 is	 assumed	 to	 follow	 a	

negative	 binomial	 distribution,	 ni	 ~	 negative	 binomial	 (α,	 β),	 and	 α	 and	 β	 are	

estimated	and	the	FDR	is	calculated	as	described	in	(Ji,	et	al.,	2008).	Briefly,	adjusted	

p‐values	are	calculated	using	the	False	discovery	rate	(FDR)	approach,	calculated	for	

each	window	by	dividing	the	number	of	false	positive	windows	(determined	with	a	
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specific	height	cutoff	in	the	negative	binomial	modeled	background),	by	the	number	

of	bins	determined	at	that	same	height	cutoff	in	the	control‐subtracted	ChIP	sample.	

Adjacent	windows	with	FDR	less	than	0.05,	or	separated	by	a	gap	no	more	than	the	

window	 size	 were	 merged	 and	 reported	 as	 a	 peak	 along	 with	 the	 FDR	 and	 read	

counts	in	the	peak.	

	

vii.	ATF4	peak	finding	analyses	

All	uniquely	mapped	reads	with	up	to	two	mismatches	were	extracted	for	

downstream	peak	calling	performance	evaluation.	We	evaluated	the	performance	of	

PePr	by	applying	our	basic	pipeline,	the	two	versions	of	PePr,	ERANGE,	and	MACS	

with	the	ATF4	dataset	described	above.	In	all	cases	duplicated	reads	>2	times	were	

removed	based	on	results	of	the	binomial	test.	For	ERANGE,	the	“‐listPeak”,	“‐

revbackground”,	“‐nomulti”,	and	“‐	shift	learn”	were	set.	For	MACS,	“‐pvalue=1e‐15”	

was	the	only	parameter	used.	The	sequences	of	the	peaks	reported	with	the	above	

mentioned	parameters	from	all	methods	were	retrieved	from	UCSC	Genome	

Database	(http://www.genome.ucsc.edu,	mm9,	July	2007).	

	

De	novo	motif	search	was	subsequently	performed	using	the	MEME	(Bailey	and	

Elkan,	1994)	suite	on	the	sequences	with	the	same	parameters.	The	parameters	

used	were	"‐dna	‐nmotifs	3	‐mod	zoops	‐maxw	12	‐maxsize	20000000	‐revcomp",	

which	specify	the	number	of	motifs	to	search	for,	the	zoops	assumption	(zero	or	one	

occurrence	per	peak	sequence),	the	maximum	motif	length	of	12,	and	the	maximum	

dataset	size	of	2,000,000	characters.	Sequences	were	searched	in	both	forward	and	
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reverse	orientations	using	the	additive	peak	sequences	of	200	peaks.	That	is	we	

sorted	the	peaks	in	increasing	order	of	FDR	or	p‐value	whichever	is	applicable,	then	

ran	MEME	on	bins	of	200	peaks.	Because	MACS	was	the	only	method	that	reported	

more	than	10000	peaks,	we	only	applied	the	top	10000	peaks	to	MEME.	The	motif	

found	by	MEME	was	then	compared	to	known	motifs	in	JASPAR	motif	database	

(Bryne,	et	al.,	2008)	using	Tomtom	(Gupta,	et	al.,	2007).	A	match	is	called	at	

significance	threshold	of	E‐value	(the	expected	number	of	false	positives)	less	than	

10	using	Pearson	correlation	coefficient	as	the	motif	column	comparison	function.	

To	evaluate	the	performance	of	PePr	in	prioritizing	functional	peaks,	we	compared	

the	reported	peaks	by	all	methods	described	above	to	the	parallel	ATF4	RNA‐Seq	

data.	We	first	identified	the	target	genes	of	ChIP‐Seq	bindings	that	were	also	

detected	by	RNA‐Seq	and	then	sorted	these	genes	by	increasing	order	of	the	

distance	between	the	binding	and	the	gene’s	TSS.	We	then	calculated	the	percentage	

of	genes	differentially	expressed	(greater	than	2	fold	change	and	FDR	<	0.05)	for	

every	100	genes.	

	

viii.	H3K27me3	differential	peak	finding	analyses	

To	evaluate	the	performance	of	our	pipeline	in	calling	broad	peaks	in	a	two‐group	

comparison,	we	applied	PePr	to	the	histone	H3K27	trimethylation	ChIP‐Seq	data	

described	above.	To	assess	the	performance	of	PePr	in	terms	of	prioritizing	

functional	peaks,	we	compared	the	associated	genes	of	ranked	peaks	from	our	basic	

pipeline	and	the	two	versions	of	PePr	to	the	corresponding	H3K27	microarray	

expression	data.	Because	our	preliminary	analysis	indicated	that	H3K27me3	marks	
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in	HPV‐negative	samples	tend	to	be	closer	to	gene	TSSs,	and	HPV	was	recently	

shown	to	disrupt	H3K27me3	in	keratinocytes	(Hyland,	et	al.,	2011),	we	were	

interested	in	regions	where	HPV‐negative	samples	were	marked	by	H3K27me3,	but	

HPV‐positive	samples	were	not,	to	identify	regions	lost	to	HPV.	Because	H3K27me3	

typically	represses	transcription,	we	expected	these	sites	to	be	down‐regulated	in	

HPV‐negative	cells	compared	to	HPV‐positive	cells.	We	then	examined	the	

correlation	between	genes	associated	with	a	ChIP‐Seq	peak	and	significance	of	

differential	expression,	based	on	the	associated	Affymetrix	study.	Specifically,	to	test	

whether	there	is	an	enrichment	of	the	overlap	between	a	gene	with	differential	

binding	within	3kb	of	its	TSS	and	its	differential	expression,	we	sorted	the	

expression	data	by	p‐value	and	then	calculated	the	Fisher’s	exact	test	odds	ratio	for	

increasing	numbers	of	genes.	

	

C.	RESULTS	

Here	we	report	the	development	of	a	ChIP‐Seq	analysis	software	that	addresses	two	

aspects	in	ChIP‐Seq	analysis.	To	evaluate	the	performance	of	PePr,	we	analyzed	two	

datasets:	ATF4	transcription	factor,	and	H3K27	trimethylation	in	HPV‐positive	and	

HPV‐negative	squamous	cell	carcinoma	cell	lines.	Because	the	advantage	of	PePr	

comes	from	its	ability	to	assess	variation	among	biological	replicates	in	the	peak	

detection	process,	we	expected	PePr	to	have	little	advantage	in	the	analysis	of	ATF4,	

and	a	greater	advantage	in	the	analysis	of	the	H3K27	experiment.	Furthermore,	the	

ATF4	dataset	represents	the	type	of	sharp	ChIP‐Seq	peaks	typically	observed	for	

transcription	factors,	whereas	the	H3K27me3	histone	dataset	represents	a	class	of	
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broader	peaks.	Thus,	the	use	of	these	datasets	demonstrates	the	applicability	of	

PePr	to	both	types	of	ChIP‐Seq	data.	

	

i.	Transcription	factor	analysis	results	

By	applying	the	three	ATF4	ChIP‐Seq	replicates	to	the	basic	implementation,	the	two	

versions	of	PePr,	ERANGE	(tends	to	have	high	specificity;	identifies	relatively	few	

peaks),	and	MACS	(tends	to	have	high	sensitivity;	identifies	a	large	number	of	peaks)	

(Wilbanks	and	Facciotti,	2010),	different	numbers	of	peaks	were	reported	to	be	

bound	by	ATF4	in	vivo.	With	PePr,	a	shift	size	of	40	bp	was	used,	a	window	size	of	

300	bp	was	used,	and	the	common	dispersion	factor	was	estimated	to	be	0.37.	

Marginal	likelihood	estimates	for	each	of	the	twelve	bins	are	provided	in	Figure	37.	

We	used	the	option	“‐shift	learn”	to	direct	ERANGE	to	learn	shift	size	from	the	first	

chromosome,	but	the	estimated	shift	size	was	0.	We	used	default	parameter	settings	

for	MACS;	MACS	initially	estimated	the	shift	size	to	be	41,	but	because	this	is	less	

than	its	minimum	allowed,	the	default	shift	size	of	100	was	automatically	used.	We	

initially	used	10‐6	as	a	p‐value	cutoff	for	MACS,	and	it	returned	31200	peaks.	We	

then	turned	to	use	a	more	stringent	criterion	(p‐value	of	10‐15)	for	peak	calling	using	

MACS.	There	were	9884	peaks	identified	by	the	basic	pipeline,	and	7364	and	5358	

peaks	reported	by	PePr	version	1	and	2,	respectively,	whereas	ERANCE	and	MACS	

(using	a	p‐value	cut‐off	of	10‐15)	reported	3345	and	15392	peaks,	respectively.	A	

Venn	diagram	depicting	the	overlap	between	PePr	V1,	ERANGE,	and	MACS	are	

shown	in	Figure	38.	
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Figure	38.	Venn	diagram	demonstrating	the	overlap	in	ATF4	binding	peaks	between	PePr	
V1,	ERANGE,	and	MACS.	Sums	of	numbers	differ	slightly	from	total	number	of	peaks	for	a	
method	due	to	some	peaks	overlapping	with	more	than	one	peak	from	another	method.	
	

Given	the	difference	in	the	number	of	peaks	reported	by	the	different	software	

packages,	we	sought	to	determine	the	percentages	of	the	called	peaks	that	represent	

true	binding	sites	for	ATF4.	Due	to	the	lack	of	gold‐standard	qPCR‐verified	binding	

sites	for	ATF4,	we	considered	ATF4	ChIP‐Seq	binding	sites	containing	a	high	

confidence	canonical	ATF4	motif	as	genuine	ATF4	binding	sites.	We	then	performed	

de	novo	motif	searches	using	MEME	suite	to	identify	the	sequence	motifs	

significantly	enriched	in	the	called	peaks	by	all	programs	sorted	by	p‐value	or	FDR	

(Figure	39).	Overall,	ERANGE‐identified	peaks	have	the	highest	percentage	
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(97.67%)	of	peaks	containing	a	motif	that	matched	well	to	the	canonical	bZIP	

transcription	factor	family	motif	in	JASPAR	database,	however	ERANGE	also	

identified	the	fewest	peaks	and	the	fewest	total	peaks	with	a	motif.	86.98%	of	the	

top	10000	MACS‐reported	peaks	contained	the	matched	motif.	The	basic	

implementation,	PePr	V1,	and	PePr	V2	had	70.75%,	89.35%,	and	91.68%	of	peaks	

containing	the	matched	motif,	respectively.	Limiting	MACS	to	the	top	7350	peaks	

(similar	to	PePr	V1),	we	still	find	that	PePr	V1	performs	slightly	better.	

	

Figure	 39.	 Percentage	 of	 peaks	 containing	 canonical	 ATF4	motif.	 Purple	 represents	 PePr	
basic	implementation,	blue	represents	PePr	V1,	red	represents	PePr	V2,	orange	represents	
ERANGE,	and	cyan	represents	MACS.	
	

We	then	evaluated	the	spatial	resolution	of	the	ChIP‐Seq	analysis	methods	by	

inspecting	the	distance	of	the	peak	center	to	the	identified	motif.	The	distribution	of	
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the	distances	between	peak	centers	to	the	motif	within	the	peak,	when	present,	is	

displayed	in	Figure	40.	Although	ERANGE	had	the	highest	percentage	of	peaks	with	

an	ATF4	motif,	the	motif	is	distributed	wider	across	the	peak	regions.	MACS,	PePr	

V1,	and	PePr	V2,	all	had	similar	spatial	resolution.	Our	motif	analysis	of	ATF4	

suggests	that	PePr	performance	on	data	with	little	variation,	though	it	is	not	

superior	to	ERANGE	and	MACS,	is	comparable	to	that	of	ERANGE	and	MACS,	and	

with	sensitivity	and	specificity	balanced	between	ERANGE	(high	specificity)	and	

MACS	(high	sensitivity).	

	

	
Figure	40.	Boxplot	showing	 the	spatial	resolution	of	 the	ChIP‐Seq	peak	 finders	with	ATF4	
data.	 The	 motifs	 within	 the	 peaks	 identified	 by	 ERANGE	 are	 more	 dispersed	 than	 other	
programs.	While	MACS	 has	 the	 best	 spatial	 resolution	 in	 locating	 the	 peaks	 containing	 a	
motif,	PePr	V1	had	nearly	identical	resolution.	PePr	V2	had	the	next	best	resolution.	
	

We	next	looked	at	how	the	identified	ChIP‐Seq	peaks	from	different	programs	

correlate	with	target	gene	differential	expression.	A	ChIP‐Seq	target	is	identified	as	
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the	closest	gene	to	a	peak,	and	is	considered	differentially	expressed	if	the	

expression	change	is	more	than	2	fold	between	ATF4	knock	out	and	wild‐type	and	

with	FDR	less	than	0.05.	We	then	sorted	the	ChIP‐Seq	targets	based	on	the	distance	

from	the	TSS	to	the	identifying	peak	in	increasing	order.	For	every	100	genes,	we	

calculated	the	percentage	of	genes	that	are	differentially	expressed.	Barplots	

showing	the	percentage	of	differential	expression	within	every	100	target	genes	for	

each	program	are	shown	in	Figure	41.	From	these	figures	we	can	see	that	target	

genes	closer	to	a	peak	identified	by	PePr	V2	better	correlate	with	differential	

expression,	although	methods	that	identify	more	peaks	tend	to	show	a	better	

association	with	gene	expression	in	this	regard.	

	

	
Figure	41.	ChIP‐Seq	binding	sites	vs.	differential	expression	for	the	transcription	factor	
ATF4.	(A)	PePr	basic	implementation.	(B)	ERANGE.	(C)	PePr	V1.	(D)	MACS.	(E)	PePr	V2.	The	
number	of	peaks	identified	by	each	peak	finder	are	listed	in	parentheses.	Each	bar	
represents	100	genes	closest	to	predicted	binding	site.	Overall,	PePr	V2	tends	to	identify	
targets	better	correlate	with	differential	expression	measured	by	RNA‐Seq	in	the	same	
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samples.	
	

ii.	Histone	modification	analysis	results	

H3K27me3	ChIP‐Seq	was	performed	using	two	HPV‐positive	and	two	HPV‐negative	

squamous	cell	carcinoma	cell	lines	along	with	corresponding	input	controls.	PePr	

estimated	the	shift	size	to	be	90	bp,	the	window	size	to	be	888	bp,	and	common	

dispersion	factor	to	be	0.53	for	comparing	HPV(+)	and	HPV(‐)	samples.	The	larger	

window	size	compared	to	the	ATF4	data	shows	the	ability	of	our	method	to	flexibly	

adjust	to	broader	peak	profiles,	and	the	larger	dispersion	factor	is	reflective	of	the	

higher	heterogeneity	among	samples	compared	to	ATF4.	Here	we	used	the	mixed	

dispersion	estimate	for	each	window	with	PePr	V1	and	V2.	Based	on	a	previous	

report	that	HPV	E7	protein	causes	a	loss	of	H3K27me3	(Hyland,	et	al.,	2011)	and	our	

preliminary	analysis	that	HPV(‐)	H3K27me3	marks	tend	to	be	closer	to	gene	TSSs	

than	HPV(+)	marks,	we	focused	on	identifying	HPV(‐)	specific	peaks	(lost	due	to	

HPV),	and	then	assessed	how	the	peaks	correlate	with	gene	expression	differences	

by	HPV	status.	We	applied	the	H3K27me3	ChIP‐Seq	to	the	basic	negative	binomial	

pipeline	and	the	two	versions	of	PePr.	Consistent	with	the	previous	report,	PePr	V2	

reported	an	enrichment	of	HPV(‐)‐specific	H3K27me3	just	upstream	of	a	TSS	and	

within	exons,	whereas	HPV(+)	specific	peaks	occurred	more	often	in	introns	and	far	

from	genes.	Marginal	likelihood	estimates	for	each	of	the	twelve	bins	are	provided	

in	Figure	42.	

	

To	evaluate	how	HPV(‐)	specific	peaks	identified	by	PePr	correlate	with	gene	

expression	data,	we	used	HPV(+)	as	our	control	for	PePr	V1	and	V2,	and	we	used	
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our	basic	pipeline	to	implement	a	currently	used	approach	for	this	type	of	analysis.	

For	our	basic	approach,	we	used	the	two	HPV(‐)	and	two	HPV(+)	samples	each	

separately	with	corresponding	input	control	data	to	identify	peaks	for	each	

individual.	Regions	identified	in	both	HPV(‐)	samples,	but	neither	of	the	HPV(+)	

samples	was	then	obtained	by	comparing	the	HPV(‐)	overlapping	regions	to	HPV(+)	

peak	regions,	and	removing	the	sites	overlapping	between	the	two	from	the	HPV(‐)	

overlapping	regions.	We	next	sorted	the	genes	from	the	microarray	dataset	by	the	p‐

value	associated	with	differential	expression,	and	used	Fisher’s	exact	test	to	test	for	

significant	overrepresentation	between	differentially	expressed	genes	and	the	genes	

with	a	HPV(‐)	specific	H3K27me3	mark	within	3	kb	of	its	TSS.	We	calculated	the	

Fisher’s	exact	test	odds	ratio	for	increasing	numbers	of	top	ranked	genes	to	assess	

the	level	of	overlap	between	genes	with	an	H3K27me3	mark	and	differential	

expression.	(We	used	odds	ratio	instead	of	the	Fisher’s	exact	p‐value	to	avoid	a	

strong	dependence	on	the	sample	size,	since	different	versions	of	PePr	identified	

different	numbers	of	peaks.)	Results	show	an	overall	increase	of	the	odds	ratio	

moving	from	the	basic	pipeline	to	PePr	V1	to	PePr	V2	(Figure	43	and	44).	These	

results	suggest	that	incorporating	biological	variation	and	additional	annotation	

into	the	peak	calling	process	increases	the	correlation	with	differential	expression.	
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Figure	 43.	 HPV(‐)	 vs	 (+)	 odds	 ratio	 for	 enrichment	 of	 the	 overlap	 between	 a	 gene	 with	
HPV(‐)	 specific	H3K27me3	within	3kb	of	 its	TSS	and	 its	differential	 expression	 limited	 to	
up‐regulation	 in	 HPV(+).	 Green	 line	 represents	 our	 basic	 implementation,	 blue	 line	
represents	PePr	V1,	and	red	line	represents	PePr	V2.	
	

To	illustrate	the	cause	for	improvement	from	the	basic	pipeline	to	PePr,	we	display	

three	regions	that	the	basic	pipeline	approach	identified	as	significant,	but	PePr	V1	

and	2	did	not,	and	three	regions	vice	versa.	The	regions	identified	only	by	the	basic,	

current	approach	show	large	variation	between	the	two	HPV(‐)	samples,	and/or	

somewhat	smaller	(unidentified	peaks)	in	HPV(+)	cells	(Figures	45	and	46).	

However,	the	three	regions	identified	only	by	PePr	V1	and	2	show	a	large	difference	

between	HPV(‐)	and	HPV(+)	cells	(Figures	47	and	48).	
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Figure	45.	An	H3K27me3	peak	found	by	PePr	basic	implementation	but	not	V1	and	V2.	
Region	shown	is	chr17:26741500‐26742341.	
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Figure	47.	An	H3K27me3	peak	identified	by	PePr	V1	and	V2	but	not	by	the	basic	
implementation.	Region	shown	is	chr5:1441224‐1447883.	
	

D.	CONCLUSIONS	

An	abundance	of	ChIP‐Seq	analysis	software	programs	are	available	for	researchers	

to	identify	so‐called	“peak”	regions,	indicating	genomic	regions	of	interest.	However,	

none	of	these	peak	calling	programs	estimate	variation	among	replicates	within	the	

peak	calling	framework.	Here,	we	introduced	our	Peak	Prioritization	pipeline,	

available	to	the	research	community	as	python	scripts.	Our	newly	introduced	PePr	

program	not	only	accounts	for	variation	among	biological	replicates,	but	also	

optionally	incorporates	location	of	read‐enriched	regions	relative	to	gene	structure	

via	a	mixture	model.	Demonstrating	the	use	of	our	PePr	pipeline	on	both	

transcription	factor	and	histone	modification	datasets,	we	illustrated	how	PePr	is	



	

	 131

able	to	incorporate	such	information	and	identify	peaks	correlated	with	differential	

expression.	Furthermore,	PePr	can	accommodate	replicate	variation	without	

sacrificing	spatial	accuracy.	By	taking	into	account	the	location	of	the	binding	

relative	to	gene	structure,	PePr	uses	properties	of	the	data	itself	to	prioritize	peaks	

better	correlated	with	functional	binding.	As	the	cost	of	ChIP‐Seq	becomes	more	

affordable,	we	expect	there	will	be	a	significant	increase	in	the	use	of	biological	

replicates	in	ChIP‐Seq,	especially	in	those	relating	to	epigenomics	studies.	

Therefore,	based	on	our	current	study,	we	believe	PePr	will	benefit	the	biomedical	

research	community.	

	

E.	SUPPLEMENTAL	MATERIAL	

i.	Supplemental	methods	

a.	Cell	culture	and	MEF	generation	

Mouse	embryonic	fibroblasts	(MEFs)	were	generated	as	described	previously	

(Rutkowski,	et	al.,	2006)	,	and	were	then	cultured	in	regular	DMEM	with	10%	FBS	

(Invitrogen),	penicillin‐streptomycin,	nonessential	amino	acids,	and	essential	amino	

acids.	

	

b.	Chromatin	immunoprecipitation	(ChIP)	

Atf4+/+	and	Atf4‐/‐	MEF	cells	were	treated	with	Tm	(2	μg/ml)	(Sigma)	for	10	hrs,	

followed	by	cross‐linking	and	subsequent	chromatin	immunoprecipitation	was	

performed	using	anti‐ATF4	antibodies	(Su	and	Kilberg,	2008).	
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ii.	Supplemental	tables	and	figures	

Table	6.	Raw	read	summary	for	ATF4	data.	

	 #	of	reads	 %	mapped	

WT_Rep1	 19,254,443	 81.35	

KO_Rep1	 19,141,706	 80.93	

WT_Rep2	 22,237,936	 78.25	

KO_Rep2	 21,507,605	 76.54	

WT_Rep3	 22,035,854	 78.33	

KO_Rep3	 21,317,951	 76.55	

	
	
	
Table	7.	Raw	read	summary	for	H3K27me3	data.	

	 #	of	reads	 %	mapped	

HPV(+)	SCC47	 76,898,730	 93.90	

HPV(+)	CaSki	 89,612,434	 94.85	

HPV(‐)	SCC4	 96,840,383	 94.27	

HPV(‐)	SCC74A	 85,179,882	 93.24	

	
	
	
Table	8.	The	effect	of	different	window	sizes	and	the	minimum	number	of	
reads/window	used	for	dispersion	estimation	on	the	number	of	peaks	
identified	by	PePr	V1.	Analyses	were	performed	using	the	GLRT	(generalized	
likelihood	ratio	test)	with	the	ATF4	dataset.	Results	using	the	alternative	Wald’s	test	
followed	a	similar	trend	(data	not	shown).	Values	are	#	peaks	/	#	negative	peaks	
(empirical	FDR).	Empirical	FDR	is	calculated	by	dividing	the	number	of	negative	
peaks	(via	sample	swap)	by	the	number	of	peaks.		
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									cut‐off	

window	size	
1	 5	 10	

200	 4463/0	(0%)	 5668/4	(<0.1%) 10344/16	(0.2%)	

300	 7364/8	(0.1%)	 7878/15	(0.2%) 10297/36	(0.3%)	

400	 9125/52	(0.6%) 9390/59	(0.6%) 10557/81	(0.8%)	

600	 11223/121	
(1.1%)	

11415/125	
(1.1%)	 11865/115	(1.0%)	

	
	
	

	

Figure	35.	Histograms	showing	the	inverse	local	dispersion	estimates	for	ATF4	(left)	and	
H3K27me3	(right)	data.	Dispersion	values	less	than	0.01	are	shown	grouped	at	100.	
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Figure	37.	The	πbj	(marginal	likelihood)	bin	estimates	for	the	twelve	bins	with	ATF4	data.	As	
observed,	binding	was	strongest	in	the	proximal	promoter	region	(<1	kb	5’	and	5’	UTR)	and	
in	introns,	although	it	was	not	a	strong	preference	towards	these	regions.	Very	little	binding	
occurred	in	first	exons.	
	

	
Figure	42.	The	πbj	(marginal	 likelihood)	bin	estimates	 for	 the	 twelve	bins	with	H3K27me3	
data	comparing	the	HPV(‐)	to	HPV(+)	cells.	Blue	is	HPV(+)	and	purple	represents	HPV(‐).	As	
observed,	 H3K27	 trimethylation	 is	 more	 prominent	 near	 transcription	 start	 sites	 and	
throughout	most	of	the	gene	body	in	HPV(‐)	cells,	while	it	is	more	prominent	in	intergenic	
and	certain	non‐coding	regions	for	HPV(+)	cells.	
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Figure	44.	HPV(‐)	vs	HPV(+)	odds	ratio	for	enrichment	of	the	overlap	between	a	gene	with	
HPV(‐)	 specific	 H3K27me3	 within	 3kb	 of	 its	 TSS	 and	 its	 differential	 expression	 (up‐	 or	
down‐regulated).	Green	line	represents	our	basic	implementation,	blue	line	represents	PePr	
V1,	and	red	line	represents	PePr	V2.	Consistent	with	results	obtained	by	restricting	to	up‐
regulation	 in	 HPV(+)	 (see	 Figure	 43),	 overall,	 PePr	 V2	 identified	 targets	 better	 correlate	
with	differential	expression.	
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Figure	46.	Two	H3K27me3	HPV(‐)	specific	peak	regions	found	by	the	basic,	current	
approach,	but	not	by	PePr	V1	and	V2.	A	peak	was	identified	in	both	HPV(‐)	cell	lines,	but	
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neither	HPV(+)	cell	lines.	(Top)	chr12:50498119‐50501003:	This	figure	illustrates	that	the	
current	approach	may	detect	regions	where	one	HPV(‐)	cell	ine	(SCC74A)	has	nearly	the	
same	read	profile	as	one	of	the	HPV(+)	cell	lines	(SCC47)	due	to	discretizing	them	as	
(peak/no	peak).	(Bottom)	chrY:330500‐331500:	Similar	to	(Top),	but	with	HPV(‐)		SCC4	
being	similar	to	HPV(+)	SCC47.	
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Figure	48.	Two	H3K27me3	HPV(‐)	specific	peaks	found	by	PePr	V1	and	PePr	V2,	but	not	by	
using	the	basic,	current	approach.	(Top)	chr2:100218348‐100219457	and	(Bottom)	
chr11:19529562‐19531559.	In	both	cases,	it	is	clear	that	the	two	HPV(‐)	cell	lines	have	a	
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significantly	stronger	peak	profile	than	either	HPV(+)	cell	lines.	
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Chapter	VI	
	

Conclusions	
	
	
A.	SUMMARY	OF	THESIS	WORK	

Numerous	genome	annotations	exist	to	document	genomic	characteristics.	

These	annotations	could	serve	as	helpful	auxiliary	tools	for	bioinformatics	analyses	

and	computational	software	development	to	better	refine	targets	in	multiple	types	

of	high‐throughput	experiments.	For	example,	pivotal	functional	regulatory	

elements	are	thought	to	be	conserved	through	evolution.	By	identifying	highly	

conserved	sequence	segments	in	model	organisms,	regulatory	elements	can	be	

better	prioritized	and	studied.	In	addition,	high	throughput	experiments	generate	a	

myriad	of	data,	and	incorporating	external	annotations	may	help	distinguish	the	

desired	targets	from	background	noise.	

In	this	thesis	work,	I	first	described	the	utilization	of	external	annotations,	

such	as	phylogenetic	conservation	and	human	DNAse	I	hypersensitive	sites,	to	help	

to	predict	a	7.1	kb	syntenic	region	that	is	conserved	between	human	and	mouse	that	

ultimately	was	determined	to	serve	as	a	Gata3	enhancer	in	T	lymphocytes.	I	also	

performed	in	vivo	imaging	to	confirm	its	T	cell‐specific	stimulatory	activity	on	a	

Gata3	reporter	gene.		

ChIP‐Seq	datasets	of	TR4	in	the	four	ENCODE	consortium	cell	lines	were	

analyzed	to	characterize	its	in	vivo	binding	preference	(gene	proximal	binding	at	
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DR1	sequence	motif),	to	predict	the	broader	biological	process	in	RNA	processing	in	

which	it	may	be	involved,	and	to	propose	at	a	cis	module	of	TR4	with	ETS	

transcription	factor	ELK4	can	commonly	be	identified.		

From	the	analysis	of	RNA‐Seq	data	derived	from	differentiating	human	

hematopoietic	progenitor	cells,	I	confirmed	the	data	reproducibility,	and	the	

differential	expression	patterns	of	several	known	erythroid	genes	were	consistent	

with	previous	array‐based	studies.	Analysis	results	also	suggested	a	list	of	potential	

novel	erythroid	regulatory	factors,	and	revealed	potential	novel	isoforms	of	known	

erythroid	regulatory	proteins.		

Finally,	I	developed	a	ChIP‐Seq	analysis	software	to	take	into	account	

biological	variation	among	relicates.	To	better	orient	biologists	for	downstream	

experimental	design,	the	software	pipeline	also	incorporates	external	annotation,	

specifically	the	binding	relative	to	gene	structure	information,	to	better	capture	the	

relationship	between	physical	binding	and	functional	regulatory	events.	

	

B.	FUTURE	DIRECTIONS	

i.	Chapter	II	

The	7.1	kbp	Gata3	T	cell	enhancer	is	now	under	intensive	investigation	and	

further	dissection	by	Dr.	Sakie	Hosoya‐Ohmura.	She	continues	to	refine	the	position	

of	the	minimal	sequences	required	within	the	7.1	kbp	fragment	to	confer	the	T	cell‐

specific	stimulatory	activity,	to	determine	the	factors	that	bind	within	this	minimal	

enhancer	to	confer	the	stimulatory	activity,	and	to	determine	whether	this	enhancer	

plays	a	role	in	T	cell	lymphoma	that	can	be	caused	by	ectopic	Gata3	expression.	
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ii.	Chapter	III	

While	a	significant	fraction	of	in	vivo	TR4	binding	sites	in	the	four	ENCODE	

cell	lines	was	observed	to	also	contain	an	ETS	binding	motif	(to	which	the	ETS	factor	

ELK4	was	bound	in	one	of	the	cell	lines),	questions	regarding	the	cis	module	

involving	TR4	and	ETS	transcription	factors	remain	unanswered.	Future	work	is	

required	to	investigate	whether	other	ETS	factors	also	cooperate	with	TR4	function.	

An	expression	level	screen	of	ETS	family	factors	to	exclude	low	abundant	ETS	

factors	could	be	an	initial	step	to	address	this	question	by	surveying	existing	

expression	databases,	such	as	through	UCSC	Genome	Browser.	

	

iii.	Chapter	IV	

While	RNA‐Seq	data	from	adult	CD34+	hematopoietic	progenitor	cells	were	

analyzed,	the	difference	between	the	adult	CD34	transcriptome	and	the	fetal	CD34	

transcriptome	remain	unclear.	Comparison	between	the	two	would	shed	light	on	the	

maturation	and	development	of	red	blood	cells.	In	addition,	it	would	be	interesting	

to	verify	whether	the	predicted	novel	isoforms	of	known	erythroid	regulatory	

proteins	do	play	roles	in	erythropoiesis.	

	

iv.	Chapter	V	

Chapter	V	introduced	a	novel	peak	prioritization	pipeline	(PePr)	for	ChIP‐Seq	

analysis.		One	area	for	future	improvement	is	to	boost	the	software	running	time;	

this	could	partially	be	accomplished	by	utilizing	a	file	containing	precomputed	
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genomic	regions	for	the	twelve	bins	related	to	gene	structure.	The	benefit	from	the	

incorporation	of	binding	relative	to	gene	structure	was	demonstrated;	future	work	

is	required	to	determine	to	what	extent	incorporating	additional	annotations	would	

improve	the	analysis	results	for	transcription	factors	and/or	epigenomic	studies,	

such	as	for	histone	modifications	and	DNA	methylation.	
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