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ABSTRACT

Developing and Application of Statistical Algorithms for High-Dimensional
Biological Data Analysis

by

Yasin Şenbabaoğlu

Co-chairs: Jun Li and George Michailidis

Various high-throughput technologies have fueled advances in biomedical research in

the last decade. Two typical examples are gene expression and genomic hybridiza-

tion microarrays that quantify RNA and DNA levels respectively. High-dimensional

data sets generated by these technologies presented novel opportunities to discover

relationships not only among interrogating probes (i.e genes) but also among inter-

rogated specimens (i.e samples). At the same time, however, the necessity to model

the variability within and between different high-throughput platforms has created

novel statistical challenges. In this thesis, I address the opportunities and challenges

with three algorithms.

First, I present DynBoost, a new method to infer gene-gene dependence relation-

ships and nonlinear dynamics in gene regulatory networks. DynBoost is a flexible

boosting algorithm that shares features from L2-boosting and randomization-based

algorithms to perform the tasks of parameter learning and network inference. The

performance of the proposed algorithm was evaluated on a number of benchmark

data sets from the DREAM3 challenge and the results strongly indicated that it

xi



outperformed existing approaches.

Second, I revisit consensus clustering (CC) and some other clustering methods in

the context of unsupervised sample subtype discovery. I show that many unsupervised

partitioning methods are able to divide homogeneous data into pre-specified numbers

of clusters, and CC is able to show apparent stability of such chance partitioning of

random data. I conclude that CC is a powerful tool for minimizing false negatives in

the presence of genuine structure, but can lead to false positives in the exploratory

phase of many studies if the implementation and inference are not carried out with

caution in line with particular prudent practices.

Lastly, I present MPCBS, a new method that integrates DNA copy number anal-

ysis across different platforms by pooling statistical evidence during segmentation.

I show by comparing the integrated analysis of Affymetrix and Illumina SNP array

data with Agilent and fosmid clone end-sequencing results on 8 HapMap samples

that MPCBS achieves improved spatial resolution, detection power, and provides a

natural consensus across platforms.
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CHAPTER I

Introduction

The advent of high-throughput experimental technologies in the last decade ini-

tiated a data-rich era for biology. The ability to gain quantitative information from

all genes, mRNA transcripts, peptide products, and metabolites in whole systems

resulted in a rapid increase in the number of large-scale datasets. However, the in-

terpretation of these large-scale biological datasets created important challenges for

investigators in deriving information about whole systems as the data originated from

complex stochastic systems and had both experimental and technical sources of error.

The interdisciplinary research efforts by biologists, statisticians, computer scientists,

and mathematicians tackling these challenges led to important advances in both the

statistical modeling of the sources of error and also the biomedical context from which

the data were collected.

Two typical examples of high-throughput biological datasets are gene expression

and comparative genomic hybridization microarrays that quantify the messenger RNA

(mRNA) and DNA copy number levels in the genome respectively.

(a) Gene expression microarrays: This platform involves the use of nucleic acids,

referred to as probes, attached to a solid surface to measure via hybridization the

quantity of complementary nucleic acid transcripts present in a sample, referred

to as the target (1). A greater number of target molecules that hybridize to the
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probes emit light at a higher intensity, which is then detected by a specialized

scanner. The expression levels for the genes in the system can be obtained from

these intensity levels after several technical numerical steps such as background

adjustment, normalization, and summarization.

Depending on the research question, data on the expression levels of genes can

be collected either from varying experimental conditions at a fixed time point

for a static representation of the system, or from different time points under the

same experimental condition to observe the dynamic properties. In the former

case, the dataset can be represented by an N ×P matrix, where N and P denote

the number of samples and the number of probes respectively. Data matrices

from different experimental conditions can be compared to infer the differences

in the gene expression levels at each condition. In the latter case, however, a

given sample is assayed for T time points, resulting in a T × P data matrix for

each sample. Ideally, multiple samples should be assayed at the same time points

to obtain a collection of T × P matrices and reduce the effects of the technical

and biological sources of error. Such a collection of time series datasets can then

be used to interrogate the dynamic properties of the system such as regulatory

relationships among genes.

High-dimensional datasets generated by gene expression arrays present novel op-

portunities to discover relationships both among interrogating probes (i.e. genes)

and among interrogated samples.

(1) Relationships among probes: This case carries the important promise of

deciphering system-wide interactions that regulate the inner workings of a

cell. Regulation in the cell can occur at multiple levels including but not lim-

ited to gene regulatory interactions, protein-protein interactions and signal-

transduction interactions. The interacting agents in these regulatory systems

2



are thought to constitute a network model with edges representing interac-

tions. This is a rather idealistic abstraction in a Platonic sense as also pointed

out by (33).

“. . . (A) network model . . . is a concept rather than an observa-
tion, or a measurement related to an observation (e.g., gene expres-
sion or fluorescence intensity). In the same vein as the equations of
mathematical-physics do not “hide” within the physical phenomena
they describe, the networks we proposed as gold standard models
. . . do not truly “exist” in nature. Networks are a conceptual rep-
resentation of cellular interactions.”

In Chapter 2, I focus on one particular regulatory regime in the cell, namely

gene regulatory networks (GRN), or also known as transcript control net-

works. The interacting agents in these networks are genes, RNA transcripts,

and translated proteins. Proteins that bind to the promoter sequence of a

gene, or to other proteins bound to this sequence are called ‘transcription fac-

tors’. Transcription factors, either alone or through forming complexes with

other proteins, can alter the expression levels of genes’ mRNA transcripts. In

the network model, this interaction is modeled with a directed edge from the

gene that has coded for the transcription factor to the gene whose expression

level is altered. In addition to the directionality, the edges are also signed;

with a positive sign indicating increased expression levels (activation) and a

negative sign indicating decreased expression levels (suppression). This first

type of GRN reverse-engineering algorithm, termed “gene-to-sequence” reg-

ulation has led the way to the so-called “physical modeling” approach for

developing GRN reverse-engineering algorithms (6). This approach seeks to

specifically model the binding of transcription factors to promoter sequences,

and hence differs from the second broad category that seeks to model “gene-

to-gene” interactions.

The second broad category of GRN reverse-engineering algorithms follows the

3



‘influence modeling’ approach where the goal is to relate the expression of a

gene to the expression of other genes in the cell (gene-to-gene interaction) (6).

Even though interactions actually take place between gene products such as

mRNA transcripts or proteins, the gene regulatory network model does not

use separate nodes for gene products, but only a single node to represent them

together with the relevant coding gene. As in the physical interaction model

mentioned above, regulations can either ‘activate’ (positive interaction) or

‘suppress’ (negative interaction) expression levels.

A plethora of methods have been developed to infer the topology and dy-

namics of GRNs from both static and time series datasets. In spite of this

rich collection of methods, certain types of errors continue to challenge the

modeling efforts, meaning that there is still significant room for improvement

(9; 31). In particular, an important open question is related to the devel-

opment of efficient methods to infer the underlying gene regulation networks

from temporal gene expression profiles (11). Modeling temporal data has a

crucial advantage over modeling spatial data in that temporal interactions

are able to lend the model the causality interpretation without any leap of

faith or extra assumptions. Spatial data, on the other hand, are best suited

to infer statistical or probabilistic dependencies between nodes. Causality

can be inferred from spatial data under some strong assumptions that are

not known to be true for biological systems (2).

The challenge of gene regulatory network inference can be addressed by lever-

aging the power of ensemble methods in machine learning. For instance,

boosting is an important supervised machine learning method that aggre-

gates multiple weak learners to arrive at a better prediction than the base

learners alone. However, the development of boosting algorithms for struc-

ture learning has so far been restricted to spatial data. Not being able to
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leverage the valuable information from temporal data has limited the success

of these methods.

In Chapter 2 of this thesis, I present DynBoost, a new method that achieves

reverse-engineering of GRNs based on the ‘influence modeling’ approach men-

tioned above by employing time series datasets and nonlinear dynamics in an

efficient boosting algorithm. This work is submitted to the 2012 meeting

for the European Conference in Computational Biology, where the accepted

papers will be published in Oxford Bioinformatics. For this project, I co-

implemented the DynBoost algorithm and performance tests, generated and

analyzed the results, and drafted the paper.

(2) Relationships among samples: The case regarding the relationships among

samples falls squarely in the context of unsupervised class discovery. This line

of research has been used effectively in the last decade to discover disease

subtypes from gene expression datasets. Hierarchical clustering gained rapid

popularity in the first half of the last decade particularly due to producing

easy-to-interpret results and not requiring user-specified parameters. How-

ever, stability issues in the implementation of this method made the results

and the discovered classes questionable. In one example, breast cancer was

first reported to have six subtypes in a 2001 report that so far received 4157

citations (2). Then, in 2003 a group with the same leading authors published

a report leaving out one of the six previously-declared subtypes (3) and this

report has been cited 2477 times. Yet, in 2006 a more sophisticated analysis

by a different group, but still relying on hierarchical clustering, contested the

robustness of the two of the remaining five subtypes (4). Although this latter

group published extensively on both breast cancer subtypes and biology, the

number of citations for this report remains at far smaller levels at 14.

Consensus clustering (CC) (11) was developed in a condition of unsupervised
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class discovery when such stability and robustness issues ailed the reported

classes. The consensus rate between two samples measures how frequently

they are grouped together in multiple clustering runs under a certain degree

of perturbation. The base clustering method for the multiple runs can be any

partitioning method, including the previously popular hierarchical clustering.

CC rapidly gained popularity over other existing algorithms in the context

of unsupervised class discovery due to a number of reasons. First, it was

not a new partitioning method per se, it allowed the investigators to use any

partitioning method they were already familiar with. Second, CC allowed for

a visualization of the robustness of the clusters as well as an inference for the

optimal number of classes. CC’s promise was to present a visual tool for the

stability and robustness of the clusters, however the potential of the multiple

runs to exaggerate the inherent biases of the base partitioning method did not

receive much attention. Moreover, the significance levels associated with the

inferences, and the sensitivity/specificity of this method under null conditions

of differing strength have not been systemically studied.

In Chapter 3 of this thesis, I revisit consensus clustering (CC), motivate the

over-interpretation potential of this method with a real biological dataset,

further analyze the sensitivity and specificity results in simulated datasets

of ‘known structure’ or ‘known lack of structure’, and recommend prudent

practices for the implementation of CC. This work is in preparation for sub-

mission to PLOS Computational Biology. For this project, I re-coded the CC

algorithm along with other clustering methods such as CLEST and GAP;

implemented these and some other existing methods such as the silhouette

width. I performed tests, generated and analyzed the results, and drafted the

paper.

(b) Array-comparative genomic hybridization (aCGH): Similar to gene ex-
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pression microarrays, this technique also relies on the hybridization of probe and

target nucleic acid sequences. However, the sequences in aCGH platforms are

DNA fragments as opposed to the RNA molecules on gene expression arrays. The

probes on a typical aCGH measurement interrogate the DNA copy numbers of

total genomic DNA isolates from differentially labeled test and reference samples.

There are multiple aCGH platforms such as Illumina, Affymetrix, and Agilent,

which differ from one another in various components of the measurement proce-

dure including the type of probe used, namely copy number variation (CNV) and

single nucleotide polymorphism (SNP) probes, sample amplification procedures

and the data format generated. For instance, Agilent arrays produce two-color

ratio data in a test/reference format, while Affymetrix and Illumina arrays mea-

sure each sample independently. Due to the different techniques employed, these

three methods produce data values with distinct noise characteristics, different

proportions of low-quality SNPs and distinct local signal trends.

The multiple dimensions of variability among these different platforms created a

novel statistical challenge for integrating DNA copy number calls from multiple

platforms. In contrast with the multiple-time-points and multiple-sample settings

above where the probes and samples can be studied to understand interactions

or similarities between one another, the multiple-platform setting in this thesis

involves data from interrogating a single sample on different platforms at only

one time point. Collecting DNA copy number data from multiple time points

is likely to be a fruitless approach because DNA copy number gains and losses

occur at extremely low frequency when compared with the changes in the levels

of gene expression transcripts. The multiple-platform approach can, however, be

extended to the multiple-sample case where biological replicates of the same sys-

tem under study are collected and each replicate is assayed in multiple platforms.

However, the common situation today is to be able to find data from multiple
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samples on a single platform or from a single sample on multiple platforms. Since

the multiple-sample case for DNA copy number analysis was studied elsewhere

(13) and is beyond the scope of this thesis, I present below the motivation for the

joint estimation of DNA copy number from multiple platforms.

(1) DNA copy number variation (CNV) is an important source of human ge-

netic variation. As much as 12 % of the human genome (housing thousands

of genes) is variable in copy number, which is likely to constitute a signif-

icant proportion of normal phenotypic variation (14). Moreover, CNVs are

known to be associated with specific gene functions and human diseases as

well. Thus, detecting and cataloguing CNVs at higher resolutions is both

genetically and medically important.

In recent years, a growing number of genetic studies have relied on collecting

genome-wide data on DNA copy number variants. The conventional approach

for analyzing these datasets is to apply one of the CNV detection algorithms

to search for genomic intervals of altered signal intensity. When multiple

technical platforms (or different versions of the same platform) are used to

interrogate the same biological samples, the conventional approach would in-

volve running the same CNV detection algorithm separately on the data from

each platform, and then combining these segmentation results with a simple

intersection or union operation. Regardless of the choice of the operation,

this approach for integrated copy number analysis lacks a theoretical founda-

tion and presents difficulties in making a consensus decision when platforms

disagree on the calling of a CNV. What platform to have more confidence in,

and how much weight the calls from each platform should have are questions

that are not answered by separate runs of the CNV detection algorithm.

For example, Affymetrix, Agilent and Illumina arrays are three platforms that

fundamentally represent three distinct marker panels and different molecular
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assay methods. Thus, they report different magnitudes, different boundaries

and different degrees of uncertainty for the same underlying copy number

event. An integrated analysis, where information from all platforms are used

at the same time to detect CNVs and to estimate the levels of change, is

expected to maximize resolution and accuracy. The difference of this inte-

grated analyis from the conventional approach is that, in the conventional

case, statistical evidence for a given copy number event is pooled after seg-

mentation. However, in the integrated analysis, statistical evidence for each

copy number event is pooled during segmentation and the CNV calls made

are the consensus calls that do not require further combination.

In Chapter 4 of this thesis, I present MPCBS for such an integrated esti-

mation of DNA copy number from multiple platforms. This new method

is based on a simple multi-platform change-point model where the built-in

statistic automatically pools the statistical evidence for copy number events

during segmentation. This work was published in Oxford Bioinformatics (15).

For this project, I debugged the MPCBS implementation and increased its

efficiency. I performed tests, generated and analyzed the results.
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CHAPTER II

A novel boosting algorithm to infer nonlinear

dynamics and interactions in gene regulatory

networks

2.1 Abstract

Motivation: Reverse engineering of gene regulatory networks remains a central

challenge in computational systems biology, despite recent computational advances.

A number of approaches using either perturbation (knock-out) or wild-type time

series data have appeared in the literature addressing this problem. Nonlinear dy-

namical models are particularly appropriate for this inference task employing time

series data. Recent benchmark in-silico challenges have accelerated the progress on

this front with numerous advances in learning the parameters of such models; how-

ever, these modeling efforts have not enjoyed the same level of success for identifying

the network structure with high fidelity. In this study, we introduce a novel nonlinear

autoregressive model based on operator-valued kernels that simultaneously learns the

model parameters, as well as the network structure.

Results: A flexible boosting algorithm (DynBoost) that shares features from L2-

boosting and randomization-based algorithms is developed to perform the tasks of
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parameter learning and network inference for the proposed model. Specifically, at each

boosting iteration, a regularized operator-valued kernel based vector autoregressive

model (OKVAR) is trained on a random subnetwork. The final model consists of an

ensemble of such models. The performance of the proposed algorithm is evaluated

on a number of benchmark data sets from the DREAM3 challenge and the results

strongly indicate that it outperforms existing approaches.

2.2 Introduction

The ability to reconstruct cellular networks plays an important role in our under-

standing of how genes interact with each other and how this information flow coor-

dinates gene regulation and expression in the cell. Gene regulatory networks (GRN)

have the potential to provide us with the cellular context of all genes of interest, as well

as with a means to identify specific subnetworks that are malfunctioning in a given

disease state (6; 14). A diverse suite of mathematical tools has been developed and

used to infer gene regulatory interactions from spatial and temporal high-throughput

gene expression data (see 2; 16 and references therein). A fair comparison for the rel-

ative merits of these methods requires their evaluation on benchmark datasets, which

the DREAM (Dialogue for Reverse Engineering Assessments and Methods) project

(33) provided. This project aims to enhance the strengths and understand the lim-

itations of various algorithms to reconstruct cellular networks from high-throughput

data (32). In addition to the choice of the algorithm, network reconstruction heavily

depends on the input data type employed. Data that measure the response of the cell

to perturbations -either by knocking out or silencing genes- are particularly useful

for such reconstructions since they offer the potential to obtain a detailed view of

cellular functions. The downside is that obtaining large-scale perturbation data is

expensive and relatively few methods have been proposed in the literature to infer

regulatory networks from such data due to computational challenges (34; 12). Data
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from time-course gene expression experiments have the potential to reveal regulatory

interactions as they are induced over time. A number of methods have been employed

for this task; including dynamic Bayesian networks (35; 19), Granger causality models

(20; 21; 29), and state-space models (23; 26). The first set of methods are computa-

tionally very demanding, while the latter two employ linear dynamics, hence limiting

their appeal. Other approaches are based on assumptions about the parametric na-

ture of the dynamical model and resort to time-consuming evolutionary algorithms

to learn the network (30). Moreover, in spite of the rich collection of methods em-

ployed to solve the topology and dynamics of GRNs, certain types of errors continue

to challenge the modeling efforts, meaning that there is still significant room for im-

provement (9; 31). In this study, we introduce a framework for network inference

based on nonlinear autoregressive models, which are particularly appropriate when

little is known about the true underlying dynamics. Our framework is rich and flexi-

ble, and it can efficiently capture the complex dynamics of the network as well as its

underlying structure.

2.3 System and Methods

2.3.1 Non linear autoregressive models and network inference

Let xt ∈ Rp denote the observed state of a GRN comprising of p genes. Further,

let S be the set of these p genes. We assume that a first-order stationary model is

adequate to capture the temporal evolution of the network state, which can exhibit

nonlinear dynamics captured by a function H : Rp → Rp; i.e. xt+1 = H(xt) + ut,

where ut is a noise term. The regulatory interactions amongst the genes is captured

by an adjacency matrix A, which is the target of our inference procedure.

Note that for a linearly evolving network, A can be directly estimated from the

data. In a nonlinear setting, a direct estimation is not possible but averaging the
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values of the empirical Jacobian matrix of the function H over the whole set of time

points provides an estimate. Specifically, denote by x0, . . . ,xN−1 the observed time

series of the network state. Then, ∀(i, j) ∈ {1, . . . , p}2, an estimate of the adjacency

matrix A is given by:

Âij = g

(
N−1∑
t=0

∂H(xt)i
∂(xt)j

)
, (2.1)

where g is a smooth thresholding function. Note that in the presence of sufficient

number of time points (N >> p) one can use the above posited model directly to ob-

tain an estimate of A, provided that a good functional form of H is selected. However,

the presence of more genes than time points makes the problem more challenging,

which, together with the absence of an obvious candidate functional form for H, make

a nonparametric approach an attractive option.

Such an approach is greatly facilitated by adopting an ensemble methodology

where H is built as a linear combination of nonlinear autoregressive base models de-

fined over subsets of genes (e.g. subnetworks). Let M be the number of subnetworks

and Sm ⊂ S (m = 1, . . . ,M) be the subset of genes that constitute the mth subnet-

work. Each subset has the same size k. We assume that H can be written as a linear

combination of M autoregressive functions of the type h : Rp → Rp such that:

x̂t+1 = H(xt) =
M∑
m=1

ρmh(xt;Sm) (2.2)

The paramater set Sm defines the subspace of Rp where h operates. This component-

wise subnetwork approach is intended to overcome the intractability of searching

in high-dimensional spaces and to facilitate model estimation. In our framework,

subnetworks do not have any specific biological meaning and are allowed to overlap.

Efficient ways to build an ensemble of models include bagging, boosting and

randomization-based methods such as random forests (7; 3). The latter two ap-

proaches have been empirically shown to perform very well in classification and re-

14



gression problems. In this study, we employ an L2-boosting type algorithm suitable

for regression problems (8; 5) enhanced with a randomization component where we

select a subnetwork at each iteration. The algorithm sequentially builds a set of

predictive models by fitting at each iteration the residuals of the previous predictive

model. Early-stopping rules developed to avoid overfitting improve the performance

of this algorithm.

Next, we discuss a novel class of base models.

2.3.2 A new base model

The ensemble learner is a linear combination of M base models denoted by h

(Eq. 2.2). Even though h works on a subspace of Rp defined by Sm, for sake of

simplicity we present here a base model h : Rp → Rp that works with the whole set

of genes, e.g. in the whole space Rp. Here, we introduce a novel family of nonpara-

metric vector autoregressive models that are based on matrix-valued functions. The

model we propose is inspired by the framework of reproducing operator-valued kernel

Hilbert spaces, which are appropriate for vector-valued function approximation. We

abbreviate this model with OKVAR, using the uppercase letters in Operator-valued-

Kernel-based Vector AutoRegressive models. Similar models have recently become

popular in machine learning for multitask problems (18) and structured classification.

In a similar fashion as the scalar case, it is also possible to use matrix-valued

kernels for kernel ridge regression, elastic modeling and support vector regression.

The properties for an operator-valued kernel1 can be found in Micchelli and Pontil

(2005) (18). In this work, we propose a kernel that does not satisfy all the properties

of an operator-valued kernel, i.e. it is not generally semidefinite positive, but it allows

to take into account each coordinate pair of two vectors of Rp, as shown next.

1As output space is Rp, the operator is a linear application and thus a matrix
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Let x0, . . . ,xN−1 be the observed network states. Then, model h is defined as

h(xt;S) =
N−1∑
k=0

K(xk,xt).ck (2.3)

where K(·, ·) is an operator-valued kernel and each ck (k ∈ {0, . . . , N−1}) is a vector

of dimension p. In the following, we denote the matrix of the N row vectors cT
k of

dimension p with C (C ∈MN,p).

In this work, we define the following matrix-valued extension of the Gaussian

kernel: ∀(x, z) ∈ R2p,

K(x, z)ij = exp
(
−γij(xi − zj)2

)
. (2.4)

Here, K depends on a matrix hyperparameter Γ := γ{1≤i,j≤p}. For any given pair of

states (x, z), each coefficient K(x, z)ij measures how close coordinate i of state x and

coordinate j of state z are. When γij is very high, the proximity of those coordinates

is not taken into account in the model. One great advantage of such a kernel is that,

contrary to a scalar Gaussian kernel, it allows the comparison of all coordinate pairs

of the two network states and does not reduce them to a single number.

Matrices Γ and C need to be learned from the available training data. If K is fixed,

C can be estimated using penalized least square minimization as in (4). However,

learning Γ and C simultaneously is more challenging, since it involves a non-convex

optimization problem. Thus, we propose to decouple the learning of hyperparameter

Γ and parameter C by first estimating Γ and then using this estimate to learn C.

Noting that X, the matrix of the N row vectors {xT0 , ...,xTN−1} is inMN,p, we define

Γ using a symmetric matrix W := w{1≤i,j≤p} such that wij codes for an independence

measure between genes i and j:

γij =
α exp(−βwij)

1
N2p2

∑
k,`,i,j(xki − x`j)2

(2.5)
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where α, β ∈ R are user-specified hyperparameters. In this setting, learning Γ reduces

to estimating W , which is an easier task that can be addressed with a statistical

independence test such as the Hilbert-Schmidt Independence Criterion (HSIC) (11).

2.4 Algorithm

2.4.1 DynBoost

The proposed algorithm is called DynBoost, since H models the temporal evolu-

tion between network states xt with an L2-boosting approach. As seen in Algorithm

1, it generates Hm(xt), an estimate of xt+1 at iteration m, and updates this esti-

mate in a while-loop until an early-stopping criterion is met, or until the prespecified

maximum number of iterations M is reached.

Algorithm 1 DynBoost

Inputs :
• Network states : x0, . . . ,xN−1 ∈ Rp

• Early-stopping threshold ε
Initialization :
• ∀t ∈ {0, . . . , N − 1}, H0(xt) := (x̄1, . . . , x̄p)T

• Iteration m = 0, STOP=false
while m < M and STOP=false do

Step 0: Update m← m+ 1
Step 1: Compute the residuals u

(m)
t+1 := xt+1 −Hm−1(xt)

Step 2: STOP := true if ∀j ∈ {1, . . . , p}, ‖uj(m)‖ ≤ ε
if STOP=false then

Step 3: Select Sm, a random subset of genes of size k ≤ p
Step 4: (a) Learn an interaction matrix Wm ∈ {0, 1}k×k from u

(m)
1 , . . . ,u

(m)
N ,

(b) estimate the parameters Cm and (c) estimate ρm by a line search.
Step 5: Update the mth boosting model: Hm(xt) := Hm−1(xt) +
ρmh(xt; {Sm,Wm, Cm})

end if
end while
mstop := m
Compute the Jacobian matrix Jmstop of Hmstop across time points, and threshold to

get the final adjacency matrix Â.
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In the DynBoost loop, H0(xt) is initialized with the mean values of the genes

across the time points. The steps for estimating H in a subsequent iteration m are

as follows: Step 1 computes the residuals u
(m)
t+1 for time points t ∈ {0, . . . , N − 2}.

Computing the residuals in this step confers DynBoost its L2-boosting nature. In Step

2, an early-stopping decision is made based on the comparison between the norms of

the residuals and a prespecified stopping criterion ε. If the norms for all dimensions

(genes) are less than ε, the algorithm exits the loop. In Step 3, a random subset

Sm of size k is chosen among the genes of S that have a sufficiently high residual.

This step constitutes the randomization component of the algorithm. Step 4 uses

the current residuals in the subspace to estimate the interaction matrix Wm and

parameters Cm. ρm is then optimized through a line search. The mth boosting model

Hm(xt) is updated in Step 5 with the current Wm, Cm, and ρm estimates. If the

prespecified number of iterations M has not been reached, the algorithm loops back

to Step 1. Otherwise, it exits the loop and obtains the adjacency matrix estimate Â

by computing and thresholding the Jacobian matrix as in Eq. 2.1.

We next delineate how the interaction matrix Wm and model parameters Cm and

ρm are estimated from residuals in Step 4.

2.4.2 Learning the interaction matrix

An important feature of the learning algorithm in Step 4 lies in the decoupling of

graph learning from model parameter learning. In Step 4(a) DynBoost employs HSIC,

a kernel-based independence test suitable for capturing nonlinear interactions (11).

The original HSIC implementation provides a test statistic that allows for a binary

decision between the null hypothesis of independence and the alternative hypothesis

of dependence. However, it is of interest to be able to quantify the strength of the

interaction between any given pair of genes with a test that goes beyond a binary

decision. Therefore, we enhanced the HSIC procedure with permutation tests so that
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it yields a p-value πij for the significance of the interaction between genes i and j.

Ranking the p-values from lowest to highest allows one to select the most significant

interactions within the network. HSIC discovers up to a user-specified number of

significant edges (NE≡number of edges) from the residual time series associated with

a subset Sm. The pseudo-code for our implementation is presented in Algorithm 2.

Algorithm 2 Selection of edges using HSIC for sequential data

Inputs
• Set of k genes : Sm, Number of edges to pick : NE

• Level of the test : α

• Residuals : u
(m)
1 , . . . ,u

(m)
N−1 ∈ Rk

for i, j := 1 to k do
Compute the HSIC p-value πij between sequence (u

(m)
1i , ..., u

(m)
(N−1)i) and the lagged

sequence (u
(m)
2j , ..., u

(m)
Nj )

Compute the HSIC p-value πji between sequence (u
(m)
1j , ..., u

(m)
(N−1)j) and the lagged

sequence (u
(m)
2i , ..., u

(m)
Ni )

Let πi↔j = min {πij, πji}
end for
Find the edges (ei, ej) ∈ Sm × Sm with πi↔j ≤ α
Rank those edges by increasing order of p-value
Outputs : Select the first NE edges

The genes in Sm are selected randomly from the set S in Step 3 of the DynBoost

algorithm. This random selection is motivated by (10) where combining features of

random forests and boosting algorithms gave robust results. In Step 4(a), we apply

HSIC on this random subset as a weak graph-learner to increase the robustness of

the algorithm and reinforce its ability to focus on subspaces.

2.4.3 Autoregression using OKVAR

At each iteration m, an OKVAR model such as the one previously described in

Eq. 2.3 is defined to work in the k dimensional subspace associated with the subset

Sm. Let P (m) denote a p×p diagonal matrix defined as a selection operator: p
(m)
ii = 1

if gene i is in Sm and p
(m)
ii = 0 otherwise. Formally, hm = h(·; {Sm,Wm, Cm}) applies
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only to selected residuals ũ
(m)
t = P (m)u

(m)
t . However, we use the u

(m)
t notation below

for simplicity. Once the matrix Wm is obtained from HSIC, we define Γm as in Eq. 2.5.

Then, we only need to learn parameter Cm to complete Step 4. This estimation can

be done via the functional estimation of hm within the framework of regularization

theory, i.e. the minimization of the empirical square loss and the square `2 norm of

the function hm, which imposes smoothness in the model. However, the cost function

to be minimized must reflect the twofold goal of obtaining a final model H that

fits the data well and predicts future time points successfully as well as accurately

extracting the underlying regulatory matrix A. Following Eq. 2.1, the adjacency

matrix A is estimated by the empirical Jacobian of H, expressed in terms of the

empirical Jacobian J (m) of the base models hm (m = 1, . . . ,mstop) using the observed

data (not residuals): Jij =
∑mstop

m=1 ρmJ
(m)
ij = 1

N

∑mstop

m=1 ρm
∑N−1

t=0 J
(m)
ij (t) where for a

given time point t, the coefficients J
(m)
ij (t) can be written as:

J
(m)
ij (t) =

∂hm(xt)i
∂(xt)j

=
N−1∑
k=0

∂(K(m)(xk,xt)c
(m)
k )i

∂(xt)j

When K is chosen as the Gaussian matrix-valued kernel defined in Eq. 2.4, J
(m)
ij (t)

is expressed in terms of the coefficients of matrix Cm in the following way:

J
(m)
ij (t) = −2 γ

(m)
ij

∑
k

c
(m)
kj (xki − xtj) exp

(
−γ(m)

ij (xki − xtj)2
)

This expression suggests that controlling the sparsity of the coefficients of Cm will

impact the sparsity of J (m) and will avoid too many false positive edges. The `1 norm

of Cm is thus added to the previously proposed empirical square loss and `2 term to

define the following cost function:

L(Cm) =

N−1∑
t=0

∥∥∥u(m)
t+1 − hm(u

(m)
t )

∥∥∥2 + λ‖hm‖2H + µ‖Cm‖1 (2.6)
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The optimization problem can be stated as:

minimize
Cm∈MN,p

L(Cm)

subject to λ ≥ 0, µ ≥ 0

‖hm‖2H =

N−1∑
i,j=0

c
(m)
i

T
K(m)(u

(m)
j ,u

(m)
i )c

(m)
j

‖Cm‖1 =
N−1∑
t=0

p∑
j=1

|c(m)
tj |

This elaborate regularization model combining `1 and `2 penalties was first introduced

by (36) as the elastic net model. The authors showed that this model not only achieves

sparsity like lasso-penalized models, but also encourages a grouping effect, which is relevant

for our case to highlight possible joint regulation among network variables (genes). We used

a projected scaled subgradient method (27) to minimize the cost function in Eq. 2.6.

2.5 Implementation

2.5.1 Data description

The performance of the Dynboost algorithm is evaluated on a number of GRNs obtained

from DREAM3 in-silico challenges. Specifically, the time series consisting of 21 points

corresponding to size10 and size100 networks of E.coli (2) and Yeast (3) were selected,

because networks of size 10 are able to model biological pathways more realistically, and

networks of size 100 show scalability of the algorithm to larger numbers of nodes. The data

were generated by imbuing the networks with dynamics from a thermodynamic model of

gene expression and a Gaussian noise (25). These networks are subgraphs of the currently

accepted E. coli and S. cerevisiae gene regulation networks, and exhibited varying patterns

of sparsity and topological structure (Table 2.1). The total degree of a gene is the sum of its

in- and out-degrees, while the average of the totals across genes gives the average-degree

for the entire network. Density is the ratio of the number of edges in the network to the

maximum possible number of edges. Modularity index and the number of modules given
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Size10 Ecoli1 Ecoli2 Yeast1 Yeast2 Yeast3

Average-degree 2.2 3.0 2.0 5.0 4.4
Density 0.244 0.333 0.222 0.556 0.489

Modularity 0.016 (2) 0 (1) 0.260 (3) 0 (1) 0 (1)

Size100 Ecoli1 Ecoli2 Yeast1 Yeast2 Yeast3

Average-degree 2.5 2.38 3.32 7.78 11.02
Density 0.025 0.024 0.033 0.079 0.111

Modularity 0.643 (6) 0.661 (7) 0.681 (8) 0.328 (6) 0.088 (14)

Table 2.1: Average-degree, density, and modularity for DREAM3 networks.

in parentheses are the optimal values due to Newman (2004) (22). Yeast2 and Yeast3 have

markedly higher average-degree, density; but lower modularity for both size10 and size100

networks. Ecoli2 is seen to be different from Ecoli1 in that it is denser, less modular, and

has higher average-degree for size10; whereas these comparisons are reversed for size100.

Yeast1 is observed to be closer to Ecoli networks for all three statistics.

2.5.2 Hyperparameters and model assessment

Since the DynBoost algorithm depends on a number of tuning parameters, the following

choices were made: the algorithm stops when the norm for the residual vector is below an

ε = 10−2 threshold. The size of random subnetworks k in Step 3 of the algorithm was

optimized using grid-search; and set to 3 genes for size10 and to 25 for size100 networks.

In Step 4(a), the level of the HSIC independence-test is set to a conservative α = 1%, and

data points were permuted 200 times to obtain the p-value of the test. The most significant

1 and 10 edges (NE) are then selected in HSIC for size10 and size100 networks respectively.

Selecting a low number of edges in HSIC helps obtaining a weak graph from each base

learner, which is an important component of boosting methods. If the algorithm fails to

find any significant interactions in HSIC, the subnetwork is discarded and a new k × k

subnetwork is randomly chosen. This procedure is repeated for a maximum of 100 trials if

NE significant edges are not found. The parameters of the Gaussian matrix-valued kernel

α and β (Eq. 2.5), and the regularization parameters of the elastic net model (Eq. 2.6) in

Step 4(b) are optimized through grid-search. For size10 networks, the ridge penalty is set
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to λ = 103 and the `1 penalty to µ = 10−4. For size100 networks, the corresponding values

for λ and µ are both set to 10−3. α and β are set to 1 for both sizes.

The performance of the algorithm is assessed using the following standard metrics: the

receiver operating characteristic curve (ROC), and the area under it (AUROC), the area

under the precision-recall curve (AUPR), F1-score, sensitivity, specificity, positive predictive

value, and Matthew’s correlation coefficient. Due to lack of space, we present only AUROC

and AUPR results but note that the remaining ones were given due consideration. Function

g in (Eq. 2.1) is a hyperbolic tangent transformation applied to the normalized coefficients

of the Jacobian2: Âij = tanh
(

Jij
‖J‖F − δ

)
, with δ being a user-specified threshold.

2.5.3 Consensus from multiple runs and bootstrapping

As DynBoost residuals diminish rapidly, there is a risk that the potential regulators

and their targets may not be fully explored by the random subnetwork procedure of the

algorithm. To address this issue, the algorithm was run 100 times and a consensus network

was built by combining the prediction for each single run. Then, for each pair of nodes the

frequency that the edge appears over multiple runs was calculated. If the frequency was

above a threshold the edge was kept, otherwise discarded; thus yielding the final network

prediction.

Another way to increase stability (17) is to combine bootstrapping of the data with runs

of the algorithm. Specifically, 100 bootstrapped samples were obtained from the time series

of each network. Given the dependence over time, a block-bootstrap algorithm was used

with a block length of 7 for both size10 and size100 networks due to (24). The Dynboost

algorithm produced a reconstructed network from each bootstrapped sample unless early

stopping occurred in the first iteration due to small residuals. The edge frequency was

calculated as in the multiple-runs case.

In both cases (multiple runs and bootstrapping), it is necessary to adjust the consensus

threshold level according to the size, density, and modularity of a network. In general,

the larger the size for a biological network, the bigger are the combinatorial challenges for

2For a matrix Q, ‖Q‖F =
√∑

i,j Q
2
ij is the Frobenius norm of Q.
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discovering true edges and avoiding false ones. Therefore, the consensus threshold has to

be set to smaller values for larger networks. For a fixed size, the threshold will depend

on the density and modularity of the network. Denser and more modular networks have

greater instances of co-regulation for certain genes, which lowers prediction accuracy for

network inference algorithms (9) and leads to a greater number of false positives. Thus,

we recommend using lower consensus thresholds for denser and more modular networks as

well.

2.6 Results and discussion

2.6.1 Numerical results

(a) Size10 Ecoli1 (b) Size10 Ecoli2

(c) Size100 Ecoli1 (d) Size100 Ecoli2

Figure 2.1: Mean squared error of genes at termination. (a) Size10 Ecoli1 (b) Size10
Ecoli2 (c) Size100 Ecoli1 (d) Size100 Ecoli2. The algorithm terminated after 12, 14, 4, and
4 iterations respectively.

The DynBoost algorithm succeeds to fit the observed data and exhibits fast convergence.

Figure 2.1 shows the results from size10 and size100 Ecoli2 networks. We note that the

algorithm is rich and flexible enough to have the mean-squared-error for genes diminish

rapidly towards zero in only 5-10 iterations.
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Ecoli1 Ecoli2 Yeast1 Yeast2* Yeast3*
Size 10 AUROC AUPR AUROC AUPR AUROC AUPR AUROC AUPR AUROC AUPR

Base learner 0.614 0.226 0.616 0.406 0.578 0.343 0.580 0.233 0.612 0.300
Multiple-run DynBoost 0.654 0.301 0.718 0.659 0.628 0.160 0.720 0.352 0.684 0.525
Bootstrap DynBoost 0.620 0.241 0.923 0.876 0.722 0.393 0.733 0.386 0.695 0.359

Team 236 0.621 0.197 0.650 0.378 0.646 0.194 0.438 0.236 0.488 0.239
Team 190 0.573 0.152 0.515 0.181 0.631 0.167 0.577 0.371 0.603 0.373

Table 2.2: AUROC and AUPR for DREAM3 size10 networks. Multiple-run and boot-
strap results are from consensus networks. The numbers in boldface are the maximum
values of each column. (* Consensus thresholds for Yeast2 and Yeast3 are different due to
their higher density and average-degree.)

The performance of the DynBoost algorithm for prediction of the network structure

is given in Tables 2.2 and 2.3. The results show a comparison between the base learner

alone, boosting with multiple runs and boosting with bootstrapping. The base learner is

an elastic OKVAR model learnt using HSIC on the whole set of genes S. The AUROC and

AUPR values given strongly indicate that DynBoost was able to outperform the teams in

DREAM3 that exclusively used the same set of time series data, namely team 236 and team

190. Even though the base learner outperformed the best competitor for only Yeast2 and

Yeast3, the multiple-run and/or the bootstrap consensus results achieved superior AUROC

and AUPR results for all networks. We particularly note that the DynBoost consensus runs

exhibited excellent AUPR values compared to those obtained by teams 236 and 190.

Ecoli1 Ecoli2* Yeast1 Yeast2 Yeast3
Size100 AUROC AUPR AUROC AUPR AUROC AUPR AUROC AUPR AUROC AUPR

Base learner 0.509 0.017 0.500 0.057 0.506 0.023 0.512 0.049 0.563 0.059
Multiple-run DynBoost 0.548 0.036 0.577 0.059 0.554 0.025 0.560 0.059 0.548 0.053
Bootstrap DynBoost 0.588 0.031 0.583 0.075 0.563 0.029 0.607 0.077 0.590 0.067

Team 236 0.527 0.019 0.546 0.042 0.532 0.035 0.508 0.046 0.508 0.065

Table 2.3: AUROC and AUPR for DREAM3 size100 networks. Multiple-run and boot-
strap results are from consensus networks. The numbers in boldface are the maximum
values of each column. (* Ecoli2 has a strong star-topology, which suggests a different
consensus threshold for this network.)

A comparison between algorithms for size100 networks (Table 2.3) shows that the Dyn-

Boost base learner again outperforms Team 236 in only Yeast2 and Yeast3 AUROC scores.

Consensus runs, on the other hand, achieve superior AUROC and AUPR performance for

all networks. It is noticeable however, that size100 AUROC values are about 10 to 20%

lower than size10 counterparts and AUPR values in all rows have stayed lower than 10%.

These results are more related to the size of the network rather than the choice of algorithm.

A similar decline is also observed in Team 236 results, the only team that exclusively used
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time series data for the size100 challenge. The primary reason for this decline is the abun-

dance of false positives in exponentially larger subspaces that drive the scores in spite of

the high success in discovering true edges of gold-standard networks. Sparser models may

increase the performance for size100 challenges.

It should be noted that there is no clear winner between the multiple-run and the

bootstrap consensus runs of the Dynboost algorithm. Even though the bootstrap version

achieves in general higher AUROC and AUPR values for both size10 and size100 networks,

there are instances where it underperforms. The randomization associated with bootstrap

samples may be more effective in increasing the stability of the algorithm compared with

the randomization due to the different runs. However, the complex nonlinear dynamics of

the data prevent us from reaching a definite conclusion from our experimental results.

The consensus thresholds for multiple-run and bootstrap experiments were chosen tak-

ing into account network properties such as size, density, modularity, average-degree, and

topology. For size10 networks, Yeast2 and Yeast3 have substantially higher density and

average-degree suggesting lower consensus thresholds. Thus, for multiple-run experiments,

we used a threshold of 50% for Ecoli1, Ecoli2, Yeast1; and 40% for Yeast2 and Yeast3. The

threshold for bootstrap experiments was 50% for Ecoli1, Ecoli2 and Yeast1; and 30% for

Yeast2 and Yeast3. For size100 networks, we made use of the prior information that Ecoli2

has a star-topology comprised of few central hubs that regulate many genes. Since it is

more difficult to reconstruct such special modularities, one should expect to observe lower

edge frequencies in bootstrap and multiple runs. Thus, a smaller consensus threshold would

be appropriate. For the multiple-run experiments, we used 20% for Ecoli2 and 40% for all

other networks. For bootstrap runs we further lowered the threhold to 5% for Ecoli2 and

35% for the remaining networks.

Although there is no information on the structure of team 236’s algorithm, its authors

responded to the post-competition DREAM3 survey stating that their method employs

Bayesian models with an in-degree constraint (25). This in-degree constraint may ex-

plain their particularly poor AUROC and AUPR performance for the high average-degree

networks Yeast2 and Yeast3 (average-degree values in Table 2.1). Team 190 (Table 2.2)
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reported in the same survey that their method is also Bayesian with a focus on nonlinear

dynamics and local optimization. This team did not submit predictions for the size100

challenge.

2.6.2 Discussion

Gene regulatory network inference has been cast as a feature selection problem in nu-

merous works. For linear models, lasso-penalized regression models have been effectively

used for this task (23; 9; 28). As an alternative to lasso regularization, an L2-boosting

algorithm was proposed in (1) to build a combination of linear autoregressive models that

work for very large networks. In nonlinear nonparametric modeling, random forests and

their variant extra-trees (13) have recently won the DREAM5 challenge by using static data

and solving p regression problems. In this approach, importance measures computed on the

explanatory variables (genes) have the potential to identify regulators for each one of the

target genes.

Compared to these approaches, DynBoost shares features with boosting and randomization-

based methods, an example to the latter shared feature being the use of a random subnet-

work at each iteration. DynBoost exhibits fast convergence in terms of mean squared error

due to the flexibility of OKVAR in capturing nonlinear dynamics. Further, it uses an orig-

inal and general way to extract the regulatory network through the Jacobian matrix of the

estimated nonlinear model. The control of sparsity on the Jacobian matrix is converted into

a constraint of the parameters of each base model hm, for which the independence matrix

Wm has been obtained by a statistical independence test. It should also be emphasized

that prior information about the regulatory network can easily be incorporated into the

algorithm by fixing known coefficients of the independence matrices used at each iteration.

DynBoost also directly extends to additional observed time series from different initial con-

ditions. Although we only showed one specific OKVAR model based on an extension of

the Gaussian kernel, which is of special interest for network inference, we note that other

kernels can be defined and be more appropriate depending on the focus of the study.
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CHAPTER III

A reassessment of consensus clustering for class

discovery and cluster stability

3.1 Abstract

Consensus clustering (CC) is an unsupervised class discovery method highly popular

for defining sample subtypes from high-dimensional data. The “consensus” rate between

two samples measures how frequently they are grouped together in multiple clustering runs

under a certain degree of perturbation. The matrix of pairwise consensus rates has been used

as a between-sample distance matrix for (1) visualization of clusters, (2) assessing cluster

stability and (3) estimating the optimal number of clusters. However, the sensitivity and

specificity of CC have not been systemically studied. We investigated the properties of the

consensus matrix and its derived statistics along with multiple other clustering methods

in (1) a published glioblastoma dataset, simulated datasets (2) with realistic gene-gene

correlation structure, (3) with known lack of structure, and (4) with known number of

clusters and varying degrees of separation. We found that many clustering methods were

able to divide simulated unimodal data (i.e. without subgroups) into prespecified numbers

of clusters, and CC was able to show apparent stability of such chance partitioning of

random data. We found that the consensus matrix by itself is not an automatically useful

inference tool, but its distribution features can be. One summary of such features, the

proportion of ambiguously clustered (PAC) pairs, reported the known number of clusters
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better than other common indices such as CDF, ∆(K), Silhouette Width, GAP-PC, and in

many situations, CLEST. We also showed by using synthetic null datasets that using only

the most discriminant genes to validate clusters often exaggerates cluster structure, as the

latter can be strongly driven by the gene-gene correlations in the data. We conclude that

CC is a powerful tool for identifying cluseters in the presence of genuine structure, but can

lead to false positives in the exploratory phase of many studies if the structure is subtle

or absent, and if the implementation and inference are not carried out with caution. Our

results led to a specific set of recommendations regarding prudent practices in using CC.

3.2 Author Summary

Consensus clustering (CC) is rapidly becoming the algorithm of choice for unsupervised

class discovery from gene expression datasets. It has been used in real studies as both

a visualization and inference tool, and has been cited 437 times since 2003. One recent

study by The Cancer Genome Atlas (TCGA) consortum aimed at identifying and validat-

ing glioblastoma subtypes using CC-based cluster analysis. But as is typical in this type

of report, neither the strength of the evidence nor the sensitivity of the method was eval-

uated. Using this dataset as an example, I highlight the necessity for caution in using CC

for subtype discovery by comparing results from this dataset with those from a series of

randomly simulated datasets known to lack structure. My findings underscore the value of

the systematic use of null distributions simulated with gene-gene correlation from real data,

and I describe an improved CC-based approach using (1) K-means as the base clustering

method and (2) probability of ambiguous clustering (PAC) as the measure to infer the opti-

mal number of clusters. To systematically compare the performance of multiple commonly

used methods, I develop the ‘identifiability chart’ to directly visualize the parameter sub-

space where a given method can correctly infer the true number of clusters, where the key

parameters are the known number of clusters in the simulation and the known degree of

cluster separation. I show using identifiability zones that PAC outperforms most common

clustering methods in scenarios closely resembling real studies such as those encountered
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in today’s gene expression analysis of tumor samples. I conclude by summarizing the po-

tential for exaggerating cluster strength in CC and recommending prudent practices when

conducting unsupervised class discovery with a new dataset, especially for those having

potentially weak structure.

3.3 Introduction

Cluster analysis is a key method for the unsupervised discovery of molecular subtypes

from high-dimensional biological datasets. For example, in the last decade, applying this

method to microarray-based gene expression data has become the essential approach for

defining molecular subtypes of various cancers (22–24). This class-discovery task involves

two essential aspects: first, determining if there is evidence for the existence of substructure

in the data; and second, if substructure exists, determining the optimal number of clusters.

Since these two aspects involve different questions, one should employ different null datasets

to investigate the answer to each. For the first question, a global null should be constructed

to make the ‘substructure vs. no-substructure’ decision, whereas a set of study-specific

positive null datasets should be used for the second question to estimate the number of

clusters.

The construction of the null distribution for assessing the significance of clustering

results is a critical step. A theoretically well-defined null distribution for the unsupervised

discovery of clusters does not exist because it is not possible to make universally true model

assumptions for the distributions that real high-dimensional datasets come from. Therefore,

a suitable null distribution has to be formed empirically from the data under study. This

empirical distribution has to account for the correlations among genes in the original data

because the gene-gene correlation structure affects the shape of the sample distribution in

high-dimensional space, thereby potentially giving rise to apparent cluster stability driven

by highly correlated gene sets. The globall null we used in this study consists of a random

unimodal distribution of principal component scores projected so as to have the same gene-

gene correlation as in the published dataset. We refrain from using the terms random and
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homogeneous for the global null because the gene-gene correlations confer some level of

structure to the data as explained above.

If substructure exists in the data, the next question to answer is the optimal number

of clusters. In contrast with the first question, the decision for the second one no longer

involves testing a single global null hypothesis, but entails testing a consolidation of multiple

positive null hypotheses. For instance, K clusters cannot be reported as optimal unless the

null hypotheses of K − 1 and K + 1 are both rejected. To evaluate the power of clustering

methods to distinguish between multiple alternative hypotheses, we simulated a series of

controlled positive null datasets with known number of clusters, varying degrees of separation

between clusters, and local density from the real dataset. In this setting, rejecting the set of

study-specific positive null hypotheses would be relatively more difficult than rejecting the

globall null hypothesis because the positive datasets inherently have more structure than a

global null dataset.

Unsupervised class discovery is difficult to be cast into an axiomatic setting because real

datasets have a complex variance-covariance structure, and thus the null distribution is hard

to justify in a parametric framework. This difficulty led to the popularity of resampling-

based methods, where multiple subsamples of the original dataset are clustered to assess

the stability of results with respect to sampling variability. One such method, CLEST

(10) computes cross-validation errors for a range of total cluster numbers, and compares

the results to a null distribution to assess significance. Another resampling-based method,

consensus clustering (CC)(11), has recently gained popularity over other clustering methods

for tasks such as tumor subtype discovery from microarray gene expression datasets. CC

calculates a “consensus” rate between all pairs of samples that measures how frequently each

pair is grouped together in multiple clustering runs under a certain degree of subsampling.

Consensus rates compared across different numbers of clusters can then be used for (1)

visualization of putative clusters, (2) estimating the optimal number of clusters, and (3)

assessing the stability of clusters.

The main assumption of CC is that if the items under study were drawn from distinct

sub-populations, different subsamples drawn from the same set of items would exhibit simi-
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lar cluster numbers and compositions. Hence, clusters robust to sampling variability would

provide evidence for the real structure in the data(11). This assumption is easily validated

in cases of well-separated clusters; however, the question of whether robust clusters might

arise from structureless data has not been systemically studied. This question underscores

a potential limitation of resampling-based methods, namely the difficulty of formally evalu-

ating the significance of produced results by explicitly modeling the assumptions underlying

the data-generation process. Although this limitation is acknowledged in the literature (11),

due caution in using CC as an inference tool has not been widely heeded. Specifically, the

possibility of CC to show robust clusters even with poorly separated items has been largely

underestimated in certain research areas such as cancer genomics.

CC is a sensitive heuristic that has proven useful for visualizing cluster stability. How-

ever, it is important to distinguish the utility of CC as an inference tool from its visualization

function. The apparent stability of clusters in CC may not necessarily provide sufficient

evidence for their existence; and usually requires further work for cluster validation. For

instance, outliers separated by a base clustering method (i.e average-linkage hierarchical

clustering) will appear as robust clusters in CC, because repeated runs of the base method

will exaggerate the weak clustering signal from outliers. Making inferences from CC, thus,

has the drawback of potentially declaring structure in the data when there is no significant

separation or local compactness. In this study, we demonstrate this tendency using sim-

ulated datasets with known lack of clusters. We also present ways to systemically study

the strength of clustering in a real dataset. Specifically, we emphasize that it is necessary

to compare clustering results from the original data with those from a suitably-formed null

distribution.

Validation of clusters is particularly important when using gene expression data because

clustering results in this context are especially sensitive to noise and susceptible to overfitting

due to relatively small sample sizes and very high dimensionality of the data (N << p)

(11). However, cluster validation is an elusive task in most studies due to the lack of

an a priori objective criterion such as known class labels with which predictions can be

compared. When external labels for clusters are not available, an evaluation based on
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internal validation measures, which base their quality estimate on the information intrinsic

to the data alone, becomes necessary (25).

There are multiple types of clusteredness measures for internal validation, including

compactness, connectedness, separation, or combinations based on these. An example that

uses a compactness measure is the GAP-statistic (9), which compares the pooled within-

cluster sum of squares to its expected value under a null distribution. Compactness alone

may not be sufficient to model the clusteredness in a real dataset as the degree of sepa-

ration between clusters can strongly contribute to the clustering signal. Thus, measures

combining intra-cluster homogeneity (compactness) and inter-cluster separation have be-

come particularly popular. A well-known example is the Silhouette Width (8 and Materials

and Methods 3.6.7.4), which is based on a nonlinear combination of the two measures, and

has been widely used in cancer genomics to validate the number of classes as well as to

characterize tumor samples as ‘core’ and ‘non-core’.

For this study, we chose to investigate clustering signals in multiple glioblastoma mul-

tiforme (GBM) datasets. GBM was the first cancer type studied by The Cancer Genome

Atlas (TCGA) Research Network (2), and was reported in a recent study to have four

molecular subtypes according to gene expression clusters discovered by CC (3). For our

analysis, we employed the TCGA’s first and second GBM cohorts as well as a validation

dataset from multiple previous studies (4–7) that was also used in (3). These datasets are

hereafter referred to as GBM1, GBM2, and Validation respectively.

3.4 Results and Discussion

3.4.1 PCA visualization and sample-sample correlation structure demon-

strate the over-interpretation potential of consensus clustering -

example from a real dataset.

CC consists of repeated runs of a base clustering method on randomly subsampled

datasets. For this study, we implemented CC with k-means (as the base clustering method)

on 500 subsamples obtained by taking a random 80 % subset of genes or samples. Motivated
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(a) Gene subsam-
pling consensus

(b) Sample sub-
sampling consensus

(c) Sample-sample
correlation

(d) First three PCs

Figure 3.1: (a,b) GBM1 K = 4 gene-subsampling and sample-subsampling consensus
heatmaps, (c) sample-sample correlation heatmap, (d) 4 k-means clusters visualized on axes
x (PC1), y (PC3), z (PC2). The variances explained by PC1-PC2-PC3 are 21.6%, 9.9%,
and 7.9% respectively. The color scale on consensus heatmaps ranges from 0 to 1, where 0
corresponds to blue, 1 corresponds to red, and 0.5 corresponds to white. The same color
scale is used throughout the paper unless otherwise stated.

by the TCGA study by Verhaak et al.(3), we ran consensus clustering on GBM1 with

K = 4 (number of clusters hereafter is denoted with K), and compared the clusters in

consensus heatmaps with those visible in the sample-sample correlation heatmap and the

three-dimensional PCA visualization of the dataset (Figure 3.1). The consensus heatmaps in

Figures 3.1a and 3.1b show four crisp clusters. The crispness of clusters can be interpreted

as a strong indication for inherent structure in GBM1, however the signal for K = 4

in the sample-sample correlation heatmap (Figure 3.1c) is substantially weaker with many

samples having strong correlation with samples in a different cluster. The three-dimensional

PCA plot (Figure 3.1d) does not show distinct gaps among the four clusters either. These

findings point at the potential of CC to over-state the robustness of clusters and raise

the questions of (1) when it is possible to know if one is merely partitoning data from a

unimodal distribution into multiple categories, (2) how optimal K should be determined,

and (3) what the nature of cluster validation should be. In the following, we present the

performance of CC on null datasets first with simple illustrative examples, and then with
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more realistic ones that carry the same gene-gene correlation structure as GBM1.

3.4.2 Performance of CC on null datasets

3.4.2.1 Simple illustrative examples: Circle1 and Square1

One of the main questions answered by CC-based cluster analysis is whether the dataset

of interest has structure. The underlying assumption is that the structure of the distribution

that the data come from can be captured by repeated resampling of the genes or samples.

However, the significance of the results reported by CC can be better understood by com-

paring them to a null distribution. There have been several null distributions proposed

in the literature for testing the hypothesis of the presence of structure in the data. For

instance, the null datasets can be sampled randomly from a uniform or unimodal distri-

bution where the parameters of the distribution are estimated by the statistics in the test

dataset. Another variant for generating the null datasets is that these statistics can be

derived from either the original vectors of the data, or the ones projected onto a principal

component space. Some of these null distributions are stronger than others, so the decision

of significance relies heavily on the choice of the null distribution.

We first tested the performance of CC on individually realized datasets from a random

unimodal distribution that is known to lack compactness and separation. The datasets

we generated, namely Circle1 and Square1 are imposed a grid distribution on PC1 and

PC2. They have more structure compared to a matrix completely filled with Normal(0, 1)

samples. Specifically, they have higher gene-gene correlation and more variance explained

by PC1 and PC2 than a Normal(0, 1). However, they are still unimodal in the sense that

they lack compactness and separation.

Circle1 and Square1: For Circle1, we generated 400 samples, each having 1000 genes,

with a Normal(0, 1) error perturbation in a 20× 20 square grid formation in the PC1-PC2

space . PC vectors beyond the second only had the error component, so there was very

weak gene-gene correlation. Samples occupying the four corners in the two-dimensional

PC-space were trimmed to leave a circular topology of ∼ 300 samples. Figure 3.2 a-d
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(a) K = 2 (b) K = 3 (c) K = 4 (d) K = 5

(e) K = 2 (f) K = 3 (g) K = 4 (h) K = 5

Figure 3.2: (a-d) Circle1 k-means partitioning for K = {2, 3, 4, 5} displayed on PC1
(17.7%) on the x-axis vs PC2 (15.1%) on the y-axis. (e-h) K-means consensus heatmaps for
K = {2, 3, 4, 5} with 80% sample subsampling. Even though the distribution is unimodal,
consensus heatmaps can show apparent clusters.

show Circle1 samples in the PC1-PC2 space with colors obtained from a single k-means

partitioning at K = {2, 3, 4, 5}. While there is no inherent structure in the data, k-means

can nonetheless partition the samples into K subgroups. Importantly, we see in Figure 3.2

e-k that consensus runs are able to show a high stability of clusters, particularly for K = 2

and K = 4, than would be conceived of from the k-means results. Further, the stability is

even more improved for larger K (such as 7 or 8) as seen in Figure 3.3.

The apparent stability in the example above is potentially contributed by random oc-

currance of locally dense clusters. A second factor is the presence of outliers or “corners”

of the sample distribution. To explicitly model this, we generated the Square1 simulation,

100 samples with 1000 genes each, from a random unimodal distribution. The samples were

arranged in a 10 × 10 square grid on the PC1-PC2 plot with a Normal(0, 1) error pertur-

bation. As in the Circle1 case, PC vectors beyond the second only had the random error

component, and a very weak gene-gene correlation structure. Figure 3.4 a-d show Square1

samples in the PC1-PC2 space with colors obtained from a single k-means partitioning at

K = {2, 3, 4, 5}. Again, Figure 3.4 e-f show k-means-based CC yielded consensus heatmaps

for the corresponding K values with 80% sample subsampling. CC was able to show appar-
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(a) K = 6 (b) K = 7 (c) K = 8

(d) K = 6 (e) K = 7 (f) K = 8

Figure 3.3: (a-c) Circle1 k-means partitioning forK = {6, 7, 8} displayed on PC1 (17.7%)
on the x-axis vs PC2 (15.1%) on the y-axis. (d-f) K-means consensus heatmaps for K =
{6, 7, 8} with 80% sample subsampling. Consensus heatmaps for the unimodal Circle1
distribution can show apparent clusters even with K = 7 and 8.

ent stability especially for the case of K = 4. The observation that K = {2, 3} were not as

‘clean’ is because the four corners of the distribution helped to anchor the K = 4 partitions

and lend them stability.

(a) K = 2 (b) K = 3 (c) K = 4 (d) K = 5

(e) K = 2 (f) K = 3 (g) K = 4 (h) K = 5

Figure 3.4: (a-d) Square1 k-means partitioning for K = {2, 3, 4, 5} displayed on PC1
(21.8%) on the x-axis vs PC2 (19.1%) on the y-axis. (e-h) K-means consensus heatmaps for
K = {2, 3, 4, 5} with 80% sample subsampling. Even though Square1 has unimodal distri-
bution, consensus heatmaps show apparent clusters for certain K values. Visual evidence
alone can be misleading, hence formal approaches are needed to test validity.
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We show with these examples that CC is able to show apparent stability of chance

partitioning of individually realized datasets from a random unimodal distribution, and

thus has potential to lead to over-interpretation of cluster stability in a real study. Another

lesson learned here is that, visual evidence alone can be misleading and formal inference

approaches are needed to test validity of clusters. This is particularly relevant in that

many studies utilizing CC neglected to evaluate the strength of evidence and relied on

visualization of CC matrix to declare clusters. Next, we elaborate on constructing more

realistic empirical null dataset having the same gene-gene correlation as GBM1 and then

evaluating GBM1’s clustering signal in the context of the signal found in null datasets.

3.4.2.2 More realistic examples: pcNormal

The gene-gene correlation structure in a data set determines the “shape” of sample

clusters in the high dimensional space whereas the sample-sample correlations can allow a

direct visualization of cluster strength. Therefore, the gene-gene correlation structure can

be a key parameter in the unsupervised discovery of classes, and needs to be accounted for

in a null distribution. Thus, a suitable empirical null distribution for class discovery can

be created by incorporating a random uniform or unimodal simulation with the gene-gene

correlation structure of the real data set. This can be achieved by forming a principal

component score matrix from multivariate Gaussian distributions and multiplying it with

the principal component loading vectors from the real data set (Materials and Methods

3.6.1).

We generated 50 null datasets from a Gaussian distribution having the same gene-gene

correlation structure as GBM1 and called this the pcNormal distribution. When needing

to run one-to-one comparisons with GBM1, we chose a single representative data set from

this distribution as explained in Materials and Methods (3.6.2) and denoted it with Sim25.

This data set has known lack of structure, and hence an unbiased method should show no

clusters. However, we observe in Figure 3.5 that CC shows stable clusters for tested values

K = {2, 3, 4}. For a given K, the base clustering method k-means will result in some chance

partitioning in the null data sets, and we see that CC is able to show apparent stability of
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(a) K = 2 (b) K = 3 (c) K = 4 (d) K = 5

(e) K = 2 (f) K = 3 (g) K = 4 (h) K = 5

(i) K = 2 (j) K = 3 (k) K = 4 (l) K = 5

Figure 3.5: (a-d) Sample-sample correlation heatmaps, (e-h) 80% gene-subsampling con-
sensus heatmaps, and (i-l) 80% sample-subsampling consensus heatmaps for Sim25. Sim25
is chosen as a characteristic random data set from the null distribution. For each K, the or-
der of samples on all three heatmaps is the order obtained from average-linkage hierarchical
clustering on the relevant gene-subsampling consensus matrix. The base clustering method
for CC is k-means. CC shows stable clusters for K = {2, 3, 4} even though the data set is
known to lack structure.

such partitioning over repeated runs even though the data set is known to lack structure.

3.4.3 CC heatmaps of real datasets may be indistinguishable from the

null distribution

We previously showed that the sample-sample Pearson’s correlation coefficient matrix

for GBM1 shows weak sample clustering structure (Figure 3.1c). In other words, many

samples do not clearly belong to one cluster and many have high correlations with samples

from another cluster. However, the clustering signal for a potentially optimal K-value,

K = 4, is much more ‘crisp’ in consensus heatmaps as seen in Figures 3.1a and 3.1b,

and reproduced in Figures 3.6a and 3.6b. Sim25 is a characteristic dataset among the 50

datasets in the pcNormal simulation, selected because its silhouette width is the median

among the 50 datasets (Materials and Methods 3.6.2). Consensus clustering with the same
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(a) GBM1 gene
subsampling

(b) GBM1 sample
subsampling

(c) Sim25 gene sub-
sampling

(d) Sim25 sample
subsampling

Figure 3.6: (a) GBM1 80% gene-subsampling consensus heatmap, (b) GBM1 80% sample-
subsampling consensus heatmap. (c) Sim25 80% gene-subsampling consensus heatmap, (d)
Sim25 80% sample-subsampling consensus heatmap. Even though Sim25 has known lack
of structure, consensus heatmaps with K = 4 (a potentitally optimal value for GBM1)
show almost as stable clusters as those of GBM1, making the clustering signal in GBM1
indistinguishable from the null distribution.

K value of 4 is able to generate apparently robust clusters for this null dataset (Figures

3.5g and 3.5k, and reproduced in 3.6c and 3.6d). This side-by-side comparison underlines

the potential of using CC heatmaps to conclude structure when there is none, and/or to

infer the number of classes in the dataset when there is very little evidence for it. It is also

important to point out that this should not be taken to imply that any particular prior

study has definitely over-stated their findings. Our results show that a null dataset could

have generated nearly as strong CC-based evidence as presented in many prior studies.

Whether a given study could be a true positive or a false positive requires quantitative

assessment, as we will discuss in the rest of this paper.
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3.4.4 CLEST and silhouette width results show that some aspects of

GBM1 can be distinguished from those of the null distribution.

The results above suggest that CC indices, as a sample-sample distance matrix, can be

over-sensitive in reporting apparently stable clusters. It is prudent not to solely rely on the

visualization of the CC heatmap to estimate the presence or the number of clusters, but

to base cluster inferences on quantitative summaries of the data. Two such inference tools

are CLEST and Silhouette width. CLEST is a resampling-based method that randomly

partitions the original dataset into a learning set L and a test set T . The learning set is

used to build a classifier for K clusters of the data. The classifier is then used to derive

the ground truth partitions of the test set, and the quality of the partitions obtained by

an unsupervised clustering algorithm is then assessed with the concordance between the

two partitions. Silhouette width is a nonlinear combination of two internal clusteredness

measures, namely compactness and separation of clusters (Materials and Methods 3.6.7.4).

In the following, we apply these two methods to investigate the clustering signals in GBM1

and compare them with those of the 50 pcNormal null datasets.

Figure 3.7a shows the CLEST results of GBM1, GBM2, and Validation over a range

of K values along with the distributions of CLEST results for the pcNormal null datasets.

We first observe that GBM1 has higher FM values than GBM2 and Validation, and

these three real datasets had higher FM values that the simulated null datasets. Second,

we see that K = 4 is not clearly optimal, but rather the FM-value differences are equally

strong across K = 2 − 8. These results suggest that GBM1 has more structure than null

datasets, but CLEST does not confirm K = 4 as the optimal number of clusters.

Figure 3.7b shows a scatter plot of two statistics derived from silhouette widths. The

first one, average of positive silhouette widths, is positively correlated with clustering signals

and is shown on the x-axis. The fraction of negative silhouette widths, on the other hand,

is negatively correlated with clustering signals and is shown on the y-axis. The clusters for

this figure were obtained from a single k-means run with K = 4. We can see that GBM1

is within the range of 50 pcNormal simulations along the y-axis, but is an outlier along the
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(a) CLEST violin plot (b) Silhouette width scatter plot

Figure 3.7: (a) CLEST results for GBM1, GBM2, Validation, and pcNormal null
datasets. (b) K = 4 silhouette width analysis for GBM1, GBM2, Validation, pcNormal null
datasets, and pull-apart positive datasets. In (a), GBM1’s FM-score from CLEST beats
those of pcNormal simulations at as early as K = 3. In (b) the x-axis shows the average
of positive silhouette widths is while the y-axis shows the fraction of negative silhouette
widths. GBM1 is within the range of 50 pcNormal simulations (shown with hollow circles)
along the y-axis. However, it appears as an outlier along the x-axis when compared with
these null datasets. The pull-apart degree for positive datasets ranges from 0 to 0.5 (shown
with blue pluses). Along the x-axis, GBM1 is close to the positive dataset with pull-apart
degree 0.2.

x-axis. GBM2 and Validation, on the other hand, are in the range of the simulations

for both axes, which suggests weaker structure than GBM1. We also see in this figure

that GBM1 is most similar to the positive dataset simulated with pull-apart degree 0.2.

This value is an indication of the strength of GBM1’s clustering signal with four clusters.

Even though this value indicates more structure than null datasets, the implementation

of silhouette scatter plots for other K values did not confirm four as the optimal value

(data not shown). The simulation of positive datasets is explained further in Materials and

Methods (3.6.4).

Different clustering measures emphasize different features of heterogeneous datasets such

as compactness or separation. The average of all silhouette widths in a dataset, for instance,

is strongly influenced by the existence of one or more highly compact clusters. Figure 3.1d

demonstrates this effect by GBM1’s “protrusions” from the centroid towards two corners of

the PC1-PC2-PC3 cubic space. This local density of protrusions in hyperspace are difficult

to match by random simulations. These protrusions may be causing the observed difference
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between GBM1 and simulations in terms of the average positive silhouette width. However,

this statistic alone would not be sufficient to determine whether the observed difference is

due to real clustering structure or local densities.

The results in Figure 3.7 suggest that GBM1 may indeed have a certain degree of

clustering structure, and the over-interpretation potential of CC might be showing almost as

stable clusters for the null dataset in Figures 3.6c and 3.6d. In the following, we will discuss

the utility of CC as an inference tool for K, and analyze the different statistics derived from

consensus matrices for their performance in accurately determining the number of clusters

in the data, i.e. the optimal K value.

3.4.5 CC as an inference tool: The signal for optimal-K in CDF plots

may not be visible in ∆(K) plots.

CC is a sensitive heuristic that has proven useful for visualizing cluster stability. How-

ever, the functionality and feasibility of the consensus matrix for inferring the optimal

number of clusters in a dataset has not been sufficiently explored. Two statistics derived

from the consensus matrix, namely the cumulative distribution function (CDF) and the

proportional change in the area under the CDF curve (∆(K)) have been proposed as a

way to estimate optimal K (explained in more detail in Materials and Methods). We in-

vestigated the informativeness of these statistics using simulated datasets having clusters

of known separation. Real datasets may have poor separation between clusters, thus it is

important to understand how different separation levels affect the outcome for CC-based

inference and visualization, and to compare the sensitivity of different methods.

Starting from Sim25, we obtained K clusters using k-means and gradually increased

the distance between clusters to obtain pulled-apart datasets. Separation among clusters

was obtained by adding a known fraction of the cluster centroid to the principal component

score matrix of the same cluster. The combined score matrix from all clusters was then

multiplied by the principal component vectors of Sim25 so that the pull-apart datasets

have a similar gene-gene correlation structure as Sim25. We implemented this pulling

apart procedure for {2, ..., 6} clusters with separation degree a in [0, 0.8], where 1 represent
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the full magnitude of a cluster centroid.

Figure 3.8 shows CDF, ∆(K), GAP, and CLEST plots for K = {2, . . . , 6} from a

randomly generated unimodal dataset (a,e,i,m), a 2-way pull-apart dataset with pull-apart

degree 0.08 (b,f,j,n), a 3-way pull-apart dataset with pull-apart degree 0.12 (c,g,k,o), and

a 4-way pull-apart dataset with pull-apart degree 0.12 (d,h,l,p). For pull-apart datasets,

the CDF curve for the true K shows perfect or nearly perfect 0s and 1s in (b,c,d) while

the unimodal dataset in (a) does not have such a perfect curve. In contrast to the clearly

different curves in CDF plots, ∆(K) plots all look alike in (e-h) and suggest an optimal K

value of 3 in all cases according to the elbow of the curves. GAP plots in (i-l) all suggest

an optimal K value of 3 as that is the minimum number where the GAP-statistic is higher

than the lower bound at the next K value. The lower bound is defined as the mean of the

GAP-statistics across resamplings minus one standard deviation of the same values. The

CLEST plots in (m-p) do not lend themselves to a direct interpretation of the optimal K

value. The null simulations are needed to determine which K is most significant, however

the shape of the curves suggest that the power to identify the true K at these separation

levels is low as we do not see increases in FM values at the true K value.

The first lesson learned in this figure is that when the clusters of a dataset are sufficiently

separated, the shape of the CDF curve will assume a three-step phase-transition form for

the true K value and will make interpretations based on area unnecessary (a-d). The second

lesson is that, area-based interpretations such as ∆(K) may be uninformative and poten-

tially misleading even in the case of genuine structure (e-h). We note that the pull-apart

datasets used here assume similar group size for all clusters and the same amount of pulling

apart for all samples in a given cluster. In cases where group sizes are highly unbalanced

or where samples on cluster boundaries are closer to one another, these assumptions may

not hold. However, this limitation can be remedied by increasing the pull-apart degree for

clusters.
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(a) No pull-apart (b) 2-way pull-apart (c) 3-way pull-apart (d) 4-way pull-apart

(e) No pull-apart (f) 2-way pull-apart (g) 3-way pull-apart (h) 4-way pull-apart

(i) No pull-apart (j) 2-way pull-apart (k) 3-way pull-apart (l) 4-way pull-apart

(m) No pull-apart (n) 2-way pull-apart (o) 3-way pull-apart (p) 4-way pull-apart

Figure 3.8: a-d: CDF plots for (1) a randomly generated unimodal dataset, (2) a 2-way
pull-apart dataset with degree of pull-apart = 0.08, (3) a 3-way pull-apart dataset with
degree of pull-apart = 0.12, and (4) a 4-way pull-apart dataset with degree of pull-apart
= 0.12. CDF curves for K = {2, . . . , 6} are shown with black, red, green, blue and cyan
lines respectively. For pull-apart datasets (b,c,d), the CDF curve for true K shows perfect
0s and 1s while the unimodal dataset in (a) does not have such a curve. e-h: ∆(K) plots
across K = {2, . . . , 6} for the corresponding datasets (1)-(4). Despite the variability in CDF
plots, these plots all look alike and the elbow occurs at K=4 suggesting an optimal K value
of 3. i-l: GAP plots across K = {2, . . . , 6} for the corresponding datasets (1)-(4). The
optimal K value in the original interpretation is 3 in all four figures. m-p: CLEST plots
across K = {2, . . . , 6} for the corresponding datasets (1)-(4). These plots do not suggest
an optimal K interpretation directly, null simulations are needed to determine which K is
most significant.
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The predictions for the optimal K by a clustering method or measure can be plotted

on a two-dimensional space with the true number of clusters on one axis and the pull-apart

separation degree on the other. Showing true and false predictions in different colors would

provide an easy way to understand the identifiability zone for that particular technique.

One example of such an identifiability zone is given in Figure 3.9.

3.4.6 Identifiability zones show that a simple PAC measure performs best

∆(K) vs. PAC: The CDF curves obtained from consensus matrices can be used as an

inference tool in ways other than the ∆(K) method. One alternative is calculating the

percentage of sample pairs that have a certain degree of ambiguity as to whether the pair

should be assigned to the same cluster. Given a sub-interval (u1, u2) ∈ [0, 1], the proportion

of consensus matrix values in (u1, u2) is a measure of the probability of ambiguous cluster-

ing (PAC). A low PAC measure indicates a more rapid transition from an almost-perfect

exclusion (sample pairs that are not in the same cluster) to an almost-perfect inclusion

(sample pairs that are assigned to the same cluster). It also means that a there is a higher

percentage of perfectly or nearly-perfectly clustered samples in that particular clustering

scheme, hence showing the robustness of clusters. We observe in Figure 3.9 that the sim-

ple PAC measure performs substantially better than ∆(K) in correctly inferring the true

number of clusters in pulled-apart data sets. The identifiability zone for PAC is also better

than other clustering methods/validation measures we tested in this study such as CLEST,

GAP-PC, and silhouettwe width (Figures 3.10-3.13).

3.4.7 Large sample size improves identifiability zones for CLEST and

modified GAP-PC, but not for original GAP-PC or silhouette width

CLEST: The original CLEST interpretation for optimal K requires user-specified values

p and d. The p value is the percentage of the null simulations having a greater score (such

as FM) than the ‘query’ data set. This criterion alone is not stringent enough to declare

an optimal K value because the absolute difference between the query data set and the

simulations may be negligible. Therefore, the d value determines a threshold by which the
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(a) ∆(K), 202 samples (b) PAC, 202 samples

(c) ∆(K), 1000 samples (d) PAC, 1000 samples

Figure 3.9: Identifiability zones for (a) ∆(K) and (b) PAC (probability of ambigous
clustering). The x-axis shows the strength of the real pull-apart signal, denoted with a.
The y-axis shows the true number of pull-apart clusters in the dataset, denoted with P. The
numbers in the plots indicate the inferred optimal-K value for the particular (a, P ) pair. The
size of each plotting symbol is proportional to its respective score. The inferred optimal-K is
correct if it is equal to P. The colors red, green and blue indicate underestimated, correctly
estimated, and overestimated optimal-K respectively. The identifiability zone is defined
as the collection of green symbols (correct estimates). The identifiability zone for PAC is
observed to be better than ∆(K) and also other clustering methods we tested in this study
(see Figures 3.10-3.13).

query data set has to be greater than simulations. If multiple K values meet these criteria,

the K with maximum d value is chosen as the optimal K value. The pull-apart degrees

where the optimal K from CLEST is the same as the true number of clusters can be viewed

as the identifiability zone for the FM index of CLEST.

We observe in Figure 3.10 that the CLEST identifiability zone is rather narrow for 202

samples, but much wider for 1000 samples. Larger sample size allows more stable cross-

validation. In the N = 202 case, the identifiability zone includes all 2-way pulled apart

datasets regardless of the pull-apart degree. For 3-way pulled apart datasets, the structure
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(a) 202 samples, pull-
apart X

(b) 202 samples, pull-
apart Y

(c) 202 samples, pull-
apart Z

(d) 1000 samples, pull-
apart X

(e) 1000 samples, pull-
apart Y

(f) 1000 samples, pull-
apart Z

Figure 3.10: CLEST identifiability zone: For each pull-apart degree (a) and pull-apart
direction number (P), the external FM-index estimates the optimal K as the K value with
highest score. We observe that the CLEST identifiability zone is rather narrow for 202
samples, but larger sample size (N=1000) allows more stable cross-validation (d,e,f).

signal is not picked up until after a = 0.12. For K values greater than three, CLEST

exhibits a particularly poor identifiability zone. These results, interpreted together, may

suggest that CLEST has a bias towards underestimating optimal K when clusters are not

well-separated. The reason can be due to the external index measuring concordance between

supervised clustering and unsupervised clustering; concordance may deteriorate at higher

K values due to biases of supervised and unsupervised clustering methods chosen. When

the number of samples is relatively small and K is high, there is a higher degree of bias

associated with each cluster because there are fewer number of samples to assign to each

cluster. In such cases with higher bias, cross-validated clusters may have lower concordance

with the original unsupervised clusters.

GAP-PC : The GAP-statistic provides an estimate for the number of clusters in a

dataset by comparing the change in within-cluster dispersion with that expected under
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(a) 202 samples, pull-
apart X

(b) 202 samples, pull-
apart Y

(c) 202 samples, pull-
apart Z

(d) 1000 samples, pull-
apart X

(e) 1000 samples, pull-
apart Y

(f) 1000 samples, pull-
apart Z

Figure 3.11: GAP-PC identifiability zone for (a-c) 202 samples, (d-f) 1000 samples.
There is variability in the identifiability zones of the three pull-apart sets. Overall,
the performance for pull-apart number 2 or 3 may be good, but those for greater than
3 are particularly poor. Large sample size does not help much towards stabilizing the
identifiability zones.

an appropriate reference null distribution. The authors suggest in (9) that the optimal

K is the smallest K where the mean GAP score is larger than the lower bound for K+1;

where the lower bound is defined as the mean GAP score minus the standard error for that

particular K value. In Figure 3.11, we present the identifiability zones for this technique

on pull-apart data sets based on three different pcNormal simulations. For both 202 and

1000 samples, the performance for 2 or 3-way pull-apart data sets is good in at least one of

the pull-apart sets X, Y , and Z. However, performance for greater pull apart numbers is

particularly poor. This points at the “smallest K” criterion in the interpretation of GAP-

PC results. Even though GAP-PC scores for K values greater than 3 may be showing

significant structure in the data, the relative comparison with 2 and 3 might be rendering

them meaningless if the scores for 2 and 3 are artificially higher.

To test this idea, we modified the decision rule in GAP-PC and set the K value with
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(a) 202 samples, pull-
apart X

(b) 202 samples, pull-
apart Y

(c) 202 samples, pull-
apart Z

(d) 1000 samples, pull-
apart X

(e) 1000 samples, pull-
apart Y

(f) 1000 samples, pull-
apart Z

Figure 3.12: GAP-PC identifiability zone with modified decision rule for (a-c) 202
samples, (d-f) 1000 samples. Identifiability zones for 202 samples are better than those
of the original GAP-PC decision rule, but a weakness emerges for determining optimal
K when the true pull-apart number is 2. Large sample size improves identifiability
zones this time. Identifiability zones for 1000 samples are both wide and stable.

the highest score as the optimal number of clusters. This decision rule is more intuitive

and straigtforward. Indeed, we see in Figure 3.12 that the identifiability zones with this

decision rule are much improved compared with the original GAP-PC decision rule. We

observe a wider identifiability zone for both 202 and 1000 samples. Moreover, the stability

of identifiability zones for 1000 samples is strikingly strong. The only particular weakness of

this technique appears in the results for pull-apart number 2. This decision rule has difficulty

in correctly identifying optimal K with 202 an 1000 samples for 2-way pulled-apart data

sets.

Silhouette width : The K with highest average silhouette width across different K

values is commonly accepted as the optimal K value. We see in Figure 3.13 that the identi-

fiability zones for the silhouette width only cover pull-apart number 2 with high confidence.
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(a) 202 samples, pull-
apart X

(b) 202 samples, pull-
apart Y

(c) 202 samples, pull-
apart Z

(d) 1000 samples, pull-
apart X

(e) 1000 samples, pull-
apart Y

(f) 1000 samples, pull-
apart Z

Figure 3.13: Silhouette width identifiability zone for (a-c) 202 samples, (d-f) 1000
samples: For each pull-apart degree (a) and pull-apart direction number, the average
silhouette width across samples estimates the optimal K as the K value with highest
score. Identifiability zones are robust for only K = 2 regardless of the number of
samples. Large sample size does not improve identifiability zones.

Interestingly, large sample size (N = 1000) does not improve the identifiability zones. This

might be due to K = 2 average silhouette width values increasing linearly with pull-apart

degree a, and tending to be higher than average silhouette width for all other K values

regardless of the pull-apart degree (Figure 3.27 in Supplementary Materials).

3.4.8 Gene-gene correlation makes it easy to “validate” ANY K by most

discriminant genes

After an optimal-K estimate is determined for a dataset, the next goal is to validate

these clusters. As we mentioned earlier, cluster validation in unsupervised class discovery

is elusive due to the lack of external information such as class labels with which one can

obtain error rates for the estimates/predictions. Thus, some methods using independent

data have been employed to make an attempt at validating clusters. One method that has
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become highly popular is to determine the most discriminant genes for a certain K value

from the original dataset, and then use these to classify samples in an independent dataset.

We next show that the gene-gene correlation structure in genomic datasets may indeed

confound this validation approach.

In a popular implementation (5; 24), the best classifiers for each cluster are taken from

the learning set, and a heatmap of all samples with only the best classifiers is constructed.

Next, a heatmap is constructed for the independent dataset with the same genes. Observing

a similar placement of discrete genesets in the latter heatmap as in the former is considered

a validation of the number of classes found in the first dataset.

Figure 3.14: Sim25 is a simulated random dataset with gene-gene correlation from
GBM1. It is representative for a collection of 50 similarly simulated datasets in terms of
silhouette width statistics. The heatmap above shows the most discrimant genes (groups
A−D) for clusters 1− 4.

We used the pcNormal null simulations to test the hypothesis that gene-gene correlation

could lead to a similar placement in the second heatmap even when the second dataset is

unimodal. We first run k-means on Sim25 samples with K = 4 to obtain four classes.

Following the procedure in (3), we find the top discriminating genes for each class by

computing the t-scores for each cluster against the other clusters, and finding the 4 sets of

210 genes with largest absolute t-scores. Next, we merge these 4 sets of 210 genes resulting

in 551 unique genes due to some shared genes in different gene sets. The heatmap of 551

genes and 202 samples is seen in Figure 3.14. Discrete placement of gene sets similar to

the ones in this figure have been viewed in genomics as a validation of the existence of four

classes. However, when we take 9 other similarly simulated datasets, cluster the samples,

and plot the heatmaps with the same 551 genes, we are able to observe the same gene
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(a) pcNormal8 (b) pcNormal36 (c) pcNormal39

(d) pcNormal42 (e) pcNormal43 (f) pcNormal44

(g) pcNormal45 (h) pcNormal48 (i) pcNormal50

Figure 3.15: Heatmaps for 9 similarly simulated datasets as Sim25. The x-axis shows
samples as partitioned into 4 clusters with k-means, and the y-axis shows the same ‘most
discriminant genes’ from Sim25. The gene signature from Sim25 is preserved even when
the new data are random.

signature in all 9 cases (Figure 3.15a-3.15i). These 9 datasets are chosen from the entire

range of 50 simulations so as to represent the spectrum of small to large silhouette widths

in the null distribution (details given in Materials and Methods 3.6.3).

Gene-gene correlations give rise to blocks of genes in subsets of samples by virtue of

persistent co-regulation. If mistaken as part of a prognostic signature, these blocks will

reappear in independent datasets as evidence for subtypes. However, the results in Figure

3.15 indicate that using such top genes can easily yield the “discovery” of the same number

of clusters even with unimodal data. It should be remembered that the correlations among

genes can influence the results for both number of clusters and the assignment of samples

into these clusters. Thus, the gene-gene correlation structure has to be accounted for in

cluster validation methods.
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We next show that the choice of the base clustering method can substantially change the

results in CC, and k-means is a suitable choice in terms of both reliability and efficiency.

3.4.9 K-means is both robust and efficient as a base method for consensus

clustering

The base clustering method in CC is another parameter of the algorithm that can

be changed. Hierarchical clustering (HCLUST) with average-linkage has become popular

in most applications, but here we underline the drawbacks of using this base method as

it is not robust against outliers and has a strong tendency to lock in accidental features

of the data. Outside the CC context, HCLUST with average-linkage has also been used

widely (3; 11; 19), however complete-linkage has been shown to perform better for non-ratio

based expression values (20), and it produced a much more stable clustering compared with

average linkage in (21). Our results in Figures 3.16-3.18 confirm this finding.

Here, we compare 5 clustering methods; namely k-means, hierarchical clustering (HCLUST)

with average and complete linkage, model-based clustering (MCLUST), and k-medoids, also

known as partitioning around medoids (PAM). Each base method was run 500 times on

Sim25 (except MCLUST, which was run 100 times due to its high computational cost)

with K=4 and 80% sample subsampling ratio. The consensus partitioning for each method

was obtained by clustering the respective consensus matrix into four groups with average-

linkage HCLUST after the subsample runs were completed.

The concordance of the k-means consensus partitioning with the partitioning from the

other four base methods is shown in Figure 3.16. The values on the diagonal shows the

level of concordance between the methods on the x and y axes, i.e. the number of samples

assigned to the same cluster by these methods. Off-diagonal values, on the other hand, show

the level of confusion as they indicate the number of samples assigned to different clusters

by the two methods. Summing the rows in any one of the four panels, we see that k-means

consensus run divides the 202 samples into two larger and two smaller clusters of 61, 66,

38 and 37 samples respectively. The magnitude of the values on the diagonals indicate

that k-means has the highest concordance with MCLUST, and the lowest with HCLUST
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Figure 3.16: Sim25 confusion matrices between consensus runs of K-means and those of
PAM, MCLUST, HCLUST average and complete-linkage.

average-linkage. It can be seen that the K = 4 consensus run for HCLUST average-linkage

groups 172 samples (85% of 202) in a single cluster, which underlines the sensitivity of the

average-linkage method to outliers. Figure 3.17 shows that HCLUST average-linkage does

not have good concordance with the other three base methods either.

Figure 3.17: Sim25 confusion matrices between consensus runs of HCLUST average-
linkage and those of PAM, MCLUST, HCLUST complete-linkage.

Figure 3.18 shows the agreements and disagreements between the consensus runs of other

base methods. None of these matrices show better concordance between two methods than
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Figure 3.18: Other Sim25 confusion matrices between consensus runs of PAM, MCLUST,
HCLUST complete-linkage.

the concordance between k-means and MCLUST shown in Figure 3.16. Thus, k-means and

MCLUST appear as the most competitive choices for clustering on this particular dataset

(Sim25). However, MCLUST is much less feasible to be used in a class discovery pipeline

including consensus clustering due to its computational cost. Hence, we recommend the use

of k-means as the base clustering method in CC as a both reliable and efficient tool.

3.4.10 Lessons learned (DOs and DON’Ts in class discovery)

Sample-sample correlation and consensus matrices can be prone to over-interpretation

in the context of unsupervised class discovery. One example to the former is the set of

three correlation heatmaps in Figure 3.19. In this figure, the same matrix is re-ordered

differently according to the average-linkage hierarchical clustering order on the K = 2 and

K = 3 consensus matrices and also the order from decreasing PC1 scores. We see that it is

easy to re-order a sample-sample correlation matrix in different ways to support different

hypotheses regarding the structuredness of the data.

In the broader context, we summarize our findings by stating that many clustering

methods are able to divide structureless data into prespecified numbers of clusters, and CC

is able to show apparent stability of such chance partitioning of random data. Thus, we
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(a) Order from K=2 consensus
matrix

(b) Order from K=3 consensus
matrix

(c) Order from decreasing
PC1 scores

Figure 3.19: GBM1 sample-sample correlation matrix ordered three different ways. The
order of samples is obtained from (a) average-linkage HCLUST on the K = 2 gene sub-
sampling consensus matrix (b) average-linkage HCLUST on the K = 3 gene subsampling
consensus matrix (c) decreasing PC1 scores. It is easy to re-order the same sample-sample
matrix in different ways to support different hypotheses about structuredness.

make the following recommendations for unsupervised class discovery and cluster validation.

DON’T rely on the visualization of the consensus matrix to declare the existence of a cluster-

ing structure, or to estimate optimal K. Probability of ambiguous clustering (PAC)

obtained from the consensus matrix, on the other hand, is a simple yet powerful

method to infer optimal K under certain conditions.

DO choose your base clustering method carefully as not all methods are equally robust.

We observed that k-means is both reliable and efficient.

DO a formal test of cluster validity using simulated random unimodal data with the same

gene-gene correlation, and compare clustering signal strength.

DON’T use the most discriminant genes for K clusters to validate K in a new dataset.

DO bear in mind that many clustering methods and measures are sensitive to sample size.

3.5 Conclusions

We applied consensus clustering to random data and observed that many unsupervised

partitioning methods are able to divide unimodal data into prespecified numbers of clusters;
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and consensus clustering shows apparent stability of such chance partitioning of random

data.

We compared GBM1 with random data having the same gene-gene correlation struc-

ture, and observed that consensus clustering heatmaps and summary statistics for GBM1

were often within the empirical null distribution. However, other methods such as CLEST

and silhouette width were able to distinguish GBM1 from the null datasets likely because

of the local clusters or outliers in GBM1. We observed that the clustering signal in the null

distribution was exaggerated by consensus clustering so as to show stable clusters. There-

fore, we caution against relying on consensus clustering to declare the existence of clusters

or to estimate the optimal number of clusters.

There is a variety of clustering methods and validation measures. While each one of these

may have its strengths and weaknesses, it is important to understand in particular whether

the technique performs well on datasets with poorly separated clusters. It is common

to encounter genomic datasets where clusters have poor separation, so it would not be

appropriate to blindly adapt a clustering technique and draw simple yes-no conclusions.

We saw that some of the more popular clustering methods/validation measures can be

internally inconsistent, and/or have poor correlation with others if the clusters are poorly

separated.

We also investigated the properties of the consensus matrix and its derived statistics

using Gaussian-mixture datasets having incrementally increasing clustering signals and re-

alistic gene-gene correlation structure. We found that the consensus matrix by itself is

not a suitable inference tool, but its distribution features can be. One such feature, the

proportion of ambiguously clustered (PAC) pairs, reflected the true structure of the data

better than common strategies such as CDF, ∆(K), Silhouette Width, GAP-PC, and in

most situations, CLEST. We also showed by using synthetic null datasets that validation

of clusters with most discriminant genes can be highly error-prone as cluster structure is

partly driven by the gene-gene correlations in the data. The limitations of our simulations

include the following assumptions: (1) Samples in cluster boundaries are assigned to a single

cluster, no partial memberships are used, (2) clusters are viewed as co-equal without any
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nestedness, and (3) clusters are simulated with similar size, no outliers are included.

In summary, our results suggest that consensus clustering needs to be applied with

caution as it is prone to over-interpretation. If samples are not well-separated, consensus

clustering could lead one to conclude apparent structure when there is none, or declare

cluster stability when it is subtle. In the presence of genuine structure, this method may be

a powerful tool for identifying clusters, but in the exploratory phase of many studies can

lead to false positives if it is not compared to a suitably formed null distribution. When

partitioning poorly separated samples from a real dataset, it is necessary to objectively

evaluate the evidence of clustering, and if appropriate, consider alternative models such as

nested models, partial membership models or continuous distributions.

3.6 Materials and Methods

3.6.1 Generating a ‘null’ distribution for unsupervised class discovery

The findings from Figure 3.1 motivate the comparison of GBM1’s cluster signals with

those in randomly simulated ‘null’ data sets to assess significance. It is curious to ask

whether the weakness of the clustering signal revealed in these figures is severe enough to

preclude GBM1 from surpassing significance thresholds for cluster stability and existence.

To investigate this question, we generated a collection of 50 random data sets that could

function as a null distribution for the clustering signal in GBM1. Since consensus clustering

involves running a base clustering method on a data set hundreds of times, this method can

become computationally too expensive with a larger number of random data sets. Each

data set in the collection, referred to as a pcNormal simulation, forms an ellipsoid in high-

dimensional space. This set is generated by multiplying GBM1’s PC vectors on the left by

random Normal PC scores.

1. Using principal component analysis, we obtain the orthogonal matrix A of GBM1

eigenvectors.

Y202×202 = GBM1202×1740 ×A1740×202
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In this notation, Y is the ‘score’ matrix for GBM1.

2. Next, we simulate a random matrix Y N where column i is distributed normally with

zero mean and standard deviation equal to that of column i in Y .

Y N.i ∼ N (0, si) (3.1)

where si is the standard deviation of Y.i and i = {1, . . . , 202}.

3. Multiplying Y N with AT yields one of the pcNormal simulations.

QN202×1740 = Y N202×202 ×AT202×1740 (3.2)

4. We repeat this procedure 50 times to obtain a population of 50 pcNormal simulations.

(QN )j = (Y N )j ×AT , j = {1, . . . , 50}

3.6.2 Choosing a representative ‘null’ data set

A representative dataset among pcNormal simulations is chosen from a collection of

50 similarly simulated sets. For simplicity, this dataset is referred to as Sim25. More

specifically, the criteria for Sim25 is having representative values for certain clustering

measures (namely average of positive silhouette widths, and the percentage of negative

silhouette widths). The formulas followed are given below.

SWn = percentage of negative silhouette widths

SW p = average of positive silhouette widths

medianp,a = [median(SWn),median(SW p)]

Sim25 = argmin
i

d(mediann,p, [SWn
i , SW

p
i ]) (3.3)

where [SWn
i , SW

p
i ] is the vector of silhouette width statistics for simulation i ∈ {1, . . . , 50},

and d is the Euclidean distance function.
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3.6.3 Choosing nine pcNormal simulations for validation by most discrim-

inant genes

The median values across 50 pcNormal data sets for the average positive silhouette

width (swp) and the fraction of negative silhouette widths (swn) were found. The Eu-

clidean distance of the (swp,swn) pair from each data set to the median values is com-

puted for all 50 simulations and ranked from lowest to highest. Nne simulations were

then chosen as every 5th highest-ranking dataset. In other words, datasets with ranks

{6, 11, 16, 21, 26, 31, 36, 41, 46} were chosen. This ensures that the entire range for the sil-

houette width statistics is represented.

3.6.4 Generating a ‘positive’ distribution for unsupervised class discovery

We observe in Materials and Methods section 3.6.7 that six different measures of cluster-

ing do not agree on whether GBM1 has more structure than randomly simulated datasets,

or whether it can be within these null distributions. One reason that would bring about

this apparent lack of concordance is the degree at which different methods can measure

compactness and separation of clusters when cluster boundaries are not sharp. To be able

to explore the behavior of different methods with varying degrees of boundary sharpness,

we simulated positive datasets with increasing separation.

We typically start with a pcNormal simulation such as Sim25 and execute the following

steps:

1. Using principal component analysis, obtain the orthogonal matrix A of Sim25 prin-

cipal component vectors.

Y202×202 = Sim25202×1740 ×A1740×202

In this notation, Y is the ‘score’ matrix for Sim25.

2. Using a partitioning method such as k-means, assign each sample si (i = 1, ..., 202)

into one of K classes. The set of samples in class k (k = 1, ...,K) is denoted with Ek.
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3. For each class k, compute the sample-centroid Ck of YEk
.

4. For each class k and for a given pull-apart degree a, compute pulled-apart score

matrix Y p
Ek

Y p
Ek

= YEk
+ a ∗ Ck

5. Multiply Y p with A to obtain the pulled-apart dataset Xp.

Xp
202×1740 = Y p

202×202 ×A
T
202×1740

3.6.5 Generating the Circle1 and Square1 simulations

Circle1: We generated 400 samples with error perturbation, 1000 genes each, in a 20×20

square grid formation. Samples occupying the four corners in the two-dimensional PC-

space were trimmed to leave a circular topology of ∼ 300 samples. As each side of the grid

measured 20 units, the corners were about 14 units away from the center, and the radius

was 9.62 units.

Square1: To investigate the potential anchoring effect by the four corners of the dataset,

we generated 100 samples with error perturbation, again 1000 genes each, arranged in a

10× 10 square grid on the PC1-PC2 plot.

3.6.6 Base methods for consensus clustering

3.6.6.1 Hierarchical clustering (HC)

This is one of the most widely used partitioning algorithms, due to its conceptual and

practical simplicity. Agglomerative HC (12) starts by considering the n data points as n

clusters, and at each iterative stage, the closest pair of clusters is joined to form a new

cluster. Divisive HC starts by considering a unique cluster, and at each iterative step a

cluster is divided into two. In both methods, a hierarchical tree is constructed of all data

points after n− 1 steps.
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Initially, a distance or dissimilarity matrix of all pairs of points must be computed using

some distance function (Euclidean, Minkowski, Manhattan, Mahalanobis, etc.). To define

the distance D(r, s) between clusters r and s, different linkages such as the single, complete,

or average linkage may be chosen.

In complete linkage, D(r, s) is defined as the distance between the most distant pair

of objects, one from each cluster.

D(r, s) = max{d(i, j); object i is in cluster r and object j is in cluster s}

At each stage of hierarchical clustering, the clusters r and s , for which D(r, s) is minimum,

are merged. Single linkage is the opposite of complete linkage in the sense that the

maximum distance is replaced with the minumum distance.

In average linkage, D(r, s) is defined as the average of distances between all pairs of

objects, where each pair is made up of one object from each group.

D(r, s) =
Trs

(Nr ×Ns)

where Trs is the sum of all pairwise distances between cluster r and cluster s. Nr and Ns

are the sizes of the clusters r and s respectively. At each stage of hierarchical clustering,

the clusters r and s , for which D(r, s) is the minimum, are merged.

3.6.6.2 k-means

Given a set of observations (x1,x2, . . . ,xn) where each observation is a d-dimensional

real vector, k-means clustering aims to partition the n observations into k sets (k ≤ n),

S = {S1, S2, . . . , Sk} so as to minimize the within-cluster dispersion:

argmin
S

k∑
i=1

∑
xj∈Si

||xj − µi||2

where µi is the mean of points in Si (13).

The method starts with k arbitrary cluster centers. Each step consists of labeling data
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points with their nearest cluster center, and updating the centers of the new clusters. The

procedure stops when the clusters formed at two consecutive steps are the same.

3.6.6.3 k-medoids

Proposed by Kaufman and Rousseeuw (14), k-medoids is a more flexible version of

k-means. The within-cluster dispersion to be minimized is modified as

k∑
i=1

∑
xj∈Si

d(xj − x̃(i))

where x̃(i) is the medoid of Si, and d(·, ·) can be any dissimilarity measure. A medoid can

be defined as the object of a cluster, whose average dissimilarity to all the objects in the

cluster is minimal, i.e it is a most centrally located point in the cluster.

3.6.6.4 Model-based clustering (MCLUST)

In this approach, data points in each cluster are represented by a Gaussian probability

distribution component of a finite mixture model (15; 16). Let θj = (µj ,Σj) be the param-

eter associated with the probability distribution fj(x; θj), where µj is the center and Σj is

the covariance structure of cluster j. If pj denotes the probability that an observation be-

longs to the j-th cluster, then the classification likelihood of the n independent observations

x1, x2, . . . , xn will be given by:

L(θ, p|x) =

n∏
i=1

[ K∑
j=1

pjfj(xi; θj)

]

where x = (x1, x2, . . . , xn) is the dataset, θ = (θ1, θ2, . . . , θK) is the parameter vector and

K is the number of clusters. The parameters can then be estimated by maximizing the

classification likelihood through the EM algorithm. Bayesian Information Criterion (BIC)

is used to select the number of clusters K and the complexity of Σj .
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3.6.7 6 ways to measure clustering signals

3.6.7.1 Cluster stability via empirical CDF plots

For a given consensus matrix M, the corresponding empirical cumulative distribution

(CDF) can be defined over the range [0, 1] as follows:

CDF (c) =

∑
i<j 1{M(i, j) ≤ c}
N(N − 1)/2

where 1{. . . } denotes the indicator function,M(i, j) denotes entry (i, j) of the consensus

matrixM, N is the number of rows (and columns) ofM, and c is the consensus index value

(11).

3.6.7.2 Optimal K via proportional area change under CDF (∆(K))

CDF curves are an important tool in investigating the optimal number of clusters for a

dataset. CDFs shape and progression as K increases provide evidence for the appropriate

number of clusters. A shape that more closely resembles a three-phase step function as

mentioned before is indicative of a higher cluster stability. The objective in inspecting CDF

progression is to select the largest K that induces a large enough increase in the area under

the corresponding CDF (11). This progression can be quantitatively analyzed by measuring

the area under the curves. The area under the CDF corresponding to A(K) is given by the

formula:

A(K) =
∑

[xi − xi−1]CDF (xi)

The progression, in turn, can be visualized by plotting the proportion increase ∆(K) in

the CDF area as K increases. ∆(K) is computed as follows:

∆(K) =


A(K) if K = 2

[A(K)−A(K − 1)]

A(K − 1)
if K > 2
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3.6.7.3 Variance explained by principal components

The fact that proportion increases in CDF area (∆(K) values) for real datasets can

be placed within the distribution of simulations lacking sample structure brings about the

question of whether the percentage of variance explained by principal components would

differ between real and simulated datasets. Simulated datasets with known lack of structure

would distribute both gene and sample variance almost evenly to all principal components;

the decrease from the first principal component to the second would be very small (figure

not shown). However, it is not straightforward how simulated datasets with known lack

of sample structure but having the same gene-gene correlation structure as a real dataset,

i.e. GBM1, would compare with the real dataset in terms of how much sample variance

is carried by principal components. We plotted percentage of variance explained by first

10 principal components in real and simulated datasets to investigate this. The results are

shown in Figure 3.21c in Supplementary Materials.

3.6.7.4 Silhouette width

The silhouette validation method (8) could be applied for evaluation of clustering validity

and also could be used to decide how good the number of selected clusters is. Silhouettes

are constructed in the following way. Consider any object i of the data set, and let A denote

the cluster to which it is assigned, and then calculate

a(i) = average dissimilarity of i to all other objects of A

Now consider any cluster C different from A and define

d(i, C) = average dissimilarity of i to all objects of C

Compute d(i, C) for all clusters C 6= A, and then select the smallest of those.

b = min
C 6=A

d(i, C)
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Let B denote the cluster which attains the minimum i.e., d(i, B) = b(i) is called the

neighbor of object i. The value S(i) can now be defined as:

S(i) =
(b(i)− a(i))

max{a(i), b(i)}

It can be easily seen that S(i) lies between -1 and +1.

We chose to compare GBM1 with simulations according to two statistics derived from

silhouette widths. One is the percentage of samples with negative silhouette widths. Neg-

ative silhouette widths indicate samples that are likely to be assigned to the wrong cluster

by the partitioning algorithm. Hence, more samples with negative silhouette width means

poorer clusteredness in the dataset. The second statistic we used was the average of positive

silhouette widths. Higher silhouette widths are indicative of better clustering, so a higher

average of positive silhouette widths show better clusteredness among samples.

3.6.7.5 Optimal K via GAP-statistics

The GAP-statistic provides an estimate for the number of clusters in a dataset by com-

paring the change in within-cluster dispersion with that expected under an appropriate

reference null distribution (9). It is known to perform well at identifying well-separated

clusters. However, when data are not well separated, the error rate increases approximately

linearly with the proportion of overlapping points between two clusters, i.e. the GAP-

statistic will choose K = 1 (as the optimal value) p% of the time for a p% proportion of

overlapping points.

3.6.7.6 Optimal K via CLEST

CLEST measures the concordance in cross-validation between a supervised classification

method (such as DLDA) and an unsupervised clustering method (such as k-means).
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3.6.8 Datasets

3.6.8.1 Glioblastoma multiforme

• GBM1

Glioblastoma is the first cancer type studied by the TCGA consortium. Primary

glioblastoma arises de novo without antecedent history of low-grade disease, whereas

secondary glioblastoma progresses from previously diagnosed low-grade gliomas (1).

In order to exclude the confounding effects of secondary glioblastoma in data analy-

sis, biospecimen repositories were screened for newly diagnosed glioblastoma for the

purpose of this study.

After quality control measurements, 185 newly diagnosed biospecimen qualified for

copy number, gene expression and DNA methylation analyses (2). The first cohort

also included 21 post-treatment cases to be used for exploratory comparisons, bring-

ing the total number of samples to 206. Although it is possible that a small number of

progressive secondary glioblastomas were in the cohort, 185 newly diagnosed glioblas-

tomas represent predominantly primary glioblastoma (2).

Gene expression (transcriptome) data were obtained from three different platforms:

Affymetrix Human Genome U133 Plus 2.0 Array from the Broad Institute, Agilent

244K Array from University of North Carolina Lineberger Cancer Center and the

Affymetrix GeneChip Human Exon 1.0 ST Array from Lawrence Berkeley National

Laboratory. Raw data from each platform were combined with a linear statistical

model to obtain unified expression measures for each gene.

Of the original 206 samples, we adopted unified consensus gene expression values for

202. Relevant data for the remaining 4 samples were not available at the time we

started our study. Thus, our gene expression data matrix contained 202 samples and

11861 genes before filtering for the most informative genes.

Filtering : Adopting the strategy by Verhaak et al.(3), we carried out filtering in

three steps and selected 1740 genes for subsequent analyses. (Numbers in parentheses
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indicate how many remained after that filtering step):

1. Find genes with average β-value higher than 0.7 in at least two platforms (∼ 9000

genes)

– βi measures correlation between observed values on platform i and the true

expression value, hence this step is selecting for genes whose platform values

are highly correlated with the true value in at least two platforms.

2. Find genes with maximum absolute deviation higher than 0.5 (∼ 1900 genes)

– This step is removing genes that do not show high enough variability among

platforms

3. Remove genes with large difference in scale between platforms (1740 genes)

– This step is removing genes whose expression values are unrealistically (or-

ders of magnitude) different across platforms.

We adopted the same list of 1740 genes for our analysis. Throughout this paper, this

1740× 202 dataset is referred to as GBM1.

• GBM2 and Validation

The gene expression dataset from the second TCGA cohort (GBM2) contains 175

tumor samples, and is also filtered to the same set of 1740 genes. The validation

dataset used in (3) is a collection of samples from four previous studies (4–7). This

dataset contains 260 samples, and the number of genes in common with the TCGA

filtered gene set is 1676.
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3.7 Supplementary Materials

3.7.1 Comparing clustering signals between GBM1 and the pcNormal null

data sets

3.7.1.1 Cluster stability via empirical CDF plots

Figures 3.20a and 3.20b show the CDF plots for gene subsampling and sample subsam-

pling consensus runs of GBM1 respectively.Figure 3.20c and 3.20d show the same plots for

Sim25.

The x-axis denotes the consensus matrix value c, and the y-axis denotes the correspond-

ing CDF value CDF (c). For sample pairs that are never grouped together, the consensus

index value is 0. For pairs that are always found in the same cluster, this value is 1. A

higher stability in cluster membership is suggested when there are more values close to both

0 and 1 for a fixed number of K clusters, and fewer intermediary values between 0 and 1;

i.e sample pairs remain in the same cluster in the presence of perturbations. The y-axis on

the CDF plots indicates the proportion of consensus index values smaller than or equal to

the corresponding x-value.

Highly stable clusters generate a CDF curve that resembles a three-phase step func-

tion. The first phase is the vertical step at c = 0, which corresponds to sample pairs that

are never found in the same cluster. The second phase is the horizontal line reaching across

the [0−1] range. Fewer values in this range are indicative of more stable clusters. The third

phase of the step function is another vertical increase, this time at c = 1. This corresponds

to sample pairs that get assigned to the same cluster even in the presence of perturbations.

Less stable clusters exhibit a deviation from the three-phase step function and generate

a gradual climb from 0 to 1. The area under the curve for a given K value is a measure of

stability for cluster membership with larger areas indicating greater stability. The change

in this area from K to K+ 1 clusters is used to evaluate the optimality of K as the number

of classes in the data set. If there is not a significant increase in the area at K + 1, the

optimal number of clusters is estimated to be K.

‘Sample subsampling’ invokes a stronger perturbation to the GBM1 and Sim25 data
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(a) GBM1 gene sub-
sampling

(b) GBM1 sample sub-
sampling

(c) Sim25 gene subsam-
pling

(d) Sim25 sample sub-
sampling

Figure 3.20: Empirical cumulative distribution function (CDF) plots for GBM1 and
Sim25, K = {2, . . . , 8}. The x-axis is consensus index value c, and the y-axis is the
corresponding CDF (c).

sets compared to ‘gene subsampling’ at the same percentage. This is due to the difference

in the number of samples (Ns = 202) and genes (Ng = 1740). A random 80% sample

selection results in 162 samples with a loss of 40 samples, whereas a random 80% gene

selection filters out 348 genes leaving 1392 genes in the dataset. It is highly likely that 40

samples that are randomly filtered out would carry a stronger clustering signal than the

random set of 348 genes. It is often the case that genes function in groups, and the ones

in the same group possess a similar expression profile. Thus, removing such a random set

of genes from the dataset does not result in loss of a significant clustering signal; other

genes in the same group can act as proxies. Therefore, the boundaries of clusters may

not change drastically in the case of gene subsampling. However, the same cannot be said

of sample subsampling. Removing samples from the dataset is much more likely to be a

direct interruption to cluster boundaries, hence reducing cluster stability. Moreover, cancer

specimens are collected independently, and one does not generally expect to observe that
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samples in the dataset will function as a proxy to others removed from the dataset.

We are able to observe the consequences of the difference between gene subsampling and

sample subsampling also in CDF plots (Figure 3.20a vs. Figure 3.20b, and Figure 3.20c vs.

Figure 3.20d). The curves in these figures correspond to K values in {2, . . . , 8} for their

corresponding datasets. Comparing the CDF curve of a particular K value between gene-

subsampling and sample-subsampling, we observe that curves in the former case resemble

the aforementioned three-phase step function much more closely than those from the

latter, suggesting stronger apparent cluster stability with gene-subsampling.

Figure 3.20a shows that CDF curves for GBM1 gene-subsampling resemble a step

function even when K is as small as 2. The CDF shape improves and approaches an ideal

step function as K is raised to 3 and 4, however, there is no significant change after K = 4.

This could be suggestive of four real clusters in the GBM1 dataset, however, background

signal for clustering stability needs to be accounted for before declaring real clusters. The

equivalent plot for Sim25 is shown in Figure 3.20c. Recall that Sim25 carries the same

gene-gene correlation structure as in GBM1, but possesses randomized sample-sample

distances. We observe that K = 2 has stronger cluster stability in this dataset compared

to GBM1. The CDF curve for K = 3 is similar to that of GBM1, and again the curves

for K = {4, . . . , 8} are similar in the two plots. However, it is noteworthy that the curve

for K = 4 in Sim25, when compared with the corresponding curve in GBM1, is closer to

a step function. Overall, the cluster stability observed for Sim25 is at least as good as,

if not better than, that observed for GBM1. This suggests that the apparent clustering

stability on consensus clustering CDF plots may have potential to mislead one to declare

real clusters when sufficient evidence does not exist.

The same comparison can be made between Figure 3.20b and Figure 3.20d. These

show CDF plots for sample-subsampling consensus runs of GBM1 and Sim25 respectively.

Again, K values range from 2 to 8, with the CDF curve for K = 2 typically found at the

bottom, and other curves following the previous K value. The gradual climb we observe

for K = 2 in Figure 3.20b is indicative of poor clustering stability. As mentioned above,

the removal of 40 samples from the GBM1 dataset results in a strong enough perturbation
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to eliminate most of the apparent cluster stability. In contrast, Sim25 exhibits a better

cluster stability for K = 2 (Figure 3.20d) than GBM1 even though sample perturbation

still substantially degraded clustering quality as compared with the K = 2 curve for gene-

subsampling (Figure 3.20c). For K = {3, . . . , 8}, CDF curves are again more similar across

GBM1 and Sim25. It can be noted that, in contrast with the gene-subsampling case,

GBM1 has more step-function-like CDF curves for K = {4, . . . , 8} while those of Sim25

appear to make gradual climbs particularly in the [0, 0.4] range (Figure 3.20b and Figure

3.20d). This is likely to be due to the real clustering signal in the GBM1 dataset and

to the fact that random samples from the same distribution may be more similar to one

another than the samples in a real dataset such as GBM1 (hence, lower CDF values for

c = 0 with Sim25).

3.7.1.2 Optimal K via proportional area change under CDF (∆(K))

As with silhouette widths and gap-statistics, comparing the behavior of ∆(K) for real

and simulated datasets will provide insight regarding the strength of cluster signals in a

background distribution that is known to lack sample structure. Figures 3.21a and 3.21b

show ∆(K) values for real datasets (GBM1, GBM2, Validation) and 50 pcNormal sim-

ulations with gene-subsampling and sample-subsampling respectively. The values for sim-

ulated datasets are shown in box-whisker plots while those of real datasets are overlaid

with three lines. It is remarkable that the three real datasets can all be placed within the

box-whisker ranges of simulated datasets with known lack of sample structure, for both gene-

subsampling and sample-subsampling. This observation provides perspective for inspecting

CDF progression as ∆(K) values for simulations present a null-distribution to compare real

datasets against. Otherwise, the objective of selecting the largest K that induces a ‘large

enough’ increase in the area under the corresponding CDF is not a well-defined one. What

constitutes a ‘large enough’ increase is subject to personal interpretation.
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(a) ∆(K) vs. K, gene sub-
sampling

(b) ∆(K) vs. K, sample sub-
sampling

(c) % variance explained by
first 10 principal components

Figure 3.21: Proportion increase ∆(K) in the area under CDF curves for consensus runs
of (a) gene subsampling, and (b) sample subsampling. The values for the set of 50 pcNormal
simulations are shown in box-whisker plots, while the values of real datasets are overlaid
with three lines (GBM1: red, GBM2: green, and Validation: blue). (c) Boxplots for
percentage of variance explained by the first 10 principal components in 50 simulations;
overlaid with lines corresponding to GBM1, GBM2, and Validation data sets. Outliers
are shown with black crosses.

3.7.1.3 Variance explained by principal components

Principal components of simulated datasets carry almost the same percentage of sample

variance as those of GBM1 (Figure 3.21c). We note that the first principal component of

GBM2 and the Validation do not carry as large a sample-variance percentage as those

of the simulated datasets because simulated datasets are generated with the gene-gene

correlation structure of GBM1. GBM2 and Validation datasets do not have a gene-gene

correlation structure as strong as GBM1. Furthermore, these observations also imply that

GBM2 and Validation datasets do not have a sample-sample correlation structure that

is strong enough to compensate for the deficiency in the gene-gene correlation structure.
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These datasets are likely to have a worse clustering structure compared to GBM1.

3.7.2 The progression of diagnostic measures and plots across increasing

pull-apart degree a

We present below the diagnostic plots used in our study to analyze the performance of

different clustering methods and measures on pulled-apart data sets. Number of clusters for

pulled-apart data sets vary in {2, ..., 6} and pull-apart separation degree a vary in a range

over [0, 0.6].

3.7.2.1 Pull-apart bubble plots

Each figure in a panel shows a two-dimensional scatter plot of the samples in (left) the

PC1-PC2 space, and (right) the PC1-PC3 space. K-means was used to obtain a partitioning

of the samples. The sizes of the bubbles indicate the magnitude of the silhouette width.

Negative silhouette widths are shown with fixed-size crosses.
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(a) 2-way pull-apart, a = 0 (b) 2-way pull-apart, a = 0.04

(c) 2-way pull-apart, a = 0.08 (d) 2-way pull-apart, a = 0.12

(e) 2-way pull-apart, a = 0.16 (f) 2-way pull-apart, a = 0.2

(g) 2-way pull-apart, a = 0.24 (h) 2-way pull-apart, a = 0.28

Figure 3.22: PC1 vs. PC2, and PC1 vs. PC3 plots for a pcNormal dataset pulled
apart into 2 clusters with separation degree a in [0,0.6]. The coloring scheme is from
a K-means classification with 2 clusters.
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(i) 2-way pull-apart, a = 0.32 (j) 2-way pull-apart, a = 0.36

(k) 2-way pull-apart, a = 0.4 (l) 2-way pull-apart, a = 0.44

(m) 2-way pull-apart, a = 0.48 (n) 2-way pull-apart, a = 0.52

(o) 2-way pull-apart, a = 0.56 (p) 2-way pull-apart, a = 0.6

Figure 3.22: (Continued) PC1 vs. PC2, and PC1 vs. PC3 plots for a pcNormal
dataset pulled apart into 2 clusters with separation degree a in [0,0.6]. The coloring
scheme is from a K-means classification with 2 clusters.
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(a) 3-way pull-apart, a = 0 (b) 3-way pull-apart, a = 0.04

(c) 3-way pull-apart, a = 0.08 (d) 3-way pull-apart, a = 0.12

(e) 3-way pull-apart, a = 0.16 (f) 3-way pull-apart, a = 0.2

(g) 3-way pull-apart, a = 0.24 (h) 3-way pull-apart, a = 0.28

Figure 3.23: PC1 vs. PC2, and PC1 vs. PC3 plots for a pcNormal dataset pulled
apart into 3 clusters with separation degree a in [0,0.6]. The coloring scheme is from
a K-means classification with 3 clusters.
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(i) 3-way pull-apart, a = 0.32 (j) 3-way pull-apart, a = 0.36

(k) 3-way pull-apart, a = 0.4 (l) 3-way pull-apart, a = 0.44

(m) 3-way pull-apart, a = 0.48 (n) 3-way pull-apart, a = 0.52

(o) 3-way pull-apart, a = 0.56 (p) 3-way pull-apart, a = 0.6

Figure 3.23: (Continued) PC1 vs. PC2, and PC1 vs. PC3 plots for a pcNormal
dataset pulled apart into 3 clusters with separation degree a in [0,0.6]. The coloring
scheme is from a K-means classification with 3 clusters.
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(a) 4-way pull-apart, a = 0 (b) 4-way pull-apart, a = 0.04

(c) 4-way pull-apart, a = 0.08 (d) 4-way pull-apart, a = 0.12

(e) 4-way pull-apart, a = 0.16 (f) 4-way pull-apart, a = 0.2

(g) 4-way pull-apart, a = 0.24 (h) 4-way pull-apart, a = 0.28

Figure 3.24: PC1 vs. PC2, and PC1 vs. PC3 plots for a pcNormal dataset pulled
apart into 4 clusters with separation degree a in [0,0.6]. The coloring scheme is from
a K-means classification with 4 clusters.
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(i) 4-way pull-apart, a = 0.32 (j) 4-way pull-apart, a = 0.36

(k) 4-way pull-apart, a = 0.4 (l) 4-way pull-apart, a = 0.44

(m) 4-way pull-apart, a = 0.48 (n) 4-way pull-apart, a = 0.52

(o) 4-way pull-apart, a = 0.56 (p) 4-way pull-apart, a = 0.6

Figure 3.24: (Continued) PC1 vs. PC2, and PC1 vs. PC3 plots for a pcNormal
dataset pulled apart into 4 clusters with separation degree a in [0,0.6]. The coloring
scheme is from a K-means classification with 4 clusters.
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(a) 5-way pull-apart, a = 0 (b) 5-way pull-apart, a = 0.04

(c) 5-way pull-apart, a = 0.08 (d) 5-way pull-apart, a = 0.12

(e) 5-way pull-apart, a = 0.16 (f) 5-way pull-apart, a = 0.2

(g) 5-way pull-apart, a = 0.24 (h) 5-way pull-apart, a = 0.28

Figure 3.25: PC1 vs. PC2, and PC1 vs. PC3 plots for a pcNormal dataset pulled
apart into 5 clusters with separation degree a in [0,0.6]. The coloring scheme is from
a K-means classification with 5 clusters.
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(i) 5-way pull-apart, a = 0.32 (j) 5-way pull-apart, a = 0.36

(k) 5-way pull-apart, a = 0.4 (l) 5-way pull-apart, a = 0.44

(m) 5-way pull-apart, a = 0.48 (n) 5-way pull-apart, a = 0.52

(o) 5-way pull-apart, a = 0.56 (p) 5-way pull-apart, a = 0.6

Figure 3.25: (Continued) PC1 vs. PC2, and PC1 vs. PC3 plots for a pcNormal
dataset pulled apart into 5 clusters with separation degree a in [0,0.6]. The coloring
scheme is from a K-means classification with 5 clusters.

85



(a) 6-way pull-apart, a = 0 (b) 6-way pull-apart, a = 0.04

(c) 6-way pull-apart, a = 0.08 (d) 6-way pull-apart, a = 0.12

(e) 6-way pull-apart, a = 0.16 (f) 6-way pull-apart, a = 0.2

(g) 6-way pull-apart, a = 0.24 (h) 6-way pull-apart, a = 0.28

Figure 3.26: PC1 vs. PC2, and PC1 vs. PC3 plots for a pcNormal dataset pulled
apart into 6 clusters with separation degree a in [0,0.6]. The coloring scheme is from
a K-means classification with 6 clusters.
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(i) 6-way pull-apart, a = 0.32 (j) 6-way pull-apart, a = 0.36

(k) 6-way pull-apart, a = 0.4 (l) 6-way pull-apart, a = 0.44

(m) 6-way pull-apart, a = 0.48 (n) 6-way pull-apart, a = 0.52

(o) 6-way pull-apart, a = 0.56 (p) 6-way pull-apart, a = 0.6

Figure 3.26: (Continued) PC1 vs. PC2, and PC1 vs. PC3 plots for a pcNormal
dataset pulled apart into 6 clusters with separation degree a in [0,0.6]. The coloring
scheme is from a K-means classification with 6 clusters.
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3.7.2.2 Average silhouette width progression across a.

Average of the silhouette width values of all samples was computed for each separation

degree and each number of clusters. The lines track the progression of the average values

(y-axis) across the pull-apart separation degree (x-axis). We observe that K = 2 usually

yields higher results than other K values regardless of the pull-apart number of clusters

and separation degree, hence making the true number of clusters unidentifiable most of the

time.

(a) 2-way pull-apart (b) 3-way pull-apart (c) 4-way pull-apart

(d) 5-way pull-apart (e) 6-way pull-apart

Figure 3.27: Progression of average silhouette width values of pulled-apart datasets
across separation degree (a).

3.7.2.3 Pull-apart silhouette scatter plots

Silhouette widths for a data set can also be plotted on a two-dimensional space to

analyze the positive and negative values separately. These plots show the average of the

positive silhouette widths on the x-axis, and the fraction of negative silhouette widths on
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the y-axis. GBM1, shown with a red asterisk, is compared with pcNormal simulations

(hollow circles) and pulled-apart data sets (blue pluses).

(a) 2-way pull-apart (b) 3-way pull-apart (c) 4-way pull-apart

(d) 5-way pull-apart (e) 6-way pull-apart

Figure 3.28: Silhouette scatter plots for pulled-apart datasets.

3.7.2.4 CLEST progression across a.

The FM-index results from CLEST are plotted on the y-axis against pull-apart sepa-

ration degree on the x-axis. We observe that it is possible to identify the true number of

clusters for 2-way and 3-way pull-apart at larger separation degrees; however CLEST can-

not identify the true number for 4,5,and 6-way pull-apart at this given range of separation

degrees.
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(a) 2-way pull-apart (b) 3-way pull-apart (c) 4-way pull-apart

(d) 5-way pull-apart (e) 6-way pull-apart

Figure 3.29: Progression of CLEST’s FM indices for pulled-apart datasets across
separation degree (a).
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CHAPTER IV

Joint Estimation of DNA Copy Number from

Multiple Platforms

4.1 Abstract

Motivation: DNA copy number variants (CNV) are gains and losses of segments of chro-

mosomes, and comprise an important class of genetic variation. Recently, various microarray

hybridization-based techniques have been developed for high throughput measurement of

DNA copy number. In many studies, multiple technical platforms or different versions of

the same platform were used to interrogate the same samples; and it became necessary to

pool information across these multiple sources to derive a consensus molecular profile for

each sample. An integrated analysis is expected to maximize resolution and accuracy, yet

currently there is no well formulated statistical method to address the between-platform

differences in probe coverage, assay methods, sensitivity, and analytical complexity.

Results: The conventional approach is to apply one of the CNV detection (a.k.a. “seg-

mentation”) algorithms to search for DNA segments of altered signal intensity. The results

from multiple platforms are combined after segmentation. Here we propose a new method,

Multi-Platform Circular Binary Segmentation (MPCBS), which pools statistical evidence

across platforms during segmentation, and does not require pre-standardization of differ-

ent data sources. It involves a weighted sum of t-statistics, which arises naturally from

the generalized log-likelihood ratio of a multi-platform model. We show by comparing the
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integrated analysis of Affymetrix and Illumina SNP array data with Agilent and fosmid

clone end-sequencing results on 8 HapMap samples that MPCBS achieves improved spatial

resolution, detection power, and provides a natural consensus across platforms. We also

apply the new method to analyze multi-platform data for tumor samples.

4.2 Introduction

In recent years, more and more genetic studies have relied on collecting genome-scale

data on DNA variants. With the rapid influx of large data sets came the increasingly com-

mon problem of data integration when multiple technical platforms (or different versions

of the same platform) were used to interrogate the same biological samples. For example,

the Cancer Genome Atlas (TCGA) project, an NIH-funded initiative to characterize DNA,

RNA, and epigenetic abnormalities in tumors, has adopted three independent platforms for

studying DNA copy number variants (CNVs) in its pilot phase: Affymetrix SNP 6.0 arrays,

Illumina HumanHap 550K SNP arrays, and Agilent CGH 244K arrays. The conventional

approach for analyzing these data is to apply one of the CNV detection (a.k.a. “segmen-

tation”) algorithms to search for genomic intervals of altered signal intensity using data

from each platform separately. The segmentation results from three platforms are then

combined. However, when the platforms disagree on the calling of a CNV, it is difficult to

decide what the consensus should be. Furthermore, the reported DNA copy numbers (i.e.

the location and magnitude of the changes) are often different in different platforms. At the

fundamental level, the three platforms represent three distinct marker panels and different

molecular assay methods:

• Illumina arrays produce allele-specific data, Agilent arrays produce only the total in-

tensity, whereas Affymetrix arrays have both allele-resolved SNP probes and invariant

CNV probes, thus effectively containing two sub-platforms.

• Agilent arrays produce two-color ratio data in a test/reference format, while the other

two measure each sample independently.
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• In regions of high-fold amplification, Illumina and Affymetrix tend to have more

pronounced signal saturation. In fact, all three platforms estimate the true levels of

copy number change with different scaling factors, which may be non-linear and may

vary across chromosomes or samples (Bengtsson et al., 2009).

• The three methods produce data values with distinct noise characteristics, with dif-

ferent proportions of low-quality SNPs and distinct local signal trends that are partly

due to the sample amplification procedures used.

• For some, such as the Illumina data, the default normalization procedure is not tai-

lored to copy number analysis.

In short, each platform has its advantages and disadvantages, but together they produce

a more detailed genomewide survey for each sample. If the data sets from the three platforms

are separately segmented, it is difficult to combine their respective segment summaries

because, for the same underlying event, they will report different magnitudes, with different

boundaries and different degrees of uncertainty. An integrated analysis, where information

from all platforms are used at the same time to detect CNVs and to estimate the levels

of change, is expected to maximize resolution and accuracy. Currently, however, there is

no well formulated statistical method to address the between-platform differences in probe

coverage, sensitivity, and analytical complexity. Simply combining the three data series into

a single data set without proper normalization will not yield better segmentation results,

because when the underlying true copy number is not known, it is difficult to determine

how to normalize across platforms given the uneven coverage between the platforms at any

genomic region.

In order to tackle the increasingly common problem of data integration across multiple

sources, we propose a new method based on a simple multi-platform change-point model.

The model extends existing approaches for detecting change-points in a single sequence (14)

to the problem of detecting coupled changes in multiple sequences with differing noise and

signal intensities. The model gives rise to an efficient algorithm, multi-platform Circular

Binary Segmentation (MPCBS), which relies on a weighted sum of t statistics to scan for
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copy number changes. MPCBS sums statistical evidence across platforms with proper scal-

ing, and does not require a pre-standardization of different data sources. The statistics are

derived through maximizing the likelihood of the multi-platform model, with the dimension

of the model (i.e. the number of segments) chosen by maximizing a generalized form of the

modified Bayes information criterion (BIC) criterion proposed in Zhang and Siegmund (15).

Platform specific quantities such as noise variances and response ratios are also estimated

by our method. Importantly, the method provides a single, platform-free consensus profile

for each sample for downstream analyses.

4.3 Multiplatform Model and Methods Overview

Let the platforms be indexed by k = 1, . . . ,K, with K being the total number of plat-

forms. We observe total intensity data yk = yk1, . . . , yknk
for the nk snps/clones on the

k-th platform, which have ordered locations (tk1, . . . , tknk
) along a chromosome. We as-

sume that for each platform, the data has been normalized to be centered at 0 for “normal”

copy number and to have Gaussian (or near-Gaussian) noise. Actual data must be trans-

formed with missing values imputed, sometimes with extreme outliers truncated in order to

approximate Gaussian noise. In some studies, the “normal” diploid state of the genome is

difficult to determine, such as when an entire chromosome has been amplified. When this

occurs, other types of information, such as allelic ratios from SNP arrays, or intensity ratios

from two-color aCGH experiments, will be needed to help assign the correct absolute copy

number to each segment. Such complications are expected to affect all platforms. Here we

deal with the integration of multiple platforms in detecting changes in CNV and only need

to assume that the baseline “normal” state is shared in common across platforms.

The fact that all {yk : k = 1, . . . ,K} are assaying the same biological sample implies

that at any genomic location t there is only one true underlying copy number µt for all

platforms. We define the observed intensity level for the i-th probe of the k-th platform

consisting of a signal fk(µtk,i) plus a noise term that has platform specific variance σ2k.
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Specifically, we assume the following model for the data:

yki = fk(µtk,i) + εk,i, (4.1)

where the noise term εk,i are independently distributed N(0, σ2k). We call fk(·), which

quantifies the dependence of the observed intensity on the underlying copy number, the

response function of platform k.

We model the true copy number as a piecewise constant function, i.e. constant within a

segment, and yet may change to a different level at a “change-point”. For a chromosome of

length T , we assume that there exists a series of change-points 0 = τ0 < τ1 < . . . , < τm < T

such that within each interval,

µt = θi, t ∈ [τi, τi+1). (4.2)

The magnitude parameters θ = (θ0, . . . , θm) and change-points τ = (τ1, . . . , τm) are all

unknown and, like the response functions, must be estimated from the data.

For this paper, we assume that the response function is linear, i.e. fk(µ) = rkµ. The

parameter rk, which we call the response ratio, describes the ratio between the change in

observed intensity for platform k and the underlying copy number. The linearity assumption

allows for simple and intuitive test statistics and fast scanning algorithms.

While the linearity assumption is an oversimplified ideal situation, empirically the plat-

form response functions are often observed to be approximately linear for low-amplitude

changes. Response functions are usually nonlinear for high amplitude changes due to satura-

tion effects. However, the high-amplitude changes usually have high statistical significance

and are relatively less affected by this simplification in modeling. It is the low amplitude,

statistically borderline cases where we expect to boost power through multi-platform inte-

gration.

When the platform specific response ratios rk are known, the breakpoints τ and true copy

numbers θ can be estimated through a likelihood based recursive segmentation procedure

that builds on the conceptual foundations of Olshen et al. (10) and Vostrikova (12), which
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we describe in Section 4.4.1. Conversely, when τ and θ are given, fk can also be easily

estimated using the procedures described in Section 4.4.4. Since both are usually unknown,

we propose the iterative procedure described in Section 4.4.5.

4.4 Methods

4.4.1 Pooling Evidence by Weighted t-statistics

First consider the case where the goal is to test whether there is a CNV at a window

from s to t. Under the null hypothesis that there is no CNV, the data within this region

should have baseline mean fk(0) = 0, i.e.

H0 : yki ∼ N(0, σ2k) for k = 1, . . . ,K; and i : s ≤ tki < t. (4.3)

If there is a gain (or loss) of magnitude µ, each platform should respond with signal fk(µ) =

rkµ. The signal is a mean shift in a common direction for all platforms, with the observed

magnitude of shift being rkµ for platform k, i.e.

HA : yki ∼ N(rkµ, σ
2
k) for k = 1, . . . ,K; and i : s ≤ tki < t. (4.4)

Since the generalized likelihood ratio statistic maximizes the power over all statistical tests

for this model, we will use the likelihood based framework to test this hypothesis. Let

nk(s, t) = |{i : tk,i ∈ (s, t]}| be the number of probes from the k-th platform that falls

within the interval (s, t]. Let ȳk,(s,t] denote the mean intensity of probes that map within

(s, t], and similarly let ȳk,(s,t]c be the mean intensity of probes that map outside of (s, t].

It can be shown (see the Supplementary Appendices) that under this formulation, the log

generalized likelihood ratio statistic is a weighted sum of platform specific terms:

Z(s, t) =

[∑K
k=1 δk,s,tXk,s,t

]2
∑K

k=1 δ
2
k,s,t

, (4.5)
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where

Xk,s,t =
ȳk,(s,t] − ȳk,[1,nk]

σk

√
nk(s, t)−1 − n−1k

, (4.6)

is the t-statistic for testing for a change in segment (s, t) using the data from platform k.

The estimate of error standard deviation from platform k, σ̂k, can be obtained from the

residuals after subtracting the mean within each segment. The weights

δk,s,t = rk
√
nk(s, t)/σk (4.7)

are proportional to the response ratio rk, the square root of the number of probes from that

platform that fall into [s, t), and the inverse of the estimated error standard deviation σ̂k.

When there is only one platform, the statistic (4.5) is equivalent to the chi-square statistic

used in the Circular Binary Segmentation algorithm of Olshen et al. (10). Theoretical

properties of scans using (4.6) and related statistics for a single platform were studied by

Siegmund (11) and James et al. (5). Usually σk is unknown and must be estimated from

the data as well, and we replace it with an estimate σ̂k in (4.6) and (4.7). In the simplest

case we assume a common variance for all probes of a given platform, the number of data

points used to estimate σ is very large and thus σ̂k is very precise and for all practical

purposes can be treated as a known quantity. In situations where σk is dependent on the

underlying copy number or differs between genomic regions, a generlized likelihood ratio

statistic similar to (4.5) can also be computed.

Note that the statistic (4.5), which we call the weighted t-statistic, is different from the

sum-of-chisquares statistic proposed in Zhang et al. (16) for multi-sample segmentation,

where each sample comes from a different biological source assayed on the same experimental

platform. The statistic used in Zhang et al. (16) is the sum of chi-square (SC) from N

samples,

ZSC(s, t) =
1

N

N∑
n=1

X2
n,s,t. (4.8)

Intuitively, one may be tempted to extend the above formula to the multi-platform case by
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a. b. c.

Figure 4.1: Comparison of the null hypothesis rejection regions between the sum of
chi-square statistic (4.8), the weighted sum of chi-square statistic (4.9), and the weighted
t-statistic (4.5) on K = 2 platforms. In all figures, the axes are the magnitudes of the X
variables (4.6) for platforms 1 and 2. A significance level of 0.05 is used to determine the
decision boundaries of all three statistics. For Figures (b) and (c), weights of δ1 = 1, δ2 = 2
are used. The diagonal line shows the direction of the weight vector δ = (δ1, δ2).

proposing a weighted form (SWC)

ZSWC(s, t) =

∑K
k=1 δ

2
k,s,tX

2
k,s,t∑K

k=1 δ
2
k,s,t

(4.9)

that does not treat all platforms equally. However, this approach has the drawback

that it does not reward agreement between platforms. When pooling data across samples,

independent biological specimen are not expected to carry the same CNV, and often both

deletions and amplifications can be observed between the samples at the same genome

location. Thus, the statistic (4.8) is intuitively correct in not “rewarding” agreement in

direction of change between samples. For pooling data across platforms, however, the

underlying CNV is the same, and the statistic in (4.5) correctly rewards agreement and

penalizes disagreement. For example, consider the case of K = 2, where (4.5) simplifies to

(δ21X
2
1 +δ22X

2
2 +2δ1δ2X1X2)/2. If the signs of X1 and X2 agree, this statistic is always larger

than (4.8), while if the signs disagree, it is smaller. This makes the weighted t-statistic more

suitable for pooling evidence across multiple samples that come from the same biological

source (Figure 4.1).

The difference between the three statistics is shown graphically in Figure 1 for the simple
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case of two platforms with the response ratio of the second platform being twice that of the

first platform. Note that all three statistics are functions of X = (X1, X2), which, assuming

that σk is known, is bivariate Gaussian with mean 0 and identity covariance matrix under

the null hypothesis. Figures 1(a-c) show in gray the region in the (X1, X2) plane where the

null hypothesis will be rejected. That is, X needs to fall in to the gray region to make a

CNV call. For example, in Figure 1a, which depicts the situation in (4.8), the gray region is

{X : ZSC(X) > tSCα }, where tSCα is a threshold chosen for the test to have significance level

α. In Figure 1b, which depicts the situation in (4.9) the weights δ2/δ1 = 2 favor evidence

from X2 over evidence from X1, giving an elliptical boundary. In Figure 1c, which depicts

the situation in (4.5), the boundary of the rejection boundary is {X : δ′X > tα}, which is

perpendicular to the vector δ2/δ1. Importantly, note that (c) rewards agreement between

the two platforms, while (a,b) treat all quadrants of the plane equally. The statistic (4.5,

Figure 1c) also allows one platform to dominate the others: In the case where the directions

disagree, e.g. in the upper left or lower right quandrants, the consensus can still be made

according to the dominant platform.

4.4.2 Recursive Segmentation Procedure

In the previous section, we described the statistic used to test whether a specific interval

[s, t) constitutes a CNV. In reality, there can be multiple change-points in a chromosome

copy number. To detect all change-points, we adopted a framework similar to Vostrikova

(12), Olshen et al. (10), and Zhang and Siegmund (15). Vostrikova (12) proved the con-

sistency of binary segmentation algorithms. Olshen et al. (10) proposed an improvement,

called circular binary segmentation, that works better in detecting small intervals of change

in the middle of long regions. Zhang and Siegmund (15) proposed a BIC criterion for de-

ciding the number of segments. Both Olshen et al. (10) and Zhang and Siegmund (15)

showed that these types of procedures work well on DNA copy number data. Two indepen-

dent comparative reviews by Willenbrock and Fridlyand (13) and Lai et al. (7) concluded

that the CBS algorithm of Olshen et al. (10) is one of the best performing single-platform

segmentation methods. This motivated us to extend CBS to the case of multiple platforms.
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The Multi-platform CBS (MPCBS) algorithm will be described in detail in the Supple-

mentary Materials. Here, we give an intuitive overview using the following notation: Let R

be an ordered set of segments {(i, j) : 0 < i < j < T}, and Z be the corresponding likeli-

hood ratio statistics. Let M be the maximum number of change-points tolerated, which is

usually determined by computational resources.

The algorithm proceeds as follows: Sk is the list of estimated change-points in the k-

th iteration, which is initialized to contain only {0, T}. The entire dataset is scanned for

the window [s∗, t∗) that maximizes Z(s, t), that is, where the evidence for a change is the

strongest. This window is added to Sk. Then, the region (1) to the left of s∗, (2) between s∗

and t∗, and (3) to the right of t∗ are each scanned for a sub-segment that maximizes Z(s, t),

these maximum values are called ZL, ZC , and ZR respectively. The corresponding locations

of the maximum are RL RC , and RR. These are kept in the ordered lists Z and R. At each

iteration k of the algorithm, the region whose maximum weighted t statistic is the largest,

i.e. i∗ = arg maxiZ[i], is determined. The change-points from that region that achieve this

maximum, i.e. (s∗, t∗) = R[i∗], are added to Sk. Since s∗, t∗ splits a previously contiguous

region into three regions, Z and R must be updated to include the maximal Z values and

maximizing change-points for the new regions to the left, center, and right of the new change

points. This process is repeated until Sk has at least M change-points in addition to {0, T}.

Finally, the modified BIC criterion described in the next section is used to determine a best

estimate of the number of change-points and the final segmentation. The modified BIC is

a theoretically proven method for estimating the true number of change-points based on

asymptotic approximations to posterior model probabilities. It is an off-the-shelf method

that automatically determines the trade-off between false positive and false negative rates.

For users who wish to detect CNV using more or less stringent stopping rules, the software

MPCBS allows the option of a user tunable z-score threshold for deciding the fineness of

the segmentation.
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4.4.3 Estimating the Number of Segments

To estimate the number of change-points, we use a modified form of the classic BIC

criterion that extends the approach by Zhang and Siegmund (15). In Zhang and Siegmund

(15), it was shown that the modified BIC, when used on top of the CBS procedure of Olshen

et al. (10), improves its performance for DNA copy number data.

To describe the extension of Zhang and Siegmund (15) to the case of multiple platforms,

we first define several quantities. For a given genome position t, let nk(t) = |{i : tk,i < t}|

be the number of probes in the region [0, t) for platform k. Let

Sk,t =

nk(t)∑
i=1

yk,i

be the sum of the intensities of all probes in this region. For a given set of estimated

change-points τ̂ = (τ̂0 = 0 < τ̂1 < · · · < τ̂k = T ), let δk,i = rk
√
nk(τ̂i)/σk,

Xk,i =
Sk,τ̂i − nk(τ̂i)Sk,τ̂i+1

/nk(τ̂i+1)

σ̂k
√
nk(τ̂i)[1− nk(τ̂i)/nk(τ̂i+1)]

,

and

Ui(τ̂) =

∑K
k=1 δk,iXk,i(∑K
k=1 δ

2
k,i

)1/2 .
Xk,i is the t statistic for testing that the change in mean at τ̂i is not zero. Ui(τ̂) is a weighted

sum of Xk,i, just as (4.5) is a weighted sum of (4.6). Let N be the total number of distinct

values in {tk,i : 1 ≤ k ≤ K, 1 ≤ i ≤ nk}, that is, the number of different probe locations

from all K platforms. For any natural number n, n! denotes the factorial of n. It is possible

to show using arguments similar to Zhang and Siegmund (15) that

1

2

m∑
i=1

Ui(τ)2 − 1

2

m∑
i=0

log

[
K∑
k=1

nk(τ̂i, τ̂i+1)

]
− log

N !

m!(N −m)!
. (4.10)

is asymptotically within an Op(1) error term of the Bayes factor for comparing the model

with k change-points versus the null model. The number of change-points should be selected

to maximize the BIC.
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The first term of the modified BIC is the maximized likelihood, and is thus the same as

the first term of the classic BIC criterion. The second and third terms are penalties that

increase with the number of change-points. The second term penalizes the θ parameters

by summing up the logarithm of the effective sample size for estimating each θi. The third

term is the logarithm of the total number of ways to select m change-points from N possible

values, which penalizes the change-points parameters τ .

With the modified BIC, there is no need for a user specified p-value threshold. The

trade-off between false-positive and false-negatives is automatically decided by the modified

BIC.

4.4.4 Estimating the Platform-Specific Response Ratio

In this section we discuss the situation where the segmentation is known, and we would

like to estimate the platform specific response ratios r = (r1, . . . , rK), the baseline levels

α = (α1, . . . , αK), and the underlying copy numbers θ = (θ1, . . . , θm). For each (τ̂i, τ̂i+1),

the data from platform k that fall within the segment can be used to obtain an estimate of

fk(θi):

f̂k,i = nk(τ̂i, τ̂i+1)
−1

∑
j:tk,j∈[τi,τi+1)

yk,i, (4.11)

For each i and k, f̂k,i ∼ N(fk(θi), vk,i), where vk,i = σ2k/nk(τ̂i, τ̂i+1) is proportional to the

noise variance of the k-th platform and inversely proportional to the number of probes in

that platform that lies in the i-th segment. Thus, the negative log-likelihood of the data is

1

2

m∑
i=0

K∑
k=1

v−1k,i (f̂i,k − αk − rkθi)
2. (4.12)

The unknown parameter vectors r and θ should be chosen to minimize the above weighted

sum of squares.

If the variances vk,i were identical across i and k, r and θ can be estimated through the

singular value decomposition of the matrix F = (fi,k) or through a robust approach such

as median polish. This model would then be similar to those proposed in Irizarry et al.
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(4) and Li and Wong (8) for model-based probe set summary of Affymetrix Genechip data.

However, the differences in variances should not be ignored, because segments with less

data, for which we are less sure of the mean estimate, should be down-weighted. Similarly,

platforms with higher noise variance should also be down-weighted compared to platforms

with smaller noise.

There are many ways to modify existing approaches to minimize (4.12). We take the

following simple iterative approach: Note that for any fixed value of r, the corresponding

minimizer θ̂(r) can be found through a weighted least squares regression. The same is true

if we minimize with respect to r when the value of θ is held fixed. Thus, joint optimization

of r and θ is achieved through a simple block update procedure which we detail in the

Supplementary Materials.

4.4.5 Iterative Joint Estimation

Sections 4.4.1-4.4.3 detail a method for segmenting the data when the platform-specific

signal response functions are known. Then, Section 4.4.4 describe a method for estimating

the response functions with the segmentation given. In most cases both the segmentation

and the response functions are unknown. The algorithm below is an iterative procedure

that jointly estimates both quantities from the data.

Multi-platform Joint Segmentation.

Fix stopping threshold ε. Initialize f
(0)
k (µ) = µ for k = 1, . . . ,K. Set i← 0.

1. Estimate the segmentation τ (i) using MPCBS assuming response functions f (i).

2. Estimate f (i+1) as described in Section 4.4.4 assuming the segmentation τ (i).

3. If ‖f (i+1) − f (i)‖ < ε, exit loop and report:

τ̂ = τ (i), f̂k = f
(i)
k , k = 1, . . . ,K.

otherwise, set i← i+ 1, and iterate.
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In the algorithm above, f
(i)
k and τ (i) are respectively the response function and the

segmentation estimated in the i-th iteration. The response functions are initialized to be

equal in all platforms, a setting which in most cases already gives a decent segmentation.

After the first iteration, the estimated segmentation can be used to obtain a more accurate

estimate of the response functions, which can then be used to improve the segmentation.

In all of our computations we simply set the stopping parameter ε = 0.01. The estimates

of fk stabilized within a few iterations for all of the HapMap samples analyzed in Section

4.5.1.

4.5 Results

4.5.1 Comparison with Single Platform CBS by Using HapMap Data

We applied our approach to the eight HapMap samples analyzed in Kidd et al. (6) using

fosmid clone end-sequencing. In addition, we also analyzed the reference genotype data for

the same eight samples from an Agilent platform over 5,000 common copy number variants

(2). We combined the fosmid and Agilent datasets and collectively referred to them as

reference CNVs. The same HapMap samples have both been analyzed by Illumina 1M Duo

and Affymetrix 6.0 genotyping chips. We used MPCBS to combine the two platforms in

making joint CNV calls, and compared these calls with those made by running CBS on

each individual platform separately. We also compared MPCBS results with the union of

CBS calls made on both platforms, as well as the intersection of CBS calls made on both

platforms. Details of data normalization are described in the Supplementary Materials. For

CBS analysis, we show results using a range of p-values from 0.0001 to 0.1. For MPCBS,

we show results using both the modified BIC based stopping criterion described in this

paper, as well as a range of z-score thresholds from 4.5 to 9. We assessed performance

by computing, for each method and stopping threshold, the fraction of calls made by the

method that is also reported in Kidd et al. (6) or Conrad et al. (2) (precision), and the

fraction of CNVs reported in these two references that were also detected by the method

(recall).
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Figure 4.2: Precision-recall curve for detection of CNVs in eight HapMap samples. The
methods being compared are (I) CBS on Illumina platform only, (II) CBS on Affymetrix
platform only, intersection of (I) and (II), union of (I) and (II), and MPCBS jointly on
Illumina and Affymetrix. The solid black dot is the result given by MPCBS using the
modified BIC stopping criterion. The horizontal axis is the fraction of calls made by the
given method that fails to overlap with a reference CNV (1-precision). The vertical axis is
the fraction of all reference CNVs that are discovered by the given method (recall). The
curves are obtained by varying the stopping thresholds of CBS and MPCBS.

When the fosmid and Agilent platforms detect a CNV, the boundaries of the CNV are

not precisely defined. We therefore defined concordance to be any overlap between a CNV

called by CBS/MPCBS and a reference CNV. When multiple calls made by CBS/MPCBS

overlapped with the same reference CNV, only one of them was counted as concordant.

This guarded against over-segmented CNV regions. This criteria of overlap can be made

more or less stringent, but as long as it is applied consistently in the comparison between

CBS and MPCBS, the conclusion made would be unbiased. Figure 4.2 shows the curves

of 1-precision versus recall. We see from these results that concordance with reference is

low across all methods. The low concordance with fosmid detected CNVs has also been

reported previously, see, for example Cooper et al. (5) and McCarroll et al. (9). Importantly,

at comparable levels of precision, MPCBS gives higher recall rates than either Affymetrix or

Illumina does alone, and higher recall rates than combining calls from the two platforms by

intersection or union. In general, Affymetrix discovers many more segments than Illumina,
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with many more concordant calls, likely due to having more probes than the Illumina chip.

Figure 4.3: Mean probe intensities within reference CNV calls for Affymetrix versus for
Illumina in samples NA18956 and NA12878. The points are colored and shaped based on
the combination of Affymetrix, Illumina, the integrated method that detected it.

Is the low concordance between Affymetrix, Illumina, and reference CNVs due to inher-

ent disagreement in the raw data, or low sensitivity or specificity of the statistical method?

To investigate this issue, for each reference CNV, we computed the mean intensity of the

Affymetrix or Illumina probes mapping within each reference CNV. We would expect that

if the absolute change in mean probe intensity is high for a given platform, and if the

segment spans a sufficient number of probes, the CNV is more likely to be also called by

that platform. Alternatively, if the mean probe intensity within the reference CNV is in-

distinguishable from baseline, it would be missed by that platform. Figure 4.3 shows the

Affymetrix versus Illumina mean intensity plot for two of the eight samples. Each point

corresponds to a reference CNV. The points colored in red are reference CNVs also detected

by MPCBS, i.e. overlapping one of the CNVs called by MPCBS. The shapes of the points

reflect whether they are detected by single platform CBS in none of the individual platforms

alone, in only Affymetrix, in only Illumina, or in both Affymetrix and Illumina. Most of

the reference CNVs do not have a shift in intensity in any platform, suggesting that the

microarray based assays are noisy and prone to cross hybridization, especially in repetitive

regions or regions with complex rearrangements (5). By combining information from the

Affymetrix and Illumina platforms, MPCBS is able to make calls that were not identified
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in either platform alone.

Figure 4.4: Examples of regions detected by MPCBS. For each panel, the top plot shows
the Illumina data with CBS fit, the middle plot shows the Affymetrix data with CBS fit,
and the bottom plot shows the MPCBS consensus estimate along with thick horizontal lines
depicting the reference CNV call. In the left panel, the detected CNV region contains too
few probes and is thus missed by CBS on both Affymetrix and Illumina platforms alone.
However, by pooling the information from both platforms, MPCBS is able to make a call.
Similarly, in the middle panel, neither platform alone has strong signal, but with pooled
evidence the MPCBS call has good agreement with the reference. The right panel shows
that CBS has the tendency to over-segment CNV regions. The problem is mitigated in
MPCBS coupled with the modified BIC stopping criterion.

Figure 4.4 shows four examples of CNV calls made by multi-platform CBS that is missed

by one or both of the individual platforms. In the first two examples shown in the top left

and top right panels, the number of probes in each platform is too few to make a call.

However, combining the two platforms, multi-platform CBS makes a call that partially

overlaps with a reference. In the examples on the bottom left and bottom right panels,

multi-platform CBS improves on the boundaries of the Affymetrix call.

4.5.2 TCGA Cancer Data

To provide an example of application to somatic CNVs, we analyze a data set from

The Cancer Genome Atlas (TCGA) samples. Intensity data from three platforms, Illumina

550 K, Affymetrix 6.0 and Agilent 244K were downloaded from TCGA data portal. The

segmentation result for CBS and MPCBS on Chromosome 7 of the data is shown in Figure

4.5. The top three panels show the results for the standard approach, which is to call

CNVs for each platform separately. But to integrate the three CBS data sets one is faced

with the difficulty that for a true underlying CNV, the three segmentation summaries

may not have all detected the CNV, and even when they do, they will report different
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Figure 4.5: Result of MPCBS on a TCGA sample. The top three plots show Illumina,
Affymetrix, and Agilent data with CBS fit. Bottom panel shows multi-platform consensus.

magnitudes, different boundaries and different degrees of uncertainty. The MPCBS result

in the bottom panel provides a natural consensus estimate without the problem of having

to decide how to integrate the three CBS segmentation results. While MPCBS provides

a single combined estimate, it remains a statistically constructed best-possible summary,

and cannot be automatically taken as evidence of technical replication. We emphasize that

crucial results in specific regions still require careful validation in further experiments.

4.5.3 Computing Time

The computation was done on a 1.6 GHz Intel Core 2 Duo processor. In the analysis of

this example region, which contains 30,170 Illumina probes, 98,993 Affymetrix probes, and

13,241 Agilent probes, MPCBS took 122 seconds for each iteration of steps 1-3 in Section

3.5. The algorithm converged in two iterations. Extrapolating to the full data set consisting

of ∼ 2 million Affymetrix probes, > 1 million Illumina probes, and 240K Agilent probes, the

computing time is on the order of 1 CPU-hour per sample, and fluctuates according to the

number of CNVs detected. In general, computing time scales with the number of samples

linearly, and with the number of probes N as N logN . We have implemented additional

speed-up algorithms that are documented in the R package.
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4.6 Discussion

We have proposed a model for the joint analysis of DNA copy number data coming from

multiple experimental platforms. Under simplifying assumptions, the maximum likelihood

framework can lead to an easily interpretable statistic and a computationally tractable

algorithm for combining evidence across platforms during segmentation. By comparing to

Agilent and fosmid clone end-sequencing data on eight HapMap samples, we showed that

MPCBS gives more accurate copy number calls, as compared to a simple intersection or

union of the calls made by CBS separately on each platform. This method has also been

applied to TCGA data, where it provides consensus copy number estimates that provide a

natural summary of data from Affymetrix, Illumina, and Agilent platforms.

A main feature of MPCBS is that it combines scan statistics from multiple platforms in

a weighted fashion, thus without requiring pre-standardization across different data sources.

For a given underlying copy number change, platform A may report a higher level of absolute

change in signal intensity than platform B, but if A also shows a higher level of noise, or

fewer probes in the genomic region in question, the scan statistics of A may not be larger

than those of B because such statistics are scaled appropriately within each platform before

being combined in MPCBS. However, careful normalization and standardization across

platforms are still desirable when running MPCBS. This is because while segmentation per

se is not sensitive to absolute signals of different platforms, the mean level of change reported

by MPCBS can still be sensitive to the scale of different platforms. Recently, Bengtsson

et al. (1) proposed a joint normalization method for bringing different platforms to the

same scale and for addressing the issue of non-linear scaling between platforms. While the

method of Bengtsson et al. is not concerned with joint segmentation, it can be coupled to

MPCBS so that the mean level of copy number change reported by MPCBS is an even better

approximation of the consensus level of change. We expect that the segmentation result

will alter slightly when using data pre-processed by the method of Bengtsson et al. mainly

because the current version of MPCBS has not considered non-linear response functions.

In short, we recommend pre-standardization of the scale of copy number changes across
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platforms before running MPCBS. This would have little impact on segmentation but may

improve the mean copy number change reported.

MPCBS can be applied also to the situation when a biological sample is assayed multiple

times on the same experimental platform. In our general specification of the model (2.1), we

allow the snps/clones from different assays to overlap. When the same platform is used for

repeated assays of the same sample, model (2.1) and the MPCBS algorithm still apply with-

out modification. This does not assume that technical replicates using the same platform

have the same signal response curves, as there may be differential quality in replicates due

to differing handling and hybridization conditions. However, the user can have the option

of constraining the response ratios to 1 if the samples have already been preprocessed, e.g.

using the method of Bengtsson et al. (2009) to equalize the signal magnitudes.

4.7 Supplementary Materials

4.7.1 Derivation of the Likelihood Ratio Statistic (4.5)

To show that the likelihood ratio statistic gives (4.5): For simplicity of notation we

suppress the location indices [s, t]. Since this is a Gaussian mean shift model, the log

likelihood ratio between HA and H0 is

lA(µ)− l0 =
K∑
k=1

[µδkXk/σk − µ2δ2k/(2σ2k)]. (4.13)

Differentiating the above with respect to µ and setting the derivative to 0, we get µ̂ =

δ̃′X/δ̃′δ̃, where δ̃ = (δ1/σ1, . . . , δK/σK). Plugging this value back into (4.13), we have

lA(µ̂)− l0 equals (δ̃′X)2/(2δ̃′δ̃), which is one-half of (4.5).

4.7.2 Pseudo-code for MPCBS Segmentation Algorithm

Initialize:
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Set k ← 0, S0 ← {0, T},

Zmax = max
0<i<j<T

Z(i, j), (s∗, t∗) = arg max
0<i<j<T

Z(i, j),

Set Z ← Zmax, R ← (s∗, t∗), BIC(0)← 0.

While |Sk| − 2 < M repeat:

1. Let i∗ ← arg maxiZ[i], (s∗, t∗)← R[i∗],

s← max{i ∈ Sk, i < s∗}, t← min{i ∈ Sk, i > t∗}.

For each of (i, j) ∈ {[s, s∗), [s∗, t∗), [t∗, t)}, compute

Zmax = max
i<a<b<j

Z(a, b), (s∗, t∗) = arg max
i<a<b<j

Z(a, b).

Let ZL, ZC , and ZR be respectively the value of Zmax computed for the left segment

[s, s∗), the center segment [s∗, t∗), and the right segment [t∗, t). Similarly, let RL, RC ,

RR be respectively the maximizer for the left, center, and right segments.

2. Let L = |Z|, Set:

k ← k + 1,

Sk ← Sk−1
⋃
{s∗, t∗},

Z ← {Z[1 : i∗ − 1], ZL, ZC , ZR,Z[i∗ + 1, L]},

R ← {R[1 : i∗ − 1], RL, RC , RR,R[i∗ + 1, L]}.

Set BIC(k) to be the BIC criterion (4.10) of the estimated change-points Sk.

Finally, let k∗ = arg max0≤k≤M BIC(k). Return Sk∗.
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4.7.3 Block-update procedure for estimating platform response ratio

Let K be the number of platforms, m be the number of regions. We are fitting

1

2

m∑
i=0

K∑
k=1

v−1k,i (f̂i,k − αk − rkθi)
2 (4.14)

with the response ratio rK for platform K constrained to be 1.

Initialize t← 0,

r0 ← (1, . . . , 1)1×K ,

α0 ← (0, . . . , 0)1×K .

Repeat:

1. t← t+ 1

2. Given rt−1, estimate by weighted least squares

θt ← arg min
θ

m∑
i=0

K∑
k=1

v−1k,i (f̂i,k − α
t
k − rt−1k θi)

2.

3. Given θt, estimate by weighted least squares

(αt1:K−1, r
t
1:K−1)← arg min

α,r

m∑
i=0

K−1∑
k=1

v−1k,i (f̂i,k − αk − rkθ
t
i)

2.

4. For the K-th platform, keep rtK at 1 and set αtK ←
∑m

i=1(f̂i,K − θi).

5. If ‖rt − rt−1‖/m < ε exit loop.

Report r = rt, θ = θt, α = αt.

4.7.4 Normalization of Hapmap samples

For Affymetrix data, we requested GeneChip 6.0 CEL files for HapMap samples from

Affymetrix, InC. We used the software package Aroma to analyze preprocess the eight

114



HapMap samples used in this study. The resulting logR values were used in CBS and

MPCBS analysis without further normalization. For Illumina Human1M-Duo Beadchip

data, we downloaded from Illumina’s public FTP site the logR values for the 270 HapMap

samples. We first median-centered logR values for each sample and in each chromosome.

To correct for the long range oscillations in baseline logR levels (a phenomenon known as

“genomic waves”, which is related to local GC content and whole-genome amplification

conditions prior to array hybridization), we developed a normalization procedure based on

a principal component analysis (PCA) in the entire cohort of 270 samples. Each sample is

assessed PCA scores that correspond to the magnitude and phase of the “wave” for that

sample. For each SNP we performed a linear regression of logR values in all samples against

the samples’ first three PCA scores. The residuals from the regression were taken as logR

values corrected for the “genomic waves”, and used for segmentation by CBS or MPCBS.
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CHAPTER V

Conclusion

5.1 High-throughput array platforms and next-generation al-

ternatives

In this thesis, I investigated how biological information can be derived from high-

dimensional datasets such as gene expression microarrays and array comparative genomic

hybridization in multiple-sample, multiple-time-point, and multiple-platform settings. Even

though these large-scale datasets have fueled advances in various biomedical contexts in the

last decade, it is important to acknowledge their limitations alongside their strengths.

• Top-down vs. bottom-up approaches: Before the advent of high-throughput

technologies, traditional ‘bottom-up’ approaches in biology focused on individual

functional units. This approach had the potential to uncover greater details about

the functional unit under study compared with the global ‘top-down’ approaches of

large-scale datasets. However, it also bore a misinterpretation risk due to the lack of

a wider context that can only be provided by global information. Thus, the top-down

approaches that are able to provide comprehensive information about biological sta-

tus and function in a time and cost-efficient manner have increased appeal. However,

the top-down approaches also have limitations since a global view can miss impor-

tant details that might be essential to build the ‘story’ about the underlying biology.

Hence, it is essential to improve the ability to integrate bottom-up and top-down
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approaches (1). The number of large-scale datasets is increasing at an accelerated

pace, but these datasets provide little value unless they are of sufficient quality and

are interpreted in the richest possible context.

• Noise structure and resolution: Raw intensity values from gene expression mi-

croarrays and array CGH have two sources of noise: (1) biological and (2) technical.

Technical noise can be defined as all noise that do not arise due to the biological

sample under study. Inaccuracies related to technical equipment, variability in the

nucleic acid hybridization and amplification procedures can all be sources of technical

noise.

In gene expression microarrays, the commonly encountered lack of reproducibility

in prognostic signatures across platforms and laboratories is frequently attributed

to the noise levels in this technology (2). The Microarray Quality Control (MAQC)

Consortium generated data from the Affymetrix GeneChip platform to more carefully

investigate the technical noise level in this type of data. Reports show that the

variability in microarray data caused by technical noise is low and its role in statistical

methodology of data analysis is far from critical (3). However, it is not possible to

ensure that this conclusion applies to all biological contexts and questions of interest

studied with microarray technology. The variability in hybridization efficiencies and

binding propensities of nucleic acids, cross-hybridization background among millions

of array probes, as well as the saturation of probe sequences can prevent the platform

from reflecting an accurate representation of the specimen’s biological properties.

Moreover, similar studies on other gene expression platforms have yet to be carried

out.

More recent transcriptome sequencing (RNA-Seq) technologies provide an appealing

alternative to microarray platforms. Initial studies show that, in terms of overall

technical performance, RNA-Seq is the technique of choice for studies that require

accurate estimation of absolute transcript levels (4). Microarrays can still be prefer-

able when a lower sensitivity is acceptable since they provide results in a faster and
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less expensive fashion.

Array CGH data are also subject to variability due to technical noise. We have

shown in Chapter 4 with an example in Figure 4.5 that the noise structure is different

across platforms. We have also shown in Figure 4.3 that most of the reference CNVs

are not discovered by the array CGH platforms. These results underline the fact

that microarray based assays are noisy and prone to cross hybridization, especially

in repetitive regions or regions with complex rearrangements (5).

Next-generation high-throughput sequencing methods (DNA-Seq) are providing an

alternative for CNV detection as well (7). Two variants of CNV detection methods

using high-throughput sequencing are based on paired-end read mapping and event-

wise testing using read-depth of coverage, with examples in (6) and (8) respectively.

The authors found that, compared to microarrays, both sequencing-based approaches

are much more sensitive for detecting copy number variations smaller than 1,000 base

pairs, which make up the majority of CNVs (8).

5.2 DynBoost for reverse engineering of gene regulatory net-

works

In Chapter 2 of this thesis, I introduced DynBoost, a new method for reverse-engineering

of gene regulatory networks using time-series gene expression data. DynBoost is a fast and

flexible algorithm based on nonlinear autoregressive models and outperforms competing

algorithms. However, I showed in Tables 2.2 and 2.3 that network predictions of 100-

node networks have considerably lower performance that those of 10-node networks. Even

though competing algorithms exhibit the same type of decline in performance for 100-node

networks, it is not obvious whether this low performance is due to the data or the algorithms.

• Algorithms: At a community level, algorithms for reverse-engineering gene regula-

tory networks may not be competent enough in correctly modeling the interactions

between genes and gene products. (9) have identified certain types of systematic er-

rors in network predictions that continue to challenge modeling efforts. These errors,
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namely the fan-in, fan-out, cascade, and feed-forward loop (FFL) errors, arise from

co-regulation or chain-regulation among a set of nodes in the network. Even if the

data values have no technical noise, correctly sieving out pairwise regulations from

such joint regulation settings may not be possible without introducing conditional

distributions into the models. Assuming a model includes proper conditional distri-

butions, the identifiability of pairwise regulations would remain to be questionable

without a large enough sample size.

Further, DynBoost as well as many other algorithms, rely on interaction assumptions

that may be biologically over-simplistic. For instance, DynBoost models interactions

between time t and t + 1, but we do not have sufficient reason to believe that all

regulatory interactions in a cell become identifiable in the same short-term interval.

The effect of a regulatory interaction can become apparent over a wider time span due

to the particular regulation mechanism or certain constraints in the complex environ-

ment of the cell. While modeling nonlinear interactions with first-order interactions

is important, it can miss longer-term interactions. A second pass of the algorithm

with higher-order interactions would provide valuable information about regulatory

mechanism that generate transcripts over a wider time span.

• Data: The technical noise associated with gene expression arrays as mentioned above

may be a limiting factor in the success of reverse-engineering methods. Because of

the challenge of having to identify pairwise interactions from a complex system, even

a small noise level can hinder the correct inference of regulatory mechanisms. Data

from next-generation sequencing technologies (RNA-Seq) carry promise in this regard

for increasing the performance of existing methods. It would be partiularly interesting

to ask whether gene expression data with lower noise levels than microarrays would

help solve some of the challenges related to fan-in, fan-out, cascade, and FFL er-

rors. Competitive methods in the community should be tested with transcript levels

obtained from RNA-Seq platforms that are known to be less noisy than microarray

platforms.
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Knock-out and knock-down data that entail removing or reducing the effects of single

genes respectively have greater power to detect regulatory interactions. In these cases,

it is possible to observe the effect of changing one variable on the whole system. Since

only one variable is knocked-out or knocked-down, the changes in expression levels

have large enough magnitude to surpass the noise associated with the microarray

platform. However, obtaining knock-out and knock-down data from real biological

systems is expensive and time-consuming. Community-wide initiatives to generate

RNA-Seq data from model organisms with knocked-out or knocked-down genes will

be highly valuable for increasing the success with reverse-engineering methods. This

type of large-scale data can also be reused a high number of times to understand

various biological mechanisms beyond gene regulatory networks.

Potential future directions for DynBoost include modifications on the use of (1) residuals

and (2) the subnetwork Sm in the algorithm. As the first point, we note that the residuals

of genes are given equal weights during the optimization procedure. However, the algo-

rithm can be modified to use residuals with different weights as in the spirit of AdaBoost.

Each iteration of DynBoost would then adapt to discover interactions between genes whose

expression time series is poorly estimated by the past iterations.

DynBoost also has the limitation that potential regulators for a gene at iteration m can

only be chosen from the subnetwork Sm. Since Sm is chosen to be small in the spirit of a

weak learner, the algorithm itself significantly restricts the number of potential regulators

that will be explored. As a remedy, the number of boosting iterations can be increased,

but this is not desirable as it would lead to overfitting of the data. In future work, the

construction of Sm can be modified to allow all genes to be explored as potential regulators.

5.3 Consensus clustering and unsupervised class discovery

Asking an investigator how many classes a genomic dataset has can be analogous to

asking a museum-goer how many parts a painting has. The answer certainly depends on

the person’s own understanding of what a part is, and also on how close he or she is viewing
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the painting. In unsupervised class discovery, real high-dimensional datasets are often times

like a painting in that classes are not readily discernible or well-defined, and their number

depends on the investigator’s own preferences for the modeling scheme, the partitioning

method and pertinent parameters.

Even before a partitioining method is chosen and applied, the investigator needs to

specify what modeling scheme he or she is going to use. One of the main decisions to

be made in this regard is whether to use flat vs. nested (hierarchical) models. If

prior knowledge about the underlying biology implies substructure within classes, a nested

model should be preferred. (10) presents an example of a nested classification for gene

expression data from cancers of unknown primary (CUP) origin. Nested models have also

been proposed for single cancer types such as glioma (11).

Another modeling question that the investigator needs to address before the imple-

mentation of partitioning is whether to use soft vs. hard clustering. In soft clustering,

also known as fuzzy clustering, objects that are clustered do not belong to a single clus-

ter, but rather have partial membership in multiple clusters. In contrast, hard clustering

algorithms assign each object to only one of the clusters. Partial membership models in

situations with poorly separated clusters is not only a viable alternative, but also one that

needs to be carefully examined alongside hard clustering methods. The correlation of the

clustered objects with phenotypic outcomes may prove to be better explained by a gradient

of partial memberships rather than hard cluster assignments.

In both hard and soft clustering techniques, it is possible to categorize the objects as

core vs. non-core. The objects closest to cluster centroids in hard clustering, and the ob-

jects with partial membership coefficients above a certain threshold in soft clustering can be

classified as core objects, which means they constitute a set of objects that best characterize

the cluster they are in or have strongest membership to. The profiles of these core objects

can then be used to train parameters for a supervised classification scheme. Future objects

with unknown cluster membership can be tested with these parameter estimates to infer the

probabilities with which they belong to each cluster. These probabilities, in turn, can be

used either directly as partial membership coefficients, or to find the maximum-probability

122



cluster in a hard clustering setting. Consensus matrix values in consensus clustering can be

used as a tool to separate core objects from non-core ones. Objects with high values can be

clustered separately to group similar samples in the same class.The parametric nature of

supervised classification would allow for significance estimates and higher interpretability

of classes, as well as comparebility of results across different datasets. A combination of

unsupervised and supervised approaches in this way would also be expected to increase

power in class discovery efforts.

Integrating ‘significance’ estimates into unsupervised methods is an important point that

has not received sufficient attention in the class discovery literature. Comparing results from

the real dataset with those from a null distribution should be a fundamental component

of every unsupervised class discovery attempt. In this context, class discovery needs to be

viewed as a two-part question. The significance levels for (1) the existence of structure

and (2) the number of clusters should be investigated separately with null datasets that

are specific to each one of these two questions. The first part of the question, namely the

existence of structure in the dataset, should be explored with a global null distribution

whose sole function is to allow the decision of structure vs. no-structure. The second part

of the question, the number of clusters in the dataset, requires a set of null datasets that are

study-specific and lead to the most significant results for the optimal number of clusters.

Significance for the first question should be viewed as a visa to move on to the second

question, not as a guarantee for the significance of the second question. In the case of

significance for the first question, the null datasets for the second question still need to

be able to distinguish the number of clusters that attain the highest significance levels. A

visual inspection of partitioning results for a set of number of clusters, and choosing the

one that looks best should not be sufficient to report an optimal number.

The contribution of gene-gene correlations in a dataset to the level of structuredness

should also always be born in mind during class discovery. Most real gene expression

datasets have a significant gene-gene correlation structure due to functionally similar genes

being expressed at similar levels. This correlation structure can affect the high-dimensional

localization of the samples as a source of bias for partitioning methods. Therefore, gene-gene
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correlations should be included in global null datasets when determining the significance

level for the structuredness of the data. Validation of classes in external datasets is another

point where this correlation structure has potential to mislead investigators. The particular

placement in high-dimensional space of the most discriminant genes for a certain number

of classes can be significantly affected by the gene-gene correlations in the data. Thus,

these genes will have a similar localization in an external dataset simply due to gene-gene

correlations, rather than sample structuredness. It is important to account for gene-gene

correlations as much as possible in class discovery so as to discover the structure in the data

that stems only from samples.

Consensus clustering was developed to be able to visualize the stability of classes as well

as infer the optimal number of classes in gene expression data. I applied consensus clustering

to random data and observed that many unsupervised partitioning methods are able to

divide homogeneous data into prespecified numbers of clusters; and consensus clustering

shows apparent stability of such chance partitioning of random data. The results I presented

suggest that consensus clustering needs to be applied with caution as it is prone to over-

interpretation. If samples are not well-separated, consensus clustering could lead one to

conclude apparent structure when there is none, or declare cluster stability when it is subtle.

In the presence of genuine structure, this method may be a powerful tool for keeping false

negatives at low levels, but in the exploratory phase of many studies can lead to false

positives if not compared to a suitably formed null distribution. When partitioning poorly

separated samples from a real dataset, it is necessary to objectively evaluate the evidence

of clustering, and if appropriate, consider alternative models such as nested models, partial

membership models or continuous distributions.

5.4 MPCBS for joint estimation of DNA copy number from

multiple platforms

MPCBS presents a solution for the challenge of joint DNA copy number estimation from

multiple array CGH platforms. It can be applied also to the situation when a biological
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sample is assayed multiple times on the same experimental platform. Due to the advent

of high-throughput sequencing technologies, investigators now have more alternatives to

interrogate samples for DNA copy number. Even though the application of high-throughput

sequencing methods for CNV detection is also divided into multiple categories such as

paired-end read mapping and event-wise testing, these do not differ from each other as

fundamentally as the different array CGH platforms. In that sense, the introduction of

high-throughput sequencing as an alternative for CNV detection is exptected to lead to

less variable calls for a given copy number event, hence unifying results in effect. The

necessity to make joint estimation of DNA copy number from multiple platforms may be

diminished, however, array CGH platforms should co-exist with high-throughput sequencing

technologies for an extended amount of time either as complementary or only validation

techniques.

5.5 Closing remarks

The data deluge we are experiencing today is revolutionizing the world. There is an

abundance of data in virtually all sectors of life, be it private or government, corporate

or individual, consumption or production. Biology is not an exception to this trend. In

fact, biology is one of the fields at the forefront of this revolution. The rapid advent of

new technologies one after the other has facilitated the generation of bulk amounts of data

in a fast and cheap way. These large-scale data fill databases in an unprecedented pace.

However, the value of these datasets will not be realized until they are interpreted effectively

in the richest possible context. In this thesis, I focused mainly on two technologies: gene

expression microarrays and array comparative genomic hybridization (aCGH). I showed

how the different dimensions of gene expression datasets can be analyzed to understand

the relationships among genes and among biological specimens. I also showed how different

platforms for the same technology, namely aCGH, can be used jointly to make an inference

for the DNA copy numbers in the genome. The more recent high-throughput sequencing

technologies RNA-Seq and DNA-Seq provide a potentially more sensitive alternative to
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the gene expression and copy number detection analysis respectively. However, both gene

expression microarrays and array CGH are expected to co-exist with the newer technologies

for the time being as a source of validation and/or complementary information.
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