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CHAPTER I

Introduction

The study of the dynamics on character varieties and representation varieties originated

with Fricke’s classical result that the mapping class group acts properly discontinuously on

Teichmüller space. Let S be a closed oriented surface of genus at least two. The Teichmüller

space T (S) of S is the set of conjugacy classes of discrete and faithful homomorphisms from

π1(S) to the group of orientation-preserving isometries of H2, such that the hyperbolic

surface obtaining from taking the quotient of H2 by the image of π1(S) has the same

orientation as S. In other words,

T (S) = {ρ : π1(S) → Isom+(H2)|ρ is discrete, faithful and orientation preserving}/ ∼,

where ρ1 is equivalent to ρ2 if they differ by conjugation i.e., there exists A in Isom+(H2)

such that for any γ in π1(S), ρ1(γ) = Aρ2(γ)A
−1. Equivalently, T (S) can be thought of as

the space of marked hyperbolic surfaces homeomorphic to S i.e.,

{(X, f)| X is a hyperbolic surface,

f : S → X is an orientation-preserving homeomorphism }/ ∼,

where (X, f) is equivalent to (Y, g) if there exists an isometry j : X → Y such that j ◦ f is

homotopic to g. The mapping class groupMod(S) of S is the group of orientation-preserving

homeomorphisms of S up to homotopy. It is an index two subgroup of Out(π1(S)) (see [20],

Chapter 8).
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If G is a linear algebraic Lie group and π is a torsion-free finitely-generated group,

then Hom(π,G) has the structure of an algebraic variety. The group G acts on Hom(π,G)

algebraically, via conjugation, and the orbit space R(π,G) := Hom(π,G)/G is well-studied

(for example, see [25]). When G is complex and reductive, the G-character variety of π,

X (π,G) is

Hom(π,G)//G,

the quotient of Hom(π,G) from geometric invariant theory (see [40] for a precise definition).

The group of outer automorphisms Out(π) of π, acts on R(π,G) and X (π,G) by pre-

composition in the following way. If [f ] is an element in Out(π) and [ρ] is an element in

R(π,G) or X (π,G) then [f ][ρ] = [ρ ◦ f−1].

Goldman ([24]) showed that R(π1(S),PSL(2,R)) consists of 4g − 3 components. The

discrete and faithful representations comprise two components T (S) and T (S̄), where S̄

is S with the opposite orientation. Fricke’s result shows that Out(π1(S)) acts properly

discontinuously on T (S)∪T (S̄) and Goldman conjectured that the action on the remaining

4g − 5 components is ergodic.

There are several generalizations of Teichmüller space on which an analogous result

holds. In particular, Labourie ([38]) showed the action of Mod(S) is properly discontinuous

on the so-called Hitchin component of R(π1(S),PSL(n,R)), which consists of discrete and

faithful representations. Similarly, ifG is a Lie group of Hermitian type, Wienhard, Hartnick

and Strubel ([58] and [28]) showed that the action of Mod(S) is properly discontinuous on

the set of maximal representations. There are several results supporting a close analogy

between these two types of representations and Teichmüller representations; for example,

see [37] and [9]. On the other extreme, when G is compact and π is the fundamental group

of a not necessarily closed surface of negative Euler characteristic, the action of Out(π) is

ergodic ([26], [51] and [22]), except in the case when π is a free group of rank two.

This thesis studies a generalization of Teichmüller space to hyperbolic 3-manifolds,

namely when π is the fundamental group of a compact 3-manifold M whose interior admits

an infinite volume complete hyperbolic metric and G is PSL(2,C). In this situation, sitting
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inside X (π1(M),PSL(2,C)) is AH(M), the set of conjugacy classes of discrete and faithful

representations, which can be thought of as the space of marked hyperbolic 3-manifolds

homotopy equivalent to M . The deformation space AH(M) is well-studied and there is a

parametrization of the interior of AH(M) using topological and conformal data (see Section

2.1.8). Using this parametrization and Fricke’s result, it is not hard to see that Out(π) acts

properly discontinuously on the interior of AH(M). A natural question might be whether

AH(M) is a domain of discontinuity. There are several problems with this formulation.

First, unlike the situation of Teichmüller space, Hitchin representations and maximal repre-

sentations, AH(M) is not a collection of connected components of X (π1(M),PSL(2,C)); in

fact, it is not open. It is, however, Out(π)-invariant and one could still ask if the action is

properly discontinuous on AH(M). Canary and Storm ([18]) showed that whenever M con-

tains a primitive essential annulus, Out(π) does not act properly discontinuously onAH(M).

If M contains no essential annuli and has incompressible boundary, then Out(π) is finite

(see [32] Theorem 27.1), and hence acts properly discontinuously on X (π1(M),PSL(2,C)).

In the case that M is a S × [0, 1], Goldman conjectured that quasi-Fuchsian space, the

interior of AH(S × [0, 1]) is a maximal domain of discontinuity. In the case that M is a

handlebody of genus at least two, Hg, Minsky ([46]) exhibited a domain of discontinuity

called the set of primitive-stable representations that is strictly larger than the interior of

AH(Hg). Canary, Magid and Storm ([18] and [15]) studied the case when M has incom-

pressible boundary and is not an interval bundle and showed in all these cases that there

exists a domain of discontinuity strictly larger than the interior of AH(M). In this thesis,

we show the existence of such domains of discontinuity in two of the remaining classes of

hyperbolic 3-manifolds: twisted interval bundles and compression bodies.

1.1 Main Results

In this section we describe the main results of this thesis. For ease of notation, in the

remainder of this thesis we will use X (M) to denote X (π1(M),PSL(2,C)).
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1.1.1 Twisted I-bundle

A twisted I-bundle M over a non-orientable surface B is

B̃ × I/(x, t) ∼ (θ(x), 1− t),

where B̃ is the orientable double cover of B and θ is the orientation reversing involu-

tion inducing the covering map B̃ → B. Then, X (π1(M),PSL(2,C)) is the same as

X (π1(B),PSL(2,C)) as π1(M) is isomorphic to π1(B). We will always assume that B

is closed.

The first result in this thesis is the following:

Theorem I.1. If M is a twisted I-bundle over a nonorientable hyperbolic surface, then

there exists an open, Out(π1(M))-invariant subset PS(M), called the set of primitive-stable

representations, in X (π1(M),PSL(2,C)) containing the interior of AH(M) as well as a

subset of ∂AH(M) such that the action of Out(π1(M)) on PS(M) is properly discontinuous.

The set PS(M) is analogous to the set of primitive-stable representations introduced

by Minsky in [46] for the case where M is a handlebody. In our case, a primitive element of

π1(M) is one that corresponds to a simple closed curve on the base surface B. A primitive-

stable representation is one that sends geodesics corresponding to primitive elements in the

Cayley graph CS(G) to uniform quasi-geodesics in H3 under an orbit map.

Naturally, we would like to know whether PS(M) is a maximal domain of discontinuity.

Toward this end, we prove Theorem I.2 which characterizes which points in AH(M) lie in

PS(M) and also characterizes which points in AH(M) can lie in a domain of discontinuity

for the action of Out(π1(M)).

Theorem I.2. Let M be a hyperbolizable twisted I-bundle and let [ρ] be an element of

AH(M). Then, [ρ] lies in the complement of PS(M) if and only if there exists a primitive

element g of π1(M) such that ρ(g) is parabolic. Moreover, if [ρ] lies in AH(M)− PS(M),

then [ρ] does not lie in any domain of discontinuity for the action of Out(π1(M)) on X (M).

Combining Theorem I.2 with the work of Canary, Magid and Storm ([18], [15]) completes

the picture when M has incompressible boundary. Namely, the following is true.
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Corollary I.3. Let M be a compact, orientable, hyperbolizable 3-manifold with nonempty

incompressible boundary. Then there exists an open, Out(π1(M))-invariant set, containing

the interior of AH(M) and a subset of the boundary of AH(M), on which Out(π1(M))

acts properly discontinuously if and only if M is not a trivial I-bundle over an orientable

hyperbolic surface. Moreover, in the case that M is not a trivial I-bundle, this set contains

all purely hyperbolic points in AH(M).

Corollary I.3 suggests that when considering the dynamics of Out(π1(M)) on X (M) the

case when M is a trivial I-bundle over an orientable, hyperbolic surface is an anomalous

case.

1.1.2 Compression body

A compression body is the boundary connect sum of a 3-ball, a collection of trivial

I-bundles over closed surfaces and a handlebody where the other components are attached

to the 3-ball along disjoint discs. The fundamental group of a compression body is a free

product of surface groups and a free group. The main result in this case is the following.

Theorem I.4. If M is a nontrivial compression body without toroidal boundary components,

then there exists an open, Out(π1(M))-invariant subset SS(M) of X (π1(M),PSL(2,C)),

called the set of separable-stable representations, containing the interior of AH(M) as well

as a subset of ∂AH(M) such that the action of Out(π1(M)) on SS(M) is properly discon-

tinuous.

This case is a generalization of the case when M is a handlebody, established by Minsky

in [46], although, a priori, when M is a handlebody the set of separable-stable representa-

tions could be smaller than the set of primitive-stable representations introduced by Minsky.

A separable element of π1(M) is one that lies in a proper factor of a free decomposition of

π1(M), except when M is a connect sum of two trivial I-bundles. In that case, a separable

element is one that misses an essential annulus in one of the two trivial I-bundles. The

definition of separable-stability is analogous to the definition of primitive-stability that is,

a separable-stable element is one that sends geodesics corresponding to separable elements

in the Cayley graph of π1(M) to uniform quasi-geodesics in H3 under an orbit map.
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When M is a compression body, the interior of AH(M) has infinitely many components;

they are indexed by marked homeomorphism types. When proving Theorem I.4 we find

examples of points on ∂AH(M) that lie in SS(M) that all correspond to manifolds home-

omorphic to M . We also show that there are some components in the interior of AH(M)

for which no boundary points lie in SS(M) (see Proposition V.13).

1.1.3 Outline

Here we briefly outline the rest of the thesis. In chapter II we review some well-known

theory of hyperbolic 3-manifolds and prove some elementary but useful results about orbit

maps. In chapter III, we define the notion of Q-stable representations, which provides a gen-

eral framework for defining domains of discontinuity. Then, in chapters IV and V we apply

this framework to show that both the set of primitive-stable representations and separable-

stable representations are domains of discontinuity. In chapter IV we prove Theorem I.1

and Theorem I.2. In chapter V we prove Theorem I.4.
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CHAPTER II

Background

In Section 2.1, we review the background material on hyperbolic 3-manifolds that we

will need (for more detailed information see [2], [41], or [43]). In Section 2.2 we prove some

basic facts about orbit maps that we will use in Chapters IV and V.

2.1 Hyperbolic Geometry

A hyperbolic 3-manifold N is a Riemannian 3-manifold of constant sectional curvature

−1. We will always assume that N is orientable. Then, equivalently, N is a Riemannian

manifold isometric to H3/Γ, where Γ is a torsion-free Kleinian group, that is a discrete

subgroup of the group of orientation-preserving isometries of H3. We will also always

assume that Γ is finitely-generated and non-elementary (equivalently non-abelian). We can

identify Isom+(H3), the group of orientation-preserving isometries of H3, with PSL(2,C),

by using the action of an isometry on ∂H3 (see [41], Chapter 1).

2.1.1 Thick-thin decomposition

The injectivity radius of N at a point x is

injN (x) = inf{length(c)/2|c is a homotopically nontrivial curve passing through x}.

Given ϵ > 0, the ϵ-thin part of N is

Nthin(ϵ) = {x ∈ N | injN (x) < ϵ}.
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Similarly, the ϵ-thick part of N is

Nthick(ϵ) = {x ∈ N | injN (x) ≥ ϵ}.

There exists a constant µ3 > 0, called the Margulis constant, such that for any hyperbolic

3-manifold N and any ϵ < µ3, each component of Nthin(ϵ) is one of the following (see [2],

Chp. D):

(a) a metric neighborhood of a closed geodesic,

(b) a parabolic cusp homeomorphic S1 × R× (0,∞), or

(c) a parabolic cusp homeomorphic to T × (0,∞), where T is a torus.

Let N0
ϵ denote N with all components of type (b) and (c) removed.

2.1.2 Cores

The convex core C(N) of N is the smallest convex submanifold of N such that the inclu-

sion of C(N) into N is a homotopy equivalence. The limit set Λ(Γ) ⊂ ∂H3 is the smallest,

closed Γ-invariant subset of ∂H3. When Γ is non-elementary, C(N) is CH(Λ(Γ))/Γ, where

CH(Λ(Γ)) is the convex hull of the limit set Λ(Γ). N is called convex cocompact if C(N) is

compact. N is called geometrically finite if C(N)∩N0
ϵ is compact and geometrically infinite

otherwise.

In general, when π1(N) is finitely generated there exists a compact submanifold C,

called the compact core, whose inclusion induces a homotopy equivalence with N (see [52]).

Moreover, C can be chosen such that it intersects each component of the noncompact

portion of Nthin(ϵ) in a single incompressible annulus if the component is homeomorphic

to S1 × R × (0,∞) or a single incompressible torus if the component is homeomorphic to

T × (0,∞) (see [44]). A compact core that intersects each component of the noncompact

portions of Nthin(ϵ) in this way is called a relative compact core.
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2.1.3 Conformal boundary

The domain of discontinuity Ω(Γ) is the complement of Λ(Γ) in ∂H3; it is the largest

open set of ∂H3 on which Γ acts properly discontinuously. It can be uniquely endowed with a

Γ-invariant hyperbolic metric, conformally equivalent to the metric induced by considering

Ω(Γ) as a subset of ∂H3 ∼= CP 1. The conformal boundary of N is ∂CN = Ω(Γ)/Γ a

collection of hyperbolic surfaces obtained by taking the quotient of Ω(Γ) by Γ. The conformal

bordification of N, (H3 ∪ Ω(Γ))/Γ is homeomorphic to C(N), except when Γ is Fuchsian.

2.1.4 Measured laminations

Let T be a closed hyperbolic surface. A (geodesic) lamination on T is a closed subset

λ ⊂ T which is a union of disjoint simple geodesics. A leaf of λ is a simple geodesic in λ.

A lamination λ is minimal if each half-leaf is dense in λ. A measured lamination is a pair

(λ, ν) where λ is a geodesic lamination and ν is a Borel measure on arcs transverse to λ such

that the support of ν is λ and ν is invariant under isotopies of T preserving λ. Let ML(T )

denote the space of measured laminations on T with the weak-∗ topology on measures and

let PML(T ) denote (ML(T ) − {∅})/R+, the space of projective measured laminations.

Weighted simple closed geodesics are dense in ML(T ) ([55], Proposition 8.10.7). For γ1, γ2

two simple closed geodesics, i(γ1, γ2) the intersection number is the number of points in

γ1 ∩ γ2. This naturally extends to two weighted simple closed geodesics and furthermore

to a continuous map i : ML(T ) × ML(T ) → R≥0 (see [4] Proposition 4.4). A measured

lamination (λ, µ) is filling if for any other measured lamination (α, ν) with different support,

i((λ, µ), (α, ν)) is nonzero.

2.1.5 Masur domain laminations

For this section, suppose that M is a compression body that is, the boundary connect

sum of a 3-ball, a collection of trivial I-bundles over closed surfaces and a handlebody where

the other components are attached to the 3-ball along disjoint discs. A meridian is a simple

closed curve on ∂M that is nontrivial in ∂M but trivial in M. M has one compressible

boundary component called the exterior boundary, denoted ∂ext(M). Let M denote the set
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of meridians on ∂M and let M′ denote the closure of M in PML(∂ext(M)) (here we fix a

convex cocompact hyperbolic structure on M and consequently a hyperbolic structure on

∂M). Let

M′′ = {λ ∈ PML(∂ext(M))| there exists a ν ∈ M ′ such that i(λ, ν) = 0}.

A compression body is small if it is the boundary connect sum of two trivial I-bundles over

closed surfaces or the boundary connect sum of a trivial I-bundle over a closed surface and

a solid torus. A compression body is large otherwise.

Definition II.1. If M is a large compression body then an element λ in PML(∂ext(M))

lies in the Masur domain, denoted O(M), if it has nonzero intersection number with every

element of M′. If M is a small compression body then an element λ in PML(∂ext(M)) lies

in O(M) if it has nonzero intersection number with every lamination in M′′.

The Masur domainO(M) is an open set of full measure in PML(∂ext(M)) ([42] and [34]).

Moreover, Mod(M), the group of isotopy classes of homeomorphisms of ∂ext(M) that extend

to homeomorphisms of the compression body, acts properly discontinuously on the set of

Masur domain laminations ([42] and [50] Proposition 1.4). Since Mod(M) acts properly

discontinuously on O(M), if λ lies in O(M), then λ intersects every essential annulus in

M . Otherwise, Dehn twists about an essential annulus missing λ produce infinitely many

elements in the stabilizer of λ in Mod(M), which would contradict the proper discontinuity

of the action.

For a general hyperbolizable 3-manifold M with compressible boundary, Lecuire de-

scribed an extension of the Masur domain, called the set of doubly incompressible lami-

nations. A measured lamination (λ, µ) is doubly incompressible if there exists a constant

η > 0 such that i(λ, ∂E) > η for any essential disc or essential annulus E. When M is a

compression body, the pre-image of O(M) in ML(S) is contained in D(M) ([39], Lemma

3.1).
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2.1.6 Pleated surfaces and simplicial hyperbolic surfaces

Pleated surfaces and simplicial hyperbolic surfaces are two different types of 1-Lipschitz

maps from a negatively curved surface into a hyperbolic 3-manifold.

Definition II.2. A pleated surface in a hyperbolic 3-manifold N is a surface S with a

hyperbolic metric τ of finite area and a map h : (S, τ) → N which takes rectifiable arcs in

S to rectifiable arcs of the same length in N such that every point x in S lies in the interior

of some geodesic arc that is mapped by p to a geodesic arc in N . The pleating locus is the

set of points in S that lie in the interior of exactly one geodesic arc that is mapped to a

geodesic arc in N .

The pleating locus is a geodesic lamination that maps to a union of geodesics in N .

Although there can be many pleated surfaces in a fixed homotopy class realizing a geodesic

lamination λ, the image of λ in N is unique in that homotopy class ([13], Lemma I.5.3.5).

If T is an incompressible boundary component of N and λ is a filling lamination on T, then

λ can be realized as the pleating locus of a pleated surface homotopic to the inclusion of T

in N . When T is a compressible boundary component of N and λ ⊂ T is the support of a

doubly incompressible lamination, then λ can be realized as the pleating locus of a pleated

surface homotopic to the inclusion of T in N ([39], Theorem 5.1).

A triangulation τ = (V,E) of a closed surface S is a collection of points V = {v1, . . . , vn}

on S, and a maximal collection E = {e1, . . . , em} of pairwise nonisotopic and disjoint arcs

with endpoints in V. A simplicial hyperbolic surface is a map h : (S, τ) → N from S a

triangulated hyperbolic surface to N a complete hyperbolic 3-manifold that satisfies the

following conditions:

• edges map to geodesics

• faces map to totally geodesic triangles

• the total angle around each vertex is at least 2π.

If h is a simplicial hyperbolic surface, then with the pull-back metric it is locally CAT(−1);

in particular, the area of S is at most 2πχ(S).
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If f : S → N is an incompressible map and γ is a simple closed curve on S such that

f(γ) is homotopic to a closed geodesic f(γ)∗, then there exists a triangulation τ on S and

a simplicial hyperbolic surface h : (S, τ) → N homotopic to f such that h(γ) = f(γ)∗ ([4]

§1.2). Moreover, if h : (S, τ) → N is an incompressible simplicial hyperbolic surface, then S,

with the pull-back metric, has bounded diameter modulo the thin part ([4], Lemma 1.11).

More specifically, the following is true:

Lemma II.3 (Bonahon). Let h : S → N be an incompressible simplicial hyperbolic surface.

Given ϵ > 0, there exists a constant B = B(ϵ, g(S)), where g(S) is the genus of S, such that

for any two points x and y in h(S) ∩ Nthick(ϵ), there exists an arc k in h(S) connecting x

and y such that the length of k ∩Nthick(ϵ) is less than B.

2.1.7 Ends of hyperbolic manifolds

The ends of N are in one-to-one correspondence with the components of ∂C −P, where

C is a relative compact core and P is the intersection of C with the noncompact compo-

nents of Nthin(ϵ) (for a precise definition of ends see [33], Section 4.23). Any hyperbolic

3-manifold N with finitely generated fundamental group has finitely many ends. An end is

called geometrically finite if it has a neighborhood U which does not intersect C(N) and is

called geometrically infinite otherwise. By the Tameness Theorem ([1], [10]), we can choose

a relative compact core C such that N0
ϵ − int(C) is homeomorphic to ∂C − P × [0,∞),

where int(C) is the interior of C. Suppose that E is a component of N0
ϵ − int(C) home-

omorphic to T × [0,∞). If E is geometrically infinite, then there exists a sequence αi of

closed geodesics, homotopic in E to simple closed curves on T that leave every compact set

of E. Fix a hyperbolic surface T ′ and a homeomorphism T ′ → T . If α′
i is the geodesic on T ′

corresponding to αi, then α′
i/lT ′(α′

i) converges in ML(T ′) to a measured lamination (λ, µ)

such that its support λ is independent of the sequence {αi} ([4], [11]). In this situation λ

is called the ending lamination for the end E. It is minimal and is the support of a filling

doubly incompressible lamination ([11] Corollary 10.2).
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2.1.8 PSL(2,C)-character varieties and deformation spaces of hyperbolic 3-manifolds

Let M be a hyperbolic 3-manifold. In this section we describe the PSL(2,C)-character

variety of π1(M) (for a more detailed discussion see [30] or Chapter 4 of [33]). Fix a

presentation

π1(M) =< x1, . . . , xn|r1, . . . , rm > .

Then, Hom(π1(M),PSL(2,C)) can be given the structure of an affine algebraic subset of

C9n as follows. First, realize PSL(2,C) as an affine subset of C9, via its adjoint rep-

resentation. Then, identify Hom(π1(M),PSL(2,C)) with a subset of C9n by mapping

ρ 7→ (ρ(x1), . . . ρ(xn)) ∈ PSL(2,C)n and using the relations of π1(M) as the defining equa-

tions. The group PSL(2,C) acts algebraically on Hom(π1(M),PSL(2,C)) via conjugation.

The quotient space is often not nice. In particular, it is often non-Hausdorff, and so instead,

one can take the quotient from geometric invariant theory X (π1(M),PSL(2,C)), called the

character variety. Each representation, ρ : π1(M) → PSL(2,C), has an associated character

map, tr2 : π1(M) → C where g 7→ tr(ρ(g))2. The character variety X (π1(M),PSL(2,C)) is

in bijection with the set of characters of representations in Hom(π1(M),PSL(2,C)). Clearly,

two conjugate representations have the same character map. The converse is true for any

irreducible representation ([30] Lemma 3.5).

Given a compact, irreducible 3-manifold M with nonempty boundary, AH(M) is the

image of the set of discrete and faithful representations in X (M). A neighborhood of

AH(M) is a smooth complex manifold in X (π1(M),PSL(2,C)) ([33], Theorem 8.44). Since

AH(M) consists of irreducible representations, it consists of conjugacy classes of discrete

and faithful representations. Equivalently, it is the deformation space of marked hyperbolic

3-manifolds homotopy equivalent to M in the following sense:

AH(M) = {(N, f)| N a hyperbolic 3-manifold,

f : M → N a homotopy equivalence }/ ∼,

where (N1, f1) is equivalent to (N2, f2) if there exists j : N1 → N2 an isometry such that

j ◦ f1 is homotopic to f2.
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To see that these two notions of AH(M) are equivalent, suppose that ρ is a discrete and

faithful representation of π1(M) into PSL(2,C). Then, one gets a hyperbolic 3-manifold

Nρ := H3/ρ(π1(M)). Moreover, as M and Nρ are both K(π1(M), 1)-spaces, there exists a

homotopy equivalence hρ : M → N that induces ρ on the level of fundamental groups. If ρ′

is another discrete and faithful representation such that there exists A ∈ PSL(2,C) where

ρ′(g) = Aρ(g)A−1 for all g in π1(M), then A : H3 → H3 descends to a map jA : Nρ → Nρ′

such that jA ◦ hρ is homotopic to hρ′ . Conversely, given a pair (N1, f1), as described above,

then π1(N1) is a discrete subgroup of PSL(2,C) and one gets a faithful representation (f1)∗ :

π1(M) → π1(N1). If (N1, f1) and (N2, f2) are equivalent, then the isometry j : N1 → N2,

described above, lifts to an isometry of H3 conjugating (f1)∗ to (f2)∗.

Classical deformation theory of Kleinian groups describes the interior of AH(M). As-

sume that M has no toroidal boundary components (the situation is well-understood even

when M has toroidal boundary components but this assumption simplifies the statements

and suffices for this thesis). In this case, Sullivan ([54]) showed the following.

Theorem II.4 (Sullivan). The interior of AH(M) is precisely the set of convex cocompact

representations.

Moreover, there is a parametrization of the interior of AH(M) that is described as fol-

lows. Let A(M) be the set of compact, oriented, irreducible marked 3-manifolds homotopy

equivalent to M, i.e., the set of pairs (M ′, f) such that f : M → M ′ is a homotopy equiva-

lence, where two pairs (M1, f1) and (M2, f2) are equivalent if there exists a homeomorphism

j : M1 → M2 such that j ◦ f1 is homotopic to f2. For each (M ′, f) in A(M) let T (∂M ′) be

the Teichmüller space of ∂M ′. If ∂M ′ has multiple components then T (∂M ′) is the direct

product of the Teichmüller spaces of each component. For (M ′, f) in A(M), let Mod0(M
′)

denote the isotopy classes of homeomorphisms of ∂M ′ that extend to homeomorphisms of

M ′ homotopic to the identity.

If ρ is a convex cocompact representation such that Nρ lies in the marked homeomor-

phism class of M ′, then there is a homeomorphism ∂M ′ → ∂CNρ that corresponds to a

point in T (∂M ′) that is only well-defined up to homeomorphisms in Mod0(M
′). By work

of Ahlfors, Bers, Kra, Marden, Maskit, Sullivan and Thurston (see [16], Chapter 7), the
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interior of AH(M) is homeomorphic to

⨿
[(M ′,f ′)]∈A(M)

T (M ′)/Mod0(M
′).

Using the parametrization described above, one can show the action of Out(π1(M)) on

the interior of AH(M) is properly discontinuous (see [15]). Chapter III offers an alternate

proof in the case that M has no tori in its boundary.

In the case that M is homeomorphic to S× I, where S is a closed orientable hyperbolic

surface, the interior of AH(M) is parameterized by T (S) × T (S̄), where S̄ is S with the

opposite orientation. Fixing a point Y in the second factor, produces a Bers slice BY , which

is homeomorphic to T (S). Bers proved that any Bers slice has compact closure ([3]).

2.1.9 Convergence

Let ρi : π1(M) → PSL(2,C) be a sequence of discrete and faithful representations. We

say ρi converges algebraically to ρ : π1(M) → PSL(2,C) if for any fixed generating set

g1, . . . , gn of π1(M), the sequence ρ(gi) converges to ρ(g) in PSL(2,C) .

We say a sequence of Kleinian groups Γi converges geometrically to Γ if Γi converges to

Γ in the Chabauty topology on closed subsets of PSL(2,C) . In other words, Γi converges

geometrically to Γ if the following two conditions hold:

(a) if x is in Γ, then there exists xi in Γi such that xi → x and

(b) if there exists xi in Γi such that xi → x, then x is in Γ.

If Γi converges to Γ geometrically, then the sequence of corresponding manifolds Ni = H3/Γi

converges to N = H3/Γ, in the sense of Gromov-Hausdorff convergence.

If a sequence ρi converges algebraically, then up to subsequence ρi(π1(M)) converges

geometrically. In general, the algebraic limit is contained in but need not coincide with

the geometric limit. In the case that the two limits coincide, we say that the sequence ρi

converges strongly. Combining several results in Kleinian group theory produces a sufficient

condition for strong convergence (see [6] Theorem 2.9).
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Theorem II.5. Let M be a compact 3-manifold and let {ρn} be a sequence in AH(M)

converging to ρ in AH(M). If every parabolic element of ρ(π1(M)) lies in a rank two free

abelian subgroup, then {ρn} converges strongly to ρ.

2.2 Cayley graphs and quasi-isometries

If G is a finitely generated group and S a finite symmetric generating set, then the

Cayley graph of G with respect to S, CS(G), is a graph where the vertices are in one-to-one

correspondence with the elements of G and there is an edge between g and h if there exists

an element s in the generating set S such that gs = h. A group G acts on CS(G) by left

multiplication on the vertices. If X and Y are two metric spaces, a (K,A)-quasi-isometry

from X to Y is a map q : X → Y such that for any two points x and z in X

d(x, z)

K
−A ≤ d(q(x), q(z)) ≤ Kd(x, z) +A.

A (K,A)-quasi-geodesic is a (K,A)-quasi-isometric image of R. When we refer to quasi-

geodesics in CS(G) we assume it is parametrized by arclength. If G is a convex cocompact

torsion-free Kleinian group, then CS(G) is Gromov hyperbolic. Let δ(G,S) denote the hy-

perbolicity constant of CS(G). As G is torsion-free and hyperbolic, every element of G

acts with North-South dynamics on CS(G). Let ||g|| denote the minimum of d(v, gv) taken

over all vertices v in CS(G). There does not necessarily exist an axis for the action of g on

CS(G), but the following is true.

Lemma II.6. Let G be a torsion-free hyperbolic group. There exists (K ′, A′) depending on

δ(G,S) and G such that for any element g, there exists a (K ′, A′)-quasi-geodesic l′g in CS(G)

that satisfies the following:

(a) g · l′g = l′g and

(b) d(z, gz) = ||g|| for any z on l′g.

Proof. For an element g in G let wg be a vertex in CS(G) that realizes the minimum

translation distance of g. Let l′g = ∪gn[wg, gwg], where [wg, gwg] is a geodesic connecting wg
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and gwg. Then, l
′
g is a ||g||-local geodesic, for otherwise there would be a point on l′g moved

less than ||g||. The translation distance of g along l′g is ||g||, by construction. There exists

a T such that for ||g|| > T, l′g is a (T, T )-quasi-geodesic ([23] Chapter 5 Theorem 13). For

an element g with ||g|| < T, there is (Kg, Ag) such that l′g is a (Kg, Ag)-quasi-geodesic ([23],

Chapter 5). For any conjugate hgh−1 of g, the translate h · l′g is a (Kg, Ag)-quasi-geodesic

satsifying (a) and (b). As there are finitely many conjugacy classes of elements [g] with

||g|| < T, let K ′ = max{T,Kgi} and A′ = max{T,Agi} where we take one representative gi

from each conjugacy class with ||gi|| < T .

We will call l′g a (K ′, A′)-quasi-axis for g.

When a group G acts on a geodesic metric space X, for a fixed basepoint x in X, let

τx : CS(G) → X be an orbit map, i.e., a map that sends the identity to a basepoint x in X,

is G-equivariant and sends edges to geodesic segments.

Here we will gather some useful facts about such orbit maps in the case that X is H3. We

will drop the subscript x for ease of notation. When we discuss quasi-geodesics in τ(CS(G))

we assume that the parametrization is the composition of the parametrization by arclength

in CS(G) and τ .

Remark II.7. We will use the following observation frequently. If M = max{d(τ(e), τ(s))}

where e is the identity, and s varies over all elements in S, τ is M -Lipschitz.

As the following lemma shows, to check whether τ(γ) is a quasi-geodesic in H3, it suffices

to check that the vertices on γ are mapped sufficiently far apart.

Lemma II.8. Let G be a finitely-generated group acting by isometries on H3. Given (K,A),

there exists (K ′, A′) such that for any v, w and γ, where γ is an infinite path in CS(G) and

v, w are vertices on γ if

dH3(τ(v), τ(w)) ≥
dγ(v, w)

K
−A,

then τ(γ) is a (K ′, A′)-quasi-geodesic, where dγ is the arclength between v and w along γ.

Proof. Let M be as in Remark II.7. As τ is M -Lipschitz,

dH3(τ(v), τ(w)) ≤ Mdγ(v, w).
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If v′, w′ are any two points on γ, let v and w be the vertices on γ closest to v and w,

respectively. Then

dH3(τ(v), τ(w)) ≥ dH3(τ(v′), τ(w′))− 2M

≥ dγ(v
′, w′)

K
−A− 2M

≥ dγ(v, w)− 2

K
−A− 2M.

Let K ′ = max{M,K} and A′ = 2/K +A+ 2M .

Lemma II.9. Let G be a finitely-generated hyperbolic group acting by isometries on H3.

Let γ be a geodesic in CS(G) such that τ(γ) is a (K,A)-quasi-geodesic. Let γ′ be a (K ′, A′)-

quasi-geodesic in CS(G) with the same endpoints at infinity as γ. Then there exists K ′′ and

A′′ such that τ(γ′) is (K ′′, A′′)-quasi-geodesic, where K ′′ and A′′ are independent of γ and

γ′.

Proof. Since γ′ is a (K ′, A′)-quasi-geodesic, it is contained in theR′ = R′(K ′, A′)-neighborhood

of γ.

Suppose that v′ and w′ are vertices on γ′. Let v and w be vertices on γ closest to

v′ and w′, respectively. Then dCS(G)(v, v
′) and dCS(G)(w,w

′) are less than R′ and hence

dH3(τ(v), τ(v′)) and dH3(τ(w), τ(w′)) are less than R′M, where M is as in Remark II.7.

Then,

dH3(τ(v′), τ(w′)) ≥ dH3(τ(v), τ(w))− 2R′M

≥
dCS(G)(v, w)

K
−A− 2R′M

since τx(γ) is (K,A)-quasi-geodesic

≥
dCS(G)(v

′, w′)

K
− 2R′

K
−A− 2R′M

≥
dγ′(v′, w′)

K ′K
− A′

K
− 2R

K
−A− 2R′M

since γ′ is (K ′, A′)-quasi-geodesic

By Lemma II.8, we are done.
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The next fact is a useful characterization of quasi-geodesics in τ(CS(G)), due to Minsky

in [46]. Let L be a geodesic in CS(G), L′ the image of L under τ, {vi} the image of the

vertex sequence of L, and Pj,i the plane that perpendicularly bisects the geodesic segment

[vji, v(j+1)i].

Lemma II.10 (Minsky). Let G be a finitely-generated hyperbolic group acting by isometries

on H3. Given (K,A) there exists c > 0 and i ∈ N such that if L′ = τ(L) is a (K,A)-quasi-

geodesic, then Pj,i separates P(j+1),i and P(j−1),i and d(Pj,i, P(j+1),i) > c. Conversely, given

c > 0 and i ∈ N there exists (K ′, A′) such that if L′ = τ(L) has the property that Pj,i

separates P(j+1),i and P(j−1),i and d(Pj,i, P(j+1),i) > c then L′ is a (K ′, A′)-quasi-geodesic.

Proof. For the forward direction suppose that L′ is a (K,A)-quasi-geodesic. There exists

R′ = R′(K,A) and a geodesic l such that L′ is contained in a R′-neighborhood of l. Let

π : H3 → l be projection onto l. Then, π ◦ γ is a (K,A+ 2R′)-quasi-geodesic.

The following lemma shows that for i large enough, d(Pji, P(j+1)i) is at least 2R
′.

Lemma II.11. Let l be a geodesic in H3. Given R > 0, there exists D = D(R) such that if

x and y are two points on l a distance at least D apart then for any two points x′ and y′ lying

in BR(x) and BR(y) respectively, the plane P perpendicularly bisecting [x′, y′] is contained

in the region bounded by the two planes Px and Py where Px is the plane perpendicular to l

through the point on BR(x) closest to y and Py is the plane perpendicular to l through the

point on BR(y) closest to x (see Figure 2.1).

Proof. Suppose to the contrary that there exists R > 0, Di approaching infinity and points

xi, yi, x
′
i, y

′
i such that xi and yi are a distance Di apart, x′i, y

′
i lie in BR(xi) and BR(yi)

respectively and Pi, the perpendicular bisector of [x
′
i, y

′
i] intersects either Pxi or Pyi . Without

loss of generality assume that Pi intersects Pxi for all i. Consider the triangle T formed by

the vertices vi := [xi, yi] ∩ Pxi , wi := Pxi ∩ Pi and zi := [xi, yi] ∩ Pi. Then, T is a right

triangle with a right angle at vi (see Figure 2.2).

First notice that d(vi, zi) approaches infinity as

d(vi, zi) ≥ d(x′i,m
′
i)− d(x′i, vi)− d(zi,m

′
i),
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BR(x)
x

x′

y
y′

BR(y)

Py

Px

P

[x′, y′]

Figure 2.1: If the distance between x and y is large enough P is contained in the region
bounded by Px and Py.

where m′
i is the midpoint of [x′i, y

′
i]. Since d(x′i,m

′
i) is at least

Di−2R
2 and d(x′i, vi), d(zi,m

′
i)

are bounded above by 2R, the claim follows.

Next, notice that in order to form a right triangle with the above properties, the angle

at zi must approach zero. This is impossible, as [x′i, y
′
i] approaches l, the angle between Pi

and l approaches π/2.

Let D′ = D(R′) as in Lemma II.11. Then, for i at least K(D′ + A+ 2R), the distance

b

b

xi

yi

Pxi

Pi

vi

zi
wi

Figure 2.2: If Pi and Pxi intersect, we can form the triangle above with right angle at vi.
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d(Pji, P(j+1)i) is at least 2R′. It remains to show that Pji separates P(j−1)i and P(j+1)i. It

suffices to show that if we look at the balls BR′(π(vji)) they do not backtrack. Suppose to

the contrary that BR′(π(v(j−1)i)) and BR′(π(v(j+1)i)) are on the same side of BR′(π(vji))

along l. If d(π(v(j+1)i), π(vji)) is less than d(π(vji), π(v(j−1)i)), then v(j+1)i is within 2R′ of

some vertex w between v(j−1)i and vji (see Figure 2.3). Since w lies between v(j−1)i and

vji, d(v(j+1)i, w) is at least
i
K −A, a contradiction for i larger than K(2R′ +A). The same

argument applies if d(v(j−1)i, vji) is less than d(vji, v(j+1)i).

b

b
b

bb

b

b

b

b

b

b

b

b

vji

v(j−1)i

[v(j−1)i, vji]

b

b

b

b

b

b

b

b

b

b

b w

v(j+1)i

Figure 2.3: The distance between w and v(j+1)i is less than 2R.

For the backwards direction, suppose that we have c > 0 and i ∈ N such that L′ = τ(L)

has the property that Pj,i separates P(j+1),i and P(j−1),i and d(Pj,i, P(j+1),i) > c. Suppose

that v1 and v2 are vertices in CS(G) on L. If |v1v−1
2 |, the word length of v1v

−1
2 , is less than

2i,

dH3(τ(v1), τ(v2)) ≥ 0 ≥ 1

2i
dL(v1, v2)− 1.

If |v1v−1
2 | is greater than 2i by the two properties of Pj,i,

dH3(τ(v1), τ(v2)) ≥ (
1

2i
dL(v1, v2)− 1) ∗ c.

By Lemma II.8, this proves the claim.
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2.2.0.1 Cannon-Thurston maps

Let X and Y be Gromov hyperbolic metric spaces and i : X → Y an embedding. A

Cannon-Thurston map for i is a continuous extension î : X̂ = X∪∂X → Ŷ = Y ∪∂Y where

∂X and ∂Y is the geodesic boundary of X and Y, respectively. By continuity, if î exists, it

is unique. If i is a quasi-isometric embedding, then the existence of î is immediate since two

geodesics that are within a bounded distance of each other in X map to two quasi-geodesics

that are within a bounded distance of each other in Y . Cannon and Thurston ([19]) showed

the existence of such maps when Y is the Cayley graph of the fundamental group a closed

hyperbolic 3-manifold fibering over the circle, and X is the subgraph associated to the fiber

subgroup.

Suppose ρ is a discrete and faithful representation of G into PSL(2,C) and τρ : CS(G) →

H3 is an orbit map (see Section II for more details on this map). The existence of Cannon-

Thurston maps for τρ and the characterization of points that are not mapped injectively

by such maps is a well-studied problem. The results we will use in this paper are due to

Floyd ([21]) for the case when ρ is geometrically finite, and Mj ([47]) for the case when ρ is

geometrically infinite without parabolics; in fact Mj’s result is more general.

Theorem II.12 (Floyd). Let ρ be a geometrically finite representation of G. Then, τρ :

CS(G) → H3 extends continuously to τ̄ρ : CS(G) → H3. Moreover, τ̄ρ is 2 : 1 onto parabolic

points of rank one and injective elsewhere.

For Mj’s characterization of point preimages to make sense, we will need a way to

identify endpoints of leaves of ending laminations with points in ∂CS(G). Suppose that

ρ is a purely hyperbolic geometrically infinite representation of G into PSL(2,C). Let

E be a geometrically infinite end of Nρ. Recall from Section 2.1.7 that we can pick a

standard compact core C of Nρ such that the component of Nρ − C corresponding to E is

homeomorphic to T × (0,∞) where T is a boundary component of M . Morever, there is a

well-defined ending lamination λ on T . Then, λ is doubly incompressible ([11], Corollary

10.2) if Nρ has compressible boundary and λ is filling if Nρ has incompressible boundary.

In either case, if ρ′ is any convex cocompact representation such that N ′
ρ is homeomorphic

to Nρ, then λ is realizable by a pleated surface, p′ : T → Nρ′ homotopic to the inclusion of
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T in Nρ′ . If l is a leaf of λ, then p′(l) is a geodesic and its lift in H3 has two well-defined

endpoints in Λ(ρ′(G)). Since ρ′ is convex cocompact, τ ′ρ is a quasi-isometric embedding.

Hence it has a continuous extension τ ′ρ that restricts to a homeomorphism from ∂CS(G) to

Λ(ρ′(G)). Under this homeomorphism, the endpoints of l can be identified with two distinct

points in ∂CS(G).

This identification is independent of the choice of pleated surface, since the image of

the pleating locus is independent of the choice of pleated surface. This identification is also

independent of the choice of ρ′ for if ρ′′ is another choice of convex cocompact representation

with Nρ′′ homeomorphic to Nρ′ , then ∂τρ′′ ◦∂τρ′|−1
Λ(ρ′(G) is a homeomorphism from Λ(ρ′(G))

to Λ(ρ′′(G)) that sends the attracting fixed point an element ρ′(g) to the attracting fixed

point of ρ′′(g). If x is an endpoint of a leaf of p′(l), we can find xi → x such that xi is

the attracting fixed point of ρ′(gi). Then, the attracting fixed points of ρ′′(gi) approach an

endpoint of p′′(l). We are now ready to state Mj’s result.

Theorem II.13 (Mj). Let ρ be a purely hyperbolic representation with one geometrically

infinite end. Then, τρ : CS(G) → H3 extends continuously to τ̄ρ : CS(G) → H3. Moreover,

τ̄ρ(a) = τ̄ρ(b) for a and b in ∂CS(G) if and only if a and b are end-points of a leaf of an

ending lamination or boundary points of a complementary ideal polygon.
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CHAPTER III

Q-stable representations

Let G = π1(M) be a torsion-free, Kleinian group that contains no non-cyclic abelian

subgroups. We will call a property Q of elements G prevalent if it is invariant under

automorphisms of G and if there exists a set of generators X = {x1, . . . , xn} where xi and

xixj , for all i ̸= j have property Q. Let HQ be the subset of elements in G satisfying Q;

HQ will in general not be a subgroup of G.

In this chapter we will show that if Q is prevalent, the set of Q-stable representations is

a domain of discontinuity for Out(G). Roughly speaking, a Q-stable representation will be

one that sends geodesics corresponding to elements in HQ in the Cayley graph to uniform

quasi-geodesics in H3.

When G is the fundamental group of a twisted I-bundle, we will take Q to be primitivity;

an element is primitive if it corresponds to a simple closed curve on the base surface. When

G is the fundamental group of a compression body, we will take Q to be separability; if G is

not π1(S) ∗ π1(T ), where S and T are closed surfaces, an element is separable if it lies in a

proper factor of a free decomposition of G (see Chapter V for the definition of separability

in the remaining case).

The notion of a Q-stable representation is a generalization of the notion of primitive-

stable representations of a free group introduced by Minsky in [46]. A primitive element

of a free group Fn is an element that is part of a free generating set. A primitive-stable

representation is one that takes axes of primitive elements in the Cayley graph of Fn to

uniform quasi-geodesics in H3 under an orbit map.

For each g in G, let g− and g+ denote the repelling and attracting fixed points of g
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acting on ∂CS(G). Let LS(g) denote the set of geodesics connecting g− and g+ and QS

denote the set of geodesics l in CS(G) such that l is contained in LS(g) for some element g

in HQ.

Given a representation ρ : G → PSL2(C) and a basepoint x in H3, let τρ,x be the orbit

map for ρ(G) acting on H3 sending the identity to x (see Section 2.2).

Definition III.1. An irreducible representation ρ : G → PSL2(C) is called (K,A)-Q-stable

if there exists a basepoint x in H3 such that τρ,x takes all geodesics in QS to (K,A)-quasi-

geodesics.

Recall that we assume that τρ,x(l) is parametrized by the arclength paramerization in

CS(G) composed with τρ,x for any l in QS .

We will say a representation ρ is Q-stable, if there exists (K,A) such that ρ is (K,A)-

Q-stable. The following lemma shows that Q-stability does not depend on the choice of

basepoint x or generating set S, although the constants may change.

Lemma III.2. The condition Q-stability is independent of the choice of basepoint in H3

and the choice of generators S. It is also well-defined on X (M).

Proof. To see that Q-stability is independent of the choice of basepoint, observe that if τρ,x

sends all geodesics in QS to (K,A)-quasi-geodesics, then τρ,y sends all geodesics in QS to

(K,A+ 2d(x, y))-quasi-geodesics.

To see that Q-stability is independent of the choice of generators, suppose that S′ is

another finite symmetric generating set. The map φ : CS′(G) → CS(G) that is the identity

on vertices and sends an edge in CS′(G) to a geodesic connecting the corresponding vertices

is a (K ′, A′)-quasi-isometry for some (K ′, A′). Suppose γ is a geodesic in CS′(G) in LS′(g)

for some element g in HQ and let τ ′ρ,x be the corresponding orbit map. By Lemma II.9,

τρ,x(φ(γ)) is a (K ′′, A′′)-quasi-geodesic. If v and w are vertices on γ, then

d(τ ′ρ,x(v), τ
′
ρ,x(w)) ≥

dφ(γ)(v, w)

K ′′ −A′′

≥ dγ(v, w)−A′

K ′K ′′ −A′′.

By Lemma II.8, τ ′ρ,x(γ) is a (K
′′′, A′′′)-quasi-geodesic, whereK ′′′ and A′′′ are independent
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of γ.

To see that Q-stability is well-defined on X (M) recall that two irreducible representa-

tions lie in the same fiber of Hom(π1(M),PSL(2,C)) → X (M) if and only if they differ

by conjugation (see section 2.1.8). Clearly, (K,A)-Q-stability is preserved under conjuga-

tion.

In light of Lemma III.2, from now on we will drop the subscripts on LS(g) and QS and

we will let QS(M) denote the set of Q-stable representations in X (M). The goal of this

section is to show the following.

Proposition III.3. Let G = π1(M) be a torsion-free Kleinian group containing no non-

cyclic abelian subgroups. Let Q be a prevalent property of elements in G. Then the set of

Q-stable representations in X (M) is a domain of discontinuity for the action of Out(G).

The proof of Proposition III.3 follows an argument given by Minsky in [46] for the case

that G is a free group and an element is in HQ if it lies in a free generating set for G. We

want to show that QS(M) is open and Out(π1(M))-invariant. Openness will follow from the

fact that quasi-geodesics remain quasi-geodesics under small perturbations. Out(π1(M))-

invariance will follow from the fact that automorphisms of π1(M) preserve the set HQ.

Lemma III.4. (a) The set QS(M) is an open, Out(π1(M))-invariant subset of X (M)

containing the interior of AH(M).

(b) Moreover, given any [ρ0] in QS(M) there exist constants (K0, A0) and a neighborhood

U[ρ0] of [ρ0] such that any element [σ] in U[ρ0] is (K0, A0)-Q-stable.

Proof. We start by showing that QS(M) is open. By Lemma II.10, to show that QS(M)

is open and to show statement (b), it suffices to show the following:

Lemma III.5. For any Q-stable representation [ρ0] in X (M), there exists a neighborhood

U[ρ0] of [ρ0] and constants c′ > 0, i′ ∈ N such that for any [σ] in U[ρ0] and any geodesic l

in QS, the hyperplanes, Pj,i′ corresponding to τσ,x(l) have the property that Pj,i′ separates

P(j+1),i′ and P(j−1),i′ and d(Pj,i′ , P(j+1),i′) > c′.
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Proof. Suppose that ρ0 is (K0, A0)-Q-stable. Let i0 and c0 be the constants obtained from

Lemma II.10. Let i′ = i0 and choose c′ < c0. Let L be a geodesic in Q.

For any representation ρ : G → PSL(2,C), let vk(ρ, L) denote the image under τρ,x of

the kth vertex of L. Since the map ϕg : Hom(G,PSL(2,C)) → H3 that sends ρ 7→ ρ(g) · x

is continuous, for each j, vji0(ρ, L) and v(j+1)i0(ρ, L) vary continuously with respect to ρ.

In particular, if ρi converges to ρ, then [vji0(ρi, L), v(j+1)i0(ρi, L)] converges pointwise to

[vji0(ρ, L), v(j+1)i0(ρ, L)]. If mi is the midpoint of [vji0(ρi, L), v(j+1)i0(ρi, L)], then it con-

verges to m the midpoint of [vji0(ρ, L), v(j+1)i0(ρ, L)]. It also implies that if wi is the

vector tangent to [vji0(ρi, L), v(j+1)i0(ρi, L)] at mi pointing towards v(j+1)i0(ρi, L), then

wi converges to w, the vector tangent to [vji0(ρ, L), v(j+1)i0(ρ, L)] at m in the direction

of v(j+1)i0(ρ, L). Therefore, the point in the unit tangent bundle determining Pj,i0 varies

continuously over Hom(G,PSL(2,C)).

As G acts transitively and isometrically on CS(G), it suffices to check that P0 separates

P−i0 and Pi0 and that d(P0, Pi0) > c′ for each triple P−i0 , P0, and Pi0 corresponding to

each geodesic L in Q such that v0 is the identity. In particular we are only concerned

with what happens to a finite number of group elements. Then, there exists an open

neighborhood Uρ0 of ρ0 in Hom(G,PSL(2,C)) such that Pj,i0 separates P(j+1),i0 and P(j−1),i0

and d(Pj,i0 , P(j+1),i0) > c′. The image of Uρ0 in X (M) is the desired neighborhood of

[ρ0].

To see that QS(M) is Out(π1(M))-invariant, recall the assumption that any automor-

phism f of π1(M) preserves HQ. Then, the isometry from Cf(S)(G) → CS(G) that is

the identity map on vertices will send the elements of Qf(S) to QS . Since the image of

τρ◦f−1,x : Cf(S)(G) → H3 coincides with the image of τρ,x : CS(G) → H3, if ρ sends

elements in QS to (K,A)-quasi-geodesics, then τρ◦f−1,x sends elements in Qf(S) to (K,A)-

quasi-geodesics. Since Q-stability is independent of the choice of generators of G, ρ ◦ f−1

will also be Q-stable.

By Theorem II.4, for any ρ in the interior, τρ,x is a quasi-isometry into a convex subset of

H3. In particular, τρ,x is a quasi-isometric embedding intoH3 and hence ρ lies inQS(M).

We finish this section by showing that the action of Out(π1(M)) on QS(M) is properly
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discontinuous. The idea is that Q-stability will imply that translation length of an element

in HQ in the Cayley graph is coarsely the same as translation length of the corresponding

isometry in H3. To show proper discontinuity of the action it will suffice to show that only

finitely many automorphisms, up to conjugation, can change the translation length of all

elements in HQ in the Cayley graph by a bounded amount.

Proposition III.6. Out(π1(M)) acts properly discontinuously on QS(M).

Proof. Let lρ(g) denote the translation length of ρ(g) in H3, and let ||g|| denote the minimum

translation length of g in CS(G). The following lemma shows that for each compact set in

QS(M), the translation length of a Q element in H3 and in CS(G) is coarsely the same.

Lemma III.7. Let C be a compact subset of QS(M). There exists r,R > 0 such that

r ≤ lρ(g)

||g||
≤ R

for all g in HQ and all representations [ρ] in C.

Proof. By Remark II.7, for each [ρ] in C, there exists Rρ such that lρ(g) ≤ Rρ||g|| for any

element g.Moreover, Rρ can be chosen to depend continuously on ρ. Let R be the maximum

of Rρ over C.

To see the lower bound we can first assume by compactness and Lemma III.5 that there

exists (K,A) such that every element [ρ] in C is (K,A)-Q-stable. Recall, by Lemma II.6,

that there exists (K ′, A′) such that for any element g, there exists a (K ′, A′)-quasi-axis

l′g. Using Lemma II.9, τρ,x(l
′
g) is a (K ′′, A′′)-quasi-geodesic in H3, where K ′′ and A′′ are

independent of g. In particular, τρ,x(l
′
g) lies in a R′′ = R′′(K ′′, A′′) neighborhood of the axis

for ρ(g). Hence if we take y on τρ,x(l
′
g), we have

lρ(g) ≥ d(y, ρ(g) · y)− 2R′′ ≥ ||g||
K ′′ −A′′ − 2R′′.

Therefore,

lρ(g)

||g||
≥ 1

K ′′ −
A′′

||g||
− 2R′′

||g||
.
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For ||g|| larger than 2(A′′ − 2R′′)K ′′,

1

K ′′ −
A′′

||g||
− 2R′′

||g||
>

1

2K ′′ > 0.

Let [g1], . . . , [gm] be the conjugacy classes of elements of G such that ||gi|| is less than

2(A′′ − 2R′′)K ′′. Since
lρ(gi)
||gi|| varies continuously over X (M) for each gi, there exists a

minimum value ri for
lρ(gi)
||gi|| over C. Take r to be the minimum of {r1, . . . , rm, 1

2K′′ }.

Now suppose that [f ] is an element in Out(G) such that f(C) ∩ C ̸= ∅. Applying the

above inequalities we have that for any [ρ] in C and any w in HQ,

||f−1(w)|| ≤ 1

r
lρ(f

−1(w)) =
1

r
lρ◦f−1(w) ≤

R

r
||w||.

Recall that, by assumption, there exists X = {x1, . . . , xm} a set of generators for G such

that each xi is in HQ and xixj for i ̸= j is also in HQ. Let W = {xi, xixj |i ̸= j}. It suffices

to show the following lemma.

Lemma III.8. For any N > 0, the set

A = {[f ] ∈ Out(G)| ||f(w)|| ≤ N ||w||| for all w ∈ W}

is finite.

Proof. Suppose that {[fk]} is a sequence of infinitely many distinct elements in A. Fix a

convex cocompact representation ρ of G. Then τρ,x : CS(G) → CH(Λ(ρ(G))) is a quasi-

isometry. Fix the following notation: Let g denote the isometry of H3 induced by the action

of g, l(g) its translation length and Ax(g) its invariant geodesic axis. As G acts cocompactly

on CH(Λ(ρ(G))), there exists r > 0 such that l(fk(xi)) ≥ r on H3 for all i and k. Since

||fk(xixj)|| ≤ 2N , there exists R such that l(fk(xixj)) ≤ R all k and all pairs i, j such that

i ̸= j.

This implies that there exists an upper bound D on the distance between Ax(fk(xi)) and

Ax(fk(xj)) for all k and all pairs i, j. Indeed suppose that {d(Ax(fk(xi)),Ax(fk(xj))} was
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unbounded. Since l(fk(xi)) and l(fk(xj)) are bounded from below by r, {l(fk(xi)fk(xj))}

would also be unbounded, a contradiction.

Then, there also exists an upper bound D′ on the distance between Ax(fk(xi)), a quasi-

axis of fk(xi) in CS(G), and Ax(fk(xj)), a quasi-axis of fk(xj), for all i, j and k. Up to

conjugation, we can then assume that Ax(fk(xi)) is a uniformly bounded distance D′′ from

the identity e for all k and i. If y is a point on Ax(fk(xi)) closest to e, then we can bound

the distance between the identity and fk(xi) in the Cayley graph as follows.

d(e, fk(xi)) ≤ D′′ + d(y, fk(xi)y) +D′′

≤ 2D′′ + ||fk(xi)||

≤ 2D′′ +N

This implies that up to conjugation, there are only finitely many possibilities for each fk(xi).

Hence A must be finite.

Remark III.9. If HQ equals G, then QS(M) is the interior of AH(M). This provides an

alternate proof that Out(π1(M)) acts properly discontinuously on the interior of AH(M),

when M has no toroidal boundary components.

We end this section with a useful geometric characterization of discrete and faithful

Q-stable representations.

Lemma III.10. Let ρ be a discrete and faithful representation of π1(M) into PSL(2,C).

Then ρ is Q-stable if and only if

(a) ρ(g) is hyperbolic for any Q-element g and

(b) there exists a compact subset Ω of Nρ = H3/ρ(π1(M)) such that the set of geodesics

corresponding to Q-elements of π1(M) is contained in Ω.

Proof. For the forward direction, suppose that ρ is (K,A)-Q-stable. Then, ρ(g) must be

hyperbolic for all Q-elements g for if ρ(g) were parabolic, then for any geodesic l connecting
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the fixed points g+ and g− on ∂CS(G), τρ,x(l) would not be a quasi-geodesic. Moreover,

elements of Q stay within a bounded neighborhood of their corresponding geodesic axes in

H3. In particular, geodesics representing Q elements will stay in a bounded neighborhood

of the image of the Cayley graph in Nρ, which is a compact set.

Conversely, suppose that ρ(g) is hyperbolic for all g in HQ and that there exists a

compact set Ω such that all Q-geodesics of Nρ are contained in Ω. Without loss of generality,

since Nρ is tame (by [1] or [10]), we can assume that Ω is a compact core C of Nρ containing

the image of CS(G)/ρ(G) in Nρ. This implies that Ω̃, the preimage of Ω in H3, is connected.

For some (K,A), τρ,x : CS(G) → Ω̃ ⊂ H3 is a (K,A)-quasi-isometry from CS(G) to Ω̃ with

the intrinsic metric. In particular, any geodesic l in P connecting g− and g+, the fixed

points of g, maps to a (K,A)-quasi-geodesic in Ω̃, with the intrinsic metric. Then, τρ,x(l)

lies in a R = RΩ(K,A)-neighborhood of Ax(g), a lift of the geodesic representing g in Nρ in

the intrinsic metric and also with the extrinsic metric. If x, y lie on τρ,x(l) and if π denotes

the closest point projection onto Ax(g) in Ω̃, then

dΩ̃(x, y) ≤ dΩ̃(π(x), π(y)) + 2R = dH3(π(x), π(y)) + 2R ≤ dH3(x, y) + 4R

This implies that τρ,x(l) is a (K,A + 4R)-quasi-geodesic in Ω̃ with the extrinsic metric.

Hence ρ is (K,A+ 4R)-Q-stable.
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CHAPTER IV

Twisted I-bundle case

In this chapter we study the case whenM is a twisted I-bundle. Following the framework

in Chapter III, we take the set HQ to be the set of simple closed curves on the base surface,

which we call the set of primitive elements. It easily follows from Proposition III.3 that the

set of primitive-stable representations is a domain of discontinuity for the action. Most of

the chapter is dedicated to characterizing which points in AH(M) are primitive-stable. We

show that a discrete and faithful representation is primitive-stable if and only if no simple

closed curve on the base surface is parabolic. This characterization allows us to complete

the proof of Theorem I.1. Moreover, combining this characterization with an observation of

Minsky, we conclude that the set of primitive-stable representations is maximal with respect

to the discrete and faithful representations.

Let B be a nonorientable hyperbolic surface and let B̃ be its orientable double cover.

Let M be a twisted I-bundle over B, namely

M = B̃ × I/(x, t) ∼ (θ(x), 1− t),

where θ is an orientation-reversing, fixed-point free involution of B̃ such that B̃/⟨θ⟩ is

homeomorphic to B.

4.1 Primitive-stable representations

Definition IV.1. We say an element g in π1(M) is primitive if it can be represented by a

simple closed curve on the base surface B.
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Let PS(M) denote the set of primitive-stable representations in X (M).

Proposition IV.2. PS(M) is a domain of discontinuity for the action of Out(π1(M)).

Proof. By Proposition III.3, it suffices to show that the set of primitive elements is Out(π1(M))-

invariant and that we can find a set of generators for π1(M) such that each generator and

each two-fold product of distinct generators is primitive. Since π1(M) is isomorphic to

π1(B) and homotopy equivalences of closed surfaces are homotopic to homeomorphisms,

the set of primitive elements is Out(π1(M))-invariant.

If the Euler characteristic of B is 2−k < 0, then we can realize B as a 2k-sided polygon

with k pairs of adjacent sides identified. Using the sides of the polygon, π1(B) ∼= π1(M)

has the following presentation < a1, . . . , ak|Πa2i > . With this presentation, each generator

and each two-fold product of distinct generators corresponds to a simple closed curve on

B.

4.2 Primitive-stable points on the boundary of AH(M)

In this section we prove Theorem I.2, which combined with Proposition IV.2 completes

the proof of Theorem I.1. We break up the proof into Propositions IV.3 and IV.5. We

start by characterizing which points in AH(M) lie in PS(M). We will show that [ρ] in

AH(M) lies in PS(M) if and only if ρ(g) is hyperbolic for all primitive elements g of G.

In particular, PS(M) will contain the interior of AH(M) as well as all purely hyperbolic

points on the boundary of AH(M). To complete the proof of Theorem I.2, we will use an

observation by Minsky that for a general hyperbolizable 3-manifold M ′ if [σ] in AH(M ′)

maps a core curve of an essential annulus to a parabolic element of PSL(2,C), then [σ]

cannot lie in a domain of discontinuity of the action of Out(π1(M
′)) on X (M ′). Finally, we

conclude with the result that no point on the boundary of quasi-Fuchsian space can lie in

a domain of discontinuity.

For the reader’s convenience we restate Theorem I.2.

Theorem I.2. Let [ρ] be an element of AH(M). Then [ρ] does not lie in PS(M) if and

only if there exists a primitive element g of π1(M) such that ρ(g) is parabolic. Moreover,
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if ρ lies in AH(M) − PS(M), then ρ does not lie in any domain of discontinuity for the

action of Out(π1(M)) on X (M).

We will start by proving the first assertion of Theorem I.2.

Proposition IV.3. Let [ρ] be an element of AH(M). Then [ρ] does not lie in PS(M) if

and only if there exists a primitive element g of π1(M) such that ρ(g) is parabolic.

Proof. The backward direction follows from Lemma III.10.

For the forward direction, if ρ(g) is hyperbolic for every primitive g, then, by Lemma

III.10, it suffices to check that closed geodesics corresponding to primitive elements remain

in a compact set. Let γg denote the unique geodesic representative of ρ(g) in N = Nρ.

The representation ρ induces a homotopy equivalence hρ : M → N. Precompose with the

inclusion B → M to obtain an incompressible map h′ρ : B → N. Let αg be a simple closed

curve on B such that h′ρ(αg) is freely homotopic to γg.

Then, the map h′ρ is homotopic to a simplicial hyperbolic surface hg such that αg maps

to γg (see Section 2.1.6). We claim that there exists an ϵ0 small enough such that hg(B) is

contained in N0
ϵ0 for any primitive element g. First, observe that there exists a constant A

depending only on the Euler characteristic of B such that for any point x in B there exists

a homotopically nontrivial simple curve through x of length less than A. To produce such

a curve take a ball centered at x and blow it up until it intersects itself. Since the area of

B is bounded, there is a uniform upper bound on the area and radius of such a ball.

For any L > A and any ϵ less than µ3, if h(B) ∩ (N −NL(N
0
ϵ )) ̸= ∅, then there exists

a homotopically nontrivial simple curve on h(B) entirely contained within a noncompact

component of Nthin(ϵ), where NL(N
0
ϵ ) denotes the L neighborhood of N0

ϵ . This implies that

the curve represents a parabolic element, which is a contradiction. Fix ϵ < µ3 and L > A

and choose ϵ0 small enough such that NL(N
0
ϵ ) is contained in N0

ϵ0 .

Now suppose that {γi} is a sequence of primitive geodesics not contained in any compact

set. Let hi : B → N denote a simplicial hyperbolic surface containing γi, homotopic to h′ρ.

We can lift hi to a map h̃i : S → Ñ where S = ∂M and Ñ is the double cover of N

associated to the subgroup π1(S). The map h̃i is a simplicial hyperbolic surface containing

γi and θ̃(γi), where the associated triangulation is the preimage of the triangulation on B.
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Moreover, by construction, h̃i satisfies θ̃ ◦ h̃i = h̃i ◦ θ, where θ̃ is the nontrivial covering

transformation of Ñ .

Fix C a compact core for N. The preimage C̃ of C in Ñ is a compact core for Ñ . As

C̃ is homotopy equivalent to a fiber surface S which separates Ñ ∼= S × R, Ñ − C̃ has two

components. Since C̃ covers C and C has only one boundary component, θ̃ must exchange

the two boundary components of C̃, and hence θ̃ must exchange the two components of

Ñ − C̃.

As {γi} is not contained in any compact set, we can assume, up to passing to a subse-

quence, that there exists a point xi on γi such that xi lies outside the compact set Ci where

Ci is defined as

Ci = {x ∈ N0
ϵ0 | there exists a path c from x to C such that l(c ∩Nthick(ϵ0)) ≤ i}.

As θ̃ interchanges the two components of Ñ − C̃, the two lifts x̃i, x̃
′
i of xi lie in different

components of Ñ − C̃, but by the equivariance property of h̃i, they both lie on h̃i(S). Any

path c on h̃i(S) connecting x̃i and x̃′i satisfies l(c ∩ Ñthick(ϵ0)) ≥ 2i, for if not, in N there

would be a path c′ connecting xi to C with l(c′ ∩ Nthick(ϵ0)) < i. For i large enough, this

contradicts Lemma II.3.

This completes the proof of the first assertion of Theorem I.2. This also completes

the proof of Theorem I.1; for example, geometrically infinite purely hyperbolic points will

lie on ∂AH(M) and in PS(M). To prove the second assertion we will need the following

observation due to Minsky.

Lemma IV.4 (Minsky). Let M be a compact hyperbolizable manifold with no toroidal

boundary components. Let γ be the core curve of an essential annulus in M. Suppose that

ρ : π1(M) → PSL2(C) is a discrete and faithful representation such that ρ(γ) is parabolic.

Then, any neighborhood of [ρ0] contains points with infinite stabilizers. In particular, [ρ]

cannot lie in a domain of discontinuity for the action of Out(π1(M)) on X (M).

Proof. Consider the map

tr2γ : X (M) → C
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where [ρ] 7→ tr([ρ(γ)])2. As a neighborhood of AH(M) is a smooth complex manifold, on

which tr2γ is a holomorphic map, tr2 is either constant or open on each connected component

of that neighborhood. Since the interior of AH(M) is dense in AH(M) (see [7] and [48])

and since the interior consists of convex cocompact representations by Theorem II.4, the

image of tr2γ cannot be constant on any component of AH(M). Therefore, up to passing

to a smaller neighborhood, tr2 must be an open map on that neighborhood of AH(M).

Since isometries of H3 are determined, up to conjugacy, by their trace and there are finite

order elliptic isometries with trace arbitrarily close to 2 or −2, there exist representations ρi

approaching ρ such that ρi(γ) corresponds to a finite order elliptic isometry. Let ni denote

the order of ρi(γ). Then Dni
γ the Dehn twist of order ni about the annulus whose core curve

is γ is an element in Out(π1(M)) that fixes [ρi]. Hence, elements arbitrarily close to [ρ] have

infinite stabilizers.

Proposition IV.5. If ρ lies in AH(M) − PS(M), then ρ does not lie in any domain of

discontinuity for the action of Out(π1(M)) on X (M).

Proof. If [ρ] lies in the complement of PS(M) in AH(M), then there exists a primitive

element g such that ρ(g) is parabolic. Then, g is either the core curve of an essential

annulus or the core curve of an essential Mobius band. By Lemma IV.4 it suffices to show

that the latter is impossible. Suppose that γ is a closed essential curve in M mapping to a

parabolic element in Nρ = H3/ρ(G). Then we claim that γ must be homotopic into ∂M. If

C is a relative compact core for Nρ, consider the map ϕ : S = ∂M → C in the homotopy

class of ρ|π1(∂M). If C̃ is the cover of C associated to the subgroup ϕ∗(π1(S)) it is a compact

manifold with π1(C̃) ∼= π1(S). This implies that C̃ must be a trivial I-bundle over S ([29]

Theorem 10.6). The lift S → C̃ can be homotoped into ∂C̃. Hence the map S → C is also

homotopic into the boundary of C. Then, we can homotope the map M → C to a map that

sends ∂M into ∂C. This map is either homotopic to a homeomorphism or is homotopic to

a map M → ∂C ([29] Theorem 13.6). The latter cannot happen as this would imply that

∂C is a nonorientable closed surface. Therefore, any curve in M mapping to a parabolic

element in Nρ is homotopic into ∂M. As the core curve of an essential Mobius band cannot

be homotoped into ∂M , it cannot be mapped to a parabolic element in Nρ.
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This completes the proof of Theorem I.2. We end this section with an application of

Minsky’s observation in the quasi-Fuchsian case.

Proposition IV.6. Let F be an orientable hyperbolic surface. Then no point on the bound-

ary of AH(F × I) can lie in a domain of discontinuity for the action of Out(π1(F × I)) on

X (F × I).

Proof. Since geometrically finite points are dense on the boundary of AH(F × I) (see [8]

and [14]) and since any simple closed curve on F is the core curve of an essential annulus,

the result follows from Lemma IV.4.

37



CHAPTER V

Compression body case

The main goal of this chapter is to prove Theorem I.4. After discussing some background

on compression bodies in Section 5.1 we will show that the set of separable-stable represen-

tation is a domain of discontinuity by using Proposition III.3. The majority of the chapter

is devoted to showing that the set of separable-stable representations contains points on the

boundary of AH(M). In doing this, we find two types of representations on ∂AH(M) that

are separable-stable; these representations correspond to manifolds homeomorphic to com-

pression bodies. We end the chapter with a brief discussion of representations on ∂AH(M)

whose corresponding manifolds are not homeomorphic to compression bodies.

5.1 Compression bodies

A compression body is a compact, orientable, irreducible 3-manifold M with a bound-

ary component ∂extM , called the exterior boundary, whose inclusion induces a surjection

π1(∂extM) → π1(M). The other boundary components are called interior boundary compo-

nents. Equivalently, a compression body is a boundary connect sum of a 3-ball, a collection

of solid tori and a collection of trivial I-bundles over closed surfaces such that the other

summands are attached to the 3-ball along disjoint discs.

A compression body is trivial if it is a trivial I-bundle over a closed surface. A meridian

is a simple, closed curve on ∂ext(M) that is nontrivial in ∂ext(M) but trivial in M . By

Dehn’s lemma (see [29], Chapter 4) every meridian bounds an embedded disc in M . A

compression body is small if there exists an essential, properly embedded disc D such that
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M − D is either two trivial I-bundles over closed surfaces or one trivial I-bundle over a

closed surface; otherwise M is a large compression body.

The fundamental group of a compression body can be expressed as G1 ∗ G2 ∗ · · · ∗ Gn

where Gi is isomorphic to a closed surface group for 1 ≤ i ≤ k and Gj is infinite cyclic

k < j ≤ n. By Grushko’s theorem ([27]) and Kurosh’s subgroup theorem ([36]) any other

decomposition of the fundamental group into a free product, H1 ∗H2 ∗ · · ·Hm, where each

factor is freely indecomposable, satisfies n = m and Hi
∼= Gi, up to re-ordering. An

essential separating disc D in M realizes a splitting of π1(M) into a free product in the

following sense. If M−N (D) = M1⊔M2, where N (D) is a regular neighborhood of D, then

π1(M) ∼= i∗(π1(M1 ∪ N (D))) ∗ i∗(π1(M2 ∪ N (D))), where i is inclusion, and the basepoint

is chosen to lie in N (D); as the basepoint may change, this splitting is only well-defined up

to conjugation. As the following lemma shows, the converse is also true.

Lemma V.1. Let M be a compression body and π1(M) = H ∗ K a nontrivial splitting

of π1(M) into a free product. Then, there exists a properly embedded disc D realizing the

splitting in the sense described above.

Proof. As M is a boundary connect sum of a collection of solid tori, a collection of trivial I-

bundles and a 3-ball such that the other summands are attached to the 3-ball along disjoint

discs, the splitting corresponding to this connect sum, G = G1 ∗G2 ∗ · · · ∗Gn, where Gi is

isomorphic to the fundamental group of a closed surface for 1 ≤ i ≤ k and Gj is infinite

cyclic for k < j ≤ n has the following property. If σ is any permutation of {1, . . . , n} then

the splitting G′ ∗G′′ where G′ = Gσ(1) ∗ · · · ∗Gσ(l) and G′′ = Gσ(l+1) ∗ · · · ∗Gσ(n) is realizable

by an essential disc ∆σ. A result of McCullough-Miller ([45] Corollary 5.3.3) shows that the

image of Homeo+(M), the group of orientation preserving homeomorphisms, in Out(π1(M))

has index 2k where the cosets can be described in the following way. For each surface group

factor Gi, i ≤ k, let fi : G → G be an automorphism such that fi|Gj = id|Gj for i ̸= j

and fi|Gi is an orientation-reversing automorphism; notice that fi and fj commute for all

i, j ≤ k. The cosets of Homeo+(M) in Out(π1(M)) are {fi1 ◦ fi2 ◦ · · · ◦ fil · Homeo+(M)}

for 1 ≤ i1 < i2 < · · · < il ≤ k and l ≤ k.

Let σ be a permutation of {1, . . . , n} such that if GH = Gσ(1) ∗ · · · ∗ Gσ(l) and GK =
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Gσ(l+1) ∗ · · · ∗ Gσ(n), then GH is isomorphic to H and GK is isomorphic to K; by the

uniqueness of a maximal decomposition of G into a free product, such a permutation must

exist. By the discussion above, there exists a disc D′ realizing the splitting G = GH ∗GK .

We can find an automorphism ϕ : G → G such that ϕ(GH) = H and ϕ(GK) = K. Notice

that the automorphisms fi do not affect the splitting of G. By pre-composing with fi, if

necessary, we can assume that ϕ|Gi for i ≤ k is orientation-preserving. Hence, ϕ is realizable

by a homeomorphism fϕ and we can take D to be the image of fϕ(D
′).

5.2 Separable-stable representations

Definition V.2. If M is a compression body that is not the connect sum of two trivial

I-bundles over closed surfaces, an element g in π1(M) is separable if it corresponds to a loop

in M that can be freely homotoped to miss an essential disc. If M is the connect sum of two

trivial I-bundles over closed surfaces, an element g in π1(M) is separable if it corresponds

to a loop in M that can be freely homotoped to miss an essential annulus contained in one

of the two trivial I-bundles.

Proposition V.3. SS(M) is a domain of discontinuity for the action of Out(π1(M)).

Proof. It suffices to show that the set of separable elements is Out(π1(M))-invariant and

that we can find a set of generators for π1(M) such that each generator and each two fold

product of distinct generators is separable.

If M is a compression body that is not the connect sum of two trivial I-bundles, then

an element g is separable if and only if g lies in a proper factor of a decomposition of M

into a free product. Indeed, if g corresponds to a curve that is freely homotopic to a curve

missing an essential separating disc corresponding to the splitting H∗K, then g lies in either

H or K, up conjugation. If g corresponds to a curve that is freely homotopic to a curve

missing an essential nonseparating disc, then there is a splitting H∗1 such that g lies in H,

up to conjugation. Since H∗1 ∼= H ∗ Z, g lies in a proper factor of a free decomposition.

The converse follows from Lemma V.1. This implies that separability is preserved under

automorphisms.

For the remaining case, suppose that M is the connect sum of S1×I and S2×I where Si
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is a closed surface of genus at least two. First, we want to see that g is separable if and only

if there is a decomposition of π1(M) as π1(M) ∼= (H ∗<c> K) ∗ L or π1(M) ∼= (K∗<c>) ∗ L

such that g lies in K ∗ L satisfying the following

(a) L ∼= π1(Si)

(b) H ∗<c> K ∼= π1(Sj) in the first type of decomposition or (K∗<c>) ∼= π1(Sj) in the

second type of decomposition where i ̸= j

(c) c is freely homotopic to a simple closed curve on Sj

If g is separable, then it misses an essential annulus A in Sj × I. If c is the core curve

of A, π1(Sj) decomposes as H ∗<c> K or K∗<c>. Then π1(M) decomposes as π1(M) =

H ∗<c> K ∗ π1(Si) or π1(M) = π1(Si) ∗K∗<c> such that g lies in K ∗ π1(Si). Conversely, if

g is an element in π1(M) that lies in K ∗ L for a decomposition of one of the above types,

then g misses the essential annulus c× I.

Now, it suffices to show that such a decomposition is preserved under automorphisms.

If ϕ is an automorphism of π1(M), then ϕ((H ∗<c> K) ∗ L) = (ϕ(H) ∗<ϕ(c)> ϕ(K)) ∗ ϕ(L).

By the Kurosh subgroup theorem ([36]), ϕ(H)∗<ϕ(c)>ϕ(K) is conjugate to π1(Sj) and ϕ(L)

is conjugate to π1(Si). Up to composition with an inner automorphism and potentially

switching the factors, ϕ(π1(Sj)) = π1(Sj) and ϕ(L) = π1(Si) ([16] Lemma 9.1.2). Since

homotopy equivalence of closed surfaces are homotopic to homeomorphisms, ϕ(c) is a simple

closed curve on Sj .

IfM is a large compression body, take a maximal decomposition of G into a free product,

G = G1 ∗ · · · ∗ Gn. Let X be the union of finite generating sets for each factor. Since n

is at least three, any two fold product of distinct generators is separable. If M is a small

compression body, let X be the union of the standard generators of each closed surface

group factor and a generator for the infinite cyclic factor if there is a handle. In the case

that M is a connect sum of two trivial I-bundles over closed surfaces, it is clear that any

two fold product of such generators is separable. In the case that M is a trivial I-bundle

over a closed surface with a one handle, we only need to concern ourselves with products of

the form xi1xi2 where xi1 is part of the generating set for the closed surface group and xi2
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is the generator for the infinite cyclic factor. Then, xi2 misses D an essential disc. Let f

be an automorphism of G that is the identity on the surface group factor and maps xi2 to

xi1xi2 . By the discussion in the proof of Lemma V.1, f is realizable by a homeomorphism

f ′. Hence xi1xi2 misses the essential disc f ′(D).

5.3 Separable-stable points on ∂AH(M)

The goal of this section is to prove the existence of separable-stable points on ∂AH(M)

(Proposition V.11). These points will correspond to pinching either a Masur domain curve

or a Masur domain lamination on the exterior boundary of M. Using Lemma III.10, it

suffices to show that all separable geodesics lie in a compact set. Roughly speaking, if this

were not the case, then we could find a sequence of fixed points of separable elements in

∂CS(G) approaching an endpoint of an end invariant. We use the Whitehead graph to form

a dichotomy between separable elements and Masur domain laminations to show that such

a situation is impossible.

5.3.1 The Whitehead graph for a compression body

In this section we define the Whitehead graph for a closed geodesic or Masur domain

lamination with respect to a fixed system of meridians α on M . The generalization of

Whitehead graphs to compression bodies was developed in Otal’s Thèse d’Etat ([50]).

5.3.1.1 The handlebody case

We will start by describing Whitehead’s original construction in the case when M is a

handlebody ([57], [56], see [53]). As this is discussed in detail in [46], we will sketch this

case and discuss the case of compression bodies that are not handlebodies in detail. For

a fixed free symmetric generating set X = {x1, . . . , xn, x−1
1 , . . . , x−1

n } of π1(M) and a word

w = w1 · · ·wk in π1(M), the Whitehead graph of w with respect to X is the graph with 2n

vertices x1, x
−1, . . . , xn, x

−1
n and an edge from x to y−1 for each string xy in w or any cyclic

permutation of w. In this situation Whitehead ([57]) proved the following.

Lemma V.4. (Whitehead) Let g be a cyclically reduced word. If the Whitehead graph of g
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with respect to X is connected and has no cutpoint, then g is not primitive.

A word w1 · · ·wk is cyclically reduced if it is reduced and satisfies w1 ̸= w−1
k . A cutpoint

is a vertex whose complement is a disconnected graph. A primitive element in a free group

is an element that lies in a free generating set for the group. In particular, a primitive

element is separable.

Otal extended Whitehead’s condition to laminations on the boundary of the handlebody

as follows. If X is a free generating set for π1(M), then it is dual to a system of properly

embedded disks on M whose complement is a 3-ball. If D = {D1, . . . , Dn} is such a system

of disks, then Otal calls a lamination λ in tight position with respect to D if there are no

waves on D disjoint from λ. A wave is an arc k properly embedded in ∂M − ∂D such that

k is homotopic in M but not in ∂M into ∂D. Cutting ∂M along D, produces a planar

surface with 2n boundary components D+
1 , D

−
1 , D

+
2 , D

−
2 , . . . , D

+
n , D

−
n . The vertices of the

Whitehead graph are in one-to-one correspondence with these boundary components. There

is an edge between two vertices if there is an arc of λ − ∂D connecting the corresponding

boundary components. Otal proved that for laminations in the Masur domain of M that are

in tight position with respect to D, the Whitehead graph is connected and has no cutpoints

([50] Proposition 3.10, see [46] Lemma 4.5). Moreover, if λ is a Masur domain lamination,

then there always exists a system of meridians α such that λ is in tight position with respect

to α.

5.3.1.2 Compression bodies that are not handlebodies

Here we will discuss the Whitehead graph of compression bodies that are not han-

dlebodies. Fix σ : G → PSL(2,C) a convex cocompact representation of G such that

Nσ = H3/σ(G) is homeomorphic to the interior of M .

Definition V.5. A system of meridians is a collection α = {α1, . . . , αn} of disjoint, pairwise

nonisotopic, simple closed curves on S, the exterior boundary of M , that bound discs

D = {D1, . . . , Dn} in M such that M − N (D) consists of a collection of trivial I-bundles

over closed surfaces, where N (D) is a regular neighborhood of D.

Since σ is convex cocompact, Nσ = Nσ ∪ ∂CNσ is homeomorphic to M . We will often
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identify ∂M with ∂CNσ. Let α be a system of meridians bounding the discs D = D1 ∪

· · · ∪ Dn. Let Σ1 × I, . . . ,Σk × I be the components of Nσ − N (D). Let µ be a subset

of Λ(σ(G)) × Λ(σ(G)) that is σ(G)-invariant and also invariant under switching the two

factors. Most of the time µ will be one of the two following sets:

• If γ is a closed geodesic in Nσ, let µγ be all pairs of endpoints of the lifts of γ.

• If λ is a Masur domain lamination, then it is realizable by a pleated surface h : S → Nσ

homotopic to the inclusion map. Let µλ be all pairs of endpoints of lifts of leaves in

h(λ).

Recall from Section 2.1.6 that h(λ) is independent of the choice of pleated surface.

Γα(µ), the Whitehead graph of µ with respect to α, is a collection of not necessarily con-

nected graphs, Γα(µ)
Σ1 , . . . ,Γα(µ)

Σk , where the elements in the collection are in one-to-one

correspondence with the components of Nσ −D. In Nσ −N (D), there are two copies D+
i

and D−
i of each Di in D. Given a component Σ × I of Nσ − N (D), the vertices in the

corresponding graph Γα(µ)
Σ are in one-to-one correspondence with the components of D+

i

and/or D−
i of D in the frontier of Σ× I. Fix a Jordan curve C in Λ(σ(G)) that is invariant

under a conjugate of π1(Σ), which we will continue to denote π1(Σ). To avoid superscripts,

we will abuse notation and let D1, . . . , Dm denote the vertices of this component. Let F

denote the boundary component of Σ × I coming from S. Fix a lift ∂̃Di of each ∂Di in

∂H3 such that ∂̃Di lies in the component of the preimage of F in ∂H3 containing C on its

boundary. Let Ui be the open set in ∂H3, bounded by ∂̃Di not containing C. The edges

from Di to Dj will be in one-to-one correspondence with elements g in π1(Σ) such that

µ ∩ (Ui × gUj) is nonempty. We will denote such an edge (Ui, gUj). Notice that although

these edges are directed, for each edge from Ui to Uj labeled g, there is an edge from Uj to

Ui labeled g−1.

Definition V.6 (Otal). A connected component of Γα(µ)
Σ is strongly connected if there

exists a cycle that represents a nontrivial element of π1(Σ). A connected component of

Γα(µ)
Σ has a strong cutpoint if we can express the graph as the union of two graphs G1 and

G2 that intersect in a single vertex such that either G1 or G2 is not strongly connected.
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We take the convention that a cycle

(Ui1 , g1Ui2), (Ui2 , g2Ui3), . . . , (Uik , gkUi1)

corresponds to the group element g1 · · · gk. We made two choices when defining the White-

head graph, the lifts Ui of Di and the Jordan curve C. Suppose that we pick a different

set of lifts U ′
1, . . . , U

′
m of D1, . . . , Dm. Then U ′

i = hiUi for some hi in π1(Σ). There is an

edge (Ui1 , gUi2) in the original graph if and only if there is an edge (U ′
i1
, hi1gh

−1
i2

U ′
i2
) in the

new graph. In particular, there is a cycle (Ui1 , g1Ui2), . . . , (Uik , gkUi1) in the original graph

if and only if there is a cycle

(U ′
i1 , hi1g1h

−1
i2

U ′
i2), . . . , (U

′
ik
, hikgkh

−1
i1

U ′
i1)

in the new graph. Since g1 · · · gk is nontrivial if and only if hi1g1 · · · gkh−1
i1

is nontrivial, the

above definitions do not depend on the choice of lifts Ui.

Suppose we choose a different Jordan curve C ′. Then there exists an element a in G such

that C ′ = aC. The lifts aUi of Di will lie in the appropriate component of the preimage of

F in ∂H3, namely the one containing C ′ on its boundary. Since µ is σ(G)-invariant there

is an edge between Ui and gUj if and only if there is an edge between aUi and aga−1aUj ; in

particular, any edge labeled g in the original graph is now an edge in the new graph labeled

aga−1. So the above definitions do not depend on the choice of Jordan curve C.

5.3.1.3 Topological Interpretation

In the case when µ = µλ for a Masur domain lamination λ, Otal describes a topolog-

ical interpretation of the Whitehead graph in terms of the exterior boundary. As in the

handlebody case, there is a notion of tight position.

Definition V.7. A measured lamination λ is in tight position relative to α a system of

meridians if there does not exist a wave k disjoint from λ properly embedded in S − α,

where a wave is an arc satisfying the following.

• the interior of k is disjoint from α.
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• k can be homotoped in Nσ but not in S relative to its endpoints to an arc contained

in some αi.

Observe that if λ is in tight position, then there are no waves in λ. If λ is a Masur

domain lamination then there exists a system of meridians α such that λ is in tight position

with respect to α ([42], Section 3 for handlebodies, [50] Theorem 1.3 for general compression

bodies). Such a system is obtained by minimizing the intersection number with λ. Assume

that λ is in tight position with respect to α. We will start by defining a related collection

of graphs denoted Γ′
α(λ). Consider the collection of surfaces with boundary obtained by

cutting S along α. For each αi in α, there are two boundary components α+
i and α−

i in

the new collection of surfaces with boundary. For each component F of S − α, we will

define a graph of Γ′
α(λ)

F as follows. The vertices will be in one to one correspondence with

the copies of α+
i and/or α−

i in the frontier of F . We will abuse notation and relabel the

boundary components αi to avoid superscripts. The edges from the vertex αi to the vertex

αj are in one-to-one correspondence with the isotopy classes of arcs on S in λ connecting

αi and αj .

There is a natural surjective map from Γ′
α(λ) → Γα(µλ) defined as follows. Take the

obvious map on the vertices. Suppose that [k] is an edge connecting αi and αj . Let Di and

Dj denote the corresponding vertices in Γα(µλ) and let Ui and Uj be the fixed lifts of Di

and Dj , respectively. Take the lift k̃ of k intersecting Ui. Since λ is in tight position with

respect to α, k̃ will have one endpoint in Ui and the other in gUj for some g in π1(Σ). Map

the edge [k] in Γ′
α(λ) to the edge (Ui, gUj) in Γα(µλ). To see that (Ui, gUj) is an edge in

Γα(λ) we will need the following two facts.

• Any lift of a leaf l of λ has two well-defined endpoints x1 and x2 in Λ(σ(G)).

• (x1, x2) are the endpoints of h(l), where h : S → Nσ is a pleated surface realizing λ.

To see a proof of the first fact see Lemma 1 in [35]. The second fact is clear since it

is true for simple closed curves in the Masur domain and we can approximate λ by such

curves.

Now, if we consider the leaf l̃ of λ̃ containing the arc k̃ its endpoints must be contained

in Ui and gUj by tightness.
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To see that the map is surjective, given an edge (Ui, gUj) in Γα(µλ), there exists a leaf l̃

with endpoints in Ui and gUj . This will give an arc between αi and αj . Two edges [k] and

[k′] in Γ′
α(λ) are identified in Γα(µλ) if and only if they are homotopic in Nσ (see Figure

5.1). Hence edges in the Whitehead graph between Di and Dj correspond to homotopy

classes of arcs of λ joining ∂Di and ∂Dj .

k

k′

αi
αj

Figure 5.1: The edges [k] and [k′] in Γ′
α(µ) get identified in Γα(µ).

5.3.1.4 Whitehead graphs of separable curves and Masur domain laminations

In this section we give Otal’s generalization of Whitehead’s lemma, namely that for

a separable element g there exists a connected component of Γα(µg) that is either not

strongly connected or has a strong cutpoint. On the other hand, Otal also showed that the

Whitehead graph of a Masur domain curve in tight position with respect to α is strongly

connected and without a strong cutpoint. We will use this dichotomy in Section 5.3.2.

Proposition V.8 (Otal, Proposition A.3). Let M be a nontrivial compression body that is

neither the connect sum of two trivial I-bundles over closed surfaces nor a handlebody. If

g is a separable element of G = π1(M), then some connected component of Γα(µg) is not

strongly connected or has a strong cutpoint.

Proof. Let γ be the geodesic representative of σ(g) in Nσ. Since M is not the connect sum

of two trivial I-bundles, by Lemma V.1, there exists an essential disc ∆ disjoint from γ.

As ∆ is only well-defined up to isotopy we will often abuse notation and use ∆ to refer to

different representatives of the isotopy class of ∆.
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First consider the case where ∆ does not intersect D, up to isotopy. Then ∆ is isotopic

(rel boundary) into the boundary of some component Σ × I of Nσ − N (D). Consider the

sets A = {Di|Di ⊂ ∆} and Ac = {Di|Di ̸∈ A}. If A is empty, then ∆ is isotopic to some

Di. This implies that Di is an isolated vertex in the Whitehead graph. Moreover, any

edge connecting Di to itself, is labeled with the trivial element as γ does not intersect Di.

In particular, the connected component containing Di is not strongly connected. If A is

nonempty, first observe that no vertex in A can be connected to a vertex in Ac. Let C be

any connected component of Γα(µγ)
Σ containing a vertex in A. C is not strongly connected

for if (Ui1 , g1Ui2), . . . , (Uik , gkUi1) is a cycle in C and if ∆̃ is the lift of ∆ containing Ui1 ,

then ∆̃ also contains g1 · · · gkUi1 since γ does not intersect ∆. In particular, the cycle is

trivial as the stabilizer of ∆̃ is trivial.

If ∆ and D intersect nontrivially, up to isotopy, ∆ ∩D is a finite collection of disjoint

properly embedded arcs. Take k0 an innermost arc in this collection, meaning that one of

the discs ∆0 formed by ∂∆ and k0 has interior disjoint from D. ∆0 lies in some component

Σ× I of Nσ −N (D). ∂∆0 intersects one of the Di in the frontier of Σ× I nontrivially. Let

D0 denote that disc. Moreover, ∆0 is isotopic relative to its boundary into the boundary of

Σ× I. Let C denote the connected component of Γα(µγ)
Σ containing D0. Consider B the

set of vertices in C such that the corresponding discs Di in Σ×I are contained in ∆0. Notice

that if B is empty, then we can isotope ∆ to remove k0 from the intersection and repeat the

procedure above. Let C denote the set of vertices in C such that the corresponding discs Di

in Σ× I are disjoint from ∆0. The only vertex not lying in either set is D0. We claim that

D0 is a strong cutpoint of C where the graph associated to the vertices in B is not strongly

connected. In particular, if C is empty, then C is not strongly connected.

First, we want to show that no vertex in B is connected by an edge to a vertex in C.

Suppose that there is an edge (Ub, gUc) where Ub is the fixed lift of a vertex in B and Uc

is the fixed lift of a vertex in C, i.e., there is a lift γ̃ of γ such that one endpoint lies in Ub

and the other endpoint lies in gUc. This implies that γ must intersect ∆0 nontrivially (see

Figure 5.2), which contradicts how we chose ∆0.

Secondly we want to show that the subgraph associated to B is not strongly connected.

Suppose there is a cycle (U0, g0U1), . . . , (Uk, gkU0) such that g0 · · · gk is nontrivial. If ∆̃0 is
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∆0

Ub

gUc

γ̃

Figure 5.2: If there were an edge connecting a vertex in B to one in C then γ would intersect
∆0 nontrivially.

γ̃1

γ̃2

γ̃3

U0

g0U1

g0g1U2

g0g1g2U3

∆̃0

Figure 5.3: If there is a non-trivial cycle (U0, g0U1), . . . , (Uk, gkU0), then U0 and
g0g1g2 · · · gkU0 will both intersect ∆̃0.

the lift of ∆0 containing g0U1, then U0 and g1 · · · gkU0 intersect ∆0 (see Figure 5.3). This

is impossible as it implies that either there is a nontrivial curve in ∆0 or ∆0 ∩D0 consists

of two connected components, contradicting how we chose ∆0.

Proposition V.9 (Otal, Propostion A.5). Let λ be a measured lamination in the Masur do-

main that is in tight position with respect to a system of meridians α. Then, each connected

component of Γα(µλ) is strongly connected and without a strong cutpoint.

Proof. We will use the topological interpretation of the Whitehead graph discussed in Sec-

tion 5.3.1.3. Suppose that a component C of Γα(µλ)
Σ is not strongly connected. Let

D1, . . . , Dk be the components of D that correspond to the vertices in C. Let A be the

union of the Di and λ ∩ Σ. Take N (A) a regular neighborhood of A. The boundary of

N (A) consists of simple closed curves that each bound a disc in Σ, as C is not strongly
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connected. One of these boundary components b must bound a disc containing some Di.

Then, b is nontrivial on S and so we have found a meridian that misses λ, a contradiction.

Suppose that C has a strong cutpoint. Let F denote Σ− ∪ int(Di). Let D0 correspond

to the strong cutpoint and let G1 and G2 be the two graphs whose intersection is D0 such

that G1 is not strongly connected. Let β1, . . . , βt be the merdians in F corresponding to

vertices of G1. Let λ
′ ⊂ λ ∩ F consisting of arcs intersecting at least one βi. Let N denote

a regular neighborhood of λ′∪ (∪βi). The boundary of N consists of closed curves c1, . . . , cl

and arcs a1, . . . , as with endpoints lying on α0. Since G1 is not strongly connected, each ci

bounds a disc. We claim that at least one of the arcs ai is a wave, i.e., an arc disjoint from

λ, homotopic relative to its endpoints, in M but not in S into α0. Indeed, any ai is disjoint

from λ, by construction and homotopic in M into α0, since G1 is not strongly connected.

For each arc ai choose an arc bi in α0 sharing the same endpoints as bi such that ai ∪ bi

bounds a disc not containing α0. At least one of the loops c1, . . . , cl, a1 ∪ b1, . . . , as ∪ bs

contains some βi, since they form the boundary components of N . If ci contained some βi,

then βi would not be connected to α0, which contradicts how we chose βi. Therefore, some

ak ∪ bk bounds a disc containing at least one βi. In particular, ak will not be homotopic in

S into α0. So ak is a wave disjoint from λ, a contradiction to the assumption that λ is in

tight position (see Figure 5.4).

β1

β2

α0

α1

α2

ak

Figure 5.4: The arc ak is a wave disjoint from λ.
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5.3.2 Examples of separable-stable points on ∂AH(M)

In this section we prove Proposition V.11, which shows that two types of points on

∂AH(M) are separable-stable; namely that a geometrically finite point with one cusp asso-

ciated to a Masur domain curve is separable-stable and a purely hyperbolic geometrically

infinite point with one geometrically infinite end corresponding to the exterior boundary

component is separable-stable. The case that a geometrically finite point with one cusp as-

sociated to a Masur domain curve for handlebodies is separable stable was proven by Minsky

[46]. The case that a purely hyperbolic geometrically infinite point is separable-stable for

handlebodies was proven by Jeon-Kim in [31].

Lemma V.10. Let ρ be a discrete faithful representation such that ρ(g) is hyperbolic for all

separable elements g. If ρ is not separable-stable, then there exists a sequence of separable

elements gi such that the endpoints of Ax(ρ(gi)) the axis of ρ(gi) in H3 converge to a single

point z in ∂H3 but the points g+i and g−i in ∂CS(G) converge to distinct points z+ and z−

in ∂CS(G).

Proof. By Lemma III.10, since ρ is not separable-stable, the set of geodesics homotopic

to separable curves is not contained in any compact set of Nρ. Let {γi} be a sequence of

separable geodesics such that {γi} is not contained in any compact set. Recall that the

image of the Cayley graph under τρ,x in Nρ has only one vertex, v. Choose Di approaching

infinity such that γi does not lie in a ball of radius Di around v.

Fix a set of lifts γ̃i of γi. Then γ̃i is an axis for ρ(gi) for some separable element gi.

Let li be a geodesic in the Cayley graph connecting g+i and g−i . There exists a vertex vi

on τρ,x(li) such that the distance to γ̃i is at least Di. Shift li to l′i := v−1
i · li. Then, l′i

passes through e the identity element and connects the fixed points of v−1
i givi, which is still

a separable element. If γ̃′i is ρ(v
−1
i ) · γ̃i, the distance from x to γ̃′i is Di. This implies that,

up to subsequence, the endpoints of γ̃i approach a single point z on ∂H3. There exists z+

and z− on ∂CS(G) such that up to subsequence, v−1
i giv

+
i → z+ and v−1

i giv
−
i → z−. Since

each l′i passes through the e, z+ and z− are distinct.

Proposition V.11. Let ρ be a discrete and faithful representation such that Nρ = H3/ρ(G)

is homeomorphic to the interior of M satisfying one of the following two conditions.
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(a) ρ is a geometrically finite representation with one cusp associated to a Masur domain

curve or

(b) ρ is a purely hyperbolic representation where the end corresponding to the exterior

boundary is geometrically infinite and all other ends are convex cocompact.

Then ρ is separable-stable.

Proof. Let λ ⊂ S be the cusp curve if ρ is of type (a) or the ending lamination if ρ is of

type (b). If ρ is not separable-stable, by Lemma V.10 there exists a sequence of separable

elements gi such that the endpoints of Ax(ρ(gi)) converge to a single point z in ∂H3 but

the points g+i and g−i in ∂CS(G) converge to distinct points z+ and z− in ∂CS(G). In

particular, z+ and z− are identified under the Cannon–Thurston map for τρ,x.

Consider our fixed convex cocompact representation σ : G → PSL(2,C) used to define

the Whitehead graph. If τσ,x is the Cannon–Thurston map for τσ,x, using the results of

Floyd and Mj (see Section 2.2.0.1), τσ,x(z
+) and τσ,x(z

−) are either

(a) endpoints of Ax(σ(g)) where ρ(g) is parabolic or

(b) endpoints of a leaf of the ending lamination or ideal endpoints of a complementary

polygon

where the first case occurs if ρ is of type (a) and the second case occurs if ρ is of type (b)

(as in the statement of the proposition).

Let µ∞ ⊂ Λ(σ(G)) × Λ(σ(G)) be the set of limit points of {µgi}. Then µ∞ is σ(G)-

invariant and invariant under switching the two factors. Moreover, (τσ,x(z
+), τσ,x(z

−)) lies

in µ∞.

Since ending laminations lie in the Masur domain (see Section 2.1.7), we can choose

α a system of meridians such that λ is in tight position with respect to α (see Section

5.3.1.3). We first claim that Γα(µλ) is contained in Γα(µ∞). In case (a) this is obvious as

µλ is exactly the σ(G) translates of (τσ,x(z
+), τσ,x(z

−)). In case (b), let L be the geodesic

connecting τσ,x(z
+) and τσ,x(z

−) and l be the geodesic in Ω(σ(G)) that is a leaf of the

preimage of the ending lamination with one endpoint τσ,x(z
+). Let w be the other endpoint

of l. Recall that to define the Whitehead graph we fixed a system of meridians α on ∂CNσ
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that bound discs D. Let α̃i be a lift of one of the meridians αi with the following property.

∂H3 − α̃i has two components W1 and W2 such that τσ,x(z
+) lies in W1 and τσ,x(z

−) and

w lie in W2. Let r be the ray of l that starts at α̃i and ends at τσ,x(z
+) (see Figure 5.5).

α̃i

b

b

w

τρ,x(z
−)

τρ,x(z
+)

r

b

Figure 5.5: r is a ray in ∂H3 that starts at α̃i and ends at τρ,x(z
+).

Edges in Γα(µλ) correspond to homotopy classes of arcs of λ connecting the components

of α. Since λ is minimal, r′ the image of r in S is dense in λ. Then, for any edge in Γα(µλ)

there is an arc of r′ corresponding to that edge. Let (U, gV ) be an edge of Γα(µλ) and r0

the arc of r′ corresponding to that edge, i.e., there is a lift r̃0 of r0 with one endpoint on

∂U and the other on ∂gV . This means that there is a translate h · r of r such that h · r

intersects ∂U and ∂gV . This implies that h · τσ,x(z+) lies in U or gV . Without loss of

generality assume that h · τσ,x(z+) lies in gV . Then it suffices to show that h · τσ,x(z−) lies

in U . Since r intersects U and is in tight position with respect to α, h · α̃i must lie inside

U . This implies that h · τσ,x(z−) lies in U (see Figure 5.6). This completes the proof of the

claim.

Secondly, we observe that Γα(µλ) is a finite graph. In case (a) this is obvious as λ is

a closed curve. For case (b) recall the topological interpretation of the Whitehead graph

(see Section 5.3.1.3), where edges in the Whitehead graph correspond to homotopy classes

of arcs of λ with endpoints on ∂D, relative to those endpoints. Since there can only be

finitely many homotopy classes of arcs with endpoints on ∂D that can be realized disjointly

on ∂ext(M), there can only be finitely many edges in Γα(µλ).

Since Γα(µλ) is a finite graph contained in Γα(µ∞) for i large enough, Γα(µgi) contains
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b

b

b

τρ,x(z
+)

hr gV
r̃0

hα̃i

U

w

τρ,x(z
−)

Figure 5.6: Since λ is in tight position with respect to α there is a leaf with one endpoint
in U and the other in gV .

Γα(µλ) as a subgraph. Notice that any vertex in Γα(µgi) is also a vertex in Γα(µλ). We claim

that this implies that Γα(µgi) must be strongly connected and without a strong cutpoint by

Proposition V.9. Indeed, since any vertex in Γα(µgi) is part of a nontrivial cycle in Γα(µλ),

it is part of the same nontrivial cycle in Γα(µgi). If Γα(µgi) had a strong cutpoint v, then

the component of Γα(µλ) containing v would either be not strongly connected or also have

a strong cutpoint. When M is not the connect sum of two trivial I-bundles over closed

surfaces, this contradicts Proposition V.8.

For the case when M is the connect sum of two trivial I-bundles over closed surfaces,

we first claim that each edge of Γα(µλ) “intersects” every essential annulus, A, contained in

each trivial I-bundle in the following sense. Let M = S × I#T × I. Suppose that A is an

annulus in S× I or T × I. Let ∂A = c1⊔ c2. In defining the Whitehead graph, we fixed lifts

S̃ and T̃ of S and T . If we take a lift c̃1 of c1 and the lift c̃2 of c2 with the same endpoints

as c̃1, then c̃1 ∪ c̃2 forms a loop in ∂H3. We will say that an edge e = (Ui, gUj) intersects A

if there exists lifts c̃1 and c̃2 in either S̃ or T̃ as above such that Ui and gUj lie in different

components of ∂H3 − (c̃1 ∪ c̃2).

If λ is a Masur domain lamination, then it intersects every essential annulus. Using the

topological interpretation of the Whitehead graph (see Section 5.3.1.3), Γα(µλ) “intersects”

every essential annulus in the sense above.
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Since Γα(µλ) is a finite graph contained in Γα(µ∞) for i large enough, Γα(µgi) “inter-

sects” any essential annulus contained in one of the two trivial I-bundles. This implies that

the geodesic representative γi of gi intersects any essential annulus contained in one of the

two factors, a contradiction.

The assumption in Proposition V.11 that each end corresponding to a component of the

interior boundary is incompressible is necessary as the following proposition shows. Recall

that π1(M) = π1(S1) ∗ . . . ∗π1(Sk) ∗Fj , where Si is a closed surface and Fj is the free group

on j elements.

Proposition V.12. If [ρ] lies in ∂AH(M) such that ρ|π1(Si) is not convex cocompact, then

[ρ] does not lie in SS(M). Moreover, if ρ|π1(Si) is not convex cocompact, then [ρ] cannot lie

in a domain of discontinuity

Proof. If ρ|π1(Si) has a cusp, then there is a separable element that maps to a parabolic

element. So ρ cannot be separable-stable. If ρ|π1(Si) is geometrically infinite, then in

Nρ there is a sequence of separable geodesics exiting every compact set, so ρ cannot be

separable-stable by Lemma III.10.

To see the second statement, suppose that ρ(g) is parabolic for a separable element g.

Then, there exists a sequence of representations ρi in X (M) such that ρi(c) is elliptic of

finite order, ni (see the proof of Lemma IV.4). Since g is separable, there exists a nontrivial

splitting, G = G1 ∗ G2 such that g lies in G1. The automorphism fni that restricts to

conjugation by gni on G1 and restricts to the identity on G2 fixes ρi. In particular, each ρi

has an infinite stabilizer, so, the limit [ρ] cannot lie in any domain of discontinuity.

Now suppose that ρ(g) is not parabolic for any separable element g but ρ|π1(Si) is

geometrically infinite for some i. Then, we will describe a sequence of representations ρk

approaching ρ such that there exists a separable curve gk with ρk(gk) parabolic. Since each

ρk cannot lie in a domain of discontinuity, neither can ρ. To find such a sequence first

observe that ρ|π1(Si) is purely hyperbolic. By the covering theorem ([12]), it can have only

one geometrically infinite end and so it lies in the closure of a Bers slice, B. Let λ be its

ending lamination, and let γj be a sequence of simple closed curves on Si approaching λ.

Define a sequence of representations ρk satisfying the following:
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• ρk|π1(Si) lies in B,

• ρk(γj) is parabolic and

• ρk|π1(S1)∗...∗π̂1(Si)∗...∗π1(Sk)∗Fj
= ρ|

π1(S1)∗...∗π̂1(Si)∗...∗π1(Sk)∗Fj
.

Then, as B is compact, up to subsequence ρk|π1(Si) converges to some ρ′ in B. As the length

function is continuous on AH(Si× I) ([5]), the length of λ in ρ′ must be zero. In particular,

λ must be an ending lamination for ρ′. By the ending lamination theorem ([8]), possibly

after conjugating, ρk|π1(Si) must converge to ρ|π1(Si). On the other factors of π1(M), ρk

obviously converges to ρ. Hence, ρk converges to ρ where ρk has a separable curve pinched.

Since [ρk] cannot lie in a domain of discontinuity, neither can [ρ].

5.3.3 Other homeomorphism types in AH(M)

So far we have found separable-stable points on ∂AH(M) that have the same homeomor-

phism type as M . In this section, we show that if M is a large compression body, then there

exists M ′ homotopy equivalent but not homeomorphic to M such that the for each compo-

nent C of the interior of AH(M) corresponding to M ′, no point on ∂C is separable-stable,

even though every point in C is separable-stable.

Proposition V.13. Suppose that M ′ is homotopy equivalent to M such that

(a) M ′ is not homeomorphic to M

(b) for each compressible component B of ∂M ′, i∗(π1(B)) is a free factor of π1(M
′).

If C is a component of the interior of AH(M) corresponding to M ′, then C − C has no

separable stable points.

Proof. Let [ρ] be a purely hyperbolic point in C − C. Then ρ is the algebraic limit of

ρi in C such that Nρi is homeomorphic to the interior of M ′. Since ρ has no parabolics,

ρi converges to ρ geometrically (Theorem II.5). Then, Nρ is homeomorphic to Nρi ([17]).

Since each boundary component of M ′ maps to a proper factor of a free decomposition of

π1(M), there is a boundary component B of M ′ such that the end corresponding to B is

geometrically infinite. Then, there exists a sequence of simple closed curves on B whose
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geodesic representatives leave every compact set of Nρ. By Lemma III.10, ρ cannot be

separable-stable, as any simple closed curve on B is separable. Since purely hyperbolic

points are dense in C − C ([14], Lemma 4.2, [48], [49]), this completes the proof.

IfM is a large compression body, then there always exists such anM ′. AnyM ′ homotopy

equivalent toM with more than one compressible boundary component will suffice. Suppose

that B and B′ are two compressible boundary components of M ′. Let m be a meridian in

B′ bounding a disc D. If D separates M ′ into M ′
1 and M ′

2, then π1(M) ∼= π1(M
′
1) ∗ π1(M ′

2)

and π1(B) lies in one of the two factors. If D is non-separating and M ′′ = M ′ −D, then

π1(M) ∼= π1(M
′′)∗1 ∼= π1(M

′′) ∗ Z and π1(B) lies in the first factor.
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