
Correct Communication in

Multi-core Processors

by

Andrew Whitehouse DeOrio

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

(Computer Science and Engineering)

in The University of Michigan

2012

Doctoral Committee:

Associate Professor Valeria M. Bertacco, Chair

Professor Todd M. Austin

Professor Scott Mahlke

Professor Stephen J. Rush

Raj Yavatkar, Intel Corporation

c© Andrew Whitehouse DeOrio

All Rights Reserved

2012

To my family

ii

Acknowledgments

I would like to thank my advisor Professor Valeria Bertacco, who introduced me to re-

search. Her willingness to let me explore new ideas has been a wonderful freedom, and

our discussions of engineering trade-offs have improved my work. Moreover, my writing

and presentation skills have grown significantly as a result of her mentoring and her careful

eye.

I am also grateful for my committee members. Professor Todd Austin has been a con-

sistent source of valuable feedback throughout my studies. I am appreciative of Professor

Scott Mahlke’s contributions, and our friendly interactions at the north campus gym track.

My musical tastes have expanded as a result of my relationship with Professor Stephen

Rush. He introduced me to the pyrophone [75], and to the saints of free jazz. Dr. Raj

Yavatkar has been a mentor to me in the professional world, as well as the academic world,

supporting my work at Intel Corp. and at the University.

Early in my graduate school career, I was fortunate to work with Ilya Wagner – he

taught me the ropes of being a graduate student. I am grateful for Joseph Greathouse and

Andrea Pellegrini for our illuminating discussions and colorful experiences. I am also ap-

preciative of the people I have collaborated with on many projects: Adam Bauserman,

Debapriya Chatterjee, Ilya Wagner, Rawan Abdel-Khalek, Ritesh Parikh, Daya Khudia,

Jialin Li, Qingkun Li, Matt Burgess, Jin Hu, Gregory Chen, Kostantinos Aisopos, David

Fick, and Professors Li-Shiuan Peh, Dennis Sylvester, and David Blaauw.

Finally, I would like to thank my family: for my mom, for many Thursday night dinners

with Dad, and for my siblings Allison and Scott.

iii

Preface

Computer chips, the most complex artifacts ever made by man, are susceptible to problems

with correct functionality due to their intricacy. Incorrect operation of silicon chips has

lasting, and sometimes devastating, effects on computer systems and their manufacturers:

from incorrect computation results, to security vulnerabilities affecting end users, to finan-

cial impact on the vendors. Furthermore, new chips are increasingly fragile, liable to break

as the transistors that comprise them become small enough to be measured in atoms.

A typical modern computer usually includes a single chip where many processors are

connected by a communication medium. This communication medium, a new feature in

modern chips, provides many opportunities for catastrophic errors, as it is a complex, un-

predictable, unique component.

The goal of this dissertation is to provide a new solution to ensure the correct opera-

tion of the communication medium in multicore processors, from the early stages of design

to the end user. It addresses failures in several modes, and operates across the different

phases of the verification process, integrating them into a cohesive framework. A key find-

ing of this work is the synergy among verification phases, connected by a novel abstraction

technique and multipurpose hardware and software. Simply put, it ensures that the de-

sign operates as intended. This approach to the development cycle accelerates, automates

and extends the reach of the verification process, providing decreased occurrence of —

and increased resilience to — failures. With this solution, the communication system of

multi-core chips can operate free from errors.

iv

Table of Contents

Dedication . ii

Acknowledgments . iii

Preface . iv

List of Figures . viii

List of Tables . x

Chapter 1 Microprocessor Errors and Opportunities to Mitigate Them 1

1.1 Impact of Failures . 2

1.2 Types of Errors . 3

1.3 Avoiding Failures and Ensuring Correctness 4

1.4 Dissertation Overview . 6

1.5 Dissertation Organization . 7

Chapter 2 Verification: State of the Art . 9

2.1 Pre-Silicon Verification . 11

2.1.1 Formal Methods . 11

2.1.2 Simulation-based Verification . 12

2.2 Post-Silicon Validation . 14

2.3 Runtime Verification . 17

2.4 Software Verification . 19

2.5 Verification Targets . 19

Chapter 3 Addressing Functional Bugs . 21

3.1 Functional Bugs . 21

3.2 Understanding the Pre-Silicon Design with Inferno 24

3.2.1 Protocols and Transactions . 25

3.2.2 Evaluation Case Study: OpenSPARC T1 28

3.2.3 Leveraging Transactions in Later Verification Phases 30

3.3 Briding Pre- to Post-silicon with BiPeD 30

3.3.1 Learning Correct Design Behavior During Pre-silicon Verification . 31

v

3.3.2 Post-silicon Failure Detection . 32

3.4 Accelerating Post-Silicon Validation with Dacota 35

3.4.1 Dacota Operation . 36

3.4.2 Activity Logging Hardware . 38

3.4.3 Policy Validation Algorithm . 40

3.4.4 Evaluation . 42

3.5 Ensuring End-to-end Correctness at Runtime with SafeNoC 45

3.5.1 Error Detection Hardware . 47

3.5.2 Recovery Algorithm . 48

3.5.3 Evaluation . 50

3.5.4 BiPeD/SafeNoC Integration . 52

3.6 Summary . 53

Chapter 4 Addressing Electrical Failures . 55

4.1 Electrical Failures . 55

4.2 Detecting Failures with BiPeD . 57

4.3 Diagnosing Failures with BPS . 58

4.3.1 BPS Hardware . 59

4.3.2 BPS Post-Analysis Software . 61

4.3.3 Tuning Parameters . 64

4.3.4 Experimental Evaluation . 65

4.4 Summary . 75

Chapter 5 Addressing Transistor Faults . 76

5.1 Transistor Faults . 77

5.1.1 Fault Model . 79

5.2 Fault Detection — BiPeD . 81

5.3 Fault Diagnosis — Vicis . 82

5.3.1 Architectural Features . 83

5.3.2 Evaluation . 91

5.4 Network Reconfiguration — Ariadne . 96

5.4.1 Historical Approaches to Reliable Routing 97

5.4.2 Routing Algorithm . 98

5.4.3 Timing and Synchronization . 102

5.4.4 Evaluation . 103

5.5 Data Recovery — Drain . 105

5.5.1 Recovery Hardware . 106

5.5.2 Recovery Algorithm . 109

5.5.3 Evaluation . 110

5.6 Summary . 114

Chapter 6 BiPeD: Bridging the Phases of Verification 115

6.1 BiPeD Operation . 115

6.2 Case Study . 118

6.3 Evaluation . 119

vi

6.3.1 Protocol Detection . 121

6.3.2 Protocol Extraction . 123

6.3.3 Transaction Extraction . 123

6.3.4 Area Overhead . 124

6.4 Summary . 125

Chapter 7 Conclusions . 127

7.1 Bridging Verification Phases . 127

7.2 Functional Bugs . 128

7.3 Electrical Failures . 130

7.4 Transistor Faults . 130

7.5 Summary . 131

Bibliography . 132

vii

List of Figures

Figure

1.1 Types of errors addressed by this dissertation 3

1.2 Overview of the solution framework proposed by this dissertation 7

2.1 Typical design verification flow for a modern multi-core microprocessor . . 10

2.2 Simulation-based pre-silicon verification for microprocessors 12

2.3 Post-silicon validation flow . 15

2.4 Theoretical shmoo plots . 16

3.1 Functional bugs over time . 22

3.2 Inferno architecture . 25

3.3 Pseudocode for protocol diagram generation algorithm 25

3.4 Flowchart of Inferno’s transaction extraction algorithm 26

3.5 Pseudocode for dynamic transaction extraction algorithm 27

3.6 Protocol and transaction diagrams from the OpenSPARC T1 29

3.7 Methodology overview . 31

3.8 Protocol subset of the OpenSPARC T2 TLU/LSU interface 32

3.9 Protocol detector hardware . 33

3.10 CMP reconfiguration for Dacota validation 36

3.11 Dacota execution flow . 37

3.12 Graph construction algorithm . 41

3.13 Dacota performance overhead . 44

3.14 High-level overview of SafeNoC . 47

3.15 SafeNoC recovery process . 49

3.16 SafeNoC recovery time by bug . 51

4.1 Electrical failure root causes . 56

4.2 BPS operation . 59

4.3 Comparison of typical distributions with different signatures 60

4.4 BPS Hardware . 61

4.5 BPS post-analysis algorithm . 62

4.6 BPS band model . 63

4.7 Number of common mode rejection signals 64

viii

4.8 BPS spatial localization . 69

4.9 BPS temporal localization . 70

4.10 Bug band threshold and quality of results 71

4.11 Population size and quality of results . 72

4.12 Impact of window length on quality of results 73

5.1 Transistor faults are addressed in four steps 76

5.2 Wear-out mechanisms . 77

5.3 Hypothetical “bathtub curve” . 78

5.4 Fault model . 80

5.5 BiPeD error detection connected to the Vicis architecture 82

5.6 Vicis router architecture . 84

5.7 Faults mitigated by ECC . 85

5.8 Flexible FIFO design . 87

5.9 Flexible FIFO buffer logic . 87

5.10 Interlocking router unit wrappers . 88

5.11 Port swapping unit . 90

5.12 Port swapping example . 91

5.13 Port-swapping algorithm pseudocode . 92

5.14 Utilization of reliability features . 93

5.15 Impact of flexible FIFO design . 94

5.16 Ariadne reconfiguration algorithm . 99

5.17 Zero load latency with synthetic traffic . 103

5.18 Saturation throughput with synthetic traffic 104

5.19 Drain-enabled system . 106

5.20 Drain system operation . 107

5.21 Drain uses an emergency link . 110

5.22 Cycles to drain the entire network . 112

6.1 Transaction history example . 118

6.2 Protocol extraction . 124

6.3 Effect of leave-one-out-cross-validation 125

6.4 Transactions extracted from the circular buffer 126

7.1 Review of the solution framework proposed by this dissertation 128

ix

List of Tables

Table

3.1 Design error coverage by Dacota . 43

3.2 Functional bugs injected in SafeNoC . 51

4.1 Designs and modeled failures . 66

4.2 Workloads for both experimental designs 67

4.3 BPS signal localization . 68

5.1 Fault model . 81

5.2 Area of the baseline router . 86

5.3 Area breakdown of Vicis router . 95

5.4 Experimental setup . 111

5.5 Additional gates . 113

6.1 Workloads used for evaluation . 119

6.2 Monitored interfaces . 120

6.3 Bugs injected . 121

6.4 Bug detection latency . 122

6.5 Area comprised by one protocol detector 125

x

Chapter 1

Microprocessor Errors and

Opportunities to Mitigate Them

We rely on unreliable devices. Digital computers are at the heart of the phones we use

to communicate with each other; they run banking and stock market systems for business

and commerce. Automobiles and airplanes are dependent on computer systems for engine

function and navigation, and computers can even be involved in international conflict, as

was the case with the STUXNET virus [49]. However, there are many challenges to the

correct operation of these devices.

Modern computer chips are vastly complex systems comprised of billions of tiny tran-

sistors: they are the most complex artifact yet created by man. The doubling of the number

of transistors every 18 months driven by Moore’s law has moved processor designs from

2,300 transistors with the Intel 4004 in 1971 to recent Intel microprocessors with 2.6 billion

transistors. Large transistor counts give rise to today’s chip multi-processors, incorporating

many cores on one die. Recent IBM chips, such as the POWER7 [126], contain 8 cores,

and the Tilera Tile-Gx series ships with 100 cores. Intel has released two experimental

chips: the 40 core Single-chip Cloud Computer (SCC) [97], as well as the 80 core Polaris

[144].

As the number of cores in a single chip continues to rise, the complexity of these chips

also increases. Cores must communicate in order to coordinate their efforts, and as a re-

sult, the communication subsystem becomes increasingly elaborate. This system is large,

distributed and complex: thus, a large number of interactions must be verified during the

design process. In 2008, a 16 core Sun chip required 100 person-years of verification [142],

some Intel estimates are in the thousands of person-years [133], and estimates are rising.

This daunting and incomplete verification task presents the risk of errors (bugs) escaping

into final silicon. This is a prominent issue in processors, where design bugs are often de-

tected after the release of the product, as can be noted in several processor errata documents

[6, 68, 69, 67, 70].

1

In addition to increasingly risky bugs, shrinking transistors foment shrinking device

reliability. Current microprocessors are available with transistor dimensions as small as

22nm, corresponding to less than 100 silicon atoms. With critical dimensions shrinking,

only a few misplaced atoms may cause a catastrophic device failure. Thus, the possibility

of transistors and wires wearing out in the field may soon become a reality.

Increasing core counts and decreasing transistor dimensions create a situation where

the communication subsystem is a critical point of failure. Correct operation of this system

is jeopardized by transistors susceptible to faults and latent design bugs.

1.1 Impact of Failures

Design failures can have impact ranging from minor delays in a product’s time-to-market,

to the viability of an entire company. Failures can occur early in the development cycle, late

in the cycle, or in the final product. Latent failures in the final chip can also be a security

concern, opening new avenues for hackers to exploit a system.

Failures early in the design process are limited to problems with the functionality of

the design, bugs that prevent it from working as expected. At this stage, the design is typ-

ically engineered through simulations: fixing a bug first involves understanding the issue.

Then, the error can be fixed by modifying the source code. The impact of a bug caught late

in this phase may be limited to a schedule delay of a few weeks or months.

Later in the design process, silicon prototypes are manufactured for fast, at-speed

testing. Failures caught at this stage require re-tooling the manufacturing process for a

modified design, called a re-spin. Re-spins may require several months of delay and are

very expensive due to the high re-tooling cost, which can range from approximately $3

million to $30 million.

Following prototype testing, a new chip can be shipped to customers. At this late

stage, failures have wide-spread and critical impact. A recall on a faulty product can take

a year, at which point newer, competing products may already be available. The life of a

company can be jeopardized by failures in the field. For example, the infamous Pentium

FDIV bug was discovered in 1994. This bug caused some floating point division operations

to compute the wrong result. Ultimately, the defective processors were recalled at a cost of

$475 million [94]. Some of the recalled processors were turned into commemorative key

chains.

Transistor wear-out can also result in recalls: a recent Intel 6-Series chipset (code-

named Cougar Point) experienced a wear-out problem in the field. Prematurely aging

2

transistors in one of the SATA controllers caused increasing errors on the link over time.

The only fix was a recall in early 2011, at a cost upwards of $1 billion.

1.2 Types of Errors

While all errors prevent the correct operation of the chip, their root causes can be different.

This dissertation addresses three major categories of errors (Figure 1.1). At the highest

level of abstraction, functional bugs are instances where the design does not conform to

its specification. Electrical failures manifest at the circuit level, where gates do not per-

form as expected. Finally, at the lowest level of abstraction, transistor faults are visible as

malfunctioning silicon devices or conductors.

simulation prototype final product

functional bugs

transistor faults

electrical failures

stage in the product cycle

Figure 1.1 Types of errors addressed by this dissertation and when they occur. Functional

bugs, present from the very first design models, can be addressed in any phase of verification. Elec-

trical failures begin to appear with the first prototypes, and transistor faults due to wear-out occur

only in the final product.

Functional bugs occur when the functionality of a design does not match its specifica-

tion, or when the specification is incomplete. These failures are present in a digital design

beginning with the first simulations. Functional bugs are deterministic and reproducible in

simulation; however, real silicon prototypes may contain latent bugs that do not manifest

deterministically due to environmental and electrical variations. An example of a func-

tional bug is the previously mentioned Pentium FDIV bug, where some division operations

produced the wrong result.

Electrical failures occur in circuits that do not meet voltage, current or timing con-

straints. This can be due to circuit design problems, as well as manufacturing defects,

and occur most often in early silicon prototypes. Electrical errors include timing failures,

where a signal does not reach its destination in time, and may also be due to insufficient

3

drive current or voltage distribution. The end result is a circuit that fails to produce the

desired output under some conditions. On-chip conditions such as temperature and voltage

vary from chip to chip, as well as with the executing program. Thus, electrical failures

are not always deterministic. The time-consuming, manual process of debugging electrical

failures is a critical barrier in a chip’s time-to-market schedule [73].

Transistor faults can be caused by a variety of wear-out mechanisms in highly scaled

technology nodes. As transistor dimensions approach the atomic scale, oxide breakdown

[136] becomes a concern, since the gate oxide tends to become less effective over time.

Moreover, negative bias temperature instability (NBTI) [9] is of special concern in PMOS

transistors, where increased threshold voltage occurs over time. Additionally, thin wires are

susceptible to electromigration [58], because conductor material is gradually worn away

during chip operation until an open circuit occurs. Since these mechanisms occur over

time, traditional manufacturing tests and burn-in procedures are ineffective in detecting

them. An example of a transistor failure is the Intel Cougar Point chipset recall discussed

earlier.

This range of failures illustrates the variety of ways in which a digital design may

err, despite the best intentions of designers and multi-billion dollar validation efforts. The

goal of this work is to provide correct operation by addressing the three sub-problems of

functional bugs, electrical failures and transistor faults.

1.3 Avoiding Failures and Ensuring Correctness

Ensuring the correctness of a digital design spans the entirety of the design process. Be-

ginning with abstract design models, manufacturers use simulation to conduct pre-silicon

verification. Once early prototypes are available, engineers run tests on real silicon during

post-silicon validation. Finally, runtime verification employs reliability-enhancing hard-

ware features to check correctness as computation progresses. In the end, the goal of design

verification is to ensure correction operation throughout the lifetime of the chip.

Pre-silicon verification operates on an abstract design model, and can be based on sim-

ulation or formal methods. Formal verification techniques rigorously prove that a design

satisfies properties: theorem provers, model checkers and symbolic simulators are exam-

ples of formal tools. While these techniques are capable of checking the correctness of a

design aspect under all possible execution situations, formal methods can only be deployed

for very simple designs. With large designs, the state explosion problem occurs, due to

the exponential memory requirements of formal tools. Additionally, formal verification is

4

only as effective as the properties that are checked, a manual process susceptible to hu-

man limitations. Writing a complete set of formal properties for a large design can even

require more time than the design itself. Today, formal verification is limited to abstraction

versions of the design, such as the Murϕ [44] tool.

In contrast to formal tools, simulation-based verification is the mainstream approach

used in industry to validate large designs and correct any design errors. Here, a model of

the design is simulated using hand-written programs or constrained-random inputs. Due to

the complexity of the design state space, only a small fraction of the design’s functional-

ity can be validated within the available development time window. Bugs at this stage are

easier to diagnose than in real silicon, since simulation has the advantage of being fully

deterministic and fully observable. Failing testcases can be reliably reproduced to diag-

nose functional bugs, which in turn manifest consistently. Unfortunately, the slow speed of

pre-silicon simulation limits verification to a small set of very short testcases, despite the

deployment of large server farms devoted to the task.

Post-silicon validation begins when the first silicon prototypes become available.

Here, long programs such as operating systems, as well as extensive constrained-random

tests, can be executed directly on the prototypes, which are orders of magnitude faster than

pre-silicon simulation. Fast execution speed enables high coverage testing at this stage.

Tests outcomes are validated with a mix of hardware assertions, comparison of test out-

puts against a golden model, or with the aid of self-checking mechanisms. A test failure

indicates an error, which can be functional, electrical (process, logic or circuit related), or

due to a missed manufacturing defect. To diagnose the error, validation engineers must

re-run the failed test with the support of a post-silicon validation hardware platform that

provides a limited amount of control of test advancement and debugging features, such as

on-chip logic analyzers and/or configurable embedded checkers [2, 110]. However, post-

silicon failure diagnosis is notoriously difficult, especially when targeting tests that do not

fail consistently over multiple runs. The limited observability and controllability character-

istics of post-silicon further exacerbate this challenge, making post-silicon diagnosis one

of the most difficult tasks of the entire validation effort.

Runtime verification solutions have been proposed by the research community to de-

tect and correct failures in the final product. A common trait of these solutions is the use

of on-chip checkers to detect functional bugs and transistor faults [147, 148, 14]. If an

error is detected, most solutions will provide a correction mechanism, which enables the

processor to overcome the errant configuration at a performance cost. Hence, the impact of

an error in a hardware module protected by an online verification mechanism is limited to

performance degradation, rather than incorrect results or, possibly, a system crash. Thus, a

5

key benefit of these runtime verification solutions is that they enable the verification team

to focus its efforts on the design’s execution scenarios that arise most frequently.

Furthermore, runtime approaches are the only type of solution able to handle faults

caused by transistor wear-out. Since these faults only occur after substantial time and us-

age, traditional burn-in and manufacturing tests at the factor are unable to mitigate wear-out

related errors. Failure mechanisms such as oxide breakdown [136], negative bias temper-

ature instability (NBTI) [9] and electromigration [58] all result in errors occurring later in

the lifetime of the chip. Thus, runtime solutions are required to alleviate these errors. In

the end, runtime verification enhances the reliability of the final chip, making it resilient to

functional bugs, electrical failures, and transistor faults.

1.4 Dissertation Overview

Digital designs today face increasing complexity and decreasing reliability, which chal-

lenge the ability of the current design process to deliver a correct product that can function

for years. This dissertation develops a number of solutions that work together in a novel

validation framework. Called BiPeD, this framework addresses the problem of correctness

within the communication subsystem of a chip multi-processor. The components of our so-

lution are multi-pronged, leveraging opportunities in pre-silicon, post-silicon, and runtime

verification. As a whole, they take on the complexity of modern designs by automating

and accelerating the verification process, increasing the understanding of the design, and

easing debugging. This enables increased coverage, thereby decreasing bugs in the final

product. Furthermore, our approach is a long-term solution aware of the lifetime reliability

challenges of fragile chips in the field.

Figure 1.2 shows an overview of the solution proposed in this dissertation, which syn-

ergizes the different phases of verification to address a variety of errors. The figure divides

correctness problems into three failure modes: functional, electrical and transistor (vertical

axis). Electrical failures also include manufacturing defects that have escaped line testing,

and transistor faults indicate errors that occur due to wear-out. Our solution leverages three

verification stages to provide a comprehensive solution, beginning with pre-silicon verifi-

cation (horizontal axis). Post-silicon validation allows testing of early chips, and runtime

solutions enable resilience to transistor faults. The integral components of our solution are

completely covered by the shaded region, while complementary parts are partially covered.

In Chapters 3 – 5, we discuss new solutions that address these errors, and how they

fit into the BiPeD framework. We evaluate this framework in more detail in Chapter 6,

6

functional

bugs

electrical

failures

pre-silicon post-silicon runtime

A
ria

d
n

e

V
icis

D
ra

in

Verification phases

F
a

il
u

re
 m

o
d

e
s

BPS

Inferno
Dacota

SafeNoC

transistor

faults

(wear-out)

Figure 1.2 Overview of the solution framework proposed by this dissertation, which syner-

gizes the different phases of verification within the BiPeD framework to address three modes of

failure: functional bugs, electrical failures and transistor faults (vertical axis). To accomplish this,

it leverages opportunities in the three phases of verification, pre-silicon, post-silicon and runtime

(horizontal axis). Integral component solutions to the BiPeD framework are completely shaded,

while complementary solutions are partially shaded.

bringing together the different phases of verification, enabling reuse of verification effort

and deploying multipurpose verification hardware.

1.5 Dissertation Organization

The remainder of this dissertation is organized by error type. First, Chapter 2 presents a

look at the current state of the art in verification. It describes the process by which modern

microprocessors are designed and verified using pre-silicon verification, post-silicon vali-

dation, and runtime verification. The three modes of failure are addressed in Chapters 3–5,

following the flow of Figure 1.2.

Chapter 3 addresses functional bugs, which may be present from the first models of

the design and persist through shipment, manifesting in customers’ chips. Thus, we take

advantage of all three phases of verification to address functional bugs. During pre-silicon

verification, we establish an abstraction that defines the correct behavior of the system

7

protocols. This integral part of the BiPeD framework is a software tool for aiding the un-

derstanding of the complex protocols that make up the communication subsystem (Section

3.2). The protocols learned during pre-silicon verification are then leveraged by BiPeD

during high-speed post-silicon validation, where flexible hardware monitors the on-chip

protocols. When an error is detected, Dacota (Section 3.4) is applied to narrow down

the source, targeting communication orderings, a common source of errors. Finally, we

propose a solution to ensure end-to-end correctness of a network-on-chip communication

infrastructure with SafeNoC (Section 3.5).

We address electrical failures in Chapter 4, which may be present beginning with the

first silicon prototypes. First, flexible BiPeD hardware detects the occurrence of failures.

Then, we invoke BPS, a method to debug and narrow down these difficult errors (Section

4.3) during post-silicon validation. When electrical failures escape post-silicon validation,

a runtime solution can address both electrical failures and transistor faults simultaneously.

Transistor faults are discussed in Chapter 5. Runtime verification is the only chance to

mitigate wear-out induced transistor faults. Our approach begins by once again leveraging

BiPeD’s flexible hardware to detect faults. Next, the fault location is diagnosed by Vicis

(Section 5.3). Following diagnosis, Ariadne reconfigures around the faults (Section 5.4,

and Drain recovers lost data (Section 5.5).

After addressing the three types of errors, we evaluate our BiPeD framework in Chap-

ter 6, which bridges the phases of verification. BiPeD automates understanding the design

during pre-silicon verification, and leverages this information to detect errors and debug

during post-silicon validation. At runtime, flexible hardware previously used for post-

silicon debugging is repurposed as an error detection mechanism. Finally, Chapter 7 briefly

summarizes the conclusions of this dissertation.

8

Chapter 2

Verification: State of the Art

The design and manufacture of a microprocessor consists of a series of steps which trans-

form a high-level description of the design into a physical chip. The complexity of

microprocessors increases with each generation of chips, bringing new design verification

challenges. A typical design verification flow for microprocessors is shown in Figure 2.1,

and begins with a specification, a high-level prose description of the desired functionality.

First, an architectural model is created from the specification, simulating the functional

input/output behavior of the future chip. This model is often written in a high-level pro-

gramming language, such as C, and is used to refine the details of the specification. It is

also used as a reference model for the next steps. As the design cycle continues, a reg-

ister transfer level (RTL) model is created. This detailed, cycle-accurate model describes

the logic and storage that will comprise the chip, and is written in a low-level hardware

description language (HDL), such as Verilog or VHDL. Pre-silicon verification is used to

locate functional bugs in both the architectural model and the RTL model. This process in-

volves running tests on both models simultaneously and comparing the results. In addition

to testing the models through simulation, formal techniques are applied to prove design

properties. This is used to prove the absence of certain types of errors. Unfortunately, these

techniques do not scale to the size of modern designs.

The next steps transform the HDL model into a silicon prototype. When the first pro-

totypes are available, post-silicon validation begins, where tests are run at full speed on

real hardware. At this stage, it is possible to run much longer tests, which are no longer

constrained by the slow execution speeds of pre-silicon simulation. Long constrained ran-

dom tests, operating systems and real application workloads are examples post-silicon tests.

Bugs become more difficult to pinpoint during post-silicon validation, since only a few of

the design’s internal signals are observable. The majority of the design’s signals are inac-

cessible outside the chip. Errors found at this stage include functional failures that escaped

pre-silicon verification, and electrical failures that manifest in the chip’s circuits. When

an error is found during post-silicon validation, it is typically reproduced in the pre-silicon

9

Pre-silicon Verification
spec

architectural

model

RTL

Source

register-transfer

level model
gate-level netlist

Post-silicon Validation

Runtime Verification

post-si platform

silicon prototype

final product

Figure 2.1 Typical design verification flow for a modern multi-core microprocessor, which

transforms a high level specification to a final product. Three major phases of verification are

available to achieve a correct final product: pre-silicon verification is used to verify early mod-

els, followed by post-silicon validation, which is performed on silicon prototypes. Finally, runtime

verification operates as part of the final product.

model, and the RTL is modified to fix the error. Finally, a new prototype is manufactured,

called a re-spin.

Multiple re-spins are often required, as bugs are discovered and fixed during post-

silicon validation. When the rate of bug discovery slows and stabilizes, the design is

deemed ready for shipment. Because of the vast complexity of a microprocessor design,

it is not possible to test every aspect. Thus, designs are shipped with latent bugs. Fur-

thermore, as transistor dimensions shrink, transistors becoming increasingly susceptible to

wear-out faults. To mitigate these problems, runtime solutions are implemented as part of

the design, enabling it self-check results, and recover from errors. Runtime approaches can

be used to address latent function bugs, electrical failures, and transistor faults.

The verification problem can be divided into three major approaches: pre-silicon, post-

silicon and runtime. During early design phases, pre-silicon verification is performed on

10

design models, using either formal verification, or simulation-based verification. Next,

post-silicon verification works on early silicon prototypes. Runtime solutions ensure cor-

rect functionality in the shipped product. Despite these efforts, bugs still slip through the

verification process. In addition to the three major approaches to hardware verification,

solutions from software verification offer some insights into the verification of hardware.

The next sections go into detail on each of these three verification approaches, and discuss

the verification target: the communication subsystem.

2.1 Pre-Silicon Verification

Pre-silicon verification is used to discover and fix errors in early design models. Since no

prototypes are yet available, it is limited to finding functional bugs. There are two major

types of pre-silicon verification, formal methods and simulation-based verification.

2.1.1 Formal Methods

Formal verification methods exhaustively prove that a design satisfies properties under all

conditions. It has the advantage of being able to prove that a portion of the design is

bug-free, however, it has significant drawbacks that prevent it from being applied to large

designs.

One of the mainstream tools used by the EDA community to analyze complex graphs

is model checking, a formal verification technique used to rigorously prove properties of

a hardware design. Model checking has the ability to reason about a data set using prop-

erties, which are formal descriptions of a particular functionality of a design. Properties

are verified by the model checker against an internal mathematical representation of the in-

put design. Model checking uses specialized formalisms and logics to reason about graphs.

These include including computation tree logic (CTL) and linear temporal logic (LTL) [32].

Formal verification of the memory subsystem notably includes several notable approaches

[3, 57, 44, 114].

The first and foremost problem with formal verification is scaling. Formal verifica-

tion suffers from state space explosion, since the techniques require exponential memory

to implement. Furthermore, formal verification tools require a set of properties to prove.

The quality and completeness of the properties is directly related to the quality and com-

pleteness of the verification exercise. Moreover, while formal verification of abstract

representations has been accomplished with success, its results are inadequate, as the im-

11

plementations of these abstract models are much more complex and cannot be validated.

For these reasons, formal verification is limited in practice to very small design blocks,

leaving the large, system-level properties to slow, incomplete pre-silicon simulation.

2.1.2 Simulation-based Verification

Logic simulation is a central aspect of the modern integrated circuit development process.

It is the primary tool used to validate a wide range of design aspects, foremost among these

being the correctness of the system’s functionality, both in its behavioral description, as

well as in its structural (gate-level) one. Most industry design flows invest the largest por-

tion of their time and resources precisely on this task [47], in an attempt to provide the

best possible guarantee that the system satisfies its original functional specification. Large

server farms, comprising thousands of machines, execute billions of cycles of simulation

for months at a time.

test

generation

architectural simulation

No

RTL simulation

Yes

golden model

RTL

Source

debug

Figure 2.2 Simulation-based pre-silicon verification for microprocessors is used heavily in

industry. A constrained-random test generator produces valid, random programs, which are pro-

vided as input to both an RTL simulator and golden model. If the results match, testing continues,

otherwise, the bug is fixed manually.

Simulation-based pre-silicon verification, shown in Figure 2.2, is the workhorse of

modern pre-silicon verification of microprocessors. Typically, a constrained-random test

generator produces input programs, which are run concurrently on an RTL model sim-

ulation, and on the architectural golden model. RTL simulations run much slower than

architectural one, sometimes at slowdowns on the order of millions of times. When both

simulations are complete, their outputs are compared, ensuring that final memory and ar-

chitectural state match. In addition to checking results against an architectural model,

12

assertions augment the design under simulation, performing software checks as simula-

tion progresses. When a check fails, the testcase stops, and the location of the failure is

identified.

Despite the vast effort of time and resources, functional validation remains an incom-

plete task, with large portions of the design going unverified. Indeed, while common case

scenarios are often checked in this process, buggy and rare corner cases frequently slip

through validation, and are consequently latent in the final product, potentially causing

malfunctions in the field.

Logic Simulators

Logic simulation entails evaluating the response of a design over time when subjected to a

set of input stimuli, typically selected by the designer to be representative of practical use

situations. For most synchronous designs the response is computed once for each cycle of

simulated execution. Modern logic simulators read in a design description, then “compile”

it to produce machine code emulating the same functionality as the design’s primitives, and

finally optimize it to minimize the amount of computation required to provide the responses

that the user wishes to observe. The input stimuli are commonly provided in the form of

a testbench, that is, a program describing implicitly or explicitly the set of input values

for each clock cycle of simulation. The testbench may be direct, where input values are

selected by a verification engineer, or pseudo-random, that is, inputs are set by a generator

abiding pre-set constraints and statistical distributions.

Simulators can be grouped into two families based on their internal architecture: oblivi-

ous simulators compute all gates (or logic) in the system during every simulation cycle and

entail a simpler software design. Oblivious simulators have the advantage of low control

overhead, but can spend significant computation time unnecessarily evaluating gates over

and over whose output values do not change from cycle to cycle. Event-driven simulators

limit the amount of computation by selectively simulating in each cycle only those gates

who inputs have changed since the previous cycle, and whose output may thus change in

response to the switching stimulus. While the sequencing of gate evaluation in oblivious

simulation can be statically determined at compile-time, event-driven simulators require a

dynamic runtime scheduler, hence entail a more complex software structure. However, this

latter approach is vastly more common in commercial tools because the scheduler perfor-

mance overhead is largely offset by the fact that for many designs only 1 to 10% of the

gates switch at each cycle, thus requiring significantly less computation.

Simulation approaches, in contrast to formal methods, are able to tackle a much larger

13

portion of the design. For example, Wood, et al. [152] leverages constrained-random

simulation to boost the coverage of a design. Here, there is the additional burden of under-

standing the interactions within a large design occurring throughout a long simulation. A

number of previous works have focused on the problem of automatically extracting proper-

ties and specifications. Hangal, et al. [62] have proposed a tool to extract simple “probable”

properties (e.g., one-hot or mutually exclusive signals) through simulation trace analysis,

which can then be fed to a formal property checker for verification. In [50], the authors

propose a more general approach to automatic property extraction, by evaluating a wide

range of possible “time relations” between groups of signals.

2.2 Post-Silicon Validation

Following pre-silicon verification, post-silicon validation begins when the first prototype

chips are available, and is used primarily to validate large microprocessor designs. It is

the first opportunity to test a physical implementation of the design, and thus it is able to

uncover problems with the design’s circuits (electrical failures). Additionally, functional

bugs that evaded pre-silicon verification may be identified at this stage.

Post-silicon validation is conducted on prototype chips connected to specialized vali-

dation platforms (Figure 2.3). The platforms are used to run post-silicon tests, a mix of

directed and constrained-random workloads. Upon completion of each test, the output of

the silicon prototype is typically checked against an architectural simulator. When an error

causes a check to fail, the debugging process begins, seeking to determine the root cause

of the failure.

In industry practice, the post-silicon validation process begins when the first silicon

prototypes become available. These chips are then connected to specialized validation plat-

forms that facilitate running post-silicon tests, a mix of directed and constrained-random

workloads. Upon completion of each test, the output of the silicon prototype is checked

against an architectural simulator, or in some cases, self-checked [5, 146].

When a check fails, indicating that an error has occurred, the debugging process begins,

seeking to determine the root cause of the failure. On-chip instrumentation can be used

to observe intermediate signals. Techniques such as scan chains, on-chip logic analyzers

[149] and flexible logging infrastructures [2] are configured to trace design signals (only a

small number can usually be observed) and periodically transfer data off-chip. Traces are

then examined by validation engineers to determine the root cause of the problem. This

process is time-consuming and engineering intensive, and is further exacerbated by bugs

14

test

generation

architectural simulation

No

post-silicon platform

Yes

golden model

post-silicon

debug

Figure 2.3 Post-silicon validation flow typical in industry. Like pre-silicon verification, a

constrained-random test generator produces valid, random programs, which are provided as input

to both the golden model and the silicon prototype. The prototype is connected to a validation plat-

form that includes a host CPU. If the results match, testing continues, otherwise, the bug is fixed

manually.

with inconsistent outcomes. Additionally, off-chip data transfers are very slow, which fur-

ther hinders observability due to limited transfer time. Thus, our goal with this portion of

the dissertation to reduce debugging effort, automatically diagnosing the time and location

of bugs, while minimizing off-chip transfers.

A powerful industry approach to locating electrical failures is the shmoo plot [13],

which shows the relationship between chip failures and changes in environmental condi-

tions. In a typical shmoo plot, two primary parameters are varied and assigned to the X

and Y axis of the plot, respectively. For example, the parameters might be voltage and

clock period. Then, a single test is run many times, with different parameter values, and

the pass/fail status of the test is recorded. With some parameter value pairs, the test passes,

with others, it fails. Figure 2.4 shows two theoretical examples of typical shmoo plots, with

clock period and voltage as the parameters. Each cell in the plots represents the outcome

of one test, with passing results in green, and failing results in red.

The debugging process of non-deterministic failures can be aided by deterministic re-

play mechanisms [104, 123]. However, these solutions perturb system execution which can

prevent the bug from manifesting, and often incurs significant hardware and performance

overheads. In addition, in an effort to automate the failure diagnosis process, methods

based on formal verification techniques have been proposed [38, 77, 120, 156]. These so-

lutions require deterministic execution and a complete golden (known-correct) model of

the design for comparison. However, the limitations of formal methods discussed earlier

15

C
lo
c
k
 P
e
ri
o
d

Voltage

test failed test passed

(a) Clear relationship

C
lo
c
k
 P
e
ri
o
d

Voltage

test failed test passed

(b) Relationship difficult to identify

Figure 2.4 Theoretical shmoo plots showing test pass/fail status as a function of two parameters,

voltage and clock period. These plots are used to debug electrical failures during post-silicon vali-

dation. The left plot shows a clear relationship between the error and voltage, while the relationship

in the right plot is not as clear. One goal of this dissertation is to help localize those bugs that are

most difficult to reproduce.

preclude these techniques from handling industrial size designs. Methods that target small

fully deterministic systems [56, 88, 155] are capable of identifying limited types of elec-

trical errors in small circuits. Other solutions targeting different types of errors leverage

Bayesian approaches [72] for transient errors and analysis of bug reports for software er-

rors [90]. On the other hand, functional failures have been approached by recording system

state using a scan chain, and then comparing passing and failing tests [112]. Early work in

troubleshooting circuit boards used signatures to achieve compact observations [54, 124].

Specialized post-silicon debugging approaches often add dedicated hardware units for

debugging specific areas, such as the memory subsystem or speed paths [98]. Solutions

such as IFRA/BLoG [109, 108] can localize electrical bugs in the processor core, as long as

errors are detected on-chip within about 1,000 cycles. When detection takes longer times,

modifying the post-silicon test [65] can help, but at the risk of perturbing the system.

An ideal post-silicon validation solution is flexible, and applicable to multiple on-chip

subsystems. It minimizes perturbation of the existing logic, as well as minimizing exe-

cution overhead. The high speed of post-silicon test execution is an ideal opportunity for

increased coverage, and for testing system-wide properties that exceed the limitations of

pre-silicon verification.

16

2.3 Runtime Verification

Despite massive industry verification efforts at both the pre-silicon and post-silicon stages,

they cannot cover the vast number of operations and interactions in a complex chip. As a

result, critical design errors can often escape verification and manifest in the released hard-

ware at runtime. Furthermore, problems due to transistor wear-out don’t occur until a chip

has been in the field for some time. Thus, runtime verification can be applied to all three

major modes of failure: functional bugs, electrical failures, and transistor faults. When run-

time verification is applied to transistor faults, it can be referred to as design-for-reliability.

To address the limitations of design-time verification, runtime verification solutions

add hardware mechanisms to address on-chip errors. A common trait of these solutions

is the use of one or more on-chip checkers which can detect all or some functional errors

by monitoring the design’s execution. If an error is detected, most solutions will provide

a correction mechanism, which enables the design to overcome the buggy configuration

at a performance cost. Hence, the impact of an error in an aspect protected by an online

verification mechanism is limited to a graceful performance degradation, rather than incor-

rect results or, possibly, a system crash. Thus, a key benefit of these runtime verification

solutions is that they enable the verification team to focus its efforts on the design’s execu-

tion scenarios that arise most frequently, and relieve the burden of striving to fully verify a

design before its release to the market.

Runtime verification has been applied to processor cores, checking pipeline results as

computation progresses [148, 99, 145]. In general, these solutions add checker hardware to

verify the operation of untrusted components. Solutions to the problem of communication

subsystem correctness have also emerged to ensure the correctness of multi-core designs

deployed in the field. Meixner, et al. [100] approach the problem by adding checkers to ver-

ify memory consistency. Another runtime solution, proposed by Chen, et al. [29], leverages

the constraint graph-based approach developed in [27, 127]. This solution adds dedicated

observation hardware at each core, periodically analyzing the collected information with a

centralized hardware checker.

For networks-on-chip, runtime solutions have been recently proposed to ensure the

correct transfer of data packets through the interconnect. Several works focus on the prob-

lem of deadlock, with some proposing deadlock-avoidance solutions by forbidding certain

routes [135], and others trying to detect and recover from deadlocks. DISHA, for example,

leverages timeouts for detection, and then progressively routes blocked packets through

a deadlock-free dedicated link [11]. Other deadlock detection techniques, such as [96]

and [92], propose more sophisticated mechanisms based on monitoring the activity at the

17

physical channel level.

On-chip networks have tight area and power budgets, necessitating simple router struc-

tures. Architectural approaches to reliable router architectures include triple modular

redundancy (TMR) based approaches, such as the BulletProof router [33]. However, in

general, N-modular redundancy (NMR) approaches are expensive, as they require at least

N times the silicon area. Another strategy explores the trade-offs of various levels of redun-

dancy [106]. Other work investigates the reliability of single components, for example a

reliability-enhanced crossbar [63]. Reconfiguration is approached by [61] for pipelines, by

[83] for link failures and by [79] with modular design. Protection against transient errors

has been explored in [17, 160, 107].

Additionally, many works propose reliable routing algorithms, able to reroute the net-

work around failed nodes and links. We discuss the state of the art in reliable routing

algorithms in Section 5.4.1.

By contrast, checkpointing schemes [132, 115] can be leveraged to provide error re-

covery for the network, attempting to recover system state when an error is detected. A

checkpoint-enabled system logs cache data and architectural state, periodically copying

these data to main memory. In the event of an error, state can be recovered from the logs

in memory and the system is rolled back to an earlier execution point. These mechanisms

work in a proactive manner, always preparing for an error. Consequently, they require sig-

nificant hardware overhead to accommodate buffers, which can be on the order of 512KB

in size [132]. Moreover, they incur performance overheads during normal operation, which

can exceed 6% [115], an overhead that is incurred even in the absence of errors.

Other runtime solutions adopt more general end-to-end approaches to handle various

errors in the network. A common scheme is the acknowledgment-based end-to-end error

detection and recovery technique, in which a data packet is augmented with error detection

codes at the source and checked for data corruption at the destination. A successful packet

transfer is completed by sending back an acknowledgment messages. Only after the re-

ception of the acknowledgment, a copy of the packet stored at the source is deleted. If the

acknowledgment is not received within a certain time interval, the packet can be retransmit-

ted using the source copy. Similar approaches have also been proposed at the switch level,

where upstream routers wait for acknowledgements from the downstream routers before

deleting a copy of the data from their buffers[103]. Although this is a simple scheme, the

additional buffer storage required for its implementation introduces significant area over-

head and errors may re-occur upon retransmission. Moreover, the acknowledgment traffic

degrades the overall runtime performance of the network, even without errors.

18

2.4 Software Verification

The software verification community, faced with similar challenges, has also developed a

number of relevant solutions. Ernst, et al. [48] have proposed Daikon, a tools that analyzes

software execution traces to suggest a list of possible properties (or annotations) for use

with the static checker ESC/Java. Properties can also be generated using static analysis,

as in [4, 16]; however, in [16] a program must first be translated into a state machine, a

step that may add notable complexity to the process. Ammons, et al. perform an analysis

to generate a specification of a given application program interface (API) in the form of

“scenarios” describing common sequences of instructions [10], while Yang derives con-

straints on the order of occurrence of instructions [154]. The value of such scenario- or

transaction-based simulations and analyses is well recognized. Brahme, et al., for instance,

have developed a system to allow verification engineers to write testbenches and analyze

results at the transaction-level [24].

2.5 Verification Targets

In this dissertation, we address the problem of verifying the communication subsystem.

The communication subsystem is responsible for connecting on-chip resources. When

the number of cores on chip is small, technologies such as buses and crossbars are suf-

ficient, however, they may soon be precluded by the delay of long wires and the large

number of elements that must communicate with each other. Networks on Chip (NoC)

help mitigate this problem by decentralizing and distributing communication across the

chip using a lightweight networking protocol, resulting in a high throughput, scalable so-

lution. Examples include the 48-core Intel SCC [97], the 64-core Tilera Tile64 [15], and

the experimental 80-core Intel Polaris chip [144]. Many components of the solution pre-

sented in this dissertation flexible, and apply to different communication infrastructures, in

addition to NoCs.

In a typical NoC architecture, each processor core is connected to a router through a

dedicated network interface unit. Data messages are divided into packets, which are in

turn partitioned into smaller blocks called flits. Packets and flits are transmitted over the

interconnect according to a routing protocol. To efficiently handle the communication load

among the many cores on chip, these network interconnects are becoming increasingly

complex, often implementing a wide range of topologies and providing advanced commu-

nication protocols, such as adaptive routing. Moreover, routers are designed to include

advanced features such as virtual channels, pipelining, complex allocation schemes, specu-

19

lation, etc. With such an intricate communication infrastructure, it is a challenge to ensure

that the interconnect subsystem will operate correctly under all execution scenarios.

Even worse, electrical failures and transistor device level failures have architecture level

ramifications, as a single faulty link or router will cause an entire NoC to fail, halting all

traffic. Future processor technology generations will require significant error tolerance to

many simultaneous faults.

On-chip networks provide excellent opportunities for building a reliable system, as they

provide redundant paths between IPs. As the “glue” that holds a chip together, a NoC

should be highly resilient to errors and able to work around functional bugs, faulty routers

and links. In contrast, a faulty IP with even little or no protection can be disabled and

isolated by the network, thus promoting NoC as a reliable system platform. A disabled

IP would not hinder network performance, as the associated router can still be used. An

ideal network should be able to diagnose where faults are in its own components and then

reconfigure to mitigate those faults, maintaining full connectivity when possible.

20

Chapter 3

Addressing Functional Bugs

Functional bugs, a failure of a design to meet its specification, can manifest in any stage of

the design verification cycle. Though these failures are inserted during the pre-silicon de-

sign phase, they may not be discovered until post-silicon validation, or even final, shipped

silicon. We address functional bugs with our BiPeD framework, which leverages opportu-

nities for supporting solutions during the pre-silicon, post-silicon and runtime verification

phases.

In this chapter, we first present an overview functional bugs in Section 3.1. The re-

mainder of the chapter is divided among the opportunities to address functional bugs.

During pre-silicon verification, we emphasize an intuitive understanding of the complex

protocols underlying the communication subsystem, presenting observed activity in the

form of graphical transactions. This is accomplished with Inferno, a software tool that ex-

tracts transactions, and is described in Section 3.2. The transactions extracted by Inferno

are leveraged by BiPeD to learn the correct behavior of the design. BiPeD then bridges

pre-silicon verification to post-silicon validation with on-chip checkers that enforce the

previously learned protocols (Section 3.3). Once a post-silicon bug is detected, we narrow

down its cause with Dacota, a hardware/software post-silicon approach to checking mem-

ory coherence and consistency, a common source of errors in multi-core systems (Section

3.4). To complete our approach in final silicon, we augment the existing CMP interconnect

with an end-to-end detection and recovery solution to ensure its functional correctness.

This solution is called SafeNoC, and is described in Section 3.5. Finally, in Section 3.6, we

summarize our approach to functional bugs.

3.1 Functional Bugs

The fast growing complexity of digital hardware designs is exacerbating the challenges of

validation and debugging functional bugs. Several factors contribute to the time-consuming

21

nature of these incomplete and ad-hoc tasks, demanding more engineering resources than

the design itself. First, pre-silicon debugging is commonly done through a waveform

viewer, an arduous task due to the low-level models used to describe a system (i.e., register-

transfer level), as well as extremely long simulation traces. Second, the growing adoption

of semi-formal verification methodologies to complement simulation-based verification

requires engineers to express the correct behavior of a system through a set of proper-

ties. However, property description languages are often declarative, hence their use is

error prone and adds further challenges for designers, who are commonly trained to use

imperative languages. Even worse, these properties are often the result of the personal un-

derstanding of a verification engineer who has studied a high-level specification document

of the system. A detailed overview of pre-silicon verification techniques is provided in

Section 2.1.

0

40

80

120

160

B
u

g
s

a
ft

e
r

p
ro

d
u

ct
 r

e
le

a
se

Core i7

Core 2 Duo

Pentium 4

Xeon 1.4-3.2 Core Duo

Pentium M

Figure 3.1 Escaped functional bugs over time in several Intel microprocessors, based on pub-

lished processor errata. The chart shows that after product release, bugs accumulate at a high rate

for a period of time, and then decrease in their rate of discovery.

Despite massive pre-silicon verification efforts, chips are still released with devastating

bugs. Figure 3.1 shows the cumulative discovery of bugs over time in several Intel micro-

processors. The chart is derived from published errata documents. Errors in the memory

subsystem are becoming increasingly common. Memory coherence and consistency, which

provide guarantees as to the order of memory operations, are significant sources of es-

caped bugs and are likely to become more error-prone as designs move from buses towards

22

complex, non-deterministic interconnects. The system-level properties related to memory

operation policies are difficult to verify due to the vast state space they encompass and their

decentralized enforcement. As technology moves towards large CMP systems, such as the

TILE64 [15] and Polaris [144] microprocessors, the verification problem worsens.

To address these shortcomings, post-silicon validation has emerged as a new comple-

mentary approach, promising to bridge the gap between failing pre-silicon verification

efforts and the correctness requirements of multi-core systems. Applied to early silicon pro-

totypes, post-silicon validation enables high coverage as a result of fast execution speeds.

However, current post-silicon techniques, such as logic analyzers [149], on-chip assertions

[143] and scan chains [26] are plagued by limited internal observability. This precludes

existing techniques from adequately validating system-wide properties such as memory

coherence and consistency, for which it is extremely difficult to detect and diagnose bugs

from the system’s external interface.

Regardless of massive industry efforts in pre-silicon simulation, formal verification and

post-silicon validation, escaped functional bugs that manifest at runtime are a reality. As

a result of the large number of interactions and the intricate communication in CMPs, er-

rors in the communication subsystem now account for a significant portion of the reported

bugs. For example, in the Core 2 Duo and Core i7, at least 10% and 13% of the design

errors reported in the corresponding errata documents are associated with the communica-

tion system [68, 69], despite the CMPs having simple interconnects. As CMPs transition

towards complex NoC-based interconnects, advanced router architectures, network-level

interactions and concurrent communication make the interconnect highly susceptible to

design errors.

Functional design errors may affect any part of the interconnect, particularly those in-

volved in complex operations, such as virtual channel and switch allocation in NoC routers,

writing and reading from a router’s input buffers, as well as the routing protocol itself.

Therefore, data packets sent over the interconnect may become corrupted, misrouted, or

even deadlocked. Without an appropriate runtime solution to ensure that such escaped de-

sign errors do not affect the communication correctness, these issues could lead to critical

loss of data and the failure of software applications or of the entire system.

Our goal is to mitigate functional bugs by learning correct design behavior during pre-

silicon verification, accelerating checking during post-silicon validation, and end-to-end

guarantees at runtime.

23

3.2 Understanding the Pre-Silicon Design with Inferno

The first component of our BiPeD framework is integral to the overall solution. Our goal

is to define an abstraction that is intuitive for validation engineers, and useful for auto-

mated checking. Inferno [40] is a software tool that fulfills these goals, so-called because

it “infers” a design’s behavior. It streamlines the engineering effort dedicated to verifi-

cation by presenting a technology to automatically extract the semantic protocol of any

communication interface in a design from simulation data. The protocol is then summa-

rized in a compact, abstract diagram, which retains all the key behavioral aspects observed

while removing the low-level timing information. This form, called a transaction diagram,

represents the semantic behavior of the communication interface. In addition to being use-

ful for pre-silicon debugging, transactions and protocols can be leveraged for post-silicon

validation and runtime verification, discussed in Chapter 6.

Our proposed approach greatly streamlines the resources needed for the verification

and debugging of communication-centered designs by attacking the problem from several

directions: i) it greatly reduces the need to rely on waveform analysis to debug a design,

ii) it lowers the barrier to understanding the design’s RTL implementation, and iii) it eases

the adoption of formal verification methodologies by automatically generating properties

related to the protocol’s approved behavior.

From a structural standpoint (see Figure 3.2) Inferno takes as input a small configura-

tion file, a simulation trace and the design under verification. The configuration file lists

either a design module whose I/O interface is the target of the analysis, or the specific sig-

nals to consider. Source code of the design under verification is used only to determine the

signals’ directions at the interface of choice. The range of design interfaces that Inferno

may consider for its analysis is very flexible, ranging from any communication interface of

the design (such as a module I/O) to any custom-crafted set of signals within the design.

Inferno generates two types of directed graphs, protocol diagrams and transaction dia-

grams. A protocol diagram includes a vertex for each unique combination of signal values

observed at the target interface. Vertices are connected by an edge if the corresponding sig-

nal combination follow each other in the simulation trace. Transaction diagrams attempt to

grasp the high-level sematic behavior of the design by partitioning the simulation trace into

time intervals, with each interval corresponding to a transaction (any transaction can occur

multiple times in a trace). Moreover, we deploy several techniques to recognize similarities

among different intervals in an attempt to reduce them to a small set of transactions.

24

signals

selector

waveform

segmentation

transaction

generation

and display

assertion

generator

Inferno

RTL

source

transaction

diagrams

verilog

assertions

user specifies module to analyze

or may select signals directly

simulation
values

Figure 3.2 Inferno architecture. The user selects a design module I/O or a specific list of signals

to monitor. Inferno observes the values assigned to these signals over the course of a simulation

run. It then analyzes the trace, extracting a list of transactions and presenting them in the form of

high-level diagrams. In addition, it generates a set of optimized assertions from the diagrams, which

can be used to spot any new transaction.

3.2.1 Protocols and Transactions

Inferno begins its analysis by generating a protocol diagram, a time-independent graph that

describes all behavior observed at the interface under analysis. Each vertex of the graph

represents a unique, observed signal combination, while the edges show transitions be-

tween these signal combinations. An edge from vertex A to B indicates that at some point

in the simulation, the interface signals transitioned from the values in A to the values in B.

As a result of time abstraction, all vertices have implicit self-transitions. This algorithm is

shown in Figure 3.3.

1:ProtocolExtractor (sequence) {
create vertex (s0)

2:for i=1 to t max {
3: if !vertex exists(si) create vertex (si)
4: if (si 6= si−1) create edge (si−1, si)
5:}

Figure 3.3 Pseudocode for protocol diagram generation algorithm. The algorithm generates a

graph representing all behavior observed at the target interface, abstracting away time.

After generating a protocol diagram, where each new signal combination observed

at the interface triggers the generation of a new vertex, tagged by a unique ID, Inferno

continues with transaction extraction. The entire simulation can now be encoded as a se-

quence of these IDs and transactions can be extracted by analyzing this sequence. The

transaction extraction algorithm breaks the sequence of IDs down into sub-segments called

proto-transactions, which are refined by the algorithm until they reach their final shape as

transactions.

Note that transaction diagrams are subgraphs of the protocol diagram by construction,

25

Transaction

Database

Approved

?

Input

Constraints/

Testbench

Logic

Simulator

No, fix bug and continue

RTL

Source
signals

selector

waveform

segmentation
transaction

generation

assertion

generator

Inferno

Simulation

Values

Previously Approved

New

Yes

Present transaction

diagram to user

0011

0000

0010

1011

Transactional Verification with Inferno

Figure 3.4 Flowchart of Inferno’s transaction extraction algorithm. The algorithm is com-

prised of three major stages: boundary identification, repetition folding and boundary refinement.

since they are both extracted by folding the linear sequence of unique IDs. Both diagrams

have the same semantic meaning for vertices and edges; however, the transaction extraction

algorithm partitions the sequence into segments and thus transactions correspond to sub-

graphs of the protocol diagram. Moreover, this algorithm implements additional folding

and reductions on the sequence compared to the protocol extraction algorithm. It is applied

to the complete sequence of IDs and operates in three steps (see Figure 3.4):

1. Boundary identification and labeling

2. Repetition folding

3. Boundary refinement

The extraction algorithm starts with the ID sequence, partitions it into proto-transactions,

and then proceeds to refine these until they are completely distilled down to what we call

transactions. A proto-transaction is a segment of our initial ID sequence that will be trans-

formed through the algorithm to obtain an instance of a transaction. The following three

sections expand on each of these components; line numbers refer to the pseudocode of the

algorithm, shown in Figure 3.5.

Boundary Labeling (Lines 2–3). The very first goal of the transaction extraction al-

gorithm is to identify the boundaries between proto-transactions. At this stage we only

perform an approximate boundary identification, which is further refined in the subsequent

phases of the algorithm. Initially, the boundary marker is defined as the first repeated ID

tag. This ID is identified by analyzing the trace from the beginning of the simulation and it

indicates the completion of a proto-transaction. We use this ID to partition the simulation

trace into multiple proto-transactions; each of them will eventually become an occurrence

of a transaction. The intuition behind this heuristic approach is that the stable interface

value at the end of a reset sequence almost certainly marks a proto-transaction boundary

(although not necessarily the only one), and frequently it is also repeated at the comple-

tion of each proto-transaction, hence it is observed in simulation as the first repeated label.

26

1:TransactionExtractor (sequence) {
2: new_boundary_chars =

3: first_repeated_vertex(sequence)

4: do {
5: boundary_chars = new_boundary_chars;

6: segments = split(sequence,boundary_chars)

8: for each segment {
9: sub-segs = substr(segment,length > 1 &&

10 occurring > 1 consecutively)

12: for each unique sub-seg {
13: count_repetitions(sub-seqs, sub-seg)

14: remove_all_but_first(sub-seg,segment)

15: }
16: }
17: for each pair of segments (i,j) {
18: if (j is a suffix of i)

19: new_boundary_chars += last_char(i-j)

20: }
21: }while(new_boundary_chars!=boundary_chars)
22:}

Figure 3.5 Pseudocode for dynamic transaction extraction algorithm. The algorithm pro-

gresses in three stages: boundary identification and labeling, repetition folding and boundary

refinement.

While this is not the only viable technique to identify transaction boundaries, we found

experimentally that it works well in many practical cases. We have also considered an

alternative approach of setting the boundary to the label with the highest number of occur-

rences in the trace. Intuitively, this suggests that we should extract the highest number of

transaction instances. However, we have not found this second approach to produce good

results. We believe the reason may lie in the fact that the former approach creates a better

correspondence with design intent. In addition, in our implementation, we provide the op-

tion for a user to specify a signal in the design whose rising or falling edge indicates the

start of a transaction. Some designs have such a signal readily available, for example the

request signal in an arbiter.

Repetition Folding (Lines 8–14). In this phase we identify repetitions within each

proto-transaction identified during boundary labeling. A typical scenario is a burst-read

transaction, where a read sequence is repeated multiple times within the same segment.

Clearly all variants of burst-read operations should be matched as the same type of trans-

action, regardless of the specific number of reads in each proto-transaction. We achieve

27

this by identifying repetitions within each segment and then matching segments that are

identical except for the number of repetitions. At this point we have obtained a baseline set

of proto-transactions.

Boundary Refinement (Lines 17–19). The transaction extractor algorithm described

so far works well in the case where all proto-transactions do actually terminate with the

same ID. When this is not the case, it fails to detect some of the boundaries, with the re-

sult that a chained sequence of several transactions may be clustered together in one single

proto-transaction. The last refinement phase addresses this problem by refining the bound-

ary set. It consists of one final pass through all the proto-transactions identified so far,

checking if any proto-transaction A is the suffix of another proto-transaction B, i.e., if B is

composed of a preamble followed by A. In this case, we can reasonably conclude that the

boundary between them constitutes a new transaction boundary. At this point, we would

repeat the extraction process using the new boundaries in addition to the original one and

regenerate the proto-transactions through the repetition folding phase. The process is re-

peated until we reach convergence. Now, all proto-transactions have been refined to final

transactions. We found in practice that one refinement pass is usually sufficient: all of our

testbenches converged with one single refinement step.

Upon completion of this process, Inferno has generated a set of diagrams, each repre-

senting a distinct transaction. For each transaction, we display the corresponding diagram,

report the number of times it occurred during the simulation, and the simulation time of its

first occurrence. Inferno’s inference algorithm does not track the dependency of a transi-

tion from past events (that is, past signals combinations that occurred at the interface under

study). In that it is similar to a Markov model that only grasps the relation between the

present and the immediately previous state. We found experimentally that the simplicity of

this algorithm works well in hardware designs. We believe this is due to the fact that de-

signs frequently carry information relating to past-events in storage elements, whose values

we can simply monitor with Inferno.

3.2.2 Evaluation Case Study: OpenSPARC T1

In this case study, we demonstrate the capabilities of Inferno on an industrial micropro-

cessor design, OpenSPARC T1[140]. Sun Microsystems’ OpenSPARC T1 is a complex

processor design, which encompasses half a million lines of code (LOC). The system con-

sists of 8 SPARC cores, each capable of executing 4 simultaneous threads. OpenSPARC

T1’s memory sub-system consists of level one (L1) data and instruction caches at each core

connected to a unified level two (L2) cache and four main memory controllers.

28

--00

11--

0-00

1110

0000

1011

0100

1110

0001

0110

1000

1100

0000

*

‡

reset

†

§

write

alternate

way read

simple read

*

*

*

†

†‡

‡

§ §

§

§*

(a) Protocol diagram

1011

0100

1110

0000

read enable↓

mux select ↑

data select ↓

1110

0001

1110

0000

write

enable↓

Alternate Way Read

Simple ReadSimple Write

--00

11--

0-00

1110

0000

Reset

mux select ↑

alt mux select ↑

alt read enable ↓

double word ↑

data select ↓

read enable ↓

write enable↓

alt write enable ↓

1110

0000

1011

0100

0110

1000

1100

0000

subloop

1 time

alt read enable ↑

alt mux select ↓

read enable ↓

mux select ↑

data select ↓

alt mux select ↑

double word ↓

alt read enable ↓

mux select ↑

data select ↓

read enable ↓

alt mux select ↓

double word ↑

data select ↑

read enable ↑

(b) Transaction diagrams

Figure 3.6 Protocol and transaction diagrams from the OpenSPARC T1 data cache interface.

Dashes indicate the high-Z state, occurring only in the reset sequence. Statistical line weighting on

this graph indicates the most commonly exercised path, a common read, shown by heavy lines. The

transaction diagrams represent a simple read, simple write, and alternate way read. Arrows next to

the signal names denote rise and falling edges.

We studied the behavior of the control signals of the L1 data cache interface with

Inferno. The data source was a full system simulation running the regression suite pro-

vided with the OpenSPARC release. We quickly obtained a set of four distinct transactions

represented in Figure 3.6b. Upon inspection of OpenSPARC’s specification manual, we

determined that these precisely represented all the data cache interface’s valid modes of op-

eration. Note how each transaction in Figure 3.6b terminates with the same vertex, which

is precisely the boundary vertex ID in this analysis.

In Figure 3.6a we plot the corresponding protocol diagram, where we indicate the corre-

spondence between each transaction and its sub-graph in the protocol diagram. In addition,

our visualization techniques for protocol diagrams make it immediately apparent that the

simple read operation is by far the most common activity. In fact, the two thickest edges in

the diagram of Figure 3.6a correspond to the edge starting a simple read transactions and

the edge internal to this transaction.

Our case study of OpenSPARC T1 demonstrates that Inferno is capable of tackling

29

large, industrial-scale designs. We could extract the functional activity of the L1 data cache

interface with Inferno’s high degree of automation. The abstraction made possible by trans-

actions made the interface easy to understand and the concurrent simulation processing

allowed us to monitor results without waiting for a lengthy, tedious simulation to complete.

3.2.3 Leveraging Transactions in Later Verification Phases

While the abstraction of transactions presents a useful way to understand complex protocols

during pre-silicon verification, the information provided by transactions and protocols can

be used to detect bugs during post-silicon validation and runtime verification. We discuss

these opportunities in the next section.

3.3 Briding Pre- to Post-silicon with BiPeD

Pre-silicon verification and post-silicon validation methodologies are very different, tra-

ditionally sharing little information or hardware between them. This section applies the

pre-silicon verification techniques of Inferno (Section 3.2) to learn the correct behavior of

a design, and then uses this information to find bugs during post-silicon validation. Dur-

ing pre-silicon verification, our BiPeD framework learns the correct behavior of a design’s

communication patterns. In post-silicon, this knowledge is used to detect errors by means

of a flexible hardware unit.

Our goal is to learn the correct behavior of a system’s protocols during high-

observability, low-speed pre-silicon verification, and then detect violations of these pro-

tocols during high-speed, low-observability post-silicon validation. This approach targets

difficult post-silicon bugs that manifest in the inter-block interactions of a complex chip,

automatically determining their time of manifestation and providing a complete and de-

tailed set of intuitive of debugging information related to the system’s activity preceding

and leading up to the failure.

In the remainder of this section, we discuss the application of Inferno to aid BiPeD

in learning correct design behavior, and then enforce correct protocol behavior during fast

post-silicon validation.

30

Pre-silicon Post-silicon

testtest

tests

Protocol

Database

on-line hardware detection off-line software diagnosis

error!logic

simulator

protocol

extraction

transaction

extraction

occurrence

time

errant

transaction

simulation

values

protocol

test platform

protocol

detector

circular buffer

location

(signals)

transaction

history

Our Contribution

Figure 3.7 Methodology overview. During pre-silicon verification, full observability is leveraged

to learn the protocols that define interfaces between design blocks. These protocols are then pro-

grammed into flexible hardware during post-silicon validation, where the protocol can be checked at

high-speed during high-coverage tests. When a bug is detected, a recent history of observed activity

is transferred off-chip for analysis by a companion software algorithm. The algorithm extracts intu-

itive transaction diagrams, representing the activity leading up to the bug and presents to the user a

rich set of debug information.

3.3.1 Learning Correct Design Behavior During Pre-silicon Verifica-

tion

During pre-silicon verification, BiPeD learns the semantics of a design’s protocols with

protocol extraction software. Later, these semantics are checked at-speed by flexible pro-

tocol detection hardware during post-silicon validation. When a check fails, the history of

the activity observed on the failed interface is transferred off-chip for analysis by an off-

line software algorithm. The result is a rich set of debugging information, which includes

a trace of intuitive, high-level descriptions of the behavior leading up to the failure. Figure

3.7 shows an overview of this process.

Our approach leverages the abstraction techniques of Inferno (Section 3.2). Protocols

describe the operation of a block or communication interface, and are represented by a

graph with a vertex for each unique combination of signal values observed on the interface.

There is an edge from vertex A to vertex B if there is at least one occurrence of signal

combination A immediately followed by B in the simulation trace. Transaction diagrams

represent the high-level semantic behavior of the design and are obtained by partitioning the

simulation trace into multiple intervals, each corresponding to a transaction. Each distinct

transaction typically repeats many times in a trace.

Leveraging the full observability of the design during pre-silicon verification, the proto-

cols for a design’s interfaces are generated during pre-silicon verification. First, interfaces

are identified by designers: each interface is defined by a set of the design’s signals, usually

control signals. Passing testcases are then run on the system, generating traces for protocol

extraction. The end result is a protocol representing the expected behavior of the interface,

saved to a “protocol database” for use during post-silicon validation. This process is re-

31

SPARC core

TLU LSU

interface

01100

00000

00010

00100

00101

bit 0: protect

bit 1: thread sync

bit 2: TLB bypass

bit 3: ASI reload

bit 4: flush

TLU protocol diagram (subset)

eventLegend
00000

TLB bypass

TLB bypass with flushaddress reload

burst TLB Bypass w/ sync

transition

Figure 3.8 Protocol subset of the OpenSPARC T2 TLU/LSU interface, which defines its valid

behavior. Each vertex represents an event, and each edge a transition. The bits in a vertex indicate

signal values. Transactions are a subgraphs of the protocol, and are labeled.

peated for each interface selected, and it is illustrated with an example in Figure 3.8. As an

alternative to automatic protocol extraction, protocols may also be specified by hand.

The example interface in Figure 3.8 is a subset of the OpenSPARC trap logic unit (TLU)

interface, which regulates the communication between the TLU and Load/Store unit. Each

unique set of values observed on the interface’s signals constitute an event, that is a vertex;

edges connect subsequent events, as shown in the protocol diagram at the bottom of the

Figure.

3.3.2 Post-silicon Failure Detection

BiPeD leverages the abstraction of protocols for post-silicon bug diagnosis. The fast ex-

ecution speeds of post-silicon validation enable high coverage, thus the protocols learned

during pre-silicon verification can now be stressed with heavy testing. Our in-hardware so-

lution monitors a number of interfaces simultaneously, confirming that the observed events

and transitions conform to the protocol. When a mismatch is detected, our solution con-

siders the past history of events and uses it to diagnose the bug, identifying the time of the

failure, the errant transaction, the modules and signals involved, etc.

In order to monitor the interfaces of interest and check them against their corresponding

communication protocol, the design is augmented with flexible hardware protocol detec-

tors. During post-silicon validation, a number of protocols are programmed into “detector”

hardware blocks, one block for each monitored interface. At runtime, the detector hardware

units monitor the interfaces’ activity to check that it conforms to the known protocol.

Figure 3.9 shows a diagram of a detector block. The detector checks all activity of

32

its corresponding interface, by sampling all its signals at each clock cycle. These signals

must be available by means of an on-chip debug infrastructure; frequently MUX selection

trees are available that connect to many signals in the design. The interface signals are first

routed to a content addressable memory (CAM) that matches their sampled values against

known protocol events. If a matching event is found, a priority encoder converts it to an

index value. Transitions are checked by consulting the transition CAM with a pair of in-

dexes: the one from the current event and the one from the previous event – which is stored

in a local register. The encodings of transitions are known by their indexes in the event

CAM when the transition CAM is programmed. If either CAM fails to find a match, an

error detection is flagged.

m
o
n
it
o
re
d

in
te
rf
a
c
e

...
event

CAM

...
p
rio
rity
 e
n
c

...

transition

CAM

...current event

previous

event

valid event

valid transition

error

out

... event history history

out

Figure 3.9 Protocol detector hardware units validate protocols during post-silicon validation.

Each unit leverages two CAMs: one for events and one for transitions, Both pre-programmed with

data collected during pre-silicon validation. The circular buffer maintains a history of events, trans-

ferred off-chip upon bug detection.

When a mismatch is detected by the hardware, execution is suspended and the event

histories stored in the detection hardware’s circular buffer are transferred off-chip for soft-

ware analysis. The offline software analysis considers the event histories as well as the

protocols as input. All event histories are examined in parallel, extracting high-level de-

bugging information. Some debugging information is immediately available: the time at

which execution was suspended, and the interface(s) that flagged the error. The time pro-

vided corresponds to bug manifestation time. In addition, we can deduce the modules and

signals involved in the bug by using the protocol database, which contains the names of the

signals included in each interface and their connected modules.

The algorithm then processes the contents of the circular buffer for each interface that

flagged an error: events are first decoded and then reconstituted into the interface signal

values that they represent. The result is a partial trace of activity observed on the flagged

interface(s). At this point, BiPeD applies the Inferno transaction extraction algorithm (Sec-

33

tion 3.2).

A number of observations make extraction on partial traces possible in our work. First,

we noted that interfaces tend to return to a “stand-by” state between transactions. An exam-

ple of this is the 00000 boundary in the TLU interface of Figure 3.8. We found that even

with a partial trace, the stand-by event is typically the first repeated event. Thus, by using

this event as stand-by we have been successful in extracting transactions in our experimen-

tal evaluation. We also explored other methods of identifying the best boundary events to

separate transactions in partial traces. We considered storing the boundary events found in

pre-silicon analysis along with their protocols in the protocol database. However, we found

that different testcases would occasionally highlight different boundary events, and when

using the union of all these events our transactions would be too fragmented. This latter

approach may be useful during pre-silicon verification, when the design is changing fre-

quently while the same testcases are re-executed. However, during post-silicon validation,

many varied testcases lead to the extreme fragmentation mentioned above.

In developing BiPeD, we tried other methods of identifying the best boundary events

to separate transactions. One possibility was for the protocol database to store not only

events and transitions, but a set of boundary events as well. Transaction extraction would

then use this pre-determined set. The problem that arose with this approach was that dif-

ferent testcases would sometimes yield different boundary events. When the set of all

boundary events was used to extract transactions, they tended to be small and fragmented,

due to large number of boundary events. While this approach may be useful during pre-

silicon verification, when the design is changing, but the same testcases may be reused, it

is not effective for post-silicon validation. Post-silicon validation enables the execution of

many tests not run during the pre-silicon stage. Thus, we found that dynamically detect-

ing boundary events was more effective that saving and restoring them from the protocol

database.

The result of a transaction extraction on a partial trace is a sequence of high-level, intu-

itive transaction diagrams representing the behavior of the interface preceding the failure.

The last transaction in the sequence is the erroneous transaction which caused the proto-

col detector to suspend execution. BiPeD marks this transaction and indicates the exact

event or transition that caused the mismatch. Thus, BiPeD is able to identify the erroneous

transaction, event and transition.

In order to identify candidate signals for further debugging, BiPeD uses the errant event

or transition. If it was a transition that caused the mismatch, the exact signals within the

interface are identified by comparing the pair of events that the transition connects. On the

other hand, if an unknown event is flagged, BiPeD compares this event to the other events

34

in the interface (from the protocol database), identifying those events which are most sim-

ilar to the errant event. Furthermore, these signals are used to identify the hardware block

responsible for the error.

BiPeD Integration

The BiPeD framework bridges pre-silicon verification with post-silicon validation. By

leveraging the high-level, compact, intuitive transactions and protocols of Inferno, BiPeD is

able to learn the behavior of a design’s interfaces during pre-silicon verification and enforce

it during post-silicon validation.

Once a bug has been detected, the exact source of the error must be identified. In the

next sections, we present two solutions that complement BiPeD’s detection mechanism to

narrow down the source of the bug.

3.4 Accelerating Post-Silicon Validation with Dacota

Two common sources of errors in the memory subsystem are the coherence and consistency

protocols. These protocols are responsible for enforcing the ordering among memory oper-

ations. During post-silicon validation, it is possible to validate large, distributed properties.

In contrast, pre-silicon simulation does not always scale to large systems, like the memory

subsystem. Thus, post-silicon validation is especially well-suited to verifying the order-

ing of memory operations, a difficult, and sometimes impossible, task for slow pre-silicon

techniques.

This next step of our dissertation work introduces a novel solution to identify functional

bugs in the memory ordering of CMPs in post-silicon validation. Our solution, called Da-

cota [43] (Data-coloring for COnsistency Testing and Analysis), offers the benefits of high

validation coverage and debugging support at a very small performance impact and near-

zero area overhead. Enabled only during post-silicon validation, it incorporates a simple

in-hardware activity logging mechanism that observes selected system activity during pro-

gram execution. Periodically, a software-based validation algorithm examines the logs to

detect violations in the ordering of memory operations, indicative of an error in memory

coherence or consistency.

When Dacota is enabled, an activity logging mechanism located at each level one (L1)

cache stores a compact encoding of memory accesses. The caches are temporarily recon-

figured to include an access vector associated with each line: the access vectors contain a

35

L
1
 C

a
c
h
e

Bank 1 Bank 2

L
1
 C

a
c
h
e

Bank 1 Bank 2

Core 0

C
or
e
ac

tiv
ity

lo
g

C
or
e
ac

tiv
ity

lo
g

L
2
 C

a
c
h
e

Cache
controller

Core N-1

Cache
controller

Data Access vector

Interconnect

(Network, Bus)

Figure 3.10 CMP reconfiguration for Dacota validation. Cache lines are partitioned to include

an access vector tracking the order of memory accesses. A portion of each cache is reclaimed and

used as activity log storage for load/store operations. Finally, the cache controllers are augmented

to include supporting hardware.

counter “color” value, incremented with each store operation to the line and used to dis-

ambiguate accesses to the same cache line during execution. In addition, after each load

and store, individual CMP cores log the address and color values of the access in an ac-

tivity log, which is also maintained in the local cache. Thus, the logs record the history of

memory accesses in program order for each individual core. When local cache storage is

exhausted, activity logs are aggregated and validated by a software-based algorithm, lever-

aging the existing processor cores for computation. Validation is performed by building

a graph from the activity log where vertices represent memory accesses and edges indi-

cate the observed ordering between them. Correct memory ordering is then checked by

inspecting the graph for cycles. By leveraging existing cache storage and CPU computa-

tion resources, Dacota incurs an extremely small silicon area overhead. Finally, Dacota can

be completely disabled upon product shipment, leading to zero performance impact to the

end user. Optionally, this approach to post-silicon validation can be re-used as a runtime,

enabling it to validate the design in the final product.

3.4.1 Dacota Operation

Dacota’s architecture is embedded in the CMP design to be validated and requires minimal

hardware modifications. A schematic of its components is shown in Figure 3.10. We as-

sume a generic CMP architecture where multiple simple processing elements (cores), each

36

program execution

Network traffic: data/vector
Dacota epoch

L1 cache freeze L1 cache thaw

policy
validation

graph
construction

logs

aggregation

activity logs

Figure 3.11 Dacota execution flow. When Dacota is enabled, normal benchmark execution

progresses with data and access vectors transferred together and while activity is logged in the

background. When log resources are exhausted, they are aggregated and analyzed by a graph-based

algorithm. If an error is found, the logs are presented to the user for diagnosis, otherwise execution

resumes.

with private L1 caches, are connected via an on-chip interconnect fabric to a shared L2

cache. When Dacota is enabled, the system is reconfigured so that a portion of the cache

resources are reserved for Dacota’s core activity logs (hashed blocks in the L1 caches of

Figure 3.10). The portion of the cache used by Dacota is configurable, a simple implemen-

tation allocates half of the cache to core logs, and the other half to normal data storage.

Processor activity is organized into epochs (Figure 3.11), where program execution al-

ternates with Dacota’s checking phase, which can be divided into log aggregation, graph

construction and policy validation. During normal program execution, Dacota monitors

activity in the background by updating and transmitting access vectors along with data, and

logging snapshots of the vectors. When log resources are exhausted, program execution

stops, data in transit is allowed to reach its destination, and all data portions of the caches

are frozen. All cores then drain their activity logs into a dedicated region of un-cacheable

memory (log aggregation). Next, each core in the system builds a consistency graph rep-

resenting the ordering of memory operations. This consistency graph is examined by the

policy validation algorithm to expose memory ordering errors. If the analysis exposes an

error, information from the activity logs can be leveraged to support subsequent diagnosis

and debugging. Otherwise, activity logs and access vectors are cleared and the next epoch

may begin.

When Dacota is active, each cache line is partitioned to include additional informa-

tion alongside the data block, in an access vector that records the number and the order

of store operations issued to the line. Each core modifying the data in the cache line also

updates the corresponding access vector. Traveling throughout the system with its data

block, the access vector records the order of store operations to cache lines. A snapshot

of the access vector is also stored in the local cache’s core activity log upon each memory

operation, along with the address. These logs are later analyzed to validate the ordering of

memory operations. When required to support specific consistency models (such as Weak

37

Consistency), Dacota may also log special memory synchronization instructions.

When logging resources are exhausted, Dacota’s analysis algorithm validates the or-

dering of memory operations from the contents of the activity logs. The algorithm builds

a consistency graph from the aggregated core activity logs; vertices represent memory ac-

cesses, while directed edges indicate operation sequencing as perceived by different cores.

Analysis of the consistency graph determines if a memory ordering error has occurred with

respect to the memory consistency model. Errors manifest as a loop in the graph. The

analysis engine can also expose coherence violations if they are manifest in the consis-

tency graph or through incompatible access vectors in the activity log. Dacota’s analysis

algorithm is executed entirely in software on the existing CPU resources of the CMP.

3.4.2 Activity Logging Hardware

The activity logging system in Dacota records the order of shared memory accesses ob-

served by different cores. To this end, we maintain both an access vector attached to each

cache line, as well as activity logs residing in local caches. The information in the access

vectors and logs is updated concurrently with program execution and incurs no performance

overhead during this phase. However, when the log storage resources are exhausted, normal

execution is suspended and the logs are aggregated and analyzed by the policy validation

engine.

Access vectors

Dacota logs the order of accesses to cache lines using a scheme based on data coloring.

Each cache line is partitioned into two parts: one for program data and the other configured

as an access vector; these travel together through the interconnect and caches of the CMP.

Each core has a dedicated entry in the vector, updated when that core performs a store ac-

cess to the cache line. An additional entry in the vector is reserved for a counter tracking

the total number of stores to the line since the beginning of the epoch.

At the beginning of an epoch, the counter and all entries of the vector are initialized to

zero. With each issued store, Dacota automatically increments the counter and copies its

value to the vector entry associated with the issuing core. Updates to the counter are accom-

plished automatically by Dacota hardware and do not require read-modify-write operations

to be issued by the CPU. A saturated counter triggers the end of the program execution

phase in an epoch, a necessary measure to ensure counter uniqueness. The end result is

an access vector with monotonically increasing counter values indicating the chronological

38

order in which cores modified a line.

To manage access vector updates, we make a small addition to the cache controllers

(hashed areas in Figure 3.10). This hardware component is responsible for incrementing

the counter and updating the vector entries. At the cost of increased hardware complexity,

it would be possible to eliminate the counter entry from the access vector and simply re-

trieve the counter value by extracting the highest value in the access vector entries. This

alternative approach incurs higher area cost, but could be interesting for system where the

resources for the access vector are extremely limited.

Core Activity Log

While access vectors record the order of accesses to individual cache lines, activity logs

record the order of accesses among different cache lines. Stored in a reconfigured portion

of the caches, activity logs record a series of access vector snapshots. When a core issues

a load or a store, Dacota copies the updated access vector to the activity log, together with

the type of access (load/store) and the cache line tag. The activity log is maintained as a

queue and entries are allocated in program order, but copied in order of completion, which

may differ from program order. By leveraging the order and contents of the activity log,

Dacota can later reconstruct the order of memory operations perceived by each core. To

reconfigure Dacota’s portion of the L1 cache as a queue, we augment it with a simple up-

counter that cycles through the allocated ways and sets. The tag array stores a portion of

the location’s address, while the data block stores spill-over address bits and the instanta-

neous value of the access vector associated with the line. In addition, since the order of

completion of memory operations may be different from program order, we add a small

index table for conversion between outstanding memory accesses and entries in the cache.

Because we only need to index the outstanding memory accesses, the table can be quite

small.

In developing Dacota, we observed that logging each memory access led to pro-

hibitively large storage requirements. Thus, we optimized our design to log a load access

only if it triggered a cache miss, either because the data block is not cached, or because

the copy in the cache is obsolete due to modification by another core. No loss in cover-

age is incurred by this optimization, when operating under the simple assumption that (hit)

accesses to local caches are serviced correctly.

39

3.4.3 Policy Validation Algorithm

Dacota’s policy validation algorithm takes the activity logs as input, builds a directed graph

representing the memory operation ordering, and checks the graph for errors. The algo-

rithm is invoked every time log resources are exhausted, and begins with aggregating the

access logs. This process overlaps with the graph construction process, which may begin

as soon as the first logged data is available, and it is followed by policy validation through

graph analysis. To minimize the area overhead of Dacota we implemented the checking

algorithm in software running on the CMP’s cores.

Access Log Aggregation

When a core detects that its log is full or the counter of the accessed line’s vector reached

the maximum value, it broadcasts a message requesting validation. Upon receipt of the

message, all cores are required to stop execution and complete all pending memory opera-

tions. Then, the data portions of the caches are frozen, and the activity logs are transferred

to un-cacheable memory, where they are accessible by all cores for graph construction and

analysis.

Graph Construction

After activity logs are relocated to main memory, Dacota proceeds to build a directed graph,

representing the ordering of memory operations. Vertices in the graph represent unique

memory accesses issued during the epoch; while edges represent the ordering constraints

specific to the consistency model adopted in the system. As graph construction progresses,

Dacota also conducts a coherence invariant check using the access vectors of the individual

lines.

The pseudocode for the graph construction algorithm is given in Figure 3.12.a. The

algorithm iterates over each core and log entry, performing a preliminary check to verify

that all store operations to an individual cache line are compatible with a unique ordering

of events. In other words, the algorithm checks that for a single line all cores agree on

the same order for write operations. For this coherence check, we employ a data structure

that maps the line’s address to a complete list of stores issued to this line. Each time the

line’s address is encountered in a log, its access vector is compared to the list to see if

there are any violations. If the entries of the vector reveal an access that was not previously

observed, the ID of the core that issued it is added to the list in the proper location. After

this preliminary check, we use the information in the log entry to augment the graph for

40

Graph Construction()

Graph G, Coherence Order Map M

Activity Log L[0..N-1]

Foreach core c in N

Foreach entry e in L[c]

If Exists M[Address(e)]

Verify Coherence(M,e)

Add Coherence Order(M,e)

Add Vertex(e,G)

Edges E = Ordering Edges(L[c],e)

Add Edges(E,G)

End

End

Figure 3.12 Graph construction algorithm. The algorithm iterates through all history logs,

generating vertices and ordering edges for the graph, and checking the coherence invariant.

the consistency model. At the end, the graph is checked for loops, which are indicators of

an error in memory operation ordering. Graph construction rules vary with the consistency

policy.

Graph Analysis

Consistency graphs in Dacota are constructed to reflect the order in which accesses per-

formed by individual cores are perceived in the system. In order to find errors, Dacota

searches the graphs for loops, employing a modified version of the Depth First Search

(DFS) algorithm [81]. The algorithm retains the complexity of the underlying implementa-

tion of DFS [129], that is, to O(E), where E is the number of edges in the graph. However,

to ensure maximum performance, we aggressively apply transitive closure during graph

construction, thus reducing the number of edges.

Note that we do not use any additional hardware for implementing policy validation,

thus dramatically reducing the silicon area overhead requirements of Dacota. This is a cru-

cial feature distinguishing Dacota as a post-silicon solution from runtime approaches that

also use graph analysis techniques. Moreover, it allows us to parallelize the analysis for

common weaker consistency models where several distinct graphs must be constructed.

Even for consistency policies that require the construction of a single graph, such as

Sequential Consistency, Dacota exploits the cores of the CMP to parallelize the cycle de-

tecting algorithm by starting from distinct graph vertices. To further boost the performance

of Dacota during the policy validation phase, we reconfigure the storage previously oc-

41

cupied by the activity logs (now residing in main memory) to be used as regular cache

space. When the check completes, caches are reconfigured once again to make space for

the activity logs, the data cache is thawed and the next Dacota epoch begins.

Checking Algorithm Requirements

To minimize the area overhead of Dacota, its checking algorithm is designed to run in soft-

ware, as opposed to dedicated hardware. Therefore, for our approach to be reliable, we

require computational correctness from the cores, as well as their ability to access main

memory. Main memory accesses use the same subsystem that Dacota is verifying, how-

ever, bugs in the memory subsystem are unlikely to cause analysis errors due to the absence

of memory race conditions during Dacota analysis. The cores drain the activity logs into

disjoint memory regions and then use this information without overwriting it. Moreover,

since the logs are aggregated in the uncacheable memory, caches are not involved in the

transfer, eliminating the chance that coherence or consistency bugs corrupt the analysis

process.

3.4.4 Evaluation

We evaluate the efficiency of Dacota in a simulated CMP system, determining its error

coverage, performance and area impact. Investigating how different configurations affect

Dacota, we explore several activity log lengths and their effect on consistency graph size

and policy validation algorithm runtime.

Our simulation framework was based on a CMP system modeled with the Wisconsin

Multifacet GEMS memory sub-system simulator [95]. The CMP contained 16 cores, each

with a 16 entry load/store buffer, 128KB L1 cache, a single 4MB L2 cache and a 4x4 on-

chip mesh interconnect. TheMOESI directory protocol was used as the coherence protocol,

along with the Total Store Ordering consistency model. For several additional experiments,

we evaluated systems with token coherence, as well as crossbar and switch-based intercon-

nects. Dacota was implemented as a simulator plug-in, which included methods for access

vector manipulation, core activity log management, the policy validation algorithm was

implemented using the Boost Graph Library [129]. The runtime of the algorithms was

calculated using the SimpleScalar architectural simulator [25].

The set of workloads used to evaluate Dacota was a combination of real world programs

and random stimulus. We used the ten SPLASH2 benchmarks [151], considering sections

of 10,000,000 instructions generated by the Virtutech Simics simulator [93]. In addition,

42

to induce more stress on the memory subsystem, we created eight tests of directed random

stimulus with varying degrees of data sharing, each containing 1,000,000memory accesses.

Three of these benchmarks used a fairly small address space that could fit into the cores’

L1 caches without eviction, while the other five used significantly larger memory ranges

and could not be fully contained in the L1 caches. Additionally, we used the GEMS built-in

random test generator executing the “barrier” and “locks” patterns.

Design Error Coverage

In our first experiment, we introduced eight coherence and consistency related errors into

our simulation model, inspired by known issues with industrial CMPs. We then ran our

SPLASH2 and random stimulus benchmarks with Dacota enabled, recording the number of

cycles required to discover the bug (Table 3.1). We found that the activity logging scheme

of Dacota is capable of quickly finding complex coherence and consistency bugs.

Avg. cycles

Bug name Error description to expose

shared store store to a shared line may not invalidate other caches 0.252M

invisible store store message may not reach all cores 1.32M

store alloc 1 store allocation in any core may not occur properly 1.93M

store alloc 2 store allocation in a single core may not occur properly 2.27M

reorder 1 invalid store reordering (all cores) 1.38M

reorder 2 invalid store reordering (by a 1 core) 2.82M

reorder 3 invalid store reordering (to a single address) 2.87M

reorder 4 invalid store reordering (to a single address by a 1 core) 5.61M

Table 3.1 Design error coverage by Dacota.

Performance with Dacota

We also investigated the computation and communication overhead of Dacota relative to

normal program execution time. In this study, we assumed that one half of the L1 cache

(64kB) was devoted to data and associated access vectors, and the activity log was limited

to 256 entries. As shown in Figure 3.13, the performance overhead was well within the

acceptable range for post-silicon solutions: approximately 26% for the SPLASH2 bench-

marks (for comparison, overheads of 200-300% are perfectly acceptable in this domain).

The overhead for random benchmarks is somewhat higher due to the nature of these tests,

which were designed specifically to stress the memory subsystem. Our implementation of

Dacota serializes graph construction and log transfers: in practice they could be overlapped,

43

0

80

160

240

320

400

480

560

0

20

40

60

80

100

120

A
d
d
it
io
n
a
l
c
o
m
m
u
n
ic
a
ti
o
n
 t
ra
ff
ic

(K
B
)

P
e
rf
o
rm
a
n
c
e
 o
v
e
rh
e
a
d
 (
%
).

Computation Time Overhead Communication Time Overhead

Dacota Traffic

(a) Constrained random stimulus

0

40

80

120

160

200

0

10

20

30

40

50

A
d
d
it
io
n
a
l
c
o
m
m
u
n
ic
a
ti
o
n
 t
ra
ff
ic

(K
B
)

P
e
rf
o
rm
a
n
c
e
 o
v
e
rh
e
a
d
 (
%
).

(b) SPLASH2 benchmarks

Figure 3.13 Dacota performance overhead and additional traffic for an activity log size of 256

entries. a. Overhead for random stimulus. b. Overhead for SPLASH2 benchmarks.

leading a smaller aggregate overhead than the one reported in Figure 3.13. Moreover, since

Dacota can be disabled upon shipment, these performance overheads are only incurred

during in-house analysis of a prototype.

44

Area Overhead

To analyze the area impact of Dacota, we implemented the additional hardware required by

our solution in Verilog HDL. The module included a block for updating the counter and ac-

cess vector, a state machine for activity log management and an index table for conversion

between program order and performance order. The module was synthesized with Synop-

sys Design Compiler targeting a TSMC 90nm library. The area for a control module, one

of which is added to each processor core in a CMP system, is 5,216µm2. For comparison,

an OpenSPARC T1 [87] chip occupies approximately 378mm2. Placing a Dacota module

on each of the 8 cores in this design results in an overhead of 0.01%. This low overhead is

largely due to Dacota’s reuse of existing hardware structures, such as cache storage.

We found that Dacota is effective in detecting subtle consistency and coherence bugs,

showing its promise as a solution to the problem of validating the order of memory op-

erations in CMP systems. Furthermore, Dacota enables post-silicon debugging support,

providing invaluable information to the validation team. Before shipment, the checking

functionality of our solution can be disabled, completely eliminating performance degra-

dation to the end user. Alternatively, it can double as a runtime solution.

3.5 Ensuring End-to-end Correctness at Runtime with

SafeNoC

Despite the extensive efforts of pre-silicon and post-silicon verification, it is a challenge to

ensure that the communication subsystem will operate correctly under all execution sce-

narios and that chip communication integrity is always preserved To address this issue, and

complete our approach to functional bugs, we propose SafeNoC [1], a runtime end-to-end

detection and recovery mechanism to guarantee the functional correctness of the commu-

nication fabric in CMPs. SafeNoC targets the problem of functional design errors that

have escaped design-time verification of the CMP interconnect, including functional bugs

in the router’s architecture and in the routing protocol implementation. It ensures that all

packets sent over the interconnect are correctly received at their intended destinations. To

this end, we augment a baseline network-on-chip with a small and simple checker network

that operates concurrently with the primary interconnect. For every packet sent over the

primary network, a look-ahead signature is sent concurrently over the checker network.

Each destination node checks each data packet against the pool of look-ahead signatures

available at that node. If a mismatch is detected, a recovery process is initiated: all flits

in-flight in the NoC are reliably transmitted through the checker network to all destination

45

cores. There they are reassembled into the original packets via a software reconstruction

algorithm leveraging the signature information.

Our detection and recovery mechanisms are independent of NoC topology, router ar-

chitecture and routing protocol. Moreover, SafeNoC can detect and recover from a wide

variety of interconnect design errors, by relying on a novel recovery approach, in which

erroneous flits and packets are collected from the network and used to reconstruct origi-

nal data packets. In contrast, traditional end-to-end detection and recovery techniques for

NoCs, such as the ‘retransmission-based’ solution of [103], generally rely on retransmis-

sion to recover from an error, which requires large end-to-end buffering storage. When

compared to such methods, SafeNoC has a lower area overhead, only 5% of system area

and 27% of the NoC silicon footprint vs. 79% for a basic retransmission-based method.

Moreover, SafeNoC hardware additions are simple, mostly decoupled from the existing

interconnect hardware and can be formally verified to be functionally correct. Finally,

our approach has minimal performance impact on the NoC operation, incurring a slight

performance slowdown only when an error manifests.

The SafeNoC solution relies on adding a simple and lightweight checker network that

works concurrently with the original interconnect. This network is designed to be simple

enough so that it can be formally verified and guaranteed to be free of any functional bugs.

As a result, it provides a reliable medium through which we implement our detection and

recovery processes. In the detection phase, whenever a packet is to be sent over the primary

network, a signature of that packet is computed and sent through the checker network. The

signature serves as a look-ahead packet and a unique identifier of the corresponding main

packet, and it is used as a basis for detecting errors in the main interconnect. When a desti-

nation receives a data packet, it recomputes its signature and compares it against previously

received look-ahead signatures. If a match is not found within a certain timeout period, an

error is flagged and recovery is initiated. During the recovery phase, in-flight flits and pack-

ets are recovered from the network, and reliably transmitted through the checker network

to all destinations. Any destination that has a mismatched signature, runs a software-based

reconstruction algorithm, in which it uses the recovered flits to reconstruct the original data

packets, so that they match their corresponding signature. Figure 3.14 shows a baseline

CMP interconnect overlayed with our checker network. Both the checker router and the

NoC router connect to the network interface, to which we also add two signature calcu-

lation units. Some additions to the primary NoC routers are also required for recovering

in-flight flits. Once all flits have been recovered, the microprocessor cores run a novel

software algorithm to reconstruct the original packets.

SafeNoC is not limited to a particular interconnect topology or router architecture. For

46

checker

router

NoC

router

core

network

interface

signature
calculation

reconstruction
algorithm in
software

signature + recovery
routing

recovery
initiation
logic

n.i.

n.i. n.i.

µp

chk

chk

chkchk

chk

chk

chk

chk

chk

NoC
router

NoC
router

NoC
router

NoC
router

NoC
router

NoC
router

NoC
router

NoC
router

NoC
router

µpµp µp

µp µpµp

µpµp

n.i.

n.i.

n.i.

n.i.

n.i.

n.i.

Figure 3.14 High-level overview of SafeNoC. SafeNoC augments the original interconnect with

a lightweight checker network. For every data packet sent on the primary network, a look-ahead sig-

nature is routed through the checker network. Any mismatch between a received packet’s computed

signature and its look-ahead signature flags an error and triggers recovery.

our experimental evaluation, we chose a general baseline router architecture that is input-

queued and uses virtual-channels and wormhole routing. We also assume the data flit

width to be 64-bits and that the primary routers have built-in error-correcting code (ECC)

functionalities to protect against bit-level data corruption.

3.5.1 Error Detection Hardware

SafeNoC uses a checker network for error detection. The checker network is designed to

have three main properties: i) it should be small, so to incur low area overhead. ii) it should

have a simple router architecture, topology and routing algorithm, so that its design is sim-

ple and can be formally verified. iii) Finally, it should have low latency, so that it can deliver

look-ahead signatures before actual data packets arrive through the primary network. We

chose a ring topology for the checker network because of its simplicity and small area over-

head. In addition, since the checker network transmits look-ahead signatures of fixed size

(32-bits in our case, as we discuss in the following section, we can tailor the channel band-

width accordingly, achieving both efficient bandwidth utilization and area savings. Note

that having a checker network that meets the properties mentioned above is not a strict re-

47

quirement for the correctness of the SafeNoC solution. A checker network that consistently

lags behind the primary interconnect would introduce an additional performance penalty

but would not prevent detection and recovery. Finally, to optimize the performance of the

checker network, we leverage a simple, single-cycle latency, packet-switched router, based

on the solution proposed in [78].

Each destination router maintains a timeout counter for every look-ahead packet it re-

ceives. The counter is incremented at every cycle until the data packet has been received

and its signature is re-computed. If the signature matches any of the look-ahead signatures,

then this packet is considered to have arrived correctly. However, if the counter exceeds

the timeout and there is no match, an error is flagged. In such situation, either the expected

packet may not have been delivered, or the network may have delivered an altered packet.

In either case, SafeNoC can detect this mismatch and trigger the recovery process.

3.5.2 Recovery Algorithm

When an error is detected, the interconnect enters a recovery phase, consisting of five

steps: network drain, packet recovery, another network drain, then flit recovery and packet

reconstruction.

In the first step, a network drain phase is initiated, during which the network is forced

to drain its in-flight packets for a preset amount of time. As shown in Figure 3.15.a), during

this phase new packets are not injected into the network, while in-flight packets continue

moving towards their destinations. If those packets are error-free, they will match their

signatures and will be ejected from the network. As a result, this draining stage clears the

network from in-flight traffic, except for packets and flits that are problematic.

The network then enters packet recovery, where we try to recover packets that are

deadlocked within the network. We use a token-based protocol, in which a token circu-

lates through the checker network, and primary interconnect routers can operate only when

they hold the token. During this phase, primary routers remain active, except for all the

virtual channel allocation functionalities, so that they are prevented from processing new

data packets. If there is a deadlock in the network, then there is at least one packet in a

router that is blocked waiting for allocation. Therefore, when a router receives the token, it

checks its input buffers to determine if there is such a packet, in which case it is retrieved

and sent over the checker network, as shown in Figure 3.15.b). Since all other router func-

tionalities are still active, the entire packet can be drained and is then transmitted over

the checker network to its destination. Once the token has circulated through all primary

routers, they resume their full functionality and the entire network enters the second net-

48

n.i. n.i.

chk

NoC
router

NoC
router

NoC
router

µpstop injecting
new packets

NoC
router

n.i.n.i.

µp µp

chk

µp

network
drain

checker
router

header flit

recovered packet

NoC router

µp

input buffer H

n.i.

n.i.

checker
router

valid/
invalid bit

µp

NoC router

FIFO checker

recovered
flits

(a
)
N

e
tw

o
rk

 d
ra

in

(b
)
P

a
c
k
e
t
re

c
o
v
e
ry

(c
)
F
lit

 r
e
c
o
v
e
ry candidate

flits

candidate packet

signature
calculation

unmatched
signatures

= (d
)
P

a
c
k
e
t
re

c
o
n
s
tr
u
c
ti
o
n

1, 3 2

4

chk

chk

5

input buffer

1 11 0 000 000 00

n flits

ID-n
ID-0

ID-1

ID-2
Lists of

candidate
flits

Figure 3.15 SafeNoC recovery process. Recovery proceeds in five steps with network draining

occuring twice. The last step is executed in software, while the others are implemented in hardware.

work drain phase. If the previous phase has recovered packets involved in deadlocks, then

removing them breaks the deadlock cycles and the remaining packets would automatically

drain from the network during this second network drain. As a result, they would no longer

require reconstruction at their respective destinations, which ultimately greatly reduces the

effort of packet reconstruction.

In the next step, flit recovery, we recover stray flits from the network. A flit is con-

sidered stray if it is stuck in a router buffer or if it is delivered to the wrong destination.

All stray flits are candidates for the reconstruction process. Figure 3.15.c) illustrates this

phase: we added a FIFO checker to every input buffer of each router, in order to identify

valid stray flits. The FIFO checker has 1-bit entries and its own read and write pointers that

follow those of the input buffer. A write to the input buffer changes a corresponding entry

in the FIFO checker to a valid entry and a read invalidates it. Using the same token-based

protocol as in the previous phase, a router holding the token examines its FIFO checkers for

valid entries. If any exist, the corresponding flits are transmitted over the checker network

to all destinations in the network. As for stray flits at the network interface buffers, their

49

presence in the buffers at this point of the recovery process indicates that they have not

matched any signatures, thus they are also candidates for reconstruction, and they are also

circulated over the checker network.

During the last phase, packet reconstruction, the processor cores that have flagged an

error run a software algorithm to reconstruct the original packets using the flits collected in

the previous steps (Figure 3.15.d). Candidate flits are organized in separate groups, one for

each flit ID, and an index is maintained for each group to indicate which flits have already

been considered. For each flit ID, we choose a candidate and add it to the set of current

candidates. The current candidates are then assembled into a new packet and its signature

is computed. If the signature matches any of the remaining look-ahead signatures, then this

packet’s reconstruction is deemed sucessful, the packet is delivered to the application and

all its flits are removed from the candidate groups. If a match cannot be found, the process

is repeated, generating new sets of candidates, until all possible combinations have been

tried. The algorithm ends when all look-ahead signatures have been matched.

3.5.3 Evaluation

To evaluate SafeNoC, wemodeled a CMP system in Verilog HDL and with a cycle-accurate

C++ simulator. Using the hardware implementation, we formally verified the portion of the

system involved in recovery, ensuring that it operates correctly. We also analyzed the area

overhead of the SafeNoC solution, synthesizing the Verilog design with a 130nm target

library. The impact of recovery on performance was evaluated using the C++ simulator

modeling a variety of functional bugs in the baseline system. The model was simulated

with two different types of workloads: directed random traffic (uniform, transpose and bit

complement), as well as application benchmarks from the PARSEC suite [18].

Both the C++ and Verilog experimental setups model the same baseline system, based

on the Booksim [37] simulator. The main network, an 8x8 mesh using XY routing, was

augmented with a ring checker network. The main NoC routers are based on the input-

queued VC router of [37], with 5 ports , 4 pipeline stages, 2 virtual channels, and 8 flit

buffers. Data packets consist of 16 flits of 75 bits each, including ECC and flit IDs. We also

integrated SimpleScalar [25] in our architectural simulation to estimate the reconstruction

algorithm’s execution time.

To analyze SafeNoC’s performance impact as well as its ability to detect and recover

from various types of design errors, we injected 11 different design bugs into our C++

implementation of SafeNoC, as described in Table 3.2.

In Figure 3.16, we analyze SafeNoC’s recovery time by bug. The reconstruction time

50

Bug name Bug description

dup flit a flit is duplicated within a packet

misrte 1flit a flit is misrouted to a random destination

misrte 3flit 3 flits of a packet are misrouted to a random destination

misrte 1pkt a packet is misrouted to a random destination

misrte 2pkt 2 packets are misrouted to random destinations

misrte flit pkt a packet is misrouted, another packet’s flits are misrouted

dup pkt a packet is duplicated

dup misrte pkt a packet is duplicated and one copy is misrouted

reorder flit flits within packet are reordered

deadlock some packets are deadlocked in the network

livelock some packets are in a livelock cycle in the network

Table 3.2 Functional bugs injected in SafeNoC.

1.0K

1.5K

2.0K

2.5K

3.0K

3.5K

4.0K

4.5K

4K

6K

8K

10K

12K

14K

E
xe

cu
ti

o
n

 C
y

cl
e

s
(r

e
co

n
st

ru
ct

io
n

)

E
xe

cu
ti

o
n

 C
y

cl
e

s
(s

te
p

s
1

-4
)

38M

44K

-

3K

drain stage1 drain stage2pkt recovery
flit recovery reconstruction

-

0.0K

0.5K

1.0K

0K

2K

E
xe

cu
ti

o
n

 C
y

cl
e

s
(r

e
co

n
st

ru
ct

io
n

)

E
xe

cu
ti

o
n

 C
y

cl
e

s
(s

te
p

s

Bugs

Figure 3.16 SafeNoC recovery time by bug. Execution cycles for the first 4 steps of recovery

(bars-left axis) and for packet reconstruction (line-right axis).

varies widely, depending on the severity of the bug and the number of flits and packets it

affects. For example, bug misrte 1flit mixes one packet’s flit among the flits of another

packet. As a result, the reconstruction algorithm has two candidate flits in the system and

it requires only 1,200 cycles to complete. At the opposite end, bug misrte 2pkt affects

32 flits in 2 different packets. Therefore, the reconstruction algorithm must consider two

candidate flits for each position within the packet, requiring up to 38M execution cycles

to complete. On the other hand, packet recovery time is constant for almost all bugs, at

1,473 cycles, required for the token to traverse all routers, with the exception of deadlock

51

and livelock, where entire packets are retrieved from the primary network and transmitted

over the checker network. For these two bugs, packet recovery requires 2,900 cycles and

salvages 90 packets from the network on average. Once these packets are recovered, they

do not need reconstruction, thus the corresponding reconstruction time is 0. Finally, the flit

recovery time depends on the severity of the design error. The more packets are affected

by the error, the more stray flits are left in the primary network, and the more must be

recovered. Thus, on average, SafeNoC requires between 11K to 38M cycles to recover the

system from a bug, assuming uniform clock domains on cores and NoC.

Area Overhead

We evaluated the area overhead of SafeNoC, and our results indicated that SafeNoC leads

to a 27% silicon area overhead with an 8x8 mesh primary network, which corresponds

to a 5% area overhead over a complete CMP with 64 SPARC cores and the same base-

line 8x8 interconnect. We compared this area overhead to a mainstream end-to-end,

acknowledgement-based error recovery scheme as in [103]. Area overhead in these systems

is primarily due to large data buffers needed to store the packets in-transit. We estimated

the size of these buffers by monitoring the number of packets at each source waiting for

acknowledgment. For a 8x8 primary network with 16 flit data packets, up to 7 data packets

can be awaiting acknowledgments at a single source and the retransmission-based system

incurs an area overhead of 79% over the baseline network.

3.5.4 BiPeD/SafeNoC Integration

Functional bugs can be addressed at runtime with BiPeD when it is coupled with the

SafeNoC solution (Section 3.5). SafeNoC provides an end-to-end guarantee for the func-

tional correctness of the communication fabric in a CMP. It augments a baseline network-

on-chip with a small and simple checker network that operates concurrently with the

primary interconnect. For every packet sent over the primary network, a look-ahead signa-

ture is sent concurrently over the checker network. Each destination node checks each data

packet against the look-ahead signatures, and a recovery process is initiated if a mismatch is

detected. While SafeNoC is effective in reassembling packets packets that were subject to

many types of errors, it does not handle the case of silently dropped packets. BiPeD’s flex-

ible hardware can be used to detect and avoid the occurrence of dropped packets, enabling

an even more robust runtime approach.

In order to detect and avoid dropped packets, the protocol detector is programmed with

52

a runtime assertion ensuring that packets leaving FIFO storage are stored into the next

FIFO. As long as this holds, packets will not be lost. The signals needed to observe this

property are the FIFO control signals, the output port control, and the FIFO full signal

from the neighboring routers. The key idea is to ensure that a flit leaving the current

router’s FIFO will be sent through an output port to a neighboring router with available

FIFO storage.

3.6 Summary

This chapter has presented a framework for synergizing the phases of verification to ad-

dress functional bugs. We explored a number of solutions to address functional bugs that

fit within this framework. Functional bugs, which may be present beginning with early

models, can be addressed during pre-silicon, post-silicon, or runtime verification.

For pre-silicon verification, we proposed Inferno, a software tool that operates on a

logic simulation trace and automatically extracts transactions, that is, high level descrip-

tions of a design’s behavior. Transactions are presented to the user through simple and

intuitive diagrams for which we have developed a number of specialized visualization

enhancements. Complex, repetitive design simulations are distilled to a compact set of

transactions which describe the semantic behavior of the system in a compact, high level

format. This enables a closed-loop pre-silicon verification flow, as well as providing a set

of protocols to later verification stages.

BiPeD bridges pre-silicon verification to post-silicon validation, leveraging the pro-

tocols extracted by Inferno to learn the correct behavior of a designs communication

patterns during pre-silicon verification. During post-silicon validation, this knowledge is

used to detect errors by means of a flexible hardware unit. When an error is detected, bug

reproduction is not necessary: a diagnosis software algorithm analyzes information stored

in the hardware unit to provide a wide range of debugging information.

Next, to narrow down post-silicon functional bugs, we presented Dacota, which ad-

dresses a common problem in multi-core systems: validation of memory ordering. When

enabled by the verification team, Dacota stores sequence information about issued memory

operations, periodically aggregating this information to perform a software-based policy

validation. The validation algorithm is implemented purely in software to minimize the

area impact of our solution and executes on existing processor resources. Leveraging

approximately 6 orders of magnitude performance advantage over pre-silicon simulation,

Dacota’s post-silicon approach is able to offer significantly higher coverage compared to

53

pre-silicon approaches. We found that Dacota is effective in detecting subtle consistency

and coherence bugs, showing its promise as a solution to the problem of validating the

order of memory operations in CMP systems. Furthermore, Dacota enables post-silicon

debugging support, providing invaluable information to the validation team. Before ship-

ment, the checking functionality of our solution can be disabled, completely eliminating

performance degradation to the end user.

Finally, runtime verification of functional bugs was addressed with SafeNoC, an end-

to-end error detection and recovery technique to guarantee the functional correctness of

CMP interconnects. SafeNoC integrates with flexible BiPeD hardware. It augments the

interconnect with a lightweight and simple checker network and it detects functional errors

by comparing the signature of every received data packet with its look-ahead signature that

was delivered through the checker network. In case of mismatches, we use a novel recov-

ery approach during which blocked packets and stray flits are collected from the primary

network and are distributed over the checker network to all processor cores, where our re-

construction algorithm reassembles them. SafeNoC can detect and recover from a broad

range of functional design errors, while incurring a low performance impact, requiring

between 11K and 39M execution cycles to recover from an error.

Taken together, this set of solutions enables a robust resistance to functional bugs in the

communication subsystem of a multi-core design.

54

Chapter 4

Addressing Electrical Failures

While functional bugs are present in all verification phases, electrical failures begin to ap-

pear during post-silicon debugging, with the first silicon prototypes. Since circuit behavior

cannot be accurately predicted with pre-silicon tools, electrical failures must be addressed

during post-silicon validation and runtime verification. Ideally, electrical failures are caught

during post-silicon validation, before a product ships.

In this chapter, we first provide an overview of electrical failures, their causes, and op-

portunities to mitigate them, particularly during post-silicon validation (Section 4.1). We

leverage the BiPeD framework again, this time for the detection of post-silicon electrical

failures. Discussed in Section 4.2, BiPeD can detect failures at full speed on post-silicon

prototypes. Following failure detection, we outline a complementary solution for narrow-

ing down the location of these difficult failures during post-silicon validation (Section 4.3).

Section 4.4 summarizes our approach to electrical failures.

4.1 Electrical Failures

Diagnosing and debugging electrical failures in large, complex modern digital designs is a

difficult task. Unlike functional bugs, where a circuit fails to operate properly under any

environmental condition, electrical failures result in circuit failures only under certain con-

ditions. For example, operating conditions such as voltage, temperature and frequency may

change the behavior of the failure, or simply preclude its manifestation [73, 74].

Electrical failures are often intermittent in nature, and thus are difficult to localize dur-

ing post-silicon validation. For this reason, implicating an escaped error as having an

electrical root cause is problematic. Thus, electrical failures remain largely an internal

problem for chip manufacturers. However, they represent a critical challenge during post-

silicon validation due to their intermittent nature [112]. Electrical failures contribute to

the increasingly large role of post-silicon validation, where failures are located on silicon

55

bad assumption

3%
voltage level

1%

weak keeper

1%

speed path

25%

drive strength

9%

logic error

9%
race

8%

coupling

7%

drive fights

7%

bad precharge

7%

leakage

5%

cycle path

5%

analog

4%

clock skew

3%

charge share

3%

edge rate

3%

Figure 4.1 Electrical failure root causes for a typical industrial microprocessor during post-

silicon validation, as reported by Josephson [73]. While these failures are the result of a variety of

root causes, they share the difficulty of locating the root cause. This is often due to the intermittent

nature of post-silicon electrical failures.

prototypes. First silicon is rarely released as a final product, indicating the large number of

difficult failures discovered during post-silicon validation [73].

The root cause of an electrical failure may be due do a number of reasons. Figure 4.1

shows the distribution of root causes of electrical failures during post-silicon validation of

an industrial microprocessor [73]. The distribution of failure mechanisms is fairly even,

with a large contribution by speed paths. Failures on speed paths, those circuits in the chip

that limit its speed, comprise 25% of the root causes. While failures may have different

root causes, the end goal of post-silicon validation is to identify the exact signal or signals

that are at fault.

Shmoo plots are a common way to begin debugging electrical failures, as discussed in

Section 2.2. A shmoo plot attempts to find a relationship between the failure and chip oper-

ating conditions, for example, voltage and clock period. The plots show the pass/fail status

of a test under different conditions. While these plots help identify possible relationships

between operating conditions and error occurrence, much manual effort is still required to

debug the root cause of the failure.

Real silicon lacks observability, controllability and deterministic repeatability. As a

result, some tests may produce the same outcome over multiple executions, due to the inter-

56

action of asynchronous clock domains and varying environmental and electrical conditions.

Bugs that manifest inconsistently over repeated executions of a same test are particularly

difficult to diagnose. Furthermore, the number of observable signals in post-silicon is ex-

tremely limited, and transferring observed signal values off-chip is time-consuming. This

work addresses precisely this post-silicon validation platform and focuses on the localiza-

tion of these difficult, inconsistent bugs to ease their debugging.

During post-silicon validation, tests are executed directly on silicon prototypes. A test

failure can be due to complex functional errors that escaped pre-silicon verification, elec-

trical failures at the circuit level, and even manufacturing faults that escaped testing. The

failed test must be re-run by validation engineers on a post-silicon validation hardware plat-

form with minimal debug support. Post-silicon failure diagnosis is notoriously difficult,

especially when tests do not fail consistently over multiple runs. The limited observabil-

ity and controllability characteristics of this environment further exacerbate this challenge,

making post-silicon diagnosis one of the most challenging tasks of the entire validation

effort.

Electrical failures that slip through post-silicon validation must be covered at runtime.

At runtime, many electrical failures can be observed in the same manner as transistor faults:

a decaying circuit eventually fails to meet timing and causes incorrect values to be latched

into internal state. This leads to opportunities for multi-use solutions that cover both elec-

trical failures and transistor faults, discussed in Chapter 5.

4.2 Detecting Failures with BiPeD

The BiPeD framework is applied to electrical failures by leveraging its protocol detectors.

This is similar BiPeD’s application to functional bugs, which was discussed in Section

3.3. The goal of BiPeD is to learn the correct behavior of a system’s protocols during

high-observability, low-speed pre-silicon verification, and then detect violations of these

protocols during high-speed, low-observability post-silicon validation. It targets difficult

post-silicon bugs that manifest in the inter-block interactions of a complex chip, automati-

cally determining their time of manifestation and providing a sequence of activity leading

up to the failure. During post-silicon validation, these protocols are loaded into a small

and flexible hardware unit, which monitors the interface(s) at runtime on the silicon pro-

totype. When an error manifests, the hardware detector provides the recent history of

the protocol-level activity observed on the interface that flagged the bug to a companion

software algorithm. This, in turn, organizes the data as a series of intuitive transactions

57

representing the interface’s activity leading up to the failure.

BiPeD eases the debugging process by locating the bug manifestation time and location,

tolerating noisy, non-deterministic post-silicon environments without requiring failure re-

production. It provides debugging information that includes the events and transactions in

a history of recent activity. Additionally, BiPeD incurs zero performance overhead during

regular post-silicon validation, and requiring off-chip data transfer only at the occurrence

of a bug.

In the context of electrical failures, BiPeD hardware is programmed with the protocols

learned during pre-silicon verification. Next, high-speed, large-volume post-silicon testing

begins, with the BiPeD checkers monitoring critical communication interfaces. When a

failure is detected, the resulting transactions are used as a starting point for more detailed

debugging. In the next section, we present a complementary solution that narrows down an

electrical failure to the exact root signal(s) and cycle(s).

4.3 Diagnosing Failures with BPS

When a post-silicon failure is detected by BiPeD’s flexible protocol detectors (Section 4.2),

the failure must then by narrowed down to the root cause signal(s). In this section, we out-

line an automated debugging approach called BPS [42], “Bug Positioning System.” BPS

leverages a statistical approach to address the most challenging post-silicon bugs, those

that do not manifest consistently over multiple runs of a same test, by localizing them in

space (design region) and time (of bug manifestation). BPS leverages existing on-chip

trace buffers or a lightweight custom hardware component to record a compact encoding

of observed signal activity over multiple runs of the same test. Some test runs may fail,

while others may pass, leading to different activity observations. In addition, observations

may be affected by variations introduced by the operating environment – both system-level

activity and environmental effects. Finally, a post-analysis software algorithm leverages a

statistical approach to discern the time and location of the bug manifestation.

Overall, BPS eases debugging in post-silicon validation by localizing inconsistent bugs

in time and space, often to the exact problem signal, thus reducing the engineering effort

to root-cause and debug the most difficult failures. It targets a wide range of failures, from

functional, to electrical, to manufacturing defects that escaped testing. Additionally, BPS

tolerates non-repeatable executions of the same test, a characteristic of the post-silicon en-

vironment, and thus not part of any mature pre-silicon methodology. It does not require any

a-priori knowledge of the design or failures. Finally, BPS provides a scalable solution with

58

post-si

test

post-si platform

hw sensors

HW logging SW post-analysis

signatures

pass

fail

bug location

bug

occurrence

time

band model

Figure 4.2 BPS operation. BPS operates in two phases: first, hardware sensors collect compact

encodings of signal activity on the post-silicon platform for a number of executions of the same test:

some may pass, while others fail. These observations are then analyzed by post-analysis software,

which locates functional, electrical and manufacturing failures in time and space.

minimal engineering effort, able to handle the complexity of full chip integration typical of

post-silicon validation, while minimizing off-chip data transfer through the use of compact

encodings of signal activity.

In addition to electrical failures, BPS can diagnose the time and location of functional

and manufacturing bugs during post-silicon validation; in particular, those bugs that mani-

fest through inconsistent test outcomes. In these situations, the same post-silicon test may

pass for some of its executions and fail other times, due to asynchronous events or electrical

and environmental variations on-chip.

To locate these difficult bugs, BPS leverages a two-part approach: logging compact

observations of signal activity with an on-chip hardware component, followed by an off-

chip software post-analysis. The compact size of observations produced by the hardware

are essential for minimizing expensive off-chip data transfers. These signal observations

are gathered and reduced to a compact encoding for a number of executions of the same

test, some passing and some failing, but usually all slightly different. Finally, the collected

data is analyzed by the BPS post-analysis software, leveraging a statistical approach that

is insensitive to the natural variations over several executions, but it is capable of detecting

the more dramatic differences in signal activity typically caused by bugs. The result is the

localization of the bug through the reporting of an approximate clock cycle and the set of

signals most closely related to the error.

4.3.1 BPS Hardware

The hardware component of BPS logs signatures, compact encodings of observed activity

on a set of target signals, which are later used by BPS’ post-analysis software to locate fail-

ures. Signals available for observation are selected at design time, and the most effective

choices are typically control signals. Signatures are recorded at regular intervals, called

windows, and stored in an on-chip buffer. Windows can range in length from hundreds to

59

millions of cycles, and are later used to determine the occurrence time of a bug. Logged

data is periodically transferred off-chip for analysis by the BPS software. Simple signatures

can often be collected using existing debug infrastructures, such as on-chip logic analyzers

[149], flexible event counters [2, 12, 117] or performance counters.

0

0.2

0.4

0.6

0.8

1

0 0.5 1

F
re

q
u

e
n

cy

Signature Value

passing testcases

failing testcases

(a) Poor statistical separation

0

0.2

0.4

0.6

0.8

1

0 0.5 1

F
re

q
u

e
n

cy

Signature Value

passing testcases

failing testcases

(b) Good statistical separation

Figure 4.3 Comparison of typical distributions with different signatures. A signature that ex-

hibits a wide, evenly distributed output (a) does not allow BPS to differentiate correct behavior from

incorrect. In contrast, signatures that exhibit good separation (b) are effective.

An ideal signature is compact for dense storage and fast transfer, and represents a high-

level view of the observed activity. Furthermore, the signature must exhibit a statistical

separation between passing and failing cases, as shown in Figure 4.3. In order to differenti-

ate erroneous behavior from correct behavior, BPS characterizes activity using distributions

of signatures. Throughout the development process of BPS, we considered a variety of sig-

natures, including various codes and counting schemes. We found that many traditional

codes, such as cyclic, hamming distance and multiple input shift registers (MISR), exhib-

ited a wide range of output (Figure 4.3a) and are very susceptible to noise: small variations

among executions led to severe variations in the signature value. Thus, it is difficult to

distinguish erroneous from correct behavior with these signatures. This led us to counting

schemes, where the amplitude of changes in signal activity leads to approximately propor-

tional changes in signature values. The result is a discernible difference in the distribution

of signatures for passing vs. failing testcases (Figure 4.3b) and less vulnerability to noise.

Signatures based on counting schemes include toggle count, time at one and time at

zero. We chose a variation of time at one for BPS: the probability of a signal being at one

during a time interval (window), P(time@1). This signature is compact, simple and en-

codes notions of switching activity, as well as timing. By contrast, toggle count expresses

the logical activity of the signal, but it does not provide any temporal information. Figure

4.4 shows an on-chip hardware sensor implementation for measuring P(time@1). Signals

60

from the design are connected to counters via muxes, allowing the selection of a subset of

the signals to be monitored. Note that we can calculate this signature by simply counting

the number of cycles when a signal is at 1 and normalizing to the window length. Fur-

thermore, we noted experimentally that approximately 9 bits of precision are sufficient for

accurately locating bugs, offering precision similar to a window size of 512 cycles. Thus,

the resulting probability can be truncated and stored with fewer bits. The final result is

copied to a memory buffer at the end of each window.

1

Memory Buffer

chip under test

Off-chip

through

debug

port

registerEN

registerEN

1

9-bits

9-bits

Figure 4.4 BPS Hardware collects signatures for a subset of the design’s signals. An observed

signal’s time@1 is tracked at each cycle for the duration of a window; the sum is then truncated to

limit its size and saved to a buffer.

Note that it is not necessary to collect signatures for every signal in the design. BPS

leverages signals high in the module hierarchy, those most likely to be available for ob-

servation in a post-silicon validation platform. To further reduce the amount of data that

must be transferred off-chip, BPS uses two signal selection optimizations: first, it excludes

data signals, often identified as busses 64-bits wide or more for a 64-bit processor design.

Depending on hardware resources, signatures can be collected all at once or in groups.

If post-silicon debugging hardware resources are scarce, then multiple executions of the

test can be leveraged to complete the signature collection, even if those executions are not

identical, since BPS’ post-analysis software is tolerant to variation.

4.3.2 BPS Post-Analysis Software

After on-line signature collection is completed, off-line software analysis identifies a set of

signals indicating where the bug occurred and at what time. BPS uses the signatures from

passing runs of the test to build a model of expected behavior, and then determines when

failing executions diverge from the model, revealing a bug.

BPS’ software begins by partitioning a test’s signatures into two groups: those where

the test passed, and those where the test failed, as illustrated in Figure 4.5 (top and bottom

portions). The signatures in each group are organized by window and signal: for each win-

dow/signal combination, BPS considers multiple signature values, the result of multiple

61

windows

windows

Passing group

Failing group

signatures..
.

...

...

..
.

..
.

...

...signalA

signalB

signalC

signalA

signalB

signalC

..
.

..
.

..
.

..
.

...

...

Bug

band

signatures..
.

kpass*σpass

µpass

...

...

1 2 3 4

1 2 3 4

Figure 4.5 BPS post-analysis algorithm. Using the passing group of signatures from a test, BPS

builds a model of the expected behavior for each signal, shown by the green (light gray) band. The

red (dark gray) band shows the behavior of the failing test runs, constructed from the failing group.

executions of the test. Next, passing signatures are used to build a model of acceptable

system behavior for each observed signal: the algorithm goes through all the signatures

related to one signal, building the model one window at a time.

The middle part of Figure 4.5 illustrates the model built for signalA as a green (light

gray) band. Representing the expected behavior as a distribution of values enables BPS to

tolerate variations in signature values since, as we discussed above, post-silicon validation

is characterized by non-identical executions due to naturally occurring variations among

distinct executions. Figure 4.6 illustrates how distributions are used to build a model of

observed behavior. The passing band for one signal is generated by computing the mean

(µpass) of the signature values for each window, surrounded by kpass standard deviations

(σpass), where kpass is a parameter. Thus the band representing the passing signatures is

bounded by µpass ± kpass ∗σpass. In order to represent over 95% of uniformly distributed

data points, we used kpass = 2 for our experiments.

The BPS software now adds the failing group to the model, once again considering each

signal in turn and building the model window-by-window. The failing group is plotted in

Figure 4.5 as a red (dark gray) band. Similar to the passing group, the failing group is mod-

eled as the mean surrounded by k f ail standard deviations (µ f ail ± k f ail ∗σ f ail). When the

62

failing band falls inside the passing band, we deem the corresponding signal’s behavior to

be within an acceptable range, indicating that a test failure has not yet occurred or, possibly

it is masked by noise. When it diverges from the passing band, we identify this as buggy

behavior.

Using this band model, BPS determines when failing signatures diverge from passing

signatures: we call the divergence amount a bug band. Starting at the beginning of a test

execution, the algorithm considers each window in turn, calculating the bug band one signal

at a time. The bug band is zero if the failing band falls within the passing band, otherwise it

is the difference between the two top (or bottom) edges. As an example, Figure 4.6 shows

the model obtained and the bug band calculation for a signal in the memory stage of a

5-stage pipelined processor.

The set of bug bands (one for each signal) is ranked and compared against a threshold

that varies with the design (see Section 4.3.4). If no bug band exceeds the threshold, BPS

moves on to the next window. When one or more bug bands exceed the threshold, BPS

notes the time (represented by the window) and the signals involved, reporting them as the

bug time and location.

As an additional filtering step, a set of common mode rejection signals is leveraged by

BPS to mitigate the noise present in large designs. To generate this filter, BPS is run with

two passing groups of a same testcase, rather than a passing and a failing group. The signals

identified in this process are removed from BPS’ candidate bug signals list; this helps to

minimize the number of false positives. We found that in a complex design (OpenSPARC

0

0.2

0.4

0.6

0.8

1

0 4 8 12 16 20 24

P
(t
im
e
@
1
)

Window

Failing band

Passing band

0 0.5 1

0 0.5 1

µ ± 2σ

bug band

bug occurrence bug detected

Figure 4.6 BPS band model. Band model for a memory control signal from a 5-stage pipelined

processor. Each slice of time in the model represents two distributions (passing and failing). The bug

is detected when the failing band diverges from the passing one, representing diverging signature

distributions. The quantitative amount is measured by the bug band.

63

0

10

20

30

40

50

60

70

10 20 30 40 50 60

N
u

m
b

e
r

o
f

co
m

m
o

n

m
o

d
e

 r
e

je
ct

io
n

 s
ig

n
a

ls

Number of passing test runs

blimp_rand

fp_muldiv

AVERAGE

Figure 4.7 Number of common mode rejection signals in the OpenSPARC T2 design. As the

number of passing tests increases, the average number of signals stabilizes to 44, only 1% of the

signals monitored by BPS.

T2), as the number of runs used for identifying common mode rejection signals increased,

the resulting list stabilized. Figure 4.7 shows this asymptotic trend for the testcases exhibit-

ing the largest and smallest common mode rejection signal lists, as well as the average. The

size of the list is typically small, only 44 signals (some of which are buses), comprising 1%

of the design’s monitored signals.

4.3.3 Tuning Parameters

A number of parameters affect the quality of the results produced by BPS: the bug band

threshold, the window length, the number of test executions in both the passing and failing

groups and a set of common mode rejection signals.

The bug band threshold is used to determine which signals BPS detects, and also

causes BPS to stop looking for bugs. Changing this value changes BPS’ sensitivity to bugs

and noise. In some cases, the design perturbation caused by a bug can be amplified by

neighboring logic over time: a higher bug band threshold can cause BPS to detect these

neighboring signals after searching longer (more windows) for errors. The result is often a

reduction in the number of signals detected, since few signals have a bug band that exceeds

the threshold. However, this can also lead to signals that are less relevant to the error, as

well as longer detection times. On the other hand, a bug band threshold that is too small

can result in prematurely flagging irrelevant signals, halting the search for the bug. In our

experiments, we found that a single threshold value could be used for each design. Thus,

in practice, the proper bug band threshold is determined when running the first tests, and

then reused for the rest.

64

The window length is the time interval (in cycles) of signature calculation, and affects

the precision of BPS’ timing. Increasing the window length increases the number of cycles

that must be inspected after BPS reports the bug detection window. However, large win-

dow lengths have the advantage of allowing longer periods of execution between signature

logging and thus decrease the volume of data that must be transferred off chip. Thus, the

choice of window size is a trade-off between off-chip data transfer times and the precision

of bug localization timing.

The population size of passing and failing groups primarily affects false negative and

false positive rates. When the population of failing runs is small, variations in the failing

group have greater impact on the mean. Thus, bugs are triggered more easily, resulting in

increased false positives. Conversely, when the number of passing testcases is small, vari-

ations impact the mean of the passing population, this time increasing the false negative

rate.

4.3.4 Experimental Evaluation

In order to evaluate the effectiveness of BPS, we employed it to find bugs on two micropro-

cessor designs with a variety of failures, including electrical, manufacturing and functional

bugs. Each processor ran a set of 10 distinct application workloads. The designs are a 5-

stage pipelined processor implementing a subset of the Alpha ISA, comprising 4,901 lines

of code and 4,494 signals (bits). After excluding data signals, BPS was left with 525 signals

for analysis. Our larger industrial design, the OpenSPARC T2 [140] system, has 1,289,156

lines of code and 10,323,008 signal bits. We simulated the system in its single core version

(cmp1), which consisted of a SPARC core, cache, memory and crossbar. BPS monitored

the control signals at the top level of the design for a total of 41,743 signal bits, represen-

tative of the signals that would likely be available during post-silicon debugging of such a

large design. Both designs were instrumented to record signatures during logic simulation;

execution variations were introduced with variable and random communication latencies.

BPS requires only these compact signatures and pass/fail status of the test to operate.

Table 4.1 shows the bugs introduced in 10 different variants of the design, with one

bug in each. The failures included functional bugs (design errors), electrical failures and

manufacturing errors. Functional bugs were modeled by modifying the design logic, and

electrical failures were simulated by temporary single bit-flips persisting for a number of

cycles. Manufacturing errors were modeled as single bit stuck-at faults lasting for the du-

ration of the test. Each design variant executed several tests a number of times, with a

checker to determine if the final program output was correct. The workloads used as test

65

inputs for the two processor designs included assembly language tests, as well tests from a

constrained-random generator. There were 10 tests for each design (Table 4.2), ranging in

size from about 20K cycles to 11M cycles. Each test was run 10 times for each bug, using

10 random seeds with varying impact on memory latency. Additionally, each test was run

10 times (with new random seeds) without activating the bug to generate the passing group.

Bug Localization

Table 4.3 shows the quality of BPS bug detection for the 5-stage pipeline and OpenSPARC

T2 designs: eventually, BPS was able to detect the occurrence of every bug. Often, the

exact root signal was detected, a few exceptions include 5-stage’s EX SA and cache SA,

as well as OpenSPARC’s BR fxn and MMU fxn, where the root bug signal was deep

in the design and not monitored by BPS (indicated by light shading). In these situations,

BPS was still able to identify signals close to the bug location. In a few cases with the

OpenSPARC design, BPS did not find an injected bug, a false negative. Finally, we ob-

5-stage pipeline bugs description

ID fxn functional bug in decode

EX fxn functional bug in execution unit

fwd fxn functional bug in fwding logic

EX SA stuck-at in execution

cache SA stuck-at in cache to proc ctrl

ID SA stuck-at in decode

MEM SA stuck-at in memory

WB elect electrical error in writeback

ID elect electrical error in decode

EX elect electrical error in execute

OpenSPARC T2 bugs description

PCX gnt SA stuck-at in PCX grant

XBar elect electrical error in crossbar

BR fxn functional bug in branch logic

MMU fxn functional bug in mem ctrl

PCX atm SA stuck-at in PCX atomic grant

PCX fxn functional bug in PCX

XBar combo combined electrical errors in Xbar/PCX

MCU combo combined electrical errors in mem/PCX

MMU combo combined functional bugs in MMU/PCX

EXU elect electrical error in execution unit

Table 4.1 Designs and modeled failures. The bugs introduced in each design variant were func-

tional, electrical and manufacturing (stuck-at) failures.

66

5-stage pipeline tests description length (cycles)

bubblesort bubble sort 569,237

combRec recursive combinations 4,609,206

fib Fibonacci numbers 442,233

hanoi tower of Hanoi puzzle 11,593,567

insert insertion sort 229,429

knapsack knapsack problem 1,597,497

matmult matrix multiplication 1,723,423

merge merge sort 548,172

quick quick sort 277,503

saxpy scalar alpha x plus y 60,024

OpenSPARC T2 tests description length (cycles)

blimp rand hypervisor test 251,480

fp addsub floating point add/subt 913,093

fp muldiv floating point mult/div 238,343

isa2 basic constrained-random 452,009

isa3 asr pr constrained-random 1,178,151

isa3 window constrained-random 1,282,348

mpgen smc constrained-random 135,251

ldst sync thread sync. instrs. 64,570

n2 lsu asi load/store unit test 62,523

tlu rand trap logic unit test 591,434

Table 4.2 Workloads for both experimental designs.

served false positives in two testcases, instances where the system detected a bug before

it was injected: both were floating point testcases (fp addsub and fp muldiv). Upon

further investigation, we found the cause to be three signals that exhibited noisy behavior,

but were not included in the common mode rejection filter. When these three signals were

added to the filter, the false positives were correctly avoided, highlighting the effectiveness

of rejecting noisy signals.

Some bugs were easier to detect than others, for example BPS was able to detect the

exact bug root signal in 8 out of 10 testcases with the PCX atm SA bug, while a seem-

ingly similar bug, the PCX gnt SA, did not manifest in 9 out of 10 cases. PCX atm SA

had wider effects on the system, and thus manifested more frequently and was easier to

detect. By contrast, the PCX gnt signal was not often used and thus the related bug did

not manifest as frequently.

The number of signals and the time between bug occurrence and bug detection are also

a consideration in post-silicon validation: it is easier to debug a small number of signals

that are close to the bug’s manifestation. Figure 4.8 shows the number of signals identified

by BPS for the bugs in each design. Each bar of the figure represents one bug, averaged

67

5-stage ID
fx
n

E
X
fx
n

fw
d
fx
n

E
X
S
A

ca
ch
e
S
A

ID
S
A

M
E
M

S
A

W
B
el
ec
t

ID
el
ec
t

E
X
el
ec
t

bubblesort X+ X+ X X X X+ X+ X+ X+ X+

combRec n.b. X X X X X+ X+ X+ X+ X+

fib X+ n.b. X X X X+ X+ X+ X+ X+

hanoi n.b. n.b. X X X X+ X+ X+ X+ n.b.

insert X+ X+ X X X X+ X+ X+ X+ X+

knapsack X X+ X X X X+ X+ X+ X+ X+

matmult X X+ X+ X X X+ X+ X+ X+ X+

merge X+ X X X X X+ X+ X+ X+ X+

quick X+ X+ X X X X+ X+ X+ X+ X+

saxpy X X+ X+ X X X+ n.b. X+ X+ X+

OpenSPARC P
C
X
g
n
t
S
A

X
B
ar

el
ec
t

B
R
fx
n

M
M
U
fx
n

P
C
X
at
m

S
A

P
C
X
fx
n

X
B
ar

co
m
b
o

M
C
U
co
m
b
o

M
M
U
co
m
b
o

E
X
U
el
ec
t

blimp rand X+ X+ X X X+ X+ X+ f.n. X+ f.n.

fp addsub n.b. f.p. X X X X+ f.p. n.b. X+ f.p.

fp muldiv n.b. f.p. X X X X+ f.p. f.p. X+ f.p.

isa2 basic n.b. f.n. X n.b. X+ X+ X+ X+ n.b. f.n.

isa3 asr pr n.b. X X f.n. X+ X X+ X+ X X

isa3 window n.b. X X n.b. X+ X f.n. f.n. n.b. X

ldst sync n.b. X+ X X X+ X+ X+ X+ X+ n.b.

mpgen smc n.b. X+ X X X+ X+ X+ X+ X+ X+

n2 lsu asi n.b. f.n. X f.n. X+ X+ X+ X+ X+ n.b.

tlu rand n.b. X+ X X X+ X+ X+ X+ X+ X+

Table 4.3 BPS signal localization. Checkmarks (X) indicate that BPS identified the bug; the

exact root signal was located in cases marked with X+. Each design includes two bugs involving

signals not monitored by BPS (light shading). In these cases, BPS could identify the bug, but not

the root signal. “n.b.” indicates that no bug manifested for every run of the test; false negatives and

false positives are marked with “f.p.” and “f.n.”.

over all tests used in BPS, using a window length of 512 cycles. We found that the num-

ber of signals is highly dependent on the bug, with BPS detecting a single signal for some

bugs, such as 5-stage’s MEM SA and OpenSPARC’s MCU combo. Other bugs were more

challenging, for example, with the 5-stage pipeline’s bug WB elect, BPS detected 158

signals on average: this was due to very wide-spread effects of this single bug through-

out the design. We also noted that this catastrophic bug was caught by BPS very quickly,

less than 750 cycles after the bug’s manifestation. While BPS monitored 80x more signals

in the OpenSPARC experiments, the number of detected signals increased by only 2x, on

68

0

40

80

120

160

200

ID
 f

x
n

E
X

 f
x
n

fw
d

 f
x
n

E
X

 S
A

ca
ch

e
 S

A

ID
 S

A

M
E

M
 S

A

W
B

 e
le

ct

ID
 e

le
ct

E
X

 e
le

ct

A
V

E
R

A
G

E

A
V

E
R

A
G

E

P
C

X
 g

n
t

S
A

X
B

a
r

e
le

ct

B
R

 f
x
n

M
M

U
 f

x
n

P
C

X
 a

tm
 S

A

P
C

X
 f

x
n

X
B

a
r

co
m

b
o

M
C

U
 c

o
m

b
o

M
M

U
 c

o
m

b
o

E
X

U
 e

le
ct

5-stage pipeline OpenSPARC T2

N
u

m
b

e
r

o
f

si
g

n
a

ls
 d

e
te

ct
e

d

7%

38

0.2%

75

Figure 4.8 BPS spatial localization, number of signals identified as closely related to the bug

when using a 512 cycle window.

average. This demonstrates BPS’ ability to narrow a large number of candidate signals

(nearly 42,000) down to a smaller pool amenable to debugging.

The time to detect each bug is reported in Figure 4.9, expressed as the number of cycles

between bug injection and detection. Each bar of the figure represents one bug, averaged

over all tests, using a window length of 512 cycles. The error bars indicate the error window

in the BPS reporting, which corresponds to the window length. The average detection time

was worse for the 5-stage pipeline; mostly due to three bugs: the EX SA and cache SA

stuck-at bugs were both inserted into data busses, and thus could not be directly observed

by BPS. The effects of the bug required many cycles before observable control signals di-

verged. In the case of the ID functional bug, the effects of the bug were masked for many

cycles in the fib testcase, thus, the bug went undetected until later in the program’s exe-

cution. In the OpenSPARC design, we noted that most bugs were detected within about

750 cycles, on average. Two bugs were an exception to this rule, both involving the MMU,

where bugs involving signals deep in the design remained latent for a time before being

detected.

Overall, BPS was successful in narrowing down a very large search space (number of

signals * test length) to a small number of signals and cycles. Our experiments show that

it was able to correctly reject over 99.999% of the candidate 〈location, time〉 pairs. By

contrast, IFRA [108] achieves 99.8% by this metric.

69

Bug Detection Quality

The quality of detection results is evaluated by both the number of signals detected and the

ability to detect the source signal of the bug. The accuracy of the time at which the bug

is detected is also a consideration, as are the rates of false negatives and false positives.

Additionally, the number of signals must be manageable by validation engineers. A variety

of factors affects the quality of BPS results, including the bug band threshold, number of

executions (of the same test) and window length.

Bug Band Threshold

Figure 4.10 shows the effect of threshold on the number of false negatives and false posi-

tives, reporting the sum total over all bugs and testcases for each threshold. We note that

for both designs, the number of false positives starts high and decreases as the threshold

increases, the result of a tighter filter for discerning a bug occurrence over system’s noise.

However, when the bug band threshold is high, the subtler effects of bugs are overlooked

by BPS, resulting in more bugs being missed. In contrast, the number of false negatives

increases as the threshold increases. Thus, there is a trade-off between false positive and

false negative rates, indicated by the minimum of their sum, occurring at 0.3 for the 5-stage

5,772

1,273

0

5,000

10,000

15,000

20,000

25,000

ID
 f

x
n

E
X

 f
x
n

fw
d

 f
xn

E
X

 S
A

ca
ch

e
 S

A

ID
 S

A

M
E

M
 S

A

W
B

 e
le

ct

ID
 e

le
ct

E
X

 e
le

ct

A
V

E
R

A
G

E

A
V

E
R

A
G

E

P
C

X
 g

n
t

S
A

X
B

a
r

e
le

ct

B
R

 f
x
n

M
M

U
 f

x
n

P
C

X
 a

tm
 S

A

P
C

X
 f

x
n

X
B

a
r

co
m

b
o

M
C

U
 c

o
m

b
o

M
M

U
 c

o
m

b
o

E
X

U
 e

le
ct

5-stage pipeline OpenSPARC T2

Δ
ti

m
e

 b
u

g
 i

n
je

ct
io

n
 t

o
 d

e
te

ct
io

n
 (

cy
cl

e
s)

Figure 4.9 BPS temporal localization, in cycles between bug injection and detection. Error bars

indicate the localization range.

70

0

20

40

60

S
u

m
 t

o
ta

l

false negatives

false positives

ideal threshold = 0.3

5-stage pipeline

0

20

40

60

0 0.2 0.4 0.6 0.8 1

S
u

m
 t

o
ta

l

Bug detection threshold

false negatives

false positives

sum

ideal threshold = 0.1

OpenSPARC T2

Figure 4.10 Bug band threshold and quality of results. As the threshold increases, false nega-

tives increase, while false positives decrease. Thus, we select a threshold by minimizing the sum.

pipeline and 0.1 for OpenSPARC T2. We also noted that the number of signals detected de-

creased as the threshold increased: with high thresholds, BPS detects neighboring signals

after searching longer (more windows) for errors.

Population Size

The ratio of the number of passing vs. failing runs determines the weight of signatures that

may vary from the mean. Figure 4.11 plots the number of false positives and false nega-

tives as the balance of passing vs. failing testcases changes. At the center of the X-axis, the

balance is equal, with 10 passing and 10 failing tests. In the case of the 5-stage pipeline,

we note that false negatives are not present, regardless of the number of runs, indicating

that the wide-spread effects of a bug in a small design will always be caught eventually.

In both designs, the number of false positives decreases with more failing testcases. When

the number of failing runs is small, only a few data points that differ from the mean can

exceed the bug band threshold, thus false positives are more prevalent. Conversely, we see

an increase in false negatives as the balance tips towards more failing. Note that for our

other experiments, we used an even balance of 10 passing and 10 failing runs.

71

0

10

20

30

40

S
u

m
 t

o
ta

l

false negatives

false positives

5-stage pipeline

0

10

20

30

40

1 2 3 4 5 6 7 8 9 10 9 8 7 6 5 4 3 2 1

number of failing tests number of passing tests

S
u

m
 t

o
ta

l

false negatives

false positives

OpenSPARC T2

Figure 4.11 Population size and quality of results. The plot shows false negatives and false

positives as the population of passing and failing runs changes:. 10 passing runs on the left and 10

failing runs on the right.

Window Length

Next, we examine the interaction of window length with quality of results. BPS measures

signatures over a time interval and the interval length affects the time at which bugs are

detected. We found that the window length had a significant effect on the number of sig-

nals detected and the detection time. Figure 4.12 plots the number of signals detected, as

well as the time between bug injection and detection as window length increases. First, we

observed that shorter windows yield more accurate time localizations: for long windows,

the lag is mostly due to the length of the window itself. Note that failing runs may execute

long past the bug detection, since the cycle is identified during post-analysis. Additionally,

the number of signals detected increases as the window length increases. This is due to

the increased time for the effects of the bug to spread to many signals in the system. Thus,

a smaller window length yields more accurate results. We note however, that it would be

possible to run BPS multiple times with an iterative approach, strategically decreasing the

window size in order to narrow down a bug’s location.

72

Performance and Area Overhead

BPS’ software post-analysis was run on Xeon Core i7 2.27GHz servers, and the time for

running each analysis was approximately 412s for OpenSPARC T2 and 5s for the 5-stage

design. This time varies with the number of signals under observation, as BPS must con-

sider more data. CPU time is also linearly dependent on the bug detection window, since

BPS must sift through more windows searching for bugs located deep in a test execution.

The hardware logging of BPS’ simple signatures can be obtained using either standard

flexible debugging infrastructures, or with custom hardware. In the case of pre-existing

debugging hardware, signatures can be gathered with no area overhead.

With its unique ability to leverage data from non-repeatable test executions, BPS en-

ables a trade-off between area overhead and the time required to gather signature data.

With a small area budget, the signatures for a set of signals can be gathered a few signals

at a time. Leveraging fast post-silicon execution, a test is run multiple times, recording

signatures from a different subset of signals with each run. Variation among different runs

averages out in BPS’ statistical approach, and thus does not impact the diagnosis quality.

We evaluated the area overhead of a BPS hardware sensor implementation in Verilog

HDL, synthesized with a 65nm TSMC target library. A signature recording unit capable of

100 signals over 100 windows, recording signatures for the 41,743 signal bits in the Open-

SPARC design would require 418 test executions, a reasonable demand at fast post-silicon

execution speeds. With 9-bit precision for signature storage, full precision for a window

length of 512 cycles, the resulting memory buffer comprises 1.33 mm2. The hardware to

0

200,000

400,000

600,000

800,000

1,000,000

1,200,000

0

200

400

600

800

1,000

1,200

512 1,024 4,096 16,384 65,536

Δ
ti

m
e

 b
u

g
 i

n
je

ct
io

n

to
 d

e
te

ct
io

n
 (

cy
cl

e
s)

N
u

m
b

e
r

o
f

si
g

n
a

ls
 d

e
te

ct
e

d

Window length (cycles)

5-stage pipeline signals

OpenSPARC T2 signals

5-stage pipeline Δtime

OpenSPARC T2 Δtime

Figure 4.12 Impact of window length on quality of results. The plot reports the number of sig-

nals detected, and the time between bug manifestation and bug detection as window length increases.

Shorter window lengths yield faster, more precise time localization.

73

generate these signatures occupies 23,240 µm2, resulting in a total area of 1.35 mm2. Com-

pared to the OpenSPARC T2 system (342 mm2[45]), the area overhead of BPS is 0.396%,

less than half the overhead of IFRA [108]. When comparing storage, the dominant factor

in both BPS’ and IFRA’s overhead, BPS requires 11KB with this configuration, compared

to 60KB for IFRA.

Limitations

While BPS is effective in localizing a wide variety of functional, electrical and manufac-

turing failures, it has a few limitations.

The signals available to BPS for observation play a role in its ability to accurately lo-

calize bugs. The scope of signals available for observation during post-silicon validation

varies with the quality of its debug infrastructure. When the signals involved in a bug are

monitored by BPS, it is highly effective in identifying failures down to the exact source

signal, illustrated qualitatively in Section 4.3.4. However, when the source signal is deep

in the design and not monitored, the accuracy of BPS is reduced. This results in an in-

creased number of signals detected, as well as increased detection time. Thus, BPS is able

to identify bugs that originate either within or outside of its observable signals, but it can

only identify the exact signal when this signal is monitored.

The interaction of the test with other code running on the post-silicon validation plat-

form also alters the quality BPS’ results. When similar code executes, the signal activity

recorded by BPS’ signatures is an effective input for the post-analysis algorithm. However,

when the code path significantly deviates, such as with the introduction of an operating

system, differing code paths among test executions can be mistaken for erroneous behav-

ior, resulting in an increased false positive rate. Currently, BPS works best with bare-metal

tests that are free from operating system interaction.

The relationship between window size and the duration of a bug also affects BPS. A

bug’s duration comprises the perturbation in the source signal and the after-effects that

may spread to nearby connected logic. When the bug duration is small relative to the

window size, its effect on the signature recorded for a window is proportionally small

(bugband< 2σ), sometimes resulting in false negatives, depending on the bug band thresh-

old. The effect of short bug durations can be counteracted by a smaller threshold, as well

as by smaller window sizes. We most often observed this phenomena when identifying bug

root signals. As window sizes increased, the number of cases where BPS detected the exact

root signal decreased, despite being able to detect other signals related to the bug. Upon

further investigation, we found that in many cases, the duration of the perturbation of the

74

bug’s root signal was small compared to the window size, while the secondary effects of

the bug remained observable in the design’s behavior.

4.4 Summary

We have presented an effective approach to mitigating electrical failures during post-silicon

validation. Easing and accelerating post-silicon bug diagnosis reduces the possibility of

escaped bugs, and contributes to our larger goal of ensuring correct operation.

First, our BiPeD framework is applied to detect post-silicon failures. When an error is

detected, the location of the bug is pinpointed using BPS. BPS is a solution for locating the

most challenging electrical failures during post-silicon validation. In addition to electrical

failures, we found that it was also effective in locating functional bugs and manufacturing

faults with inconsistent program outcomes. BPS has two components: hardware structures

that log a compact encoding of observed signal activity and companion post-analysis soft-

ware. BPS can localize bugs in time and space while tolerating non-repeatable executions

of the same test. It provides a fast solution, reducing off-chip data transfers with compact

signatures and scales to industrial-size designs. BPS is effective in locating bugs under

many different workloads, often to the exact signal.

In the next chapter, we address electrical failures at runtime in conjunction with related

wear-out induced transistor faults.

75

Chapter 5

Addressing Transistor Faults

As critical transistor dimensions continue to scale further into the nanometer regime, chips

become increasingly susceptible to wear-out induced errors. In order to ensure correct op-

eration throughout the lifetime of a chip, we address transistor faults due to wear-out at

runtime. Faults must first be detected, identifying behavior that differs from correct opera-

tion. Next, the error is diagnosed, narrowing down the exact hardware block or subsystem

responsible for the fault. Once the hardware block is identified, reconfiguration can take

place, rearranging connections to work around the error. Finally, a recovery mechanism

aids in recouping any data lost due to the error. This process is shown in Figure 5.1.

Detection RecoveryDiagnosis Reconfiguration

notifies the system

that a fault has

occurred

determines

the location of

the fault

modifies the NoC

to work around

the fault

recoups lost data

and resumes normal

operation

BiPeD DrainVicis Ariadne

Figure 5.1 Transistor faults are addressed in four steps: detection, diagnosis, reconfiguration

and recovery (bubbles in the chart). The portions of this dissertation that cover the four steps are

shown by the dashed boxes.

In Section 5.1, we discuss the origins of transistor faults, and how they affect the on-

chip communication mechanism. We also present a detailed fault model. Next, we again

leverage BiPeD’s flexible protocol detectors to detect faults (Section 5.2). Following fault

detection, we apply an NoC router architecture capable of diagnosing faults called Vicis

(Section 5.3). After the fault location has been diagnosed, the Vicis architecture reconfig-

ures around small errors. When faults cannot be contained within the router, our Ariadne

routing algorithm is invoked to reconfigure the interconnect around broken routers and

links (Section 5.4). Finally, any data isolated due to a network reconfiguration is recovered

by Drain (Section 5.5).

76

5.1 Transistor Faults

With continued aggressive transistor scaling, these tiny parts become increasingly suscep-

tible to silicon wear-out. Faults that are the result of worn-out transistors, which can cause

both electrical and transistor problems, must be addressed at runtime. Both pre-silicon and

post-silicon verification will miss these faults, since they occur over time. First, the commu-

nication architecture — generally a network-on-chip — must be capable of diagnosing and

reconfiguring broken components. Next, as faults accumulate, a reliable routing algorithm

should address broken communication links and disconnected network nodes. Finally, fol-

lowing a reconfiguration by the reliable routing algorithm, data must be recovered from the

broken components so that computation can resume.

Transistor faults can be caused by a variety of wear-out mechanisms in highly scaled

technology nodes. As transistor dimensions approach the atomic scale, oxide breakdown

[136] (Figure 5.2a) becomes a concern, since the gate oxide tends to become less effective

over time. Moreover, negative bias temperature instability (NBTI) [9] is of special concern

in PMOS devices, where increased threshold voltage is observed over time (Figure 5.2b).

Additionally, thin wires are susceptible to electromigration [58], because conductor mate-

rial is gradually worn away during chip operation until an open circuit occurs (Figure 5.2c).

Since these mechanisms occur over time, traditional burn-in procedures and manufacturing

tests are ineffective in detecting them.

(a) oxide breakdown (b) NBTI (c) electromigration

Figure 5.2 Wear-out mechanisms, which can eventually cause permanent faults at runtime. Ox-

ide breakdown affects thin gates, which degrade over time. Negative bias temperature instability

(NBTI) causes changes in the threshold voltage of PMOS devices. Finally, electromigration results

in eroding wires, leading to conductor fault.

The rate of transistor wear-out changes as a chip ages. Figure 5.3 shows a hypothet-

ical “bathtub curve”, with the expected lifetime of a chip as transistors wear out. The

normal lifetime, in between infant mortality and end-of-life wear-out, is decreasing. Our

goal in this chapter is to increase the useful life of the chip by trading off performance for

77

W
e
a
ro
u
t
F
a
u
lt
 R
a
te

Chip Age

infant
mortality

transistor
wear-out

useful chip lifetime

Figure 5.3 Hypothetical “bathtub curve” showing the shortened expected lifetime of a chip as

transistors wear out [150]. Early in the chip’s lifetime, many faults occur as a result of weak tran-

sistors. Many of these are eliminated with manufacturing test burn-in. At the end of the chip’s

life, many fail due to transistor wear-out. Our goal is to enable correct operation in the end-of-life

regime, extending mean time to failure.

correctness, enabling graceful performance degradation as transistors wear out.

Our goal is to address wear-out in the transistors of the on-chip communication

medium. Continuously shrinking transistor dimensions enable ever-increasing density on

modern microchips: each new technology node facilitates additional cores in chip multi-

processors. For example, the Intel SCC [97] contains 48 cores, the Tilera Tile64 has 64

cores [15] and the experimental Intel Polaris chip incorporates 80 cores [144]. However,

bus communication and crossbar interconnects have not scaled efficiently: high core counts

necessitate efficient, scalable interconnects capable of providing communication among the

processor cores. Networks-on-chip alleviate this problem with fast, scalable communica-

tion provided by small, distributed, packet-switched routers [36].

Network-on-chip routers communicate via a common interconnect, connecting proces-

sor cores, memory controllers, etc. At each node (usually a core or memory), a network

interface controller (NIC) connects the core to the local router, and converts messages from

the core into data packets of varying size for the network. These packets are further divided

into flits, the smallest unit of data traveling in the network, which dictates the width of a

link connecting two routers. Routers then direct traffic within the network, moving flits

from source to destination according to the information encoded in each packet, usually

located in the header (first flit) of the packet. In particular, in wormhole routing [105],

a single packet’s flits may be spread across multiple routers as they traverse the network,

until all the constituent flits are collected at the destination. Compared to bus-based sys-

tems, network-on-chip designs have the advantage of allowing many messages in flight

78

simultaneously, thus providing efficient communication among many nodes.

While NoCs provide a scalable, distributed communication solution, they are also a

single point of failure in a chip multi-processor. Unlike the cores in a CMP, which are

uniform, distributed, and therefore inherently redundant, there is only one communication

medium in the chip, constituting a weakness in the presence of faults. Unreliable silicon

substrates, brought on by aggressively scaled transistors, threaten the reliability of on-chip

communication infrastructures, where a single transistor fault in the NoC could cause the

entire chip to fail [102]. The possibility of frequent faults in the field is soon expected to

become a reality [22, 134], leading to system failure [55, 23] or even causing security flaws

[111].

5.1.1 Fault Model

With the reality of decreasing transistor reliability and increasing faults, our goal is to mit-

igate permanent faults, those that affect the hardware for the remaining life of the chip.

Thus, our fault model uses stuck-at faults at the hardware level to portray these permanent

faults. Our goal is ensure that all permanent faults in router datapath, and control logic are

handled. Furthermore, any hardware additions may be susceptible to the same faults that

they aim to address: faults may occur in the reliability hardware itself.

Our fault model was designed to reflect the accumulation of permanent transistor faults

that occur during the lifetime of a chip. We generated a fault model for our architectural

simulator by evaluating the impact of faults at the gate-level and projecting it to the archi-

tectural level as link failures. To this end, we injected stuck-at faults at the gate outputs

of our reliability-enhanced hardware model in randomly selected locations. Faults were

injected in both baseline router components, as well as the additional reliability compo-

nents. The BIST was an exception, since it can be power-gated during normal operation,

and thus is much less susceptible to permanent faults. The hardware model was synthe-

sized, placed and routed prior to fault injection. The random selection of faulty gates was

weighted by gate area. This is consistent with the breakdown patterns observed experimen-

tally by Keane, et al. in [76]. While this model works well for gate-level analysis, it must

be abstracted for high-level architectural evaluations.

Our architectural simulator must be informed of the location of faulty links. Thus, we

must map gate-level faults to link-level faults. To this end, we leveraged the fault impact

analysis in our gate-level model to form a probabilistic link fault model. From 100,000

distinct RTL simulation results, we built a model mapping gate-level errors to link-level

errors. Figure 5.4 shows the distribution of faults, mapping gate-level router faults to link

79

0.0

0.2

0.4

0.6

0.8

1.0

0 4 8 12 16 20 24

P
ro

b
a

b
il

it
y

 o
f

w
o

rk
in

g
 l

in
k

s

Number of gate-level router faults

0 working links

1 working link

5 working

links

(all)

Figure 5.4 Fault model. The graph shows the distribution of faults among five router links as

a function of gate-level faults. We leveraged 100,000 low-level HDL simulations to form a statis-

tical fault model used by our high-level architectural simulator. The figure shows the mapping of

gate-level router faults in the low-level simulations to link failures used in high-level simulation.

failures on our 5-port router. Link failures could range from 0, indicating no faults, to 5,

indicating that all links were faulty. For example, with 8 faults in a router, all links will

be broken with probability 0.2; 1 link will be functional with probability 0.25, etc. This

model was used in the architectural simulations to enable fast simulation with industrial

benchmarks and longer traces.

In Table 5.1, we also provide detailed data mapping gate-level faults to link faults. Gate

faults from 0 to 24 are shown in the leftmost column, while the following columns report

the probability of having a given number of working links. At 25 faults and beyond, all

links had always failed in our HDL simulations.

Table 5.1 can be used to inject faults in architectural simulations for any size topology

comprised of 5-port routers. Links in the architectural simulation are disabled based on

the information from the fault model. To use the fault model, first consider a network with

R routers and Fgate,network gate-level fault injections for the entire network. The faults are

then distributed among the routers with uniform random probability, since it is reasonable

to assume that each node requires the same silicon area. Next, the gate-level faults at each

router (Fgate,router), which may vary with different routers, are mapped to link faults using

the table. The row to use in the table is determined by Fgate,router , and the number of work-

80

gate 0 working 1 working 2 working 3 working 4 working 5 working

faults links link links links links links (all)

0 0.000 0.000 0.000 0.000 0.000 1.000

1 0.018 0.010 0.028 0.137 0.370 0.438

2 0.033 0.021 0.086 0.258 0.381 0.220

3 0.050 0.047 0.161 0.321 0.314 0.106

4 0.071 0.090 0.220 0.340 0.231 0.048

5 0.096 0.135 0.279 0.317 0.148 0.025

6 0.130 0.182 0.308 0.279 0.093 0.009

7 0.168 0.228 0.307 0.232 0.060 0.005

8 0.203 0.257 0.316 0.181 0.041 0.002

9 0.249 0.295 0.292 0.141 0.020 0.002

10 0.301 0.299 0.275 0.109 0.015 0.001

11 0.332 0.315 0.256 0.089 0.007 0.000

12 0.363 0.319 0.240 0.071 0.008 0.000

13 0.423 0.309 0.205 0.057 0.005 0.001

14 0.450 0.311 0.190 0.045 0.005 0.000

15 0.477 0.334 0.162 0.023 0.004 0.000

16 0.520 0.331 0.132 0.016 0.001 0.000

17 0.549 0.330 0.104 0.015 0.002 0.000

18 0.677 0.224 0.099 0.000 0.000 0.000

19 0.705 0.205 0.080 0.009 0.000 0.000

20 0.738 0.230 0.033 0.000 0.000 0.000

21 0.789 0.158 0.053 0.000 0.000 0.000

22 0.778 0.167 0.056 0.000 0.000 0.000

23 0.727 0.182 0.091 0.000 0.000 0.000

24 1.000 0.000 0.000 0.000 0.000 0.000

Table 5.1 Fault modelmapping gate-level faults to link faults for a 5-port router. Each cell reports

the probability of N gate-level faults resulting in M link faults

ing links is determined by the weighted probabilities in the row. If the number of faults

exceeds 24, then all links are considered broken. Once the number of working links is

established, random selection determines the direction.

5.2 Fault Detection — BiPeD

In the previous section, we explored the origins of transistor faults, and our method for

modeling them. Now, we turn to the first step in mitigating them, detecting the occurrence

of a fault. Again, we leverage BiPeD’s hardware protocol detectors, which have the ad-

vantage of flexibility. After post-silicon validation is complete, its programmable detectors

can be repurposed for runtime fault detection.

81

BiPeD’s flexible protocol detectors are connected critical router control signals, moni-

toring them for any errant control flow. When a fault is detected, it triggers the diagnosis

mechanism to determine its source, discussed in the next section. Figure 5.5 shows the

integration of BiPeD’s hardware detectors with Vicis’ diagnosis and reconfiguration archi-

tecture. The inputs to the detector are connected to a subset of the router’s internal control

signals. The control signals follow a state machine that govern the flow of data, and this

state machine is tracked as a protocol by the detector. When an error causes control flow

to violate the router’s protocol, BiPeD’s detector raises the error out signal. This sig-

nal is connected to Vicis’ BIST controller, and initiates the diagnosis and reconfiguration

process. Following reconfiguration, Drain can be used to recover any lost data.

monitored

interface

...

event

CAM
...

p
rio
rity
 e
n
c

...

transition

CAM

...

valid event

valid transition

error

out

s
u
b
s
e
t
o
f
in
te
rn
a
l
ro
u
te
r
c
o
n
tr
o
l
s
ig
n
a
ls

e
rr
o
r
d
e
te
c
ti
o
n
 s
ig
n
a
l

BiPeD detector

Vicis-enabled router

trigger

diagnosis

monitor

for faults

Figure 5.5 BiPeD error detection connected to the Vicis architecture. BiPeD’s flexible, pro-

grammable protocol detectors can be used to perform error detection at runtime. The detectors are

connected to internal router control signals, and flag an error when the router’s control state ma-

chine deviates from correct operation. When an error is detected, Vicis’ BIST controller is notified,

beginning the diagnosis and reconfiguration process.

5.3 Fault Diagnosis — Vicis

After a fault has been detected, diagnosis proceeds with an architecture that can identify

faulty hardware components. Vicis [41, 52] is a reliable architecture for networks-on-

chip with mesh and torus topologies. It leverages a reconfigurable router architecture and

takes advantage of the redundancy inherent in on-chip networks through reconfiguration of

individual routers.

As a distributed in-hardware solution, Vicis has the advantage of being able to tolerate

82

many faults, including faults in the reliability components. For systems built on unreli-

able silicon substrates, Vicis enables graceful performance degradation when transistors

inevitably fail.

5.3.1 Architectural Features

Vicis uses an architectural capable of diagnosis and reconfiguration to maintain correct

execution in a network-on-chip. When a fault is detected, the system goes offline for a

Vicis-directed diagnosis and reconfiguration. It first attempts to contain permanent faults

within the router, leveraging the inherent structural redundancy in the architecture to work

around errors. If the fault cannot be contained within the router, Vicis can notify a com-

panion reliable routing algorithm to network around failed nodes and links.

Reconfiguration at the router level is used to contain faults within the router, so that

they are not perceivable at the network level as failed links or routers. Figure 5.6 presents a

high-level schematic of a baseline router (in white) with Vicis enhancements (shaded). The

baseline router includes input ports and FIFO (first in first out) buffers, decoders, a cross-

bar, a routing table and output ports. Vicis augments this design with a crossbar-bypass

bus to protect against crossbar failures, and with error correcting codes (ECC) to protect

datapath elements. Additionally, Vicis can reconfigure the FIFO buffers, the largest router

components, to be resilient to a few internal faults. Our port-swapping solution allows

Vicis to minimize link faults by reorganizing input ports. Finally, Vicis includes built-in

self test (BIST) units to diagnose faulty router components and orchestrate reconfiguration.

A complete reconfiguration process requires approximately 152,000 cycles, corresponding

to only a few hundred microseconds on a 1 GHz chip. This latency does not appreciably

impact application runtime for rarely occurring permanent faults (less than once a day).

Crossbar Bypass Bus

In the baseline router, a faulty crossbar would render the entire router inoperable. To ad-

dress this issue, Vicis adds a crossbar bypass bus, as shown in Figure 5.6, an alternative

path for data that may have to traverse a faulty crossbar path. The crossbar controller is

configured to direct traffic to either the crossbar or the bypass bus on a packet basis. If mul-

tiple flits simultaneously require the bypass bus, one flit is chosen to proceed first, while the

others must wait to use it in subsequent clock cycles. In this manner, the crossbar bypass

bus may overcome any number of faults in the crossbar. This spare path provided by the

bypass bus allows Vicis to maintain correct operation, even when multiple faults appear in

83

routing

table

crossbar

FIFO

p
o
rt s
w
a
p
p
e
r

distributed

algorithm

engine

decoder
ECC

configuration

table

BIST controller

bypass bus
crossbar ctrl

Figure 5.6 Vicis router architecture. A Vicis-enhanced router includes ECC units, a crossbar

bypass bus, a port-swapper, BIST units for diagnosis, a distributed algorithm engine (green/gray)

and flexible FIFOs (hashed), in addition to baseline components.

the crossbar. However, in the case of a single fault, the ECC unit is sufficient to overcome

the fault.

Error Correcting Codes (ECC)

Faults along the datapath can cause data corruption and packet mis-routing. Protecting the

datapath with error correcting codes (ECC) enables each component to tolerate a small

number of faults while maintaining correct functionality. Previous works have explored

the trade-off between energy and reliability by using fine grained error correcting codes

[71]. While these studies found that end-to-end ECC was more power efficient than flit-

level ECC, they require that packets reach their intended destinations. Errors in header flits

that could cause packet mis-routing can only be overcome by flit-level ECC: consequently,

Vicis uses flit-level ECC, with an encoder and decoder at the exit of each FIFO. The code

adds an additional 6 bits to each 32-bit flit in order to enable 1-bit error correction. Any

single fault that manifests along an ECC-guarded datapath section can be corrected when

the flit goes through an ECC unit, located in each router at the output of the FIFO buffers.

In order to take full advantage of ECC, the BIST unit tracks the location of every datapath

fault and, if at all possible, it reconfigures the router to ensure that every distinct path be-

84

router A router B

s
w
a
p

ECC/DEC

ECC/DEC

path between ECC units

XB
bbus

XB
bbusbbus

Figure 5.7 Faults mitigated by ECC. Datapath faults can be corrected by ECC as long as no

more than one fault is encountered between two flit-level ECC units. The bypass bus and port

swapper provide alternate paths between routers to reduce the number of faults that the ECC units

observe. The example in the picture shows six available paths: through crossbar or bypass bus in

router A, and through one of three possible FIFOs in router B (the port swapper selects which buffer

to use).

tween two ECC units contains at most one fault. If this cannot be accomplished, the router

is deemed faulty.

Six paths are possible between two ECC units, depending on the selection of the by-

pass bus or crossbar (two options) and the configuration of the port swapper (up to three

options). Figure 5.7 illustrates these paths. The port swapper provides three options for the

network adapter connection and two options for the other links, but it does not provide all

possible swap possibilities. When traversing the network, a flit initially reaches the head

of a FIFO in its starting router, goes through an ECC unit for encoding, travels through the

crossbar or bypass bus, the link to its next router, the input port swapper and finally reaches

its next FIFO. At each unit along the path, faults are diagnosed and cataloged by two BIST

units. If two faults accumulate in a same path, the bypass bus and port swapper provide

alternative setups to either avoid one of the faults or move one of the them to a different

datapath.

For example, consider three faults: one in the crossbar, another in a link, and a third

in the default FIFO for the flit in flight. Since the ECC implementation in Vicis can only

correct one of these faults, the crossbar bypass bus and input port swapper must mitigate

the remaining two. The bypass bus will be used to avoid the crossbar fault, potentially re-

sulting in a loss of performance. The input port swapper will be used to swap in a fault-free

input port to the datapath, moving the single-fault input port to another physical link that

does not have any other faults. Thus, full functionality is maintained, even with three faults

manifesting in the same datapath.

85

Flexible FIFOs

Analysis of a baseline router design informed the selection of our reliable architectural

features. Assuming a distribution of faults proportional to the router component area, the

largest components — those with the most transistors — are the most susceptible to faults.

Thus, we strove to provide additional protection to large components. As shown in Table

5.2, the FIFOs comprise the vast majority of the router, 94% of the baseline router area

with 32-flit FIFOs. By comparison, 8-flit FIFOs comprise 80% of the router’s area. These

results were obtained with a 5-port single-cycle router with a routing table sized for a 3x3

network, synthesized with a 45nm target library. Without any reliability feature, a single

fault could cause the entire unit to fail. We thus set out to protect this essential component

with a flexible design that can overcome many faults.

router component area (percent)

FIFO size

8-flit 16-flit 32-flit

crossbar 10.5% 6.0% 3.0%

decoder 3.0% 1.5% 1.0%

FIFO buffers 80.0% 89.0% 94.0%

output logic 3.5% 2.0% 1.0%

routing table 3.0% 1.5% 1.0%

total baseline router
100% 100% 100%

14,495µm2 26,173µm2 49,676µm2

Table 5.2 Area of the baseline router by component, for different FIFO buffer sizes. The FIFOs

comprise 80-94% of the baseline router area, and thus are especially susceptible to faults.

FIFOs are comprised of a set of identical registers, and are generally implemented with

pointers to determine which register is the head and which is tail. When an item is added

to the FIFO, the head pointer is incremented; when an item is removed, the tail pointer

is decremented. Thus, the registers are accessed in order, with the first item in being the

first item out. The use of identical registers provides an opportunity for a flexible design,

with the goal of allowing healthy registers to continue working while skipping faulty ones.

Figure 5.8 shows an example of flexible FIFO operation. The “X” in the figure indicates a

FIFO register that experienced a fault. In a baseline FIFO, the head and tail pointers will at

some point try to make use of this position, causing the entire FIFO to fail. With this flexi-

ble FIFO design, the faulty register can be skipped using pointer redirection, and enabling

the FIFO to continue operation with one less register.

To reconfigure the access to registers in a FIFO, the head and tail pointers are indexed

through a redirection table mapping sequential FIFO positions to reconfigurable FIFO po-

sitions. This allows some positions to be skipped, as illustrated in Figure 5.9. Effectively,

86

baseline FIFO fails

X
X

flexible FIFO reconfigures

to bypass fault

tail head tail head

Figure 5.8 Flexible FIFO design. A flexible FIFO enables Vicis routers to continue operating

correctly when using a partially faulty FIFO. While a normal FIFO can fail with a single error, a

flexible FIFO reconfigures around the faulty entry.

this is similar to incrementing (or decrementing) the head (or tail) counter multiple times

before accessing the next functional register, thereby skipping over failed registers. The

redirection table is indexed by the head and tail pointers, and provides the index to a func-

tional FIFO entry as output. Additionally, the last entry in the table controls the pointer

reset signal, thus allowing the system to adapt to the use of smaller FIFOs as the number

of faults increases. With this flexible design, a fault in the FIFO causes only a single regis-

ter position to fail, maintaining the router’s functionality as long as at least one functional

register remains.

head

ptr

tail

ptr

FIFO buffer

reset

headtail

X

redirection

table

Figure 5.9 Flexible FIFO buffer logic. The FIFO registers are indexed by the head and tail point-

ers (counters) through a redirection table, allowing faulty positions to be skipped, and adjusting for

fewer FIFO registers.

Hard Fault Diagnosis

In order to reconfigure the system, each router must know which of its components contain

faults. Furthermore, the use of ECC requires that Vicis knows precisely how many faults

are in each part of the datapath. We note that both permanent faults, as well as electrical

faults can be diagnosed by Vicis, providing that diagnosis can occur on a faster clock com-

87

pared to normal operation. Control logic is tested with pattern-based testing and datapath

faults are counted using datapath testing, as discussed below.

The reconfiguration process begins when one router broadcasts an error status bit

through the network, although not necessarily its location, via an extra wire in each link

(we assume that a fault detection solution is in place). The initialized BIST unit then per-

forms a distributed synchronization algorithm with other routers’ BIST units, ensuring that

each BIST in the network runs all remaining routines in lock-step. After synchronization,

each component of each router is diagnosed for faults. The diagnosis step does not rely

on information from previous diagnostic phases, or from the detection mechanism, thus all

permanent faults are diagnosed (or re-diagnosed), regardless of whether they are responsi-

ble for triggering this reconfiguration event, or not. Once all components and routers have

been tested, faulty components are disabled and normal operation resumes. Since the BIST

units are operational only during reconfiguration, they are power-gated off during normal

operation for wear-out protection.

Each functional unit is surrounded by wrapper logic, allowing the BIST to assume con-

trol during fault diagnosis. The wrapper simply consists of multiplexers for each input,

allowing the unit to switch between normal unit inputs and testing inputs from the BIST.

A schematic of this structure is shown in Figure 5.10. Since faults may also manifest in

the wrappers themselves, Vicis leverages interlocked testing to simultaneously test both the

hardware unit, and the wrapper itself. That is, rather than testing the output directly from

the module, the BIST unit tests the output after the wrapper mux (as it is indicated by the

test flow arrows in Figure 5.10). This allows the BIST to test both the hardware unit as well

as the wrapper logic simultaneously.

The information from a complete BIST run is stored in a configuration table, which

router

wrapperwrapper

BIST Controller

... ...
component component

test flow test flow

Figure 5.10 Interlocking router unit wrappers. Wrapper muxes allow the BIST controller to

access each unit. Testing paths are interlocked through two muxes to enable simultaneous testing of

the wrapper and the unit under test.

88

contains two bits for each datapath component: crossbar, inter-router link, input port swap-

per, and FIFO. Each of these units are represented by two bits to indicate fault free, one

fault, and two or more faults. Additionally, a redirection table stores flexible FIFO map-

ping information (described in Section 5.3.1), which is written directly by the BIST. Fault

information is later used by the swapping algorithm. The status of non-datapath (i.e. con-

trol) units is encoded with one bit indicating functional or faulty. This is determined by a

signature match or mismatch. In both cases, Vicis is concerned with the fault status of the

component, rather than the exact fault location within the component.

Datapath Testing

The datapath test determines the number and location of errors in a router’s datapath and in

the routing table. Units in the datapath need an exact count of faults for each unit so that the

maximum number of errors is not exceeded on any path between two ECC units. The test

sends patterns consisting of all 1’s or all 0’s, looking for bit-flip faults. A custom-designed

bit-flip count unit determines if the datapath has zero, one, or more bit flips, obviating the

need for multiplexers to inspect each bit individually. Each of the 5 FIFO units in a router

reuse the same test, limiting BIST unit overhead. Datapath testing requires about 1,000

total cycles.

Pattern-Based Testing

Pattern-based tests are used to test the router’s control logic. Vicis uses a linear feedback

shift register (LFSR) to generate a number of unique patterns, and a multiple input sig-

nature register (MISR) to generate a signature. Each unit type tested with pattern-based

testing receives the same sequence of patterns from the LFSR, but each has its own distinct

signature. Identical units, such as the decoders, have the same signature. A signature mis-

match will flag the corresponding unit as broken. Implementation of the pattern-based test

is lightweight due to the simplicity of the LFSR and MISR structures. Pattern-based test-

ing requires approximately 150,000 cycles, and runs 25,000 patterns: this is the dominating

factor in overall BIST diagnostic runtime.

Input Port Swapping

During the initial evaluation of Vicis, we noticed that often a few faults would disable mul-

tiple network links or disconnect important processor nodes. To prevent this, we developed

89

input port swapping to consolidate several faults into a single link failure, and to provide

additional priority for maintaining connected processors. In order to safely route through

the network, the routing algorithm (described in Section 5.4) requires functional bidirec-

tional links. Each link is comprised of two input ports and two output ports, all four of

which must be fully functional for the link to be operational. If one of these ports fails, port

swapping may be used to maximize functional bidirectional links.

Each input port is comprised of a FIFO buffer and a decode unit, identical for each

direction of traffic (see Figure 5.6). Vicis’ input port swapper is used to modify which

physical links are connected to each input port. For instance, Figure 5.11 illustrates an

example where a fault on the South port and a second fault in the adapter FIFO are consol-

idated, allowing the adapter link to use the former South FIFO. While it would be possible

to include an additional output port swapper at the output ports, their small area and conse-

quent low probability of faults did not warrant the area overhead of an additional swapper.

On the other hand, the input ports constitute the majority of the total router area, as dis-

cussed in Section 5.3.1 and Table 5.2, and therefore are most susceptible to faults. Thus,

adding input port swappers provides Vicis with the ability to consolidate the impact of

several faults into one, or a few, links.

An example of input port swapper operation is shown in Figure 5.12. The left side of

the figure illustrates five routers in a star configuration: the router in the center has a failed

input port and the one on the right has a failed output port. Since these two failed ports

are on different links, both links would be considered failed and unusable. However, we

note that one of the failed ports is an input port, so the connected physical channel can

be changed using input port swapping. The port swapping algorithm reconfigures the sys-

tem to connect the two failed ports, as shown on the right side of Figure 5.12. Thus, in

FIFO

X

FIFO

FIFO

X
X

adapter

north

west

south

east

port swapper

Figure 5.11 Port swapping unit. The port swapper allows the FIFOs to be connected to different

physical links. The local adapter is equipped with more options to maximize the number of cores

connected to the faults network.

90

X

X

XX

router

output port
input port

two

functional

links

three

functional

links

Input Port Swap

Figure 5.12 Port swapping example. Routers connected to the network are hashed in the Figure.

On the left, an input port failure on the center router and an output port failure affect two differ-

ent links. By swapping the failed input port to the link connected to the failed output port, Vicis

increases the number of functional links from two to three.

this example Vicis takes advantage of the inherent redundancy of the router to increase the

number of functional links for the center router from two to three.

In our implementation of the input port swapper, the link to the local network adapter

can be connected to three different input ports, while the other links are able to connect to

only two possible input ports. The port swapping algorithm is implemented as a greedy

algorithm, taking into account the fault status of connected input ports and FIFOs. Addi-

tionally, it considers the number of bit faults along the datapath, so as to avoid connecting

paths whose bit-errors exceed that which can be corrected by ECC (see Section 5.3.1).

Additionally, it prioritizes the local network adapter link, making sure that it is always

connected, if at all possible.

Pseudocode for the port-swapping algorithm is shown in Figure 5.13. The algorithm

first eliminates connections that contain control faults and more than one datapath fault. It

then connects input ports that have only one viable option. Finally, it selects the highest

priority input port among those connected to the FIFO.

After the connection is selected, the port swapping algorithm writes the new port con-

figuration to the router configuration table, a set of registers that keeps track of the current

link status. This configuration serves to inform a reliable rerouting algorithm as to which

links are functional, enabling it to carry the network reconfiguration forward.

5.3.2 Evaluation

We evaluated Vicis using two models: a slower, but more accurate gate-level hardware de-

scription model and a faster architectural model. Simulations were conducted by injecting

91

1. eliminate connections with control faults

2. eliminate connections with >1 datapath fault

3. foreach FIFO:

4. selected direction = NULL

5. foreach direction connected to this FIFO:

6. if direction can only connect to this FIFO:

7. selected direction = this direction

8. exit loop

9. if selected direction == NULL

10. selected direction = top priority

Figure 5.13 Port-swapping algorithm pseudocode. The port swapping algorithm first disables

connections with control faults and too many datapath faults. It then enables connections for which

there is only one option. Finally, the algorithm selects the top priority connection among those

available.

faults within the system on two different sets of workloads: uniform random traffic and the

PARSEC benchmarks [18].

The hardware model was implemented in Verilog HDL, and includes both a 3x3 torus

topology and a 3x3 mesh. In both cases, Vicis’ reliability enhancements were added to

the baseline router. The baseline design is a single cycle, five-port router with one link to

a local network adapter, and four links to its neighboring routers. Each router’s input is

connected to a 32-flit FIFO, which passes through 32-bit data flits. The router was syn-

thesized, and automatically placed and routed to obtain our final simulated netlist. This

highly-accurate model was used for simulations, as well to inform the fault model to be

used for the architectural simulations.

The architectural model was a custom, cycle-accurate simulator written in C++ with

a configuration similar to that of the hardware model. The fast architectural model made

it possible to evaluate larger topologies, including an 8x8 mesh and an 8x8 torus. This

model also enabled higher testing scalability, making it possible to run longer random

tests, and enabling the system to handle the PARSEC benchmarks. The FIFO buffers in

the architectural model accommodated 16 flits. Additionally, a statistical model to gener-

ate faulty network topologies (described in the next section) was generated, informed by

the simulation results of the hardware models.

Test packets were generated at each network-adapter by a random traffic generator

which injected traffic to and from all network locations with uniform random probability.

Packet length varied from 1 to 10 flits with a uniform random distribution. Additionally, to

evaluate correctness, packets injected at each network adapter were checked for arrival at

the correct destination with the correct data.

92

Fault Tolerance

We first compared the fault tolerance of a network comprised of Vicis routers to a compara-

ble network implementing triple modular redundancy (TMR). TMR provides probabilistic

reliability: since the voter takes the most common signal of the three replicated units, it

is possible for only two faults to cause the system to fail. In the worst case, a single fault

could cause system failure if it occurred in a clock tree or another non-replicable cell. Un-

like BulletProof [33] and other prior work that relies on maintaining total functionality,

Vicis is able to tolerate many simultaneous faults, including ones that render entire routers

useless, since it is able to route around them. Thus, Vicis can maintain near 100% reli-

ability even for a high number of faults, trading off performance for correctness. A key

difference between TMR and Vicis is performance. TMR maintains constant, 100% per-

formance until any component loses one of its redundant versions, after which the entire

system fails. On the other hand, Vicis enables gracefully degrading performance as faults

accumulate.

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12 14 16

N
o

rm
a

li
ze

d
 u

ti
li

za
ti

o
n

Number of gate-level faults in one router

Bypass bus used

Functional router

Port swapper used

Adapter connected

Router disabled

Figure 5.14 Utilization of reliability features with increasing router faults. The plot reports

the probability of a functional (as well as of a disconnected) router over an increasing number of

faults and whether the local network adapter is still functional. Additionally, we indicate which

reliability features were used to enable a router to remain functional.

In our next study on the gate-level model, we tested again a gate-level 3x3 torus net-

work, considering eleven different situations with varying simultaneous faults: 1, 10, 20,

30, 40, 50, 60, 70, 80, 90, and 100. The case of 100 faults corresponds to approximately

93

one fault for every 2,000 gates. For each number of simultaneous faults, we considered

1,200 different random faulty topologies. Then, we analyzed each router in the topology,

considered how many fault it sustained, whether it was still functional and had a functional

local network adapter, and what reliability features it was utilizing. The results are shown

in Figure 5.14. We note from Figure 5.14 that the input port swapper is very successful

at keeping cores connected to the network. As reported in the figure, only a very small

fraction of the functioning routers do not have a functional local adapter, as indicated by

the closeness of the two curves. The swapper had a high utilization, being used nearly 24%

of the time for routers with seven faults.

When considering the utilization of the bypass bus, it was much less often invoked.

At seven faults, the crossbar bypass bus was used less than 6% of the time. Two reasons

contributed to this: first, the crossbar is relatively small – less than five percent of the total

area of the router and thus suffered a smaller incidence of faults. Secondly, the crossbar is

protected by both the input port swapper and the ECC mechanism.

Performance in the Presence of Faults

0

20

40

60

80

100

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

A
v

e
ra

g
e

 l
a

te
n

cy

Injection rate

0 faults, baseline FIFO

0 faults, flexible FIFO

100 faults,

baseline FIFO

100 faults,

flexible FIFO

Figure 5.15 Impact of flexible FIFO design on Vicis’ performance in an 8x8 torus network. The

plot indicates that the use of flexible FIFOs allows a Vicis-equipped network to hit the latency wall

at higher injection rates.

We examined the effectiveness of the flexible FIFO feature, which primarily affects

performance of the network, measuring network latency under different uniform random

94

traffic densities. In these experiments, we simulated an 8x8 torus network with the C++

model. A portion of the faults proportional to the area of the FIFOs were injected di-

rectly into the FIFOs, resulting in effectively smaller FIFO buffers after reconfiguration.

We then ran simulations injecting 100,000 packets of uniform random traffic. 1,000 differ-

ent faulty topologies were used for each datapoint. Figure 5.15 shows the average latency

curves for the faulty topologies with 100 injected faults. The no-fault case is also shown

for reference. First, the chart shows that with no injected faults, the flexible FIFO provides

exactly the same performance as the baseline FIFO. As we did earlier, we again note that

the fault-injected topology reaches the latency wall sooner. However, with flexible FIFOs,

this effect can be mitigated, reaching the latency wall at an injection rate of approximately

0.1, compared to a previous 0.07.

Area Overhead

The Vicis router physical design was done using automated place and route after synthe-

sizing with Synopsys Design Compiler, targeting a 45nm technology. The baseline router

was also designed in this fashion. The resulting Vicis reliable router with 32-flit FIFOs

comprised 74,805µm2, for an area overhead of 51% compared to the baseline router. This

includes both the hardware to implement the routing algorithm, as well as all the architec-

tural features. Table 5.3 shows the overhead of each component in the Vicis router in a 3x3

network. Among the reliability components, the BIST logic is the largest.

router component Vicis area (µm2) baseline area (µm2)

crossbar 2,657 1,487

decoder 1,350 395

flexible FIFO buffers (32-flit) 54,303 46,706

output logic 925 644

routing table 585 416

misc 854 28

BIST and reconfig. logic 5,082 -

bypass bus 201 -

ECC 1,544 -

port swapper 603 -

total 74,805µm2 49,676µm2

overhead 51%

Table 5.3 Area breakdown of Vicis router by component.

By leveraging the redundancy inherent in networks-on-chip, and NoC routers, Vicis can

maintain high reliability, while incurring a 51% overhead. A built-in self test at each router

diagnoses the number and locations of hard faults. Architecture features including ECC, a

95

crossbar bypass bus and port swapping are then deployed to work around faults. We show

that Vicis is able to provide significant area and reliability advantages over TMR, tolerating

fault rates of over 1 in 2,000 gates. The Vicis architecture is able to work with a reliable

routing algorithm, such as the algorithm described in the next section.

5.4 Network Reconfiguration — Ariadne

Permanent transistor faults may cause link and node failures that modify the topology of

a NoC. When Vicis (previous section) is unable to mitigate faults within the router archi-

tecture, they must be addressed at the network level. Though the initial topology of a NoC

is usually regular, after a number of link faults, nodes will be connected through a random

irregular topology. Ariadne [8] is a reconfiguration algorithm that is invoked upon a per-

manent link failure. The name originates from princess Ariadne from Greek mythology,

who gave Theseus a ball of thread to help him find his way in the Minotaur’s labyrinth.

Similarly, our algorithm helps packets find their way in the labyrinth-like topology of a

faulty network.

Ariadne is agnostic to the topology, since it includes a discovery phase of the under-

lying network to update the routing tables with new deadlock-free paths. In a network of

N nodes, the reconfiguration procedure consists of N broadcasts, taking up to N2 cycles.

The procedure may run in a partially or fully connected network, and guarantees that after

N2 cycles every node will know the output port(s) to use when routing to any connected

destination. Thereafter, network operation resumes normally.

Ariadne leverages up*/down* routing, a deadlock-free algorithm that can operate on

any irregular topology [125]. Up*/down* requires each link to be assigned a direction:

up or down. It then disallows those paths that include traversing a down link followed by

an up link. This way, all cyclic dependencies are broken. Our distributed reconfiguration

algorithm assigns a direction to each link, thus allowing up*/down* routing to be applied

after reconfiguration. The algorithm then explores the new topology and fills the routing

tables with resilient paths connecting all surviving nodes. A key cornerstone of our recon-

figuration algorithm is that it is fully distributed, relying on a single atomic broadcast by

each node to assign all link directions and to explore the underlying topology. This simple

broadcast message scheme makes for a very lightweight hardware implementation, which

works in conjunction with the previously described architecture.

96

5.4.1 Historical Approaches to Reliable Routing

While a large number of available reliable routing algorithms suggest fault-free communi-

cation is a solved problem, many incur significant restrictions, such as limiting the number

and location of faults.

Routing algorithms with restricted number of faults

Reliable routing algorithms are capable of routing data packets around faults. However,

some limit the number of faults that they can tolerate. For instance, an early work in this

area is [35]’s reliable router, which can handle a single node or link failure anywhere in the

network. [59, 46] can handle (n− 1) faults in an n-dimensional mesh and [60] tolerates

up to five faults using additional virtual channels. The work in [85] can potentially sustain

several faults: the authors provide a backup path around each failed router. As faults ac-

cumulate, backup paths form a ring topology. However, the solution fails when additional

faults affect the ring network. Other works that tolerate a limited number of faults through

the use of additional virtual channels include [64] and [137].

Routing algorithms with restricted location of faults

Other routing algorithms are able to accommodate more faults, but restrict their loca-

tion to specific types of “fault regions”. A fault region is a subnetwork of a restricted

shape that contains faults, and oftentimes correctly functioning nodes must be disabled

to satisfy the constraints of the region. The shape of fault regions may be convex

[31, 89, 153, 158, 159, 157], or rectangular [21, 141, 138], and sometimes it is also re-

stricted from including the network boundary [139]. Other solutions require fault regions

that are polygons [80], +, L or T shapes [128, 28], or contain no holes [118, 53]. Finally,

faults may be limited to datapath components, excluding control logic [91], or to links and

crossbars [82].

Routing algorithms with unrestricted faults

A number of on-chip proposals tackle the problem of unconstrained faults. uLBDR [119]

handles routing for any 2D-mesh topology without the need for routing tables. It adds logic

to each input port, which facilitate routing around faulty links. However, this approach re-

quires virtual cut-though routing, requiring the entire packet to be buffered at each router.

Other solutions address permanent faults by flooding the network to overcome lost network

97

connections, which incurs high performance overhead [122, 113]. Stochastic approaches

[20, 131] provide tolerance to permanent and transient faults by means of a probabilistic

broadcast mechanism. Immunet [116] routes packets adaptively towards their destinations,

based on buffer availability. If necessary, packets switch to a reserved, escape, virtual

channel that guarantees that they will reach their destination and avoid faulty links. This

channel is aware of the fault locations and routes deterministically in a ring through every

node. Upon reconfiguration, a new ring that connects all surviving nodes is formed with

a single broadcast, and all in-transit packets drain out via this ring, before updating the

routing tables. While the ring guarantees delivery, it dramatically increases latency, since

it must remain active during normal operation to ensure deadlock freedom. Additionally,

the design requires three routing tables per router, resulting in high area overhead.

Centralized off-chip routing

Off-chip networks, such as clusters, were the first to address the reliability challenge of

unconstrained faults. These resilient routing algorithms can be applied to any irregular

topology, and include up*/down* (introduced in Autonet) [125], segment-based routing

[101], FX routing [121], L-turn [84], and smart-routing [30]. With these approaches, a cen-

tral node which runs the reconfiguration algorithm in software. First, the surviving topology

is communicated to this central location, which can then use this global knowledge of the

functional links to compute new routing tables. Finally, the new routing tables are commu-

nicated back to each node. While these centralized reconfiguration algorithms can perform

powerful optimizations, communicating the global view of the surviving topology to a cen-

tral node requires expensive, dedicated hardware. By contrast, on-chip solutions must be

designed to meet tight on-chip area budgets.

5.4.2 Routing Algorithm

The goal of our routing algorithm to avoid nodes and links that are no longer function, re-

configuring the network as faults are discovered at runtime. The reconfiguration algorithm

works as follows: each node, in turn, broadcasts a 1-bit reconfiguration flag to all nodes.

The first node to broadcast is the node that detected the fault in the network, and it becomes

the initiator (root node) of the reconfiguration process. Upon receiving the reconfiguration

flag broadcasted from the root node, each node performs the following actions (illustrated

in Figure 5.16):

98

x

Entering

Recovery

Tagging Link

Directions

Routing Table

Update

● invalidate Routing Table (RT)

● freeze pipeline progress of head flits

● state: “normal”=> “recovering”

(state automatically switches back

to “normal” after N
2

cycles)

down

down

up

up

y

down

up

variables

state = {normal, recovering}

direction [port] = {up, down}

x > y : x=“up”, y=“down”

x < y : x=“down”, y= “up”

cycle

down

broadcaster

x

cycle+1

x

D

D E,N...

write

routing

table

down

down

up

...

dow
n

NodeID

flag reception

direction [port(s) of flag reception] = “up”

direction [remaining port(s)] = “down”

(!) upon conflict
(detected in Action 4)

:

Flag

Forwarding

flag received from…

● “down” port: forward to all ports

● “up” port: forward to “down” ports only

(!) while forwarding: if the corresponding

port receives the flag while sending it:

handle conflict
(handled in Action 2)

RT [broadcaster] = port(s) of flag reception

S

N

E W

yes no

Action 1

Action 2

Action 3

Action 4

updown up downthis flag is not forwarded:

...because routing in the other

direction is “down”à “up”:
downup

explanation

conflict

state ==

“recovering”

nodeID(this)>nodeID(neighbor): direction= “up”

nodeID(this)<nodeID(neighbor): direction= “down”

Figure 5.16 Ariadne reconfiguration algorithm: Actions performed upon reception of the re-

configuration flag.

• Action1. Entering Recovery: enters recovery mode, invalidates the old routing paths,

and freezes head flits.

• Action2. Tagging Link Directions: marks all adjacent links as up or down.

99

• Action3. Routing Table Update: informs the routing table of which port(s) can be

used to reach the node that initiated the broadcast.

• Action4. Flag Forwarding: forwards the reconfiguration flag to its neighbors.

After the root node has completed its first broadcast, the remaining N-1 nodes in the

N-node network broadcast one-by-one. However, during these N-1 broadcasts, the flag

recipients will only perform the last two actions described (Action3 and Action4). Each

action is described in detail below.

Action1: Entering Recovery

Upon receiving the flag for the first time (initial broadcast from the root node), each node

invalidates its routing table, freezes the pipeline progress of head flits, and sets its state as

“recovering”. The state will automatically switch back to “normal” in exactly N2 cycles,

since the reconfiguration process is guaranteed to have completed by then. Once the node

gets into recovery mode, each subsequent incoming flag will only invoke Actions 3 and 4.

Action2: Tagging Link Directions

Once a node gets into recovery mode, up*/down* routing restrictions have to be applied.

In up*/down*, links towards the root node (connecting to a node which is closer to the

root) are up links, while links away from the root are down links. Links to a node of equal

distance to the root (as the current node) can be either. During the initial broadcast by the

root, a port that receives a flag connects to a node that is closer to the root (since the flag

arrived there first), thus it is marked as up. Similarly, a port that forwards/sends a flag on

is marked as down. The only conflict occurs when neighboring nodes with equal distance

to the root node attempt to send the flag to each other in the same cycle. In this case, each

node will receive the flag from a port while trying to send it to the same port. When this

happens, up*/down* suggests that the direction of the corresponding link can be either up

or down, so we set it based on the statically assigned nodeIDs: the node with the higher

nodeID will mark the link as up; the other node will mark the link as down (shown in the

Action2 diagram of Figure 5.16).

After this assignment, all the down→up turns are disabled. This restriction inherits the

deadlock freedom of up*/down*. Though a number of paths are disabled, there is always at

least one deadlock-free path that connects all nodes reachable from the root node. That is

because the minimal route from any node to the root (up) and from there to any destination

100

node (down) is always available.

Action3: Routing Table Update

During each broadcast, the broadcasting node communicates to other nodes how it can be

reached. When nodes receive the broadcasted flag, they record the ports where the flag

was received from in their own routing table, to learn how the broadcasting node can be

reached. This requires the broadcasts to spread via enabled turns only, so that the recipient

of the flag can follow the opposite path to reach the broadcasting node. The third Action

of Figure 5.16 shows that the flag from node D’s broadcast arrives to the current node via

its North and East ports, thus the node marks in its routing table that these ports should be

taken to route to D.

Action4: Flag Forwarding

In the next cycle, the node broadcasts the flag only to those port(s) from which it did not

receive a flag earlier and that correspond to enabled turns (a flag received from up link(s)

is never broadcasted to up links, because this will enable a routing path with a down→up

turn, as shown in the last diagram of Figure 5.16). Since forwarding a flag takes a single

cycle, each broadcast will deterministically complete in at most N cycles. Each broadcast

is bounded to N cycles. The worst case scenario occurs when all nodes are connected in an

open ring, and the longest broadcast from one end to the other requires N-1 cycles.

Completion of Reconfiguration

Reconfiguration is deterministically completed within N2 cycles since each node broad-

casts once, and each broadcast takes at most N cycles. During this time, all routing tables

are updated with resilient paths to any connected node, thus communication may be re-

sumed and all nodes set their state back to “normal”. After this point, any node can initiate

a new broadcast upon detection of a link failure and invoke the reconfiguration process

again. The head flits can now proceed in the pipeline, but since routes have changed, they

must restart from the route compute stage to find an alternative port that leads to the desired

destination.

101

5.4.3 Timing and Synchronization

We now detail the timing of the reconfiguration: How does each node know when to broad-

cast so that there is no overlap between broadcasts? How does the recipient of a broadcast

know the broadcasting node, since the only data broadcasted is a 1-bit flag? How do nodes

know when the reconfiguration is completed? If two nodes concurrently detect a new fault,

can they both become roots and initiate a broadcast? This section deals with these timing

issues by introducing the notion of atomic broadcasts, where the cycle number indicates

the ID of the broadcasting node.

Atomic Broadcasts

The idea of atomic broadcasts is to correlate the cycle number at which a broadcast is ini-

tiated to the broadcasting node’s nodeID. Using the cycle number as a common reference

point, all nodes are assigned different cycles for broadcasting, during which the remaining

nodes are prevented from broadcasting for a window of N cycles (every broadcast is guar-

anteed to complete in N cycles, where N is the number of nodes). Each node will have to

wait for its slot to broadcast, so it is guaranteed that during that slot no other node would be

broadcasting, causing a collision. N slots need to be provided for all N nodes to broadcast,

with slots looping around throughout execution. In other words, node(X)’s Nth-cycle slot is

always followed by node((X+1)modN)’s Nth-cycle slot. The idea is similar to time-division

multiplexing, where a number of signals physically take turns to transfer data on the same

communication channel. Once the root node broadcasts, every node will deterministically

broadcast during its first available slot; assuming that R is the root, nodes will broadcast in

the following order: R, R+1, ..., N-1, 0, 1, ..., R-1. Since N slots of N-cycles are required

for the reconfiguration to complete, reconfiguration requires precisely N2 cycles. Thus, all

nodes can resume operation N2 cycles after receiving the initial broadcast, since by that

time the process is guaranteed to have completed.

We note that if more than one node concurrently detects a fault, only the one who first

receives a broadcast slot will become the root. The others will resign from becoming the

root once they receive the root’s broadcast, since they become aware that reconfiguration

is already taking place. Our atomic synchronization ensures that no two nodes will ever

simultaneously become the root. Once reconfiguration has been initiated, Ariadne will

consider all faults in the network (including faults that other nodes have detected), inde-

pendently of the node that managed to become root. Also, if a node is disconnected, it will

not receive the root’s broadcast, and will thus remain silent during its broadcast slot. Other

nodes will not fill the corresponding routing table entry, marking this node as unreachable.

102

0

40

80

120

160

200

0 20 40 60 80 100

Injected Faults

A
v

e
ra

g
e

 L
a

te
n

c
y

 (
c

y
c

le
s

)

Vicis, UR

Vicis, TR

Ariadne, UR

Ariadne, TR

Immunet, UR

Immunet, TR

Figure 5.17 Zero load latency with synthetic traffic. The average latency with a fault injection

rate of 0.01, plotted for varying number of faults injected. Ariadne is consistently the lowest.

5.4.4 Evaluation

We consider two metrics to measure the performance of Ariadne on a faulty network: av-

erage latency and throughput. Latency is defined as the delay experienced by a packet

from source to destination, while throughput demonstrates the rate of packets delivered

(per cycle) in the entire network. First, we look at the zero-load latency for each of the

three routing algorithms (Vicis [51], Immunet [116], and Ariadne), reflecting the steady-

state latency of a lightly loaded network (0.01 flits injected per cycle per node, well below

saturation). Each data point in Figure 5.17 is the average zero-load latency of 100 different

topologies with the same number of faults.

We note that Ariadne’s latency is consistently the lowest, at 43 cycles on average,

compared to 58 cycles for Immunet and 97 cycles for Vicis. At 50 faults, the difference

increases, with Ariadne showing a 43% latency improvement over Immunet and a 142%

improvement over Vicis. Moreover, we note that the latency trend is strongly dependent

on the algorithm, but not greatly affected by the traffic type, as shown by the closeness of

the lines for each given algorithm. Vicis shows some interesting behavior here, increasing

in latency as the number of faults increases. Upon further investigation, we found that this

was caused by the occasional deadlocks encountered by the Vicis algorithm, which in turn

trigger a 1,000-cycle timeout before dropping the deadlocked packets. Ariadne maintains

a reasonable constant latency, outperforming Immunet, since all of its virtual channels can

route adaptively. In contrast, Immunet has one escape virtual channel restricted to route de-

103

0

0.04

0.08

0.12

0.16

0.2

0 20 40 60 80 100

Injected Faults

S
a

tu
ra

ti
o

n
 T

h
ro

u
g

h
p

u
t

(f
li
ts

/n
o

d
e

/c
y

c
le

)

Vicis, UR

Vicis, TR

Ariadne, UR

Ariadne, TR

Immunet, UR

Immunet, TR

Figure 5.18 Saturation Throughput with synthetic traffic (flits/node/cycle) reaches a minimum

at approximately 50 faults for all three algorithms. Then, it increases since more packets must be

dropped as more node pairs become disconnected.

terministically in a high-latency ring that goes through all surviving nodes two times (both

directions) on average, independently of a packet’s destination.

Figure 5.18 plots the saturation throughput as a function of faults. We used numerical

analysis to find the throughput value, from simulation results of various injection rates,

within a precision of 0.01. For each number of faults, we performed this calculation for

100 different configurations. Notice that for fault rates up to about 50, saturation through-

put decreases as the number of faults increases, as it can be expected, since the number

of available paths decreases. This effect changes as the number of faults increases past

50, when throughput begins to increase. Upon closer investigation, we found that this was

due to an increasing number of dropped packets; when the network is not fully connected,

packets destined to disconnected destinations must be dropped. With the network being

partitioned, packets are either dropped or routed a few hops within small subnetwork par-

titions, so overall throughput actually improves. For the same reason, the type of traffic

does not critically affect the saturation throughput at high number of faults, since packets

are restricted to route only within these subnetworks. Note that the impact of traffic type

on saturation throughput is not strong for Ariadne and Immunet. However, since Vicis

is based on the turn model, which has naturally a higher saturation point, it more evenly

spreads random traffic, particularly in few-faults situations, where the routing algorithm is

closer to the turn model. We note that although based on the turn model, Vicis is deter-

ministic, and uses a heuristic that chooses a minimal subset of available turns to reduce the

104

probability of deadlock occurrence.

Ariadne, an agnostic reconfiguration algorithm for NoCs, is capable of circumventing

large numbers of simultaneous faults, and able to handle unreliable future silicon technolo-

gies. It guarantees that if a path between two nodes exists, the reconfiguration algorithm

will enable at least one deadlock-free path between them. Ariadne is implemented in a

fully distributed mode, since nodes coordinate to explore the surviving topology, result-

ing in very simple hardware and low complexity. At 1.97% area overhead, Ariadne is a

parsimonious solution for many-core processor designs of the future, enabling a trade-off

between performance and reliable functionality on unreliable silicon.

5.5 Data Recovery — Drain

Following network routing protocol reconfiguration, a reliable system must recover the

system state before computation can resume on the reconfigured system. In heavily fault-

injected topologies, some nodes may become disconnected as a result of faults. The data

from these nodes should be recovered following the occurrence of each fault.

This portion of runtime solution presents a Distributed Recovery Architecture for

Inaccessible Nodes (Drain [39]) which uses dedicated cache-to-cache emergency links to

recover data from disconnected nodes. Drain guarantees that processor architectural state

and dirty cache data can be safely sent to memory via dedicated cache-to-cache emergency

links, tolerating any number of disconnected nodes. This feature, in combination with

a resilient NoC, guarantees full system recovery in the face of unlimited network faults.

Unlike checkpointing approaches, Drain does not involve any runtime performance over-

head during normal operation, while the additional recovery time upon a network failure

is only a few milliseconds (assuming 1GHz clock). Our solution is realized with minimal

hardware modifications, resulting in an area overhead of a few thousand gates. It is also

flexible and can work with any underlying architecture, including homogeneous and het-

erogeneous chip multiprocessors, multiple shared or private levels of caching, any network

topology, any resilient routing algorithm that guarantees connectivity upon link failures and

any coherence protocol.

Modern designs already implement a variety of resiliency mechanisms to protect indi-

vidual caches, for example error correcting codes (ECC). ECC is able to tolerate bit-errors,

often a single bit, in datapath elements. Reconfigurable structures [86] are another common

solution, where extra cache lines are added at design time. Post fabrication, these extra lines

are configured as substitutes for faulty lines. Another reliability solution is triple modular

105

primary link

Mem

µP

$

Router

µP

$

Router

µP

$

Router

...
...

...
...

...
...

... ...

...
...

...

...
...

...
...

...

processor
core

local cache

memory
controller

DRAIN emergency link
data bit

control bit

DRAIN
distributed
controller

Figure 5.19 Drain-enabled system. An existing CMP is augmented with emergency links and

small controllers to transfer the data from caches that have become disconnected.

redundancy, typically used to protect control logic by triplicating it and voting among the

three outputs. This solution is very expensive in terms of area and power overhead, and

furthermore provides only probabilistic reliability guarantees. While current cache relia-

bility approaches preserve the correctness of data, they are localized solutions and can not

handle faults due to lack of connectivity between multiple caches in CMPs.

5.5.1 Recovery Hardware

Our solution augments a CMP with a set of distributed controllers and dedicated “emer-

gency links”, network links connecting nearby caches to each other. When an error is

detected, Drain suspends execution, flushes dirty cache data and architectural state to mem-

ory, and then allows the OS to re-map the address space. At this point, normal operation

can resume, with all data prior to the error recovered.

Figure 5.19 shows the high-level modifications to a CMP architecture that are required

to implement Drain. The baseline system consists of nodes, each with a processor core,

local cache and router, with some nodes also connected to memory controllers. Nodes

communicate through a flexible interconnect, in this case, a network on chip. Drain adds

2-bit network links that connect neighboring caches together, with one bit for data and one

for control. The emergency links are used when a node or a subnetwork becomes discon-

nected, in order to recover cache data and architectural state that would otherwise be lost.

The emergency links (thin double lines in Figure 5.19) are used only during recovery, while

normal operation progresses through the primary NoC links (thick lines in Figure 5.19).

106

$

R

M

$

R

$$

R

$

R

M

$

R

$$

R

primary

$

R

emergency

M

$

R

$

R

$

R

failure occurs
reconfigure
interconnect

recover state via
emergency links resume execution

1. drain connected
nodes via network

2. transfer disconnected
node data via emergency link

3. drain connected
node again

our contribution

data
recovered

node
disabledX

link
failure

X link
failure

$

R

M

$

R

$$

R

routing
updated

node
isolated

$

R

M

$

R

$$

R

$

R

M

$

R

$

R

$

R

M

$

R

$$

R

Figure 5.20 Drain system operation recovers state when an error occurs, allowing the system

to be reconfigured and resumed without losing information. The Drain algorithm operates in three

major steps, first draining connected nodes via the existing interconnect. Next, disconnected nodes’

data is transferred to a nearby connected node, and from there transferred to main memory.

Recovery Overview

The error recovery process begins with the detection of an error, as shown in Figure 5.20.

The fault can be detected by either hardware or software, typically handled by the under-

lying reliable network. Error detection has been extensively researched [19, 33, 66] and

it is not the focus of this work. When an error is detected that renders all links to a node

inoperable, a special interrupt designed for Drain is issued to the processors, which causes

the processors to save all state required to resume the running processes: typically stored in

a Process Control Block (PCB). The PCB includes the PID, architectural registers (includ-

ing the program counter, load/store queue, stack, etc.), address space, I/O port permissions,

stack pointers, etc. During reconfiguration, each processor sends the PCB of its running

process to memory (either via the primary or emergency links).

Next, the network reconfigures, reestablishing communication among the processing

elements that are still connected. A variety of schemes are possible here, for example

[52, 101, 125], as long as the interconnect enables the communication of functioning units

and avoids the loss of in-transit packets. The newly reconfigured network is reflected in

107

the figure by the disabled primary links, which leads to the occurrence of a newly iso-

lated node, shown by the missing router (dashed) connected to a local cache and processor.

While reconfiguration allows a communication subsystem to resume message transfers, it

does not guarantee that disconnected processors and caches will be able to recover their

state.

Emergency link transfer

Next, Drain transfers data via the emergency links from isolated nodes to a nearby func-

tioning cache: the details of this process are shown in the bottom row of Figure 5.20. First,

the nodes that remain connected to main memory following network reconfiguration are

informed by the reliable network of their connectivity via the emergency link control bit.

These nodes drain their state via the main network (step 1 in the bottom row of Figure

5.20). Drain interacts with the system’s coherence mechanism to transfer the address and

data of only those cache lines that are dirty to main memory. For example, in the write-

invalidate cache coherence protocol with MOESI states [34], lines in the M (modified) or O

(owned) state may be dirty, including lines in a transition state. When a destination cache

receives a cache line, it writes the line to the appropriate address, marking it as dirty in the

destination cache. The processor’s architectural state is then transferred to a (now evicted)

cache line, enabling Drain to reuse the emergency links to transfer the state. The registers,

PC, and store buffers are included in the transferred state, while speculative state such as

branch tables are not included. Additionally, all flags and state bits that will be necessary to

recover the state of the processor are stored. Finally, this data is drained via the emergency

links.

Once all the connected nodes have transferred their architectural state and emptied their

caches, they advertise to each neighbor in turn that they are ready to receive data over the

emergency link control bit. In step 2, cache data and state from the disconnected node are

transferred one bit at a time over the emergency link, facilitated by the distributed Drain

controllers (shown by the hashed portion of the cache in Figure 5.19). A target node, which

accepts a transfer from the disconnected node, ceases to advertise that it is ready to receive

as the transfer begins. Upon completing the transfer, the target node drains its cache con-

tents again to main memory (step 3 of Figure 5.20). At this point, all dirty cache data and

architectural state in the entire CMP system has been transferred to main memory, allowing

the operating system to remap addresses and processes (PCBs) to the surviving processor

nodes. The reliable network signals the processors to wake up. A processor waking from

a Drain interrupt will generate a memory request to retrieve a PCB and resume normal op-

108

eration. This enables the OS to flexibly re-assign PCBs upon resume. The resume process

proceeds in a similar fashion as a processor switching to a new process during a context

switch. Finally, normal execution can resume on the newly recovered system.

5.5.2 Recovery Algorithm

Triggered by a detected fault, Drain’s distributed recovery algorithm ensures that all cache

data and architectural state reaches main memory. CMP nodes or subnetworks that have

become disconnected as a result of a fault are drained using a set of emergency links, one bit

links that connect nodes to their nearest neighbors. A disconnected node’s cache contents

and architectural state are transferred to the nearest connected node via these emergency

links. At this time, the target connected node, which contains the data of the disconnected

node’s cache, transfers it to main memory via the primary network. Leveraging both the

emergency links as well as the correctly functioning portion of the primary interconnect,

the algorithm finds the most efficient combination of both to deliver all data and state to

memory.

To enable the operating system to remap the workload onto the reduced system re-

sources, all caches in the system must be drained, even those that remain functional and

connected. The first step in the Drain algorithm is to transfer data in the nodes connected

to memory via primary links. Dirty cache lines are first written back, followed by architec-

tural state. For architectural state transfer, each register or state element is first copied to

a cache line in the recently drained cache. Finally, the drained cache advertises that it has

completed this step via the control bit of the emergency link. Thus, other caches become

able to use this cache space as target node in transferring the contents of a disconnected

node.

If the node in question is not connected to main memory via a route along the primary

links, emergency links are used to recover cache contents and architectural state. The emer-

gency links operate by copying the lines of the disconnected cache to a nearby neighbor,

as detailed in Figure 5.21. First, the disconnected node scans the control bits of the emer-

gency links to its neighbors (Figure 5.21 lines 2-5), attempting to find a neighbor that has

a route to main memory. If available, it selects the first such neighbor that advertises an

empty cache, using it as the target for transferring exclusive cache data and architectural

state via the emergency links. If no such neighbor exists, as in the case of a large, discon-

nected subnetwork, then the emergency links transfer through intermediate nodes to reach

one that is connected. In this case, a node will try to find a target cache that is connected to

main memory and fail. The fallback procedure is to do a cache-to-cache transfer towards

109

1 drain via emergency link(this node)

2 while target cache not found

3 for each neighbor

4 if neighbor is connected and empty

5 target cache = neighbor; break;

6 if target cache not found

7 for each neighbor

8 if neighbor is toward boundary and empty

9 target cache = neighbor; break;

10 for each dirty cache line

11 copy line to target cache

12 for each register/state element

13 copy register to target cache

Figure 5.21 Drain uses an emergency link for disconnected nodes, scanning its neighbors for a

connected node to which it transfers dirty cache lines and architectural state via the emergency link.

the outer boundary of the disconnected subnetwork, which is ascertained from the routing

logic in the reliable network (Figure 5.21 lines 6-9). The transfer is described by lines 10-

11 of Figure 5.21, where the emergency link controller iterates over each dirty cache line,

transferring the dirty data, along with its address. Then, architectural state is transferred

to the target cache as shown in lines 12-13. Finally, the target node, upon receiving the

data, will be analyzed again to find the next best step towards main memory. If the target

node has no direct route to memory, data will traverse several other nodes before reaching

memory via primary and emergency links.

5.5.3 Evaluation

We evaluated an implementation of Drain on a 64-node architectural simulator, injecting a

variety of faults in the underlying network-on-chip. We used the SPLASH2 benchmarks as

our workloads to evaluate performance during a system recovery.

We implemented Drain in the memory model (Ruby) of the Wisconsin Multifacet

GEMS simulator [95]. We simulated full system recovery by combining Drain with an

on-chip implementation of the up*/down* [125] resilient routing algorithm, which was

implemented within the Garnet network model [7]. The parameters of our experimen-

tal setup are shown in Table 5.4. To evaluate our scheme under real workloads, we used

SPLASH2 benchmark [130] traces, injecting an additional fault and triggering a recovery

110

after one million instructions. We evaluated full system recovery for both fully connected

and partially connected networks.

network topology 8x8 2D mesh, 5-stage wormhole routers

L1 configuration 4-way, 64KB, 64-byte block, 2-3 cycle latency

L1 functionality private, unified, write-back

L2 configuration 4-way, 1MB, 64-byte block, 4-6 cycle latency

L2 functionality private, unified, inclusive, write-back

memory 4GB, 160-cycle access latency

coherence protocol MOESI states, directory

Table 5.4 Experimental setup for a 64-node system.

To evaluate our solution with a variable number of disconnected nodes, we generated

100 faulty topologies, corresponding to 100 different random seeds, for various numbers

of network faults (0, 10, 20, ..., 100) for a total of 1,100 topologies. We used a fault model

that uniformly injects gate-level faults in the router logic, similar to the fault model of Vi-

cis [52]. Faults were not injected in the emergency links, since these are power-gated off

during normal operation, allowing them to avoid wear-out related faults. We then identified

the subnetwork connected to the main memory and marked all of its nodes as connected;

the remaining nodes were marked as disconnected. Next, we mapped the address space to

the connected nodes and simulated our benchmarks. After 1 million instructions, when the

system is warmed up, we injected an additional fault, resulting in a Drain invocation. This

single fault models the expected real-world scenario, since it is unlikely that more than

one permanent fault occurs at the same time: the frequency of fault occurrence is typically

measured in the order of days or months. Consequently, our performance measurements

correspond to the worst case scenario: applications penalized for the rare occurrence of a

permanent fault. We note that some fault-injected topologies result in disconnected mem-

ory controllers, making it impossible for the cores to reach main memory. The probability

of these cases ranged from less than 1% with 10 faults, to almost 88% with 100 faults.

Since topologies without a connection to memory are not useful even when reconfigured,

we considered only those topologies that remained connected to main memory.

Figures 5.22a and 5.22b show the time required for Drain to flush all connected caches

with an increasing number of faults. Each datapoint is an average over all SPLASH

benchmarks, where each benchmark was evaluated over 100 randomly generated faulty

topologies. We observed that for most topologies, the time to recover ranges from 3 to

4 million cycles (just a few milliseconds at 1GHz clock), a reasonable penalty for a rare

event. The drain time can be partitioned based on the data that is drained (cache lines or ar-

chitectural state, Figure 5.22a), or the communication medium (emergency links or on-chip

network, Figure 5.22b). Figure 5.22b shows that the majority of the time is consumed in

111

2M

3M

4M

5M

d
ra

in
 t

im
e

 (
cy

cl
e

s)

average time to flush architectural state

average time to flush cache lines

0M

1M

0 10 20 30 40 50 60 70 80 90 100

d
ra

in
 t

im
e

 (
cy

cl
e

s)

injected faults

(a) Drain time by cache and architectural state

2M

3M

4M

5M

d
ra

in
 t

im
e

 (
cy

cl
e

s)

average time to flush data via emergency links

average time to flush data via primary links

0M

1M

0 10 20 30 40 50 60 70 80 90 100

d
ra

in
 t

im
e

 (
cy

cl
e

s)

injected faults

(b) Drain time by emergency and primary links

Figure 5.22 Cycles to drain the entire network, averaged over all benchmarks. The time to

drain architectural state is a function only of the number of cores. The drain time decreases as the

number of faults increases, reflecting the decreasing surviving network size due to faults.

the on-chip network, because upon recovery, all caches flush their data concurrently, result-

ing in high network traffic and congestion. In the same figure, we observe that, although

the total time to drain data decreases with increasing faults, the time to flush data via the

emergency links increases. Upon further investigation, we found that for networks with a

large number of faults, an additional fault is likely to disconnect more than one node and/or

break the network down to several partitions; consequently, more lines have to be copied

112

from disconnected nodes to the connected subnetwork using emergency links.

Figures 5.22a and 5.22b both reflect that as faults increase, the number of nodes con-

nected before the drain occurs decreases. During the drain, both connected and newly

disconnected caches are drained concurrently.

Area Overhead

Drain requires minimal hardware modifications. The basic hardware structures that need

to be added to each cache to implement the emergency links are a few counters and mul-

tiplexers. Table 5.5 shows the logic to implement these structures, on a sample L1-L2

private cache system, together with their 2-input AND equivalent gate count. The total

overhead per node adds to 4,952 gates (2,466 gates for L1 and 2,486 gates for L2), neg-

ligible compared to a core’s gate count, which is on the order of hundreds of millions of

gates.

L1 cache (64KB 4-way) L2 cache (1MB 4-way)

row counter 40 gates 60 gates

way counter 10 gates 10 gates

data multiplex 1,632 gates 1,632 gates

index multiplex 24 gates 36 gates

way multiplex 6 gates 6 gates

tag multiplex 54 gates 42 gates

serial-to-parallel 350 gates 350 gates

parallel-to-serial 350 gates 350 gates

TOTAL
2,466 gates 2,486 gates

4,952 gates grand total

Table 5.5 Additional gates required at each node to implement Drain. Each node requires a total

of 4,952 additional gates.

Drain is a recovery mechanism targeting large scale CMPs. Drain augments a CMP in-

terconnect architecture with emergency links that facilitate the recovery of dirty cache data

and architectural state in the event that a node or subnetwork becomes disconnected. Our

experimental results show that Drain is able to recover data from disconnected nodes in any

faulty network configuration, even those where aggressive faults cause network partition-

ing. It is able to provide complete state recovery for an entire 64-node CMP within several

milliseconds and it incurs very low area overhead of 4,952 gates at each node. Thus, we

demonstrate that Drain is an effective recovery solution for large scale CMP systems.

113

5.6 Summary

We have presented a family of compatible solutions to address transistor faults that occur

at runtime due to wear-out. In addition to covering hard-faults, our runtime approach can

also be applied to electrical failures occurring at runtime. Electrical failures, which cause

a circuit to fail to meet specification under certain operating conditions, are addressed in

a similar manner to hard faults. Our solution has four parts: fault detection, diagnosis,

reconfiguration and recovery.

Detection is the first step to a fault-tolerance. We reuse the flexible hardware provided

by BiPeD to monitor internal router protocols for faults. When a fault is detected, it triggers

the diagnosis mechanism.

Diagnosis is carried out by Vicis, a reliable network-on-chip that is able to tolerate

many faults in both the router components and the reliability components themselves. It

maintains correct operation in the face of faults, trading off performance for correctness.

As the number of failures increases, Vicis mitigates errors by reconfiguring the router ar-

chitecture. By leveraging the redundancy inherent in networks-on-chip, and NoC routers,

Vicis tolerates fault rates of over 1 in 2,000 gates.

Reconfiguration of the communication interconnect routing is handled by Ariadne,

which circumvents large numbers of simultaneous faults. It utilizes up*/down* for high

performance and deadlock-free routing in irregular network topologies that result from

large numbers of faults, and offers performance gains ranging from 40% to 140% (for

50 faults) during normal operation, compared to state-of-the-art fault tolerant solutions.

It guarantees that if a path between two nodes exists, the reconfiguration algorithm will

enable at least one deadlock-free path between them. Ariadne is implemented in a fully

distributed mode, since nodes coordinate to explore the surviving topology, resulting in

very simple hardware and low complexity.

Recovery of lost data is provided by Drain, a recovery mechanism targeting large scale

CMPs. Drain augments a CMP interconnect architecture with emergency links that fa-

cilitate the recovery of dirty cache data and architectural state in the event that a node or

subnetwork becomes disconnected. We show that Drain is able to recover data from dis-

connected nodes in any faulty network configuration, even those where aggressive failures

cause network partitioning. Taken together, this family of solutions provides resilience to

transistor faults and electrical failures that occur in the field.

114

Chapter 6

BiPeD: Bridging the Phases of

Verification

Pre-silicon verification, post-silicon validation and runtime verification methodologies are

very different, traditionally sharing little information or hardware between them. As a

result, the diagnosis and debugging of post-silicon failures is very much an ad-hoc and

time-consuming task that is largely unable to leverage the vast body of design knowledge

available in pre-silicon. Furthermore, runtime solutions require significant hardware over-

heads, and are typically unable to make use of post-silicon validation hardware.

Previous chapters have described how the solutions in this dissertation fit into the BiPeD

framework. This chapter presents a holistic view of BiPeD, applying the pre-silicon verifi-

cation techniques of Inferno (Section 3.2) to understand the design, uses this information to

find bugs during post-silicon validation, and provides flexible hardware that can be lever-

aged for runtime verification. We also quantify the effectiveness of BiPeD in detecting

bugs.

6.1 BiPeD Operation

During pre-silicon verification, BiPeD learns the correct behavior of a design’s communica-

tion patterns. In post-silicon, this knowledge is used to detect errors by means of a flexible

hardware unit. When an error is detected, bug reproduction is not necessary: a diagno-

sis software algorithm analyzes information stored in the hardware unit to provide a wide

range of debugging information. Finally, BiPeD is implemented with flexible hardware

that can be reused at runtime.

BiPeD identifies the exact time and location of bugs. Our approach accelerates debug-

ging by providing a broad set of debugging information: modules and signals involved

and a history of the activity that preceded the failure, presented as intuitive, high-level

transactions.

115

We address failures that occur in the behavioral protocols governing the communication

among a system’s components via its interfaces. The root causes of the errors that we strive

to detect and diagnose can be functional bugs, electrical failures and/or manufacturing

faults.

The goal of the framework presented in this chapter is to learn the correct behavior

of a system’s protocols during high-observability, low-speed pre-silicon verification, and

then detect violations of these protocols during high-speed, low-observability post-silicon

validation. Our work targets difficult post-silicon bugs that manifest in the inter-block in-

teractions of a complex chip, automatically determining their time of manifestation and

providing a complete and detailed set of intuitive of debugging information related to the

system’s activity preceding and leading up to the failure. We completed the dissertation

work with a novel solution that bridges pre- and post-silicon verification by leveraging the

high observability typical of pre-silicon verification to learn the protocols that define the

interactions among hardware blocks. During post-silicon validation, these protocols are

loaded into a small and flexible hardware unit, which monitors the interface(s) at runtime

on the silicon prototype. When an error manifests, the hardware detector provides the re-

cent history of the protocol-level activity observed on the interface that flagged the bug to

a companion software algorithm. This, in turn, organizes the data as a series of intuitive

transactions representing the interface’s activity leading up to the failure.

BiPeD eases the debugging process by locating the bug manifestation time and loca-

tion, tolerating noisy, non-deterministic post-silicon environments without requiring failure

reproduction. It provides a rich set of debugging information, including critical signals in-

volved, modules, event, transaction, and a history of recent activity. Additionally, BiPeD

incurs zero performance overhead during regular post-silicon validation, and requiring off-

chip data transfer only at the occurrence of a bug. Finally, it bridges pre-silicon, post-silicon

and runtime verification through the abstraction of protocols and flexible, reusable hard-

ware.

Pre-silicon Verification: Learning Protocols

During pre-silicon verification, BiPeD learns the semantics of a design’s protocols with

Inferno’s protocol extraction software (Section 3.2). Later, these semantics are checked at-

speed by flexible protocol detection hardware during post-silicon validation. When a check

fails, the history of the activity observed on the failed interface is transferred off-chip for

analysis by an off-line software algorithm. The result is a rich set of debugging informa-

tion, which includes a trace of intuitive, high-level descriptions of the behavior leading up

116

to the failure. Section 3.3.1 describes this process.

Leveraging the full observability of the design during pre-silicon verification, the proto-

cols for a design’s interfaces are generated during pre-silicon verification. First, interfaces

are identified by designers: each interface is defined by a set of the design’s signals, usually

control signals. Passing testcases are then run on the system, generating traces for protocol

extraction. The end result is a protocol representing the expected behavior of the inter-

face, saved to a “protocol database” for use during post-silicon validation. This process is

repeated for each interface selected.

Post-silicon Validation: Failure Detection

BiPeD leverages the abstraction of protocols for post-silicon bug diagnosis. The fast ex-

ecution speeds of post-silicon validation enable high coverage, thus the protocols learned

during pre-silicon verification can now be stressed with heavy testing. Our in-hardware so-

lution monitors a number of interfaces simultaneously, confirming that the observed events

and transitions conform to the protocol. When a mismatch is detected, our solution con-

siders the past history of events and uses it to diagnose the bug, identifying the time of the

failure, the errant transaction, the modules and signals involved, etc.

In order to monitor the interfaces of interest and check them against their corresponding

communication protocol, the design is augmented with flexible hardware protocol detec-

tors. During post-silicon validation, a number of protocols are programmed into “detector”

hardware blocks, one block for each monitored interface. At runtime, the detector hard-

ware units monitor the interfaces’ activity to check that it conforms to the known protocol.

The details of post-silicon bug detection are in Section 3.3.2.

Runtime Reliability: Fault Detection

BiPeD’s hardware protocol detector has the advantage of flexibility. After post-silicon

validation is complete, its programmable detectors can be repurposed for runtime failure

detection. When coupled with the runtime solutions outlined in this dissertation, BiPeD

can be leveraged as an effective detection mechanism during runtime verification. The

programmable, multi-use hardware provided by BiPeD’s protocol detectors make it an ef-

fective use of silicon area. Sections 5.2 and 3.5.4 discuss runtime applications of BiPeD.

117

6.2 Case Study

We illustrate BiPeD’s capabilities on the OpenSPARC T2 microprocessor, demonstrating

that it is able to accurately detect bugs and provide intuitive debugging information. We

identified 10 interfaces within the design, creating a protocol for each. In this case study,

we focus on the TLU interface 3.8, which monitors signals that connect the trap logic unit

(TLU) and the load store unit (LSU). The interface contains 5 signals: protect, indicat-

ing protected memory; thread sync occurs with high latency LSU operations, e.g., a

D-cache miss. TLB bypass indicates that the instruction in the bypass stage bypassed

the TLB. ASI reload indicates the ASI (address space identifier) reload is enabled, and

flush monitors whether the instruction in the bypass stage is being flushed.

We first built the protocol database containing all 10 interfaces by running 10 different

test cases, each with 100 different random seeds. More details on the protocols can be

found in Section 6.3, Table 6.2. We then ran a buggy version of the design, with hardware

protocol detectors programmed to monitor each interface. The buggy version contained an

error in the LSU’s protect signal, injected after 10,000 execution cycles.

The protocol detector monitoring the TLU interface quickly identified a mismatch at

cycle 10,016, detecting an erroneous transition. A history of events from the circular buffer

in the protocol detector then underwent transaction extraction, and 70 transactions were

identified. Figure 6.1 shows a subset of these transactions: four correct, and one buggy

transaction. The transactions shown in the Figure begin with a thread sync, where thread

synchronization occurs after the TLB is bypassed. Next, a burst TLB bypass with sync,

was observed, a sequence of two TLB bypasses: the first bypass triggers synchronization

and the second one without synchronization. The last two correct transactions were TLB

bypasses, single bypasses with no synchronization.

01100

00100

thread sync

cycle 3,694-3,732

00100

00000

01100

burst TLB bypass w/ thread sync

cycle 4,492-4,531

00000

00100

TLB bypass

cycle 4,539-4,543

00000

00100

TLB bypass

cycle 4,545-4,602

00100

00000

00101

buggy transition!

buggy transaction

cycle 4,609-10,017

00010

10100

Signals: {protect, thread sync, TLB bypass, ASI reload, flush}

TLB bypass TLB bypass with flush

address reload

...

Figure 6.1 Transaction history example. Transactions extraction was performed for a bug in the

OpenSPARC T2 TLU interface: the buggy transaction is shown at the right, preceded by the four

transactions that led to it. Bit vectors in each state represent signal values. As shown in the figure,

the buggy transaction contains a transition edge not included in the approved protocol diagram. The

dotted ovals indicate behaviors that appear within the buggy transaction.

The rightmost transaction in Figure 6.1 contains the errant transition, detected by a

protocol detector mismatch. This transaction has some similarity to previously observed

118

5-stage pipeline

test case description length (cycles)

bubblesort bubble sort 569,237

combRec recursive combinations 4,609,206

fib Fibonacci numbers 442,233

hanoi tower of Hanoi puzzle 11,593,567

insert insertion sort 229,429

knapsack knapsack problem 1,597,497

matmult matrix multiplication 1,723,423

merge merge sort 548,172

quick quick sort 277,503

saxpy scalar alpha x plus y 60,024

OpenSPARC T2

test case description length (cycles)

blimp rand hypervisor test 251,480

fp addsub floating point add/subt 913,093

fp muldiv floating point mult/div 238,343

isa2 basic constrained-random 452,009

isa3 asr pr constrained-random 1,178,151

isa3 window constrained-random 1,282,348

mpgen smc constrained-random 135,251

ldst sync thread sync. instrs. 64,570

n2 lsu asi load/store unit test 62,523

tlu rand trap logic unit test 591,434

Table 6.1 Workloads used for evaluation. The OpenSPARC testcases are subset of those that

ship with OpenSPARC T2.

correct transactions: first, it contains a single TLB bypass (shown with dashed circle). Ad-

ditional components in this complex transactions are a burst address reload, a burst TLB

bypass with flush, as well as a TLB bypass. The transition from the single TLB bypass

to data access protection is not included in the approved protocol diagram, thus an error

is flagged. After detecting the bug, BiPeD provides accurate and intuitive debugging in-

formation: the relevant interface (TLU), modules (load-store unit and trap logic unit), the

exact buggy transaction, the buggy signal (protect) and the detection cycle (10,016).

6.3 Evaluation

We employed BiPeD to locate failures in two hardware designs: a simple 5-stage pipeline,

and the OpenSPARC T2 design. We simulated the OpenSPARC T2 design in its cmp1

configuration, which included a SPARC core, cache, memory and crossbar. The 5-stage

119

5-stage Pipeline

interface description signals bits transitions events

branch branch predictor 3 3 10 6

decode decode stage 8 8 33 9

fetch fetch stage 5 5 33 13

illegal illegal instr. logic 6 6 7 6

mem stage memory stage 3 4 6 4

mem ctrl memory controller 2 6 10 5

execute execute stage 4 8 51 20

forward forwarding logic 6 6 78 32

pipeline pipeline registers 6 6 31 13

writeback writeback stage 3 3 14 6

OpenSPARC T2

interface description signals bits transitions events

CPX cache to processor 5 33 188 18

branch EX branch logic 5 5 222 16

CCX cache Xbar 6 20 215 23

memory memory control unit 12 12 135 21

execute execute unit 5 7 107 16

FPU floating point unit 10 10 622 62

fetch fetch unit 6 6 101 16

perf performance monitor 3 5 23 6

TLU trap logic unit 5 5 161 16

PCX processor to cache 4 4 12 6

Table 6.2 Monitored interfaces. We instrumented each design to monitor 10 interfaces during

program execution. The 5-stage pipeline’s interfaces are smaller than OpenSPARC’s, resulting in

fewer events and transitions.

in-order pipeline implemented a subset of the Alpha ISA, and comprised approximately

5,000 lines of Verilog HDL code. Each design was simulated in behavioral Verilog, and

equipped to monitor the protocols of 10 simultaneous interfaces. Table 6.2 describes the

interfaces, showing the number of signals in each, as well as the number of bits, as some of

the signals may be more than 1 bit wide.

First, we ran each design free of bugs, training the protocol detector on 10 testcases (Ta-

ble 6.1), ranging from 60,000 cycles to almost 12 million cycles in length. 100 variations

of each testcase were run, using different random seeds to introduce execution variations

with variable and random communication latencies. The number of events and transitions

observed is shown in Table 6.2. The table shows that the interfaces in the 5-stage design

are smaller, comprising fewer signals. Thus, each protocol has a smaller number of events

and transitions.

120

6.3.1 Protocol Detection

After building the protocol database with bug-free testcases, we employed the protocol de-

tection hardware to detect a set of 10 bugs injected into each design, described in Table 6.3.

Each buggy execution contained one bug, which was injected after 5,000 cycles in the 5-

stage design, and after 10,000 cycles in OpenSPARC. First, the detectors were programmed

with the protocols described in Table 6.2. Each bug/testcase combination was then run with

protocol detection hardware monitoring the 10 protocols, and the latency from bug injec-

tion to bug detection was recorded for each protocol. Each buggy execution was simulated

with different random variations (random seeds) compared to protocol extraction: thus, no

buggy execution matched any training execution.

Table 6.4 reports the latency (cycles) from bug injection to bug detection for each

bug/testcase combination. We note that BiPeD reports the exact cycle of a protocol mis-

match, while the table measures the time from bug injection to detection. For each bug

OpenSPARC T2

bug description

branch failure in branch to fetch communication

decode halt decode error of halt instr.

EX valid instr. erroneous invalid instruction

stall fetch fetch stalled and instr. lost

register index incorrect destination register index

source operand incorrect source operand index

mem response memory-to-processor communication failure

EX operand select wrong operand for execution

pipeline valid erroneous valid instruction

WB enable writeback-register file communication error

5-stage Pipeline

bug description

branch failure in branch to fetch communication

EX valid instr. execution unit error

cache-proc req erroneous cache-to-processor request

MEM read ack erroneous memory load acknowledgment

FPU exception floating point exception error

fetch thread id LD/ST to fetch communication error

LSU data access incorrect LSU access

table walk req page table walk request

PCX stall processor-to-cache communication stall

CCX/PCX req processor/cache communication error

Table 6.3 Bugs injected, one at a time, after 5,000 cycles in the 5-stage design and after 10,000

cycles in OpenSPARC.

121

5-stage Bug

Interface b
ra
n
ch

d
ec
o
d
e
h
al
t

E
X
v
al
id

in
st
r.

st
al
l
fe
tc
h

re
g
is
te
r
in
d
ex

so
u
rc
e
o
p
er
an
d

m
em

re
sp
o
n
se

E
X
o
p
er
an
d

p
ip
el
in
e
v
al
id

W
B
en
ab
le

branch 4

decode 88 4 17 3M

fetch 4 2k 5

illegal 227 88 19 3M

mem stage 2k

mem ctrl 7 4

execute 5 2k 4 17

forward 5 158 4 8 124 3M 4 4

pipeline 4 356

writeback 17 156 91 124 291 4

OpenSPARC Bug

Interface b
ra
n
ch

E
X
v
al
id

in
st
r.

ca
ch
e-
p
ro
c
re
q

M
E
M

re
ad

ac
k

F
P
U
ex
ce
p
ti
o
n

fe
tc
h
th
re
ad

id

L
S
U
d
at
a
ac
ce
ss

ta
b
le
w
al
k
re
q

P
C
X
st
al
l

C
C
X
/P
C
X
re
q

CPX 1,719 16

branch 242

CCX 16k 39 16 742

memory 223

execute 16 f.n.

FPU f.p. 22k 48k 739 48k 22k

fetch 47

perf.

TLU 16

PCX 767 764

Table 6.4 Bug detection latency (cycles) from bug injection to detection. Each bug was first

detected after 22 cycles, on average, in the 5-stage design, and after 281 cycles in OpenSPARC. Ad-

ditionally, most bugs were detected by one interface earlier than the others, demonstrating precise

bug localization.

in OpenSPARC, the first interface to detect the error flagged it error within 281 cycles,

on average, while the bugs were first detected after 22 cycles on average in the 5-stage

design. The small size of the 5-stage design caused the effects of bugs to spread rapidly

through the design, enabling them to be caught more quickly. The first interface to identify

the bug is marked in green (light shading). While most OpenSPARC bugs were detected

by one interface many cycles before all others, the cache-proc req bug was detected

122

by two interfaces simultaneously. In this case, two closely related interfaces caught the

bug: the cache-to-processor crossbar (CPX) and the cache crossbar (CCX). We observed

one false positive (red/dark shading, marked “f.p.”) with the EX valid instr. bug,

due to noise introduced by the new random variations, which had not been observed during

training. One bug evaded detection (table walk req, which resulted in false negatives

(“f.n.”) marked with orange/medium shading. In this case, the bug signal was not part of

any interface and the bug did not cause wider system effects detectable by other interfaces.

6.3.2 Protocol Extraction

We also evaluated the effectiveness of pre-silicon protocol detection, using the 10 testcases

each with 100 random variations, for a total of 1,000 training tests. With each test execu-

tion, new events and transitions were added to the protocol database. Figure 6.2 shows the

number of events and transitions in each interface, on average. We observed that, as the

volume of training data increased, the number events and transitions increased too, quickly

with the first few tests, and then leveling off.

In addition to the discovery of events and transitions, protocol extraction impacts the

number of false positives encountered by the detection phase. We applied leave-one-out-

cross-validation to determine the effect of differing sets of training data. Here, 10 different

protocol databases were used: each trained on 9 of the 10 available testcases. With the

OpenSPARC T2 design, we found that leaving out a testcase had the effect of increas-

ing the number of false positives, as shown in Figure 6.3. We found that excluding the

blimp rand testcase resulted in a 24% false positive rate among all bug/testcase com-

binations, underscoring its importance as a training test. Additionally, the coverage of the

testcases for the small 5-stage design is very good, and as a result, we observed no false

positives in this design (Table 6.4), even with leave-one-out-cross-validation.

6.3.3 Transaction Extraction

We then explored the effect of circular buffer size on the number of transactions extracted.

Figure 6.4 reports the total number of transactions, as well as unique transactions, for dif-

ferent buffer sizes. We observed that the total transactions scaled with the size of the

buffer (on average), while unique transactions leveled off. As more unique transactions are

discovered, the observance of repeated transactions increases, indicating that high-quality

transaction are being extracted.

123

0

5

10

15

0

10

20

30

C
u

m
u

la
ti

v
e

 e
v

e
n

ts

C
u

m
u

la
ti

v
e

 t
ra

n
s
it

io
n

s

Testcase and total number of test executions

transitions

events

0

5

10

15

20

25

0

40

80

120

160

200

C
u

m
u

la
ti

v
e

 e
v

e
n

ts

C
u

m
u

la
ti

v
e

 t
ra

n
s
it

io
n

s

Testcase and total number of test executions

transitions

events

Figure 6.2 Protocol extraction. The plot reports the number of events and transitions in a pro-

tocol, on average. 10 testcases were used with 100 random seeds each for a total of 1000 training

tests per design, reflected on the X-axis. As the number of training tests accumulates, the size of the

protocol approaches a consistent value. Steps in the graph represent the transition from one testcase

to another.

6.3.4 Area Overhead

We evaluated the area overhead of an implementation of the protocol detection hardware

in Verilog HDL, synthesized with a 65nm TSMC target library. The storage dominates the

area:
total storage=

i f c bits ·num events+ event storage

2log2 (i f c bits) ·num transitions+ transition storage

log2 (i f c bits) ·bu f f er size circular buffer

Despite the complexity of the OpenSPARC T2 design, we found that protocols were

124

0%

10%

20%

30%

Fa
ls

e
 p

o
si

ti
v

e
s

(p
e

rc
e

n
t)

Omitted testcase

Figure 6.3 Effect of leave-one-out-cross-validation. The percentage of false positives with 9

training testcases and 1 testing in the OpenSPARC T2 design. No false positives were observed in

the 5-stage design during cross-validation.

limited in size. A detector sized to handle the largest OpenSPARC T2 interface can handle

62 events, each 33 bits wide, and 622 transitions. With this configuration, the resulting pro-

tocol detector required 15.3KB of storage and comprised 0.251 mm2 in our 65nm library.

When compared to the total area of the OpenSPARC T2 chip (342 mm2[45]), the area over-

head of 10 detectors (one for each monitored interfaces), is 0.7%. While this configuration

is adequate for the OpenSPARC design, the area of other configurations are shown in Table

6.5.

buffer interface num. num.

entries bits events transitions storage area

1,024 8 16 32 3.3 KB 67,839 µm2

1,024 16 32 64 5.0 KB 95,129 µm2

1,024 32 64 128 8.3 KB 149,673 µm2

1,024 64 128 256 17.0 KB 296,236 µm2

1,024 128 256 512 46.0 KB 781,095 µm2

Table 6.5 Area comprised by one protocol detector, for several configurations. Each configu-

ration has a maximum number of circular buffer entries, number of bits supported by the monitor

interface, number of stored events, and number of stored transitions.

6.4 Summary

BiPeD is a verification framework that bridges pre-silicon verification with post-silicon val-

idation, leveraging flexible hardware that is later applied to runtime verification. It provides

125

0

5

10

15

20

25

32 64 128 256 512 1024

N
u

m
b

e
r

o
f

tr
a

n
sa

ct
io

n
s

Circular buffer size (entries)

Total transactions

Unique transactions

0

40

80

120

160

200

240

32 64 128 256 512 1024N
u

m
b

e
r

o
f

tr
a

n
sa

ct
io

n
s

Circular buffer size (entries)

Total transactions

Unique transactions

Figure 6.4 Transactions extracted from the circular buffer as the number of buffer entries

changes. The plot shows both total, as well as the number of unique transactions. While the total

increases with buffer size, unique transactions approach a constant.

a framework for the integration of the complementary solutions outlined in this dissertation.

By making use of the high-level, compact, intuitive transactions and protocols of In-

ferno, BiPeD is able to learn the behavior of a design’s interfaces during pre-silicon

verification and enforce it during post-silicon and runtime validation. Our framework is ca-

pable of detecting bugs in the industrial-size OpenSPARC T2 design and able to accelerate

post-silicon validation with intuitive debugging information. It enables a number of com-

plementary solutions during pre-silicon, post-silicon and runtime verification, exploiting

the synergies among the different verification phases.

126

Chapter 7

Conclusions

With this dissertation, we have presented a comprehensive solution to ensure the correct

operation of the communication system in a multi-core chip. Multi-core communication is

critical to the operation of a chip in which many processors work concurrently. However,

this system-wide component is prone to failure due to its size and complexity. Furthermore,

its constituent transistors are increasingly likely to fail as dimensions shrink.

We provide a taxonomy for categorizing the problem into three sub-problems: func-

tional bugs, electrical failures, and transistor faults. In addition to dividing the problem

space, we also divide the solution space into the three categories: pre-silicon verifica-

tion, post-silicon validation and runtime verification. We explore BiPeD, a framework

that addresses the correctness problem, synergizing the phases of verification to provide a

comprehensive solution that draws on the strengths of each phase. Figure 7.1 reviews our

solution framework.

7.1 Bridging Verification Phases

BiPeD bridges the different verification phases, identifying synergies among them to im-

prove the verification process. Inferno is an integral part of the framework, defining the

level of abstraction by generating high-level, compact, intuitive transactions and proto-

cols during pre-silicon verification. These transactions ease the understanding of complex

communication protocols during pre-silicon verification. They also leverage the high ob-

servability of pre-silicon verification to learn the correct behavior of a design’s interfaces.

After pre-silicon verification, BiPeD’s flexible hardware protocol detectors quickly

detect bugs during high-speed post-silicon validation. The detectors enforce the correct

behavior learned during the previous phase. When a mismatch occurs Dacota and BPS are

deployed to narrow down the bug to its root cause.

Finally, the programmable hardware provided by the protocol detectors is re-purposed

for runtime verification. By tracking internal router control signals, BiPeD’s detectors

127

functional

bugs

electrical

failures

pre-silicon post-silicon runtime

A
ria

d
n

e

V
icis

D
ra

in

Verification phases

F
a

il
u

re
 m

o
d

e
s

BPS

Inferno
Dacota

SafeNoC

transistor

faults

(wear-out)

Figure 7.1 Review of the solution framework proposed by this dissertation, which synergizes

the different phases of verification in the BiPeD framework (shaded region). It works with inte-

gral component solutions (completely shaded) and complementary solutions (partially shaded) to

address errors and ensure correctness.

identify errant control paths. When an error is detected, it triggers the process of diagnosis

(Vicis), reconfiguration (Ariadne), and recovery (Drain). The detectors are also enhance

the coverage of end-to-end correctness guaranteed by SafeNoC.

7.2 Functional Bugs

Functional bugs may be present in the design starting from its inception during pre-silicon

verification, and persist through post-silicon verification and into runtime. Our framework

leverages the high-observability of pre-silicon verification to learn correct design behav-

ior with Inferno. This correct behavior is then enforced during post-silicon validation and

runtime verification with BiPeD’s flexible hardware detectors. When an error is detected,

Dacota helps narrow down the source of a common class functional bugs. Finally, SafeNoC

guarantees end-to-end correctness at runtime.

Inferno is software tool that is used to understand and validate complex communica-

tion protocols during pre-silicon verification, learning the correct behavior of the design. It

automatically extracts transactions from a simulation trace, that is, high level descriptions

128

of a design’s behavior. Transactions are presented to the user through simple and intuitive

diagrams for which we have developed a number of specialized visualization enhance-

ments. Complex, repetitive design simulations are distilled to a compact set of transactions

which describe the semantic behavior of the system in a compact, high level format. We

proposed a new verification methodology enabled by Inferno, called Transactional Ver-

ification, which greatly reduces the verification effort required to determine the correct

behavior of a system. Our methodology is based on a closed-loop approach where trans-

actions are extracted from a simulation and displayed to the user for approval. Inferno

is at once practical and effective at extracting high-level design behavior from low-level,

lengthy simulation data.

BiPeD provides hardware protocol detectors that monitor the communication protocols

during post-silicon test executions. They enforce the correct behavior learned during high-

observability pre-silicon verification during high-speed post-silicon validation. When an

error is detected, a complementary solution is deployed to narrow down the source of the

failure.

Dacota verifies a common class of functional bugs that occur in the memory subsystem.

It is deployed after BiPeD’s protocol detectors flag an error, when Dacota commences high-

coverage post-silicon validation of memory ordering. When enabled by the verification

team, Dacota stores sequence information about issued memory operations, periodically

aggregating this information to perform a software-based policy validation. The validation

algorithm is implemented purely in software to minimize the area impact of our solution

and executes on existing processor resources. Leveraging approximately 6 orders of magni-

tude performance advantage over pre-silicon simulation, Dacota’s post-silicon approach is

able to offer significantly higher coverage compared to pre-silicon approaches. We found

that Dacota is effective in detecting subtle consistency and coherence bugs, showing its

promise as a solution to the problem of validating the order of memory operations in CMP

systems. Furthermore, Dacota enables post-silicon debugging support, providing invalu-

able information to the validation team.

SafeNoC is a runtime end-to-end error detection and recovery technique that guar-

antees the functional correctness of CMP interconnects. Its coverage is improved by

enhancements provided by BiPeD hardware. SafeNoC augments the interconnect with

a lightweight and simple checker network and it detects functional errors by comparing

the signature of every received data packet with its look-ahead signature that was delivered

through the checker network. In case of mismatches, we use a novel recovery approach dur-

ing which blocked packets and stray flits are collected from the primary network and are

distributed over the checker network to all processor cores, where our reconstruction algo-

129

rithm reassembles them. SafeNoC can detect and recover from a broad range of functional

design errors, while incurring a low performance impact.

7.3 Electrical Failures

Electrical failures may occur beginning with the first chip prototypes, and are a common

source of errors during post-silicon validation. Here, circuit timing failures may be inter-

mittent, occurring only in certain on-chip conditions. Similar to functional bugs, the BiPeD

protocol detectors are used to monitor execution on post-silicon prototypes. When an error

is detected, BPS is applied to narrow down the root cause of post-silicon electrical failures.

BPS is a solution for locating the most challenging bugs during post-silicon valida-

tion: those bugs with inconsistent program outcomes. While it is able to localize electrical

failures, it is also effective for functional and manufacturing bugs as well. BPS has two

components: hardware structures that log a compact encoding of observed signal activity

and companion post-analysis software. BPS can localize bugs in time and space while

tolerating non-repeatable executions of the same test. It provides a fast solution, reducing

off-chip data transfers with compact signatures and scales to industrial-size designs. BPS

is effective in locating bugs under many different workloads, often to the exact signal.

During post-silicon validation, many electrical failures are fixed, and thus their effects

are diminished in the final product. However, those that may slip through share many

properties with transistor faults. While transistor faults are modeled as stuck-at errors on a

signal in the design, electrical failures may be modeled in similar fashion, but with a shorter

duration. Thus, the techniques used to addressed transistor faults in the field can be applied

to electrical failures as well.

7.4 Transistor Faults

Once a chip has been shipped, transistor faults can be caused by a variety of silicon wear-out

mechanisms. In order to protect against the correctness failures induced by malfunctioning

transistors, a comprehensive runtime solution is necessary. Our solution works by first de-

tecting the occurrence of faults with BiPeD, then diagnosing the affected hardware blocks

with Vicis. Next, it reconfigures the architecture around the faults using a flexible routing

algorithm called Ariadne. Finally, the system recovers any data that may be lost in the

reconfiguration process with Drain.

130

BiPeD protocol detectors are used to detect that a fault has occurred at runtime. By

monitoring internal router control signals, it ensures that correct control paths are followed

by the routing logic. When a fault is detected, it triggers the diagnosis mechanism.

Vicis diagnoses hardware faults in both network-on-chip router components as well as

the reliability components themselves. It maintains correct operation in the face of faults,

trading off performance for correctness. As the number of failures increases, Vicis miti-

gates errors by reconfiguring the router architecture. By leveraging the redundancy inherent

in networks-on-chip, and NoC routers, Vicis can maintain high reliability.

Ariadne reconfigures an NoC around failed routers and cores, providing an algorithm

capable of circumventing large numbers of simultaneous faults, and able to handle unre-

liable future silicon technologies. Ariadne utilizes up*/down* for high performance and

deadlock-free routing in irregular network topologies that result from large numbers of

faults, and offers performance gains ranging from 40% to 140% (for 50 faults) during nor-

mal operation, compared to state-of-the-art fault tolerant solutions. It guarantees that if

a path between two nodes exists, the reconfiguration algorithm will enable at least one

deadlock-free path between them. Ariadne is implemented in a fully distributed mode,

since nodes coordinate to explore the surviving topology, resulting in very simple hard-

ware and low complexity. At 1.97% area overhead, Ariadne is a parsimonious solution for

many-core processor designs of the future, enabling a trade-off between performance and

reliable functionality on unreliable silicon.

Drain recovers data following reconfiguration. Drain augments a CMP interconnect

architecture with emergency links that facilitate the recovery of dirty cache data and ar-

chitectural state in the event that a node or subnetwork becomes disconnected. In the

experimental results, we show that Drain is able to recover data from disconnected nodes

in any faulty network configuration, even those where aggressive failures cause network

partitioning. It is able to provide complete state recovery for an entire 64-node CMP within

several milliseconds and it incurs very low area overhead of 4,952 gates at each node.

7.5 Summary

Throughout the verification process, the BiPeD framework unites solutions from pre-

silicon, post-silicon and runtime verification. This new synergy among the verification

phases enables more efficient and effective design verification. The end result is a more

robust communication infrastructure that is resilient to errors and ensures correct operation

throughout the lifetime of the chip.

131

Bibliography

[1] Rawan Abdel-Khalek, Ritesh Parikh, Andrew DeOrio, and Valeria Bertacco. Func-

tional correctness for CMP interconnects. In Proc. ICCD, 2011.

[2] Miron Abramovici, Paul Bradley, Kumar Dwarakanath, Peter Levin, Gerard

Memmi, and Dave Miller. A reconfigurable design-for-debug infrastructure for

SoCs. In Proc. DAC, 2006.

[3] Dennis Abts, Steve Scott, and David J. Lilja. So many states, so little time: Verifying

memory coherence in the Cray X1. In Proc. IPDPS, 2003.

[4] Mithun Acharya. Automatic generation and inference of interface properties from

program source code. In Proc. OOPSLA, 2006.

[5] Allon Adir, Maxim Golubev, Shimon Landa, Amir Nahir, Gil Shurek, Vitali Sokhin,

and Avi Ziv. Threadmill: A post-silicon exerciser for multi-threaded processors. In

Proc. DAC, 2011.

[6] Advanced Micro Devices, Inc. Revision Guide for AMD Athlon(TM) 64 and AMD

Opteron(TM) Processors, August 2005.

[7] Niket Agarwal, Tushar Krishna, Li-Shiuan Peh, and Niraj K. Jha. Garnet: A detailed

on-chip network model inside a full-system simulator. Proc. ISPASS, 2009.

[8] Konstantinos Aisopos, Andrew DeOrio, Li-Shiuan Peh, and Valeria Bertacco. ARI-

ADNE: Agnostic reconfiguration in a disconnected network environment. In Proc.

PACT, 2011.

[9] Muhammad A. Alam. A critical examination of the mechanics of dynamic NBTI for

PMOSFETs. In Proc. IDEM, 2003.

[10] Glenn Ammons, Rastislav Bodik, and James Larus. Mining specifications. In Proc.

POPL, 2002.

[11] K. V. Anjan and Timothy Mark Pinkston. An efficient, fully adaptive deadlock re-

covery scheme: DISHA. In Proc. ISCA, 1995.

[12] Sean Baartmans and Bryan White. U.S. Patent no. 6438664: Customizable event

creation logic for hardware monitoring. Intel Corp., 2007.

132

[13] Keith Baker and Jos Van Beers. Shmoo plotting: The black art of ic testing. IEEE

Des. Test, 14(3), 1997.

[14] Alphan Bayazit and Sharad Malik. Complementary use of runtime validation and

model checking. In Proc. ICCAD, 2005.

[15] Shane Bell, Bruce Edwards, John Amann, Rich Conlin, Kevin Joyce, Vince Leung,

John MacKay, Mike Reif, Liewei Bao, John Brown, Matthew Mattina, Chyi-Chang

Miao, Carl Ramey, DavidWentzlaff, Walker Anderson, Ethan Berger, Nat Fairbanks,

Durlov Khan, Froilan Montenegro, Jay Stickney, and John Zook. TILE64 processor:

A 64-core SoC with mesh interconnect. In Proc. ISSCC, 2008.

[16] Saddek Bensalem, Yassine Lakhnech, and Hassen Sadi. Powerful techniques for the

automatic generation of invariants. In Proc. CAV, 1996.

[17] Davide Bertozzi, Luca Benini, and Giovanni De Micheli. Low power error resilient

encoding for on-chip data buses. In Proc. DATE, 2002.

[18] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. The PARSEC

benchmark suite: characterization and architectural implications. In Proc. PACT,

2008.

[19] Tobias Bjerregaard and Shankar Mahadevan. A survey of research and practices of

network-on-chip. ACM Computing Surveys, 38(1), 2006.

[20] Paul Bogdan, Tudor Dumitras, and Radu Marculescu. Stochastic communication: A

new paradigm for fault-tolerant networks-on-chip. In Hindawi Publishing Corpora-

tion Open Access Journal, 2007.

[21] Rajendra V. Boppana and Suresh Chalasani. Fault-tolerant wormhole routing algo-

rithms for mesh networks. IEEE Trans. Computers, 44(7), 1995.

[22] Shekhar Borkar. Microarchitecture and design challenges for gigascale integration.

In Proc. MICRO, 2004.

[23] Shekhar Borkar, Norman P. Jouppi, and Per Stenstrom. Microprocessors in the era

of terascale integration. In Proc. DATE, 2007.

[24] Dhanajay Brahme, Steven Cox, Jim Gallo, William Grundmann, C. Ip, William

Paulsen, John Pierce, John Rose, Dean Shea, and Karl Whiting. The transaction-

based verification methodology. Technical report, Cadence Design Systems, Inc.,

2000. Technical Report No. CDNL-TR-2000-0825.

[25] Doug Burger and Todd Austin. The SimpleScalar toolset, version 3.0. http://

www.simplescalar.com.

[26] Michael Bushnell and Vishwani Agrawal. Essentials in Electronic Testing. Springer,

2000.

133

http://www.simplescalar.com
http://www.simplescalar.com

[27] Harold W. Cain, Mikko H. Lipasti, and Ravi Nair. Constraint graph analysis of

multithreaded programs. In Proc. PACT, 2003.

[28] S. Chalasani and R.V. Boppana. Communication in multicomputers with nonconvex

faults. IEEE Trans. Computers, 46(5), 1997.

[29] Kaiyu Chen, Sharad Malik, and Priyadarsan Patra. Runtime validation of memory

ordering using constraint graph checking. In Proc. HPCA, 2008.

[30] Ludmila Cherkasova, VadimKotov, and Tomas Rokicki. Fibre channel fabrics: Eval-

uation and design. In International Conference on System Sciences, 1995.

[31] Andrew A. Chien and Jae H. Kim. Planar-adaptive routing: Low-cost adaptive net-

works for multiprocessors. In Proc. ISCA, 1992.

[32] Alessandro Cimatti, Edmund Clarke, Enrico Giunchiglia, Fausto Giunchiglia,

Marco Pistore, Marco Roveri, Roberto Sebastiani, and Armando Tacchella. NuSMV

version 2: An opensource tool for symbolic model checking. In Proc. CAV, 2002.

[33] Kypros Constantinides, Stephen Plaza, Jason Blome, Bin Zhang, Valeria Bertacco,

Scott Mahlke, Todd Austin, and Michael Orshansky. Bulletproof: a defect-tolerant

cmp switch architecture. In Proc. HPCA, 2006.

[34] David Culler, Anoop Gupta, and Jaswinder Singh. Parallel Computer Architecture:

A Hardware/Software Approach. Morgan Kaufmann Publishers Inc., San Francisco,

CA, USA, 1997.

[35] William Dally, Larry Dennison, David Harris, Kinhong Kan, and Thucydides Xan-

thopoulos. The reliable router: A reliable and high-performance communication

substrate for parallel computers. In Proc. PCRCW, 1994.

[36] William Dally and Brian Towles. Route packets, not wires: on-chip interconnection

networks. In Proc. DAC, 2001.

[37] William Dally and Brian Towles. Principles and Practices of Interconnection Net-

works. Morgan Kaufmann, San Francisco, CA, USA, 2003.

[38] Flavio De Paula, Marcel Gort, Alan Hu, Steven Wilton, and Jin Yang. Backspace:

formal analysis for post-silicon debug. In Proc. FMCAD, 2008.

[39] Andrew DeOrio, Kostantinos Aisopos, Valeria Bertacco, and Li-Shiuan Peh.

DRAIN: Distributed recovery architecture for inaccessible nodes in multi-core chips.

In Proc. DAC, 2011.

[40] Andrew DeOrio, Adam Bauserman, Valeria Bertacco, and Beth Isaksen. Inferno:

streamlining verification with inferred semantics. IEEE Trans. Computer-Aided De-

sign of Integrated Circuits and Systems, 28(5), 2009.

134

[41] Andrew DeOrio, David Fick, Valeria Bertacco, Dennis Sylvester, David Blaauw, Jin

Hu, and Gregory Chen. A reliable routing architecture and algorithm for NoCs.

IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems, 31(5),

2012.

[42] Andrew DeOrio, Daya Shanker Khudia, and Valeria Bertacco. Post-silicon bug di-

agnosis with inconsistent executions. In Proc. ICCAD, 2011.

[43] Andrew DeOrio, Ilya Wagner, and Valeria Bertacco. DACOTA: Post-silicon valida-

tion of the memory subsystem in multi-core designs. In Proc. HPCA, 2009.

[44] David Dill, Andreas Drexler, Alan Hu, and C. Yang. Protocol verification as a hard-

ware design aid. In Proc. ICCD, 1992.

[45] Xiangyu Dong and Yuan Xie. System-level cost analysis and design exploration for

three-dimensional integrated circuits (3D ICs). In Proc. ASPDAC, 2009.

[46] José Duato. A theory of fault-tolerant routing in wormhole networks. IEEE Trans.

Parallel and Distributed Systems, 8(8), 1997.

[47] Don Edenfeld, Andrew B. Kahng, Mike Rodgers, and Yervant Zorian. 2003 tech-

nology roadmap for semiconductors. IEEE Computer, 37(1), 2004.

[48] Michael Ernst. Verification for legacy programs. In Proc. VSTTE (Verified Tools

Theories, Tools, Experiments), 2005.

[49] Nicolas Falliere, Liam O Murchu, and Eric Chie. W32.stuxnet dossier. Technical

report, Symantec, 2010.

[50] Görschwin Fey and Rolf Drechsler. Improving simulation-based verification by

means of formal methods. In Proc. ASPDAC, 2004.

[51] David Fick, Andrew DeOrio, Valeria Bertacco, Dennis Sylvester, and David Blaauw.

A highly resilient routing algorithm for fault-tolerant NoCs. In Proc. DATE, 2009.

[52] David Fick, Andrew DeOrio, Jin Hu, Valeria Bertacco, David Blaauw, and Dennis

Sylvester. Vicis: a reliable network for unreliable silicon. In Proc. DAC, 2009.

[53] José Flich and José Duato. Logic-based distributed routing for NoCs. Computer

Architecture Letters, 7(1), 2008.

[54] Robert A. Frohwerk. Signature analysis: A new digital field service method.

Hewlett-Packard Journal, 1977.

[55] Steve Furber. Living with failure: Lessons from nature? In Proc. ETS, 2006.

[56] Jianliang Gao, Yinhe Han, and Xiaowei Li. A new post-silicon debug approach

based on suspect window. In Proc. VTS, 2009.

135

[57] Steven German. Formal design of cache memory protocols in IBM. Formal Methods

in System Design, 22(2), 2003.

[58] P. B. Ghate. Electromigration-induced failures in VLSI interconnects. In Proc.

Reliability Physics Symposium, 1982.

[59] Christopher J. Glass and Lionel M. Ni. Fault-tolerant wormhole routing in meshes

without virtual channels. IEEE Trans. Parallel and Distributed Systems, 7(6), 1996.

[60] M. E. Gómez, J. Duato, J. Flich, P. López, A. Robles, N. A. Nordbotten, O. Lysne,

and T. Skeie. An efficient fault-tolerant routing methodology for meshes and tori.

IEEE Computer Architecture Letters, 3(1), 2004.

[61] Shantanu Gupta, Shuguang Feng, Jason Blome, and Scott Mahlke. StageNet: A re-

configurable CMP fabric for resilient systems. In Proc. Reconfigurable and Adaptive

Architecture Workshop, 2007.

[62] Sudheendra Hangal, Naveen Chandra, Sridhar Narayanan, and Sandeep Chakra-

vorty. IODINE: a tool to automatically infer dynamic invariants for hardware

designs. In Proc. DAC, 2005.

[63] Rongsen He and J.G Delgado-Frias. Fault tolerant interleaved switching fabrics for

scalable high-performance routers. IEEE Trans. Parallel and Distributed Systems,

18(12), 2007.

[64] Ching-Tien Ho and Larry Stockmeyer. A new approach to fault-tolerant worm-

hole routing for mesh-connected parallel computers. IEEE Trans. Computers, 53(4),

2004.

[65] Ted Hong, Yanjing Li, Sung-Boem Park, Diana Mui, David Lin, Helia Naeimi, Don-

ald Gardner, Nagib Hakim, Ziya Khaleq, and Subhasish Mitra. QED: Quick error

detection tests for effective post-silicon validation. In Proc. ITC, 2010.

[66] Mohammad Hosseinabady, Abbas Banaiyan, Mahdi Nazm Bojnordi, and Zainal-

abedin Navabi. A concurrent testing method for NoC switches. In Proc. DATE,

2006.

[67] Intel Corporation. Intel(R) StrongARM(R) SA-1100 Microprocessor Specification

Update, February 2000.

[68] Intel Corporation. Intel Core 2 Duo and Intel Core 2 Solo Processor for Intel Cen-

trino Duo Processor Technology Specification Update, September 2007.

[69] Intel Corporation. Intel Core i7-900 Desktop Processor Series Specification Update,

July 2010.

[70] International Business Machines Corporation. IBM PowerPC 750GX and 750GL

RISC Microprocessor Errata Notice, July 2005.

136

[71] Axel Jantsch, Robert Lauter, and Arseni Vitkowski. Power analysis of link level and

end-to-end data protection in networks on chip. In Proc. ISCAS, 2005.

[72] Susmit Jha, Wenchao Li, and Sanjit A. Seshia. Localizing transient faults using

dynamic bayesian networks. In Proc. HLDVT, 2009.

[73] Doug Josephson. The manic depression of microprocessor debug. In Proc. ITC,

2002.

[74] Doug Josephson. The good, the bad, and the ugly of silicon debug. In Proc. DAC,

2006.

[75] Frédéric Kastner. Les Flammes Chantantes. Dentu & Lacroix, Paris, 3rd edition,

1876.

[76] John Keane, Shrinivas Venkatraman, Paulo Butzen, and Chris H. Kim. An array-

based test circuit for fully automated gate dielectric breakdown characterization. In

Proc. CICC, 2008.

[77] Brian Keng, Sean Safarpour, and Andreas Veneris. Bounded model debugging. IEEE

Trans. Computer-Aided Design of Integrated Circuits and Systems, 29(11), 2010.

[78] John Kim and Hanjoon Kim. Router microarchitecture and scalability of ring topol-

ogy in on-chip networks. In Proc. NoCArc, 2009.

[79] Jongman Kim, Chrysostomos Nicopoulos, and Dongkook Park. A gracefully de-

grading and energy-efficient modular router architecture for on-chip networks. ACM

SIGARCH Computer Architecture News, 34(2), 2006.

[80] Seong-Pyo Kim and Taisook Han. Fault-tolerant wormhole routing in mesh with

overlapped solid fault regions. Parallel Computing, 23(13), 1997.

[81] Donald E. Knuth. The Art of Computer Programming. Four volumes. Addison-

Wesley, 1968.

[82] Adán Kohler and Martin Radetzki. Fault-tolerant architecture and deflection routing

for degradable NoC switches. In Proc. NoCs, 2009.

[83] Adán Kohler, Gert Schley, and Martin Radetzki. Fault tolerant network on chip

switching with graceful performance degradation. IEEE Trans. Computer-Aided

Design of Integrated Circuits and Systems, 29(6), 2010.

[84] Michihiro Koibuchi, Hiroki Matsutani, Hideharu Amano, and Timothy Mark

Pinkston. L-turn routing: An adaptive routing in irregular networks. In Proc. ICPP,

2001.

[85] Michihiro Koibuchi, Hiroki Matsutani, Hideharu Amano, and Timothy Mark

Pinkston. A lightweight fault-tolerant mechanism for network-on-chip. Proc. NoCs,

2008.

137

[86] Hyunjin Lee, Sangyeun Cho, and Bruce R. Childers. Performance of graceful degra-

dation for cache faults. In Proc. VLSI Symposium, 2007.

[87] Ana Sonia Leon, Kenway W. Tam, Jinuk Luke Shin, David Weisner, and Francis

Schumacher. A power-efficient high-throughput 32-thread SPARC processor. IEEE

Journal of Solid-State Circuits, 42(1), 2007.

[88] Wenchao Li, Alessandro Forin, and Sanjit A. Seshia. Scalable specification mining

for verification and diagnosis. In Proc. DAC, 2010.

[89] R. Libeskind-Hadas and E. Brandt. Origin-based fault-tolerant routing in the mesh.

In Proc. HPCA, 1995.

[90] Benjamin Robert Liblit. Cooperative bug isolation. PhD thesis, University of Cali-

fornia at Berkeley, Berkeley, CA, USA, 2004. AAI3183833.

[91] Cheng Liu, Lei Zhang, Yinhe Han, and Xiaowei Li. A resilient on-chip router design

through data path salvaging. In Proc. ASPDAC, 2011.

[92] P. L. López, Juan Miguel Martı́nez, and Joeé Duato. A very efficient distributed

deadlock detection mechanism for wormhole networks. In Proc. HPCA, 1998.

[93] Peter S. Magnusson, Magnus Christensson, Jesper Eskilson, Daniel Forsgren, Gus-

tav Hållberg, Johan Högberg, Fredrik Larsson, Andreas Moestedt, and Bengt

Werner. Simics: A full system simulation platform. IEEE Computer, 35(2), Feb

2002.

[94] John Markoff. Burned once, Intel prepares new chip fortified by constant tests. New

York Times, November 2008.

[95] Milo Martin, Daniel Sorin, Bradford Beckmann, Michael Marty, Min Xu, Alaa

Alameldeen, Kevin Moore, Mark Hill, and David Wood. Multifacet’s general

execution-driven multiprocessor simulator (GEMS) toolset. ACM SIGARCH Com-

puter Architecture News, 33(4), 2005.

[96] Juan Miguel Martı́nez, P. L. López, José Duato, and Timothy Mark Pinkston.

Software-based deadlock recovery technique for true fully adaptive routing in worm-

hole networks. In Proc. ICPP, 1997.

[97] Timothy G. Mattson, Michael Riepen, Thomas Lehnig, Paul Brett, Werner Haas,

Patrick Kennedy, Jason Howard, Nitin Vangal, Sriram Borkar, Greg Ruhl, and

Saurabh Dighe. The 48-core SCC processor: the programmer’s view. In Proc. SC,

2010.

[98] Rich McLaughlin, Srikanth Venkataraman, and Carlston Lim. Automated debug of

speed path failures using functional tests. In Proc. VTS, 2009.

[99] Albert Meixner, Michael Bauer, and Daniel Sorin. Argus: Low-cost, comprehensive

error detection in simple cores. In International Symposium on Microarchitecture,

2007.

138

[100] Albert Meixner and Daniel Sorin. Dynamic verification of memory consistency in

cache-coherent multithreaded computer architectures. In Proc. DSN, 2006.

[101] Andres Mejia, José Flich, José Duato, Sven-Arne Reinemo, and Tor Skeie. Segment-

based routing: An efficient fault-tolerant routing algorithm for meshes and tori. In

Proc. IPDPS, 2006.

[102] Giovanni De Micheli. Reliable communication in systems on chips. In Proc. DAC,

2004.

[103] Srinivasan Murali, Theocharis Theocharides, N. Vijaykrishnan, Mary Jane Irwin,

Luca Benini, and Giovanni De Micheli. Analysis of error recovery schemes for

networks on chips. IEEE Design & Test, 22(5), 2005.

[104] Satish Narayanasamy, Gilles Pokam, and Brad Calder. BugNet: Continuously

recording program execution for deterministic replay debugging. In Proc. ISCA,

2005.

[105] Lionel M. Ni and Philip K. McKinley. A survey of wormhole routing techniques in

direct networks. IEEE Computer, 6(2), 1993.

[106] Sung-Jui Pan and Kwang-Ting Cheng. A framework for system reliability analysis

considering both system error tolerance and component test quality. In Proc. DATE,

2007.

[107] Dongkook Park, Chrysostomos Nicopoulos, Jongman Kim, N. Vijaykrishnan, and

Chita R. Das. Exploring fault-tolerant network-on-chip architectures. In Proc. DSN,

2006.

[108] Sung-Boem Park, A. Bracy, Hong Wang, and S. Mitra. BLoG: Post-silicon bug

localization in processors using bug localization graphs. In Proc. DAC, 2010.

[109] Sung-Boem Park, T. Hong, and S. Mitra. Post-silicon bug localization in processors

using instruction footprint recording and analysis (IFRA). IEEE Trans. Computer-

Aided Design of Integrated Circuits and Systems, 28(10), 2009.

[110] Priyadarsan Patra. On the cusp of a validation wall. IEEE Design & Test, 24(2),

2007.

[111] Andrea Pellegrini, Valeria Bertacco, and Todd Austin. Fault-based attack to RSA

authentication. In Proc. DATE, 2010.

[112] Paul Dickinson Peter Dahlgren and Ishwar Parulkar. Latch divergency in micropro-

cessor failure analysis. In Proc. ITC, 2003.

[113] M. Pirretti, G.M. Link, R.R. Brooks, N. Vijaykrishnan, M. Kandemir, and M.J. Ir-

win. Fault tolerant algorithms for network-on-chip interconnect. In Proc. ISVLSI,

2004.

139

[114] Fong Pong and Michel Dubois. Verification techniques for cache coherence proto-

cols. ACM Computing Surveys, 29(1), 1997.

[115] Milos Prvulovic, Zheng Zhang, and Josep Torrellas. ReVive: cost-effective archi-

tectural support for rollback recovery in shared-memory multiprocessors. In Proc.

ISCA, 2002.

[116] V. Puente, J. A. Gregorio, F. Vallejo, and R. Beivide. Immunet: A cheap and robust

fault-tolerant packet routing mechanism. ACM SIGARCH Computer Architecture

News, 32(2), 2004.

[117] Bradley R. Quinton and Steven J. E. Wilton. Programmable logic core based post-

silicon debug for SoCs. In Proc. IEEE Silicon Debug and Diagnosis Workshop,

2007.

[118] Samuel Rodrigo, José Flich, José Duato, and Mark Hummel. Efficient unicast and

multicast support for CMPs. In Proc. MICRO, 2008.

[119] Samuel Rodrigo, José Flich, A. Roca, S. Medardoni, Davide Bertozzi, J. Camacho,

F. Silla, and José Duato. Addressing manufacturing challenges with cost-efficient

fault tolerant routing. In Proc. NoCs, 2010.

[120] Sean Safarpour and Andreas Veneris. Automated design debugging with abstraction

and refinement. IEEE Trans. Computer-Aided Design of Integrated Circuits and

Systems, 28(10), 2009.

[121] José Carlos Sancho, Antonio Robles, and José Duato. A flexible routing scheme for

networks of workstations. In Proc. HPCS, 2000.

[122] Azeez Sanusi and Magdy A. Bayoumi. Smart-flooding: A novel scheme for fault-

tolerant NoCs. In Proc. SOCC, 2009.

[123] Smruti R. Sarangi, Brian Greskamp, and Josep Torrellas. CADRE: Cycle-accurate

deterministic replay for hardware debugging. In Proc. DSN, 2006.

[124] Jacob Savir. Syndrome-testable design of combinational circuits. IEEE Trans. Com-

puters, C-29(6), 1980.

[125] Michael D. Schroeder, Andrew D. Birrell, Michael Burrows, Hal Murray, Roger M.

Needham, Thomas L. Rodeheffer, Edwin H. Satterthwaite, and Charles P. Thacker.

Autonet: a high-speed, self-configuring local area network using point-to-point

links. IEEE Journal on Selected Areas in Communication, 9(8), 1991.

[126] Klaus-Dieter Schubert. POWER7 – verification challenge of a multi-core processor.

In Proc. ICCAD, 2009.

[127] Dennis Shasha and Marc Snir. Efficient and correct execution of parallel programs

that share memory. ACM Trans. Programming Languages and Systems, 10(2), 1988.

140

[128] Jau-Der Shih. A fault-tolerant wormhole routing scheme for torus networks with

nonconvex faults. Information Processing Letters, 88(6), 2003.

[129] Jeremy Siek and Lie-Quan Lee. BOOST graph library. http://www.boost.

org/doc/libs/release/libs/graph.

[130] Jaswinder Pal Singh, Wolf-Dietrich Weber, and Anoop Gupta. SPLASH: Stanford

parallel applications for shared-memory. ACM SIGARCH Computer Architecture

News, 20(1), 1992.

[131] Wei Song, Doug Edwards, José Luis Nunez-Yanez, and Sohini Dasgupta. Adaptive

stochastic routing in fault-tolerant on-chip networks. In Proc. NoCs, 2009.

[132] Daniel Sorin, Milo Martin, Mark Hill, and David Wood. SafetyNet: improving the

availability of shared memory multiprocessors with global checkpoint/recovery. In

Proc. ISCA, 2002.

[133] Gregory S. Spirakis. Opportunities and challenges in building silicon products in

65nm and beyond. In Proc. DATE, 2004.

[134] Jayanth Srinivasan, Sarita V. Adve, Pradip Bose, and Jude A. Rivers. The impact of

technology scaling on lifetime reliability. In Proc. DSN, 2004.

[135] David Starobinski, Mark Karpovsky, and Lev A. Zakrevski. Application of network

calculus to general topologies using turn-prohibition. IEEE/ACM Trans. Networks,

11(3), 2003.

[136] J. H. Stathis, B. P. Linder, R. Rodrı́guez, and S. Lombardo. Reliability of ultra-thin

oxides in CMOS circuits. Microelectronics Reliability, 43(9-11), 2003.

[137] Chien-Chun Su and Kang G. Shin. Adaptive fault-tolerant deadlock-free routing in

meshes and hypercubes. IEEE Trans. Computers, 45(6), 1996.

[138] Pao-Hwa Sui and Sheng-De Wang. An improved algorithm for fault-tolerant worm-

hole routing in meshes. IEEE Trans. Computers, 46(9), 1997.

[139] Pao-Hwa Sui and Sheng-De Wang. Fault-tolerant wormhole routing algorithm for

mesh networks. IEEE Computers and Digital Techniques, 147(1), 2000.

[140] Sun microsystems OpenSPARC. http://opensparc.net/.

[141] Ming-Jer Tsai. Fault-tolerant routing in wormhole meshes. Journal of Interconnec-

tion Networks, 4(4), 2003.

[142] Babu Turumella and Mukesh Sharma. Assertion-based verification of a 32 thread

SPARC CMT microprocessor. In Proc. DAC, 2008.

[143] Gert Jan van Rootselaar and Bart Vermeulen. Silicon debug: Scan chains alone are

not enough. In Proc. ITC, 1999.

141

http://www.boost.org/doc/libs/release/libs/graph
http://www.boost.org/doc/libs/release/libs/graph

[144] Sriram R. Vangal, Jason Howard, Gregory Ruhl, Saurabh Dighe, Howard Wilson,

James Tschanz, David Finan, Arvind Singh, Tiju Jacob, Shailendra Jain, Vasantha

Erraguntla, Clark Roberts, Yatin Hoskote, Nitin Borkar, and Shekhar Borkar. An 80-

tile sub-100-w teraFLOPS processor in 65-nm CMOS. IEEE Journal of Solid-State

Circuits, 43(1), 2008.

[145] Ilya Wagner and Valeria Bertacco. Engineering trust with semantic guardians. In

Proc. DATE, 2007.

[146] Ilya Wagner and Valeria Bertacco. Reversi: Post-silicon validation system for mod-

ern microprocessors. In Proc. ICCD, 2008.

[147] Ilya Wagner, Valeria Bertacco, and Todd Austin. Shielding against design flaws with

field repairable control logic. In Proc. DAC, 2006.

[148] Chris Weaver and Todd Austin. A fault tolerant approach to microprocessor design.

In Proc. DSN, 2001.

[149] Lee Whetsel. An IEEE 1149.1 based logic/signature analyzer in a chip. In Proc.

ITC, 1991.

[150] Dennis J. Wilkins. Bathtub curve. http://www.weibull.com/hotwire/

issue21/hottopics21.htm.

[151] Steven Woo, Moriyoshi Ohara, Evan Torrie, Jaswinder Singh, and Anoop Gupta.

The SPLASH-2 programs: characterization and methodological considerations. In

Proc. ISCA, 1995.

[152] David Wood, Garth Gibson, and Randy Katz. Verifying a multiprocessor cache

controller using random test generation. IEEE Design & Test, 7(4), 1990.

[153] Jie Wu. A fault-tolerant and deadlock-free routing protocol in 2D meshes based on

odd-even turn model. IEEE Trans. Computers, 52(9), 2003.

[154] Jinlin Yang and David Evans. Automatically inferring temporal properties for pro-

gram evolution. In Proc. ISSRE, 2004.

[155] Joon-Sung Yang and N.A. Touba. Expanding trace buffer observation window for

in-system silicon debug through selective capture. In Proc. VTS, 2008.

[156] Yu-Shen Yang, N. Nicolici, and A. Veneris. Automated data analysis solutions to

silicon debug. In Proc. DATE, 2009.

[157] Zhen Zhang, Alain Greiner, and Sami Taktak. A reconfigurable routing algorithm

for fault-tolerant 2D-mesh network-on-chip. In Proc. DAC, 2008.

[158] Jipeng Zhou and F.C.M. Lau. Adaptive fault-tolerant wormhole routing in 2D

meshes. In Proc. IPDPS, 2001.

142

http://www.weibull.com/hotwire/issue21/hottopics21.htm
http://www.weibull.com/hotwire/issue21/hottopics21.htm

[159] Jipeng Zhou and Francis C. M. Lau. Multi-phase minimal fault-tolerant wormhole

routing in meshes. Parallel Computing, 30(3), 2004.

[160] Heiko Zimmer and Axel Jantsch. A fault model notation and error-control scheme

for switch-to-switch buses in a network-on-chip. In Proc. CODES+ISSS, 2003.

143

	Title
	Dedication
	Acknowledgments
	Preface
	Table of Contents
	List of Figures
	List of Tables
	Chapter 1 Microprocessor Errors and Opportunities to Mitigate Them
	1.1 Impact of Failures
	1.2 Types of Errors
	1.3 Avoiding Failures and Ensuring Correctness
	1.4 Dissertation Overview
	1.5 Dissertation Organization

	Chapter 2 Verification: State of the Art
	2.1 Pre-Silicon Verification
	2.1.1 Formal Methods
	2.1.2 Simulation-based Verification

	2.2 Post-Silicon Validation
	2.3 Runtime Verification
	2.4 Software Verification
	2.5 Verification Targets

	Chapter 3 Addressing Functional Bugs
	3.1 Functional Bugs
	3.2 Understanding the Pre-Silicon Design with Inferno
	3.2.1 Protocols and Transactions
	3.2.2 Evaluation Case Study: OpenSPARC T1
	3.2.3 Leveraging Transactions in Later Verification Phases

	3.3 Briding Pre- to Post-silicon with BiPeD
	3.3.1 Learning Correct Design Behavior During Pre-silicon Verification
	3.3.2 Post-silicon Failure Detection

	3.4 Accelerating Post-Silicon Validation with Dacota
	3.4.1 Dacota Operation
	3.4.2 Activity Logging Hardware
	3.4.3 Policy Validation Algorithm
	3.4.4 Evaluation

	3.5 Ensuring End-to-end Correctness at Runtime with SafeNoC
	3.5.1 Error Detection Hardware
	3.5.2 Recovery Algorithm
	3.5.3 Evaluation
	3.5.4 BiPeD/SafeNoC Integration

	3.6 Summary

	Chapter 4 Addressing Electrical Failures
	4.1 Electrical Failures
	4.2 Detecting Failures with BiPeD
	4.3 Diagnosing Failures with BPS
	4.3.1 BPS Hardware
	4.3.2 BPS Post-Analysis Software
	4.3.3 Tuning Parameters
	4.3.4 Experimental Evaluation

	4.4 Summary

	Chapter 5 Addressing Transistor Faults
	5.1 Transistor Faults
	5.1.1 Fault Model

	5.2 Fault Detection — BiPeD
	5.3 Fault Diagnosis — Vicis
	5.3.1 Architectural Features
	5.3.2 Evaluation

	5.4 Network Reconfiguration — Ariadne
	5.4.1 Historical Approaches to Reliable Routing
	5.4.2 Routing Algorithm
	5.4.3 Timing and Synchronization
	5.4.4 Evaluation

	5.5 Data Recovery — Drain
	5.5.1 Recovery Hardware
	5.5.2 Recovery Algorithm
	5.5.3 Evaluation

	5.6 Summary

	Chapter 6 BiPeD: Bridging the Phases of Verification
	6.1 BiPeD Operation
	6.2 Case Study
	6.3 Evaluation
	6.3.1 Protocol Detection
	6.3.2 Protocol Extraction
	6.3.3 Transaction Extraction
	6.3.4 Area Overhead

	6.4 Summary

	Chapter 7 Conclusions
	7.1 Bridging Verification Phases
	7.2 Functional Bugs
	7.3 Electrical Failures
	7.4 Transistor Faults
	7.5 Summary

	Bibliography

