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CHAPTER I

Introduction

1.1 Dissertation Objective

System identification is an important precursor to predicting the dynamics of a

structure. These predictions are important to structural design and health monitor-

ing, because they indicate the behavior of the system under operating conditions. In

turbomachinery, one important structure is an integrally bladed disk or blisk. These

blisks have a complex geometry and are comprised of one piece of material. Capturing

the motion of such complex structures can be very difficult and typically involves fi-

nite element models with a large number of degrees of freedom (DOFs). These models

employ parameters which are often not well known, for example the actual mass and

stiffness of the physical structure. Another such parameter is damping. Thus, iden-

tification techniques are needed to determine the actual damping. In addition, these

methods require measurements of the vibratory response of the structure. In general,

using more measurement points results in a more accurate identification. However,

as the number of measurement locations increases, the cost of the experimental work

increases greatly. This work introduces a measurement point selection method which

will result in an accurate system identification with minimal experimental and com-

putational cost.

Also, blisks can be subjected to harsh environments with a large number of cycles.
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Therefore, due to wear or manufacturing, nominally cyclically symmetric blisks have

slight variations in the mass or stiffness of their components known as mistuning. As a

result, the cyclic symmetry is destroyed and vibration energy can be localized around

certain regions of the system leading to a larger than expected forced response as

compared to their analog cyclically symmetric (or tuned) structures. Therefore, the

mistuned structure is more susceptible to high cycle fatigue and earlier failure than

the tuned structure. Damping plays an important role in investigating the effects of

localization, because damping affects the forced response of a mistuned system (in

particular, it affects the maximum response amplitude).

Current damping identification methods assume that accurate measurement data

has been measured, but they do not provide information on how this assumption

is realized. The measurement locations may be one cause of current identification

techniques’ sensitivity to measurement noise. In addition, damping can be difficult

to determine for regions of high modal density, requiring knowledge of complex eigen-

values and eigenvectors, or knowledge of the actual forcing that is applied to the

structure.

The focus of this work is identification of damping in systems with high modal

density (such as cyclically symmetric structures) exemplified by blisks and bladed

disks. These systems contain eigenvalues which are very closely grouped, so multiple

modes contribute to the off-resonant responses. For these systems, accurately de-

termining the complex mode shapes for all contributing modes (as needed for some

current damping identification methodologies) is impractical.

Other iterative damping identification procedures identify the mass, stiffness, and

damping matrices simultaneously. For high modal density, such approaches lead to

very high noise sensitivity because of the near-singular nature of the inverse problem.

Moreover, many existing techniques for damping identification focus on measurements

collected at resonant conditions. Such conditions are easily identified for low modal

2



densities. However, resonances are nearly impossible to identify from measurements

in the case of high modal density. This difficulty occurs because large responses are

observed between resonant or natural frequencies.

Most current damping identification techniques assume that damping has a cer-

tain form at a system level. For example, the damping in complex structures is often

assumed to be viscous, modal, or structural. Such assumptions provide accurate re-

sults for structures with relatively simple geometries and low modal density. However,

these approximations can be cumbersome or inaccurate for structures with complex

geometry and high modal density. For such systems, using a component-oriented

model can be more effective. In particular, component damping corresponds to a

proportional or structural damping applied to individual components of a structure

(i.e., each component has an associated material damping). For instance, each blade

of a blisk can be modeled as a separate component with an associated damping pa-

rameter (which is to be identified). The resulting damping is only approximately

modal, and the corresponding modal damping values vary with different component

damping properties. As a result, the component damping can represent the physical

attributes of the structure more closely and may require less effort than identifying the

modal damping for a structure with a moderate number of components and a large

number of modes in the frequency range of interest. This work aims to introduce

damping identification methods

• For structural, viscous modal, and component damping models

• Which use a new measurement point selection method

• Which apply to mistuned systems

• Which avoid complications involved in measuring damped modal characteristics

or applied forces
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• Which accurately identify the damping using both full order models as well as

reduced order models (ROMs)

• Which accurately identify the damping in the presence of measurement noise

• Which are equally effective for both low and high modal density cases

• Which identify the damping without knowledge of the absolute forcing

• Which capture the system dynamics.

1.2 Dissertation Background

Holland et al. [1] introduced a testing methodology for performing system iden-

tification of blisks. They included a procedure for choosing the order in which the

blades are to be excited and the excitation (and measurement) frequencies so that the

identification is accurate and requires as few measurements as possible. To choose

measurement locations, the authors extended the effective independence distribution

vector (EIDV) method to determine the minimum number and the best locations of

the necessary measurements. The existing EIDV method [2] determines the amount

of modal information provided by each point in a candidate set of measurement lo-

cations. However, this EIDV approach uses the full system model which requires a

heavy computational effort. Thus, a novel extension that exploits the cyclic symmetry

of blisks was developed in this research.

Applying a layer of material to the structure to induce or change the damping

characteristics of the structure strongly affects its forced response. In an effort to

minimize the effects of mistuning, this damping coating can be applied to a structure

such as a mistuned blisk. However, Joshi et al. [3] found that the dynamics of the

system can change to due variations in the thickness of the applied coating. To

determine the effects of the damping coating, a damping identification technique is
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needed which can determine the damping associated with individual components of

a mistuned blisk before and after the coating is applied. Alternatively, as mistuning

may significantly affect certain modes, the damping coatings should decrease the

response of the desired modes.

The most basic methods represent the dynamics using a single DOF system [4–7].

Clearly, these methods have limited application to multi-DOF systems such as blisks.

Another type of damping identification method is curve fitting. In 2005, Adhikari [8]

proposed one such approach for the case of proportional damping. Other damping

identification methods include wavelet analysis [9–12] and time-domain analysis [13,

14].

Still other methods use measurements of complex eigenvalues and complex eigen-

vectors. Some notable contributions to this type of identification come from Adhikari

et al. [15–19], Minas and Inman [20], Ibrahim [21], Alvin et al. [22], Andrianne and

Dimitriadis [23], Khalil et al. [24], and Pilkey and Inman [25]. The focus of this

work is identification of damping in systems with high modal density (such as cycli-

cally symmetric structures) exemplified by blisks. These systems contain eigenvalues

which are very closely grouped, so multiple modes contribute to the off-resonant re-

sponses. For these systems, accurately determining the complex mode shapes for all

contributing modes (as needed for these existing methodologies) is impractical.

Other methods utilize the full frequency response function (FRF), which requires

the applied forcing to be known. Such methods include works by Chen et al. [26,27],

Lee and Kim [28], Kim et al. [29], Fritzen [30], and Phani and Woodhouse [31].

Some current damping identification methods require energy measurements [32–

34]. Statistical Energy Analysis (SEA) is one method for determining damping loss

factors. In particular, this method is useful for high frequency ranges. However,

this technique is limited as the damping is assumed to be known either from the

power injection method (PIM) [32,33,35,36], power modulation [36] method, or wave
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approach [37]. PIM and power modulation techniques require measuring energy for

all the components which can be difficult or impossible to gather accurately. Wave

theory only applies to periodic systems. Also, the SEA method can be time consuming

if there are many components [36]. In addition, the accuracy of the SEA method

depends on the modal density and the level of damping as is shown by Mace [38] and

Yap and Woodhouse [39] respectively.

In general, the literature on the damping identification techniques considers low

dimensional systems or systems with low modal density. Also, current methods do

not use reduced order models (ROMs), and can be sensitive to measurement noise.

Thus, current methods do not work well for damping identification for systems with

regions of high modal density such as blisks.

There are three key observations which are applicable to damping identification

of blisks. First, Holland et al. [1] provided a relative force calibration method based

on reciprocity. Such calibration is necessary in cases where the applied forcing at a

given frequency is only known relative to a reference forcing. In such cases, the actual

magnitude of the reference forcing is unknown. The calibration method iteratively

calibrates the excitation applied to each blade so that differences among the blade

excitation magnitudes and phases can be minimized. Thus, the calibration ensures

that the phases of the excitations applied to each of the blades can be accurately set for

traveling wave excitation. The calibration algorithm uses the principle of reciprocity

and involves solving a least squares problem to reduce the effects of measurement

noise and uncertainty. Second, Yang and Griffin [40] found that slightly mistuned

system modes can be well represented as a linear combination of tuned system modes

within a region of high modal density. This relationship has been used in studying

the effects of crack propagation [41–43] and multi-stage phenomena [44]. Therefore, it

is reasonable to assume the optimal measurement locations for a set of tuned system

modes of a blisk (in a frequency range of interest) are also the best locations for
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the slightly mistuned blisk. Finally, mistuning identification methods [45–50] identify

structural (mass and stiffness) variations, but must assume that either the damping

can be ignored, is known, or can be solved simultaneously. In particular, the CMM

method [48, 49] identifies the variation in the mass or stiffness matrix based on a

finite element model without knowledge of the actual damping. Therefore, the mass

and stiffness matrices for the mistuned system can be identified prior to the damping

identification and the only unknown structural parameters to be identified are the

damping coefficients.

1.3 Dissertation Outline

Chapter II introduces a general methodology for identifying (uniform) structural

damping. This method uses undamped tuned system mode shapes. A minimum

of two frequency responses must be measured. Next, a more general methodology

is formulated, which incorporates stiffness mistuning and uses ROMs for enhanced

robustness and fast calculations. Then, it is shown that the proposed method can

reduce to the half-power method for isolated modes. Finally, two data filtering ap-

proaches are proposed to enhance the accuracy of the identification in the presence

of measurement noise. The damping identification methodology is demonstrated to-

gether with the two measurement filters for a one-piece bladed disk with stiffness

mistuning. Results of a study are presented which explore the damping identifica-

tion sensitivity to forcing errors. The chapter finishes with a discussion regarding

the proposed damping and other techniques that also identify one damping value per

system.

Chapter III presents a measurement point selection (MPS) technique for blisks

and applies it to a new modal damping identification method. First, a modified form

of the original effective independence distribution vector (EIDV) method presented

by Penny et al. [2] and adapted by Holland et al. [1] is discussed. Then, a residual
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weighting is introduced to optimize the MPS technique by ranking individual mea-

surement locations according to their noise sensitivity. In addition, an algorithm is

presented which describes an effective procedure incorporating the MPS method into

experiment preparation for complex structures.

Next, a new method to identify damping parameters for each mode in a frequency

range of interest is presented. This method utilizes the proposed MPS technique

to increase the accuracy of the identification. Measurement locations and modal

damping results for a 30 degree of freedom system and a blisk with a complex geometry

are presented. Then, the modal damping identification results using a numerical

simulation of a low dimensional system and the University of Michigan validation blisk

with respect to several ROMs of various sizes and various noise levels are presented.

Finally, results utilizing the optimized MPS technique are provided.

Chapter IV introduces an alternate modal damping identification method. First,

the damping identification is formulated using the frequency response matrix (FRM).

This method identifies the damping by generalizing the FRM to retain only the

measured degrees of freedom and the forcing which can be applied. Then, frequency

windowing is introduced which can reduce the effects of measurement noise and also

lower the number of required forcing cases. Next, the proposed method is extended

to identify damping using the knowledge of the relative forcing instead of the actual

forcing. The modal damping identification procedure is summarized followed by an

example of the frequency windows. Then, results for a validation blisk are presented

with respect to various measurement noise levels. A comparison of the proposed

method with the alternative method in Chapter III is also presented. Finally, results

of a study are presented which explore the damping identification sensitivity to forcing

errors.

Chapter V presents a component damping identification technique which can be

applied to mistuned systems and use ROMs for regions of low and/or high modal
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density. First, the forced response equation is developed using Lagrange’s equation

with the addition of Rayleigh damping. Next, the component damping identification

method is formulated for general systems. Then, specific forms of the identification

equation are given for cases of structural damping, uniform damping, and cyclically

symmetric structures. An identification procedure is introduced to reduce the effects

of measurement noise and allow the identification to use smaller ROMs. Finally,

results are provided for the University of Michigan validation blisk for various mea-

surement noise levels.

Chapter VI introduces an alternate component damping identification method,

which utilizes the reduced frequency response matrix and the known forcing. This

method is extended by requiring only knowledge of the relative forcing.

Chapter VII summarizes the contributions of the work in this dissertation, offers

suggestions for future work, and presents two potential methods for simultaneous

mistuning and damping identification.

9



CHAPTER II

Structural Damping Identification for Mistuned

Bladed Disks and Blisks

2.1 Introduction

To accurately predict the dynamics of most structures, a representation of damp-

ing must be used. This paper focuses on structural damping and the identification of

structural damping for complex systems with cyclic symmetry such as bladed disks

and integrated (one-piece) bladed disks (blisks) with mistuning. Mistuning repre-

sents variations in mass or stiffness (compared to the tuned system) which destroys

cyclic symmetry and may cause localization of vibration energy. This localization

leads to a larger response in portions of the structure. As a result, the mistuned

structure is more susceptible to high cycle fatigue and earlier failure than the tuned

structure. Mistuning identification methods [45–50] identify these structural vari-

ations, but must assume that the damping can be ignored, is known, or solve for

the damping simultaneously. Furthermore, forced response predictions depend cru-

cially on accurate knowledge of damping. These issues are particularly critical when

damping coatings are used. Such coatings are increasingly used in turbomachinery

applications. Applying a layer of material to the structure to induce or change the

damping characteristics of the structure strongly affects its forced response. Hence,
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to accurately determine the effects of the coatings, damping must be accurately iden-

tified.

Several methods are currently available for damping identification [6,7,14–20,22,

26–29]. Notably, the steady-state and transient decay (such as Schroeder’s integrated

impulse [4, 33]) methods as well as the power injection method are available [32, 33].

Most of these techniques are designed for low dimensional systems or for systems

with low modal density. Also, most of these techniques can be grouped into two

types based on the nature of the system information that they require [31, 34]. The

first type involves measuring damped eigenvalues and mode shapes, and does not

require knowledge of the system excitation. The second type involves measuring the

forces applied to the system and constructing (full) frequency response functions.

Herein, an alternate structural damping identification method specifically tailored

for systems with high modal density (such as bladed disks and blisks) is presented.

The approach is robust with respect to measurement noise and makes use of highly ef-

fective reduced order models (ROMs). In contrast to existing techniques, the proposed

method also avoids complications involved in measuring damped modal characteris-

tics (damped eigenvalues/eigenvectors) or applied forces, while identifying structural

damping only from displacement or velocity measurements.

First, a novel, general methodology for identifying (uniform) structural damping is

presented. This method uses undamped tuned system mode shapes and a minimum

of two frequency responses must be measured. Next, a more general methodology

is formulated, which incorporates stiffness mistuning and uses ROMs for enhanced

robustness and fast calculations. Finally, two data filtering approaches are proposed

to enhance the accuracy of the identification in the presence of measurement noise.

The first filter applies to measurements which are approximately equal in amplitude

and phase although they occur at different frequencies. The second filter removes

measurements where the magnitude of the response is low.
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2.2 Methodology

The equation of motion for a structure with uniform structural damping can be

expressed as

−ω2
iMxi + (1 + jγ) Kxi = Fi, (2.1)

where M is the mass matrix, K is the stiffness matrix, γ ∈ < is the structural

damping, j is
√
−1, xi is the displacement (vector), and Fi is the applied forcing

(vector) for a harmonic excitation with index i and frequency ωi.

The proposed damping identification approach assumes that the mass and stiffness

matrices have already been identified and are known. This assumption implies that

it is possible to identify the mistuning simultaneously with the damping or without

knowledge of the damping. Three such methods, available for the mistuning identi-

fication, are the SNM method proposed by Griffin et al. [45–47], the CMM method

of Lim et al. [48, 49], and a method proposed by Mignolet et al. [50]. In particular,

the CMM method identifies the variation in the mass or stiffness matrix based on

a finite element model (without knowledge of the damping). Therefore, the mass

and stiffness matrices for the mistuned system can be known prior to the damping

identification discussed herein.

Next, consider another excitation (of index k). Assuming that the applied forces

Fi and Fk are harmonic and have the same spatial distribution (but can have different

amplitudes, phases, and frequencies), one obtains Fi = αkFk, and

−αkω2
kMxk + αk (1 + jγ) Kxk = αkFk = Fi, (2.2)

where αk ∈ C. Next, combining Eqns. (2.1) and (2.2), one obtains

−ω2
iMxi + (1 + jγ) Kxi = −αkω2

kMxk + αk (1 + jγ) Kxk.
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This equation sequentially leads to

(1 + jγ) K [xi − αkxk] = M
[
ω2
i xi − αkω2

kxk
]
,

(1 + jγ) [xi − αkxk] = K−1M
[
ω2
i xi − αkω2

kxk
]
. (2.3)

Consider the physical to mistuned modal coordinate transformation matrix ΦΨΦΨΦΨ,

where ΦΦΦ is a matrix containing the tuned eigenvectors. ΨΨΨ is the transformation

matrix from tuned coordinates to mistuned coordinates under the assumption that the

mistuned modes are a linear combination of the tuned system modes. This assumption

holds for systems with small mistuning [45,48]. Note that ΨΨΨ = I for a tuned system.

Both ΦΦΦ and ΨΨΨ contain the complete set of eigenvectors of the entire structure (e.g.,

an entire blisk). The relationship between physical (x) and modal (p) coordinates is

given by x = ΦΨΦΨΦΨp. Note also that

ΦΦΦTKΦΦΦ = K̃ and ΦΦΦTMΦΦΦ = M̃, (2.4)

so

K−1 = ΦΨΦΨΦΨK̃
−1

ΨΨΨTΦΦΦT and M = ΦΦΦ−TΨΨΨ−TM̃ΨΨΨ−1ΦΦΦ−1,

where K̃ and M̃ are the modal stiffness and mass diagonal matrices, −1 indicates the

inverse, and −T is the inverse transpose. Substituting these terms into Eqns. (2.1)

and (2.2), pre-multiplying by ΨΨΨ−1ΦΦΦ−1, and using p = ΨΨΨ−1ΦΦΦ−1x, one obtains

(1 + jγ) [pi − αkpk] = K̃
−1

M̃
[
ω2
i pi − αkω2

kpk
]
. (2.5)

Equation (2.5) can be interpreted as a least-squares problem of the form aγ = b

(with a and b being vectors and γ a scalar). Note that pi, pk and αk are (in general)

complex numbers.
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2.2.1 Reduced-Order Modeling

The methodology presented in the previous section uses all mode shapes and all

(N) degrees of freedom (DOFs) of the system. This section presents the justification

for using a ROM where the system is modeled by a truncated set of modes, and a

truncated set of DOFs.

The structural response to forcing Fi can be expressed in modal coordinates as

pi =
[
p1
i . . .p

v
i . . .p

N
i

]T
. Next, consider that the forcing Fi is in a frequency range

where a particular mode v contributes very little to the response. Hence, pvi ≈ 0.

Since K̃ and M̃ are diagonal, the entries of index v in these matrices can be replaced

with zeros. Therefore, mode v may be removed along with the corresponding diagonal

entries of K̃ and M̃. This process can be done for all modes which contribute little to

the response in a given frequency range. So, (ΦΦΦΨΨΨ)n×m (p̃i)m×1 ≈ (xi)n×1, where n is

the number of measurement DOFs and m is the number of responding modes. Then,

for a ROM, ΦΦΦ is a matrix of size n×N , and ΨΨΨ is of size N ×m. Next, assuming that

the space spanned by the m mistuned eigenvectors in the frequency range of interest

can be represented by the truncated set of q tuned system modes ΦΦΦn×q [45, 48], the

matrices ΦΦΦn×N and ΨΨΨN×m may be reduced to ΦΦΦn×q and ΨΨΨq×m.

Solving the least squares problem in Eqn. (2.5) and taking the imaginary and real

parts, the key equations used for a mistuned system modeled using a ROM can be

expressed as

γ = Im

{(
[pi − αkpk]

T
1×m [pi − αkpk]m×1

)−1

[pi − αkpk]
T
m×1 K̃

−1

mistm×m[
ω2
i pi − αkω2

kpk
]
m×1

}
,

(2.6)

1= Re

{(
[pi − αkpk]

T
1×m [pi − αkpk]m×1

)−1

[pi − αkpk]
T
1×m K̃

−1

mistm×m[
ω2
i pi − αkω2

kpk
]
m×1

}
,

(2.7)
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where K̃
−1

mistm×m
is the diagonal mistuned stiffness matrix in mistuned modal coor-

dinates. Equation (2.6) can be used to determine γ. Equation (2.7) can serve to

ascertain the accuracy of the model and that of the modal amplitudes pi and pk.

For a system with stiffness mistuning, the stiffness matrix in tuned system modal

coordinates is not diagonal, but full. This full matrix is denoted by K̄mistN×N
such that

ΨΨΨT
m×mK̄mistN×N

ΨΨΨN×N = K̃mistN×N
. In general, ΦΦΦN×N is mass normalized. Therefore,

one obtains successively

ΨΨΨK̄
−1
mistM̄ΨΨΨ−1 = ΨΨΨK̄

−1
mistΨΨΨ

TΨΨΨΨΨΨ−1

≈ ΨΨΨm×mK̄
−1
mistm×m

ΨΨΨT
m×m

≈ K̃
−1

mistm×m
.

Solving the least squares problem in Eqn. (2.5) and taking the imaginary and real

parts in tuned modal coordinates, where p = ΨΨΨ−1q the key equations used for a

mistuned system modeled using a ROM can be expressed as

γ ≈ Im

{(
[qi − αkqk]

T
1×m [qi − αkqk]m×1

)−1

[qi − αkqk]
T
m×1 K̃

−1

mistm×m[
ω2
i qi − αkω2

kqk
]
m×1

}
,

(2.8)

1≈ Re

{(
[qi − αkqk]

T
1×m [qi − αkqk]m×1

)−1

[qi − αkqk]
T
1×m K̃

−1

mistm×m[
ω2
i qi − αkω2

kqk
]
m×1

}
,

(2.9)

where qi and qk are the modal amplitudes at frequencies i and k respectively. The

equation above highlights that the mistuned system modes ΨΨΨ are not required for the

damping identification of a mistuned system in tuned modal coordinates.

The accuracy of the damping identification depends on the accuracy of the modal

amplitudes p or q obtained from measurements. Therefore, methods for determining

accurate p or q values from physical measurements must be used, such as those
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proposed by Madden et al. [49].

2.2.2 Simple Case of Isolated Modes

A mode whose resonant response does not contain a response of any other mode

is referred to as an isolated mode. An isolated mode is easily identifiable because

its frequency is not near the frequencies of all the other modes. First, assume that

the forced response for an isolated mode has been measured. Then, assume that

measurements happen to be collected at the half-power frequencies for the isolated

mode. Assuming that the forcing is constant and γ is small, the proposed method can

be shown to reduce to the well-known half-power method for a single DOF system.

See Appendix A for more information. Namely, for cases where γ is small, Eqn. (2.5)

becomes

γ =
ω2

2 − ω2
1

2 ω2
n

=
ω2 − ω1

ωn

ω2 + ω1

2ωn
≈ ω2 − ω1

ωn
. (2.10)

2.2.3 Measurement Data Filtering

Examining Eqn. (2.6) reveals two types of measurement data where the damping

identification may not be accurate. The first corresponds to cases where the two re-

sponses xi and xk appear to be very similar although they correspond to two different

frequencies. This situation occurs when xi − αkxk ≈ 0. For this case, measurement

noise dominates the differences in the responses and causes an erroneous identifica-

tion. To alleviate this issue, the data used as input to the identification is filtered.

Measurement pairs removed from the identification (indicated by superscript rem)

meet the following condition

||xremi − αxremk || ≤
Tc

100
maxk=1,...n,i=1...n||xremi − αxremk ||,
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where || · || denotes the 2-norm, and Tc is a given threshold (e.g. 25% for the blisk

example in Sec. 2.3).

The second type of measurement data corresponds to cases where the magnitude of

the response is low. Previous forced response studies have shown that low responding

data cannot be adequately captured by ROMs [51]. Hence, the damping identification

which uses that information will not be accurate. All measurements removed from

the damping identification meet the following condition

maxu=1...n

∣∣xremi,u ∣∣ ≤ Tl
100

maxω,u=1...n

∣∣xremi,u ∣∣ ,
where | · | denotes the absolute value, u is the uth DOF, and Tl is a given threshold

(e.g. 25% for the blisk example in Sec. 2.3). Note also that the modal amplitudes pi

and pk are collected after an elaborate and complex process of measurement point

selection, mode selection, and data filtering similar to the one used by Madden et

al. [49] (and omitted for the sake of brevity).

The parameters Tc and Tl can be estimated to remove noisy and low responding

data from the identification. The general guideline for choosing these parameters is

that they should be consistent with the signal to noise ratio of the measurements used

for the identification. If Tc and Tl are chosen to be too high, insufficient data may

be retained for the identification. In such as case, Tc and Tl can be changed, and the

identification can be performed again.

2.3 Damping Identification Results

This section contains damping identification results from numerical simulations.

The results are obtained for the University of Michigan validation blisk, and assume

that the relative forcing is calibrated. Therefore, the relative magnitude and phase

are the same (i.e. αk = 1).
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The validation blisk is a 141,120 DOF model, has an applied stiffness mistuning

pattern with values between ±5%, a structural damping of 0.00015, and a cyclic

modeling error [51] (CME) of approximately 5%. The validation blisk is described in

detail in [52].

For a correct identification, Eqn. (2.7) is exactly satisfied. In general, the residual

of this equation indirectly reflects the accuracy of the damping model, the accuracy

of the physical to modal transformation, and the quality of the measurement data. In

the following, the identified damping results are sorted by increasing relative residual

value from Eqn. (2.7). The minimum and maximum values correspond to the most

and least accurate identified damping values respectively.

Measurement data was generated for the first flex family by ANSYS. Relative noise

was injected in the measurement data as follows xnoiseab =
(
1 + Nlevel

100
r
)
xab, where r is

a uniform random number between +1 and -1, xab is the response of the ath DOF

at the bth frequency, and Nlevel is the maximum noise level as a percentage. The

identification uses the data filtering discussed in Sec. 2.2.3. Damping was identified

using the prescribed mistuning and CME values.
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Figure 2.1: Identified (ID) structural damping for the validation blisk using data with
1% relative noise

Figures 2.1 and 2.2 show that the proposed method successfully identifies the

blisk structural damping. Although the maximum relative errors are 420% and 568%

for the 1% and 5% noise cases, the relative error of the average identified damping
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Figure 2.2: Identified (ID) structural damping for the validation blisk using data with
5% relative noise

is excellent, between 9.73% and 3.4% respectively. Note that the higher the resid-

ual in Eqn. (2.7) the more error is found in the identification. Thus, the proposed

method can effectively establish (and rank) the quality of the results. Tighter mea-

surement data filtering can improve accuracy and reduce the maximum relative errors

by eliminating less accurate measurements. Overall, the proposed method accurately

identifies the structural damping for the blisk. Similar results without noise and for

10% noise are included in [53].

Results for a smaller, 30 DOF system were also obtained and were presented

previously [53]. It was found that the mean value of the identification cases provided

accurate results when using a ROM and also with respect to measurement noise.

One of the assumptions of the damping identification method is that the relative

forcing is known for a given frequency range. One way to obtain this information for

a frequency band is to use the frequency transfer function for each speaker/magnet

used for excitation, and assume that the force applied to the structure is proportional

to the output of the speakers/magnets. To study the effects of errors in the transfer

function or in the output of the speakers/magnets, the applied forcing was varied

using F (ω) = 100[1 +αerror/100r1(ω)] + jαerrorr2(ω) (measured in mN), where r1(ω)

and r2(ω) are random numbers drawn from a uniform distribution between -1 and

1. The nominal applied force is 100 mN. Therefore, the maximum amplitude errors
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Figure 2.3: Relative error of the identified damping as the error in the relative forcing
increases

considered are large, with values up to 22%. The maximum phase angle errors are

also large, with values up to ±14◦. 1000 realizations were calculated for αerror from

1 to 20.

Figure 4.7 shows the results for αerror from 1 to 20. The x-axis displays the αerror

value, while the y-axis displays the relative error between the actual and the mean

identified structural damping. The mean identification errors introduced by these

simulated errors in αk are below 2.4%. These low errors are for large errors up to

20% in the relative forcing coefficient. Surprisingly, Fig. 2.3 shows that the mean

error in the identification decreases as αerror approaches 7%. It is believed that this

trend is due to the removal of low responding data in the measurement filtering. The

standard deviation of the predictions increases as αerror increases. The maximum

standard deviation occurs at 20% variation in the relative forcing and is less than

2%. In general, the identification error caused by variations in the relative forcing is

smaller than the error introduced by measurement noise.

2.4 Discussion and Conclusions

A structural damping identification procedure, which only requires knowledge of

the undamped system modes, damped forced responses, and the relative frequency
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dependence of the forcing was presented. Using the proposed method to identify

structural damping allows for more accurate forced response and high-cycle fatigue

predictions, especially when mistuning is present in blisks.

Moreover, numerical results for a blisk with complex geometry show that the

novel method successfully identifies structural damping using ROMs. Noise and other

effects such as temperature (on the excitation electronics) can cause the excitation to

vary over time. Any such characteristics can be accounted for by using non-unitary

values for αk for certain (or all) measurements. Furthermore, even if one would

choose to operate with measurements where αk 6= 1, one could simply plug in the

αk values and the proposed algorithm will work with the same level of performance.

This strategy holds for both cases of zero and non-zero noise.

Many systems such as blisks have high modal density. These systems contain

eigenvalues which are very closely grouped, so multiple modes contribute to the off-

resonant responses. For these systems, accurately determining the complex mode

shapes for all contributing modes (as needed for some current damping identification

methodologies) would be nearly impossible. Other iterative procedures identify the

mass, stiffness, and damping matrices. For high modal density, such approaches

lead to very high noise sensitivity because of the near-singular nature of the inverse

problem. In contrast, the proposed method gains robustness by exploiting the fact

that the response of the system is a linear combination of the tuned system modes.

Moreover, many existing techniques for damping identification focus on measurements

collected at resonant conditions. Such conditions are easily identified for low modal

densities. However, resonances are nearly impossible to identify from measurements

in the case of high modal density. This difficulty occurs because large responses

are observed between resonant or natural frequencies. Thus, a key advantage of

the proposed method is that it does not require measurements precisely at resonance.

Surely, large responses are preferable (because of their favorable signal to noise ratio),
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but they are not required to be precisely at resonant conditions. Furthermore, the

proposed method is equally effective for both low and high modal density cases. In

fact, the proposed method reduces to the half-power method for isolated modes. In

contrast, the blisk example provided is a very difficult case for other methodologies

because most current techniques do not apply to systems with high modal density.

In acoustics, there is another damping methodology which assumes that all modes

in a frequency range of interest have the same decay time. For viscous damping, this

assumption is equivalent to assuming either the mode natural frequencies are the same

(the system behaves like a SDOF system) or the natural frequency for a given mode is

inversely proportional to the viscous damping for that mode. For structural damping,

the assumption is also equivalent to assuming either the the system behaves like a

SDOF system or the natural frequency for a given mode is inversely proportional to√
1/2

(√
1 + γ2 − 1

)
[54] for that mode. Now, assume that a forcing is applied and

then removed so that the structural behavior is a free response. Then, the equation

of motion can be written as

Mẍ + (1 + jγ) Kx = 0

Further, assume that the applied forcing is frequency filtered so that only modes in

the frequency range of interest are forced.

In general, the similar damping identification methods assume that the modes

which participate in the free response of the system have the same decay time [4].

This assumption is equivalent to fitting the exponential decay to a single-degree-of-

freedom system or that the natural frequency of each mode is inversely proportional to

a damping parameter (ζ for viscous damping and a function of γ for structural damp-

ing). Both of these assumptions are non-physical. Conversely, the proposed method

allows for multiple time decays to occur in the response (as happens experimentally),
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while identifying the damping. Therefore, the proposed method represents reality

better than methods currently used in acoustics and the statistical energy analysis

(SEA) subsystems. The benefit of the suggested methods is that the assumptions al-

low the energy loss to be identified without knowledge of natural frequencies or mode

shapes. However, this method will become less accurate in two situations. The first

corresponds to the frequency band containing a significant contribution from mode

which is far from the centering frequency. The second situation occurs when the

decay contains different decay times (as happens in actual systems). The proposed

method does not have these limitations. In addition, both methods are limited to

frequency bands where the damping and/or the frequency must be low enough to

obtain a meaningful time decay.

It is found that the proposed method obtains more accurate results for energy loss

identification and also has does not contain some of the limitations of the suggested

techniques. However, it is recognized that the increase in accuracy (which is required

for knowing the amplification of a mistuned system) and generalization results in a

more complex methodology.
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CHAPTER III

Measurement Point Selection and Modal Damping

Identification for Bladed Disks

3.1 Introduction

Measuring the response of a structure is the first step in performing a system

identification. Structures such as bladed disks and integrally bladed disks (blisks)

have a complex geometry. Capturing the motion of such complex structures can be

very difficult and typically involves finite element models with a large number of

degrees of freedom (DOFs). Also, these models employ parameters which are often

not well known; for example the actual mass and stiffness of the physical structure.

Thus, identification techniques are needed to determine the actual system properties.

Another such parameter and the focus of this work is damping. These identifica-

tion techniques require measurements of the vibratory response of the structure. In

general, increasing the number of measurement points increases the accuracy of the

identification. However, as the number of measurement locations increases, the cost

of the experimental work increases greatly. To address this issue, one may use the

effective independence distribution vector (EIDV) method [2] which determines the

amount of modal information provided by each point in a candidate set of mea-

surement locations. Holland et al. [1] extended the EIDV method to determine the
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minimum number and the best locations of the necessary measurements. This ap-

proach uses the full system model which requires a heavy computational effort. In

this work, an optimized measurement point selection (MPS) technique is introduced

to reduce the computational effort for blisks and to increase the robustness of the

selection process.

Small sector-to-sector variations (mistuning) in the mass or stiffness of blisks can

cause energy to be localized to certain regions of a blisk. This phenomenon results

in an increase in the maximum vibration amplitudes and stresses compared to their

analog cyclically symmetric (or tuned) structures. This difference can lead to high

cycle fatigue failure. In an effort to minimize the effects of vibrations, damping

coatings can be applied to these structures. As mistuning may significantly affect

certain modes, the damping coatings should decrease the response of the desired

modes. To determine the effectiveness of damping coatings, the modal damping of

the system with and without the coating has to be determined. Current damping

methods [4, 6, 7, 11, 12, 14–20, 22–24, 26–29] can be grouped into three categories. In

general, the literature on these techniques considers low dimensional systems or sys-

tems with low modal density. The most basic methods represent the dynamics using

a single DOF system [4]. The methods in the second category require measuring

damped eigenvalues and mode shapes, and do not require measurements of the exci-

tation. In contrast, the focus of this work is identification of damping in systems with

high modal density (such as cyclically symmetric structures) exemplified by blisks.

These systems contain eigenvalues which are very closely grouped, so multiple modes

contribute to the off-resonant responses. For these systems, accurately determining

the complex mode shapes for all contributing modes (as needed for these existing

methodologies) is impractical. The methods in the third and last category require

constructing (full) frequency response functions, and therefore require knowledge of

the excitation. Herein, a novel modal damping identification method is presented
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which accurately identifies the modal damping using noisy measurements, works well

with both full order and reduced order models (ROMs) for (low and) high modal

density cases, and only requires knowledge of how the relative forcing varies with

frequency. Such forcing is obtained in many cases where the applied forcing at a

given frequency is only known compared to a reference forcing, whereas the actual

magnitude of the reference forcing is unknown.

Griffin et al. [40] found that slightly mistuned system modes can be well repre-

sented as a linear combination of tuned system modes. This relationship has been

used to study the effects of crack propagation [41–43] and multi-stage phenomena [44].

Therefore, it is reasonable to assume that the optimized measurement locations for a

set of tuned system modes of a blisk (in a frequency range of interest) are also the best

locations for the slightly mistuned blisk. Moreover, the damping identification does

not require cyclic symmetry. Therefore, the proposed MPS and damping methods

apply to both cyclically symmetric and slightly mistuned systems.

3.2 MPS Extensions

Current damping identification methods assume that accurate measurement data

has been measured, but they do not often provide information on how this assumption

is realized. As such, the choice of measurement locations may be one cause of the

sensitivity of current identification techniques to measurement noise.

In this section, the EIDV method [2] is extended in three different ways. First, the

EIDV procedure is modified to take advantage of cyclic symmetry. Next, a residual

weighting which considers the effects of noise is added to the EIDV method. Third,

an algorithm is introduced to determine the measurement locations when the number

of candidate DOF is very large.
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3.2.1 EIDV and Cyclic Symmetry

The EIDV-based procedure presented by Holland et al. [1] uses the full tuned

system modes to calculate the optimized measurement locations. When the model

has many sectors with many candidate measurement locations, the matrices involved

can become prohibitively large. For example, relatively small industrial blisks can

easily lead to the need to handle matrices exceeding sizes of 104×104. However, using

cyclic symmetry and exploiting the properties of the matrices involved in the EIDV

procedure, one may redefine the minimum EIDV value and transform the method as

to require only single sector calculations. As a result, the matrix sizes reduce from the

total number of DOFs in all sectors of the system to the number of DOFs in a single

sector. Therefore, the computational and memory costs are dramatically reduced.

Next, we discuss such an EIDV-based method for structures with cyclic symmetry.

The EIDV vector [2] is defined as

EIDVfull
a = diag

(
ΦΦΦ
[
ΦΦΦTΦΦΦ

]−1
ΦΦΦT
)
, (3.1)

where ΦΦΦ is a subset of tuned system modes in a frequency range of interest and

diag refers to the diagonal entries of the enclosed matrix. Many such subsets can be

chosen. To refer to one of these subsets, the subscript a is used to indicate the ath

subset.

Note that ΦΦΦ
[
ΦΦΦTΦΦΦ

]−1
ΦΦΦ is idempotent and symmetric, and for a cyclically sym-

metric structure

ΦΦΦ = (F⊗ Id×d)ΦΦΦsec, (3.2)

where F is the real Fourier matrix [48] of size s×s (with s being the number of sectors

in the system), d is the number of candidate DOFs in one sector, and ΦΦΦsec is a block

diagonal matrix containing the ath subset of tuned system modes for a single sector.

For a blisk, each block in ΦΦΦsec corresponds to a different nodal diameter. Substituting
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Eq. 3.2 into Eq. 3.1, one obtains

EIDVfull
a = diag

(
[F⊗ Id×d]ΦΦΦsec

[
ΦΦΦT
secΦΦΦsec

]−1
ΦΦΦT
sec

[
FT ⊗ Id×d

])
,

where ΦΦΦsec

[
ΦΦΦT
secΦΦΦsec

]−1
ΦΦΦT
sec is idempotent. The trace of any idempotent matrix is

equal to its rank. This key observation [2] can be used to select as measurement

DOFs the DOFs which correspond to the largest values on the diagonal of EIDVfull
a .

For a cyclically symmetric system, the entry of EIDVfull
a for a DOF on one sector

is the same for all sectors. Hence, the same DOF that is chosen for one sector is

also chosen as a measurement DOF for all the other sectors. Also, the rank of two

matrices related through a similarity transformation is the same. Therefore, the cyclic

expansion in Eq. 3.2 is not needed, and the first sector can provide all the required

information. Now define

EIDVsec
a = diag

(
ΦΦΦsec

[
ΦΦΦT
secΦΦΦsec

]−1
ΦΦΦT
sec

)
.

Since ΦΦΦsec is block diagonal,

EIDVsec
a = diag


. . . 0 0

0 Az

[
AT
z Az

]−1
AT
z 0

0 0
. . .

 , (3.3)

where Az is the zth block of the ath subset of tuned sector modes corresponding to

the zth nodal diameter. Each block of EIDVsec
a is an idempotent matrix, where the

diagonal values are the contribution of each DOF to the linear independence of that

block of modes. Let

da,z = diag
(
Az

[
AT
z Az

]−1
AT
z

)
. (3.4)

The values in the vector da,z correspond to the candidate DOFs in one sector (for the
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modes from ΦΦΦsec) which have nodal diameter z. Therefore, one obtains

EIDVsec
a =


...

da,z
...

 , (3.5)

To further increase the efficiency of the method, one may note that only the

diagonal entries in Eqn. (3.4) are retained. Therefore, the rth diagonal entry is

dra,z = diag
(
AT
z Ãz

)
=
∑
e

Aerz Ã
er
z , (3.6)

where Ãz =
[
AT
z Az

]−1
AT
z and AT

z are matrices of size n × d, and n is the number

of modes of nodal diameter z. The size of the largest matrix in the original EIDV

method is sd× sd, while the sector-level EIDV involves matrices of size d× ñ or less

(where ñ is the maximum number of modes over all z). Thus, one may express the

reduction in memory required by the sector-level EIDV as

%mem = 100

(
1− ñ

s2d

)
. (3.7)

For nodal diameters with mode pairs, da,z contains two values for each candidate

DOF (otherwise da,z only contains one value per DOF). Therefore, let d̄a,z be a matrix

where the bth column contains the bth occurrence of the candidate DOF in da,z. If

nodal diameter z has a single mode (not a pair), then d̄a,z = da,z. Hence, a key

aspect is that the DOF corresponding to the minimum value of
∑
b

d̄
b
a,z contributes

the least to the linear independence of the modes with nodal diameter z. Define the

new EIDV value to be

EIDVa =
∑
z

∑
b

d̄
b
a,z, (3.8)

where b is a multiple of 2 for nodal diameters with mode pairs. Here, the sum of the
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d̄
b
a,z values is an indicator of the contribution of the candidate DOFs to the linear

independence of the modes in the frequency range of interest. Similar to the original

EIDV method [2], the new sector-level EIDV approach eliminates as a candidate DOF

(one by one) the DOF (one on each sector) which corresponds to the lowest value in

EIDVa.

The number of operations for the original EIDV method is Corig = 4m2sd +

2s2d2m−m2 −msd− s2d2, where m is the number of modes in the frequency range

of interest. At least one mode is included for each nodal diameter such that z = 1...s.

Then, the computational cost for the sector-level EIDV method is Csec < m2(2d−1)+

2dm2 +d(m− s) +dm < 4m2d+ 2md. Therefore, the reduction in the computational

time is at least

%time = 100

(
1− Csec

Corig

)
> 100

(
1− 2m+ 1

s2d
(
1− 1

2m

)
+m

(
2s− 1

2d

)
− s

2

)
. (3.9)

Of course, one could also include the computational cost of the matrix inversion (for a

given inversion method) in calculating Ãz and the operations involved in creating and

arranging the Ãz matrices. Considering the inversion will increase the cost reduction,

while including the cost of the matrix manipulations will decrease the cost reduction

(as separate matrices for each nodal diameter are involved in the sector-level EIDV

method).

3.2.2 Residual Weighting

To be robust and to provide accurate results, a MPS method must be insensitive to

measurement noise. Therefore, we introduce a residual weighting which examines the

error (associated with each measurement location) caused by noisy measurements. As

damping identification depends on the modal transformation, this weighting considers

the effect of the physical to modal and back to physical coordinate transformations
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on noisy responses. The MPS (with residual weighting) is normally used for both

mistuning identification [49] (not discussed here) as well as damping identification.

First, a numerical forced response is performed at frequencies ωy near the system

natural frequencies. For increased computational efficiency, a ROM is used. To ensure

that the selected measurement points are statistically optimized for any mistuning

pattern (with some maximum mistuning in each blade), multiple forced responses are

calculated. Each forced response is calculated for a random level of mistuning and

cyclic modeling error [49] within model specific limits (e.g., between -5% and +5%

mistuning). Noise is then injected into the calculated response to obtain surrogate

data (one surrogate data set for each mistuning pattern and each noise realization)

which mimic experimental data. The noise is modeled using

xqnoisy (ωy) = xqmeas (ωy) +NpR
q
1x

q
meas (ωy) +

√
2

2
NpR

q
2 maxq=1...DOF,y (xqmeas (ωy)) ,

(3.10)

where Np is the maximum noise introduced, Rq
1 are randomly generated numbers

drawn from a uniform distribution between -1 and 1, and Rq
2 are complex numbers

composed of real and imaginary parts with values drawn from a uniform distribution

between 0 and 1. Rq
1 introduces relative measurement noise, whereas Rq

2 introduces

absolute and bias noise.

Let xqnoisy (ωy)be the forced response of DOF q after noise has been injected into

the actual (exact) response xqact (ωy). Since the damping identification ignores low

responding data, this data is removed from both the actual and the noisy data. Next,

for each ωy, the noisy responses of candidate DOF q are grouped in a vector xnoisy (ωy)

for all q. Let xatrans (ωy) = ΦΦΦ
[
ΦΦΦTΦΦΦ

]−1
ΦΦΦTxnoisy (ωy). The residual weighting for the
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qth candidate measurement DOF is defined as

Resqa =

ε+minq=1...DOF

(∑
y

|xqact (ωy)− xa,qtrans (ωy)|

)
ε+

∑
y

|xqact (ωy)− xa,qtrans (ωy)|
, (3.11)

where | · | denotes the absolute value. The residual in Eq. 3.11 contains information

about the sensitivity of the measurement locations to noise (when a specific ROM is

used). Note that Resqa is a value between zero and 1. A low value of Resqa (close to

zero) corresponds to a high sensitivity to noise. A high value of Resqa (close to 1)

corresponds to a low sensitivity to noise.

In Eq. 3.11, the residual of the transformation from the physical to modal and

back to physical coordinates |xqact (ωy)− xa,qtrans (ωy)| is calculated for each forced re-

sponse case, and the mean value over the surrogate realizations is retained. As each

sector contains the same measured DOFs, the final residual weighting value, Resqa,final

contains the minimum value of Resqa for DOF q over all the blades. This weighting

cannot be done using sector-level calculations. However, as the residual is only cal-

culated one time (for the set of all candidate DOFs) the residual weighting is less

expensive computationally than the EIDV method.

The new MPS method combines the EIDV method with the residual weighting.

Let

MPSqa = Resqa,final EIDV
q
a .

The minimum MPSqa corresponds to the DOF q (one on each blade) which contributes

less to the linear independence of the modes and is more sensitive to noise than the

other candidate locations. The best measurement locations for different ROMs can

be easily obtained by determining MPSqa for q = 1...DOF for the corresponding ath

set of modes in each ROM.

For DOFs with low residual weighting values, the MPS becomes dominated by
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Figure 3.1: Optimized MPS algorithm

the residual weighting. For DOFs with high values in the residual weighting (close

to 1), the MPS is dominated by the EIDV method. To achieve a balance between

the noise sensitivity of each DOF and their contribution to the linear independence

of the modes, ε is defined as

ε = meanq=1...DOF,y |xqact (ωy)| .

3.2.3 Optimized MPS

Next, the process of determining the best set of measurement points is described

using an optimized MPS technique, as shown in Fig. 3.1. This algorithm is important

even when using sector-level computations, and is particularly useful for structures

with a large number of candidate DOF because additional reduction of the memory

usage and the calculation cost are often necessary in such cases.

First, a set of candidate measurement locations is chosen. These locations should

contain regions on the structure which are considered to be of interest and are physi-

cally possible to measure. Such locations may be chosen from a finite element model

with a very fine mesh. Thus, it may be necessary to further sub-select from the candi-

date set. To do this sub-selection, the geometric information of the candidate points

is used to choose a smaller set of locations where the reduced candidate measurement
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locations are uniformly distributed over the structure. From the reduced candidate

measurement locations, the MPS method determines an initial set of measurement

locations. If desired, a local refinement step can be performed as follows. Taking all

candidate locations (from the original set) that are in a region close to the previously

chosen MPS points, one can define a new reduced set of candidate measurement lo-

cations. Applying the MPS method again on this new candidate set (containing only

points near the previously chosen measurement points) provides a refined, optimized

set of measurement locations.

3.3 Modal Damping

Mistuning identification methods [45–50] identify structural (mass and stiffness)

variations, but must assume that either the damping can be ignored, is known, or

can be solved simultaneously. In particular, the CMM method [48, 49] identifies the

variation in the mass or stiffness matrix based on a finite element model without

knowledge of the actual damping. Therefore, the damping identification approach

herein assumes that mass and stiffness matrices for the mistuned system are identified

prior to the damping identification and the only unknown structural parameters to

be identified are the damping coefficients.

Next, a novel modal damping identification method is presented. This method

identifies a damping parameter for each mode in a ROM. The formulation applies

to both tuned and slightly mistuned systems as well as regions of low and high

modal density. A key advantage of the proposed method is that it does not require

measurements precisely at resonance. Large responses are preferable (because of their

favorable signal to noise ratio), but they are not required to be precisely at resonant

conditions.
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3.3.1 Modal Damping Model

The equations of motion for a linear structure can be expressed as

M¨̄x + C ˙̄x + Kx̄ = f̄, (3.12)

where M is the mass matrix, C is the damping matrix, K is the stiffness matrix, x̄

is the response, and f̄ is the applied forcing. This forcing is assumed harmonic with

amplitude f and frequency ω. Therefore, the physical response x̄ is harmonic and has

a magnitude x given by

−ω2Mx + jωCx + Kx = f, (3.13)

where j is the imaginary unit.

Next, x is converted to tuned (or mistuned) modal coordinates p using x =

ΦΦΦΨΨΨp,where ΦΦΦ is a matrix containing the undamped tuned system normal modes.

Note that for a mistuned system, ΨΨΨ is the transformation from tuned modal coordi-

nates to mistuned coordinates under the assumption that the mistuned modes are a

linear combination of tuned system modes [55]. For a tuned system ΨΨΨ is the identity

matrix. Matrices ΦΦΦ and ΨΨΨ are of size N ×N , where N is the total number of DOF in

the model (and is also the total number of system modes). Pre-multiplying Eq. 3.13

by ΨΨΨTΦΦΦT , one obtains

−ω2p + jωΨΨΨTΦΦΦTCΦΦΦΨΨΨp + ΛΛΛp = ΨΨΨTΦΦΦT f, (3.14)

where the tuned system modes are mass normalized, and ΛΛΛ = ΨΨΨTΦΦΦTKΦΦΦΨΨΨis a diagonal

matrix containing the mistuned eigenvalues.

Let C = 2MΦΦΦΨΨΨdiag (ζu/ω
u
n)ΨΨΨTΦΦΦTK, where ζuis the viscous modal damping co-

efficient for mode u, and ωun is the undamped natural frequency of mode u. For

simplicity, let ζζζ = diag (ζuω
u
n). Next, assume that outside a given frequency range of
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interest, pv ≈ 0 for a known index set v. Then the columns of ΦΦΦΨΨΨ in set v can be

ignored. So, ΦΦΦΨΨΨ reduces to a matrix of size N ×m,where m represents the number

of modes in the frequency range of interest. These m modes are used to construct

ROMs in the frequency range of interest. Also, for small mistuning the m mistuned

modes are a linear combination of θtuned system modes in the frequency range of

interest. Therefore, ΦΦΦ can be reduced to size N × θ and ΨΨΨ can be reduced to size

θ ×m. The forced response can be obtained by solving

−ω2p + 2jωζζζp + ΛΛΛp = ΨΨΨTΦΦΦT f (3.15)

for p. Next, converting from p to x, one obtains

x = ΦΦΦΨΨΨ
[
−ω2I + 2jωζζζ + ΛΛΛ

]−1
ΨΨΨTΦΦΦT f. (3.16)

3.3.2 Modal Damping Identification

When the forcing is applied (acoustically or magnetically) to a small area of the

structure, the spatial forcing remains approximately the same at different frequencies.

For excitations at frequencies ωi and ωksuch that fi = αkfk (with known αk ∈ C),

Eq. 3.15 becomes

−ω2
i pi + 2jωiζζζpi + ΛΛΛpi = ΨΨΨTΦΦΦT fi, (3.17)

and − ω2
kαkpk + 2jωkζζζαkpk + ΛΛΛαkpk = ΨΨΨTΦΦΦTαkfk. (3.18)

Such forcing is obtained in many cases where the excitation applied at a given fre-

quency is only known in relation to a reference forcing (at a different frequency),

whereas the actual magnitude of the reference forcing is unknown. One way to ap-

proximate this relationship is to use the frequency transfer function for the speakers

or magnets used to provide excitation. Then, one may assume that the force applied
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to the structure is proportional to the excitation force for the given frequency band.

Using Eq. 3.17, one obtains

2jζζζ (ωipi − αkωkpk) = ω2
i pi − ω2

kαkpk −ΛΛΛ (pi − αkpk) .

Rearranging ζζζ (ωipi − αkωkpk) and recalling the definition of ζζζ, one obtains

2j diag (ωun [ωipiu − αkωkpku])


ζ1

...

ζm

 = ω2
i pi − ω2

kαkpk −ΛΛΛ (pi − αkpk) , (3.19)

where diag (ωun [ωipiu − αkωkpku]) is a diagonal matrix with the uth diagonal entry

given by ωun [ωipiu − αkωkpku]. The viscous modal damping identification equation is

then obtained as
ζ1

...

ζm

 = Im
{
diag (2ωun [ωipiu − αkωkpku])−1

[
ω2
i pi − ω2

kαkpk −ΛΛΛ (pi − αkpk)
]}
,

(3.20)

and holds for all pairings of frequencies ωi and ωk as long as ωipiu − αkωkpku 6= 0.

To eliminate zero-mean noise, the mean of Eq. 3.19 can be computed over all

available frequency pairings measured. One obtains


ζ1

...

ζm

 = Im
{
diag (2ωun 〈ωipiu − αkωkpku〉)

−1

[〈
ω2
i pi − ω2

kαkpk
〉
−ΛΛΛ 〈pi − αkpk〉

]}
,

(3.21)

where < · > denotes the mean over all the frequency pairings (i, k). The modal
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damping can be identified using Eq. 3.21. The next section provides data filters to

increase the accuracy of this damping method.

3.3.3 Identification Filtering

To increase the accuracy of the modal damping identification, four identification

filtering techniques are proposed. The first two filters eliminate measurement data

that can cause erroneous solutions. The initial filter removes low responding data,

which can be greatly affected by noise. Responses with magnitudes below a fraction Tl

of the maximum response magnitude are removed. That is, measurements xqmeas (ωy)

(collected at DOF q for an excitation with frequency ωy) which satisfy

maxq=1...DOF |xqmeas (ωy) | < Tl maxq=1...DOF,y|xqmeas (ωy) |

are removed.

The physical to modal transformation is important for ensuring an accurate damp-

ing identification. Therefore, the second filter removes measurements which have a

relative error greater than a desired threshold Rthresh in the transformation from

physical to modal and back to physical coordinates. The measurements collected at

frequencies ωy for all q = 1...DOF are grouped in a vector xmeas (ωy). Measurements

xmeas (ωy) which satisfy

||ΦΦΦ
[
ΦΦΦTΦΦΦ

]−1
ΦΦΦTRe (xmeas (ωy))−Re (xmeas (ωy)) ||2 > Rthresh||Re (xmeas (ωy)) ||2 or

||ΦΦΦ
[
ΦΦΦTΦΦΦ

]−1
ΦΦΦT Im (xmeas (ωy))− Im (xmeas (ωy)) ||2 > Rthresh||Im (xmeas (ωy)) ||2

are removed, where Re and Im denote real and imaginary parts, and || · ||2 indicates

the 2-norm.

The third and fourth filters prevent the identification of modes which either have

low responses or have modal amplitudes which are difficult to determine using physical
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measurements x. The third filter is based on the modal response at frequency i

resulting in negligible modal information. Responses which are too low (based on a

maximum modal response threshold Pthresh) are considered to be too sensitive to noise.

Thus, if mode u has an amplitude piu such that |piu| ≤ 0.5maxr|pir| (where r = 1...m),

or |piu| < Pthresh, then mode u is ignored. The fourth and last filter prevents the

damping identification for cases where the modal amplitudes at frequencies i and k

are similar. Therefore, mode u is ignored for a pair of frequencies (i,k) when

|piu − αkpku| ≤ Pthresh.

These four filters are used to increase the accuracy of the following results.

3.4 Results

The characteristics and validation of the measurement point selection and damp-

ing identification are presented for a 30 DOF system first. Then, the damping identi-

fication is validated for a more complex structure (the University of Michigan valida-

tion blisk). In this section, the benefits of the proposed damping identification with

respect to using a ROM, the optimized MPS, a region of high modal density, and

different noise levels are examined. The 30 DOF spring-mass system has mass and

stiffness matrices defined as

M = diag ([1 2 · · · 2 1]) kg,

39



0 2 4 6 8
0

0.05

0.1

0.15

0.2

Frequency (kHz)

M
ag

ni
tu

de
, m

m

Response with forcing at DOF 3

Figure 3.2: Sample forced response for the 30 DOF system

and

K =



2.4 · 109 −0.6 · 109 0

−0.6 · 109 1.2 · 109 −0.6 · 109

. . .

−0.6 · 109 1.2 · 109 −0.6 · 109

0 −0.6 · 109 1.9 · 109


kg

s2
,

where diag([·]) indicates a diagonal matrix with entries given by the included vector

[·]. Figure 3.2 shows a sample forced response where the excitation was applied

to DOF 3. Responses below 4 kHz are in a region of low modal density, whereas

responses at frequencies higher than 4 kHz correspond to high modal density.

A ROM was created using modes 19 to 29 (ordered by frequency) with 20 DOF

measured. These 11 modes were chosen since they are closely spaced, and therefore

the damping is more challenging to identify. The values in the diagonal damping

matrix C for this ROM are displayed in Fig. 3.3(a). A force of magnitude 10 N

and phase of 0 was applied to each measured DOF near the natural frequency of

each mode, and the physical response xqmeas (ωy) was recorded at frequencies ωy for

all measured DOF q. To simulate a physical experiment, measurement noise was

injected using Eq. 3.10.
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Figure 3.3: Damping ID for a 30 DOF system

These results in Fig. 3.3 include the mean and standard deviation of 1,000 iden-

tifications using different noisy measurement sets. The same 1,000 noise realizations

(Rq
1 and Rq

2 separately chosen for each q DOF) were used to generate each of the

graphs in Fig. 3.3. Standard deviation error bars are provided in the figures, and are

denoted by Std. Also, the filtering thresholds in the identification are Rthresh = 0.3,

Tl = 0.35, and Pthresh = 10−5.

The results in Fig. 3.3 demonstrate that the 30 DOF damping identification is

accurate using a ROM and for regions of high modal density. Figures 3.3(a) and

3.3(b) show that the identified damping values are accurate when the noise level is

low. The non-optimized and optimized MPS chose the same measurement locations

for both 1% and 5% noise. As the noise level increases, the results in Figs. 3.3(c) and
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3.3(d) show the effect of the optimized MPS choosing two different locations as com-

pared to the non-optimized MPS. The optimized MPS balances linear independence

with sensitivity to noise. Therefore, the damping identified for the modes which are

insensitive to noise may be less accurate than the damping identified using the non-

optimized MPS, whereas the damping identified for modes which are more sensitive

to noise should be more accurate. These effects on accuracy can be seen in the results

in Figs. 3.3(c) and 3.3(d), where the damping values for modes 20, 23, and 28 are

more accurately identified with the optimized MPS, but less accurately identified for

modes 21, 25, and 26. Note that the standard deviation of most identified damping

values is less than the level of the noise (e.g., the standard deviation is less than 10%

for 10% noise in Figs. 3.3(c) and 3.3(d)). Modes 21 and 26 have a standard deviation

greater than the level of the noise. Some of the mean damping values in Fig. 3.3(a)

slightly exceed the 1% noise level. However, all of the mean values have errors be-

low the corresponding noise levels in Figs. 3.3(b), 3.3(c), and 3.3(d). In general, the

proposed method accurately identifies the modal damping with an error less than the

corresponding noise level. Also, the optimized MPS improves the accuracy of the

damping identification for modes which are sensitive to noise.

Care needs to be exercised when choosing the identification filtering parameters.

If the filtering is too lax, the identification uses measurements that have less accu-

rate modal coordinates due to a larger amount of noise in the response. Therefore,

the identification becomes more contaminated by the noise effects. However, if the

filtering is too strict, then the identification depends on too few measurements. As a

result, the identification is also less accurate (since zero mean noise is not eliminated).

The results presented are from the region of filtering which provides a balance be-

tween using measurements with less modal participation (of the modes for which the

damping is to be identified) and elimination of zero mean noise. Note that different

systems and measurements may require different values for Rthresh, Tl, and Pthresh.
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Figure 3.4: Damping ID for validation blisk

Next, results for a more complex structure in the form of the University of Michi-

gan validation blisk [52] are presented. This blisk has mistuning of approximately 2%

(composed of 1% zero mean mistuning and 1% cyclic modeling error [1]). The damp-

ing identification uses the actual mistuning to assess the accuracy of the proposed

measurement point selection and damping identification methods. The following re-

sults show the mean and standard deviation of 100 identifications using different noisy

response sets.

The results in Fig. 3.4 demonstrate that the mistuned validation blisk damping

identification which uses a ROM is accurate for regions of high modal density and

typically has an error less than the measurement noise level. Figures 3.4(a) and

3.4(b) display the identification results where 1% and 5% noise respectively have

been injected into the numerically generated measurement data. For this figure, the
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ROM contained 17 modes. Both the standard deviation and mean damping values

in Figs. 3.4(a) and 3.4(b) are well below the corresponding noise level. Figure 3.4(d)

displays the identification results for 10% noise. The standard deviations and mean

damping values for all modes except mode 15 are below the 10% noise level. Note

that some modes in Figs. 3.4(b) and 3.4(d) were not identified. The absence of

identified values for a few modes is due to the increase in the noise level causing the

identification filtering to either remove all the measurement data or determine that

the missing modes would not be accurately identified.

If the motion of the structure occurs in a region or direction that is not measured,

the damping identification should be less accurate. Figure 3.4(c) shows that. Specifi-

cally, using a larger ROM results in an inaccurate identification for the additional disk

dominated modes. Modes 7 to 25 remain accurately identified. In particular, note

that a ROM with greater size may require different measurement locations drawn

from a larger candidate set in the MPS procedure. For this model, measurements on

the disk are needed for the larger ROM.

This behavior of the ROMs has already been explored in the context of mistuning

identification [49]. When introducing the concept of inverse ROMs (IROMs) for

system identification, Madden et al. [49] noted that some ROMs can result in an

inaccurate analysis. Madden et al. [49] presented an algorithm to test and select a

subset of the full IROM for obtaining an accurate result. The methods proposed

herein allow for the MPS and damping methods to be implemented in the same

algorithm by individually defining the modal matrix for each IROM.

3.5 Conclusions

Two methods used for a new damping identification were proposed. The optimized

measurement point selection (MPS) method improves robustness of the identification

to noise. Also, by taking advantage of cyclic symmetry, the computational cost of
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utilizing the MPS method is dramatically reduced. In addition, an algorithm was

presented which describes an effective procedure incorporating the MPS method into

experiment preparation for complex structures.

The second method involves identifying the damping associated with each system

mode. The benefits of the proposed method include the ability to maintain accuracy

despite reducing the order of the models used to predict the system response and

despite the fact that regions of high modal density are encountered. The proposed

method was shown to be relatively insensitive to noise, to apply to mistuned systems,

and to require knowledge of only the forced response, the relative forcing, and a finite

element model. As a result, the damping can be accurately identified for general

structures such as blisks.

The novel modal damping identification method was demonstrated using a numeri-

cal simulation of a low dimensional system and a more complex system (the University

of Michigan validation blisk). Results involving several reduced order models (ROMs)

of various sizes and various noise levels were presented. To increase the accuracy of

the proposed method, the optimized MPS technique was used. Results indicate that

using the optimized MPS technique increases the accuracy of the identification for

modes which are sensitive to measurement noise as compared to only using points

chosen based on the (classical) EIDV method.
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CHAPTER IV

Hybrid Modal Damping Identification for Bladed

Disks and Blisks

4.1 Introduction

Due to wear or manufacturing, nominally cyclically symmetric structures such as

bladed disks and integrally bladed disks (blisks) have slight variations in the mass or

stiffness of their components known as mistuning. As a result, vibration energy can

be localized around certain regions of the system leading to a larger than expected

forced response. This increase can lead to high cycle fatigue. Damping plays an

important role in investigating the effects of localization, because damping affects the

forced response of a mistuned system (in particular, it affects the maximum response

amplitude).

One approach to reduce the effects of mistuning is to apply a damping coating to

the structure. As mistuning may adversely affect some modes more than others, it

is important to increase as much as possible the damping of certain/desired modes.

Joshi et al. [3] showed that an arbitrary damping coating does not always optimally

decrease the maximum response of the desired modes as one might expect. Therefore,

to assess the effects of a coating, damping must be identified before and after the

coating is applied.
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Current damping identification methods [4,6,7,11,12,14–20,22–24,26–29] use mea-

surements of complex eigenvalues, complex eigenvectors, and the applied forcing, or

energy measurements [32,33]. Such measurements are difficult especially for systems

with high modal density. Also, current methods do not use reduced order models

(ROMs), and can be sensitive to measurement noise. Thus, current methods do not

work well for damping identification for systems with regions of high modal density

such as blisks. Recently, Holland et al. presented two different methods [55, 56]

for damping identification which do not require knowledge of the applied forcing or

energy. Instead, damping is identified using measurements of forced responses and

information from a finite element model of the system. The forced responses are

obtained from an excitation system which allows relative calibration [1], but does not

provide the actual magnitude of the applied forces.

The work herein presents a novel modal damping identification technique for mis-

tuned systems using ROMs in low or high modal density regions. This method makes

use of forcing calibration [1] to decrease its sensitivity to noise. The new method

identifies first modal damping values relative to each other, which makes these values

known (only) up to a multiplicative constant. Then, to determine that constant the

novel approach makes use of the method of Holland et al. [56]. Distinct from other

identification methods based on frequency response functions, the proposed approach

introduces a reduced frequency response matrix which can be constructed without

requiring that all degrees of freedom (DOF) of the system model be both forced and

measured. Thus, the new approach significantly reduces the amount of measure-

ments needed for identifying damping. In addition, a frequency windowing technique

is proposed to further reduce the size of the reduced frequency response matrix, while

increasing the robustness of the resulting identification.
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4.2 Modal Damping

This section summarizes the modeling approach used for modeling blisks with

small mistuning and viscous modal damping. This description closely follows that

of Holland et al. [56]. The starting point in modeling blisks is to exploit the fact

that the mistuned modes for systems with small mistuning can be represented as

a linear combination of tuned system modes [40]. Thus, ΦΦΦm = ΦΦΦΨΨΨ, where ΦΦΦm is

a mass-normalized matrix containing m mistuned modes in the frequency range of

interest. Matrix ΦΦΦ is a mass-normalized matrix containing d undamped tuned system

normal modes in the frequency range of interest. Matrix ΨΨΨ is the transformation from

tuned modal coordinates to mistuned coordinates under the assumption that the m

mistuned modes are a linear combination of the d tuned system modes [40]. For a

tuned system, the full-order ΨΨΨ matrix is the identity matrix I. Next, the equations

of motion for the blisk can be expressed as

M¨̄x + C ˙̄x + Kx̄ = f̄, (4.1)

where M is the mass matrix, C is the damping matrix, K is the stiffness matrix, x̄

is the response, and f̄ is the applied forcing. This forcing is assumed harmonic with

amplitude f and frequency ω. Then, the physical response x̄ is harmonic and has a

magnitude x. The response x can be converted to the reduced-order mistuned modal

coordinates p by using x = ΦΦΦmp = ΦΦΦΨΨΨp.

Assuming modal damping, C is diagonalized by ΦΦΦm, i.e. ΦΦΦT
mCΦΦΦm = 2diag (ζuω

u
n),

where ζu is the viscous modal damping coefficient for mode u, ωun is the undamped

natural frequency of mode u, and diag (·) denotes a diagonal matrix with entries

corresponding to the included scalars. In the frequency range of interest, the damping

matrix C can be replaced with matrix C̃ given by C̃ = 2MΦΦΦmdiag (ζu/ω
u
n)ΦΦΦT

mK. This

replacement is possible because ΦΦΦT
mMΦΦΦm = I and ΦΦΦT

mKΦΦΦm = ΛΛΛ, where ΛΛΛ is a diagonal
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matrix containing the mistuned eigenvalues λun = ωun
2. Thus,

ΦΦΦT
mCΦΦΦm = 2ΦΦΦT

mMΦΦΦmdiag (ζu/ω
u
n)ΦΦΦT

mKΦΦΦm

= 2diag (ζu/ω
u
n)ΛΛΛ = 2diag (ζu/ω

u
n) diag

(
ωun

2
)

(4.2)

= 2diag (ζuω
u
n) .

Equation (4.2) shows that the dynamics of the system with a damping of C̃ is the

same in the frequency range of interest as that of a system with a damping of C. Thus,

the forced response in the frequency range of interest can be obtained by replacing C

with C̃ and solving Eqn. (4.1) for x. Substituting ΦΦΦm = ΦΦΦΨΨΨ, one obtains

x = ΦΦΦΨΨΨ
[
−ω2I + 2jω diag (ωun)ζζζ + ΛΛΛ

]−1
ΨΨΨTΦΦΦT f, (4.3)

where j is the imaginary unit, and ζζζ = diag (ζu).

4.3 Modal Damping Identification using Calibration

Acoustic and magnetic excitation, typically used in vibration testing of blisk, are

hard or impossible to measure accurately. Thus, in this section we focus on a method

that only requires forces to be known up to a multiplicative constant. The calibration

method proposed by Holland et al. [1] uses reciprocity to ensure that an excitation

system provides such forcing. Thus, only the relative forcing magnitude and phase

are known at any given excitation frequency. Assume that such a force calibration

has been performed on the excitation so that the relative magnitudes and phases of

the excitations are known. Then, consider a forcing case (denoted as the gth harmonic

forcing) be applied with a relative distribution (magnitude and phase) G̃g of forces

for every DOF in the system. Note that not all DOFs have to be forced. The unforced

DOFs are reflected by zero entries in G̃g. Also, define the diagonal matrix F such
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that the uth diagonal entry is the magnitude of the relative applied forcing (referenced

to one of the forcing cases) so that fg = cG̃
T

g Fgg. The constant c ∈ C is the known

multiplicative constant relating the actual and relative forcing of the reference case.

If all the forcing cases are independent, then it is possible to group all vectors G̃g

into a matrix G̃, which has a rank equal to the number of forcing cases y. Next, one

may choose to represent G̃ as a linear combination of a set of basis distributions G

(such as single DOF forcing), so G̃ = VG, where V is a matrix of DOF participations

in the excitation. Note that G must have a rank equal to the number of forcing cases.

Substituting into Eqn. (4.1), and letting H = [−ω2M + jωC + K]
−1

, one obtains

x = cHG̃
T
F = c HGTVTF. One may also choose the same DOFs to be measured

for each forcing case. This choice is represented by using a matrix R which is a N×N

diagonal matrix with a value of 1 for measured DOFs and 0 otherwise. N is the total

number of DOFs in the system. Note that the rank of R is the number of measured

DOF (n) and the rank of G is the number of forcing cases (y). The implications

of these ranks are discussed in the Sec. 4.7. Pre-multiplying by R and defining the

reduced frequency response matrix (RFRM) as H̃ = RHGT , one obtains

Rx = c RHGTVTF = c H̃VTF, (4.4)

where Rx is a matrix containing only the measured DOF. Note that the RFRM (H̃)

only contains measured data taken at a few forcing cases. There is no requirement

to measure or force all locations on the structure for damping identification. Taking

the Moore-Penrose pseudoinverse of H̃ and then pre-multiplying Eqn. (4.4) by GT ,

one obtains

GT H̃
−∗

Rx = c GTVTF = f =
(
−ω2M + jωC + K

)
x, (4.5)

where −∗ denotes the Moore-Penrose pseudoinverse. Note that the left and right sides
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of Eqn. 4.5 do not require knowledge of V or G̃. Therefore, many different forms of

G can be used as long as G̃ can be well-represented as a linear combination of G.

Also, neither the matrix of participations (V), nor the actual forcing distributions

are required for the modal damping identification.

Equation 4.5 is in the form Ax = Bx, and must hold for all x. Therefore, A = B.

Converting to modal coordinates (as in Sec. 4.2) and pre-multiplying by ΨΨΨTΦΦΦT , one

obtains

ΨΨΨTΦΦΦTGT H̃
−∗

RΦΦΦΨΨΨ = −ω2I + 2jω diag (ωun)ζζζ + ΛΛΛ. (4.6)

Taking the imaginary part and solving for ζζζ, one obtains

ζζζ =
1

2ω
diag (ωun)−1 Im

{
(GΦΦΦΨΨΨ)T H̃

−∗
RΦΦΦΨΨΨ

}
. (4.7)

Note that GΦΦΦΨΨΨ is a matrix containing the relative modal forcing, and RΦΦΦΨΨΨ contains

the mistuned mode shapes of the measured DOF. Recalling that F is diagonal (by

construction) and post-multiplying Eqn. (4.4) by F−1, one obtains

H̃ =
1

c
RxF−1. (4.8)

Substituting Eqn. (4.8) into Eqn. (4.7), one obtains

ζζζ =
1

2ω
diag (ωun)−1 Im

{
c (GΦΦΦΨΨΨ)T

(
RxF−1

)−∗
RΦΦΦΨΨΨ

}
. (4.9)

The diagonal entries of ζζζ in Eqn. (4.9) provide the values of the modal damping up

to a multiplicative constant c. Note that if one uses an excitation system which can

provide the (absolute, not relative) excitation magnitude, then c is known (c = 1).

The types of excitation systems use for vibration testing of blisks typically do not

provide the magnitude of the forcing, and hence c has to be determined by other

means. The following section uses a modified version of the damping identification
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method presented by Holland et al. [56] to solve for the unknown forcing coefficient.

Note that the the phase of c embedded in the relative damping values, while the

magnitude of c relates the relative damping to ζζζ.

4.4 Relative Modal Damping Identification

Applying the approach in Sect. 6.3, only relative forcing values are known. Thus, c

must be found by an alternate technique. As two methods are required, the proposed

approach herein is referred to as the hybrid damping identification method. Holland

et al. [56] derived the following result

2jζ̄ζζ (ωipi − αkωkpk) = ω2
i pi − ω2

kαkpk −ΛΛΛ (pi − αkpk) , (4.10)

where pi and pk are the modal amplitudes of the response at frequencies ωi and ωk

respectively, ζ̄ζζ = ζζζdiag (ωun), and αk is the relative forcing coefficient which relates

the forcing applied at frequency ωi to the forcing applied at ωk (both being known

with respect to the forcing applied at a given reference frequency). As also discussed

in [56], one way to extract αk is to use the frequency transfer function for the speakers

or magnets used for excitation, and assume that the force applied to the structure

in a given frequency band is proportional to the signal applied to the speakers or

magnets in that frequency band.

Solving Eqn. (4.6) for ζζζ, one obtains

ζζζ =
−j
2
diag (ωun)−1

[
c

ω
(GΦΦΦΨΨΨ)T

(
RxF−1

)−∗
RΦΦΦΨΨΨ +

1

ω

(
ω2I−ΛΛΛ

)]
=
−j
2
diag (ωun)−1 [ch (ω) + e (ω)] ,

(4.11)
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where h (ω) and e (ω) are defined as

h (ω) =
1

ω
(GΦΦΦΨΨΨ)T

(
RxF−1

)−∗
RΦΦΦΨΨΨ and e (ω) =

1

ω

(
ω2I−ΛΛΛ

)
. (4.12)

Note that h (ω) and e (ω) depend on frequency ω, however their dependence on ω is

such that ζζζ given in Eqn. (4.11) does not depend on ω.

Thus, ζ̄ζζ = −j
2
diag (ωun) diag (ωun)−1 [c h (ω) + e (ω)] = −j

2
[c h (ω) + e (ω)], and

Eqn. (4.10) becomes

c h (ω) (ωipi − αkωkpk)

= ω2
i pi − ω2

kαkpk −ΛΛΛ (pi − αkpk)− e (ω) (ωipi − αkωkpk) .
(4.13)

Pre-multiplying by
(

(ωipi − αkωkpk)
† (ωipi − αkωkpk)

)−1

(ωipi − αkωkpk)
† h (ω)−1,

one obtains

c =
(

(ωipi − αkωkpk)
† (ωipi − αkωkpk)

)−1

(ωipi − αkωkpk)
†

h (ω)−1 [(ω2
i pi − ω2

kαkpk
)
−ΛΛΛ (pi − αkpk)− e (ω) (ωipi − αkωkpk)

]
,

(4.14)

where † denotes the Hermitian. In essence, Eqn. (4.14) provides the value of c by

exploiting combinations of measurements at different frequencies (in the modal space).

Once c is known and h (ω) is substituted into Eqn. (4.9), one obtains

ζζζ =
1

2
diag (ωun)−1 Im {c h (ω)} . (4.15)

Note that solving for c allows the forcing to be identified if the forcing distribution

G̃ is known. The forcing is given by f = c G̃
T
F.
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4.5 Measurement Noise

Solving Eqn. (4.14) requires the frequency pairs (i, k) to be for the same forc-

ing case (i.e. for the same blades being excited). Thus, for frequency pair (i, k)

and forcing case b, Eqn. (4.13) can be expressed as Vb
i,k c

b
i,k = Wb

i,k, where Vb
i,k =

h (ω) (ωipi − αkωkpk) and Wb
i,k = ω2

i pi−ω2
kαkpk−ΛΛΛ (pi − αkpk)−e (ω) (ωipi − αkωkpk).

Therefore, one obtains

cbi,k =
Vb
i,k

†
Wb

i,k

Vb
i,k

†
Vb
i,k

. (4.16)

In the absence of measurement noise all cbi,k would be identical and equal to the desired

value c. Note that in general c is a complex number.

To increase the accuracy of identifying c, the effects of zero mean noise can be

reduced by averaging the values cbi,k obtained for all frequency pairs (i, k) and all

forcing cases b. One obtains

c =
1

y

y∑
b=1

1

q

∑
(i,k)

Vb
i,k

†
Wb

i,k

Vb
i,k

†
Vb
i,k

, (4.17)

where y is the number of independent forcing cases measured, and q is the number

of frequency pairs measured for forcing case b.

Solving for the magnitude c̄ and phase θc of c in Eqn. (4.17), one obtains

c̄ =

∣∣∣∣∣∣1y
y∑
b=1

1

q

∑
(i,k)

Vb
i,k

†
Wb

i,k

Vb
i,k

†
Vb
i,k

∣∣∣∣∣∣ , (4.18)

θc = θavgc =
1

y

y∑
b=1

1

q

∑
(i,k)

−θh,u − θi,kp,u,b + θi,kw,u,b, and (4.19)

θavgwp,u =
1

y

y∑
b=1

1

q

∑
(i,k)

−θi,kp,u,b + θi,kw,u,b = θavgc + θh,u

where | · | denotes magnitude, θh,u is the phase of the uth diagonal entry of h (ω), θi,kp,u,b
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is the phase of the uth entry of vector ωipi − αkωkpk, and θi,kw,u,b is the phase of the

uth entry of vector Wb
i,k.

Note that, ζζζ and e (ω) are real, diagonal matrices. However, in general h (ω) is a

complex diagonal matrix. Thus, the real part of Eqn. (4.6) can be expressed as

Re
(
ch̃ (ω)

)
= −ẽ (ω) , (4.20)

where h̃ (ω) and ẽ (ω) are vectors of size m × 1 containing the diagonal entries of

matrices h (ω) and e (ω). While the forcing coefficient and damping can be identi-

fied using Eqns. (4.18), (4.19), and (4.15), the effect of measurement noise can be

decreased using Eqn. (4.20). In terms of the magnitude and the phase of c, one

obtains

cos (θc + θh,u) =
−ẽu (ω)

c̄h̄u (ω)
. (4.21)

Substituting θavgc,u from Eqn. (4.19), one obtains

θavgwp,u = cos−1

(
−ẽu (ω)

c̄h̄u (ω)

)
. (4.22)

Solving for θavgwp,u using Eqn. (4.22) instead of directly using Eqn. (4.16) ensures that

the identified damping values are real and reduces the effects of the measurement

noise on the involved phases. Note that cosine is used on the interval 0 to π, but both

θavgwp,u and −θavgwp,u are solutions to Eqn. (4.22). Therefore, the sign of θavgwp,u should be

updated after substituting θavgwp,u into Eqn. (4.19) and comparing the sign of θavgc +θh,u

with the value of θc+θh,u obtained from the phases in Eqn. (4.17). Also, measurement

noise can cause the right hand side of Eqn. (4.21) to be outside of the interval [−1, 1].

To avoid this issue, any values less than -1 or greater than 1 are replaced with -1 and

1 respectively. After calculating θavgwp,u from Eqn. (4.22), θavgc can be calculated using

Eqn. (4.19).
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4.6 Modal Damping Identification Procedure

There are several different types of mistuning identification techniques [45–50].

These methods identify the damping together with the mistuning, ignore the damping,

or assume that the damping is known. The damping identification method herein can

be used in conjunction with the component mode mistuning (CMM) [48,49] method.

In CMM, the stiffness mistuning is determined prior to the damping identification.

Therefore, herein the mistuned eigenvalues in ΛΛΛ, and the transformation matrix ΨΨΨ

from tuned to mistuned coordinates are considered known.

The procedure for identifying the modal damping can be summarized as follows.

First, the forced response is measured for different forcing cases with various blade-to-

blade distributions (G) in the frequency range of interest. Also, the relative applied

forcing F (with respect to a reference case) is known for a given frequency (after

a calibration procedure [1] has been applied). Next, Eqn. (4.12) uses this data to

calculate h (ω) and e (ω).

There are four steps for determining the forcing coefficient. First, the magnitude

c̄ of c is determined by solving Eqn. (4.18). Then, Eqn. (4.22) is used to solve for

θavgwp,u. The sign of this phase is checked against the phase determined by Eqn. (4.17)

and changed if necessary. The phase of c is then obtained using Eqn. (4.19).

4.7 Forcing Cases and Frequency Windowing

One important requirement of the modal damping identification is that the rank

of matrices F and H̃ must be greater or equal to the number of damping values

to be identified. Let z be the number of damping values to be identified, m the

number of (mistuned) modes in the frequency range of interest, and n the number of

measured DOF. Then, to achieve an accurate identification z ≤ m ≤ n and z ≤ y.

In general, the value of the damping for each mode is desired, and therefore, z = m.
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Figure 4.1: Frequency windowing procedure

The frequency range of interest may include many modes, and so m may be large.

For a blisk, m is normally equal to or slightly greater than the number of blades.

Therefore, more than one point per blade must be measured so that the number

of measurements n is greater or equal to m. The last requirement (z ≤ y) is for

the number of forcing cases to be greater than the number of damping values to be

identified (which may be equal to the number of modes). In general, meeting this

requirement would require forcing multiple distinct locations on at least one or a few

blades to obtain independent forcing distributions. As an example, the 0 to 3 kHz

frequency range of interest for the University of Michigan validation blisk includes

32 modes (m = 32). This blisk has 24 blades, so identifying the modal damping

for all 32 modes (z = 32) would require at least 2 measurement locations per blade

(n = 48) [56] and y = 32 forcing cases (which would require multiple forcing locations

on at least one or a few blades). However, this is impractical for blisks. A solution

to this challenge is presented next.

To reduce the number of forcing cases and the number of required measurements, a

frequency windowing method is introduced. This procedure is summarized in Fig. 4.1.

There, a target mode (indicated by a vertical black line) is any one mode (one at a

time) from the frequency range of interest. The goal of the frequency windowing is

to capture the motion of the target mode with the minimal amount of modes and
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measurements necessary for the damping identification. There are two key observa-

tions which can be made about the forced response. First, the participation of the

target mode in measurements outside of a certain range (denoted the measurement

window, and located within the inner, shaded rectangle of Fig. (4.1)) is low. Thus,

the modal amplitude of the target mode is low outside the measurement window.

Therefore, measurements outside the measurement window are not used when iden-

tifying the damping of the target mode. Also, for a target mode, h (ω) and e (ω) will

be more accurate at a frequency where the modal participation for the target mode is

largest. Therefore, ω is chosen to be the frequency inside of the measurement window

with the largest participation of the target mode over all forcing cases. Second, the

participation of modes which are outside of a certain frequency range (denoted the

mode window, and indicated by the outer, shaded rectangle) is low for the responses

in the measurement window. Therefore, modes within the mode window are needed

to capture responses in the measurement window and to identify the damping of the

target mode. An additional benefit of the windowing is an increase in the accuracy

of the identification as measurements with low contributions to the target mode are

excluded (and those measurements can result in an inaccurate damping identifica-

tion). Note that the measurement locations are chosen using the method of Holland

et al. [56] (based on the frequency range of interest). Finally, note that the frequency

windowing is particularly useful identifying h (ω) and e (ω), and is not needed for the

identification of c (although it can be beneficial for noise rejection).

While more complicated methods may be used to calculate these windows, to min-

imize the computational cost the following estimates are suggested. For a mistuned

system, the damping identification depends on knowledge of the mistuned system. As

all mistuning identification techniques contain some level of error, any of the actual

mistuned natural frequencies will lie within a narrow frequency range. This range

can be used to define the measurement window. A measurement window [ωtl , ω
t
u] is
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defined for target mode t based on these parameters as

ωtl = ωtn

(
1−

√
δω2

n

)
and ωtu = ωtn

(
1 +

√
δω2

n

)
, (4.23)

where δω2
n is the maximum estimated error of the mistuned eigenvalues.

To adequately represent measurements in the range [ωtl , ω
t
u] by using ROMs based

on tuned modes, the mode window must contain all modes which participate signif-

icantly in the responses in the measurement window. Therefore, a mode window is

defined by examining how far in frequency a mode should be from the range [ωtl , ω
t
u] as

to not contribute to the maximum response of any DOF more than Tx% of the maxi-

mum response of all DOF in the measurement window. Consider that the maximum

response magnitude observed in the measurement window is |Xin|, below ωtl is |X l
out|,

and above ωtu is |Xu
out|. Then, one can choose the mode window so that all modes (be-

low or above) that window contribute to the response in the range [ωtl , ω
t
u] less than

Tx|Xin|. Two non-dimensional scalars can then be defined as rl = |X l
out|/(Tx|Xin|)

and ru = |Xu
out|/(Tx|Xin|). Then, the mode window [ωtm,l, ω

t
m,u] is given by

ωtm,l = ωtl

√
1− 2ζe

√
r2
l − 1, ωtm,u = ωtu

√
1 + 2ζe

√
r2
u − 1, (4.24)

where ζe is an expected damping level. See the Appendix for more information on the

derivation of Eqn. (4.24). Any mode with a natural frequency in the range [ωtl , ω
t
u]

potentially participates significantly in the responses in the measurement window.

If no measurements are present inside the measurement window due to missing

data or due to measurement filtering, then the damping of the target mode is flagged

as not possible to identify. Also, when measurements were not taken or were removed

by data filters [56] outside of the lower (or upper) measurement window, it is not

possible to define X l
out (or Xu

out). In these cases, one mode is added at a time to the

modes already in the measurement window [ωtl , ω
t
u] until the truncated modal matrix
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RΦΦΦ loses rank or m = n. Also, if the measurement window includes all the available

measurement frequencies (then there are no measurements outside the lower or upper

measurement window bounds and) the modes are added by their proximity to ωtl or

ωtu. The mode closest in frequency to one of the limits is added first.

Using these definitions the new damping identification is

h (ω̄)t =
1

ω̄
Im
{

(GmeasΦΦΦmodeΨΨΨmode)
T

(
RmeasxmeasF

−1
meas

)−∗
RmeasΦΦΦmodeΨΨΨmode

}
and (4.25)

e (ω̄)t =
1

ω̄

(
ω̄2I−ΛΛΛmode

)
(4.26)

where subscript meas denotes responses inside the measurement window, subscript

mode refers to modes with mistuned natural frequencies inside the mode window,

and ω̄ is the excitation frequency inside of the measurement window t such that the

magnitude of the target mode modal coordinate is the largest. For a given frequency

window, only the identified value of the target mode t (h (ω̄)tt and e (ω̄)tt) are retained

from h (ω̄)t and e (ω̄)t; the others are ignored. Then, ct is obtained by using only the

retained information for the target mode in Eqns. (4.18), (4.19), and (4.22). Note that

the effect of measurement noise on the coefficient c is further reduced by averaging

the results over the frequency windows. Thus, one obtains

cavg =
1

m

m∑
t=1

c̄tθavgc,t , (4.27)

where c̄t and θavgc,t are the magnitude and phase obtained using only the information

for the target mode in its frequency window. Also, one can use Eqn. (4.19) for mode

u = t and for θc,t = θavgc,t to obtain an average value for the phase θh,t as

θavgh,t = θavgwp,t − θ
avg
c,t . (4.28)
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Thus, the phase of h (ω̄)tt can be modified such that havgt = |h (ω̄)tt| e
jθavgh,t and havg =

diag (havgt ). The final identified damping is

ζζζ =
1

2
diag

(
ωtn
)−1

Im {cavg havg} . (4.29)

As the damping identification is formulated using RFRMs, it is possible that the

measurement locations do not allow all of the mistuned modes to be differentiated.

That is because it is possible for the columns of RΦΦΦm not to be linearly independent.

The independence of the columns of RΦΦΦm can be checked though the partial modal

assurance criteria (PMAC) [57]. If the mode window contains such modes (and the

target mode is not one of them), then the transformation of the physical response to

modal coordinates remains accurate as the modal coordinate of the target mode still

lies in the space spanned by the modes in the mode window. However, if the target

mode is one of the indistinguishable modes, then the modal coordinate of the target

mode is not unique. Therefore, the damping identification of this target mode is not

possible (unless other measurement points are selected).

4.8 Frequency Windowing Results

As an example of the proposed frequency windowing, the results discussed in this

section assume an error of ±2% in mistuned eigenvalues of the University of Michigan

validation blisk. The validation blisk is a 141,120 DOF model, with an applied stiff-

ness mistuning pattern with values between ±1% and a CME [51] of approximately

1% for each mode. The validation blisk is described in detail in [52]. The damping

identification used the actual mistuning and CME to focus on the accuracy of only

the damping identification (not the mistuning identification). Therefore, the resonant

response of the target mode is assumed to lie within ±δω2
n = ±2% of the mistuned

eigenvalue. Note that the actual error in the identified mistuned natural frequencies
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Figure 4.2: Shown are, for each target mode, the frequency of the mode, the number of
measurement sets in its measurement window, and the number of modes
in its mode window

is less than 0.1% for the example discussed herein. This very conservative error range

was chosen to ensure that the measurement window spans the maximum potential

range where mistuned modes participate and is not indicative of the mistuning iden-

tification error. Note that the more accurate the knowledge of the mistuning is, the

smaller the measurement window may be, and that can have the beneficial result of

fewer modes in the respective windows.

Figures 4.2(a), 4.2(b), and 4.2(c) show the effects of this windowing applied to

the validation blisk. The frequency of interest is 0 to 3 kHz and covers the first

mode family. The x-axis of each of the plots corresponds to the target mistuned

mode ordered by increasing frequency. The y-axis of Fig. 4.2(a) is the frequency.

The measurement and mode windows are between the respective bars in Fig. 4.2(a).

The y-axis of Fig. 4.2(b) is the number of measurements sets inside each measurement

window of each target mode. One measurement set consists of measuring the response

62



at various locations on the blisk at a given frequency. We considered 24 forcing cases.

Thus, the number of measurements inside each measurement window for each forcing

case is 1/24 of the values on the y-axis of Fig. 4.2(b). The y-axis of Fig. 4.2(c) displays

the number of modes in each mode window for each target mode.

If the response is isolated (other modes are distant in frequency), then the mea-

surement window is expected to be small and contain few measurements as only

measurements close to the target mode’s natural frequency contain enough informa-

tion about the damping of that mode. Also, it is expected that the number of modes

will also be small as only a few modes contribute to the response. Mistuned modes

1-5, 7, and 8 mistuned modes have this behavior.

If the maximum response in the measurement window of a target mode is low,

then the corresponding mode window is expected to be larger as more modes may

participate in the response. Target mode 6 exhibits this behavior where the mode

is isolated. However, due to the low level of response of mode 6, other modes may

still participate in measurements near the target mode’s natural frequency. Note

that regions of high modal density and large responses (modes 13 to 25) contain

more measurements although their mode windows have approximately the same size.

However, Fig. 4.2(c) shows that these mode windows contain many more modes than

the more isolated modes.

The mistuned modes were represented using only the first cantilevered blade pro-

jection [48,49]. Mistuned modes 26 to 32 have motions which are more similar to the

second cantilevered blade. Therefore, it is expected that these modes will have larger

mode windows (in an attempt to compensate for the absent second cantilevered blade

projection) and less accurate damping identification values.

Recall that the goal of the frequency windowing is to reduce the number of mea-

surements and forcing cases required for modal damping identification. Figure 4.2(c)

shows that the maximum number of modes required to identify the damping of target
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modes 1 to 25 is 19 instead of the 32 modes in the full frequency range of interest.

Thus, the identification without windows would require 48 measurements and 32 forc-

ing cases. In contrast, the identification with frequency windowing only requires 24

measurements (one per blade) assuming that the measurement locations are valid for

each mode [56]. Also, only 19 forcing cases are required, which requires no more than

one forcing location per blade. Thus, the frequency windowing reduces the experi-

mental cost and increases the identification accuracy without significantly increasing

the computational cost. Also, in general, the modal damping identification method

using windowing is independent of the frequency range of interest (with the exception

of the modes near the edges of the range of interest).

4.9 Damping Identification Results

This section explores the accuracy of the hybrid damping identification with re-

spect to the measurement noise level for the University of Michigan validation blisk.

To investigate the effects of measurement noise, we first used ANSYS to obtain sim-

ulated measurement data. This data is perfect in the sense that it contains no mea-

surement noise. Next, we injected white noise in this data to simulated the presence

of measurement noise. The noise was modeled using relative, absolute, and bias

terms [56]. Note that the simulated measurements are computed for the full blisk

model, without reduction. Thus, there are modeling differences between ANSYS and

ROMs. These differences are not unlike the differences between a model and an actual

blisk that is measured.

The following results were obtained using measurement filters, Rthresh = 0.40,

Pthresh = 0.005, Tl = 0.25 for the 5% and Tl = 0.50 for the 10% measurement noise

results [56]. It was also found that certain modes could have erroneously large modal

coordinates due to noise. Therefore, surrogate data was generated and noise injected

into the surrogate measured response. The surrogate data was created by solving
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Eqn. (4.3) with a modal damping determined by ζmode = Rmodeζe, whereR is a random

number drawn from a uniform distribution between 0 and 2. Both the actual and noisy

measurements were then converted to mistuned modal coordinates. If the physical

to modal transformation of the noisy data for mode u at frequency i gave a modal

amplitude pnoisyi,u which was much larger than the actual modal amplitude pactuali,u , then

the mode is sensitive to noise. Since the reliability of the noise sensitive modes is

suspect, mode u is not included in the identification equations when pnoisyi,u > Tbp
actual
i,u .

For the following results, Tb = 5. Also, modal coordinates which have low magnitudes

can be inaccurate due to measurement noise. Therefore, the modal amplitude of

mode u at frequency i is ignored if |pi,u| < Tp maxu |pi,u|. For the following results,

Tp = 0.75. Also, two modes are considered to be distinguishable if the PMAC between

the two corresponding columns of RΦΦΦm is less than 0.05.

Figures 4.3 and 4.4 show the damping identification results for 5% and 10% mea-

surement noise levels. All measurement filters were optimized for the 5% noise case.

Therefore, it is expected that the 10% noise case will have larger errors than the 5%

noise case. The x-axis displays the mistuned modes in the frequency range of inter-

est for which the modal damping is to be identified. The y-axis contains identified

damping values. Figure 4.3 shows the mean identified modal damping value for 1,000

measurement noise realizations. The corresponding standard deviation (denoted by

Std) of the identified values is displayed in Fig. 4.4. Three measurements per blade

were recorded. For these results, all modes in all of the RFRMs were distinguishable.

If measurements are in directions perpendicular to the motion of the blisk, one

expects the damping identification for these modes will be inaccurate. This behavior

occurs for mode 6 where the motion is perpendicular to the axis of the blisk, however

all the measurements are taken in the direction of the axis of the blisk. As a result

the identification is consistently and conspicuously incorrect. Also, recall that only
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Figure 4.3: Mean identified (ID) damping for the validation blisk using data with 5%
(a) and 10% (b) relative noise; mistuned modes are ordered by increasing
frequency
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Figure 4.4: Standard deviation (Std) of identified (ID) damping for the validation
blisk using data with 5% (a) and 10% (b) relative noise; mistuned modes
are ordered by increasing frequency

the blade portion of the blisk is measured. Therefore, if a mode is disk dominated

(i.e., most of the motion occurs in the disk and not the blades) then one could

expect the damping identification of the corresponding mode to be inaccurate or

sensitive to measurement noise. Mode 3 provides an example of this noise sensitivity,

with a very large standard deviation (−1.5 × 10−3 to 3.8 × 10−3 in Fig. 4.4(a) and

−1.6 × 10−3 to 3.9 × 10−3 in Fig. 4.4(b), which exceed the plot limits). For modes

near the upper frequency limit of the ROM (modes 26 to 32), one expects the ROM

to become less accurate (as modes higher in frequency and not included in the ROM
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may participate in the response). Also, these modes begin to exhibit motion which

resembles the second cantilevered blade instead of the first. Since only the first

cantilevered blade was used to represent mistuning utilizing the CMM approach, the

damping identification is expected to be less accurate for these modes.

Excluding the aforementioned modes, the results show that the damping identi-

fication is accurate for higher levels of noise. In particular, the relative error in the

mean value for both noise cases shown in Fig. 4.3 is below the level of the measure-

ment noise (with the exception of the 13th mode in Fig. 4.3(b), which has a relative

error of 27.3%). The standard deviation relative error in Fig. 4.4(a) is below 5%

except for modes 3, 6, 13, and 26-30. Mode 13 has an error of 7.0%. The relative

error for the case of 10% noise shown in Fig. 4.4(b) is below 10% except for modes

13 and 21 which have values of 58.2% and 14.6% respectively. The results indicate

that the responses with a large participation of mode 13 are low causing the identi-

fication to be sensitive to the absolute and bias measurement noise. In general, the

mean damping identification is accurate in the presence of measurement noise, with a

relative error less than the level of the measurement noise. The standard deviation of

each identified damping value is more sensitive to measurement noise than the mean

identified value.

An alternative accuracy test is to compare the results of this damping identifica-

tion method with the one in [56] (referred to as Multi in the figures). Figures 4.5 and

4.6 show the mean and standard deviation of the identified damping values for 5%

and 10% noise levels. For comparison, the same noisy measurement data was used

in both methods. Both methods use the same measurement filter values, which are

optimized for the proposed method. The Multi method used a ROM consisting of 17

modes, while the hybrid method used 29 frequency windows. The results for the

5% noise level indicate that the hybrid method is less robust to measurement noise

than the alternative method. However, for the 10% measurement noise case, both
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Figure 4.5: Mean identified (ID) damping for the two methods using data with 5%
(a) and 10% (b) relative noise; mistuned modes are ordered by increasing
frequency
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Figure 4.6: Standard deviation (Std) of identified damping (ID) for the two methods
using data with 5% (a) and 10% (b) relative noise; mistuned modes are
ordered by increasing frequency

method preformed with similar accuracy. In addition, note that while the hybrid

method sacrifices some accuracy in the damping identification, the damping of 30 or

32 modes was identified while the Multi method only identified 15 or 8 values.

The damping identification requires that the relative forcing for a given distribu-

tion G̃g be known for a given frequency range, and that the relative forcing between

different distributions be known at a given frequency. One way to ensure the first

requirement is to use the frequency transfer function for each speaker or magnet

used for excitation, and assume that the force applied to the structure is propor-
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Figure 4.7: Variation in identified damping due to error in forcing

tional to the output of the speakers or magnets. The second requirement can be

ensured though a forcing calibration similar to the one in [1]. To study the ef-

fects of errors in the relative forcing, the applied forcing was corrupted by using

F (ω) = 100[1 + αerror/100r1(ω)] + jαerrorr2(ω) (measured in mN), where r1(ω) and

r2(ω) are random numbers drawn from a uniform distribution between -1 and 1. The

nominal applied force is 100 mN. 100 realizations of forcing were created and the

identification was performed for each value of αerror between 1 and 10. Therefore,

the amplitude errors considered are up to 10%. The phase angle errors are up to

±6.3◦. The modes which could not be captured accurately by the damping identifi-

cation due to the measurement direction, the range of validity of the ROM, and large

sensitivity to measurement noise (modes 3, 6, 26-32) were excluded from this study

for clarity. Figure 4.7 shows the mean relative error of the identified modal damping

values for all modes for each αerror. Also shown is the standard deviation over the

noise realizations of the standard deviation of the mean relative error of the identified

modal damping values for all modes for each αerror (denoted Std ID). Of course, other

statistical measures could be computed also. These results provide useful partial in-

formation about the average accuracy of the damping identification. The standard

deviation of the identification increases with the αerror value. The mean relative error

is approximately constant for αerror between 1 and 3. This trend is most likely due

69



to errors caused by the approach used to model mistuning. The mean relative error

increases approximately linearly for αerror values between 4 and 10. In general, the

identification error caused by variations in the relative forcing is smaller than the

error due to (equivalent levels of) measurement noise.

4.10 Conclusions

This method offers several benefits as compared to current damping identifica-

tion techniques. First, the proposed methodology uses a reduced frequency response

matrix such that only a subset of all the DOF of the system need to be measured,

with another subset being forced. The hybrid damping identification does not require

knowledge of the absolute forcing, but can identify this value if the relative forcing is

known (from a forcing calibration).

An important feature which allows the identification to be accurate is the intro-

duction of the frequency windowing. The windowing can reduce the effects of mea-

surement noise and also lower the number of required forcing cases. The proposed

damping identification uses a reduced frequency response matrix, which is further

reduced in size using the frequency windowing. As a result, fewer locations need to

be measured and/or forced. This decrease in data acquisition has a significant impact

on the computational cost of preforming the damping identification. In addition, this

method can be applied to mistuned systems and uses ROMs. Therefore, the proposed

method is computationally efficient also.

Results for a validation blisk show that identifying the modal damping is possible

by employing the proposed approach, which uses a ROM, requires measurements at

only a few locations per blade, and is effective even in the presence of relative, absolute

and bias measurement noise. A comparison of this method with the alternative

method of Holland et al. [56] shows that the proposed method is less accurate when

using the same filter values, however more modal damping values can be identified
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with the proposed approach. In general, the mean identified values for the alternative

method are slightly more accurate and have lower standard deviations than the hybrid

method. However, as the two methods do not use the same measurement filters

(although the values are the same) the difference in the identification accuracy is

from a combination of the noise sensitivity and the measurement data filtering.

Also, a study was conducted to determine the effect of forcing errors on the damp-

ing identification. The results indicate that the damping identification is more sensi-

tive to measurement noise than to forcing errors.
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CHAPTER V

Component Damping Identification Methods for

Mistuned Blisks

5.1 Introduction

Wear or manufacturing processes or defects can cause slight variations in the

mass or stiffness of a nominally cyclically symmetric structure such as an integrally

bladed disk (blisk). These variations or mistuning can cause the vibration energy to

localize at certain regions of the structure resulting in larger than expected forced

responses and stresses. Therefore, these mistuned systems are susceptible to high

cycle fatigue. One method to compensate for the effects of mistuning is to apply

damping coatings. However, Joshi et al. [3] found that the dynamics of the system

can significantly change due to variations in the thickness of the applied coating. To

determine the damping characteristics of coatings, a damping identification technique

is needed which can determine the damping associated with individual components

of a mistuned blisk (before and after the coating is applied). Currently, damping

identification relies on one of several common damping models namely, structural,

viscous, and component (material) damping. In general, structural damping is defined

for a full system, while viscous damping is defined for individual system modes.

Most current damping identification techniques assume that damping has a cer-
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tain form at a system level. For example, the damping in complex structures is often

assumed to be viscous, modal, or structural. Such assumptions provide accurate re-

sults for structures with relatively simple geometries and low modal density. However,

these approximations can be cumbersome or inaccurate for structures with complex

geometry and high modal density. For such systems, using a component-oriented

model can be more effective. In particular, component damping corresponds to a

proportional or structural damping applied to individual components of a structure

(i.e., each component has an associated material damping). For instance, each blade

of a blisk can be modeled as a separate component with an associated damping pa-

rameter (which is to be identified). The resulting damping is only approximately

modal, and the corresponding modal damping values vary with different component

damping properties. As a result, the component damping can represent the physical

attributes of the structure more closely and may require less effort than identifying

the modal damping for a structure with a moderate number of components and a

large number of modes in the frequency range of interest.

While finite element modeling (FEM) methods incorporate component damping,

most identification methods found in literature are difficult or impossible to use to

identify this type of damping from experimental data [4, 6, 7, 11, 12, 14–20, 22–24,

26–29]. Statistical energy analysis (SEA) is one method for determining component

(subsystem) damping loss factors. This method is useful for high frequency ranges.

However, this technique is limited as the damping is assumed to be known either from

the power injection method (PIM) [32,33,35,36], power modulation method [36], or a

wave approach [37]. PIM and power modulation techniques require measuring energy

for all the components, and that can be difficult or impossible to gather accurately.

Also, wave theory only applies to periodic systems. Moreover, the SEA method can

be time consuming if there are many components [36]. In addition, the accuracy of

the SEA method depends on the modal density and the level of damping, as shown
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by Mace [38] and Yap et al. [39].

The work herein presents a novel component damping identification technique

which can be applied to mistuned blisks and use certain reduced-order models (ROMs)

in regions of low and/or high modal density. In addition, a method for predicting the

forced response of the system using ROMs is provided, and that can decrease design

time and enable statistical analyses of component damping scenarios.

5.2 Equations of Motion

In this section, equations of motion are developed beginning with Lagrange’s equa-

tion. Component-level damping is introduced to the disassembled system by including

a Rayleigh damping function. Finally, the system-level structural equation of motion

incorporating component damping is obtained.

The kinetic and potential energies and the Rayleigh damping function for a struc-

ture can be expressed as

T = 1
2
q̇c1

T

µµµc1q̇c1 + 1
2
q̇c2

T

µµµc2q̇c2 + . . .+ 1
2
q̇cn

T

µµµcnq̇cn ,

V = 1
2
qc1

T
κ̃κκc1qc1 + 1

2
qc2

T
κ̃κκc2qc2 + . . .+ 1

2
qcn

T
κ̃κκcnqcn , (5.1)

D = 1
2
q̇c1

T

ηηηc1q̇c1 + 1
2
q̇c2

T

ηηηc2q̇c2 + . . .+ 1
2
q̇cn

T

ηηηcnq̇cn ,

where T is the kinetic energy, V is the potential energy, D is the Rayleigh damping

function, ci denotes component i, i ∈ 1, 2, . . . , n, and the component mass, stiffness,

and damping matrices are µµµci , κ̃κκci , and ηηηci respectively. The generalized coordinates

qci for all components are, in general, not independent because the components are

coupled. The coupling can be modeled as constraints. Expressing the geometric

constraint equations in terms of all generalized coordinates grouped in a vector q,

one obtains

Eq = 0, (5.2)
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where the size of the vector q is N × 1 and the size of the matrix E is (N − a)×N

with N being the number of disassembled degrees of freedom (DOFS) and a being

the number of independent DOFs.

Lagrange’s equation with Rayleigh damping is

∂

∂t

(
∂L

∂q̇

)
− ∂L

∂q
+
∂D

∂q̇
= F, (5.3)

where L = T − V + σσσTEq, the vector F has a size of N × 1 and contains all the

non-conservative generalized forces, and the vector σσσ of size (N − a) × 1 contains

Lagrange multipliers.

Substituting Eqns. (5.1) and (5.2) into (5.3), one obtains

µµµq̈ + η̄ηηq̇ + κκκq = ETσσσ + F, (5.4)

where matrices µµµ, κκκ, and η̄ηη are of size N ×N and are given by

µµµ =



µµµc1 0 · · · 0

0 µµµc2
. . .

...

...
. . . . . . 0

0 · · · 0 µµµcn


= Bdiag [µµµci ] ,κκκ = Bdiag [κ̃κκci ] , and η̄ηη = Bdiag [ηηηci ] .

The vector of generalized coordinates which are independent at a system level is

denoted by X. Vector X is of size a × 1. The relation between q and X can be

expressed by using a matrix S os size N × a. One obtains

q = SX, q̇ = SẊ, and q̈ = SẌ. (5.5)

Pre-multiplying both sides by E and noting that X is a vector of independent co-

ordinates, one can conclude that Eq = ESX = 0 for any X. For most systems of
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practical interest the number (N − a) of constraints is much larger than the number

of independent coordinates. Thus, N − a >> a. Since ES is of size (N − a)× a and

ESX = 0 for any X, one may conclude that

ES = 0. (5.6)

Pre-multiplying Eqn. (5.4) by ST and using Eqn. (5.5), one obtains

STµµµSẌ + ST η̄ηηSẊ + STκκκSX = (ES)T σσσ + STF = STF.

Defining M = STµµµS, C = ST η̄ηηS, and K = STκκκS produces

MẌ + CẊ + KX = STF. (5.7)

5.3 Component Damping Response

Next, we focus on both damping and stiffness mistuning in blisks. The equation

of motion in Eqn. (5.7) is transformed to mistuned modal coordinates. The resulting

equations are decoupled in mass and stiffness, but remain coupled though damping.

Finally, forced response equations for ROMs are developed to facilitate the design of

systems with component damping.

First, assume F is a harmonic forcing with (complex) magnitude f at frequency

ω. Using Eqn. (5.7), one obtains

−ω2Mx + jωSTBdiag [η̄ηηci ] Sx + Kx = ST f,

where x is a vector of size a× 1 containing the (complex) magnitude of the harmonic

response. Let the damping be represented using a mean term and a variation from

the mean, so that η̄ηηci = Γmκ̃κκci + δΓciκ̃κκci , where Γm is a single damping value (which
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is the same for all components) and δΓci is the damping mistuning associated with

component i. Thus, the damping in component i is given by Γci = Γm + δΓci .

Combining the κ̃κκci matrices from the damping and stiffness terms, one obtains

(
−ω2M + STBdiag [(1 + jωΓm) κ̃κκci + jωδΓciκ̃κκci ] S

)
x = ST f. (5.8)

For a blisk with stiffness mistuning, κ̃κκci = (κκκci + δκκκci), where κκκci is the stiffness

matrix (from a tuned analysis) for component ci, and δ denotes a mistuned matrix.

Then,

(1 + jωΓm) κ̃κκci + jωδΓciκ̃κκci = (1 + jωΓm) (κκκci + δκκκci) + jωδΓci (κκκci + δκκκci) . (5.9)

Next, we convert to (mass normalized) mistuned modal coordinates by using x =

Φ̄ΦΦp̄, where Φ̄ΦΦ is a matrix of size a × a containing all mistuned modes, and p̄ is a

vector of size a × 1 containing all the mistuned modal amplitudes. Pre-multiplying

Eqn. (5.8) by Φ̄ΦΦ
T

, letting Ψ̄ΨΨ = SΦ̄ΦΦ, and using Eqn. (5.9), one obtains

−ω2p̄ + (1 + jωΓm) Λ̄ΛΛmistp̄ + jωΨ̄ΨΨ
T
Bdiag [δΓci (κκκci + δκκκci)] Ψ̄ΨΨp̄ = Ψ̄ΨΨ

T
f, (5.10)

where the diagonal matrix of mistuned eigenvalues is Λ̄ΛΛmist = Ψ̄ΨΨ
T
Bdiag [κκκci + δκκκci ] Ψ̄ΨΨ.

Note that Ψ̄ΨΨ is a matrix which contains the disassembled mistuned system modes

(where the interface is duplicated). Thus, Ψ̄ΨΨ is of size N × a, where N is the number

of disassembled DOFs.

Next, we use ROMs to efficiently and accurately generate the forced response

of a mistuned system with component damping variability. First, we assume that

outside a given frequency range of interest, p̄t ≈ 0 for modes t. Therefore, p̄ can be

reduced from size a× 1 to p of size m× 1, where m = a− t. Also, the columns of Φ̄ΦΦ

corresponding to these modes can be ignored reducing Φ̄ΦΦ from size a× a to ΦΦΦ of size
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a×m. A similar change occurs for Ψ̄ΨΨ, which is reduced from size N × a to ΨΨΨ of size

N ×m. In addition, Λ̄ΛΛmist is reduced from size a× a to ΛΛΛmist of size m×m. As the

left side of Eqn. (5.10) contains near-zero values for modes t, these equations can be

ignored.

The use of ΛΛΛmist indicates that only the m modes participating in the response

for a given frequency range of interest are needed to complete the identification. For

blisks with small mistuning, Griffin et al. [40] also found that the mistuned modes can

be represented as a linear combination of tuned system modes. Therefore, ΦΦΦ = φφφΘΘΘ,

where φφφ is a a × θ matrix which contains θ tuned system modes in the frequency

range of interest. ΘΘΘ is a θ × m matrix of participation factors for the mistuned

modes. Therefore, the forced response can also be accurately calculated using the

subset of θ tuned modes in matrix φφφ.

Using a ROM, solving Eqn. (5.10) for p, and pre-multiplying by ΦΦΦ, one obtains

x = ΦΦΦp =

ΦΦΦ
{
−ω2I + (1 + jωΓm)ΛΛΛmist + ΨΨΨT jωBdiag [δΓci (κκκci + δκκκci)]ΨΨΨ

}−1
ΨΨΨT f.

(5.11)

Using a given stiffness mistuning and component damping, the forced response of the

system can be calculated using Eqn. (5.11). An equivalent form of Eqn. (5.11) can

be found for a system with mass mistuning (omitted here for the sake of brevity).

Consider that the forced response has to be predicted at only r DOFs. Retaining

only these DOFs, φφφ can be reduced from size a×θ to φ̃φφ of size r×θ so that x̃ = φ̃φφΘΘΘp,

where x̃ is a vector of size r× 1 containing the measured DOFs. This reduction leads

to more computationally efficient forced response predictions.

78



5.4 Component Damping Identification

This section presents a component damping identification method. A least squares

solution is detailed. After the initial damping identification formulation, issues spe-

cific to blisks are highlighted.

Partitioning ΨΨΨ according to the corresponding components, one obtains ΨΨΨ =[
ΨΨΨT
c1

ΨΨΨT
c2
· · ·ΨΨΨT

cn

]T
. Next, Eqn. (5.10) can be transformed by using a ROM and carry-

ing out the multiplication. One obtains

ΨΨΨTBdiag [δΓci (κκκci + δκκκci)]ΨΨΨp = ΨΨΨT



δΓc1 (κκκc1 + δκκκc1)ΨΨΨc1

δΓc2 (κκκc2 + δκκκc2)ΨΨΨc2

...

δΓcn (κκκcn + δκκκcn)ΨΨΨcn


N×m

p

= ΨΨΨTBdiag [κκκci + δκκκci ]N×N Bdiag [ΨΨΨci ]N×nm (In×n ⊗ p)


δΓc1

...

δΓcn


= ΨΨΨT K̃ (In×n ⊗ p)


δΓc1

...

δΓcn

 , (5.12)

where the subscripts on matrices [ ]·×· indicate the size of the matrix,

K̃ = Bdiag [(κκκci + δκκκci)ΨΨΨci ], I is the identity matrix, ⊗ denotes the Kronecker prod-

uct, and n is the number of components.

Substituting Eqn. (5.12) into Eqn. (5.10) and using a ROM, one obtains

jωΨΨΨT K̃ (In×n ⊗ p)


δΓc1

...

δΓcn

 = ΨΨΨT f + ω2p− (1 + jωΓm)ΛΛΛmistp. (5.13)
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For two frequencies, ωu and ωv denoted by subscripts u and v, one obtains

jωuΨΨΨ
T K̃ (In×n ⊗ pu)


δΓc1

...

δΓcn

 = ΨΨΨT fu + ω2
upu − (1 + jωuΓ

m)ΛΛΛmistpu, (5.14)

and

ΨΨΨT fv = jωvΨΨΨ
T K̃ (In×n ⊗ pv)


δΓc1

...

δΓcn

− ω
2
vpv + (1 + jωvΓ

m)ΛΛΛmistpv. (5.15)

Next, assume that the spatial distribution of the excitation forces fu and fv applied

to the system at frequencies u and v is known. Assume also that the magnitude

and phase of these excitations are known up to a multiplicative constant αuv, where

αuv ∈ C so that fu = αuvfv. Note that one way to extract αuv is to use the frequency

transfer function of the speakers or magnets used for excitation, and assume that the

force applied to the structure in a given frequency band is proportional to the signal

applied to the speakers or magnets in that frequency band. Multiplying Eqn. (5.15)

by αuv, one obtains

ΨΨΨTαuvfv =jωvΨΨΨ
T K̃ (In×n ⊗ αuvpv)


δΓc1

...

δΓcn


− αω2

vpv + (1 + jωvΓ
m)ΛΛΛmistαuvpv,

(5.16)

Considering the forces to be calibrated over the frequency range of interest (αuv = 1),
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combining Eqns. (5.14) and (5.16), and grouping like-terms, one obtains

jΨΨΨT K̃ (In×n ⊗ [ωupu − ωvpv])


δΓc1

...

δΓcn

 =ω2
upu − ω2

vpv −ΛΛΛmist (pu − pv)

− jΓmΛΛΛmist (ωupu − ωvpv) .

(5.17)

Notice that the right side of the equation contains terms similar to those used for

mistuning identification [49] where the response is at two different frequencies. Solving

the least squares problem given by Eqn. (5.17) using the Moore-Penrose pseudo-

inverse, one obtains


δΓc1

...

δΓcn

 = Im
( [

AT
uvAuv

]−1
AT
uv

{
ω2
upu − ω2

vpv

−ΛΛΛmist (pu − pv)− jΓmΛΛΛmist (ωupu − ωvpv)}) ,

(5.18)

where Auv = ΨΨΨT K̃ (In×n ⊗ [ωupu − ωvpv]) is a matrix of size m × n with m being

the number of modes and n being the total number of components. For the solution

in Eqn. (5.18) to be unique, m must be larger than or equal to n. In that case

Eqn. (5.18) provides the individual damping values (identified) for all the components

of a structure.

Note that if the damping in each component is structural, then δΓci = δΓ̃ci/ω

with δΓ̃ci being constant for all i, and δΓm = δΓ̃m/ω with δΓ̃m being a constant.
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Substituting into Eqn. (5.13) and following similar steps, one obtains


δΓ̃c1

...

δΓ̃cn

 = Im

( [
Ã
T

uvÃuv

]−1

Ã
T

uv

{
ω2
upu − ω2

vpv

−
(

1 + jΓ̃m
)

ΛΛΛmist (pu − pv)
})

,

(5.19)

where Ãuv = ΨΨΨT K̃ (In×n ⊗ [pu − pv]). Equation (5.19) is the structural damping

version of Eqn. (5.18), where the components have individual structural damping

coefficients.

Note also that if the system consists of uniform proportional damping (i.e., the

damping is the same for all components), then δΓci = 0 for all components. Substi-

tuting into Eqn. (5.17), one obtains

0 = ω2
upu − ω2

vpv −ΛΛΛmist (pu − pv)− jΓmΛΛΛmist (ωupu − ωvpv) .

Letting dωuv = (ωupu − ωvpv), taking the inverse of ΛΛΛmist, and solving in a least

squares sense, one obtains

Γm = Im
([

dωuv
Tdωuv

]−1
dωTuv

[
ΛΛΛmist

−1
{
ω2
upu − ω2

vpv
}
− (pu − pv)

])
. (5.20)

Equation (5.20) can be used to identify the proportional damping in a system without

damping variability. Similarly, for a uniformly structurally damped system, damping

can be identified as

Γ̃m = Im
([

dTuvduv
]−1

dTuvΛΛΛmist
−1
{
ω2
upu − ω2

vpv
})

, (5.21)

where duv = (pu − pv). Equation (5.21) shows that for the special case of a system
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with uniform structural damping the proposed method reduces to the technique by

Holland et al. [53].

5.5 Refinements for Cyclically Symmetric Structures

The identification approach presented in the previous section can utilize special

properties of cyclically symmetric structures (i.e., structures consisting of one sector

duplicated about a central axis) to decrease the computational cost. Representing

a cyclically symmetric structure using only one sector is desirable as the number

of DOFs in a sector is Ñ , approximately s times smaller than the total number

N of DOFs in the entire blisk (Ñ ≈ N/s), where s is the number of sectors. In

particular, matrices κκκ and ΨΨΨ for a single sector are of size Ñ × Ñ and Ñ × m.

To represent a cyclically symmetric system using only sector level calculations, each

sector corresponds to two components, a blade portion (denoted using β) and a disk

portion (denoted using ∆). Cyclic coordinates are chosen so that κκκβ = κκκ1
β = · · · = κκκsβ

and κκκ∆ = κκκ1
∆ = · · · = κκκs∆. As a result, one obtains

ΨΨΨT K̃ (Is+1×s+1 ⊗ duv) =[
ΨΨΨT
c1,β

(
κκκβ + δκκκc1β

)
ΨΨΨc1,βduv · · · ΨΨΨT

cs,β

(
κκκβ + δκκκcsβ

)
ΨΨΨcs,βduv

s∑
i=1

ΨΨΨT
ci,∆

(κκκ∆ + δκκκci∆)ΨΨΨci,∆duv

]
,

(5.22)

where κκκβ + δκκκciβ and κκκ∆ + δκκκci∆ are the mistuned stiffness matrices of the blade and

disk portions of sector i, ΨΨΨci,β and ΨΨΨci,∆ are the blade and disk portions of the

modal matrices. Note that the tuned mode shapes for all sectors can be related to

those of a single sector with cyclically symmetric boundary conditions using the real

Fourier matrix [52,58]. Also, note that dωuv is replaced with duv when the damping is

structural.

System level characteristics such as cyclic modeling error [51] are more difficult to

83



represent as changes in the component stiffness matrices in comparison to blade to

blade variability. Using the component mode mistuning method [48,49] and assuming

that there is no mistuning in the disk, one obtains

ΨΨΨT K̃ (Is+1×s+1 ⊗ p̃uv) =[(
ΨΨΨT
c1,β

κκκβΨΨΨc1 + φφφTc1q
T
c1

ΛΛΛ1
CBqc1φφφc1

)
p̃uv · · ·

(
ΨΨΨT
cs,βκκκβΨΨΨcs + φφφTcsq

T
csΛΛΛ

s
CBqcsφφφcs

)
p̃uv

s∑
i=1

ΨΨΨT
c1,∆

κκκ∆ΨΨΨc1,∆ p̃uv

]
, (5.23)

where ΛΛΛi
CB is a diagonal matrix of the mistuned cantilevered blade eigenvalues for

blade i [48, 49], and qci contains the participation factors of mistuned cantilevered

blade i onto the tuned system modes (in a ROM). Note that the vectors qci are not

to be confused with the matrix of participations ΘΘΘ (that relate tuned and mistuned

mode shapes) or to the vector of generalized coordinates q. Equations (5.23) and

(5.18) or (5.19) are used to identify damping in sector level components for a blisk.

5.6 Damping Solution

To avoid numerical errors, there are some conditions which must be met by the

damping identification. First, the number of modes used during the identification m

must be greater than the number of unknown damping values, so m ≥ n. Otherwise,

matrix A has a rank less than n. This condition is satisfied by using an appropriate

ROM. Second, as some of the modal amplitudes in p may be low or sensitive to

measurement noise, it is necessary to retain enough data to determine all n damping

values.

Recall that the damping identification is valid for all frequency pairs u, v in

Eqn. (5.18) (or Eqn. (5.19) for structural damping. Therefore, it is possible to com-

bine these equations by concatenating the column of duv for one frequency pair uv
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with all other frequency pairs. The resulting vector dauguv of size b× 1, where b is the

number of frequency pairs. Likewise, dωuv = ωupu − ωvpv and dλuv = ω2
upu − ω2

vpv

can be augmented into vectors dω,auguv and dλ,auguv of sizes b × 1. For simplicity, duv,

dωuv, and dλuv will be referred to as the non-augmented vectors and duv, dωuv, and dλuv

will be referred to as the augmented vectors. Using the non-augmented vectors in

Eqn. (5.17), one obtains

jΨΨΨT K̃ (In×n ⊗ dωuv)


δΓc1

...

δΓcn

 = dλuv −ΛΛΛmistduv − jΓmΛΛΛmistd
ω
uv.

When there are many frequency pairs, the size of these augmented matrices may

become prohibitively large. Thus, it is desired to reduce the number of frequency

pairs to b̄. The partial modal assurance criteria (PMAC) [57] is used to determine

which non-augmented vectors to average, thus decreasing the number of frequency

pairs and reducing zero-mean noise. The augmentation process is summarized in

Fig. 5.1. The dashed lines indicate paths which only occur one time, while the solid

lines indicates repeated processes.

The augmented vectors starts as void vectors. The first frequency pair u, v is used

to form the non-augmented vectors which are used to augment dauguv , dω,auguv , and dλ,auguv .

Thus, the first vector set in the augmented matrices is dauguv = duv, dω,auguv = dωuv, and

dλ,auguv = dλuv, where the set only consists of one vector. Thus, the augmented matrices

contain one set and are of size m× 1

Then, all non-augmented vectors are calculated for all v frequency pairs, while

using the same frequency u. These additional non-augmented vectors will be referred

to as the candidate vectors. Let h be the number of candidate vectors.

To compare the information contained in the candidate vectors with the infor-

mation in the augmented matrices, the PMAC is calculated between the candidate
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Figure 5.1: Algorithm for augmenting damping identification matrices

vectors formed from the non-augmented matrix duv and each set in dauguv (which con-

sists of only one set initially). The d candidate vectors which have a PMAC (for a

given set in dauguv ) above Tm are considered to be dependent.

To reduce the zero-mean noise and decrease the size of the augmented matrices,

these corresponding candidate vectors are summed with the corresponding set in the

augmented matrices. Then, these vectors are removed from the candidate vectors.

Thus, the augmented matrices remain of size m×1, however the set now contains the

sum of d+ 1 vectors (including the initial vector). For the remaining h− d candidate

86



vectors, the first of the remaining vectors is added as a new set to the augmented

matrices. Then, the first candidate vector is removed from the candidate vectors

resulting in h− d− 1 candidate vectors. The augmented matrices are of size 2m× 1.

The PMAC is calculated between the remaining h−d−1 candidate vectors for duv

and the newly added set in dauguv . The candidate vectors corresponding to a PMAC

(based on duv and the sets in dauguv ) above Tm are summed with the new set in the

augmented matrices and then they are removed from the candidate vectors. The

process repeats with new sets added and summed until no more candidate vectors

remain.

Then, new candidate vectors are creating from the next u frequency. The algo-

rithm repeats until all frequency pairs are either summed with a set already in the

augmented matrices or are added as a new set in those matrices. The final step in-

volves averaging the b̄ sets by dividing each set in the augmented matrices by the num-

ber of vectors which were summed in the set. To formulate the augmented equations,

matrices ΨΨΨ, K̃, In×n, and ΛΛΛmist are duplicated b̄ times such that ΨΨΨaug = Bdiag [ΨΨΨ],

K̃
aug

= Bdiag
[
K̃̃K̃K
]
, Iaug = Bdiag [In×n], and ΛΛΛaug

mist = Bdiag [ΛΛΛmist]. Using the aug-

mented matrices, one obtains

jΨΨΨaugT K̃
aug

(Ib̄n×b̄n ⊗ daug,ωuv )


δΓc1

...

δΓcn

 =daug,λuv −ΛΛΛaug
mistd

aug
uv

− jΓmΛΛΛaug
mistd

aug,ω
uv .

(5.24)

Note that while Eqn. (5.24) is for the case of proportional damping, structural

damping has terms duv and dλuv and so this algorithm remains the same with the

exceptions that there are no dωuv or dω,auguv matrices involved.

This augmentation includes utilizing the frequency windowing introduced by Hol-

land et al. [59] when selecting the frequency pairs. Therefore, the augmentation al-
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gorithm is applied to each frequency window. This frequency windowing uses smaller

ROMs which are valid around each individual mistuned mode. As the response of

each component has the potential to be localized for a given mistuned mode, it is

imperative to capture the motion of as many modes as possible. For regions of high

modal density, there may be many components responding each in a localized mode.

Therefore, there are many modes and measurements inside a frequency window for

this region. Conversely, for an isolated mistuned mode (i.e., a mode which responds

alone to excitations near or at its natural frequency), the ROM would include only the

predominant mistuned mode. As a result, the physical to modal coordinate transfor-

mation x = ΦΦΦp = φφφΘΘΘp, and thus the damping identification is more accurate, while

effectively capturing the dynamics of a larger frequency range.

5.7 Modal Sensitivity to Component Damping

Mistuned systems exhibit localization. As a result, it is possible that only a few

blades participate in a given mistuned mode. Therefore, the damped responses near

the frequency of that mistuned mode are sensitive to the (component) damping in

those few localized blades. To obtain an accurate component damping identifica-

tion, one must incorporate information for mistuned modes which are sensitive to

each component so that information about the damping of each component can be

obtained. This section introduces a method for determining the sensitivity of a mis-

tuned mode inside of a frequency window to the damping of a given component. The

frequency windows can then be selected for an accurate damping identification.

Note that the energy loss for the structure due to the damping mistuning is mod-

eled using jωδΓci (κκκci + δκκκci) in Eqn. (5.9). In mistuned modal coordinates this can

be expressed as jωδΓciΦΦΦT
ci

(κκκci + δκκκci)ΦΦΦci , where ΦΦΦci represents the portion of the mis-

tuned mode shapes corresponding to component ci. The term ΦΦΦT
ci

(κκκci + δκκκci)ΦΦΦci is a

strain energy-like term for the energy loss in a given component ci. Now for a given
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frequency window consisting of target mode u and non-target mode v, the normalized

energy loss (or sensitivity of the target mistuned mode) can be expressed using

S̄ciuv =
1

ωn,uωn,v
ΦΦΦT
ci,u

(κκκci + δκκκci)ΦΦΦci,v, (5.25)

where ωn,u and ωn,v are the mistuned natural frequencies of modes u and v, and ΦΦΦci,u

and ΦΦΦci,v are vectors containing the portion of the uth and vth mistuned mode shapes

corresponding to component ci. For a given frequency window, only the chosen mode

v varies.

To effectively use the sensitivity S̄ciuv, a process to order the frequency windows is

introduced. First, calculate the sensitivity for all components for all target modes u

paired with non-target modes v in each frequency window. Then, for each frequency

window choose the largest sensitivity value S̄ci = max
u,v

{
S̄ciuv
}

for any mode pair u

and v. As a result, the maximum sensitivity for each component ci in each frequency

window is obtained. Then, choose the first set of frequency windows to be used

for the component damping identification to be the frequency windows that give the

maximum sensitivity S̄ci , i.e., for each component (one window per component). Now,

the damping identification should be less accurate for the component with the lowest

sensitivity in the set. Therefore, add to the set of windows the next frequency window

(ordered by decreasing sensitivity) corresponding to the component with the lowest

sensitivity in the previous set. Continue until each component has two frequency

windows. Repeat the process for the 3rd most sensitive frequency windows until all

mode windows have been chosen, or no sensitivity values are left to compare. Consider

any frequency windows which remain unchosen as equally insensitive to component

damping and add them as the final set. Once, the frequency window order has been

determined, the surrogate process introduced by Holland et al. [59] can be used to

statistically optimize the number of frequency windows in the component damping
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identification.

5.8 Damping Identification Results and Discussion

This section explores the accuracy of the proposed damping identification method

with respect to the measurement noise level for the 141,120 DOF University of Michi-

gan validation blisk. This validation blisk is described in detail in [52]. To investigate

the effects of measurement noise, we first used Eqn. (5.11) to obtain simulated mea-

surement data. This data is perfect in the sense that it contains no measurement

noise. Next, we inject relative white noise in this data to simulated the presence

of measurement noise [55]. Note that the simulated measurements use an accurate

model which incorporates all tuned modes in a frequency range from 0 to 10 kHz.

To simulate a practical case, the damping identification method was applied by using

modes and measurements only in the frequency range 0 to 3 kHz.

The University of Michigan validation blisk has an applied blade stiffness mistun-

ing pattern with values between±2% (in eigenvalue). The damping identification uses

the structural damping formulation in Eqn. (5.19) with the definition of K̃ provided

in Eqn. (5.23). These results also utilize the surrogate data method to determine

the optimal number of modes to achieve an accurate physical to modal transforma-

tion [59]. The results were obtained using the actual stiffness mistuning values to

focus on the accuracy of only the damping identification (instead of the mistuning

identification).

The following results were obtained using previous measurement and residual fil-

ters with values Rthresh = 0.1 and Tl = 0.05 [56]. Also, two additional measurement

filters are proposed. The first measurement filter removes data which is sensitive to

measurement noise. This filter duplicates the measurement data and then corrupts

this data with measurement noise. The modal amplitudes of the noisy measurement

data is compared to the modal amplitudes of the uncorrupted measurement data.
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If the magnitude of any of the modal amplitudes differ by a factor of Tb, then the

measurement data is removed from the identification. Therefore, data is removed for

which one modal amplitude satisfies

|pnoisyu,i | > TbNl|pactualu,i |, (5.26)

where | · | denotes the magnitude, pnoisyu,i and pactualu,i are the noisy and actual modal

amplitudes at frequency u for mistuned mode i, Tb is the noise sensitivity threshold,

and Nl is the noise level. The second measurement filter removes measurement pairs

which are too close in frequency. If pu ≈ pv and ωu ≈ ωv, then the identification

equation of frequency pair u, v become strongly dependent on the measurement noise.

Therefore, measurement pair u, v is removed from the identification if

maxi=1...m(|pu,i − pv,i|) ≤ Tp. (5.27)

In the following results, Tp = 1×10−5, Tb = 5, and the PMAC threshold is Tm = 0.75.

The following figures display the damping coefficient on the y-axis. The x-axis

is the component number. Components 1 to 24 correspond to blades 1 to 24 of the

blisk, while component 25 is the disk portion. Both the identified and the actual

structural damping coefficients are provided. Five measurement locations per blade

were used to obtain the results.

Figure 5.2 shows the mean values and the standard deviation of the identified

damping for 1,000 noise realizations. The mean values are extremely accurate with

a maximum relative error of 0.83% for the case of 1% relative measurement noise

(Fig. 5.2(a)), and 1.1% for the case of 5% relative measurement noise (Fig. 5.2(b)).

Figure 5.2 shows that all blades are identified with similar accuracy. The maximum

standard deviations are 2.6% and 7.4% for the two cases of 1% and 5% measurement

noise. The mean standard deviations are 2.0% and 5.3% respectively. In general, the
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Figure 5.2: Mean values and standard deviations of the identified damping for the case
of (a) 1% relative measurement noise and (b) 5% relative measurement
noise
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Figure 5.3: Relative (a) and normalized (b) error in the forced response predicted by
using the identified damping for the case of 5% measurement noise

damping identification error is of a similar level as the measurement noise level.

As the ROM used only 30 frequency windows, it is important that the blade

damping is identified such that the forced response is obtained accurately. Therefore,

to assess the accuracy of the damping identification, the forced response of the blisk

using the (mean) identified damping values should be compared with the forced re-

sponse using the actual component damping. Figure 5.3(a) shows the relative error

between the two forced response predications for a frequency range 0 to 6 kHz which

were generated using Eqn. (5.11) and modes in the frequency range of 0 to 10 kHz.

Only the relative error for responses above 4% of the maximum response are plotted.
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The y-axis of Fig. 5.3 displays the maximum relative error obtained for all measured

DOFs and single blade excitations for all blades. The x-axis is the frequency of the

excitation. Figure 5.3(b) shows the identification error which has been normalized

by the maximum response in the corresponding frequency range 0 to 1.2 kHz, 1.2 to

4 kHz, or 4 to 6 kHz. The separation of the frequency ranges is denoted by the two

vertical black lines. Notice that the 0 to 10 kHz frequency range contains 95 modes

as compared to the 30 frequency windows used in the damping identification. As

the resonant responses are of primary interest, responses near the mistuned natural

frequencies are shown. The maximum relative error in Fig. 5.3(a) is 0.53%. The

maximum normalized error in Fig. 5.3(b) is 0.36%, which is comparable to the cor-

responding maximum error of 0.31% in the identified damping values. This indicates

that that the identified damping values can represent the dynamics of the blisk for a

frequency range (of 0 to 6 kHz) larger than the identification frequency range (of 0

to 3 kHz).

In general, it was found that the maximum relative error in the damping identifi-

cation is greater than or equal to the maximum relative error in the forced response.

Therefore, the error in the damping identification is not a suitable indicator of how

well the structural dynamics are captured. Similar forced response results were ob-

tained for the forced response using the mean identified values with 1% measurement

noise, but are omitted here for brevity.

Figure 5.4 shows the standard deviation of the identified damping for 1,000 noise

realizations where the measurement noise is modeled with 1% relative, absolute, and

bias terms [56]. Note that the absolute and bias terms contribute more than 1% noise

to low responding data. For the frequency range 0 to 3 kHz, the disk dominated

responses are larger than the blade dominated regions. Thus, the identified blade

damping is expected to be less accurate than the identified disk damping as absolute

and bias noise affect the blade dominated data more. This behavior can be seen
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Figure 5.4: Mean values and standard deviations of the identified damping for the
case of 1% relative, bias and absolute measurement noise
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Figure 5.5: Modal damping identification of blisk with component damping

in Fig. 5.4. The mean values are accurate with a maximum relative error of 1.4%.

However, the standard deviation of the damping identification becomes larger than

the measurement noise level with a maximum value of 10.7%. Thus, the damping

identification is more sensitive to absolute and bias measurement noise than relative

measurement noise.

It is possible that the component damping identification will represent the damp-

ing of the system with fewer parameters than other methods such as modal damping

identification. Figure 5.5 demonstrates this feature. The y-axis of Fig. 5.5 displays the

identified modal damping obtained for this blisk (which actually contains component

damping) obtained using the method of Holland et al. [59]. The x-axis corresponds to

the the mistuned modes in the identification frequency range of 0 to 3 kHz organized
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by increasing natural frequency. Note that the damping of mode 6 was not identified.

The disk dominated modes 1-5, 31, and 32 have values similar to the actual disk

component damping. Also, modes 11 to 24 corresponding to blade dominated motion

have values similar to the level of the component damping in the blades. Modes 7 to

11 which are in a veering region have an equivalent modal damping between the disk

and blade component damping values. This modal damping identification method

required 31 parameters to describe the system dynamics in the frequency range of

interest. The component damping identification only required 25 values.

5.9 Conclusions

In contrast to current damping identification methods, the novel method herein

can identify the component damping. This feat allows the damping to have a more

meaningful physical interpretation especially for structures with complex geometry.

In particular, this type of damping identification enables a more accurate analysis of

damping coatings. Also, the presented formulation can be used to generate the forced

response of a mistuned structure with a prescribed component damping for a given

harmonic excitation and ranges larger than the identification frequency range.

Results for a validation blisk show that the identification is possible when using

reduced-order models (ROMs), in the presence of measurement noise, and when both

low and high modal density is present. In addition, the dynamics of the structure are

captured by the identified component damping. However, the component damping

method can be more sensitive to absolute and bias measurement noise than other

damping identification methods.

As the forced response method uses ROMs, it is computationally efficient. In

addition, the complex interaction between mass or stiffness mistuning and component

damping variability can be studied. Also, it is possible for the component damping

identification to accurately represent the damping of the system with fewer parameters
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than other methods.
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CHAPTER VI

Proportional Component Damping Hybrid

Identification

6.1 Introduction

Wear or manufacturing processes or defects can cause slight variations in the

mass or stiffness of a nominally cyclically symmetric structure such as an integrally

bladed disk (blisk). These variations or mistuning can cause the vibration energy to

localize at certain regions of the structure resulting in larger than expected forced

responses and stresses. Therefore, these mistuned systems are susceptible to high

cycle fatigue. One method to compensate for the effects of mistuning is to apply

damping coatings. However, Joshi et al. [3] found that the dynamics of the system

can significantly change due to variations in the thickness of the applied coating. To

determine the damping characteristics of coatings, a damping identification technique

is needed which can determine the damping associated with individual components

of a mistuned blisk (before and after the coating is applied). Currently, damping

identification relies on one of several common damping models namely, structural,

viscous, and component (material) damping. In general, structural damping is defined

for a full system, while viscous damping is defined for individual system modes.

Most current damping identification techniques assume that damping has a cer-
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tain form at a system level. For example, the damping in complex structures is often

assumed to be viscous, modal, or structural. Such assumptions provide accurate re-

sults for structures with relatively simple geometries and low modal density. However,

these approximations can be cumbersome or inaccurate for structures with complex

geometry and high modal density. For such systems, using a component-oriented

model can be more effective. In particular, component damping corresponds to a

proportional or structural damping applied to individual components of a structure

(i.e., each component has an associated material damping). For instance, each blade

of a blisk can be modeled as a separate component with an associated damping pa-

rameter (which is to be identified). The resulting damping is only approximately

modal, and the corresponding modal damping values vary with different component

damping properties. As a result, the component damping can represent the physical

attributes of the structure more closely and may require less effort than identifying

the modal damping for a structure with a moderate number of components and a

large number of modes in the frequency range of interest.

While finite element modeling (FEM) methods incorporate component damping,

most identification methods found in literature are difficult or impossible to use to

identify this type of damping from experimental data [4, 6, 7, 14–20, 22, 26–29]. Sta-

tistical energy analysis (SEA) is one method for determining component (subsystem)

damping loss factors. This method is useful for high frequency ranges. However, this

technique is limited as the damping is assumed to be known either from the power

injection method (PIM) [32,33,35,36], power modulation method [36], or a wave ap-

proach [37]. PIM and power modulation techniques require measuring energy for all

the components, and that can be difficult or impossible to gather accurately. Also,

wave theory only applies to periodic systems. Moreover, the SEA method can be

time consuming if there are many components [36]. In addition, the accuracy of the

SEA method depends on the modal density and the level of damping, as shown by
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Mace [38] and Yap et al. [39].

The work herein presents a novel component damping identification technique

which can be applied to mistuned blisks and use certain reduced-order models (ROMs)

in regions of low and/or high modal density.

6.2 Proportional Component Damping Hybrid Identification

An alternative to the damping identification method in Ch. 5.1 is presented herein.

This alternative approach makes use of a frequency response matrix to identify the

damping. First, the identification is described assuming that the forcing is known.

Then, a version of the damping identification method in Sec. 5.4 is used to recast

this identification using a relative forcing by solving for a relative forcing constant.

First, assume that the relative magnitudes and phases of the excitation have been

determined from a calibration procedure such as the one by Holland et al. [1]. Con-

sider that F̃ contains many forcing cases at a given frequency. At a given frequency,

a forcing case is a spatially unique forcing which is applied to the structure such that

each forcing case is independent from each other. Applying forcing to different blades

(single blade excitation) or of different nodal diameters (traveling wave excitation)

are examples of forcing cases. Thus, each column of F̃ represents the forcing vector

(of size a× 1) for one forcing case. Therefore, F̃ is of size c×a. Then, one may relate

the actual forcing values, grouped in a matrix F̄ to the relative forcing values in the

matrix F̃ as F̄ = eF̃, where e ∈ C is a scalar. Also, the responses to these forcing

cases can be grouped into a matrix X̄ which is of size a× c From the hybrid damping

identification method introduced by Holland et al. [59],

eGT
(
RX̄F̃

−1
)−∗

RX̄ =
(
−ω2M + jωC + K

)
X̄, (6.1)

99



where •−∗ denotes the Moore-Penrose pseudo-inverse, G is a matrix representing the

applied forcing distribution, and R is a matrix which selects only the measured DOF.

Note that Eqn. (6.1) is in the form YX̄ = ZX̄ for all X̄, where Y and Z are of size

a× a and therefore, Y = Z. Thus,

eGT
(
RX̄F̃

−1
)−∗

R =
(
−ω2M + jωC + K

)
, (6.2)

Converting to mass normalized mistuned modal coordinates, pre-multiplying by

ΦΦΦT , and using the damping expression in Eqn. (5.10) and a ROM, one obtains

eΦΦΦTGT
(
RX̄F̃

−1
)−∗

RΦΦΦ =− ω2I + (1 + jωΓm)ΛΛΛmist

+ jωΨΨΨTBdiag [δΓci (κκκci + δκκκci)]ΨΨΨ.

(6.3)

Also,

ΨΨΨTBdiag [δΓci (κκκci + δκκκci)]ΨΨΨ = ΨΨΨT K̃


δΓc1Im×m

...

δΓcnIm×m

 . (6.4)

Substituting Eqn.(6.4) into Eqn. (6.3) and taking the imaginary part, one obtains

Im

{
eΦΦΦTGT

(
RX̄F̃

−1
)−∗

RΦΦΦ

}
− ωΓmΛΛΛmist = ωΨΨΨT K̃


δΓc1Im×m

...

δΓcnIm×m

 . (6.5)

Letting Ā be the left side of Eqn. (6.5) and B̄ = ωΨΨΨT K̃, one obtains

Ā = B̄


δΓc1Im×m

...

δΓcnIm×m

 .
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Note that Āpq =
n∑
i=1

B̄p m(i−1)+qδΓ
i. Reshaping Ā by concatenating the columns, one

obtains



Ā11

...

Ā1m

Ā21

...

Ām1

...

Āmm



=



B̄11 B̄1 m+1 · · · B̄1 m(n−1)+1

...
...

...

B̄1m B̄1 2m · · · B̄1 mn

B̄21 B̄2 m+1 · · · B̄2 m(n−1)+1

...
...

...

B̄m1 B̄m m+1 · · · B̄m m(n−1)+1

...
...

...

B̄mm B̄m 2m · · · B̄m mn





δΓc1

δΓc2

...

δΓcn


⇒ ã = B̃ΓΓΓ. (6.6)

If m ≥ n, pre-multiplying by the Moore-Penrose pseudo-inverse B−∗, one obtains



δΓc1

δΓc2

...

δΓcn


= B̃

−∗
ã. (6.7)

Equation (6.7) is used for proportional damping identification where the forcing dis-

tribution, magnitude, and phase are known. Note that it can be difficult to know the

absolute applied force. However, Holland et al. [1] introduced a forcing calibration

method which can provide the magnitude and phase of the relative applied force.

6.3 Relative Structural Damping Identification using Cali-

bration

In this section, assume that e is unknown, i.e. the applied forcing is known

up to a multiplicative constant. Then, multiplying Eqn. (6.3) by −j, letting U =
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−jΦΦΦTGT
(
RX̄F̃

−1
)−∗

RΦΦΦ, and W = jω2I + (−j + ωΓm)ΛΛΛmist, one obtains

e U−W = B̄


δΓc1Im×m

...

δΓcnIm×m

 . (6.8)

Note that e Upq−Wpq =
n∑
i=1

B̄p m(i−1)+qδΓ
ci . Reshaping (e U−W) by concatenating

the columns, one obtains

e



U11

...

U1m

U21

...

Um1

...

Umm



−



W11

...

W1m

W21

...

Wm1

...

Wmm



= B̃ΓΓΓ⇒ e Ũ− W̃ = B̃ΓΓΓ, (6.9)

where Ũ contains information about the modal response and forcing distribution, and

W̃ is a vector pertaining to a reference average proportional damping.

6.4 Component Damping Constant

After applying the approach in the previous section, only the relative structural

damping is known. Thus, the value of e must be found by an alternate technique.

As two methods are required, the approach proposed herein is referred to as the

component hybrid damping identification method. Thus, the method proposed in

Sec. 5.4 is adapted for finding e. Pre-multiplying Eqn. (6.9) by B̃
−∗

(and assuming
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m ≥ n) and substituting into Eqn. (5.17), one obtains

jΨΨΨT K̃ (In×n ⊗ [ωupu − ωvpv])
(
eB̃
−∗

U− B̃
−∗

W̃
)

=

ω2
upu − ω2

vpv −ΛΛΛmist (pu − pv)− jΓmΛΛΛmist (ωupu − ωvpv) .
(6.10)

Letting Y = jΨΨΨT K̃ (In×n ⊗ [ωupu − ωvpv]) and Z be the right side of Eqn. (6.10),

one obtains

YB̃
−∗

Ue = Z + YB̃
−∗

W̃⇒ Ȳe = Z̄,

where Ȳ and Z̄ are vectors of size m × 1. Note that this equation is valid for all

frequency pairs. Therefore, letting ỹr = Ȳ (ω) and z̃r = Z̄ (ω) for the rth (frequency)

pair and concatenating the vectors, one obtains


ỹ1

...

ỹp

 e =


z̃1

...

z̃p

⇒ Ỹe = Z̃

where p is the total number of frequency pairs. Pre-multiplying by Ỹ
T

, one obtains

e =
Ỹ
T
Z̃

Ỹ
T
Ỹ

(6.11)

If the forcing distribution is known, the forcing can be identified using F = eGT F̃.

In addition, pre-multiplying Eqn. (6.9) by B̃
−∗

and using e from Eqn. (6.11), one

obtains

ΓΓΓ = B̃
−∗
(

Ỹ
T
Z̃

Ỹ
T
Ỹ

Ũ− W̃

)
. (6.12)

Using Eqn. (6.12) the component damping can be identified. This method is applica-

ble to mistuned systems, may use ROMs, and only requires the forcing to be known

up to a multiplicative constant.
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CHAPTER VII

Conclusions and Future Work

7.1 Contributions

Chapter II included a novel, general structural damping identification procedure,

which only requires knowledge of the undamped system modes, mistuning, relative

forcing, and damped forced responses. The proposed method was shown to identify

the damping without requiring measurements precisely at resonance. Surely, large

responses are preferable (because of their favorable signal to noise ratio), but they

are not required to be precisely at resonant conditions. Furthermore, the proposed

method was noted to be equally effective for both low and high modal density cases.

In fact, the proposed method was shown to reduce to the half-power method for

isolated modes. In contrast, the blisk example provided is a very difficult case for

other methodologies because most current techniques do not apply to systems with

high modal density. The results indicated that the proposed approach is robust with

respect to measurement noise and can make use of highly effective reduced order

models (ROMs). Also, two measurement filters were shown to allow an accurate

damping identification by reducing the impact of measurement noise. In addition,

forcing errors were found to affect the damping identification less than measurement

noise. Hence, using the proposed method to identify structural damping allows for

more accurate forced response and high-cycle fatigue predictions, especially when
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mistuning is present. The proposed method allows multiple time scales, in contrast

to other techniques that also identify one damping value per system.

Chapter III presented an extended measurement point selection (MPS) method

which is shown to be equivalent to the full system EIDV method, but it decreases

the computational cost, increases the robustness of the identification, and minimizes

the measurement time. This method addresses the lack of information in current

damping identification methods regarding the crucial step of deciding which locations

to measure on a structure. In addition, a modal damping identification method is

introduced which avoids the complications of current damping identification methods

while offering a more realistic type of damping than in Chapter II. The validation blisk

results indicate that using the optimized MPS technique increases the accuracy of the

identification for modes which are sensitive to measurement noise as compared to only

using points chosen based on the (classical) EIDV method. Also, the proposed modal

damping identification method is shown to be relatively insensitive to measurement

noise for 1%, 5%, and 10% levels, to apply to mistuned systems, and to require

knowledge of only the forced response, the relative forcing, the mistuning, and a finite

element model. It was demonstrated that the identification method applied to low

dimensional systems and more complicated structures exemplified by the validation

blisk.

Chapter IV discussed the hybrid modal damping identification method which of-

fers several benefits as compared to current damping identification techniques. First,

the proposed methodology uses a reduced frequency response matrix such that only a

subset of all the DOF of the system need to be measured, with another subset being

forced. The hybrid damping identification does not require knowledge of the absolute

forcing, but can identify this value if the relative forcing is known (from a forcing

calibration). An important feature which allows the identification to be accurate is

the introduction of the frequency windowing. The windowing can reduce the effects of
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measurement noise and also lower the number of required forcing cases. This decrease

in data acquisition has a significant impact on the computational cost of preforming

the damping identification. In addition, this method can be applied to mistuned

systems and uses ROMs. Therefore, the proposed method is also computationally

efficient. Results for a validation blisk were presented which show that identifying

the modal damping is possible by employing the proposed approach, which uses a

ROM, requires measurements at only a few locations per blade, and is effective even

in the presence of relative, absolute and bias measurement noise. Next, a comparison

of the proposed method with the alternative method in Chapter III shows that the

proposed method is less accurate when using the same filter values, however more

modal damping values can be identified with the proposed approach. Finally, re-

sults of a study are presented which indicate that the damping identification is more

sensitive to measurement noise than to forcing errors.

Chapter V introduced a component damping identification method. In contrast to

current damping identification methods, this novel method allows the damping to have

a meaningful physical interpretation especially for structures with complex geometry.

In particular, this type of damping identification enables a more accurate analysis of a

damping coating. In addition, the presented formulation can be used to generate the

forced response of a mistuned structure with a prescribed component damping for a

given harmonic excitation and ranges larger than the identification frequency range.

As the forced response method uses ROMs, it is computationally efficient, while

eliminating costly experimentation. In addition, the complex interaction between

mass or stiffness mistuning and component damping variability can be studied. The

application of the proposed method to various situations is explored. Thus, the

versatility of the proposed method was illustrated. Results for a validation blisk show

that the identification is possible when using ROMs, in the presence of measurement

noise, and when both low and high modal density is present. Most importantly,
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the dynamics of the structure are captured by the identified component damping.

However, the component damping method can be more sensitive to absolute and bias

measurement noise than other damping identification methods. A comparison of the

proposed method with the hybrid damping identification introduced in Chapter IV

reveals that it is possible for the component damping identification to accurately

represent the damping of the system with fewer parameters than other methods.

Chapter VI introduced an alternate component damping identification method,

which utilizes the reduced frequency response matrix and the known forcing. By

applying the method introduced in Chapter V, this method was extended by requiring

knowledge of the relative forcing in place of the absolute applied forcing. This method

can be applied to mistuned systems and uses ROMs. The hybrid method has the

potential to more accurately identify the component damping than the method in

Chapter V. This follows from the possibility that the hybrid ability may use more

modes and measurement data from resonant conditions which have a larger signal to

noise ratio.

7.2 Future Research

The following explores potential topics of interest related to the work herein.

• Component Damping Identification Improvements

The component damping identification in Chapter V is more sensitive to bias

and absolute measurement noise than desirable. Examining potential solutions

to this issue is suggested for the future. In addition, the identification should

be explored and validated for other complex systems.

• Hybrid Component Damping Identification Results

The formulation of the hybrid component damping identification method is pro-

vided. Exploring the sensitivity of this work to a ROM and measurement noise
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would be beneficial. The focus of this work was on validation using the Univer-

sity of Michigan validation blisk. However, further examination and validation

of other systems is recommended to explore any limitations of the damping

identification method.

• Experimental Validation

The damping identification methods are validated using numerical data in this

work. However, to be applicable for system identification, the methods need

to be validated using experimental measurements also. In particular, the input

experimental data can be compared to the forced response generated using the

identified damping. In addition, the damping identification should be tested on

structures with and without damping coatings.

• Simultaneous Mistuning, Cyclic Modeling Error (CME), and Damp-

ing ID

Using the following two methods it should be possible to simultaneously identify

the mistuning, CME, and (component) damping. Development, implementa-

tion, and validation of these methodologies should be preformed both numeri-

cally and experimentally.

7.2.1 Simultaneous ID Method 1

The equation of motion can be expressed as

M¨̄x + C ˙̄x + Kx̄ = F

φ̄φφ
T
M¨̄x + φ̄φφ

T
C ˙̄x + φ̄φφ

T
Kx̄ = φ̄φφ

T
F.

Introducing small mistuning, component damping, and harmonic forcing, one ob-
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tains

−ω2φ̄φφ
T
Mx̄ + jωφ̄φφ

T
STBdiag

[
δΓi
(
κκκi + δκκκi

)]
Sx̄

+ (1 + jωΓm) φ̄φφ
T (

K + Kδ + Kcme
)

x̄ = φ̄φφ
T
F.

Now assuming the mistuning and damping are small such that δΓiδκκκi ≈ 0, one obtains

−ω2φ̄φφ
T
Mx̄ + jωφ̄φφ

T
STBdiag

[
δΓiκκκi

]
Sx̄ + (1 + jωΓm) φ̄φφ

T (
K + Kδ + Kcme

)
x̄ = φ̄φφ

T
F.

Now φ̄φφ
T
Mφ̄φφ = I so, φ̄φφ

T
= φ̄φφ

−1
M−1. Also, convert to modal coordinates such that

x̄ = φ̄φφp̄. Substituting into the previous equation, one obtains

φ̄φφ
T
Kcmeφ̄φφ = δΛΛΛ

φ̄φφ
−1

M−1Kcmeφ̄φφp̄ = δΛΛΛp̄

Kcmex̄ = Mφ̄φφδΛΛΛp̄

So,

−ω2φ̄φφ
T
Mx̄ + jωφ̄φφ

T
STBdiag

[
δΓiκκκi

]
Sx̄ + (1 + jωΓm) φ̄φφ

T (
K + Kδ

)
x̄

+ (1 + jωΓm) δΛΛΛp̄ = φ̄φφ
T
F.

Rearranging the terms, one obtains

jωφ̄φφ
T
STBdiag

[
δΓiκκκi

]
Sx̄+ (1 + jωΓm) φ̄φφ

T
Kδx̄ + (1 + jωΓm) δΛΛΛp̄

= φ̄φφ
T
F + ω2φ̄φφ

T
Mx̄− (1 + jωΓm) φ̄φφ

T
Kx̄.

(7.1)

Now from Chapter V,

Bdiag
[
δΓiκκκi

]
Sx̄ = Bdiag

[
κκκiSi

]
(I⊗ x̄) δΓΓΓ (7.2)
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Also note that,

φ̄φφ
T
Kδφ̄φφp̄ ≈ qT φ̄φφ

T

CBKδφ̄φφCBqp̄ ≈ qTΛΛΛδ,CBqp̄

= qTdiag [qip̄] δΛΛΛCB

⇒ φ̄φφ
−1

M−1Kδφ̄φφp̄ ≈ qTdiag [qip̄] δΛΛΛCB

Kδx̄ ≈ Mφ̄φφqTdiag [qip̄] δΛΛΛCB, (7.3)

where qi is the ith row of q. Also, the CME term can be expressed as

δΛΛΛp̄ = diag [pi] δΛΛΛ
cme (7.4)

Substituting Eqns. (7.2), (7.3), and (7.4) in Eqn. (7.1), one obtains

jωφ̄φφ
T
STBdiag

[
κκκiSi

]
(I⊗ x̄) δΓΓΓ

+ (1 + jωΓm) qTdiag [qip̄] δΛΛΛCB

+ (1 + jωΓm) diag [pi] δΛΛΛ
cme

= φ̄φφ
T
F + ω2φ̄φφ

T
Mx̄− (1 + jωΓm) φ̄φφKx̄.

(7.5)

Converting to modal coordinates, one obtains

jωΨΨΨTBdiag
[
κκκiΨΨΨi

] (
I⊗ φ̄φφp̄

)
δΓΓΓ

+ (1 + jωΓm) qTdiag [qip̄] δΛΛΛCB

+ (1 + jωΓm) diag [pi] δΛΛΛ
cme

= φ̄φφ
T
F + ω2p̄− (1 + jωΓm) Λtp̄.

(7.6)

From Eqn. (7.6), the damping δΓΓΓ, mistuning δΛΛΛCB, and CME δΛΛΛcme can be deter-

mined if the applied forcing is known.
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7.2.2 Simultaneous ID Method 2

The equation of motion can be expressed as

M¨̄x + C ˙̄x + Kx̄ = F

Pre-multiplying by φφφT , one obtains

φ̄φφ
T
M¨̄x + φ̄φφ

T
C ˙̄x + φ̄φφ

T
Kx̄ = φ̄φφ

T
F.

Introducing small mistuning, component damping, and harmonic forcing, one ob-

tains

−ω2φ̄φφ
T
Mx̄ + jωφ̄φφ

T
STBdiag

[
δΓi
(
κκκi + δκκκi

)]
Sx̄

+ (1 + jωΓm) φ̄φφ
T (

K + Kδ + Kcme
)

x̄ = φ̄φφ
T
F.

Converting to mass normalized modal coordinates x = φ̄φφp̄, one obtains

φ̄φφ
T
F =[
−ω2I + jωφ̄φφ

T
STBdiag

[
δΓi
(
κκκi + δκκκi

)]
Sφ̄φφ+ (1 + jωΓm) φ̄φφ

T (
K + Kδ + Kcme

)
φ̄φφ
]

p̄.

Let H be the terms inside the brackets so that

Hp̄ = φ̄φφ
T
F.

Also, curve fit the same measurement data and create transfer function H̃ with

response x̃, where H̃ is written as a linear combination of exponential functions.

Then, one obtains

Hx̄ = φ̄φφ
T
H̃φ̄φφp̃.

The method to determine H̃ is as follows. First, express the measured response
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xfi of DOF i, forcing case b, and forcing frequency ω as

xfi (ω) =
n∑
k=1

αfk,ie
jθk

ω2
k − ω2 + 2ζkωωk

,

where αfk,i and θk are the unknown magnitude and phase relating the forcing to the

response for a given mode, ωk is the unknown natural frequency of mode k, and ζk is

the unknown modal damping of mode k. Next, from a (to be determined) exponential

curve fitting process, the unknowns αfk,i, θk, ωk, and ζk are obtained. Converting to

modal coordinates x = φφφp, one obtains

pf (ω) =
n∑
k=1

φφφ−∗
αααfke

jθk

ω2
k − ω2 + 2ζkωωk

Finally, H̃ can be constructed for the same forcing cases, but at any frequency ω.

Letting p̄ = p̃ + p̄noise, one obtains

H (p̃ + p̄noise) = φ̄φφ
T
H̃φ̄φφp̃.

Assuming that Hp̄noise << Hp̃ ≈ φ̄φφT H̃φ̄φφp̃, one obtains

Hp̃ ≈ φ̄φφT H̃φ̄φφp̃.

As this equation holds for all p̃,

H = −ω2I + jωφ̄φφ
T
STBdiag

[
δΓi
(
κκκi + δκκκi

)]
Sφ̄φφ+ (1 + jωΓm) φ̄φφ

T (
K + Kδ + Kcme

)
φ̄φφ

≈ φ̄φφT H̃φφφ.
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Assuming the mistuning and damping are small such that δΓiδκκκi ≈ 0, one obtains

− ω2I + jωφ̄φφ
T
STBdiag

[
δΓiκκκi

]
Sφ̄φφ+ (1 + jωΓm) φ̄φφ

T (
K + Kδ + Kcme

)
φ̄φφ

= φ̄φφ
T
H̃φ̄φφ.

(7.7)

Now, φ̄φφ
T
Kcmeφ̄φφ = δΛΛΛ. So,

−ω2I+jωφ̄φφ
T
STBdiag

[
δΓiκκκi

]
Sφ̄φφ+(1 + jωΓm) φ̄φφ

T (
K + Kδ

)
φ̄φφ+(1 + jωΓm) δΛΛΛ = φ̄φφ

T
H̃φφφ.

Rearranging,

jωφ̄φφ
T
STBdiag

[
δΓiκκκi

]
Sφ̄φφ+ (1 + jωΓm) φ̄φφ

T
Kδφ̄φφ+ (1 + jωΓm) δΛΛΛ

= φ̄φφ
T
H̃φφφ+ ω2I− (1 + jωΓm)ΛΛΛt.

(7.8)

Now from Chapter V, one obtains

Bdiag
[
δΓiκκκi

]
Sφ̄φφ = Bdiag

[
κκκiΨΨΨi

]
Bdiag

(
δΓiI

)
= Bdiag

[
κκκiΨΨΨi

]
δΓΓΓ, (7.9)

where ΨΨΨ = Sφ̄φφ. Also, φ̄φφ
T
Kδφ̄φφ ≈ qT φ̄φφ

T

CBKδφ̄φφCBq ≈ qTΛΛΛδ,CBq. So,

φ̄φφ
T
Kδφ̄φφ ≈ qT

∑
i

qidiag
[
Λδ,CB
i

]
= qT

∑
i

qiIΛδ,CB
i (7.10)

where Di is a matrix containing the ith row of D (with the rest zeros) and Λδ,CB
i is

the mistuning of the ith blade.
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Substituting Eqns. (7.9) and (7.10) in Eqn. (7.8), one obtains

jωΨ̄ΨΨ
T
Bdiag

[
κκκiΨΨΨi

]
δΓΓΓ

+ (1 + jωΓm) qT
∑
i

qiIΛδ,CB
i

+ (1 + jωΓm) δΛΛΛ

= φ̄φφ
T
H̃φφφ+ ω2I− (1 + jωΓm)ΛΛΛt.

(7.11)

From Eqn. (7.11), the damping δΓΓΓ, mistuning Λδ,CB
i , and CME δΛΛΛ can be determined

if the transfer function is fitted with exponential functions.
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APPENDIX A

Simple Case of Isolated Modes

From Chapter II, in mistuned modal coordinates

(1 + jγ) [pi − αkpk] = K̃
−1

mistm×m
M̃m×m

[
ω2
i pi − αkω2

kpk
]
. (A.1)

The following shows that for isolated modes and for responses measured at the half

power points, Eqn. A.1 reduces to the single DOF half-power method. First, assume

that the forced response for an isolated mode has been measured. For the mistuned

system, K̃
−1

mistm×m
M̃m×m is a diagonal matrix containing elements corresponding to

1
ω2
nv

, where ωnv is the vth mistuned natural frequency in the frequency range of interest.

Hence, for two measurements (i = 1 and k = 2), Eqn. A.1 becomes

(1 + jγ) [p1 − α2p2]m×1 =

diag

[
1

ω2
nv

]
m×m

[
ω2

1p1 − α2ω
2
2p2

]
m×1

.
(A.2)

As the forced response is for an isolated mode, all entries in p1 are approximately

zero, except for one entry. The same applies for p2. Therefore, Eqn. (A.2) can be
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rewritten as

[p1 − α2p2] (1 + jγ) =
1

ω2
n

[
ω2

1p1 − α2ω
2
2p2

]
,

where p1 and p2 correspond to the non-zero entries, and ωn is the corresponding

mistuned natural frequency of the isolated mode. Pre-multiplying by the mistuned

eigenvector corresponding to the isolated mode ΨΨΨm×1, one obtains

(1 + jγ) [x1 − α2x2] =
1

ω2
n

[
ω2

1x1 − α2ω
2
2x2

]
. (A.3)

Pre-multiplying Eqn. (A.3) by [x1 − α2x2]T and taking the imaginary part of both

sides, after some algebraic manipulations one obtains

γ = Im

{
1

ω2
n

(
[x1 − α2x2]T [x1 − α2x2]

)−1

[x1 − α2x2]T
[
ω2

1x1 − α2ω
2
2x2

]}
.

(A.4)

Equation (A.4) is a least squares solution to the damping identification for an isolated

mode. Since the mode is isolated, the physical measurements in vectors x1 and x2

are proportional to p1 and p2 respectively. Hence, measuring multiple DOF does not

provide more information than measuring a single DOF. Consider that the measured

DOF from x1 is x1 and the measured DOF from x2 is x2. Equation (A.4) becomes

γ = Im

{
ω2

1x1 − α2ω
2
2x2

ω2
n (x1 − α2x2)

}
.

Assuming that the force applied at ω1 is the same as the force applied at ω2 (i.e.

considering that α2 = 1), one obtains

γ = Im

ω
2
1 − ω2

2

(
x2
x1

)
ω2
n

(
1− x2

x1

)
 . (A.5)
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When measurements at the half-power points are used, Eqn. (A.5) is equivalent to

the half-power method. To show this equivalence, a brief derivation of the half-power

points for a single DOF system follows. The equation of motion for a single DOF

system is

mẍ+ (1 + jγ) kx = F.

Assuming harmonic forcing and response, one obtains

x =
F/m

ω2
n − ω2 + jγω2

n

, (A.6)

and

|x| = |F |/m

ω2
n

√[
1−

(
ω
ωn

)2
]2

+ γ2

, (A.7)

where | · | denotes a magnitude, ω is the excitation frequency, and ωn =
√

k
m

is the

natural frequency. When ω = ωn, |x| = |F |/m
ω2
nγ

. Next, one may assume that the

forcing is constant and choose responses at the half-power points, where the response

amplitude is 1√
2

times the resonant response. Substituting into Eqn. (A.7) and solving

for the half-power frequencies, one obtains ω1 = ωn
√

1− γ and ω2 = ωn
√

1 + γ.

Substituting these frequencies into Eqn. (A.6), one obtains the ratio of the responses

at the half-power points

x2

x1

=
ω2
n − ω2

n (1− γ) + jγω2
n

ω2
n − ω2

n (1 + γ) + jγω2
n

=
1 + j

−1 + j
= −j. (A.8)

Now, assume the half-power frequencies are known for an isolated mode. Substi-
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tuting Eqn. (A.8) into Eqn. (A.5), one obtains

γ = Im

{
ω2

1 + jω2
2

ω2
n (1 + j)

}
=
ω2

2 − ω2
1

2ω2
n

. (A.9)

Thus, for cases where γ is small (such as blisks), Eqns. (A.5) and (A.9) become

γ =
ω2

2 − ω2
1

2 ω2
n

=
ω2 − ω1

ωn

ω2 + ω1

2ωn
≈ ω2 − ω1

ωn
. (A.10)

Equation (A.10) is the same result as the half-power method for a single DOF system.

Therefore, for an isolated mode with measured half-power points and constant forcing,

the proposed method reduces to the well-known half-power method.
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APPENDIX B

Mode Window Calculation

An estimated frequency window is desired to select the mistuned modes which

significantly participate in the response in the measurement window [ωtl , ω
t
u]. Fig-

ure B.1 shows the general principle behind the mode window. All modes in or close

R
es

po
ns

e 
M

ag
ni

tu
de

Frequency

Measurement 
Window

ωm ωb

r |h(ωm)|

δω t

|h(ωm)|

b

Figure B.1: Mode window description

to this range will likely participate. Thus, we focus on finding how far in frequency

a mode should be from ωtl or ωtu to not participate. To determine that, we consider

the response of a fictitious mode located at ωm. The response of this mode is small

at frequency ωtb (where ωtb is either ωtl or ωtu) when δω is large enough. Therefore,

we compute ωtb so that the magnitude of the response of the fictitious mode at ωtb

is less than a fraction rb of the magnitude of the response of the same mode at ωm.
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Assuming that the damping is small, the response at ωm is close to the maximal

(resonant) response. The magnitude of the responses of the fictitious mode at ωm

and ωm + δω = ωtb are given by

|h (ωm) | = |F |/|2jζω2
m|, and |h

(
ωtb
)
| = |F |
| − ωtb

2 + 2jζωmωtb + ω2
m|
, (B.1)

where ζ is the damping of the fictitious mode (an estimated value of the damping for

the system), and F is the magnitude of the applied forcing. For |h (ωm + δω) | to be

a fraction rb of |h (ωm) |, one obtains

rb =
|h (ωm + δω) |
|h (ωm) |

=
|2jζω2

m|
| − ωtb

2 + 2jζωmωtb + ω2
m|

= 2ζω2
m/

√(
ω2
m − ωtb

2
)2

+ 4ζ2ω2
mω

t
b
2.

(B.2)

Following some algebraic manipulations, Eqn. (B.2) gives an equation for ωtb as a

function of rb

ωtb
ωm

=

√
1− 2ζ

(
ζ ∓

√
1/r2

b − 1 + ζ2

)
. (B.3)

Since damping is small, ζ2 < r2 and O (ζ2) ≈ 0. One obtains

ωm =
ωtb

√
1 + 2ζ2 ± 2ζ

√
1/r2

b − 1 + ζ2

1−O (ζ2)
≈ ωtb

√
1± 2ζ

√
1/r2

b − 1. (B.4)

Equation (B.4) can be used for ωtb = ωtl and rb = 1/rl, and separately for ωtb = ωtu

and rb = 1/ru to obtain the values in Eqn. (4.24).
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