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This paper studies capacity collaboration between two (potentially competing) firms. We explore the ways

that the firms can collaborate by either building capacity together or sharing the existing capacity for pro-

duction. We consider cases where the two firms’ products are potential substitutes and also where the firms’

products are independent. We find that a firm can benefit from collaboration even with its competitor.

Moreover, the firms do not have to jointly make the production decisions to realize the benefits of collab-

oration. We consider a model where firms build capacity before demand is realized and make production

decisions after they receive a demand signal. They can potentially collaborate in jointly building capacity

and/or in exchanging capacity once they receive their demand signals. Interestingly, we find that having

firms compete at the production stage can result in firms deciding to build less overall capacity than if

they coordinated capacity investment and production. Also, we find that though collaboration in capacity

investment is beneficial, collaboration in production using existing capacity is often more beneficial. The

benefits of collaboration is largest when competition is more intense, demand is more variable and cost of

investment is higher.

This Document is Generated on September 16, 2012.

1. Introduction

Most capacity decisions require major resource commitments, and can substantially change the

firm’s asset structure. Capacity decisions are often hard to reverse, and they are made when there

is significant demand uncertainty. Several approaches are used to mitigate risks associated with

capacity decisions. These can include real options (Trigeorgis, 1997), flexible capacity (Bish and

Wang, 2004), quick response and delayed differentiation (Aviv and Federgruen, 2001). Another

option that is becoming more common is for firms to jointly invest in capacity and/or coordinate

the use of capacity. Interestingly, it is becoming common for even firms that are competing to

undertake such coordination. One way to do this is to establish a joint venture (Harrigan, 1986).

Firms that participate in a joint venture contribute equity to build capacity, agree on how to utilize

the capacity, and share the resulting revenue. For instance, Sony and Samsung, two of the biggest

players in the LCD-TV market, established S-LCD to manufacture flat panels (Lee, 2010). Note

that, although Sony and Samsung produced in the same facility, they competed with each other in
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the end-user market. Another example is the New United Motor Manufacturing, Inc. (NUMMI),

which was jointly formed by Toyota and General Motors in 1984, which manufactured cars under

both brands (Henry, 2010). Other examples include Inotera Memories, a joint venture by Nanya

Technology and Micron Technologies (Clark, 2008), and Spansion by AMD and Fujitsu (Devine,

2003).

Of course, firms can collaborate and share capacity without forming a joint venture. For instance,

in the automotive industry, Toyota and Fuji Heavy Industries agree to share their existing manu-

facturing facilities (Toyota, 2006). In the airline industry, the code-sharing practice allows different

carriers to share flight capacity (Wassmer et al., 2010; Chun et al., 2012). The competing newspa-

pers Detroit Free Press and Detroit News have a joint operating agreement to print in the same

facility (Busterna and Picard, 1993), although they put out separate newspapers every weekday

using the same capacity.

In this paper, we study capacity collaboration between two (competing) firms. We consider a

two-stage model where capacity decisions are made when there are significant uncertainties about

market conditions (first stage), and production decisions are made after most of these uncertainties

are resolved (second stage). To capture different collaboration scenarios, we consider several models

that differ in the extent that the firms collaborate in capacity and/or in production decisions.

Although there are many examples of capacity collaboration, it is not always clear whether a

firm benefits from capacity collaboration, especially when the firm collaborates with a competitor.

Capacity collaboration allows firms to reduce investment costs. But doing so with a competing

firm may intensify competition, since it gives the competing firm easy access to more capacity.

Furthermore, as previous examples show, there are different collaboration scenarios: Firms can build

and operate capacity together, or firms can build capacity together and operate autonomously, or

firms can just share the existing capacity. How much each of these collaboration scenarios improves

firms’ profits and when simpler collaboration scenarios (such as sharing existing capacities but not

collaborating in building capacity) are as effective as more complicated collaboration scenarios are

interesting questions.

Several research questions are central to this paper: (1) Can a firm benefit from collaborating

with a competitor? (2) For a given collaboration scenario, what is the total capacity and how is it

allocated to each firm? (3) How do firms gain from collaboration? Is most of the gain from deciding

capacity together or from utilizing (allocating) capacity together to fulfill demands? (4) How do

the outcome and the gains from collaboration change in business parameters such as variability,

cost, etc.?
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We find that a firm can considerably benefit from collaboration even with a competitor. If the

firms collaborate both in capacity and in production decisions, we show that there is a mutually

beneficial agreement under which the firms select the centrally optimal decisions. This supports

the case for a joint venture. We also find that most of the benefit of collaboration can be captured

even when the two firms are allowed to compete in the production stage as long as they build the

capacity together and trade their allocations after they observe the demand signals. However, if

the firms are not able to collaborate in either of the stages, some efficiency is lost. We find that,

if the firms can collaborate either in the capacity investment stage or in the production stage

alone, collaborating in the production stage alone provides more benefits, except when demands

are extremely predictable.

We find that when the firms compete in the production stage, but are allowed to trade their

capacity endowments after they observe the demand signals, they build smaller capacity together

than the capacity of a centralized firm. We also find that the total equilibrium capacity when the

firms compete in both stages can be smaller than the total equilibrium capacity when the firms

compete in capacity investment and collaborate in production. These are surprising results, since

competition typically leads to higher resource levels than centralization in most of the existing

literature (Eppen, 1979; Yang and Schrage, 2009).

Several papers study capacity and production decisions for two products from the perspective of

single or multiple firms. Wang and Yang (2012) consider the effect of knowledge spill over when two

buyers share a supplier. Van Mieghem (1998) considers a single firm that produces two products

and examines the value of flexible capacity. Bish and Wang (2004) extend this to a price-setting

firm, and Chod and Rudi (2005) and Bish and Suwandechochai (2010) consider a model where

the two products are substitutes. With a perspective of multiple firms, Anupindi and Jiang (2008)

study a duopoly where the firms with homogeneous products compete in capacity and in quantity.

Goyal and Netessine (2007), on the other hand, consider partially substitutable products and study

a model where two firms, each capable of producing both products, compete in capacity and in

quantity. They focus on symmetric equilibria in the capacity game when the firms are allowed to

choose between flexible or dedicated technologies. All of these models assume that either one firm

produces both products, or two firms compete without any collaboration. Our paper, on the other

hand, focuses on collaboration between two (potentially) competing firms.

Collaborating in capacity and/or in production, is related to sharing inventory through trans-

shipment and centralization. Anupindi et al. (2001) and Granot and Sosic (2003) consider a setting

where the firms individually make quantity decisions, but they can trade inventory after observing
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the demand signals. Rudi et al. (2001) study inventory transshipment and show that, in general, the

firms’ quantities in equilibrium are not centrally optimal. They propose a contract that induces the

firms to choose the centrally optimal quantities. Van Mieghem (1999) studies a model with a man-

ufacturer and a subcontractor. In this model, each firm separately decides on its capacity ex-ante

but has an option to trade capacity ex-post. He shows that the firms can reach a centrally optimal

solution only when the contract terms are contingent on the demand realizations. Slikker et al.

(2005) use cooperative game theory to study inventory centralization with coordinated ex-ante

orders and ex-post allocation among retailers. They show that the core of the cooperative game

is nonempty. Other papers that consider inventory centralization include Hanany and Gerchak

(2008), Ozen et al. (2008) and Chen and Zhang (2009). All of the aforementioned papers assume

that the price is fixed and the demand is exogenous. Our paper, on the other hand, considers that

demand is endogenous.

Only a few papers study capacity collaboration with endogenous demand. Chod and Rudi (2006)

consider two firms that engage in capacity trade after revising their forecasts, and characterize the

trading contracts that lead to the centrally optimal capacity levels. Plambeck and Taylor (2005)

study a model of two OEMs that collaborate in capacity and decide investment levels in demand-

stimulating innovations. They characterize the effects of collaboration structures on equilibrium

innovation levels. Both papers assume that the demand of one product is independent from the

other. In contrast, our paper allows the two firms to compete, and analyzes how competition

incentivizes (or discourages) capacity or production collaboration.

We model the outcome of collaboration between two firms using a bargaining game. Bargaining

has been extensively studied in economics literature and has been applied to model the outcomes

of negotiations on wage settlement between unions and firms, price decisions between retailers and

consumers, and terms of mergers and acquisitions. (See Muthoo, 1999; for an extensive review).

To characterize the outcome of a bargaining game, we use the Nash Bargaining Solution (NBS).

The NBS establishes that the equilibrium outcome maximizes the product of the firms’ surpluses

net of their disagreement payoffs (Nash, 1950). Although the NBS does not directly specify the

bargaining process, it has been shown that the outcomes of several bargaining processes (or sit-

uations) can be modeled as variants of the NBS, including alternating offers Rubinstein (1982).

Furthermore, a number of extensions of Rubinstein’s model, such as the possibility of negotiation

breakdown or presence of inside or outside options, lead to outcomes that are slight variations of

the NBS outcome (Muthoo, 1999). There is also significant experimental evidence indicating that

the NBS is successful in predicting the outcomes of various bargaining situations (Roth, 1995). As a
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result, a number of papers in operations management literature uses the NBS to model bargaining

between two parties: Van Mieghem (1999), Chod and Rudi (2006), Plambeck and Taylor (2005),

Nagarajan and Bassok (2008), Kostamis and Duenyas (2009), Kuo et al. (2011), etc. Nagarajan and

Sosic (2008) provide a comprehensive review of the use of cooperative game theory in operations

management.

The remainder of this paper evolves as follows. In Section 2, we introduce the model, the notation,

and the preliminaries. In Section 3, we present the analysis and the results, starting with the

production subgame, followed by the capacity investment decision. We carry out a computational

study to gain further insights, which we present in Section 4. Section 5 provides future research

directions and concluding remarks.

2. Model, Notation and Preliminaries

We consider two firms, each producing a single product, engaging in competition / collaboration

over two stages. In the first stage, firms build capacity before demand information is known. In

the second stage, firms observe the demand signals, and then decide the production quantities.

We assume that the two firms either compete or collaborate in either or both of the two stages. If

they compete, each firm chooses its decision to maximize its own payoff. If they collaborate, the

firms jointly make the decisions and negotiate over the division of the total payoff. Along with

the benchmark scenario with a single centralized firm, four scenarios represent a varying degree of

collaboration, as summarized in Table 1.

Scenario Capacity Decision Production Decision
Nn no collaboration (N) no collaboration (n)
Nc no collaboration (N) collaboration (c)
Cn collaboration (C) no collaboration (n)
Cc collaboration (C) collaboration (c)

Monopoly centralized centralized

Table 1 Capacity and production decisions under each scenario.

We will separately analyze each of the four collaboration scenarios, along with the benchmark

centralized scenario. Our aim is to analyze the benefit that firms get from collaborating on joint

capacity investments and/or using the capacity that they each have to jointly decide on production

levels. Depending on the collaboration scenario, firms invest in capacity – together (C) or separately

(N) – in the first stage. Let c be the capacity building cost per unit. We denote Ki as the capacity

endowment of firm i, for which, firm i holds the ownership rights. If there is no collaboration in

the subsequent production stage, Ki is the capacity level that firm i can use for production. If the
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firms collaborate in the production stage, they can negotiate over the use of capacity so that a firm

can produce beyond its initial endowment.

In the second stage, the firms observe the demand signals. Let (Θ1,Θ2) be random variables

that represent the demand information and θi be the realization of Θi, i= 1,2. We assume that

Θi has mean µi, standard deviation σi, marginal density function fi(·), i= 1,2, and joint density

function f(·, ·). The observed demand information, (θ1, θ2), and the firms’ capacity endowments,

(K1,K2), define the production subgame ω := (K1,K2, θ1, θ2). Let Ω denote the set of all subgames

with given capacity endowments: Ω := {(K1,K2,Θ1,Θ2)}.

In a given production subgame ω ∈ Ω, firms decide the production quantities
(
q1(ω), q2(ω)

)
.

If the firms do not collaborate in the production stage (scenarios Cn or Nn), each firm can only

produce up to its initial endowment Ki. On the other hand, if the firms collaborate during the

production stage (scenarios Cc and Nc), they jointly choose the production quantities based on

the demand signals. We allow the two products to be (partially) substitutable. Hence, the price

for product i is given as a function of quantities as follows:

pi

(
q1(ω), q2(ω), ω

)
= θi− biqi(ω)− b̂qj(ω), i, j = 1,2, i 6= j

We assume that bi ≥ b̂≥ 0. In other words, a product’s own quantity is more influential in its price

than the other product’s quantity. In addition, note from the inverse demand function that, ceteris

paribus, the price for product i increases in θi (i.e., the demand signal becomes more favorable for

firm i). This inverse demand function delivers a reasonable representation of reality as it arises from

a choice model where a consumer maximizes a quadratic and concave utility function (Singh and

Vives, 1984). Essentially, we are modeling firms competing in quantity. This demand model has

been used in several papers, including Chod and Rudi (2005), Goyal and Netessine (2007), Zhou

and Zhu (2010) and Bish and Suwandechochai (2010). To avoid trivial outcomes, we assume that

bi > 0 and µi >
b̂

2bj
µj + c for i, j = 1,2 and i 6= j. The model captures many practical situations: for

example, in the U.S. car industry, historically car companies produce quantities but then discount

at the end of the model year to ensure all cars that were produced are sold. So in this case, quantities

are decided first and the price depends on the quantities. Similarly, electronics components markets

such as memory chips function similarly.

If the firms collaborate in the production stage, to allocate the revenues in a mutually agreeable

way, an exchange of transfer payment can occur between the firms. Let Γ(ω) be the net transfer

payment from firm 1 to firm 2 in a subgame ω: if Γ(ω)> 0, firm 1 pays firm 2; if Γ(ω)< 0, firm 2

pays firm 1.
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For each of the four scenarios, we solve the problem using backward induction. We first determine

the equilibrium production quantities and transfer payment for a production subgame ω. We use

superscripts to denote the equilibrium decisions and outcomes. For instance, we let
(
qs∗1 (ω), qs∗2 (ω)

)
be the equilibrium production quantities. Note that, these quantities are chosen together if the

firms collaborate in the production stage (s = c, for the Cc and Nc scenarios), or separately if

the firms compete in the production stage (s = n, for the Cn and Nn scenarios). Similarly, we let

Γc∗(ω) denote the equilibrium transfer payment under the Cc and Nc scenarios. If the firms do not

collaborate in production, there is no transfer payment in the second stage (Cn and Nn scenarios):

Γn∗(ω) = 0. Then, the equilibrium revenue for firm i in a subgame ω= (K1,K2, θ1, θ2), denoted by

Rs∗
i (ω), can be written as follows:

Rs∗
i (ω) = qs∗i (ω)pi

(
qs∗i (ω), qs∗j (ω), ω

)
+ (−1)iΓs∗(ω), i, j = 1,2, i 6= j, s∈ {c,n} (1)

Once we determine the equilibrium revenues for each setting, we calculate the expected profits by

taking the expectation with respect to the demand signals and subtracting the capacity costs. For

given capacity endowments (K1,K2), we let πs∗
i (K1,K2) denote the expected profit of firm i under

setting s:

πs∗
i (K1,K2) =E

[
Rs∗
i (K1,K2,Θ1,Θ2)

]
− cKi, i= 1,2 s∈ {c,n} (2)

If the firms do not collaborate in the first-stage investment game, each firm chooses the capacity

that only maximizes its expected profit (equation (2)). On the other hand, if the firms collaborate

in the investment stage, firms negotiate to jointly build the capacity and share the profit according

to the Nash bargaining solution. Under the NBS, the capacity level that maximizes the sum of

the profits, πs∗
1 (·) + πs∗

2 (·) is chosen, and the profit is split in a manner that neither firm wants to

deviate from the agreement: see Section 3.3.

Once we obtain the profit functions, we solve for the equilibrium capacities under each scenario.

To distinguish the equilibrium capacities for each scenario, we use superscripts. For instance, KNn*
i

is the equilibrium capacity of firm i under the Nn scenario, etc. To denote the outcomes and profit

of a single centralized firm, we use a superscript ‘m’ (representing monopoly).

Remark: Without loss of generality, we assume that the second stage production cost is zero,

since, any positive (and possibly asymmetric) cost can be accommodated in our model by shifting

the demand variable Θi, i= 1,2.

When a variable or a function represents a joint/total value, we use subscript ‘T’. For instance,

while K1 denotes the capacity for firm 1, KT denotes the joint/total capacity (KT =K1 +K2). We
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use 1{} to denote the indicator function. We also use ∇ as the differentiation operator: ∇g(x) =

d
dx
g(x), ∇2g(x) = d2

dx2
g(x) for a function with single variable, and ∇1g(x1, x2) = ∂

∂x1
g(x1, x2),

∇2g(x1, x2) = ∂
∂x2

g(x1, x2) and ∇2
12g(x1, x2) = ∂2

∂x1∂x2
f(x1, x2) for a function with multiple variables.

Moreover, differentiation operator has precedence over assignment. Hence, for instance, if g(x) = x2,

then ∇g(y2) = 2y2 rather than ∇g(y2) = 4y3.

2.1. Preliminaries - A Centralized Firm

We first consider a single firm who decides the capacity, and the production quantities for both

products. For given capacity KT and demand signals (θ1, θ2), the centralized firm solves the fol-

lowing problem to determine the optimal production quantities:

max
q1,q2≥0

q1

(
θ1− b1q1− b̂q2

)
+q2

(
θ2− b2q2− b̂q1

)
(3)

s.t. q1 + q2 ≤ KT

Let
(
qm*

1 (KT, θ1, θ2), qm*
2 (KT, θ1, θ2)

)
denote the optimal production quantities. Then, the resulting

revenue is:

Rm*(KT, θ1, θ2) = qm*
1 (KT, θ1, θ2)

(
θ1− b1q

m*
1 (KT, θ1, θ2)− b̂qm*

2 (KT, θ1, θ2)
)

+ qm*
2 (KT, θ1, θ2)

(
θ2− b2q

m*
1 (KT, θ1, θ2)− b̂qm*

1 (KT, θ1, θ2)
)

(4)

Utilizing this, the expected profit is given πm*(KT) = E
[
Rm*(KT,Θ1,Θ2)

]
− cKT. In the capacity

building stage, the centralized firm selects the capacity level Km*
T to maximize the expected profit:

Km*
T = arg max

KT≥0

πm*(KT ) (5)

The following proposition characterizes the optimal production and capacity decisions.

Proposition 1.

i. For given (KT, θ1, θ2), define the two switching curves:

τm*
i (KT, θj) =

{
2biKT , if θj ≤ 2b̂KT ;
2(bibj−b̂2)KT−(bi−b̂)θj

bj−b̂
, if θj > 2b̂KT .

i, j = 1,2, i 6= j (6)

Then, the optimal production quantities of a centralized firm – qm*
1 (KT, θ1, θ2), qm*

2 (KT, θ1, θ2)–

are as follows:[(
θ1b2−θ2b̂1{θ2b1>θ1 b̂}

)+

2
(
b1b2−b̂21{θ2b1>θ1 b̂}

) ,
(
θ2b1−θ1b̂1{θ1b2>θ2 b̂}

)+

2
(
b1b2−b̂21{θ1b2>θ2 b̂}

)
]

if θ1 ≤ τm*
1 (KT, θ2), θ2 ≤ τm*

2 (KT, θ1);

[
(2(b2−b̂)KT+min((θ1−θ2),2(b1−b̂)KT ))

+

2(b1+b2−2b̂)
,
(2(b1−b̂)KT+min((θ2−θ1),2(b2−b̂)KT ))

+

2(b1+b2−2b̂)

]
, otherwise. (7)



Author: Article Short Title
c© 0000 University of Michigan 9

ii. There exists a unique optimal capacity Km*
T .

Figure 1 illustrates the optimal production policy characterized in (7). In this figure, we can observe

that it is optimal to fully utilize the capacity only when the firm gets favorable demand signals.

(These areas are marked ”binding” for binding capacity in Figure 1). The allocation of the capacity

to production of products 1 and 2 depends on the relative values of the demand signals. (The gray

areas in Figure 1 are areas where it is optimal to produce just one product while in the white areas,

it is optimal to produce both products.) Finally Figure 1 also shows both thresholds τ1, τ2. The

centralized case solution is interesting as it will serve as a benchmark against the decentralized

cases with different levels of collaboration.

Figure 1 Optimal production strategy for a centralized firm with respect to demand signals.

3. Analysis of Decentralized Firms under Different Collaboration
Scenarios

We now provide an analysis of the different scenarios of collaboration. We first start with the

production subgames for each scenario and analyze the two different settings of the second stage

production subgame - no collaboration (n) and collaboration (c) - for given capacity endowments

and demand signals. We then roll back the outcome of the corresponding subgame to the first stage

and determine the equilibrium strategies for each of the four different scenarios.

3.1. Noncollaborative Production

If the firms do not collaborate in the production stage (Nn and Cn scenarios), each firm individually

chooses the quantity that maximizes its own revenue. Specifically, the equilibrium production

quantities for a given subgame ω= (K1,K2, θ1, θ2), must satisfy the following system of equations:

qn*
1 (ω) = arg max

q1∈[0,K1]

q1p1

(
q1, q

n*
2 (ω), ω

)
and qn*

2 (ω) = arg max
q2∈[0,K2]

q2p2

(
qn*

1 (ω), q2, ω
)

(8)

Solving this, we obtain the following equilibrium outcomes:
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Proposition 2. In a subgame ω= (K1,K2, θ1, θ2), define the two switching curves τn*i (ω):

τn*
i (ω) =


2biKi, if θj ≤ b̂Ki;
(4bibj−b̂2)Ki+θj b̂

2bj
, if b̂Ki < θj ≤ 2bjKj + b̂Ki;

2bjKj + b̂Ki, if 2bjKj + b̂Ki < θj.

i, j = 1,2 i 6= j (9)

There exists a unique equilibrium production strategy
(
qn*1 (ω), qn*2 (ω)

)
such that:

(
qn*1 (ω), qn*2 (ω)

)
=



((
2θ1b2−θ2b̂1{2θ2b1>θ1 b̂}

)+

4b1b2−b̂21{2θ2b1>θ1 b̂}
,

(
2θ2b1−θ1b̂1{2θ1b2>θ2 b̂}

)+

4b1b2−b̂21{2θ1b2>θ2 b̂}

)
, if θ1 ≤ τn*

1 (ω) and θ2 ≤ τn*
2 (ω);(

K1,
(θ2−b̂K1)

+

2b2

)
, if θ1 > τ

n*
1 (ω) and θ2 ≤ τn*

2 (ω);(
(θ1−b̂K2)

+

2b1
,K2

)
, if θ1 ≤ τn*

1 (ω) and θ2 > τ
n*
2 (ω);

(K1,K2) , if θ1 > τ
n*
1 (ω) and θ2 > τ

n*
2 (ω).

(10)

Figure 2 Equilibrium production strategies when the firms compete in the production subgame, with respect to

demand signals.

Figure 2 illustrates the equilibrium quantities with respect to demand signals, θ1 and θ2. If

both firms get poor demand signals, their production quantities are low and the initial capacity

endowments do not play any role. If only one firm’s demand signal is favorable, the firm with

favorable demand signal produces at its capacity. If both firms get favorable demand signals, they

both produce at their capacities.

We let Rn*
i (ω) denote the revenue that firm i will earn under the sub game ω,

Rn*
i (ω) = qn*

i (ω)pi

(
qn*

1 (ω), qn*
2 (ω), ω

)
i= 1,2 (11)
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3.2. Collaborative Production

If the firms collaborate in the production stage (Cc and Nc scenarios), they jointly set the produc-

tion quantities and share the total revenue obtained from both products. We assume that firms will

decide on the optimal production quantities, and then use Nash bargaining to split the revenues.

To characterize the Nash bargaining solution (NBS), we first need to specify the disagreement

payoff for each firm (that is, the payoff that each firm earns if there is no deal). Note that if the

firms fail to reach an agreement, each firm chooses the quantity that maximizes its own revenue

within its capacity endowment. Hence, the disagreement payoff for firm i is the equilibrium revenue

under the no collaboration setting, Rn*
i (ω), for a subgame ω= (K1,K2, θ1, θ2).

The equilibrium quantities and transfer payment of the NBS solve the problem below and the

following proposition characterizes the equilibrium.

max
Γ,q1,q2

(
q1p1(q1, q2, ω)−Γ−Rn*

1 (ω)
)(
q2p2(q1, q2, ω) + Γ−Rn*

2 (ω)
)

(12a)

subsject to q1 + q2 ≤ K1 +K2 (12b)

q1p1(q1, q2, ω)−Γ≥ Rn*
1 (ω) (12c)

q2p2(q1, q2, ω) + Γ≥ Rn*
2 (ω) (12d)

Proposition 3. Suppose that firms with capacity endowments (K1,K2) collaborate in the

production stage. Then, for given ω = (K1,K2, θ1, θ2), there exists a unique equilibrium(
qc*1 (ω), qc*2 (ω),Γc*(ω)

)
such that:

i. The firms produce the same quantities as a centralized firm would: qc*i (K1,K2, θ1, θ2) = qm*
i (K1 +

K2, θ1, θ2), i= 1,2,.

ii. The transfer payment (from firm 1 to firm 2) is:

Γc*(ω) =
qc*1 (ω)p1

(
qc*1 (ω), qc*2 (ω), ω

)
−Rn*

1 (ω)

2
−
qc*2 (ω)p2

(
qc*1 (ω), qc*2 (ω), ω

)
−Rn*

2 (ω)

2
(13)

Proposition 3 establishes that, under the NBS, the quantities produced by the two collaborating

firms are equal to those of a single centralized firm. That is, for any demand signal, there exists

a negotiation outcome where no efficiency is lost. In order to make the arrangement mutually

beneficial for both firms (i.e., each firm’s payoff is no less than its disagreement payoff), the transfer

payment Γc*(ω) is used to allocate the gains from collaboration, and capacity may have to be

reallocated between the firms. Let χc*(ω) be the net capacity allocated from firm 2 to firm 1 in

equilibrium, which is expressed as follows:

χc*(ω) =


(
qc*1 (ω)−K1

)
, if qc*1 (ω)>K1;

−
(
qc*2 (ω)−K2

)
, if qc*2 (ω)>K2;

0, otherwise.

(14)
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Figure 3 Equilibrium capacity trade with respect to demand signals.

Note that χc*(ω) is positive if firm 1 borrows capacity from firm 2, and negative if firm 2 borrows

capacity from firm 1. Figure 3 illustrates how capacity is shared with respect to the demand signals,

(θ1, θ2).

If both firms get poor demand signals, then each firm can serve its demand with its endowed

capacity, hence no capacity reallocation need to take place. Otherwise, the two firms readily trade

the capacity to produce the quantities that maximize the total revenue. Note that there are regions

under which the entire capacity of one firm is reallocated to the other. This happens when one firm

is better off by selling its entire capacity and receiving the transfer payment than by producing

and selling its own product.

Note that for given total capacity, the equilibrium quantities depend on the demand signals but

not on the individual capacity endowments of each firm. Consequently, for a given total capacity,

the revenue a firm earns directly from sales (before the transfer payment) depends only on the

demand signals, (θ1, θ2). However, the transfer payment (which depends not only on the demand

signals, but also on the firms’ individual capacity endowments K1,K2) balances the firms’ payoffs

according to their initial contributions to the total capacity.

One may expect the transfer payment to be monotone in demand signals or in capacity endow-

ments since capacity becomes more valuable with higher demand. Figure 4 presents the transfer

payment from firm 1 to firm 2, Γc*(ω), and the amount of capacity that firm 1 acquires from firm

2, χc*(ω), with respect to the demand signal for firm 2. When the demand signal is poor (when θ2

is low), firm 2 transfers its whole capacity to firm 1. In this range, as the demand signal for firm 2

becomes more favorable, the disagreement payoff of firm 2 and hence, its opportunity cost for the

capacity increases. Consequently, although the amount of capacity traded remains the same, the

transfer payment from firm 1 to firm 2 increases. However, when θ2 becomes moderate or high,

firm 2 finds it optimal to keep some of its capacity to satisfy its own demand. In this range, the
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Figure 4 (a) Transfer payment from firm 1 to firm 2, Γc*(ω), and, (b) amount of capacity traded from firm 2 to

firm 1, χc*(ω), with respect to the demand signal, θ2. (b1 = 3, b2 = 4, K1 =K2 = 40, θ1 = 400)

amount of capacity that firm 2 trades to firm 1 decreases in θ2. Consequently, firm 1 receives less

capacity in trade, and earns less with the traded capacity. Therefore, the transfer payment, Γc*(ω),

decreases.

To examine how much a unit capacity is worth when it is reallocated, we define the price per

unit of reallocated capacity: γc*(ω) = Γc*(ω)/χc*(ω), for χc*(ω) 6= 0. The next result shows that

although the total transfer payment is not monotone, the unit price of capacity is monotone in

demand signals and in capacity endowments, when the two products are not substitutes.

Proposition 4. Suppose that the two products are not substitutes (i.e., b̂= 0). Then,

i. The price of capacity (per unit), γc*(ω), increases in θi, and decreases in Ki, i= 1,2.

ii. Transfer payment is nonzero if and only if there is capacity trade: Γc*(ω) 6= 0 ⇔ χc*(ω) 6= 0.

When a firm’s demand signal becomes more favorable (i.e. θi increases),the market clearing price

for its products will be higher. Thus, the firm’s per unit profit margin will increase. This increases

the price that it is willing to pay for a unit of capacity. Likewise, when the demand signal for

the firm that sells capacity becomes more favorable, the firm’s opportunity cost of the capacity

increases, which increases the per unit capacity price he will charge to transfer capacity. Thus, the

price of unit capacity increases when either demand signal gets more favorable. On the other hand,

when either firm starts with larger capacity, capacity trade becomes less valuable, and hence the

transfer price of unit capacity decreases. We also find that, when the products are not substitutes,

transfer payment is made if and only if there is nonzero capacity trade. This is intuitive, as one

would exchange the payments to balance the revenue only when physical capacity is traded.

However, none of these intuitive results hold when the products are substitutes. Firms pay non-

zero transfer payment even when there is no capacity trade. In addition, even when capacity is

traded, the unit capacity price is not necessarily increasing as either firms’ demand increases. Figure
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Figure 5 (a) Unit capacity transfer price, γc*(ω), and, (b) the amount of capacity traded from firm 2 to firm

1, χc*(ω), with respect to the demand realization of firm 1, θ1. (b1 = b2 = 2, b̂= 1, K1 =K2 = 25 and

θ2 = 40)

5 presents an example. In this example, the amount of capacity firm 1 buys from firm 2 is constant,

but the price per unit capacity decreases in the demand signal of firm 1, θ1. In other words, firm 1

earns more but pays less per unit of the capacity it acquires from firm 2. To understand why, first

note that, firm 2 sells its whole capacity to firm 1 in this case. As θ1 increases, the price of product

1 increases. Hence, the production quantity of firm 1 also increases as a response to a higher market

price. But, as firm 1 increases the quantity available in the market, price for product 2 decreases.

Consequently, the opportunity cost for firm 2 for its capacity decreases, and, as a result, firm 2 is

willing to give up its capacity at a lower price. Note that, when the products are not substitutes,

this outcome will never happen, because, the opportunity cost for firm 2 will be independent from

the demand signal of firm 1.

3.3. Capacity Investment Stage

After solving the production subgame, we next study the capacity investment stage under the two

different cases - No collaboration (N) and Collaboration (C).

No collaboration

If the firms do not collaborate in the first stage (Nc and Nn scenarios), each firm strategically

decides its capacity level to maximize its own expected profit. Therefore, the equilibrium capacity

levels (KNs∗
1 ,KNs∗

2 ) must satisfy the following system of equations:

KNs∗
1 = arg max

K1≥0

πs∗
1 (K1,K

Ns∗
2 ) and KNs∗

2 = arg max
K2≥0

πs∗
2 (KNs∗

1 ,K2) for s∈ {n, c} (15)

Collaboration in capacity investment

If the firms collaborate in the first stage (Cc and Cn scenarios), they negotiate to build capacity

jointly and share the capacity and its investment costs according to the Nash bargaining solution
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(NBS). We assume that each firm pays the capital to obtain its initial endowment, that is, firm i

pays cKi to have an endowment of Ki, which is a part of πk(·), defined in equation (2).

To determine the bargaining outcome, we first specify the disagreement payoff, i.e., what each

firm earns if the negotiation fails. Let πd
i denote the disagreement payoff for firm i. For both the Cc,

and Cn scenarios, if the firms fail to reach an agreement to collaborate in the first stage, then they

never collaborate in the subsequent stages. Notice that we are modeling a situation where firms

agree to collaborate in a multi-stage partnership. Thus, in the Cc scenario, the firms are agreeing

to collaborate first in capacity, then in production. If the agreement fails at the first stage, then we

are assuming that this collaboration will no longer take place. Of course, we will also separately

analyze the case where firms agree to collaborate in capacity but not in production Cn and vice

versa Nc.

Thus, in a a multi-period collaboration agreement between parties under the Cc scenario, if the

firms fail to reach an agreement at the first stage, each firm will decide its own capacity and produc-

tion quantity separately to maximize its own profit. Therefore, each firm will then earn equilibrium

profits under the Nn scenario, and we have (πd
1 , π

d
2 ) =

(
πn*

1 (KNn*
1 ,KNn*

2 ), πn*
2 (KNn*

1 ,KNn*
2 )

)
.

If there is a deal, the firms invest in the capacity and obtain the capacity endowments: K1 and

K2. Then, demand signals are realized, and the firms play the production subgame and earn the

revenue as illustrated in subsections 3.1 and 3.2. But, note that the firms agree to a deal if their

(ex ante) profits are at least as large as their diagreement payoffs, πn*
i (KNn*

1 ,KNn*
2 ), i = 1,2. To

guarantee this, one firm may need to make a transfer payment to the other firm so that she earns

at least its disagreement payoff. Let η be the first-stage transfer payment firm 1 makes to firm 2

to induce an agreement (negative if the actual payment is from firm 2 to firm 1). According to the

NBS, the equilibrium outcome– (KCs∗
1 ,KCs∗

2 , ηCs∗), for s ∈ {n, c}– is the solution to the following

optimization problem:

max
K1,K2≥0

η

(
πs∗

1 (K1,K2)− η−πd
1

)(
πs∗

2 (K1,K2) + η−πd
2

)
(16)

s.t. πs∗
1 (K1,K2)− η≥ πd

1

πs∗
2 (K1,K2) + η≥ πd

2

Notice that the transfer payment, η, plays a role of investment subsidy. Consequently, an equilib-

rium outcome in which η = 0 implies that each firm pays only for its own endowment as no firm

gives or receives a payment in the first stage.

When the products are not substitutes (b̂ = 0), all of the results that follow will hold for any

continuous demand distribution with positive support. This includes cases when the demand signals
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are correlated. However, when the products are substitutes (b̂ > 0), obtaining analytical results

is much more difficult. This is because the derivative of the firm’s profit (following the subgame

outcome) is discontinuous, and makes verifying the second-order condition formidable (see Goyal

and Netessine, 2007 for a thoughtful discussion). To overcome this, we make the following additional

assumptions for the case of substitutable products: (i) Θ1 and Θ2 are independent, and (ii) Θi

follows either an uniform or exponential distribution, i= 1,2. Although our results are proven for

the two distributions, our computational study shows that the results are still valid with other

distributions as well.

Theorem 1.

i. In all four scenarios (Nn, Nc, Cn and Cc) a pure strategy equilibrium exists. Moreover, the

equilibrium is unique under the Nn and the Nc scenarios.

ii. When the firms collaborate in capacity investment (Cn or Cc scenarios):

(a) The difference between the firms’ equilibrium profits is equal to the difference in their dis-

agreement payoffs:(
πs∗

1 (KCs∗
1 ,KCs∗

2 )− ηCs∗
)
−
(
πs∗

2 (KCs∗
1 ,KCs∗

2 ) + ηCs∗
)

= πd
1 −πd

2 ,

for s∈ {n, c} (17)

(b) Under the Cc scenario, the total capacity in equilibrium is equal to the optimal capacity of a

centralized firm: KCc*
1 +KCc*

2 =Km*
T .

Theorem 1 implies that, while the equilibrium collaboration outcome makes both firms better

off, the difference in their profits remains the same as the difference in their disagreement payoffs.

In other words, the negotiation outcome only increases the total surplus without changing the

difference in profits.

Theorem 1 also establishes that, if the firms are allowed to collaborate both in capacity and in

production stages (Cc scenario), the total capacity is the same as a centralized firm’s capacity.

Under this scenario, the firms not only produce the centrally optimal quantities (Proposition 3)

but also agree to build the optimal capacity of a centralized firm. Thus, no efficiency is lost in

either stage.

An interesting question is how firms pay for the capacity they will purchase. Suppose the two

firms agree to collaborate and build capacity K1 and K2. Do they each pay for the capacity they

build or is it the case that one of the firms has to provide a subsidy to the other? One would expect

that each firm’s contribution should be proportional to its endowment and that it is subsidy-free:

in other words, ηCs∗ = 0. The next result characterizes the condition under which this occurs.
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Proposition 5. For the Cc and Cn scenarios:

i. An investment equilibrium is subsidy-free (i.e., ηCs∗ = 0), if and only if the equilibrium endow-

ments (KCs∗
1 ,KCs∗

2 ) satisfy the following:

πn*
1 (KCs∗

1 ,KCs∗
2 )−πn*

2 (KCs∗
1 ,KCs∗

2 ) = πd
1 −πd

2 for s∈ {n, c} (18)

ii. If the products are not substitutes (b̂ = 0), then there always exists a subsidy-free investment

equilibrium. If the products are substitutes (b̂ > 0), a subsidy-free investment equilibrium exists

when the firms are allowed to collaborate in the second stage (Cc scenario) and KNn*
T ≥Km*

T .

Otherwise, a subsidy-free investment equilibrium may not exist in general.

The condition in (18) leads to a subsidy-free investment. Notice that the left hand side is the

difference between the profits when the firms compete in the second stage with the endowments

(KCs∗
1 ,KCs∗

2 ). The right hand side is the difference between the disagreement payoffs, same as in the

condition in (17). This implies that, under the subsidy-free equilibrium, the difference between the

firms’ profits must be the same regardless of whether they collaborate in the subsequent production

stage.

Proposition 5 also implies that, when the two products are not substitutes, a subsidy-free equi-

librium exists regardless of whether the firms collaborate in the production stage or not (Cc and Cn

scenarios). Under the Cn scenario, as no capacity sharing will occur in the second stage, there is no

gain from joint capacity investment (because the products are not substitutes). Hence, each firm

agrees to build the endowment that maximizes its own profit and there is no investment subsidy.

On the other hand, under the Cc scenario, the firms share capacity in the second stage, and hence

they gain from joint investment in capacity. The second stage negotiation allocates these gains so

that the firms do not need the investment subsidy to select the centrally optimal joint capacity in

the first stage.

On the other hand, when the products are substitutes, a subsidy-free equilibrium exists only

when the firms collaborate in both stages (Cc scenario) and the total capacity of a centralized

firm is smaller than the total capacity under the Nn scenario (i.e., Km*
T ≤KNn*

T ). Note that, when

the products are substitutes, and the firms collaborate in both stages, the gains of collaboration

come not only from pooling capacities but also from pooling demands (i.e., forgoing competitive

behavior). The negotiation in the second stage allocates the gains from pooling demands. If the

total capacity of a centralized firm is smaller than the total capacity under the Nn scenario, by

jointly building the centrally optimal capacity in the first stage, the firms achieve the investment

cost savings. Consequently, in the first stage the firms jointly build the centrally optimal capacity
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and select the endowments at which the savings from capacity investment cost are split without

an investment subsidy.

When the products are substitutes, and the total capacity of a centralized firm is larger than

the total capacity under the Nn scenario (i.e., Km*
T >KNn*

T ), a subsidy-free investment equilibrium

does not necessarily exist even when the firms collaborate in both stages. Without the investment

subsidy, the firms’ total capacity may be less than that of a centralized firm. Thus, even if they

collaborate in the second stage, the firms can earn less than what a centralized firm can earn for

the same realization of demand signals. Therefore, the firms lose efficiency. Hence, one firm finds

it beneficial to pay a subsidy to the other firm and induce it to agree on building a larger capacity

to guarantee that the revenue in the second stage is the same as the revenue of a centralized firm.

When the products are substitutes and the firms do not collaborate in the second stage (Cn

scenario), a subsidy-free investment equilibrium does not exist in general. Even though there is no

capacity sharing in the second stage, there still exists a gain from joint investment in capacity for

substitutable products. However, because there is no ex-post recourse to resolve the inefficiencies

(due to possible imbalance between endowments and demand signals), whether each firm realizes

the gain or not depends on its initial endowment. Consequently, an upfront subsidy is generally

needed so that the firms select the endowments that maximize the gains of collaboration.

When the firms collaborate in both stages, it is interesting to know how much each firm will invest

in a subsidy-free equilibrium. First, note from Theorem 1 that the total capacity is equal to that of

a centralized firm. This implies that KCc*
2 , can be replaced by Km*

T −KCc*
1 , in (18). Moreover, note

that (18) is defined by the disagreement payoffs and πn*
i (·, ·), i = 1,2. The disagreement payoffs

do not depend on the endowments. In addition, πn*
i (·, ·) is a well-defined continuous function.

Therefore, one can simply solve (18) with a search in single variable in a bounded interval to

determine the investment level under a subsidy-free equilibrium.

3.4. Collaboration in Capacity and Partial Collaboration in Production (Cp)

So far, we have analyzed the equilibrium outcomes for four scenarios and show that the firms gain

the most if they can fully collaborate in both stages (Cc scenario). However, to achieve this outcome,

the two firms must build capacity and set production quantities together. Furthermore, the two

firms not only need to make decisions together but they also need to agree on how to split the

profit for each contingency in detail. In the previous section, we show that, if the two products are

substitutes, the firms may exchange the transfer payment even when there is no physical exchange

of the capacity. One alternative arrangement is that the firms collaborate on strategic decisions

(e.g., building capacity), but each firm individually sets its production quantity, while they trade
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the capacity endowments if necessary. We call this arrangement Cp scenario (where ’p’ stands for

partial collaboration in production).

Under this scenario, the firms build a joint capacity in the first stage. In the second stage, after

the firms observe the demand signals, they trade capacity to establish new endowments. Then,

each firm individually decides its production quantity within its new endowment. An example

of such collaboration can be found in an arrangement between AMD and Fujitsu for producing

flash memory chips (Devine, 2003). Under this arrangement, the firms built a plant together (thus

collaboratively chose the total capacity), but each firm individually decided how much to purchase

from the plant’s output (Plambeck and Taylor, 2005). Another such example is the limited joint

operating agreement between two newspapers: Detroit Free Press and Detroit News. Under this

arrangement, the newspapers operate separately, but are printed in the same, jointly built facility

(Busterna and Picard, 1993).

Once again, we solve for the equilibrium outcome using backward induction. Let K̂i, i= 1,2, be

the new endowment of firm i after the capacity trade, and let ω̂ be the vector that represents the

new capacity endowments and demand signals: ω̂ := (K̂1, K̂2, θ1, θ2). For each realization of ω̂, the

equilibrium production quantities must satisfy the following set of equations:

qCp*
1 (ω̂) = arg max

q1∈[0,K̂1]

q1p1

(
q1, q

Cp*
2 (ω̂), ω̂

)
and qCp*

2 (ω̂) = arg max
q2∈[0,K̂2]

q2p2

(
qCp*

1 (ω̂), q2, ω̂
)

(19)

Note that the equilibrium outcome of this quantity-setting game is identical to (8) except that

(K̂1, K̂2) replaces (K1,K2). In other words, the production quantities are the same as the ones

under the Nn scenario with the endowments (K̂1, K̂2). Therefore, by equation (11), firm i earns

the revenue Rn*
i (ω̂) from sales. Given this, we can consider the preceding capacity trading game

for given initial endowments (K1,K2) and demand signals (θ1, θ2). As before, let Γ be the transfer

payment that firm 1 pays to firm 2 (negative if firm 2 pays to firm 1). Thus, if the firms agree on

a deal, firm i earns:

Rn*
i (K̂1, K̂2, θ1, θ2) + (−1)iΓ, i= 1,2

If the firms fail to reach a deal, each firm individually decides its production quantity using

its initial endowment, Ki, as the capacity constraint. Hence, the disagreement payoff of firm i is

Rn*
i (K1,K2, θ1, θ2), i= 1,2, and the NBS is a solution to the following problem:

max
Γ,K̂1,K̂2

(
Rn*

1 (K̂1, K̂2, θ1, θ2)−Γ−Rn*
1 (K1,K2, θ1, θ2)

)(
Rn*

2 (K̂1, K̂2, θ1, θ2) + Γ−Rn*
2 (K1,K2, θ1, θ2)

)
subject to K̂1 + K̂2 = K1 +K2

Rn*
1 (K̂1, K̂2, θ1, θ2)−Γ≥ Rn*

1 (K1,K2, θ1, θ2)
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Rn*
2 (K̂1, K̂2, θ1, θ2) + Γ≥ Rn*

2 (K1,K2, θ1, θ2)

K1,K2 ≥ 0

The first constraint implies that the total capacity will remain the same before and after the

trade. The remaining two constraints guarantee that both firms’ payoffs must be improved after

negotiation. The next result characterizes the properties of the equilibrium outcome.

Proposition 6.

i. There exists an equilibrium in the capacity trading game. If K̂i = Ki, i = 1,2 in equilibrium,

then it must be ΓCp*(ω) = 0 for any ω= (K1,K2, θ1, θ2).

ii. If the products are not substitutes (i.e., b̂ = 0) the equilibrium quantities in the subsequent

production game are the same as those of a centralized firm with capacity K1 +K2.

Note that the equilibrium outcome described by Proposition 6 and equation (19) is different from

the equilibrium outcome in a subgame under full collaboration (i.e., Cc scenario). For instance,

unlike the Cc scenario, the firms exchange the transfer payment only if there is a physical trade

of capacity. To see why, note that, under the Cp scenario, each firm chooses the quantity that

maximizes its own revenue. Therefore, if there is no capacity trade, each firm’s revenue would be

equal to its disagreement payoff, and hence there would be no transfer payment.

Another interesting outcome is how the shared capacity is used. Under the Cp scenario, one firm

may buy capacity from the other firm and idle the purchased capacity: In Figure 6, observe that

firm 2 buys 10 units of capacity from firm 1, but uses only 3.75 units in production. Although

such outcome is counterintuitive at first (why pay for capacity and waste?), firm 2 gains more by

reducing the intensity of competition by limiting firm 1’s production. At the same time, firm 1 also

gains by selling a portion of capacity to firm 2 and limiting the competition.

Figure 6 Equilibrium capacity trade and production under the Cp scenario. (b1 = b2 = 4, b̂= 2)
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After substituting the equilibrium outcome in the second stage, we write the equilibrium payoff

of firm i, RCp*
i (ω) for a given ω= (K1,K2, θ1, θ2) as follows:

RCp*
i (ω) =Rn*

i

(
K̂Cp*

1 (ω), K̂Cp*
2 (ω), θ1, θ2

)
+ (−1)iΓCp*(ω) (20)

Now consider the first stage game. If the two firms choose the initial endowments (K1,K2), the

expected profit of firm i is πCp*
i (K1,K2) =E

[
RCp*
i (K1,K2,Θ1,Θ2)

]
− cKi. As in the analysis of the

Cc scenario, an (upfront) investment subsidy might be needed for the firms to agree on a deal.

Putting them altogether, the equilibrium capacity endowments, (KCp*
1 ,KCp*

2 ), and investment sub-

sidy, ηCp*, are given by an optimization problem analogous to the one in (16). The next proposition

characterizes the properties of the bargaining outcome.

Proposition 7. Under the Cp scenario,

i. There exists a pure strategy equilibrium in the capacity investment game such that the difference

in the firms’ equilibrium profits is equal to the difference between their disagreement payoffs.

ii. If the two products are not substitutes (b̂= 0), the equilibrium outcome under the Cp scenario

is identical to the equilibrium outcome under the Cc scenario.

iii. A subsidy-free investment equilibrium exists (i.e., ηCp* = 0), if and only if the equilibrium endow-

ments (KCp*
1 ,KCp*

2 ) satisfy the following condition:

πn*
1 (KCp*

1 ,KCp*
2 )−πn*

2 (KCp*
1 ,KCp*

2 ) = πd
1 −πd

2 (21)

iv. Let KCp*
T be the total capacity in equilibrium under the Cp scenario. In addition to the conditions

of Proposition 5(ii), assume that KCp*
T ≥KNn*

i , for i = 1,2. Then, there exists a subsidy-free

investment equilibrium under the Cp scenario.

Proposition 7 implies that, when the products are not substitutes, the level of equilibrium joint

capacity is centrally optimal (equal to that of a centralized firm). However, this is not necessarily

true when the products are substitutes. This is because, when the products are substitutes, even if

the total capacity is the same, the production quantities under the Cp scenario is different from the

quantities that a centralized firm would produce. For instance, when both firms get poor demand

signals, there will be no capacity trade and the firms engage in quantity-setting game with their

initial endowments. Since the second stage outcome is not always the same as the centrally optimal

outcome, the firms’ total expected profit is not the same as the profit of a centralized firm. As a

result, under the Cp scenario, the firms build a joint capacity that is different from the capacity

of a centralized firm.
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Proposition 7 provides the condition that must be satisfied by the subsidy-free investment equi-

librium. Note that this condition, given in equation (21), is analogous to (18), the equation that

determines the subsidy-free investment equilibrium under the Cc scenario. Therefore, for the cases

where the existence is guaranteed, similar to the Cc scenario, one can simply solve the condition

in (21) with a search in single variable in a bounded interval to determine the investment level in

a subsidy-free equilibrium.

4. Comparison of Equilibrium Capacities

In the previous section, we have solved for the equilibrium capacity under the five different sce-

narios. We show that, under some cases, collaboration leads to a centrally optimal outcome. For

example, if the two firms can fully collaborate in both stages (Cc scenario), the equilibrium joint

capacity level is equal to the optimal capacity of a centralized firm. Similarly, if the two products

are not substitutes (i.e., b̂= 0), the equilibrium joint capacity level under the Cp scenario is also

equal to the optimal capacity of a centralized firm. However, in all other scenarios, some efficiency

is lost and the equilibrium capacity level deviates from the capacity of a centralized firm. The next

proposition compares the total equilibrium capacity levels under different scenarios.

Proposition 8.

A. When the products are not substitutes (i.e., b̂= 0), the following results hold:

i) KCn*
T =KNn*

T ,

ii) min(KCc*
T ,KNn*

T )≤KNc*
T ≤max(KCc*

T ,KNn*
T ),

iii) KCp*
T =KCc*

T .

B. When the products are substitutes (i.e., b̂ > 0), the following results hold:

i) KCn*
T ≤KNn*

T ,

ii) min(KNn*
T ,KCc*

T )≤KNc*
T ,

iii) KCp*
T <KCc*

T .

The parts A.i) and B.i) of Proposition 8 compare the total capacity under the two scenarios–

Nn and Cn. If the two products are not substitutes (part A.i), the total capacity under the Cn

scenario (i.e., collaborating in the capacity game, but not collaborating in the production subgame)

is the same as that under the Nn scenario (i.e., not collaborating in both games). In other words,

in terms of the total capacity, not collaborating in the production subgame is the same as not

collaborating at all. On the other hand, if the products are substitutes, part B.i implies that the

Cn scenario yields smaller capacity than the Nn scenario although the firms do not lend or borrow

capacity from each other in the producton subgame: KCn*
T ≤KNn*

T . This is because, although no
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capacity is physically shared in the second stage, jointly deciding the total capacity together allows

the firms to curb the downstream competition by making capacity more scarce. (Recall that in

part B.i, products are substitutes whereas in part A.i, they are not, and it is interesting that just

collaborating in capacity investments without any production (and therefore implicitly pricing)

coordination results in decreasing competition when products are substitutes).

The parts A.ii) and B.ii) compare the total capacity under the Nc scenario with those under the

Nn and Cc scenarios. If the products are not substitutes, the total capacity under the Nc scenario

is always in between KCc*
T and KNn*

T . To see why, recall that, firm i selects its capacity to maximize

πc*
i (K1,K2) under the Nc scenario. Note that from Proposition 3),

πc*
i (K1,K2) =

1

2

(
πm*(K1 +K2) +πn*

i (K1,K2)−πn*
j (K1,K2)

)
i, j = 1,2 i 6= j

Since the products are not substitutes, for given Kj, the disagreement payoff of firm j,

πn*
j (K1,K2), is independent of firm i’s capacity, Ki. Thus, firm i chooses the capacity that maxi-

mizes 0.5πm*(·) + 0.5πn*i(·). Notice that if each firm wants to maximize πm*(·), then this results in

the total capacity of KCc*
T . On the other hand, each firm maximizing πn*(·)i will result in the total

of KNn*
T . Consequently, KNc*

T falls between between KCc*
T and KNn*

T .

However, this result is no longer true when the products are substitutes. Although we can

establish KNc*
T ≥ min(KCc*

T ,KNn*
T ), KNc*

T can exceed the maximum of KCc*
T and KNn*

T . Figure 7

illustrates an example of this: KNc*
T > KNn*

T when demand variability is low (the coefficient of

variation is less than 0.35) and KNc*
T <KNn*

T otherwise.

When the demand variability becomes smaller, the chances that one firm needs to borrow capac-

ity from the other firm decrease. However, larger capacity can still be beneficial to the firm when

products are substitutes. Note that the disagreement payoff of the firm i’s competitor, πn*
j (K1,K2),

decreases in Ki (see Lemma 2 in Appendix). Hence, increasing the firm’s initial endowment can

weaken the competitor’s bargaining position and improve the firm’s own bargaining position. Con-

sequently, both firms try to get an edge for the negotiation that will occur in the production sub

game and end up building larger capacity in the capacity game than they would otherwise and this

is why the total capacity under the Nc scenario exceeds the total capacity under the Nn scenario.

On the other hand, when demand becomes highly variable, the opposite effect prevails. When

demands are highly variable, the value of pooling and sharing the capacity is high, thus, resulting

in smaller total capacity.

Finally, parts A.iii) and B.iii) compare the equilibrium capacity under the Cp and the Cc sce-

narios. One would expect the total capacity to be higher with increased competition, i.e., it may
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Figure 7 Total capacity with respect to coefficient of variation. (µ1 = µ2 = 600, b1 = b2 ∈ {5, . . . ,35}, b̂/bi ∈
{0, . . . ,0.99}, and c∈ {20, . . . ,160})

be reasonable to expect that KCp*
T ≥KCc*

T . However, surprisingly, Proposition 8 shows that the

opposite is true. To understand why, first consider the case where each firm has ample capacity.

Then, under the Cp scenario, for most demand realizations, each firm can satisfy its demand with

its own capacity. In this case, it is unlikely that the two firms will trade capacity , thus they will be

competing in the production sub-game, deviating from producing the centrally optimal quantities.

On the other hand, such adverse effect of competition can be prevented if the firms do not build

too much capacity in the first place. Therefore, in the first stage, the firms anticipate this outcome,

and build smaller joint capacity and reduce the intensity of competition.

5. Computational Study

We conduct a computational study to gain further managerial insights into the benefit of capacity

collaboration. In particular, we aim to: (1) measure the gains the firms can achieve via collabora-

tion, (2) find out how the gains change in the level and the form of collaboration, and (3) assess

the impacts of business parameters (such as costs, demand variability, etc.) on the gains from

collaboration.

For this, we compare the performances of the firms under the five scenarios: Cc, Cp, Cn, Nc, and

Nn. To examine the effects of the business parameters on the gains from collaboration, we system-

atically vary cost and demand parameters. Specifically, the following combinations of parameters

(in total of 2268 problem instances) are used in the computational study:

• bi ∈ {5,10, . . . ,35},

• b̂/bi ∈ {0,0.25,0.5,0.75,0.99},

• CVi = σi/µi ∈ [0.03,0.50],

• c∈ {20,40, . . . ,120}.

Throughout the experiments, we use several distributions – uniform, truncated normal, trian-

gular, etc. – with E[θi] = 600, i = 1,2. To measure the gains from collaboration under different
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scenarios, we compute the percentage improvement in total profit over the profit under the no

collaboration scenario:

ICc =
ΠCc*

T −ΠNn*
T

ΠNn*
T

×100, ICp =
ΠCp*

T −ΠNn*
T

ΠNn*
T

×100, ICn =
ΠCn*

T −ΠNn*
T

ΠNn*
T

×100, INc =
ΠNc*

T −ΠNn*
T

ΠNn*
T

×100

The descriptive statistics are summarized in Table 2.

ICc ICp ICn INc

Mean 20.45 % 20.34 % 4.50 % 14.36 %
Standard Deviation 17.78 % 17.80 % 5.35 % 14.50 %

Minimum 0.05 % 0.05 % 0.00 % 0.02 %
25th percentile 5.41 % 5.24 % 0.17 % 2.87 %

Median 15.37 % 15.13 % 2.24 % 9.62 %
75th percentile 31.31 % 31.29 % 7.47 % 21.99 %

Maximum 72.79 % 72.78 % 30.62 % 62.60 %

Table 2 Summary Statistics for improvements in the dataset of 2268 problem instances.

We observe that the overall gains from collaboration are significant except for the Cn scenario.

In particular, the performance under the Cp scenario (where the firms invest in capacity together,

and decide whether to trade capacity but determine the production quantities individually) is very

close to the performance under the Cc (full collaboration) scenario. We also observe that the gain

is significant when the firms are allowed to collaborate only in the production stage (Nc scenario):

the total profit increases by 14.4% on average. On the other hand, if the firms are not allowed

to collaborate in the production stage, they do not gain much even when they build the capacity

together (4.5% on average). To understand why, notice that, the investment decisions are made

before, but production decisions are made after observing the demand signals. Therefore, even if

the firms build capacities close to the ideal level, they cannot capture most of the potential gain if

they are not allowed to share the capacity to respond to demand variability.

5.1. The Impact of Business Parameters

For each scenario, we examine the change in the performance with respect to the changes in the

problem parameters. These results are presented in Figures 8(a) (substitutability), 8(b) (capacity

cost) and 9 (demand variability).

Figure 8(a) plots the percentage improvements with respect to b̂/bi. Note that bi is the elasticity

and b̂ is the cross-elasticity of the inverse demand function. Therefore, the ratio of the two, b̂/bi

measures the degree of substitutability, or the intensity of competition between the two firms (Lus

and Muriel, 2009). We observe that the percentage improvement increases in the ratio b̂/bi, which

implies that the gains from collaboration increase as the competition becomes more intense under
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Figure 8 Improvements vs. (a) b̂/bi ratio, and (b) unit capacity building cost c.

all scenarios. On the other hand, we observe that the performance gaps between the scenarios

where the firms collaborate only in one stage – the Cn and Nc scenarios – and the scenarios where

the firms collaborate in both stages – the Cc and Cp scenarios – also increase. To see why, first

observe that, by collaborating in both stages, the firms mitigate the adverse effects of competition

in both investment and resource allocation decisions. Under the Cc scenario, the firms completely

coordinate the decisions. Under the Cp scenario, the firms compete in quantity, but they are allowed

to trade the capacity, so that the degree of competition in the second stage is reduced as well. As

the substitutability increases, the value of reduced competition enabled by collaborating in both

stages (Cc or Cp scenarios) increases. On the other hand, under the Cn and Nc scenarios, the firms

collaborate in one stage, but compete in the other stage. As a result, the competition is still a

driver of each firm’s (capacity or quantity) decision. Thus, although the gains under the Cn and

Nc scenarios increase in substitutability, the growth is much slower than the growth under the Cc

or Cp scenarios.

Figure 8(b) shows that the percentage gains increase in the unit capacity building cost. When

capacity becomes more expensive, the firms build smaller capacity. When the firms collaborate in

the production stage (Cc, Cp and Nc scenarios), they utilize the limited capacities more efficiently.

Therefore, under these scenarios, the gains from collaboration increase significantly when the unit

capacity building cost increases. On the other hand, under the Cn scenario, the gain slightly

increases first, but the rate of increase diminishes as the cost increases. To see why, recall that the

only source of gain under the Cn scenario is building smaller capacity to reduce competition in

the production stage. Since the firms are already building smaller capacities under the Nn scenario

when the capacity cost is high, the gain under the Cn scenario is small and the growth diminishes

with higher capacity cost.
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Figure 9 Improvements vs. the coefficient of variation of demand.

Figure 9 illustrates how the gains change in demand variability. Overall, the gains increase in

demand variability when the firms collaborate in the production stage (Cc, Cp and Nc scenarios).

If the firms do not collaborate in the production stage at all, however, the gain from collaboration

in capacity decision alone (Cn scenario) decreases in demand variability. To see why, note that

for given capacity endowments, as the demand variability increases, the probability that at least

one firm is short of capacity increases as well. Thus, collaborating in production after observing

the demand signals (reactive collaboration) becomes more valuable. On the other hand, when

demand becomes more predictable (i.e., less variable), the opportunity to curb the competition

by preventing overinvestment (proactive collaboration) becomes more valuable. That is, most of

the benefit comes from the savings from the investment cost and reduced competition (thus, the

performances under the Cc and the Cn scenarios are almost equal). As a result, when demand

is extremely predictable, collaborating in capacity investment alone (Cn scenario) could be more

beneficial than collaborating in production alone (Nc scenario).

5.2. Full vs. Partial Collaboration in Production and Implications on Price

Recall that the Cp scenario allows each firm to set its own production quantity only allowing the

firms to exchange capacity once they realize demand signals. Therefore, one might expect that

the increased competition compared to the full collaboration (Cc) scenario will force the firms to

produce larger quantities so that the consumers pay lower prices. However, when we compare the

equilibrium quantities and prices between the Cc and the Cp scenarios (see Figure 10), we see that

the exact opposite case may happen. When demand signals for both products are unfavorable to

moderately favorable, the price under the Cp scenario is strictly lower. When one firm observes

favorable demand signal and the other firm gets poor demand signal, the price under the Cp

scenario is equal to the price under the Cc scenario. In all the other cases, however, the price
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Figure 10 Regions on (θ1 × θ2) space that determine whether the prices under the Cp scenario are larger than

the prices under the Cc scenario in equilibrium. (b1 = b2 = 10, b̂= 2.5, c= 20, µ1 = µ2 = 600)

under the Cp scenario is strictly higher than the price under the Cc scenario. To understand why

such behavior arises, first note that, although the firms eventually engage in quantity competition

under the Cp scenario, they are allowed to trade the capacity when doing so is mutually beneficial.

Thus, the firms engage in the full level of competition only when both firms have sufficient capacity

(i.e., when they get demand signals that are unfavorable to moderately favorable). Otherwise, the

capacity becomes binding. Recall that, to reduce the harmful effects of competition, the firms

build smaller joint capacity under the Cp scenario (Proposition 8). Therefore, when the capacity is

binding under both the Cp and the Cc scenarios, the total output is smaller under the Cp scenario.

As a result, the consumers pay higher prices.

6. Discussion and Conclusions

In this paper, we considered collaboration between two competing firms. Specifically, we allowed

firms to collaborate in both capacity building and production decisions. We considered several

different arrangements of collaboration and examined the resulting equilibrium outcomes.

We find that, if the firms can fully collaborate both in capacity and in production decisions

(Cc scenario), they can achieve the centrally optimal outcome in equilibrium. In other words, no

efficiency would be lost. Moreover, compared to the scenario where the firms do not collaborate

at all, the gains from collaboration with a competitor can be substantial. This supports the joint

venture agreements between competing firms, in which, the firms jointly take the decisions under a

separate economic entity. However, for a joint venture agreement to be sustainable, the firms may

need to agree on investment subsidies and on a detailed transfer payment schedule. Interestingly,
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we find that an investment scheme that is proportional to the capacity endowment structure (e.g.,

one firm owns 60 % of capacity and the other owns 40% of capacity in a 60-40 joint venture) may

not always be an equilibrium, and subsidies from one firm to the other may be necessary to achieve

mutually beneficial collaboration.

As an alternative to joint venture agreements, motivated by examples from different industries,

we study an arrangement where the firms jointly build capacity but still compete in production

after trading their capacity endowments (Cp scenario). We find that most of the benefits from full

collaboration can be captured under the Cp scenario. Therefore, it is a viable alternative to forming

a joint venture. We also find that, although the Cp scenario is a more competitive arrangement

than a joint venture, equilibrium total capacity is lower than the total capacity of a joint venture.

This interesting result is due to the firms’ tendency in the capacity building stage to limit the

intensity of competition in the operational (e.g., production) stage.

If the firms can collaborate only in capacity investment or in operational decisions, we find

that collaboration only in operational decisions (Nc scenario) outperforms collaboration only in

capacity investment (Cn scenario), as long as demand is not too predictable. This result may explain

collaborative production agreements between competing firms such as Toyota and Fuji Heavy, and

the code sharing agreements among airlines. However, we also observe that, even though the firms

gain considerable benefits when they only collaborate in operational decisions (e.g., production),

they cannot do as well as they would do under a joint venture. This is because of the competition

in the capacity building stage that deteriorates the firms’ earnings.

On the other hand, when demand is very predictable, the gains of collaborating only in capacity

investment may exceed the gains of collaborating only in production. When the firms collaborate

only in capacity investment, the only gain comes from preventing overinvestment to curb compe-

tition in the production stage. However, when the firms collaborate only in production, the gain

comes from pooling capacity in the face of demand variability. Therefore, when demand is extremely

predictable, collaborating only in capacity investment could be more valuable than collaborating

only in production.

The sensitivity of the gains of collaboration with respect to different business parameters imply

that overall gains increase when: (1) the products are more substitutable, (2) capacity is more

costly to build, and (3) demand is more variable. This is because: (1) when the products become

more substitutable, the value of reduced competition, which is enabled by collaboration, increases,

(2) when capacity is more costly to build, the collaboration becomes more valuable as it allows the

firms to utilize the limited resources more efficiently, and (3) with more variable demand, there is
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higher probability of instances where a firm needs to use the other firm’s capacity, under which

capacity trade is more profitable.

For future research, it would be interesting to consider capacity collaboration structures other

than the ones we consider in this paper. For instance, we assume that when the firms collaborate in

the operational stage they negotiate to agree on contract terms such as the capacity trade and the

transfer payment. This causes the contract terms to be contingent on the demand signals (these

contracts are labeled as incomplete contracts by Van Mieghem, 1999). One extension is to consider

a simpler capacity sharing contract that can be agreed upon before demand signals are observed.

It will be interesting to see how much of the benefit can be captured through a rather simple

mechanism.

References

Anupindi, A. K., Y. Bassok, E. Zemel. 2001. A general framework for the study of decentralized distribution

systems. Manufacturing and Service Operations Management 3(4) 349–368.

Anupindi, R., L. Jiang. 2008. Capacity investment under postponement strategies, market competition, and

demand uncertainty. Management Science 54(11) 1876–1890.

Aviv, Y., A. Federgruen. 2001. Design for postponement: A comprehensive characterization of its benefits

under unknown demand distributions. Operations Research 49(4) 578–598.

Bish, E. K., R. Suwandechochai. 2010. Optimal capacity for substitutable products under operational post-

ponement. European Journal of Operational Research 207(2) 775–783.

Bish, E. K., Q. Wang. 2004. Optimal investment strategies for flexible resources, considering pricing and

correlated demands. Operations Research 52(6) 954–964.

Busterna, J. C., R. G. Picard. 1993. Joint Operating Agreements: The Newspaper Preservation Act and Its

Application. Ablex Publishing Co.

Chen, X., J. Zhang. 2009. A stochastic programming duality approach to inventory centralization games.

Operations Research 57(4) 840–851.

Chod, J., N. Rudi. 2005. Resource flexibility with responsive pricing. Operations Research 53(3) 532–548.

Chod, J., N. Rudi. 2006. Strategic investments, trading, and pricing under forecast updating. Management

Science 52(12) 1913–1929.

Chun, S., A. Kleywegt, A. Shapiro. 2012. Revenue management in resource exchange seller alliances. Working

Paper, Georgetown University, Washington DC. .

Clark, D. 2008. Micron adds capacity. The Wall Street Journal .

Devine, N. 2003. Amd and fujitsu launch new flash memory company and unveil ”spansion” global brand.

Dow Jones Newswires .



Author: Article Short Title
c© 0000 University of Michigan 31

Eppen, G. 1979. Effects of centralization on expected costs in a multi-location newsvendor problem. Man-

agement Science 25 498–501.

Fudenberg, D., J. Tirole. 1991. Game Theory . MIT Press.

Goyal, M., S. Netessine. 2007. Strategic technology choice and capacity investment under demand uncertainty.

Management Science 53(2) 192–207.

Granot, D., G. Sosic. 2003. A three-stage model of a decentralized distribution system of retailers. Operations

Research 51(5) 771–784.

Hanany, E., Y. Gerchak. 2008. Nash bargaining over allocations in inventory pooling contracts. Naval

Research Logistics 55 541–550.

Harrigan, K. R. 1986. Managing for Joint Venture Success. Lexington Books.

Henry, J. 2010. Nummi once meant harmony among gm, toyota and the uaw. BNET, CBS Interactive

Business Network .

Kostamis, D., I. Duenyas. 2009. Quantity commitment, production and subcontracting with bargaining. IIE

Transactions 41 677–686.

Kuo, C., H. Ahn, G. Aydin. 2011. Dynamic pricing of limited inventories when customers negotiate. Oper-

ations Research (forthcoming) .

Lee, J. 2010. Samsung, sony in talks to make 11th generation lcd panels. Dow Jones Business News .

Lus, B., A. Muriel. 2009. Measuring the impact of increased product substitution on pricing and capacity

decisions under linear demand models. Production and Operations Management 18(1) 95–113.

Muthoo, A. 1999. Bargaining Theory with Applications. Cambridge University Press.

Nagarajan, M., Y. Bassok. 2008. A bargaining framework in supply chains: The assembly problem. Man-

agement Science 54(8) 1482–1496.

Nagarajan, M., G. Sosic. 2008. Game theoretic analysis of cooperation among supply chain agents: Review

and extensions. European Journal of Operational Research 187(3) 719–745.

Nash, J. F. 1950. The bargaining problem. Econometrica 18(2) 155–162.

Ozen, U., J. Fransoo, H. Norde, M. Slikker. 2008. Cooperation between multiple newsvendors with ware-

houses. Manufacturing and Service Operations Management 10 311–324.

Plambeck, E. L., T. A. Taylor. 2005. Sell the plant? the impact of contract manufacturing on innovation,

capacity, and profitability. Management Science 51(1) 133–150.

Roth, A. W. 1995. Introduction to experimental economics. J.H. Kagel, A.E. Roth, eds., Handbook of

Experimental Economics. Princeton University Press, Princeton, NJ, 3–109.

Rubinstein, A. 1982. Perfect equilibrium in a bargaining model. Econometrica 50(1) 97–109.

Rudi, N., S. Kapur, D. F. Pyke. 2001. A two-location inventory model with transshipment and local decision

making. Management Science 47(12) 1668–1680.



Author: Article Short Title
32 c© 0000 University of Michigan

Singh, N., X. Vives. 1984. Price and quantity competition in a differentiated duopoly. The RAND Journal

of Economics 15(4) 546–554.

Slikker, M., J. Fransoo, M. Wouters. 2005. Cooperation between multiple newsvendors with transshipments.

European Journal of Operational Research 167(2) 370–380.

Toyota. 2006. Fuji heavy industries’ u.s. plant to build toyota camry. Toyota News Release .

Trigeorgis, L. 1997. Real Options. The MIT Press.

Van Mieghem, J. A. 1998. Investment strategies for flexible resources. Management Science 44(8) 1071–1078.

Van Mieghem, J. A. 1999. Coordinating investment, production and subcontracting. Management Science

45(7) 954–971.

Wang, Y., N. Yang. 2012. Supplier improvement under competition and knowledge spillover. Working Paper,

Arizona State University, Tempe, AZ .

Wassmer, U., P. Dussauge, M. Planellas. 2010. How to manage alliances better than one at a time. MIT

Sloan Management Review 51(3) 76–85.

Yang, H., L. Schrage. 2009. Conditions that cause risk pooling to increase inventory. European Journal of

Operational Research 192(3) 837–851.

Zhou, Z. Z., K. X. Zhu. 2010. The effects of information transparency on suppliers, manufacturers, and

consumers in online market. Marketing Science 29(6) 1125–1137.



Author: Article Short Title
c© 0000 University of Michigan 33

Appendix

Proof of Proposition 1: The proof immediately follows from the fact that rm(q1, q2, θ1, θ2) is concanve in

(q1, q2) (part i) and the fact that πm*(KT) is concave in KT.

Proof of Proposition 2: Notice that, for a given subgame ω, the second-stage payoff of firm i, qi(θi −

biqi− b̂qj), is concave in qi. Also, the strategy space for (q1, q2) is compact, a pure strategy equilibrium exists

(Fudenberg and Tirole, 1991). To show uniqueness, for given qj , the best response of firm i is qni (qj , ω) =

min
(( θi−b̂qj

2bi

)+
,Ki

)
. Taking its derivative with respect to qj , we get:

d

dqj
qni (qj , ω) =

{
− b̂

2bi
, if 0≤ θi−b̂qj

2bi
≤Ki;

0, otherwise.

Since bi > b̂, we have −1 < d
dqj
qni (qj , ω) ≤ 0 and the best response mapping is a contraction. Hence, the

equilibrium (Fudenberg and Tirole, 1991) described in equation (10) is unique.

Proof of Proposition 3: To determine the NBS, we solve the optimization problem defined in (12). We

first determine the optimal transfer payment, Γc*(ω), for given production quantities. Then, we solve for the

optimal production quantities. For given (q1, q2), it can be shown that (12a) is strictly concave in Γ, and

hence the optimal transfer payment Γc*(ω) is unique. To solve for Γc*(ω) (thereby proving part ii), we first

write the KKT conditions. Let ν1 and ν2 be the Lagrangian multipliers. Then, the KKT conditions are as

follows: (
q1p1(q1, q2, ω)− q2p2(q1, q2, ω)

)
−
(
Rn*

1 (ω)−Rn*
2 (ω)

)
− 2Γ− ν1 + ν2 = 0 (22a)

ν1

(
q1p1(q1, q2, ω)−Γ−Rn*

1 (ω)
)

= 0, ν1 ≥ 0 (22b)

ν2

(
q2p2(q1, q2, ω) + Γ−Rn*

2 (ω)
)

= 0, ν2 ≥ 0 (22c)

From the KKT condition, we obtain

Γc*(ω) =
q1p1(q1, q2, ω)−Rn*

1 (ω)

2
− q2p2(q1, q2, ω)−Rn*

2 (ω)

2
, (23)

To obtain the optimal production quantities, we rewrite (12) utlizing equation (23):(
q1p1(q1, q2, ω) + q2p2(q1, q2, ω)

2
− Rn*

1 (ω) +Rn*
2 (ω)

2

)2

=

(
rm(q1, q2, θ1, θ2)

2
− Rn*

1 (ω) +Rn*
2 (ω)

2

)2

Since the second part of the expression within the parentheses is independent of (q1, q2), the solution will

maximize rm(q1, q2, θ1, θ2) and this proves the result.

Proof of Proposition 4: i. We first determine the equilibrium transfer payment and capacity trade for

given market signals. Then, we evaluate the unit price of capacity to establish the result. As illustrated in

Figure 11, depending on the demand signals, the optimal capacity trade and the transfer payment can fall

in one of 10 different regions. Table 3 presents the equilibrium capacity trade, (χc*(ω)), and unit price of

capacity, γc*(ω), and condition for each of the 10 regions.

It can be shown that χc*(ω) and Γc*(ω), are continuous functions in (θ1, θ2). Thus, γc*(ω) is also continuous

in regions where χc*(ω) 6= 0. To show γc*(ω) is increasing in θi and decreasing in Ki, it suffices to show that
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Figure 11 The capacity trade and transfer payment when firms collaborate in production.

Region Definition Capacity Trade, |χc*(ω)| Unit Price of Capacity, γc*(ω)

Ψc
0 θ1 ≤ 2b1K1, θ2 ≤ 2b2K2 0 Not defined

Ψc
1 θ1 > 2b1K1, θ1b2 + θ2b1 ≤ 2b1b2(K1 +K2)

θ1
2b1
−K1

θ1− 2b1K1

4

Ψc
2 θ2 > 2b2K2, θ2b1 + θ1b2 ≤ 2b1b2(K1 +K2) K2−

θ2
2b2

θ2− 2b2K2

4

Ψc
3

θ1b2 + θ2b1 > 2b1b2(K1 +K2),
θ2 ≤ 2b2K2, θ1− θ2 ≤ 2b1(K1 +K2)

θ1− θ2− 2b1K1 + 2b2K2

2(b1 + b2)


4b2(b1 + b2)2K1(b1K1− θ1) + (b1 + b2)2θ22
+b2(2b1(K1 +K2)− θ1 + θ2) [−2b1θ2− b2(θ1 + θ2)]
+b2(2b2(K1 +K2) + θ1− θ2) [2b2θ1 + b1(θ1 + θ2)]
+4b1b

2
2(K1 +K2) [(b1− b2)(K1 +K2)− θ1 + θ2] 2


4b2(b1 + b2)(θ1− θ2− 2b1K1 + 2b2K2)

Ψc
4

θ2b1 + θ1b2 > 2b1b2(K1 +K2),
θ1 ≤ 2b1K1, θ2− θ1 ≤ 2b2(K1 +K2)

θ1− θ2− 2b1K1 + 2b2K2

2(b1 + b2)


4b1(b1 + b2)2K2(θ2− b2K2)− (b1 + b2)2θ21
+b1(2b1(K1 +K2)− θ1 + θ2) [−2b1θ2− b2(θ1 + θ2)]
+b2(2b2(K1 +K2) + θ1− θ2) [2b2θ1 + b1(θ1 + θ2)]
+4b21b2(K1 +K2) [(b1− b2)(K1 +K2)− θ1 + θ2]


4b1(b1 + b2)(θ1− θ2− 2b1K1 + 2b2K2)

Ψc
5 θ2 ≤ 2b2K2, θ1− θ2 > 2b1(K1 +K2) K2

θ22 + 4b2K2 [θ1− b1(2K1 +K2)]

8b2K2

Ψc
6 θ1 ≤ 2b1K1, θ2− θ1 > 2b2(K1 +K2) −K1

θ21 + 4b1K1 [θ2− b2(2K2 +K1)]

8b1K1

Ψc
7 θ2 > 2b2K2, θ1− θ2 > 2b1(K1 +K2) K2

θ1 + θ2− 2b1K1− (b1 + b2)K2

2

Ψc
8 θ1 > 2b1K1, θ2− θ1 > 2b2(K1 +K2) −K1

θ1 + θ2− 2b2K2− (b1 + b2)K1

2

Ψc
9

θ1− θ2 > 2b1K1− 2b2K2,
θ2 > 2b2K2, θ1− θ2 ≤ 2b1(K1 +K2)

θ1− θ2− 2b1K1 + 2b2K2

2(b1 + b2)

[
θ2(3b1 + b2) + θ1(b1 + 3b2)
−2
[
b1(b1 + 3b2)K1 + b2(3b1 + b2)K2

] ]
4(b1 + b2)

Ψc
10

θ2− θ1 > 2b2K2− 2b1K1,
θ1 > 2b1K1, θ2− θ1 ≤ 2b2(K1 +K2)

θ1− θ2− 2b1K1 + 2b2K2

2(b1 + b2)

[
θ2(3b1 + b2) + θ1(b1 + 3b2)
−2
[
b1(b1 + 3b2)K1 + b2(3b1 + b2)K2

] ]
4(b1 + b2)

Table 3 The equilibrium capacity trade for the regions in Figure 11.

γc*(ω) is monotone in each region. To illustrate this, we will show that γc*(ω) is increasing in θ1 in Ψc
3.

Other cases are similar, thus omitted. Taking the derivative of γc*(ω) in Ψc
3 with respect to θ1 and applying

algebra, we get:

d

dθ1
γc*(ω) =

[
(2b22− b1b2− b21)(θ1− θ2− 2b1K1 + 2b2K2)2− (b1 + b2)2(θ1− 2b1K1)2

+2(b1 + b2)2(θ1− 2b1K1)(θ1− θ2− 2b1K1 + 2b2K2)

]
4b2(b1 + b2)(θ1− θ2− 2b1K1 + 2b2K2)2

> 0

ii. The proof follows from Table 3, theorefore omitted.



Author: Article Short Title
c© 0000 University of Michigan 35

Proof of Theorem 1: i. We present the proof when Θ1 and Θ2 are exponentially distributed with rates

λ1 and λ2. The proof utilizes Lemma 1 which is stated and proved below.

Lemma 1. Suppose that Θ1 and Θ2 are independent exponential random variables with rates λ1 and λ2,

respectively. Let KNs
i (Kj), i 6= j, be the firm i’s best response when firm j sets its capacity to Kj of firm j

under the scenario Ns, s∈ {n, c}. Then, we have the following:

i. πn*
i (K1,K2) is concave in Ki, i= 1,2.

ii. ∇KNn
i (Kj)∈ (−1,1), i= 1,2, i 6= j.

iii. π̃n*
i (K1,K2) is concave in Ki, i= 1,2.

iv. ∇KNc
i (Kj)>−1, i= 1,2, i 6= j.

Proof of Lemma 1: We show that πn*
1 (K1,K2) is concave in K1. The proof for πn*

2 (K1,K2) is symmet-

ric. The second order derivative of πn*
1 (K1,K2) with respect to K1 is

∇2
11π

n*
1 (K1,K2) = b̂3K1

2b2

[∫∞
2b1K1+b̂K2

f(t1,2b2K2 + b̂K1)dt1−
∫∞
2b1K1

f(t1, b̂K1)dt1

]
− b̂2(4b1b2−b̂2)K1

4b22

∫ 2b2K2+b̂K1

b̂K1
f( (4b1b2−b̂2)K1+b̂t2

2b2
, t2)dt2

− 2b1

[∫ b̂K1

0

∫∞
2b1K1

f(t1, t2)dt1dt2 +
∫∞
2b2K2+b̂K1

∫∞
2b1K1+b̂K2

f(t1, t2)dt1dt2

]
− 2b1b2−b̂2

b2

∫ 2b2K2+b̂K1

b̂K1

∫∞
(4b1b2−b̂2)K1+b̂t2

2b2

f(t1, t2)dt1dt2 (24)

Using the fact that Θi is exponentially distributed, the above equation can be simplified to

∇2
11π

n*
1 (K1,K2) = −2b1e

−2b1K1λ1

− b̂(1−eb̂K2λ1+2b2K2λ2 )(b̂λ2(2−b̂K1λ2)+2b1λ1(1−b̂K1λ2))

b̂λ1+2b2λ2
e−(2b1K1+b̂K2)λ1−(2b2K2+b̂K1)λ2 (25)

Noting that b̂λ1 + 2b2λ2 > 0 and e−(2b1K1+b̂K2)λ1−(2b2K2+b̂K1)λ2 > 0, ∇2
11π

n*
1 (K1,K2) must have the same

sign as b̂λ1+2b2λ2

e−(2b1K1+b̂K2)λ1−(2b2K2+b̂K1)λ2
πn*
1 (K1,K2). After some algebra, we have:

b̂λ1 + 2b2λ2

e−(2b1K1+b̂K2)λ1−(2b2K2+b̂K1)λ2
πn*
1 (K1,K2)

=−2b1

(
eb̂K1λ2

)(
eb̂K2λ1+2b2K2λ2

)
(b̂λ1 + 2b2λ2)− b̂

(
1− eb̂K2λ1+2b2K2λ2

)(
b̂λ2(2− b̂K1λ2) + 2b1λ1(1− b̂K1λ2)

)
≤−λ2

(
2(2b1b2− b̂2) + b̂2(2b1λ1 + b̂λ2)K1

)
eb̂K2λ1+2b2K2λ2 − b̂

(
b̂λ2(2− b̂K1λ2) + 2b1λ1(1− b̂K1λ2)

)
≤−2b1

(
b̂λ1 + 2b2λ2

)
< 0. (26)

The first inequality comes from the fact that −2b1

(
eb̂K1λ2

)
≤−2b1 and the second inequality comes from

the fact −λ2e
b̂K2λ1+2b2K2λ2 ≤−λ2. The last inequality implies that ∇2

11π
n*(K1,K2)< 0, hence πn*

1 (K1,K2)

is concave in K1. The proofs for remaining parts use similar logic, thus omitted.

Proof of part (i): Nn Scenario: The best response of firm i to the firm j’s action, Kj is uniquely

determined
(
Lemma 1.i

)
, and the mapping is a contraction

(
Lemma 1.ii

)
. Note that limKi→0 π

Nn*
i (K1,K2) =

0 and limKi→∞ π
Nn*
i (K1,K2)→−∞. Without loss of generality, it suffices to restrict the firm i’s strategy

space to be a compact interval, [0, K̄i] for some K̄i <∞. From Fudenberg and Tirole (1991), the equilibrium

exists and it is unique.
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Nc Scenario: Applying Proposition 3, the expected profit of firm i who has endowment Ki and will

collaborate with firm j (with endowment Kj), in the second stage, πc*
i (K1,K2), is :

πc*
i (K1,K2) =

1

2

(
πm*(K1 +K2) +πn*

i (K1,K2)−πn*
j (K1,K2)

)
Define π̃n*

i (K1,K2) = πn*
i (K1,K2)− πn*

j (K1,K2), i 6= j and substitue this into the previous equation, we

rewrite

πc*
i (K1,K2) =

1

2

(
πm*(K1 +K2) + π̃n*

i (K1,K2)
)

i, j = 1,2 i 6= j. (27)

It should be noted that πc*
i (K1,K2) is concave in Ki (this follows from the fact that πm*(K1 +K2) and

π̃n*
i (K1,K2) are concave: see Lemma 1.(iii). Similar to the Nn scenario, it suffices to restrict the firm i’s

strategy space to be a compact interval, which guarantees the existence (Fudenberg and Tirole, 1991).

For the uniqueness, first note that the best response mapping under the Nc scenario is not a contraction

in general. We show the uniqueness by showing that the slopes of the best response functions are bounded

in a way so that they will intersect exactly once. To start with, observe that the best response of firm i to

the capacity Kj of firm j under the Nc scenario, KNc
i (Kj), is

KNc
i (Kj) =

{
0, if ∇iπc*

i (0,Kj)≤ 0;

K̃Nc
i (Kj), otherwise.

i, j = 1,2 i 6= j (28)

where K̃Nc
i (Kj) is the solution to the following first order condition for given Kj :

∇iπc*
i

(
K̃Nc
i (Kj),Kj

)
=

1

2

{
∇πm*(K̃Nc

i (Kj) +Kj) +∇iπ̃n*
i (K̃Nc

i (Kj),Kj)
}

= 0

Then, implicitly differentiating the first order condition, we get:

∇KNc
i (Kj) =−1 ·

∇2πm*
(
KNc
i (Kj) +Kj

)
+∇2

ijπ̃
n*
i

(
KNc
i (Kj),Kj

)
2∇2

iiπ
c*
i

(
KNc
i (Kj),Kj

) .

To obstain the bound on ∇KNc
i (Kj), we first use Lemma 1(iv) and ∇KNc

i (Kj)>−1. Furthermore, since

πc*
i (K1,K2) is strictly concave in Ki, the denominator has a negative sign. Hence, ∇KNc

i (Kj) has the same

sign as the numerator. Note that the first term in the numerator is negative since πm*(·) is concave. Thus, in

order for ∇KNc
i (Kj) to be positive, the sign of the second term in the numerator must be postive. Subsutitute

qn*i (ω) into π̃n*
i

(
K1,K2

)
and taking cross-partial derivative in Ki and Kj yield

∇2
ijπ̃

n*
i

(
Ki,Kj

)
= b̂2

{
Ki

∫ ∞
2biKi+b̂Kj

f(ti,2bjKj + b̂Ki)dti−Kj

∫ ∞
2bjKj+b̂Ki

f(2biKi + b̂Kj , tj)dtj

}
. (29)

If Θis are exponentially distributed, ∇2
ijπ̃

n*
i

(
Ki,Kj

)
becomes

∇2
ijπ̃

n*
i

(
Ki,Kj

)
= b̂2e−(2biKi+b̂Kj)λi−(2bjKj+b̂Ki)λj [Kiλj −Kjλi] (30)

Note that this term is positive only if Kiλj >Kjλi. Therefore, ∇KNc
i (Kj) can be positive only if Kiλj >

Kjλi. This and the fact that ∇KNc
i (Kj) > −1 together implies that ∇KNc

i (Kj) ∈ [−1,0] for Kiλj < Kjλi

and ∇KNc
i (Kj) ≥ −1 for Kiλj > Kjλi: This is shwon in Figure 12(a). We now use this to show that the

best response functions cannot cross multiple times. For this, suppose that the best responses cross twice

or more and one of these intersections occurs at point A in Figure 12(b). Notice that from the fact that
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Figure 12 (a) Signs of the best response functions’ derivatives with respect to the regions on K1 ×K2 space,

(b) Example for contradiction to prove that the intersection of the best response functions is unique.

∇KNc
2 (K1)∈ [−1,0] for K2λ1 <K1λ2 and ∇KNc

2 (K1)≥−1 elsewhere, the additional intersection point must

be in the shaded region in Figure 12(b). However, if KNc
1 (K2) passes through point A, the other intersection

(which is in the shaded region) must have ∇KNc
1 (K2)<−1, contradicts the fact that ∇KNc

1 (K2)≥−1 (see

Figure 12(a)). Thus, the response functions cannot cross more than once.

Cc and Cn Scenarios: The existence comes from the fact that (K1,K2, η) = (KNn*
1 ,KNn*

2 ,0) and the

fact that the total profit is bounded above by that of a centralized firm.

The proof of part ii.(a) is algebraic, thus omitted. The proof for uniform distribution is similar.

The proofs of Propositions 5, 7, and 8 use the following technical lemma.

Lemma 2. We have the following:

i. πn*
i (Ki,Kj) is decreasing in Kj, i= 1,2, i 6= j.

ii. The optimal capacity of a centralized firm is larger than an individual capacity of a firm under the Nn

scenario: Km*
T ≥KNn*

i , i= 1,2.

iii. The joint capacity under the Cp scenario is smaller than the capacity of a centralized firm: KCp*
T <Km*

T .

Proof of Lemma 2. We present the proof of Part iii. The proofs of parts (i) and (ii) are algebraic,

therefore omitted. Under the Cp scenario, the firms negotiate to determine the reallocation of the total

capacity in the second stage, before each firm individually sets its production quantity. Therefore, the total

revenue, RCp*
T (KT, θ1, θ2), for given demand signals (θ1, θ2), is a function of the total capacity KT. By the

NBS, KCp*
T maximizes E

[
RCp*

T (KT, θ1, θ2)
]
−cKT. We can show that E

[
RCp*

T (KT, θ1, θ2)
]
−cKT is increasing

at KT = 0 and decreasing when KT→∞. Therefore, the first order condition is a necessary condition for

KCp*
T to be optimal:

d
dKT
|
KT=KCp*

T

{
E
[
RCp*

T (KT,Θ1,Θ2)
]
− cKT

}
= 0

Note that for any incremental capacity, a centralized firm optimally allocates it to production while the

efficiency is not guaranteed in the Cp scenario. This implies that, for any marginal increase in capacity, the

increase in the total profit of a centralized firm is always larger than the increase in the total profit under

the Cp scenario. Hence,

d
dKT

{
E
[
Rm*

T (KT,Θ1,Θ2)
]
− cKT

}
> d

dKT

{
E
[
RCp*

T (KT,Θ1,Θ2)
]
− cKT

}
for any KT, and we have
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d
dKT
|
KT=KCp*

T

{
E
[
Rm*

T (KT,Θ1,Θ2)
]
− cKT

}
> d

dKT
|
KT=KCp*

T

{
E
[
RCp*

T (KT,Θ1,Θ2)
]
− cKT

}
= 0

As E
[
Rm*

T (KT,Θ1,Θ2)
]
− cKT is concave in KT, this implies that KCp*

T <Km*
T .

Proof of Proposition 5: i. We first show that a subsidy-free equilibrium, (KCs∗
1 ,KCs∗

2 ) satisfies equation

(18). Note that applying ηCs∗ = 0, the equation in (17) is simplified as follows:

πs∗
1 (KCs∗

1 ,KCs∗
2 )−πs∗

2 (KCs∗
1 ,KCs∗

2 ) = πd
1 −πd

2 s∈ {n, c} (31)

For the Cn scenario (i.e., s = n), this directly implies equation (18). For the Cc scenario (i.e., s = c), from

(27), we have

πc*
i (K1,K2) = πn*

i (K1,K2) +
πm*(K1 +K2)−πn*

i (K1,K2)−πn*
j (K1,K2)

2
i, j = 1,2 i 6= j (32)

Substituting Ki =KCc*
i , i= 1,2 and applying in (31), we get (18).

We now show that any equilibrium (KCs∗
1 ,KCs∗

2 ) that satisfies equation (18) is subsidy-free. The result

ηCn* = 0 follows from algebra for the Cn scenario. For the Cc scenario, we first rewrite (18) using the

expression of πc*
i (K1,K2) in equation (32). Then, we have πc*

1 (KCc*
1 ,KCc*

2 )− πc*
1 (KCc*

1 ,KCc*
2 ) = πd

1 − πd
2 .

Substituting this in (17), we obtain 2ηCc* = 0, which completes the proof.

ii. From the fact that (πd
1 , π

d
2 ) =

(
πn*
1 (KNn*

1 ,KNn*
2 ), πn*

2 (KNn*
1 ,KNn*

2 )
)

, equation (18) can be expressed as:

πn*
1 (KCs∗

1 ,KCs∗
2 )−πn*

2 (KCs∗
1 ,KCs∗

2 ) = πn*
1 (KNn*

1 ,KNn*
2 )−πn*

2 (KNn*
1 ,KNn*

2 ) s∈ {n, c} (33)

For b̂ = 0, we will first consider the Cn scenario. Since b̂ = 0, qn*i (ω) and the inverse demand function,

pi(q1, q2, ω) = θi − biqi, are independent from Kj . Therefore, the profit πn*
i (Ki,Kj) is independent from

Kj . Under the Cn scenario, the equilibrium, (KCn*
1 ,KCn*

2 ) will maximize πn*
1 (K1,K2) + πn*

2 (K1,K2). Since

πn*
i (Ki,Kj) is independent from Kj , we have KCn*

i =KNn*
1 . The proof for the Cc scenario is similar, thus

omitted. Now, consider the Cc scenario when b̂ > 0. First note that, by Theorem 1, KCc*
1 +KCc*

2 =Km*
T . For

the proof, define the following function

h(K1) =
(
πn*
1 (K1,K

m*
T −K1)−πn*

1 (KNn*
1 ,KNn*

2 )
)
−
(
πn*
2 (K1,K

m*
T −K1)−πn*

2 (KNn*
1 ,KNn*

2 )
)

We next prove that there exists a K1 such that h(K1) = 0. For this, observe that h(·) is continuous (since

πn*
1 (·, ·) is continuous). In addition, we have:

h(KNn*
1 ) =

(
πn*
1 (KNn*

1 ,Km*
T −KNn*

1 )−πn*
1 (KNn*

1 ,KNn*
2 )

)
−
(
πn*
2 (KNn*

1 ,Km*
T −KNn*

1 )−πn*
2 (KNn*

1 ,KNn*
2 )

)
Since KNn*

2 ≥Km*
T −KNn*

1 and πn*
1 (K1,K2) is decreasing in K2 (Lemma 2(i)), the terms in the first paren-

thesis is positive. Also, from the fact that KNn*
2 is the best response to KNn*

1 , the terms in the second

parantehesis is negative. Combining these, we have h(KNn*
1 )≥ 0.

A similar argument shows that Km*
T −KNn*

i ≥ 0 (Lemma 2(ii)) and

h(Km*
T −KNn*

2 ) =
(
πn*
1 (Km*

T −KNn*
2 ,KNn*

2 )−πn*
1 (KNn*

1 ,KNn*
2 )

)
−
(
πn*
2 (Km*

T −KNn*
2 ,KNn*

2 )−πn*
2 (KNn*

1 ,KNn*
2 )

)
≤ 0
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These two inequalities imply that there exists K1 between min(Km*
T − KNn*

2 ,KNn*
1 ) and max(Km*

T −

KNn*
2 ,KNn*

1 ) that satisfies equation (33) (i.e., h(K1) = 0).

Proof of Proposition 6: i. The proof is similar to that for the existence of the NBS solution for the Cc

senario, thus omitted. ii. Under the Cp scenario, the firms negotiate to trade capacity before they make

quantity decisions. Notice that, if b̂ = 0, the firm i’s revenue is indepedent from the other firm’s quantity.

Hence, as long as the total endowment is the same, the quantities that firms will produce when they do not

collaborate during the production are the same as the those chosen by a centralized firm.

Proof of Proposition 7: We omit the proof of part i. since it is similar to the proof of Theorem 1(i)

(existence) and the proof of Theorem 1(ii)a (difference), respectively. For part ii., from Proposition 6,

observe that, the equilibrium production quantities are the same as the quanitites that a centralized firm

with the same total capacity would produce. Since the firms fully collaborate in capacity investment in the

first stage, the equilibrium outcome must coincide with the equilibrium outcome under the Cc scenario. The

proof of part iii. is similar to the proof of Proposition 5(i), thus omitted. Finally, for part iv., the case where

b̂ = 0 immediately follows from part (ii) of Proposition 7. Now, consider the case where b̂ > 0. Note from

Lemma 2(iii) that Km*
T >KCp*

T . Furthermore, from the assumption, it must be KCp*
T ≥KNn*

i for i= 1,2.

Then, the result follows from a similar argument used in the proof of Proposition 5(ii) with KCp*
T replacing

Km*
T .

Proof of Proposition 8.

(A) First note that from Proposition 2, qn*i (ω) and πn*
i (Ki,Kj) are independent from Kj when b̂= 0. Thus,

we will simplify the notation and drop Kj from the arguments of πn*
i (·), i, j = 1,2, i 6= j in this proof.

(i.) Note that (KCn*
1 ,KCn*

2 ) maximizes πn*
1 (K1) + πn*

2 (K2). Since πn*
i (·) is independent of Kj , i, j = 1,2,

i 6= j, KCn*
i = arg maxπn*

i (Ki) =KNn*
i , i= 1,2.

(ii.) From Theorem 1(ii)b, we have KCc*
T = Km*

T . Therefore, it suffices to show that min(Km*
T ,KNn*

T ) ≤

KNc*
T ≤max(Km*

T ,KNn*
T ). We provide the proof for the case where the equilibrium under the Nc scenario,

(KNc*
1 ,KNc*

2 ) is an interior solution where both capacity endowments satisfy the first order conditions. The

treatment for the boundary solution as the analysis is similar. From equation (27), the first order conditions

that determine the equilibrium for the Nc scenario is expressed as follows:

∇iπc*
i (KNc*

i ,KNc*
j ) =∇πm*(KNc*

1 +KNc*
2 ) +∇πn*

i (KNc*
i ) = 0 i, j = 1,2 i 6= j (34)

Thus, we must have ∇πn*
1 (KNc*

1 ) =∇πn*
2 (KNc*

2 ).

Consider the case that KNn*
T >Km*

T . Suppose that KNc*
1 +KNc*

2 =KNc*
T <Km*

T . Since πm*(·) is concave,

we have ∇πm*(KNc*
T )> 0. Then, from equation (34), it must be ∇πn*

1 (KNc*
1 )< 0. Since, πn*

i (·) is also concave

in Ki and it is independent of Kj , it must be the case that KNc*
i >KNn*

i , i= 1,2. Hence, we have

Km*
T > KNc*

1 +KNc*
2 > KNn*

1 +KNn*
2 =KNn*

T

which contradicts KNn*
T >Km*

T . Hence, we must have KNc*
T ≥Km*

T .
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Now, to prove KNc*
T ≤KNn*

T , suppose that KNc*
1 >KNn*

1 . Since πn*
1 (·) is concave, ∇πn*

1 (KNc*
1 )< 0. Then,

from equation (34), it must be the case that ∇πm*(KNc*
T )> 0. As πm*(·) is concave, this implies KNc*

T <Km*
T .

Note that ∇πn*
1 (KNc*

1 )< 0 also implies that ∇πn*
2 (KNc*

2 )< 0, and hence KNc*
2 >KNn*

2 . Therefore:

Km*
T > KNc*

1 +KNc*
2 > KNn*

1 +KNn*
2 =KNn*

T

which contradicts KNn*
T >Km*

T . Hence, we must have KNc*
1 ≤KNn*

1 and hence KNc*
2 ≤KNn*

2 , establishing

KNc*
T ≤KNn*

T . Therefore, we have Km*
T ≤KNc*

T ≤KNn*
T . The proof when KNn*

T ≤Km*
T is similar.

(iii.) Directly follows Proposition 7(ii).

(B) The proof is similar to part (A) but uses Lemma 2(i). Hence, we only provide the sketches and

highlight difference. For part (i), notice that, when the firms collaborate in the capacity building stage (as in

Cn scenario), the NBS stipluates that the firms select the capacities to maximize the total profit. Therefore

(KCn*
1 ,KCn*

2 ) satisfies the following conditions:

∇1π
n*
1 (KCn*

1 ,KCn*
2 ) +∇1π

n*
2 (KCn*

1 ,KCn*
2 ) = 0 and ∇2π

n*
1 (KCn*

1 ,KCn*
2 ) +∇2π

n*
2 (KCn*

1 ,KCn*
2 ) = 0

Lemma 2(i) establishes that ∇jπn*
i (Ki,Kj) < 0, for i, j = 1,2, and i 6= j. Therefore, we have:

∇1π
n*
1 (KCn*

1 ,KCn*
2 ) > 0 and ∇2π

n*
2 (KCn*

1 ,KCn*
2 ) > 0. Recall that KNn

i (Kj) is the best response of firm

i to the capacity Kj of firm j under the Nn scenario. Since πn*
i (Ki,Kj) is concave in Ki, we have

∇iπn*
i (KNn

i (Kj),Kj) = 0. Thus, KCn*
1 <KNn

1 (KCn*
2 ) and KCn*

2 <KNn
2 (KCn*

1 ). This is depicted in Figure 13,

where (KCn*
1 ,KCn*

2 ) can only be in the lightly shaded region. In this figure, the dashed line represents the

values where K1 +K2 =KNn*
T . The lightly shaded region is to the left of this line because ∇KNn

i (·)∈ (−1,1)

by Lemma 1(ii). Therefore, KCn*
T ≤KNn*

T .

Figure 13 The best response curves under the Nn scenario and the equilibrium capacity vectors under the Cn

and Nc scenarios.

(ii.) We use contradiction to prove the result that min(Km*
T ,KNn*

T )≤KNc*
T . The argument is similar to the

proof of part (A.ii) in Proposition 8, thus omitted.

(iii.) The result immediately follows Lemma 2.(iii).


