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SUMMARY

A theoretical framework is presented for the estimation of the physical parameters of a structure (i.e., mass,
stiffness, and damping) from measured experimental data (i.e., input–output or output-only data). The
framework considers two state-space models: a physics-based model derived from first principles (i.e.,
white-box model) and a data-driven mathematical model derived by subspace system identification
(i.e., black-box model). Observability canonical form conversion is introduced as a powerful means to convert
the data-driven mathematical model into a physically interpretable model that is termed a gray-box model.
Through an explicit linking of the white-box and gray-box model forms, the physical parameters of the
structural system can be extracted from the gray-box model in the form of a finite element discretization.
Prior to experimental verification, the framework is numerically verified for a multi-DOF shear building
structure. Without a priori knowledge of the structure, mass, stiffness, and damping properties are accurately
estimated. Then, experimental verification of the framework is conducted using a six-story steel frame struc-
ture under support excitation. With a priori knowledge of the lumped mass matrix, the spatial distribution of
structural stiffness and damping is estimated. With an accurate estimation of the physical parameters of the
structure, the gray-box model is shown to be capable of providing the basis for damage detection. With the
use of the experimental structure, the gray-box model is used to reliably estimate changes in structural stiff-
ness attributed to intentional damage introduced. Copyright © 2012 John Wiley & Sons, Ltd.
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1. INTRODUCTION

System identification is the art and science of creating an accurate mathematical model of a dynamic
system using experimental data [1]. System identification has been under development in a number
of different engineering communities since the 1960s. In the control theory community, system
identification has been extensively studied since the establishment of the prediction error method by
Ljung and his colleagues in the 1980s [2]. For example, an accurate prediction of the behavior of a
plant is critical for the design of feedback control algorithms. When modeling the plant by physics-
based principles is difficult, system identification can then be used to provide the control engineer
with a rigorous mathematical model that fully describes the plant dynamics. In the civil engineering
community, system identification has played a vitally important role in the assessment of the health
of a monitored structure [3]. For example, a mathematical model of the monitored structure before
and after damage could have notable differences that can be attributed to the damage.
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The prediction error method requires a canonical parameterization when applied to state-space
model estimation. A nonlinear search is often required to solve the optimization problem posed by
the prediction error method; this can lead to poor convergence, especially for multi-input multi-
output (MIMO) systems. An early application of the prediction error method to the identification of
structures is reported by Hjelmstad et al. [4]. Their study utilized the finite element formulation as
the canonical parameterization under the assumption that the geometry of the structure is known a
priori. As part of their approach, the nonlinear search is conducted along the time axis to estimate
the system parameters. In the 1990s, a new approach to system identification emerged in the control
theory community termed subspace system identification [5–7]. The most notable characteristic of
subspace system identification is its elimination of the need to specify the canonical
parameterization of the mathematical model of the system. Rather, subspace system identification
allows one to ignore the underlying physics of the system and to estimate a mathematical model of
the system directly from measurement data. Furthermore, subspace system identification does not
require nonlinear search methods. While subspace identification has proven to be a very powerful
tool to control engineers [1], the civil engineering community has been slow to adopt the method
because of the absence of a physical explanation of the method and its complex mathematical
derivation. Only recently has subspace system identification made major inroads in the civil
engineering field. To further promote subspace identification to the civil engineering community, the
companion paper [9] to this paper provides a detailed explanation of the method using geometrical
interpretations that relate directly to classical structural dynamics. This study will build on the
foundation provided by the first paper to extend subspace identification into the realm of structural
health monitoring (SHM).

This paper offers a bridge between the civil engineering and the control systems communities who
are engaged in system identification. First, the physics-based models (termed white-box models)
popular in the civil engineering community are derived for support-excited structures. Second,
entirely data-driven mathematical models (termed black-box models) are identified from
experimental data by means of subspace system identification. What might appear to be two
different representations of the system can be equated through the use of linear system theory [10, 11].
Specifically, the mathematical model of the system can be manipulated through canonical form
conversion to allow for physical interpretation of the model’s final form; such models are herein
referred to as gray-box models. The ability to now extract physical parameters from the gray-box model
allows subspace system identification methods to be an integral part of future SHM strategies. The
overarching strategy proposed in this paper is summarized in Figure 1. For validation, a series of

Figure 1. Algorithmic flow of the proposed estimation of physical parameters from gray-box models.
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experimental vibration tests are conducted on the same six-story steel frame structure utilized in
the companion paper [9]. A variety of damage cases are introduced in the structure in different
locations and in varying severity. Physical parameter estimation is conducted using gray-box models
formulated from input–output data and output-only data sets. As will be shown, quantitative
evaluation of the physical parameters leads to an accurate means of detecting the location and severity
of structural damage.

2. STATE-SPACE MODEL FORMULATION FROM UNDERLYING PHYSICS

The equation of motion of a discrete-time finite DOF structural system with n lumped masses and
excited by base motion (Figure 2) can be formulated as follows:

Mu
::t tð Þ þ Fnc u

:
t Þ;u tð Þð Þ þKu tð Þ ¼ 0f gð (1)

whereM ¼Pn
eM

e 2 Rn�n,K ¼Pn
eK

e 2 Rn�n, and Fnc ¼
Pn

eFnc
e 2 Cn�n correspond to the system

mass, stiffness, and non-conservative force matrices, respectively. In addition, ut 2 Rn and u 2 Rn

correspond to the total and relative (with respect to the structure base) displacement vectors,
respectively. The first term in Equation (1) represents the inertia force, which is the rate of change
of momentum of any mass node. The third term represents the spring force, which is a linear-elastic
approximation of the structure based on Hooke’s law. The second term represents non-conservative
forces. Generally, non-conservative forces are related to the dissipation of energy and are typically
considered as damping forces. Numerous damping forces have been formulated in the field of
structural dynamics. In this study, viscous damping is adopted because it can be easily modeled as a
dashpot whose damping force is linearly proportional to velocity. Using equivalent viscous
damping, the equation of motion can be written as follows:

Mu
:: t tð Þ þ Cu

:
tð Þ þKu tð Þ ¼ 0f g (2)

whereC ¼Pn
eC

e 2 Rn�n is the system damping matrix. The total displacement in Equation (2) can be
expressed as the sum of the support motion ug(t)2R and the relative displacement of the structure, u.
Because the relative displacement is parallel to the absolute displacement, the total displacement of the
shear structure is given by

Figure 2. Lumped mass, shear structure deformation under base motion excitation.
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ut tð Þ ¼ u tð Þ þ 1f gug tð Þ (3)

where 1f g 2 Rn is a unitary vector. By substituting Equation (3) in Equation (2), the equation of
motion with respect to the ground motion is formulated as follows:

Mu
::
tð Þ þ Cu

:
tð Þ þKu tð Þ ¼ �M 1f g€ug tð Þ (4)

The equation of motion defined by Equation (4) is converted to a form compatible with the
data-driven black-box model to be formulated later. Specifically, the state-space model is
formulated in a manner that acceleration outputs can be used, yet the state-space model fits
into a canonical form. This is in contrast to conventional methods where the state of the white-
box model is defined by the displacement and velocity vectors of the system DOFs regardless
of the output measurements. The problem arises when the traditional state (consisting of
displacements and velocities) is combined with acceleration outputs; the output matrix C, for
this approach would be a full matrix, and the state-space model would not fit into a canonical
form. Hence, a rather unorthodox state will be defined on the basis of acceleration and its
differential. The differential operator is applied twice to both sides of Equation (4) and mass
normalized:

u
::::

tð Þ ¼ �M�1K u
::
tð Þ �M�1Cu

:::
tð Þ � 1f gu::::g tð Þ (5)

By defining the following state

x tð Þ :¼ u:: tð ÞT u::: tð ÞT
� �T

(6)

a state-space model can be defined in the continuous-time domain:

x
:
tð Þ ¼ Acx tð Þ þ Bcu

::::
g tð Þ (7)

where

Ac ¼ 0 I
�M�1K �M�1C

� �
2 R2n�2n (8)

Bc ¼ f0g
� 1f g
� �

2 R2n (9)

If it is assumed that an accelerometer is installed on every lumped mass, then the observation
equation can be formed. Absolute acceleration u: t tð Þ , is calculated by applying the differential
operator twice to Equation (3) as follows:

u
:: t tð Þ ¼ u

::
tð Þ þ 1f g€ug tð Þ (10)

Accelerometers are electromechanical systems, which have very fast dynamics compared to
structural system dynamics. Thus, the fundamental dynamics of the sensor can be ignored. Hence,
the observation equation does not involve a differential equation. By the predefined state vector, the
observation equation is formulated as follows:
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y tð Þ ¼ Ccx tð Þ þ Dc€ug tð Þ (11)

where Cc ¼ I 0½ � 2 Rn�2n and Dc ¼ 1f g 2 Rn . The continuous-time state-space model
(Equations (7) and (11)) derived from the underlying physics of the system is referred to as
the ‘white-box model’ and schematically pictured in Figure 3(a).

3. GRAY-BOX MODEL BY OBSERVABILITY CANONICAL FORM CONVERSION

A state-space model is created using the input–output data set of a support-excited structure and
subspace system identification [9]. Let us assume the discrete-time system matrices,Ad 2 R2n�2n,Bd 2
R2n , Cd 2 Rn�2n , and Dd 2 Rn are identified by the N4SID algorithm using the measured ground
acceleration (i.e., input) and the absolute accelerations of the structure masses (i.e., output). Because
the identified data-driven model is a black-box model, the states are arbitrary and unknown. There
are mathematical procedures that allow the black-box model to be physically interpreted; such
conversions render the model a gray-box model. This work will introduce observability canonical
form conversion as a computationally efficient means of deriving a physically meaningful gray-box
model from a black-box model. The method presented in this paper differs from previous work in
gray-box modeling in the civil engineering domain. For example, Xiao et al. [12] proposed a
methodology to directly extract physical system matrices from a minimal realization with a priori
information of the structure’s mass distribution. Although offering a one-step transformation, their
canonical form conversion does not directly account for the physical principles of the system
through the conversion. Similarly, Lus et al. [13] provides a means of extracting physical properties
from black-box state-space models through a transformation that maps the arbitrary state space to
one consistent with the symmetric eigenvalue problem from which mass, damping and stiffness
properties of the system can be extracted. Their approach requires more steps and is therefore more
computationally expensive to implement.

The physics-based model previously developed in Section 2 is defined in the continuous-time
domain. Hence, the discrete-time state-space model obtained from susbspace system identification
must be converted into the continuous-time domain as follows:

(a) 

(b) 

Figure 3. Continuous-time state-space model for support-excited structures with acceleration output: (a)
physics-based model; and (b) data-driven mathematical model.
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Ac ¼ 1
Δt

ln Adð Þ (12)

Bc ¼ ðZ Δt

0
expðAc tÞdtÞ�1

Bd (13)

Cc ¼ Cd; Dc ¼ Dd (14)

where Δt is the sampling time step. Continuous-time state-space equations are given with the identified
matrices as follows:

x
:
tð Þ ¼ Acx tð Þ þ Bc€ug tð Þ (15)

y tð Þ ¼ Cc x tð Þ þ Dc€ug tð Þ (16)

The continuous-time state-space mathematical model is depicted in Figure 3(b). The model relates
the system input üg(t), with the system output y tð Þ , using an internal intermediate state x tð Þ . The
output is the absolute acceleration measured by accelerometers. With the application of a coordinate
transformation to the intermediate state, it is possible to define the state with specific physical
parameters (i.e., acceleration) such as those defined in the system output. For example, the sensor
system matrix Cc , would be the identity matrix for the measured states if the defined state was
identical to the measured absolute acceleration of the structure. This is the concept of the
observability canonical form of the state-space model realization [10]. As will be described, the
observability canonical form conversion will be an important step in the creation of a gray-box
model from the black-box model.

If (Ac,Bc,Cc,Dc) is any minimal realization of a true system, then (Ac,Bc,Cc,Dc) and (A′
c,B′

c,C′
c,D′

c)
can be related to one another through the nonsingular transformation matrix T:

A′
c ¼ T Ac T�1; B′

c ¼ TBc; C′
c ¼ Cc T�1; D′

c ¼ Dc (17)

The observability canonical form can be constructed by taking the transformation matrixT, to be the
observability matrixO (i.e.,T ¼ O). The observation matrixCc in Equation (16) can be expressed with
the n rows as follows:

Cc ¼
c1
⋮
cn

2
4

3
5 (18)

where c1;⋯; cn 2 R1�2n are n row vectors. With the use of row-wise expressions of Cc , the
observability matrix can be composed as follows:

O ¼ cT1 ⋯ c1Ag1�1
c

� �T
cT2 ⋯ c2Ag2�1

c

� �T ⋯ cTn ⋯ cnAgn�1
c

� �Th iT
(19)

where gi(i= 1, 2,⋯, n) are observability indices. Since a minimal state-space realization is completely
observable, the rank of the observability matrix must be 2n. As a result, all observability indices gi, in
Equation (19) are equal to 2. By Equation (17), the transformed system matrices using the observability
matrix yields the following structure:
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where * corresponds to non-zero entities. The order of the states in the experimentally identified model is
different from that of the predefined states in the physics-based model. By reordering the state as
x tð Þ ¼ €u1 tð Þ ⋯ €un tð Þ u

:::
1 tð Þ ⋯ u

:::
n tð Þ½ � T , the identified system matrices (Ac , Bc , Cc ,Dc) will

conveniently have the following form:

Ac ¼ 0 I
X Y

� �
2 R2n�2n (22)

Bc ¼ � 0f g
Zf g

� �
2 R2n (23)

Cc ¼ I 0½ � 2 Rn�2n (24)

Dc ¼ Wf g 2 Rn (25)

where � 0f g 2 Rn is a column vector with non-zero but trivial values andX 2 Rn�n,Y 2 Rn�n, Zf g 2 Rn,
and Wf g are portions of the system matrices that have non-zero values. By the process of observability
canonical form conversion and state reordering, the continuous-time state-space mathematical model
derived from subspace system identification has now been converted into a gray-box model whose
internal system description can now be physically mapped to the white-box model.

4. PHYSICAL PARAMETER ESTIMATION USING THE GRAY-BOX MODEL

4.1. Methodology

Because the system properties are fully captured in the system matrices {Ac , Bc }, the physical
parameters of the structural system can be estimated through a direct comparison of Equations (8)

(20)

(21)
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and (9) of the physics-based model (i.e., white-box model) and Equations (22) and (23) of the data-driven
mathematical model (i.e., gray-box model). This approach is depicted in Figure 4(a). However, as seen in
Figure 4(a), a gap still exists between the two models because of model discrepancies. The existence of
this gap was also an issue in the control theory community when considering both prediction error and
subspace system identification methods as depicted in Figure 4(b). This abstract gap problem was
solved by Ljung, Åström, and Söderström in the mid 1980s and is often referred to as the ‘Ljung’s
cleanup’ [2]. By making a clear distinction between the true system and the model set [1], system
identification must be considered as an approximation problem (i.e., minimize the gap) as opposed to
an exact problem (i.e., close the gap). Hence, system identification is fundamentally a problem of
defining a model with an acceptable quality for an intended application. In this study, model quality is
assessed in the context of physical parameter estimation for damage detection. As seen in Figure 3, the
two models (i.e., physics-based and data-driven mathematical models) are similar but not identical; the

system input matrices Bc and Bc have different physical meaning, especially when making absolute
acceleration measurements of support-excited structures. Admitting this difference, this study aims to
estimate the physical parameters of the system by comparing the system matrices (Ac ) of both models
(i.e., white-box and gray-box models). It should be noted that this strategy could also be equivalently
applied to models derived from output-only system identification.

Comparing the system matrixAc, of the white-box and gray-box models, the following relationships
are obtained:

X ¼ �M�1K (26)

Y ¼ �M�1C (27)

Pre-multiplying M on both sides of Equations (26) and (27) yields

MX ¼ �K (28)

MY ¼ �C (29)

Numerous solutions forM,C, andK given the gray-boxAc sub-matricesX andY exist. For the purpose
of damage detection through system identification, the structure’s spatial distribution of stiffness and
damping are more relevant because structural damage is viewed as a physical phenomenon that is
closely related to structural stiffness and damping rather than mass. Thus, damage is often quantified as a

(a)

(b)

Figure 4. System identification of a dynamic system: (a) the approach proposed in this study; and (b) two
common approaches taken in the control community.
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change in the identifiedK and C under the assumption of an invariant distribution of mass. In this study, a
priori knowledge on the mass distribution of a structure is utilized for the purpose of extracting K and C.
However, considering the potential difficulty of accurately acquiring the full knowledge of a structure’s
mass, only the case of partial a priori knowledge of the mass distribution is considered.

If the mass distribution of the structure is accurately known (i.e., M can be determined), then by
Equations (28) and (29), K and C can be easily calculated. However, if M is not known completely,
the problem is a little bit more challenging. This problem of finding matrices can be effectively
formulated using the concept of vectorized expressions [14, 15]:

vec MXð Þ ¼ �vec Kð Þ 2 Rn2 (30)

vec MYð Þ ¼ �vec Cð Þ 2 Rn2 (31)

where vec(•) is the vectorized expression of the matrix; in other words, the matrix is stacked into a
single column vector. Considering the Kronecker product �, it can be stated that

vec MXð Þ ¼ XT�I
� �

vec Mð Þ ¼ �vec Kð Þ (32)

vec MYð Þ ¼ YT�I
� �

vec Mð Þ ¼ �vec Cð Þ (33)

where XT�I
� � 2 Rn2�n2 and YT�I

� � 2 Rn2�n2. With the reciprocal theorem for linear structural systems,

K and C are symmetric (i.e.,K ¼ KT andC ¼ CT). Applying this fact to Equations (28) and (29) yields

MX ¼ XTM ¼ K (34)

MY ¼ YTM ¼ C (35)

From Equations (34) and (35), the following Kronecker product relationships are obtained

XT�I
� �

vec Mð Þ ¼ I�XT
� �

vec Mð Þ (36)

YT�I
� �

vec Mð Þ ¼ I�YT
� �

vec Mð Þ (37)

By combining Equations (32), (33), (36), and (37), the form of a linear regression can be composed
as follows:

XT�I
� �

0 I½ �
YT�I
� �

I½ � 0
XT�I
� �� I�XT

� �
0 0

YT�I
� �� I�YT

� �
0 0

2
664

3
775

vec Mð Þ
vec Cð Þ
vec Kð Þ

8<
:

9=
; ¼ 0f g (38)

Equation (38) can be symbolized as Pq ¼ 0f g where P 2 R4n2�3n2 , q 2 R3n2 , and 0f g 2 R4n2 .
Depending on the partial a priori knowledge on mass P and q can be partitioned by pivoting as follows:

P1 P2½ � qknown
qTBD

� 	
¼ 0f g (39)

where qknown reflects known mass parameters and P1 corresponds to a regressor matrix; qTBD is the
to-be-determined (TBD) mass, stiffness, and damping parameters, and P2 corresponds to another
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regressor matrix. The least square solution for the unknown parameter vectorqTBD, can be calculated from
the Moore–Penrose pseudo-inverse as follows:

qTBD ¼ P†
2 �P1 qknownð Þ (40)

The regression problem formulated in Equation (39) is quite powerful in its generality. Since the
right-hand side of the equation is the null space, its rank deficiency is 1. As such, it suggests that
only one known model parameter is needed to solve for the other unknown (i.e., TBD) parameters.
In the presence of noise, making assumptions about more than one parameter is prudent since the
estimation of the unknown parameters (qTBD) by Equation (40) will yield more accurate results as
the size of qknown grows. It should be kept in mind that qknown can be populated by mass
parameters, stiffness parameters, damping parameters, or a combination of the three. However,
physical changes of stiffness and damping is more meaningful in the damage detection problem than
changes in mass. Thus, the use of a priori knowledge on structural mass is suggested in this study.

4.2. Numerical example

A numerical example is studied before applying the gray-box system identification method to a more
complex experimental problem. A three-story lumped mass shear structure excited at each story by a
measured force f, is simulated (Figure 5(a)). The measured response of the structure is the
displacement of each story of the shear structure. Because the example has an identical white-box
and gray-box model (Figure 5(b)), the problem is well suited for numerical simulation. Furthermore,
the absence of the gap in Figure 4(a) allows performance of the physical parameter estimation to be
assessed through numerical simulation. The equation of motion of the multi-story building excited at
each story is formulated as follows:

Mu
::
tð Þ þ Cu

:
tð Þ þKu tð Þ ¼ f tð Þ (41)

By defining the state vector as x tð Þ :¼ u tð ÞT u: tð ÞT
� �T

, the physics-based model is derived as a
continuous-time state-space model with system matrices:

Ac ¼ 0 I
�M�1K �M�1C

� �
2 R2n�2n (42)

Bc ¼ 0
M�1

� �
2 R2n�n (43)

Cc ¼ I 0½ � 2 Rn�2n (44)

where M�1 is the inverse of the lumped mass matrix defined as

M�1 ¼½ 1=m1
0 ⋯ 0

0 1=m2
⋯ 0

⋮ ⋮ ⋱ ⋮

0 0 ⋯ 1=mn

�2 Rn�n

(45)

Using simulated input–output data, a data-driven mathematical model is derived by the subspace
identification method (i.e., N4SID). The resulting black-box model is converted to its gray-box form
via the observability canonical form transformation:
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Ac ¼ 0 I
X Y

� �
2 R2n�2n (46)

Bc ¼ � 0
Z

� �
2 R2n�n (47)

Cc ¼ I 0½ � 2 Rn�2n (48)

where � 0 2 Rn�n is a matrix composed of near-zero values. By comparison of Bc in Equations (43)
and (47), the mass matrix can be determined. Then, the stiffness and damping matrices are
calculated by the comparison of Ac (i.e., Equations (42) and (46)) with the known mass matrix.

The whole procedure consists of four major steps as illustrated in Figure 5(a): (i) physics-based
system matrices are composed and numerical simulation of the system is conducted to generate a
complete set of input–output data; (ii) noise is added to the simulated data prior to system
identification to simulate realistic sensor readings; (iii) system identification by N4SID is conducted
on the input–output data to produce the black-box model of the system; and (iv) gray-box model
conversion is implemented to estimate physical parameters from the black-box model. For the
physical model, identical inter-story stiffness values are used (1.9� 106N/m) for every story
whereas three different masses are used (m1 = 800 kg, m2 = 850 kg, and m3 = 900 kg). The inter-story
damping is assumed to be proportional to the inter-story stiffness (various values will be
considered). White noise forces are applied to each floor mass. The displacements of the floors are
considered as the system measured output. The sampling rate for the discrete time data is 100Hz.

Convergence of the model is affected by three major factors: (1) the size of the data set (as the
number of data points goes to infinity, the model converges asymptotically under the assumption of
a Gaussian stochastic process); (2) noise (white noise contamination of the measured output
deteriorates the convergence); and (3) damping components in the system (the influence of small
damping can be hidden within the noise content of the output or the output of a system with
large damping might not contain enough dynamic behavior for accurate system identification).

(a) 

(b) 

Figure 5. Numerical example of a three-story lumped mass, shear structure: (a) numerical procedure from
simulation to structural parameter estimation; and (b) identical white-box and gray-box models.
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A parametric study is conducted to evaluate the effect of these three factors. However, some challenges
do exist when performing the parametric study. First, countless combinations of the three factors exist.
Second, a statistical analysis should be conducted; this requires numerous simulations to be
implemented for each combination. Third, the simulation study is heavily dependent on the
performance of the random number generator used to generate the white noise forcing and noise
functions. Thus, it is challenging to perform a precise quantitative analysis of the results. Rather, the
overall trend of the effect of the three factors on the system identification results will be explored.

Numerical simulation of the three-story structure is adopted with five different data set lengths
considered: 3000, 10,000, 50,000, 100,000, and 500,000 points. Also, five noise ratios are
considered on the system output: 0.0, 0.001, 0.005, 0.01, and 0.03 (RMS). Finally, five damping to
stiffness ratios are considered: 0.0, 0.0001, 0.001, 0.005, and 0.01. Within the simulation study, the
model quality is explored under three different variations in the implementation of the gray-box
system identification method: (i) model quality as a function of data length with the noise ratio
(0.01) and damping to stiffness ratio (0.0001) held constant; (ii) model quality as a function of
sensor noise with the data length (50,000 points) and damping to stiffness ratio (0.0001) held
constant; and (iii) model quality as a function of the damping to stiffness ratio with the data length
(50,000 points) and sensor noise (0.01 RMS) held constant. To provide a statistical basis for the
observations made, 100 numerical simulations are performed under different white noise loading
conditions (based on independent random number generators). To assess the model quality, the
mass, damping and stiffness parameters of the structure are estimated from the simulated data set.
For example, the error associated with the estimated mass parameter is defined as follows:

Me %ð Þ ¼ 1
n2

Xn
i;j

mtrue
ij � mest

ij

mtrue
ij














 !
� 100 (49)

wheremtrue
ij andmest

ij are the entities of the mass matrix corresponding to the true and estimated models,
respectively. In a similar fashion, the stiffness Ke(%), and damping Ce(%), parameter errors are also
calculated.

The results of the numerical parametric study are summarized in a tabulated form in Table I. Mean
estimation errors on the system mass and stiffness are very small. The accuracy of the physical
parameters of the model increases in tandem with an increase in the number of data points used. As
the noise in the sensor output rises, so does the percent error associated with the estimation of mass,
damping and stiffness; damping appears to be the most sensitive parameter to sensor noise as would
be expected. As the amount of damping in the structure is increased, the estimated damping
parameters are more accurate. These results prove that the proposed parameter extraction
methodology based on the gray-box model provides accurate results that are sufficient for use in
structural health monitoring strategies.

5. EXPERIMENTAL VERIFICATION

5.1. Testbed structure

The single-bay steel frame structure (Figure 6) previously described in the companion paper [9] to this
paper is again adopted for experimental validation of the proposed gray-box system identification. The
test structure is a six-story single-bay steel frame building with 1.0-m story heights. Each floor is
constructed as a rigid diaphragm (1.0m� 1.5m� 2 cm thick) welded along all four edges to
5.0� 0.5 cm rectangular beams. Each floor is supported by four steel rectangular (15.0� 2.5 cm)
plates acting as columns. The structural parameters of the test structure are summarized in Table II.
As shown in Figure 6, the structure is mounted to a shaking table located at the National Center for
Research in Earthquake Engineering (NCREE), Taipei, Taiwan; the table is capable of applying six
DOFs base motion to excite the structure.

In this study, the support excitation is white noise with a peak ground acceleration of 0.061 g applied
in one direction. Specifically, this motion is applied along the planar weak axis of the structure. Seven
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accelerometers are installed to measure the acceleration of the ground motion and the lateral response
of each story. A total of seven tests are conducted on the structure. First, the undamaged structure
(i.e., baseline) is excited and its response recorded. The next six tests correspond to the damaged
structure. Damage is emulated by cutting two of the structural columns below the floor connections
at select floor locations. Figure 6(c) shows the cut locations while Table III documents the floors
damaged and the level of damage severity for the six damage cases. It should be noted that the
emulated damage scenarios are not intended to represent severe damage, but rather minor structural
damage possible during a seismic event.

Table II. Theoretical structural parameters of the experimental six-story frame structure.

Parameter Value

Floor mass 862 kg
Floor area 1� 1.5m2

Inter-story height 1m
Column cross section 15� 2.5 cm2

Inter-story stiffness 1.9� 106N/m

Inter-story stiffness is calculated from Euler–Bernoulli beam equations with fixed–fixed end conditions.

(a) (b) (c)

Figure 6. Testbed structure: (a) six-story single-bay steel building mounted on NCREE shake table;
(b) planar schematics with accelerometer locations denoted; and (c) plan view of the structure showing

rectangular columns and the introduction of cut damage in columns A and B.

Table III. Damage scenarios for the testbed structure.

Case

Location

Under first-floor mass Under second-floor mass

Case 1 A(6) –
Case 2 A(6), B(3) –
Case 3 A(6), B(6) –
Case 4 A(9), B(9) –
Case 5 A(9), B(9) A(6)
Case 6 A(9), B(9) A(6), B(6)

The number in parenthesis denotes induced cut lengths in centimeters.
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5.2. Identification of the undamaged baseline system

Estimation of the structural parameters from the experimental data is conducted off-line using 30-s-long
data sets (i.e., 3000 data points). First, input–output and output-only subspace system identification is
conducted separately to determine optimal state-space black-box models. Through observability
canonical form conversion, the gray-box models of the structure are determined. With the a priori
knowledge of the structure’s distribution of mass (i.e., 862 kg at each floor), the spatial distribution of
structural stiffness and damping are calculated by Equations (28) and (29). For example, for the input–
output analysis, the stiffness and damping matrices estimated for the baseline structure are as follows:

K
^ ¼

3; 260;436
�1; 788;583

439; 303
�145; 435
�33; 299

5980

�1; 964;009
3; 032;469

�1; 827;917
507; 923
�73; 415
�116; 316

414; 255
�1; 939;778
2; 932;826

�2; 002;127
440; 842
130; 940

�104; 393
407; 177

�1; 892;131
3; 187;329

�1; 907;798
298; 632

88; 381
82; 730
534; 577

�1; 870;920
2; 969;031

�1; 645;762

�67; 298
�99; 864
�131; 916
299; 167

�1; 462;394
134; 3867

2
6666664

3
7777775

(50)

C
^ ¼

1154
79

�398
�429
�2
923

�486
�192
�292
175
146

�109

1157
1659
1264
�610
�819
�596

�625
�995
�192
783
177
294

�59
�917
�1721
�1373

693
2469

200
555
195

�174
�1088

832

2
6666664

3
7777775

(51)

while for output-only analysis, the stiffness and damping matrices are estimated as follows:

K
^ ¼

3; 265; 841
1; 766; 359
478; 759
132; 824
�47; 256
�27; 761

�1; 964; 712
3; 027; 363

�1; 863; 302
475; 307
�41; 951
�54; 718

420; 615
�1; 971; 765
3; 007; 121

�2; 015; 466
430; 675
62; 227

�85; 008
385; 487

�1; 903; 873
3; 200; 151

�1; 944; 562
330; 254

83; 801
80; 252
526; 180

�1; 845; 411
3; 005; 266

�1; 619; 674

�76; 696
�82; 615
�144; 488
300; 643

�1; 544; 925
1; 378; 577

2
6666664

3
7777775

(52)

C
^ ¼

2180
268
1491
610

�247
�1834

195
�4

�1697
�943
1392
722

�609
1404
998

�164
�181
�1013

�613
�702
�988
157
668
775

�128
�489
�483
�91
823
214

�172
1198
�262
�19
�520

15

2
6666664

3
7777775

(53)

where the units for each matrix are N/m and N sec/m, respectively. In both cases, the estimated stiffness

matrix K
^
, resembles closely what should be calculated by a finite element formulation based on the

underlying physics of the problem. In other words, each inter-story stiffness is placed on the upper
and lower diagonals as negative values except at the top story. Furthermore, the sum of inter-story
stiffness of the adjacent stories is found along the diagonal except at the top story where it is simply

the stiffness of the top story alone. The estimated stiffness matrices K
^
, have significant values

along the tri-diagonals with positive values along the diagonals and negative values along the
off-diagonals. The off-diagonal values are close to the analytical value of story stiffness
(1.9� 106N/m). Most of the off-diagonal stiffness terms fall within 5% of their theoretical values
with slightly higher levels of error (approximately 20%) for the stiffness values at the top level of
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the structure. The diagonal values are less than the sum of inter-story stiffness of the adjacent stories
with values ranging from 15% to 24% less than that theoretically predicted. The errors are likely
attributable to the lack of complete rigidity between the columns and each floor as assumed in our
interpretation of the stiffness matrix.

It should be noted that there is a lack of symmetry in the stiffness matrices (Equations (50) and (52))
in addition to non-zero values found outside of the tri-diagonal terms. This can be attributed to the
discrepancy between physics-based and data-driven models depicted in Figure 3(a) and (b). The
roles of B in the two models differ. Furthermore, inclusion of B in the least square solution of the
N4SID algorithm (Equation (14) in the companion paper [9]) will deteriorate the physical quality of
A during the estimation stage leading to stiffness matrices that are not perfectly symmetric and
populated with trivial but non-zero values off of the three main diagonals. This speculation is
verified by the results of the numerical study (Section 4.2) where an identical set of system and
input matrices (A and B, respectively) are used for the white-box and gray-box model. In that case,
the stiffness matrix estimated (as shown in Table I) is perfect when the output measurements are
noise-free.

Unfortunately, the damping matricesC
^
, extracted from the input–output and output-only analyses do

not correspond to any underlying physics of the problem. As previously studied in the numerical
examples, damping estimation for lightly damped structures with relatively high signal-to-noise
ratios is generally very challenging. As a result, the damage detection analyses conducted henceforth
is confined only to the estimated stiffness matrix.

5.3. Damage detection

In this study, the location and severity of structural damage will be quantified by the stiffness change
ratio (SCRij), which is defined as follows:

SCRij :¼ kDij � k0ij

� �
=k0ij (54)

where k0ij and kDij correspond to the ith row, jth column element of the estimated stiffness matrix K
^
, for

the baseline and damaged structure, respectively. Stiffness loss (i.e., damage) would correspond to a
negative SCR for the diagonal terms (SCRii< 0) and a positive SCR for the superdiagonal (SCRi

(i+ 1)> 0) and subdiagonals (SCR(i+ 1)i> 0). Figure 7 displays the SCR for the diagonal,
superdiagonal, and subdiagonal terms of the stiffness matrix for the six damage cases using input–
output data sets. As seen in Figure 7(a), the SCR of the diagonals closely match the damage
introduced in the first and second stories. The SCR of floor 1 increases proportionally with the
damage applied to the first story columns. Furthermore, the SCR of floor 2 in damage cases 5 and 6
also accurately depicts the applied damage to the second-story columns. However, slightly elevated
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Figure 7. Stiffness change ratio (SCR) corresponding to the six damage cases: (a) diagonal (SCRii); (b)
superdiagonal (SCRi(i+ 1)); and (c) subdiagonal (SCR(i+ 1)i) terms in the stiffness matrix.
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SCRs are also found in other locations, especially on floor 6. In the case of the output-only analysis,
similar damage detection results are confirmed up to a certain degree of damage. Figure 8 displays
the SCR based on the output-only analysis. Generally, the SCR of the output-only stiffness matrices
change more dramatically than those in the input–output case. Especially for relatively severe
damage cases (e.g., damage case 5), large changes in the SCR is observed. In the case of damage
case 6 ,which is the most severe damage scenario, output-only system identification by N4SID
yields an unreliable model; as a result, damage detection is not conducted for this case. This implies
that the input to the system is needed for precise quantitative detection of a wide range of damage
states in a structure.

It should be noted that the location and severity of structural damage is identified using the
relative stiffness change between the baseline and damaged structure. This implies that estimation
of the system absolute stiffness is not an absolute requirement. As a result, the methodology does
not require exact mass information for the purpose of damage detection. Specifically, the
requirement for solving Equation (28) is that the mass ratio be known but not the absolute mass
quantity.

5.4. Damage detection with partial knowledge of the structure mass

The estimation of the physical parameters of the system and subsequent damage detection is also
conducted under the assumption of partial a priori knowledge of the structure’s mass. For example,
it is assumed that the first-floor mass is unknown; for the other floors, the story mass is assumed to
be 862 kg. Similar to the previous section, the gray-box model is utilized to extract the physical
parameters of the system. By solving Equation (40), the spatial distribution of the stiffness K, and
damping C, is calculated as follows:

K
^ ¼

2; 982;389
�1; 788;583

439; 303
�145; 435
�33; 299

5980

�1; 796;520
3; 032;469

�1; 827;917
507; 923
�73; 415
�116; 316

378; 928
�1; 939;778
2; 932;826

�2; 002;127
440; 842
130; 940

�95; 490
407; 177

�1; 892;131
3; 187;329

�1; 907;798
298; 632

80; 844
82; 730
534; 577

�1; 870;920
2; 969;031

�1; 645;762

�61; 559
�99; 864

�131; 916
299; 167

�1; 462;394
1; 343;867

2
6666664

3
7777775

(55)
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Figure 8. Stiffness change ratio (SCR) of the main diagonal terms of the stiffness matrix (SCRii) for the out-
put-only data sets.
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C
^ ¼

1055
79

�398
�429
�2
923

�445
�192
�292
175
146

�109

1059
1659
1264
�610
�819
�596

�572
�995
�192
783
177
294

�54
�917
�1721
�1373

693
2469

183
555
195

�174
�1088

832

2
6666664

3
7777775

(56)

Because of the absence of the first-floor mass, the stiffness and damping parameters associated with
the first-floor mass have changed compared with Equations (50) and (51). Regardless, the SCR
calculated for the six damage scenarios (Table III) and depicted in Figure 9 is still capable of
reliably revealing the damage in the structure. Compared with Figure 7, which is based on complete
a priori knowledge of the system mass, the SCR results of Figure 9 correlate more closely to the
damage scenarios. This implies the following: (1) partial information on mass may still result in
accurate estimation of the absolute stiffness; and (2) for the purpose of damage detection,
comparable damage detection results are encountered with partial information on the structure mass.

6. CONCLUSIONS

In this paper, the estimation of the physical parameters of a structure (i.e., mass, stiffness, and
damping) using input–output or output-only data sets was presented in detail. The framework
considered two seemingly independent state-space models: a physics-based model (i.e., white-box
model) and a data-driven mathematical model derived using the subspace system identification
method (i.e., black-box model). Through observability canonical form conversion, the two models
are shown to be closely related allowing for the derivation of a gray-box model from which
structural parameters can be extracted. First, a numerical simulation study using a three-
story-lumped mass shear structure was undertaken to illustrate the performance of the proposed
system identification method. Outstanding results were observed for the estimation of the structure
mass and stiffness parameters; estimation errors less than 1% were obtained even when noise in the
sensor signals was high (>3%). Next, an experimental study was undertaken with a single-bay steel
frame structure mounted to a full-scale shake table for the application of base motion. For both
input–output and output-only data sets, the stiffness of the structure was extracted. Using the SCR,
the introduction of minor damage in the structure was easy to identify including the location and
severity of the damage. Although the input–output data set gave the best results, the output-only
data set also performed well for five of the six damage cases. Finally, absolute knowledge of the
structural mass is not required to yield SCRs sufficiently sensitive to the damage introduced. It can
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Figure 9. Stiffness change ratio (SCR) without knowledge of the first-floor mass for the following: (a) main
diagonal (SCRii); (b) superdiagonal (SCRi(i+ 1)); and (c) subdiagonal (SCR(i+ 1)i) stiffness matrix elements

using the input–output data sets.
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be concluded that the proposed gray-box framework has shown great promise for structural health
monitoring of civil engineering structures exposed to base motions such as earthquakes.

Future work is directed towards the establishment of the concept of data-driven finite element
models. Unlike the conventional concept of finite element models, where an analytical approach is
taken to discretization of the system based on physical principles, data-driven finite element models
would realize discretized computational models based on system identification methods. Toward
this aim, the gray-box approach proposed herein is extended to distributed mass flexural structural
systems (i.e., beams, plates, etc.), which more closely depict real structural systems.
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