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GSTM1 and GSTP1 Gene Variants and the Effect of
Air Pollutants on Lung Function Measures in

South African Children

Poovendhree Reddy, PhD,1,2� Rajen N. Naidoo, PhD,1 Thomas G. Robins, MD,3

Graciela Mentz, PhD,3 Huiling Li, MB, MS,4 Stephanie J. London, MD, DrPH,4

and Stuart Batterman, PhD
3

Background Several genes are associated with an increased susceptibility to asthma,
which may be exacerbated by ambient air pollution. These genes include GSTM1 (glu-
tathione-S-transferase M1 gene) and GSTP1 (glutathione-S-transferase P1 gene),
which may modulate the response to epithelial oxidative changes caused by air pollut-
ant exposure. This study evaluated fluctuations in the forced expiratory volume in one
second (FEV1) in relation to lagged daily averages of ambient air pollutants (SO2,
NO2, NO, and PM10) while considering genotype as an effect modifier.
Methods A longitudinal cohort of 129 schoolchildren of African descent from Durban,
South Africa was assessed. GSTM1 (null vs. present genotype) and GSTP1 (Ile105Val;
AA ! AG/GG) genotypes were determined using standard techniques. SO2, NO2, NO,
and PM10 were measured continuously over a year using validated methods. The out-
come was intraday variability in FEV1. Data were collected daily over a 3-week peri-
od in each of four seasons (2004–2005).
Results Among the children tested, 27% had the GSTM1 null genotype and 81% car-
ried the GSTP1 G allele. Approximately 26 out 104 children (25%) showed evidence
of bronchial hyperreactivity, 13% reported having symptoms in keeping with persistent
asthma, and a further 25% reported symptoms of mild intermittent asthma. PM10 and
SO2 levels were moderately high relative to international guidelines. Neither GSTM1
nor GSTP1 genotypes alone were significantly associated with FEV1 intraday variabil-
ity. In models not including genotype, FEV1 variability was statistically significantly
associated only with NO2 for 5-day lags (% change in intraday variability in FEV1
per interquartile range ¼ 1.59, CI 0.58, 2.61). The GSTP1 genotype modified the ef-
fect of 3 days prior 24-hr average PM10 and increased FEV1 variability. A similar
pattern was observed for lagged 3 day SO2 exposure (P interaction < 0.05). Adverse
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effects of these pollutants were limited to individuals carrying the G allele for this
polymorphism.
Conclusion Among this indigenous South African children cohort, the GSTP1 geno-
type modified the effects of ambient exposures to PM10 and SO2 and lung function. A
plausible mechanism for these observed effects is decreased capacity to mount an
effective response to oxidative stress associated with the GSTP1 AG þ GG genotype.
Am. J. Ind. Med. 55:1078–1086, 2012. � 2012 Wiley Periodicals, Inc.

KEY WORDS: air pollutants; asthma; child respiratory health; gene–environment
interaction

INTRODUCTION

Exposure to air pollutants and genetic factors associ-

ated with the risk of development or aggravation of asth-

ma are likely to interact in a complex manner that may

vary from one population to another. Knowledge of how

genes increase susceptibility to environmental exposures

may be crucial to understanding asthma causation, man-

agement and even prevention. While cohort studies on

children’s respiratory health have been concluded or are

currently underway in several developed countries [Ober

et al., 1998; Wjst et al., 1998; Custovic et al., 2002; Phe-

lan et al., 2002], no similar study has been conducted on

the African continent. Additionally, there is very limited

information on the role of outdoor air pollution in the de-

velopment or aggravation of allergic diseases in Africa. To

the best of our knowledge, the only such report over the

last 5 years examined the association of household prox-

imity to roads with wheeze symptoms in an Ethiopian

population [Venn et al., 2005]. There are very limited data

from the sub-Saharan region that document the association

between air pollutant and pulmonary function as modified

by genotype.

The adverse effects of air pollutants on airway func-

tion have been extensively reviewed [Seaton et al., 1995;

Peden, 2003; Bernstein et al., 2004]. Exposure to ambient

air pollutants may lead to the development or expression

of asthma phenotypes [Gilmour et al., 2006; McConnell

et al., 2006] and increasing evidence suggests that the

effects of pollutants vary among individuals because of

the variation in their genetic susceptibility. However, there

are few examples in the literature of specific gene–envi-

ronment interactions in relation to asthma-related meas-

ures. The clearest examples of genetic interactions for air

pollutants exist for ozone, environmental tobacco smoke

and endotoxin [London, 2007; London and Romieu,

2009], whereas data are limited for particulate matter, and

nitrogen oxides (NO and NO2) and sulfur dioxide (SO2).

The latter pollutants may act as oxidants or induce oxidant

responses in the airways. Greater airway or plasma antiox-

idant status has been associated with protection from the

effect of pollutant exposure, and most genetic studies

addressing environmental exposures and asthma to date

have focused on the genes thought to play a role in inflam-

mation or antioxidant protection [Peden, 2005].

Research has mainly focused on a handful of common

polymorphisms with well-described functional effects in

genes thought to be involved in oxidative stress responses

[Romieu et al., 2005; London and Romieu, 2009]. The

single most commonly examined is a highly prevalent de-

letion polymorphism of the glutathione-S-transferase M1

gene (GSTM1). Deletion of both copies of the GSTM1

gene, referred to as homozygous deletion or the null geno-

type, abolishes GSTM1 activity [Strange et al., 2001]. The

high frequency of the GSTM1 null genotype, ranging from

25% to 60% depending on the ethnic group, enables ex-

amination of this polymorphism in studies that were not

originally powered to study interactions. The second most

commonly studied gene in relation to either ETS or ambi-

ent air pollution is glutathione-S-transferase P1 (GSTP1).

A functional polymorphism (Ile105Val; AA ! AG/GG)

occurs at relatively high frequency [Strange et al., 2001].

The majority of published studies looking at interactions

between air pollutant exposures and either or both GSTM1

and GSTP1 polymorphisms show positive findings, but not

always in the same direction for GSTP1 [London and

Romieu, 2009]. Whether the GSTM1 and/or GSTP1 poly-

morphisms will be confirmed as modifiers of effects of

exposure to ETS or other inhaled oxidants as new data

accumulate remains to be seen.

We investigated whether polymorphisms in GSTM1

and GSTP1 genes, which are expected to modulate the

effects of oxidative stress in airway inflammation and tis-

sue damage [Hayes and Strange, 1995; Fryer et al., 2000],

contribute to the variation in response to inhaled pollu-

tants. Repeated measures of daily changes in FEV1 (forced

expiratory volume in one second) in response to air pollu-

tants including SO2, NO, NO2, and PM10 (particulate

matter less than 10 mm in aerodynamic diameter) were

assessed in a longitudinal study of a cohort of South Afri-

can schoolchildren residing in the Durban metropolitan

area. We hypothesized GSTM1 or GSTP1 polymorphisms

associated with reduced antioxidant capacity would lead

to increases in the intraday variability of FEV1, a marker
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of aggravation of asthma-related conditions that has been

associated with air pollutant exposures.

METHODS

Study Population

A sample of 129 indigenous African children (be-

tween 9 and 11 years old) from 7 primary schools was

recruited for this study from south and north Durban in

South Africa. At each of the seven schools, two 4th grade

classrooms were randomly prioritized as classroom 1 and

2 and children were randomly selected from these class-

rooms. Details of the study sampling strategy have been

presented elsewhere [Naidoo et al., 2006]. The south

Durban region, recognized as one of the most highly in-

dustrialized and most heavily polluted areas in Southern

Africa [Nriagu et al., 1999], includes extensive residential

areas. The schools in north Durban were selected because

of a similar socio-economic profile as communities in

the south but with little industrial exposure compared to

the south. This study was approved by the University of

KwaZulu-Natal Ethics Committee, and parental consent

for genetic analyses was obtained for all children. Each

child completed an informed assent form which was com-

prehensively explained in the language of their choice.

Symptom and Demographic Data

A questionnaire was administered to all caregivers,

which included components addressing demographic in-

formation, and respiratory and other relevant symptoms

using standardized validated questions from sources

such as the British Medical Research Council and the

American Thoracic Society. Questions addressing the

presence and severity of asthma included information con-

cerning wheezing, coughing, chest tightness, shortness of

breath, activity limitations, and medication use; health ser-

vices utilization; quality of life measures; perinatal histo-

ry; place of birth and residential history; exercise, viral

respiratory infections, exposure to cigarette smoke and

pre-existing medical conditions.

Baseline spirometry was performed by experienced

technologists using the American Thoracic Society criteria

using the Jaeger Flowscreen [ATS, 1995]. Spirometers

were calibrated at least twice a day with a 3 L syringe.

Spirometry was conducted by technologists who had

undergone training in standard technique. Spirometry

was performed in a sitting position without nose clips.

Those children without a baseline obstructive pattern un-

derwent methacholine nonspecific challenge testing by

trained technologists according to an abbreviated protocol

used in epidemiological surveys [Yan et al., 1983]. Partic-

ipants with an obstructive pattern at baseline (FEV1/

FVC < 0.75) were administered an inhaled bronchodilator

and had testing repeated.

Bihourly Measures of
Pulmonary Function

A central aspect of the health data collection was

bihourly measures of lung function (spirometry) collected

at school 5 days per week over 3-week periods in each of

four seasons (2004–2005) using digital hand-held devices:

the AirWatch1 (iMetrikus, Carlsbad, CA) brand airway

monitor. All schools were studied simultaneously in the

same calendar periods. On each of the five schooldays

during the week, participants were asked to perform a ses-

sion of three consecutive forced expiratory maneuvers ev-

ery one and a half to 2 hr (four times per 5.5-hr school

day: at approximately 08:00 hr, 09:45 hr, 11:30 hr, and

13:20 hr). Results of repeated expiratory maneuvers over

a period of 12 months were digitally stored in each Air

Watch. A unique patient identifier and the time and date

of each expiratory maneuver were manually downloaded

into a database. Each participant received his/her own de-

vice, which was kept at the school, and was clearly la-

beled with the participant’s full name to avoid inadvertent

exchange of devices. An intensive training session was

conducted at the school with the participants in the proper

performance of lung function maneuvers, followed by re-

vision sessions prior to each monitoring cycle. The

bihourly pulmonary function tests were completed during

classroom hours under the supervision of study personnel.

The highest FEV1 from a valid expiratory maneuver

for each of the four daily sessions was used in data analy-

ses. An expiratory maneuver was considered valid if the

FEV1 result (1) was between 30% and 120% of each

child’s personal best as defined by that child’s highest

recorded FEV1 during baseline spirometry (performed by

experienced technicians using the American Thoracic So-

ciety criteria) and methacholine challenge testing, and, (2)

came from expiratory maneuver that was recorded by the

Airwatch device as ‘‘error-free.’’ The Airwatch device

shows two possible error messages, one for length of blow

and the other for technique. Almost 40% of the data was

error-free and 79.2% of the error-free data were valid

blows.

Environmental Monitoring of
Ambient Pollutants

During each of the four intensive 3-week phases, gas-

eous air pollutant concentrations were monitored continu-

ously: NO2 and NO were sampled at seven monitoring sites

using continuous gas-phase chemiluminescence detection;

and SO2 was monitored continuously at 16 sites, including

all seven schools, using ultraviolet fluorescence spectro-
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metry. PM10 was monitored gravimetrically at 12 sites: at

each school using 24-hr integrated measurements, and at

five additional sites using TEOMs. Each pollutant was sam-

pled using standard reference methods and protocols.

Details of these measurements and the quality assurance

program are reported elsewhere (Naidoo et al., 2006).

Genotyping

All genotyping assays were conducted by a researcher

who was blind to child ID and disease status. Genomic

DNA was extracted using a PUREGENE DNA isolation

kit. The presence or absence of the GSTM1 gene was de-

termined by using a multiplex PCR method, including

the b-globin gene as a positive control [Bell et al., 1993].

Fifteen percent of samples were reassayed as confirmation

of results. The GSTP1 (rs1695) genotype was determined

by Taqman1 SNP Genotyping Assays (Applied Biosys-

tems, Foster City, CA). The GSTP1 (rs1695) PCR amplifi-

cations were performed using the 50-nuclease assay on

Gene-Amp PCR Systems 9700 (Applied Biosystems).

Fluorescent PCR products were detected by the ABI Prism

7900HT sequence detection system and analyzed by SDS

software (Applied Biosystems). Both positive genotype

and no template controls were included with at least 95%

plate efficiency.

Statistical Analysis

The longitudinal design of this study allowed the in-

vestigation of how daily and bihourly fluctuations in out-

door contaminant levels affected potential fluctuations in

pulmonary function measures. Linear regression models

were fitted using generalized estimating equations (GEEs,

assuming normal distribution with identity link) using

PROC GENMOD for SAS to accommodate the correlation

structure arising from repeated measurements on the same

individual. An exchangeable correlation working structure

was used.

Within-day variability for FEV1 was defined as

100 � (the maximum best FEV1 � minimum best FEV1)/

maximum best FEV1 where the ‘‘best FEV1’’ is the high-

est valid value for the specific time of day (08:00 hr,

09:45 hr, 11:30 hr, and 13:20 hr), thus providing a single

summary lung function measurement per child, per day.

For power reasons, we used a dominant coding model to

assess the genotype effects in the statistical models.

Covariates used in the GEE models included race,

school, caregiver smoking, caregiver education, household

income and season. Effect modification was examined by

including genotype and pollutant product terms in the

models. The gene–environment interaction was assessed

for associations of exposure to SO2, NO, NO2, and PM10

with FEV1 intraday variability, using GSTM1 and GSTP1

genotypes as the effect modifiers. Daily exposures esti-

mates were based on the child’s school: PM10 and SO2

used school-based measurements; and NO and NO2 used

the spatial average across either north (three schools) or

south (four schools) Durban, as not all schools had NOx

monitors. Multiple imputation procedures (repeated five

times for each exposure parameter) were used to obtain a

complete data set. Lag effects were modeled to account

for both acute and prior exposure effects, and included

lags of 1–5 days as well as the a 5-day average. The

percent change in within-day variability in FEV1 was

estimated for an increase of one interquartile range in

each pollutant (NO2: 8.19 ppb, NO: 29.7 ppb, PM10:

29.4 mg m�3 and SO2: 9.8 ppb). The interquartile range

was calculated as the 75th–25th percentile value concen-

trations, using all of the concentration measurements

obtained in the study. The use of the IQR for a specific

pollutant, when multiplied by the corresponding estimated

coefficient and transformed appropriately (since loga-

rithms are typically used), allows a direct comparison of

the effect size among the pollutants used in the study, and

it assures the magnitude of the change in exposure being

examined for effects is relevant to the study population.

This approach also accounts for the differences among

concentrations units. An adverse effect in lung function

would be denoted by an increase in the estimate for intra-

day variability in FEV1. Analyses used SAS (Version 9.1)

and STATA (version 9, College Station, TX).

RESULTS

Among this sample of 129 indigenous African school-

children, the average age was 10.6 years, and almost

two-thirds were female (Table I). The education level

among the caregivers was relatively high with 35% having

completed high school, with a substantial percentage

(>50%) of households belonging in a low socio-economic

category earning R30,000 (approximately US$3000) or

less per annum, which is regarded as a lower income

bracket though slightly above the poverty line in South

Africa [National Treasury, 2007]. The frequency of the

GSTM1 null genotype was 27%, and the frequency of the

polymorphic GSTP1 AG þ GG genotype was 81%.

According to the methacholine challenge tests, 25% of

children had evidence of bronchial hyperreactivity. Ap-

proximately 13% of all children reported having symp-

toms in keeping with persistent asthma, and a further 25%

reported symptoms of mild intermittent asthma (Table I).

Table II summarizes 24-hr average pollutant levels in

Durban. PM10 levels during the study period were high

relative to current WHO guidelines [WHO, 2006], the

24-hr guideline of 50 mg/m3 was frequently exceeded. It

should be noted that PM10 guidelines have been recently

lowered. SO2 levels varied widely across the study area,
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and the highest concentrations occurred in south Durban,

reflecting the location of emitting industries. WHO guide-

lines for SO2 also have been lowered recently, and most

monitoring sites (except those in north Durban) frequently

exceeded the 24-hr guideline value of 8 ppb. NO2 levels

were highest in the city center and reflected traffic emis-

sions. WHO guideline values for NO2 exist on an annual

average (21 ppb) and 1-hr (106 ppb) basis, but not

for 24-hr averages. During the study period, the annual

average level was similar to guideline value, and 1-hr con-

centrations at the city center site occasionally exceeded

the 1-hr guideline value.

In models adjusted for covariates, neither GSTM1

nor GSTP1 genotypes alone were significantly associated

(using alpha ¼ 0.05) with FEV1 intraday variability

(Table III).

Effect estimates (ignoring GSTM1 and GSTP1

polymorphisms status) for within-day variability in FEV1

associated with PM10, SO2, NO, and NO2 (tested indepen-

dently) were inconsistent across different lagged times

(Table IV). For NO2 and NO, the within-day variability

generally increased with longer lags. FEV1 variability

with NO at lag 5 (% change in intraday variability in

FEV1 per interquartile range ¼1.59, 95% CI 0.58, 2.61)

was statistically significant. No other pollutant–lag combi-

nations were statistically significant.

Tables V and VI present models addressing potential

effect modification by genotype on the association be-

tween air pollutant exposures and FEV1 intraday variabili-

ty for, respectively, GSTM1 and GSTP1 polymorphisms.

Among the GSTM1 positive children, a statistically signifi-

cant association of exposure with FEV1 intraday variabili-

ty was seen only with PM10 for the 5-day average; this

association was in the ‘‘unexpected’’ protective direction

(i.e., higher exposure associated with decreased FEV1

TABLE I. Demographic and Phenotypic and Genotypic Characteristics of
Study Population (n ¼ 129)

Category n (%)

Age,yeara (n ¼ 129) 10.6 (1.1)
Sex
Female 84 (65.1)
Caregivereducation
Grade11or less 60(46.9)
HighSchoolmatriculant 45 (35.2)
Sometertiaryeducation 23(18.0)

Annual household income
R10,000or less 24 (24.7)
R10,000 toR30,000 25(25.8)
R30,001toR75,000 24 (24.7)
R75,001ormore 24 (24.7)
Caregiversmokes (%yes),n ¼ 195 34(17.4)

Genotype
GSTM1pos 89(72.9)
GSTM1null 33 (27.1)
GSTP1b

Ile-Ile (AA) 21 (18.8)
Ile-Val (AG) þ Val-Val (GG) 91 (81.2)
Healthoutcomes
Airwayhyperreactivity (baseline)c

Markedhyperreactivity 10 (9.6)
Probablehyperreactivity 6 (5.8)
Possiblehyperreactivity 10 (9.6)
None 78 (75.0)

Asthmaseverity fromcaregiverquestionnaire
Moderate tosevere 5 (4.5)
Mildpersistent 9 (8.0)
Mild intermittent 28(25.0)
Noasthma 70 (62.5)

There was data unavailable for demographic and phenotypic characteristics due to
lack of participant cooperation.There were10 undetermined samples for GSTP1,which
could not be attributed to poor DNA quality as these samples were also used for the
GSTM1determination.
aMean and SDat study entry.
bGSTP1: A allele codes for isoleucine, G allele codes for valine.
cMarked: PC20 � 2 mg/ml, probable: 2 mg/ml < PC20 � 4 mg/ml, possible:
4 mg/ml < PC20 � 16 mg/ml, none:PC20 > 16 mg/ml.

TABLE II. Summary ofAmbient Pollutant Levels (24 hrAverages) in
Durban During 2004^2005

Pollutant Mean (SD) Range

PM10 (mg/m
3) 86.8 (1.1) 28.1̂ 266.6

SO2 (ppb) 5.8 (0.2) 0^40.8
NO2 (ppb) 22.1 (0.2) 7.5^38.1
NO(ppb) 53.4 (0.8) 1.3^91.7

TABLE III. AdjustedAssociations of GSTa GenotypesWith Intraday
Variability in FEV1

b

Genotype
No. of

observations

Intraday variability inFEV1

Coeff. 95%CI

GSTM1pos 1,179 ^^
GSTM1null �0.32 (�1.93,1.29)
GSTP1AA 1,037 ^^
GSTP1AG þ GG 0.54 (�1.11,2.19)
aThe effects of the GST genotypes are adjusted for race, school, caregiver smoking,
caregiver education, household income, and season.
bIntraday variability for FEV1 is defined as: 100 (maximum best FEV1-minimum best
FEV1)/maximum best FEV1; where the ‘‘best FEV1’’ is the highest valid, error-free value
for the specific time of day (08:00 hr, 09:45 hr, 11:30 hr, and13:20 hr). An increase in
the estimate for intraday FEV1 is indicative of a negative impact on lung function as
compared to the reference group.
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intraday variability) (Table V). No statistically significant

associations were seen among the GSTM1 null children.

In three instances, the interaction terms GSTM1 genotype

were statistically significant, however, in only one (SO2

5-day average) of these three scenarios was the interaction

in the expected direction, that is, higher exposure associat-

ed with greater FEV1 intraday variability among those

GSTM1 null as compared to those GSTM1 pos.

In five exposure-response scenarios, individuals with

the GSTP1 AG þ GG polymorphism showed statistically

significant associations of exposure with FEV1 intraday

variability (Table VI). In three of these (PM10 lag 3,

and SO2 lags 1 and 3), the GSTP1 genotype modified the

association between exposure and increased FEV1 intraday

variability (P interaction <0.05). With PM10 (lags 2

and 3) and SO2 (lag 3), higher exposure was associated

with greater FEV1 intraday variability among those with

GSTP1 AG þ GG as compared to those with GSTP1 AA.

Adverse effects of these pollutants were limited to individ-

uals carrying the G allele for this polymorphism.

TABLE IV. Percent Changea in IntradayVariabilityb of FEV1AssociatedWith One Inter-Quartile Range Change ofAmbient Exposure FromSingle Pollutantc

Linear RegressionModels Using Generalized Estimating Equations (GEE)

Outcome Lag PM10, estimate (CI) SO2, estimate (CI) NO2, estimate (CI) NO, estimate (CI)

Intraday variabilityofFEV1 Lag1 0.19 (�0.48,0.86) 1.59 (�0.03,3.20) 0.68 (�0.95,2.30) �0.30 (�1.63,1.11)
Lag2 0.80 (�0.33,1.93) 0.26 (�1.25,1.77) 0.12 (�1.30,1.55) �0.42 (�1.83,0.98)
Lag3 0.41 (�0.58,1.41) �0.77 (�2.35,0.81) 0.30 (�1.25,1.84) 0.21 (�1.54,1.96)
Lag4 0.55 (�0.21,1.31) �0.09 (�1.88,1.69) 0.73 (�1.42,1.88) 0.55 (�0.72,1.81)
Lag5 0.38 (�0.29,1.05) �0.08 (�1.61,1.45) 0.90 (�0.53,2.32) �1.59 (0.58,2.61)

5dayaverage 1.74 (�0.14,3.62) 0.93 (�2.99,4.86) 1.15 (�1.28,3.58) 1.33 (�1.75,4.42)

Covariates in eachmodel: race, school, caregiver smoking, caregiver education, household income, season.
aThe percent change value shown is for an increase ofone inter-quartile range in each respective pollutant:NO2: 8.19 ppb,NO: 29.7 ppb, PM10: 29.4 mg m�3, SO2: 9.8 ppb.
bIntraday variability for FEV1 is defined as: 100 (maximum best FEV1-minimum best FEV1)/maximum best FEV1; where the ‘‘best FEV1’’ is the highest valid, error-free value for
the specific time ofday (08:00 hr, 09:45 hr,11:30 hr, and13:20 hr). An increase in the estimate for intraday FEV1is indicative of a negative impact on lung function.
cPollution levels used in regressionmodels combinemeasured and imputed values.�P-value for the change in estimate<0.05.

TABLE V. Effect of Pollutant Exposure byGSTM1Genotype (Percent Changea in IntradayVariabilityb of FEV1AssociatedWithAmbient Levels
c of Pollutants

FromSingle Pollutant Linear RegressionModels Using Generalized Estimating Equations (GEE))

GSTM1

PM10 SO2 NO2 NO

Est CI Est CI Est CI Est CI

Pos Lag1 �2.03 �6.95,288 0.31 �0.31,0.93 1.40 �0.36,3.17 1.34 �2.63,5.31
Null �1.38 �7.52,4.75 0.44 �0.78,1.66 �0.17 �0.29,2.62 �2.19 �5.93,1.55
Pos Lag2 �2.57 �8.60,3.47 0.09 �0.44,0.61 1.17 �0.69,3.03 0.85 �3.47,5.17
Null 0.36 �7.17,7.89 1.06 �0.36,2.48 �0.04 �2.97,2.89 �1.56 �5.38,2.26
Pos Lag3 �0.52 �5.78,4.74 �0.56 �1.44,0.32 1.68 �0.58,3.95 1.52� �2.11,5.16 (�0.05)
Null �5.66 �14.45,3.14 1.46 �0.75,3.66 �0.73 �3.77,2.32 �3.06 �6.61,0.49
Pos Lag4 0.17 �2.05,2.38 6.28 �2.04,14.60 0.7 �1.22,2.61 1.34 �0.67,3.36
Null �0.12 �3.26,3.02 �4.10 �13.84,5.64 1.82 �1.82,5.46 0.30 �3.32,2.92
Pos Lag5 1.83 �0.22,3.88 �0.23 �7.15,6.67 1.39 �0.98,3.75 �0.69 �3.26,1.89
Null �1.04 �4.49,2.40 �2.47 �14.07,9.12 1.88 �2.53,6.34 0.34 �2.41,3.10
Pos 5-dayaverage �0.98y �1.56,�0.41 (y<0.00) 1.08� 0.44,2.60 (�<0.00) �5.75� �11.63,0.12 (�0.01) 1.27 �1.03,3.58
Null �0.15 �1.50,1.20 �1.18 �2.89,0.53 1.63 �5.14,8.40 0.51 �3.68,4.70

Covariates in each model: race, school, caregiver smoking, caregiver education, household income, season, interaction between genotype and pollutants. Bold denotes
significantP-value.
aThe percent change value shown is for an increase ofone interquartile range in each respective pollutant:NO2: 8.19 ppb; NO: 29.7 ppb, PM10: 29.4 mg m�3; SO2: 9.8 ppb.
bIntraday variability for FEV1 is defined as: 100 (maximum best FEV1-minimum best FEV1)/maximum best FEV1; where the ‘‘best FEV1’’ is the highest valid, error-free value for
the specific time ofday (08:00 hr, 09:45 hr,11:30 hr, and13:20 hr). An increase in the estimate for intraday FEV1is indicative of a negative impact on lung function.
cPollution levels used in regressionmodels combinemeasured and imputed values.�P-value for genotype^pollutant interaction term�0.05.
yP-value for the change in estimate�0.05.

Genetic Susceptibility and Air Pollution 1083



DISCUSSION

Few studies have addressed interactions between air

pollutants and genetics in relation to respiratory health,

and studies from Africa are especially rare. The present

study found relatively modest, and not entirely consistent,

interaction effects of the GSTM1 and GSTP1 polymor-

phisms. Among the 24 pollutant–lag combinations exam-

ined, for GSTM1, in only one of the four that showed

statistically significant pollutant–genotype interactions,

was the effect in the expected direction of those with

GSTM1 null having greater pollution-associated increases

in FEV1 intraday variability (Table V). Moreover, as

shown in the table, none of the 48 GSTM1-genotype-

specific point estimates for the effect of pollutants on

FEV1 intraday variability were statistically significant in

the expected direction of increased intraday variability

with increased pollution.

As shown in Table VI, for GSTP1, three of four

pollutant–lag combinations that showed a statistically sig-

nificant pollutant–genotype interaction found greater pol-

lution-associated increases in FEV1 intraday variability for

the GSTP1 AG þ GG genotype. When examining the pat-

tern among specific pollutants for GSTP1 polymorphisms,

there is a suggestion that the AG þ GG genotype is asso-

ciated with increased pollutant associated effects on FEV1

intraday variability for both PM10 and SO2: in the case of

each pollutant, three of the six lags examined showed ei-

ther a statistically significant interaction term with greater

effect for this genotype, or a significant point estimate for

pollutant effect on FEV1 intraday variability among this

genotype. However with NO2, a decreased FEV1 intraday

variability was shown for children with the G allele.

One of the more significant effect among pollutants and

NO2 is its negative correlation with ozone (O3), an

effect due to scavenging (removal of O3 due to NO and

NO2). In Durban, at the central site that collected both

NO2 and O3 measurements during the study, these pollu-

tants had moderate negative correlation (r ¼ �0.35). In

Durban and elsewhere, protective effects are sometimes

found for NO2 due to this negative correlation with ozone.

While one must be circumspect in overinterpreting these

results, they appear particularly notable given that GSTP1

genotype was not associated with intraday variability in

FEV1 when pollutants were not included in the models

(Table III), and that only 1 of 20 pollutant–lag combina-

tions were significantly associated with intraday variability

in FEV1 when genotype was not considered in the models

(Table IV).

The examined pollutants are related to oxidative

stress: NO, NO2, and SO2 may produce free oxidative

radicals, while the mechanism for PM10 is via its metal

components which may contribute to damage to the respi-

ratory system through the generation of free radicals

TABLE VI. Effect of Pollutant Exposure byGSTP1Genotype (Percent Changea in Intraday Variabilityb of FEV1AssociatedWith Ambient Levels
c of

Pollutants FromSingle Pollutant Linear RegressionModels Using Generalized Estimating Equations (GEE))

GSTP1

PM10 SO2 NO2 NO

Est CI Est CI Est CI Est CI

AA Lag1 �0.14 �5.31,5.0 �0.11 �0.62,0.39 1.86� �0.14,3.87 (�0.04) 0.58 �4.00,5.17
AG þ GG 0.50 5.35,6.34 1.17y 0.16,2.18 (y0.03) �3.40 �5.95,�8.85 �1.56 �5.53,2.41
AA Lag2 �4.47� �10.70,1.18 (�0.01) 0.22 �0.34,0.77 2.29y,

�
0.01,4.56 (�<0.00; y0.04) �0.15 �4.94,4.64

AG þ GG 9.0 �0.83,18.84 0.32 �1.13,1.78 �3.82y �6.53,�1.11 (y0.01) �0.78 �4.92,3.37
AA Lag3 �2.52� �10.23,5.20 (�0.02) �0.72� �2.14,0.69 (�0.03) 2.33 �0.36,5.02 �0.77 �5.32,3.78
AG þ GG 7.98y 1.14,14.78 (y0.02) 3.05y 1.53,4.56 (y<0.00) �3.05y �6.02,�0.08 (y0.04) �0.32 �4.37,3.74
AA Lag4 0.35 �1.55,2.24 �4.06 �13.87,5.34 �0.41 �2.91,2.09 �1.40 �3.55,0.78
AG þ GG �0.86 �3.73,2.02 4.37 �3.06,11.81 2.04 �1.36,5.45 0.73 �1.51,2.96
AA Lag5 �0.18 2.37,2.02 �0.09 �7.81,7.63 �0.46 �3.25,2.33 �1.43 �4.00,1.14
AG þ GG 1.08 �2.62,4.77 �1.03 �8.29,6.25 2.66 �0.93,2.63 2.04 �1.01,5.09
AA 5-dayaverage �0.40 �1.42,0.62 0.63 �1.01,2.26 �3.52 �11.45,4.40 1.91 �0.85,4.67
AG þ GG 0.20 �1.18,1.63 �1.80 �3.87,0.26 4.42 �3.27,12.11 0.63 �2.09,3.36

Covariates in each model: race, school, caregiver smoking, caregiver education, household income, season, interaction between genotype and pollutants. Bold denotes
significantP-value.
aThe percent change value shown is for an increase of one interquartile range in each respective pollutant:NO2: 8.19 ppb; NO: 29.7 ppb, PM10: 29.4 mg m�3; SO2: 9.8 ppb.
bIntraday variability for FEV1 is defined as: 100 (maximum best FEV1-minimum best FEV1)/maximum best FEV1; where the ‘‘best FEV1’’ is the highest valid, error-free value for
the specific time ofday (08:00 hr, 09:45 hr,11:30 hr, and13:20 hr). An increase in the estimate for intraday FEV1is indicative of a negative impact on lung function.
cPollution levels used in regressionmodels combinemeasured and imputed values.�P-value for genotype^pollutant interaction term�0.05.
yP-value for the change in estimate�0.05.
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[Hong et al., 2007]. The effects of pollutant exposure are

mediated by complex interactive processes of oxidative,

radical and enzymatic attack on the respiratory extracellu-

lar lining fluid, epithelial cells and macrophages. These

processes are coupled to a persistent inflammatory re-

sponse that produces tissue damage, decreased ventilatory

capacity, increased airway reactivity, decreased macro-

phage clearance and altered immune functions [Gilliland

et al., 1999; Kelly, 2003; Kunzli and Tager, 2005]. Genes

involved in antioxidant and detoxifying reactions such as

the GST are thus important in the response to oxidative

stress. Polymorphisms in these genes may result in total

absence or a substantial change in enzyme activity, which

compromises biological reaction to environmental pollu-

tants [Peden, 2005].

Results for gene–environment studies with the GSTP1

polymorphism have been inconclusive. In accordance with

the findings in our study, Melen et al. [2008] found an

interaction effect on allergic sensitization in children with

the GSTP1 AG þ GG genotypes when exposed to traffic-

NOx during their first year of life; a study in Mexico City

has shown that asthmatic children with the GG genotype

seem more likely to experience respiratory symptoms in

response to acute exposure to ozone as compared to the

AA genotype [Romieu et al., 2006]. In contrast a group

from Taiwan [Lee et al., 2004] found that GSTP1 AA con-

ferred an increased risk of asthma in moderate (OR ¼ 1.5,

95% CI 0.7–3.1) and high (OR ¼ 2.9, CI 1.4–6.0) pollu-

tion districts compared to a low pollution district (based

on mean values of NOx and SO2 over 7 years previous to

the study).

This study has several strengths. First, the study popu-

lation of children exposed to ambient pollutants was con-

fined to defined areas, each area with its own monitoring

site, allowing a more precise estimation of exposure. Sec-

ond, pollutants were analyzed in a systematic manner over

the duration of the study, which allowed the correlation

between increases in exposure and decrements in lung

function measures. The few studies that have examined

the relationship between genetic risk factors and environ-

mental exposures in the exacerbation of asthma have used

mortality data, admission records, absenteeism and activi-

ty limitation and the resultant phenotypic definitions could

not always be replicated in other studies. By using pulmo-

nary function tests, this study provides a more rigorous

phenotypic characterization. A limitation in this study was

our small sample size. While larger sample sizes will

improve power for gene–environment interaction studies,

power is also enhanced by better measures of exposure,

characterization of individual exposure and repeated meas-

ures over time [London, 2007]. All these factors were in-

cluded in our study design. With the number of multiple

comparisons in this study, false positives may occur. We

therefore interpret our results with caution and in addition,

a complete set of genotype and symptom data could not

be obtained for all participants.

In addition to the factors discussed above (prevalence

of persistent asthma in the study population, consistency

in performance of expiratory maneuvers, choice of pulmo-

nary function measure), limited consistency in findings

across lags 1–5 with the four pollutants tested could be

attributed to several other factors. We studied the effects

of four pollutants independently, using a model approach

of one gene with one exposure. This approach did not ac-

count for the fact that air pollution is a complex mixture

of pollutants which may interact and modify respective

effects on lung function, although repeated measures of

FEV1 and PEF provided an advantage in the GEE models.

Additionally, in complex diseases such as asthma, several

or many alterations in different genes likely contribute to

the genetic predisposition of an individual to develop atop-

ic diseases and asthma, potentially dampening the signal

from a single involved polymorphism [Peden, 2005].

Gene–environment effects may also vary from one setting

to another which may be due to varying patterns of expo-

sure and different genotype frequencies in ethnically dif-

ferent populations.

The present study supports some previous work that

suggests that GSTP1 polymorphisms might play a role in

modifying acute effects of air pollutants on variability in

lung function. A suggested mechanism is that children

with compromised oxidative defense ability are at in-

creased risk of adverse pulmonary outcomes. In light of

the found associations between ambient pollutant concen-

trations and adverse effects on lung function among chil-

dren who are genetically predisposed, strategies for

reducing ambient environmental pollution in these regions

should be considered. Further research on these interac-

tions could lead to more accurate estimates of disease

risk, intervention and prevention among susceptible popu-

lations, including children.
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