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Abstract: Assemble-to-order (ATO) is an important operational strategy for manufacturing firms to achieve quick response to
customer orders while keeping low finished good inventories. This strategy has been successfully used not only by manufacturers
(e.g., Dell, IBM) but also by retailers (e.g., Amazon.com). The evaluation of order-based performance is known to be an important
but difficult task, and the existing literature has been mainly focused on stochastic comparison to obtain performance bounds. In
this article, we develop an extremely simple Stein–Chen approximation as well as its error-bound for order-based fill rate for a
multiproduct multicomponent ATO system with random leadtimes to replenish components. This approximation gives an expression
for order-based fill rate in terms of component-based fill rates. The approximation has the property that the higher the component
replenishment leadtime variability, the smaller the error bound. The result allows an operations manager to analyze the improvement
in order-based fill rates when the base-stock level for any component changes. Numerical studies demonstrate that the approximation
performs well, especially when the demand processes of different components are highly correlated; when the components have
high base-stock levels; or when the component replenishment leadtimes have high variability. © 2012 Wiley Periodicals, Inc. Naval
Research Logistics 59: 643–655, 2012
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1. INTRODUCTION

Assemble-to-order (ATO) is an important operational strat-
egy for manufacturing firms to achieve quick response to
customer orders while keeping low finished good inventories.
This strategy has been successfully used not only by manu-
facturers but also by retailers. In an ATO system, components
are produced in advance to stock, while the assembly of final
products is delayed until detailed product specifications are
available [16]. In case the time it takes to assemble a final
product is relatively short compared with component replen-
ishment times, the ATO production strategy is particularly
attractive. Indeed, most of the mass customization companies
adopt ATO systems; examples include Dell computer, Toy-
ota’s “build your Toyota,” Amazon’s “build your own ring,”
and Nike’s “design your shoes,” among others.

Despite its increasing popularity in reality, ATO systems
with multiple products and multiple components are “notori-
ously difficult to analyze and manage” [3]. The main reason
for that is that the demand processes for components in
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such systems are highly intertwined and positively corre-
lated. A key measure for such systems is the order-based
fill rate, which is defined as the probability that a customer
order, which typically consists of different types of compo-
nents, is filled immediately. Song [12] is perhaps the first to
investigate order-based fill rates of multiproduct and multi-
component ATO systems. As noted by Song [12] and Song
and Yao [14], an exact analysis of order-based performance
measures involves 2N − 1 factors (N being the total number
of components), thus it is difficult to compute the perfor-
mance for even a moderate-sized problem. The most relevant
literature in this area uses the method of stochastic compari-
son to obtain bounds of order-based performance measures,
such as order fill rate, mean backorders, and so forth. See,
for example, Song [12], Xu [18], Xu and Li [19], and Song
and Yao [14]. Another approach to this problem is asymp-
totic analysis based on large deviation theory, in which one is
concerned with the asymptotic behavior of the fill rate when
the promised due date becomes very long, see for example,
Glasserman and Wang [6]. The latter approach is applicable
only to systems where the component replenishment process
is modeled as a single-server queue. Several authors have

© 2012 Wiley Periodicals, Inc.



644 Naval Research Logistics, Vol. 59 (2012)

studied ATO systems to minimize expected holding cost (of
components) and expected back-order cost (of orders), see
for example, Song [13], Song and Yao [14], Lu and Song [7],
and Zhao and Simchi-Levi [20], among others. We refer the
reader to Song and Zipkin [15] for an extensive discussion of
examples and motivations for ATO systems.

In this article, we study a multiproduct and multicom-
ponent ATO system similar to that of Song [12]. We first
consider the case where components are managed using
base-stock policies. The component leadtimes are random
variables, and customer orders follow independent Pois-
son processes. We develop an extremely simple Stein–Chen
approximation for the fill rates as well as the error bound for
this approximation. Unlike that of Song [12], the Stein–Chen
approximation works for arbitrarily distributed leadtimes for
replenishing components, and as a matter of fact, we show
that the approximation has a tighter error bound when the
component replenishment leadtimes are more variable in the
convex ordering. This approximation gives an explicit expres-
sion for the order-based fill rate for any customer in terms of
component-based fill rates; it is easy to compute, and allows
an operations manager to analyze the improvement in order-
based fill rates when the base-stock level for any component
changes. Our numerical studies demonstrate that the Stein–
Chen approximation performs well, especially when demand
processes for components are positively correlated, the com-
ponents have high base-stock levels, or the component replen-
ishment leadtimes are highly variable. When the components
have deterministic leadtimes, we extend the results along sev-
eral directions: first, we develop Stein–Chen approximation
and error bounds for the order fill rate within any given time
window; next, we obtain similar results for the case when
components are managed using (ri , Qi) policies, and finally,
we extend the results to the case when the customer orders
follow compound (batch) Poisson processes. We also discuss
extensions of these results to the case when the component
leadtimes are stochastic and sequential (or noncrossing). We
point out that our models are similar to those in Song [12,13],
Song and Yao [14], and Zhao and Simchi-Levi [20], in which
the component suppliers have infinite production capacity,
thus the component ordering process for each component is
modeled as an M/G/∞ queue, or a variation of the M/G/∞
queue. This is different from Glasserman and Wang [6] who
consider the case of finite production capacity of the compo-
nent suppliers where the supply process for each component
is modeled as an M/G/1 or a G/G/1 queue.

The Stein–Chen method is a powerful tool for approximat-
ing the sum of independent or dependent Bernoulli random
variables with a Poisson random variable and evaluating the
error bound of their difference, and it has been success-
fully used in probability and statistics (see e.g., Refs. 1, 9).
Roughly, because a customer order is filled on arrival if and
only if all the required components are available, we can

construct a set of dependent indicator (Bernoulli) random
variables, one for each component, such that the fill rate of the
customer order is equal to the probability that the sum of these
dependent Bernoulli random variables is zero. This allows us
to obtain an approximation and both an upper and a lower
bound for the fill rate of each class of customer orders. The
detailed analysis is provided in Section 2. We present three
sets of numerical examples to test the Stein–Chen approxi-
mation and the error bounds and compare them with those
reported in the literature. We point out that, while the Stein–
Chen approximation is very simple and performs well in
general, it does not always outperform Song’s approxima-
tion [12]. Our numerical examples show that the Stein–Chen
approximation performs the best (and outperforms Song’s
approximation) when the superposed demand processes of
components are highly correlated and/or when the component
fill rates are high.

The rest of the article is organized as follows. In the next
section, we study the Stein–Chen approximation for the case
of stochastic component leadtimes, and outline the model
description as well as the results under the base-stock com-
ponent control policies. In Section 3, we focus on the case
of deterministic component leadtimes and extend the results
of Section 2 along three directions: fill rate within any given
time window, batch component ordering policies, and batch
Poisson customer order processes. Section 4 conducts some
numerical studies and compares our results with several oth-
ers reported in the literature; we also demonstrate how the
approximation result depends on variability of component
replenishment leadtimes. Concluding remarks and extensions
to stochastic sequential component leadtimes are discussed
in Section 5. Finally, all proofs are provided in the appendix.
Throughout the article, for any two real numbers a, b and x,
we use notation a ∨ b = max{a, b} a ∧ b = min{a, b}, and
x+ = max{x, 0}.

2. RANDOM COMPONENT LEADTIMES

Consider an ATO system with N components and M final
products. Let � = {1, 2, . . . , N} be the set of all compo-
nents and Dk ⊆ � the set of components that are required
to assemble one unit of product k, k = 1, 2, . . . , M . For
convenience, we shall also refer to the demand process for
product k as class k order. We shall first assume that product
k consists of exactly one unit of each component in Dk , and
later we discuss extension to arbitrary batch sizes. We follow
the convention of using superscript to indicate order/product
type and subscript to indicate component type. Class k orders
arrive according to a Poisson process with rate λk , and the
arrival processes of different classes of orders are indepen-
dent of one another. As in Song [12], we assume that customer
orders are satisfied on a first-come-first-serve basis and the
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time to assemble the components into a final product is negli-
gible and is assumed to be 0. That is, if all the components of a
product are available, then the customer order for this product
is filled immediately; otherwise, the order for the product is
backlogged. This article is concerned with the evaluation of
order-based fill rate, which is defined as the probability that a
customer for a product is satisfied without delay upon arrival.
We shall also discuss order-based fill rate within a time win-
dow, which is defined as the probability that a customer order
is satisfied within a given time window after arrival.

For i = 1, . . . , N , the inventory position, which is defined
as the inventory on hand plus inventory on order subtract
backorders, of component i is reviewed continuously. In this
section, we consider the case where the component is con-
trolled using a base-stock policy with base-stock level Si for
component i, and later we will extend the results to the case
where component i is controlled using an (ri , Qi) policy.
Under a base stock policy, as soon as the inventory position
of component i drops to Si , an order is placed immediately.
The leadtime Li for component i is independent and identi-
cally distributed with cdf Gi(.), pdf gi(.), and mean E[Li].
For convenience, we define some additional notations as
follows.

λ = ∑M
k=1 λk = total arrival rate of customer orders;

S(i) = {k | i ∈ Dk} = the set of customer orders that contain
component i;

λi = ∑
k∈S(i) λk = aggregate demand rate for compo-

nent i;
λi∩j = ∑

l∈S(i)∩S(j) λl = total demand rate of orders that
contain both components i and j ;

λ
−j

i = ∑
l∈S(i)\S(j) λl = λi − λi∩j = total demand rate of

orders that contain component i but not component j ;
fi = fill rate of component i;
Fk = fill rate of class k orders;
F = aggregate fill rate. Clearly,

F =
M∑

k=1

λk

λ
F k . (1)

Following base-stock policies for components, the arrival
of a class k order with i ∈ Dk triggers a replenishment of
component i, thus the aggregate demand process for compo-
nent i is Poisson with rate λi . Let INi(t) be the net inventory
level of component i and let IOi(t) = Si − INi(t) be the
number of outstanding orders of component i. Because each
order of component i is replenished after an independent and
identically distributed amount of time, it is not hard to see
that IOi(t) behaves exactly the same as an M/G/∞ queue
with arrival rate λi and service time being the component
replenishment time, see for example, Song and Yao [14].

This observation will be used in computing the performance
measure of component i.

For the ATO system operated under the base-stock policy
Si for component i, we additionally introduce the following
notation.

INi = steady-state net inventory of component i;
IOi = steady-state inventory on order of component i;

φ(· | a) = the pmf of Poisson random variable with
parameter a;

�(· | a) = the cdf of Poisson random variable with
parameter a;

�̄(· | a) = 1 − �(· | a).

In this article, we present an approximation for the fill rate
of each class of customer orders based on the Stein–Chen
method, as well as an error bound of this approximation.
The Stein–Chen method evaluates the total variation distance
between the distribution of the sum of a set of Bernoulli ran-
dom variables Xi and the distribution of a Poisson random
variable with the same mean. For more details of this method,
the reader is referred to, for example, [1], and to the Appen-
dix for a brief discussion of this method. The main idea of
this approximation is the following: in the context of an ATO
system, an order for product k is satisfied immediately only if
all components i ∈ Dk are available when the order arrives.
Thus, if we let Xi be the indicator function that component i

is out of stock when needed by a class k order, then

Wk =
∑
i∈Dk

Xi

is a sum of Bernoulli random variables which, by the Stein–
Chen method, can be approximated by a Poisson random
variable with mean E[∑i∈Dk

Xi]. In particular, the proba-
bility P {Wk = 0} is the fill rate of class k order and it can
be approximated by the probability that the Poisson random
variable is equal to 0.

The following is the first main result of this article.

THEOREM 1: For any k, the Stein–Chen approximation
for the fill rate of class k order is Fk

SC = e−�k and it has error
bound

| Fk − Fk
SC | ≤ (bk

1 + bk
2)(1 − e−�k )/�k , (2)

where

�k =
∑
i∈Dk

pi , (3)

and

pi = �̄(Si − 1 | λiE[Li]),
Naval Research Logistics DOI 10.1002/nav
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with bk
1, bk

2 given by

bk
1 =

∑
i,j∈Dk

pipj , (4)

bk
2 =

∑
i,j∈Dk

∑
i 	=j

pij , (5)

and

pij =
(Si−1)∨(Sj −1)∑

�=0

φ(� | λi∩j θij )�(Si − 1 − � | λ
−j

i E[Li]

+ λi∩jϑij )�(Sj − 1 − � | λ−i
j E[Lj ] + λi∩j δij )

+ �(Si ∨ Sj − 1) | λi∩j θij );

the parameters θij , ϑij , and δij are given by

θij =
∫ ∞

0
(1 − Gi(x))(1 − Gj(x))dx, (6)

ϑij =
∫ ∞

0
(1 − Gi(x))Gj (x)dx, (7)

δij =
∫ ∞

0
Gi(x)(1 − Gj(x))dx. (8)

To illustrate the result, we consider the W-structure of ATO
system, which was studied in Lu et al. [8], see Fig. 1. This
ATO system has three components and two classes of orders,
D1 = {1, 2} and D2 = {2, 3}, with demand arrival rates λ12

and λ23. The leadtimes for the three components have mean
E[L1], E[L2], and E[L3], respectively.

The Stein–Chen approximation and the error bound of fill
rate F 12 of order 12 are given by

F 12
SC = e−p1−p2

and

|F 12 − F 12
SC |

≤ (p2
1 + 2p1p2 + p2

2 + 2p12)(1 − e−p1−p2)/(p1 + p2).

where

p1 = �̄(S1 − 1 | λ12E[L1]),
p2 = �̄(S2 − 1 | (λ12 + λ23)E[L2]),

p12 =
(S1−1)∨(S2−1)∑

�=0

φ(� | λ12θ12)�(S1 − 1 − � | λ12ϑ12)

× �(S2 − 1 − � | λ23E[L2] + λ12δ12)

+ �(S1 ∨ S2 − 1) | λ12θ12);

Figure 1. The W system.

Similar results are given for the fill rate of order 23. The
approximation of the overall order fill rate is

FSC = λ12F 12
SC + λ23F 23

SC

λ12 + λ23
.

The Stein–Chen approximation for order-based fill rates
is very simple, and its computation Fk

SC = e−�k boils down,
by Eq. (3), to the evaluation of pi = �̄(Si − 1 | λiE[Li]).
Thus, if the probability distribution of Poisson is assumed to
be known, then Fk

SC is obtained by simply adding them up,
and the complexity to compute Fk

SC is linear in the number
of components required by order k.

The result allows us to compute the order-based fill rate
for any class of order in terms of component-based fill rates.
Let fi be the fill rate for component i, meaning that 100fi%
of the time component i is available when needed. As pi is
the probability, under base-stock policy Si for component i,
that component has no on-hand inventory when needed, we
have fi = 1 − pi . This gives

Fk
SC = e

− ∑
i∈Dk

(1−fi ) =
∏
i∈Dk

e−(1−fi ).

This simple expression allows us to answer various ques-
tions of interest. For example, when the base-stock level for
component i is increased from Si to Si + 1, the fill rate for
any order of class k with i ∈ Dk will be improved, and we
estimate that the percentage of improvement is

e−(�(Si )−�(Si−1)) − 1 = e−φ(Si ) − 1 = e
−e−λiE[Li ] (λiE[Li ])Si

Si ! − 1.

The Stein–Chen approximation also suggests an efficient
method for setting base-stock levels for managing compo-
nents to achieve a desired customer service level, specified in
terms of order-based fill rates. For instance, suppose that the
desired fill rate for class k order is Fk , k = 1, . . . , M . Using
the Stein–Chen approximation, we want to achieve, for all k,
that

Fk
SC = e

− ∑
i∈Dk

(1−fi ) ≥ Fk .

Naval Research Logistics DOI 10.1002/nav
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As 1 − fi = �̄(Si − 1 | λiE[Li]), the inequalities above are
equivalent to∑

i∈Dk

�̄(Si −1 | λiE[Li]) ≤ − log Fk , k = 1, . . . , M . (9)

These inequalities determine the required base-stock levels
for each component to achieve the desired order-based fill
rates. As an example, consider the W-system described ear-
lier with three components and two classes of orders. Suppose
the desired fill rates for the two classes of orders are F 12 and
F 23, respectively. Then Eq. (9) can be written as

�̄(S1 − 1 | λ1E[L1]) + �̄(S2 − 1 | (λ1 + λ2)E[L2])
≤ − log F 12,

�̄(S2 − 1 | (λ1 + λ2)E[L2]) + �̄(S3 − 1 | λ2E[L3])
≤ − log F 23.

These constraints clearly show the trade-offs between the
component base-stock levels and the order-based fill rates
for different classes of customers.

As e−x ≥ 1 − x for all x ≥ 0, the approximation of fill
rate satisfies

e−�k =
∏
i∈Dk

e−pi ≥
∏
i∈Dk

(1 − pi)

=
∏
i∈Dk

�(Si − 1 | λiE[Li]). (10)

We note that right hand side of (10) is precisely the lower
bound of fill rate reported in Proposition 5.1 of Song [12].

Numerical studies on the Stein–Chen approximation and
error bounds are reported in Section 4. It is interesting
to observe, from these numerical studies, that the fill rate
approximation tends to be more accurate as the leadtimes for
replenishing components are larger and more variable. Thus,
we next investigate the effect of the variability of component
replenishment leadtimes on the error bound of order fill rate
approximation.

Consider two ATO systems that differ only in compo-
nent replenishment leadtimes. Let the leadtimes of the two
systems be denoted by Li and L̃i , respectively, with corre-
sponding distribution functions Gi and G̃i . Suppose Li and
L̃i are ordered in convex ordering. Recall that Li ≥cx L̃i if
E[h(Li)] ≥ E[h(L̃i)] for all convex function h for which
the expectations exist (see Ref. 10). In particular, the above
inequality implies that E[Li] = E[L̃i] and V ar(Li) ≥
V ar(L̃i). Therefore, convex order measures the variability
of leadtimes.

THEOREM 2: The more variable the component replen-
ishment leadtimes, the tighter the error bound of the Stein–
Chen approximation for fill rates.

One possible explanation for this result is the following: the
Stein–Chen method approximates the sum of random vari-
ables by a Poisson random variable with the same mean,
the more random these random variables, the better the
approximation.

Although the Stein–Chen approximation gives an explicit
and extremely simple estimate for fill rate and, as will be
seen in Section 5, it performs well in general, but we remark
that we cannot guarantee that this approximation always out-
performs the existing ones, even in simple systems such as
W, N, and M systems. Therefore, it is recommended that
the approximation is used jointly with other estimates and
approximations reported in the literature.

3. DETERMINISTIC COMPONENT LEADTIMES

If the component replenish times are deterministic, then we
can extend the results in the previous section along several
important directions. Parts of these extensions hold true for
stochastic but sequential (no-crossing) component leadtimes,
and we will discuss that in Section 5.

To proceed, we first note that the error bound for the
Stein–Chen approximation for order-based fill-rates can be
simplified for deterministic leadtimes. Suppose li is the deter-
ministic leadtime of component i, i = 1, . . . , M , then the
error bound is obtain by Eq. (2) with pij given by, if we
assume without loss of generality that li ≤ lj ,

pij =
Si∨Sj −1∑

�=0

φ(� | λi∩j li)�̄(Si − 1 − � | λ
−j

i li)

× �̄(Sj − 1 − � | λj (lj − li) + λ−i
j lj )

+ �̄(Si ∨ Sj − 1 | λi∩j li).

Our first extension is for the order-based fill-rate within
any given time window, which is defined as the probability
an order is filled within any given time window, say τ ≥ 0.
As the fill rate of class k order is 1 if τ ≥ li for all i ∈ Dk , here
we only consider nonnegative τ that satisfies τ < maxi∈Dk

li .

THEOREM 3: Suppose component leadtimes are deter-
ministic. For any k, the Stein–Chen approximation for fill
rate Fk(τ) of class k order within a time window τ is
Fk

SC(τ ) = e−�k(τ), where

�k(τ) =
∑
i∈Dk

pi(τ ),

and

pi(τ ) = �̄(Si − 1 | λi(li − τ)+).

Naval Research Logistics DOI 10.1002/nav
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Furthermore, the Stein–Chen approximation has error bound

| Fk(τ) − Fk
SC(τ ) | ≤ (bk

1(τ ) + bk
2(τ ))(1 − e−�k(τ))/�k(τ ),

with bk
1(τ ) and bk

2(τ ) given by

bk
1(τ ) =

∑
i,j∈Dk

pi(τ )pj (τ ),

bk
2(τ ) =

∑
i,j∈Dk

∑
i 	=j

pij (τ ),

and pij (τ ) given by

pij (τ ) =
Si∨Sj − 1∑

�=0

φ(�|λi∩j (li − τ)+)

× �̄(Si − 1 − �|λ−j

i (li − τ)+)

× �̄(Sj−1−�|λj ((lj−τ)+−(li−τ)+) + λ−i
j (lj−τ)+)

+ �̄(Si ∨ Sj − 1|λi∩j (li − τ)+).

Note that, as we only consider the time window τ <

maxi∈Dk
li , it holds that pi(τ ) > 0 for at least some i ∈ Dk ,

thus �k(τ) > 0.
Our second extension is on the component inventory con-

trol policies. In the previous section, we considered the sce-
nario where the components are controlled using base-stock
policies with base-stock level Si for component i. In appli-
cations, it is often the case that, due to certain fixed ordering
cost, the component i ordering follows an (ri , Qi) policy,
i = 1, . . . , N . That is, as soon as the inventory position of
component i drops to ri , an order of Qi is placed to bring the
inventory position to ri +Qi . In what follows, we extend the
Stein–Chen approximation and error bound to the case when
components inventories are managed using (ri , Qi) policy.

Let IPi denote the steady state inventory position of com-
ponent i. An important result that will be used in our analysis
is that, when components ordering follows (ri , Qi) poli-
cies, IPi is uniformly distributed on {ri + 1, . . . , ri + Qi},
and IP1(t), IP2(t), . . . , IPN(t) are independent discrete uni-
form random variables [13]. It is rather easy to extend
Song’s result to that, for any time epochs t1, t2, . . . , tN ,
IP1(t1), IP2(t2), . . . , IPN(tN) are also independent and uni-
formly distributed. This latter result will be used in proving
the following theorem.

THEOREM 4: Suppose component i is controlled using
(ri , Qi) policy, i = 1, . . . , N . For any k, the Stein–Chen
approximation for fill rate of class k order Fk is still Fk

SC =
e−�k , with error bound of the approximation given by (2),
and �k = ∑

i∈Dk
pi , bk

1, bk
2 are given by (4) and (5), but pi

and pij are replaced by

pi = 1

Qi

Qi∑
q=1

�̄(ri + q − 1 | λili),

pij = 1

QiQj

Qi∑
qi=1

Qj∑
qj =1

(ri+qi−1)∨(rj +qj −1)∑
�=0

φ(� | λi∩j li)

× �̄((ri + qi − 1 − � | λ
−j

i li)

× �̄(rj + qj − 1 − � | λj (lj − li) + λ−i
j lj )

+ �̄((ri + Qi − 1) ∨ (rj + Qj − 1) | λi∩j li).

Using the same analysis as what follows Theorem 1, it can
be seen that the Stein–Chen approximation for the fill rate of
class k order, when components are controlled using (ri , Qi)

policy, satisfies

e−�k ≥
∏
i∈Dk

1

Qi

Qi∑
qi=1

�̄(ri + qi − 1 | λili).

The right hand side is an extension of the lower bound for
order-based fill rate obtained in Song [12] for the case of
base-stock component control policies.

Our third extension is on the arrival processes of customer
orders. In the previous section, the arrival process is assumed
to be Poisson implying that each customer requires exactly
one product. We now extend the result to the case that an
order can be for an arbitrary number of products. This is
done by assuming that the customer orders follow a batch
Poisson process. Suppose the components are still managed
using (ri , nQi) policy, that is, as soon as the inventory posi-
tion of type i component drops to or below ri , an order of
a minimum multiple of Qi is placed to raise the inventory
position to the interval {ri + 1, . . . , ri + Qi}.

Under very mild conditions, it has been shown in Song [12]
that when component i is managed using (ri , nQi) policy,
i = 1, . . . , N , the inventory positions of the different com-
ponents IP1(t), . . . , IPN(t) are independent and uniformly
distributed. And again, it can be shown that for any points in
time t1, . . . , tN , IP1(t1), . . . , IPN(tN) are also independent
and uniformly distributed. This result will allow us to extend
our results to the batch Poisson customer order processes.

For ease of exposition, we present the results for the case
that each class k order requires a random number of product
k, and each unit of product k consists of one item from each
component in set Dk , k = 1, . . . , M . More specifically, class
k orders arrive according to a Poisson process with rate λk ,
and each order requires � units of product k with probability
zk,�, � = 1, 2, . . .. Clearly, we have

∞∑
�=1

zk,� = 1, k = 1, . . . , M .
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Thus, the aggregate demand process for component i is also
a batch Poisson process with rate λi = ∑

k∈S(i) λk and the
batch size of a random selected order for type i component,
denoted by Zi , has pmf

ai(�) = P {Zi = �} = 1

λi

∑
k∈S(i)

λkzz,�, � = 1, 2, . . . .

To present our result, we need some additional notation.
For any batch size distribution a = (a(�); � = 1, 2, . . .}, we
let φ(· | a, λ) denote the pmf of the compound Poisson ran-
dom variable

∑N
l=1 Zl , where N has Poisson distribution with

parameter λ and Z1, Z2, . . . , are i.i.d. with pmf a, and N is
independent of the sequence Z1, Z2, . . .. Moreover, we shall
continue to use �(· | a, λ) and �̄(· | a, λ) to denote the corre-
sponding cdf and tail function of pmf φ(· | a, λ). Finally, for
any components i and j , let ai be the pmf of the batch size of
a randomly selected order in S(i), a−j

i the pmf of the batch
size of a randomly selected order in S(i) \S(j), ai∩j the pmf
of the batch size of a randomly selected order in S(i)∩S(j),
and

ãj = λj (lj − li)aj + λ−i
j lia−i

j

λj (lj − li) + λ−i
j li

.

The notation aj and a−i
j are similarly defined.

THEOREM 5: Suppose customer orders follow a batch
Poisson process and component i is controlled using (ri , nQi)

policy, i = 1, . . . , N . For any k, the Stein–Chen approxima-
tion for fill rate of class k order Fk is still Fk

SC = e−�k ,
with error bound of the approximation given by (2), and
�k = ∑

i∈Dk
pi , bk

1, bk
2 are given by (4) and (5), but pi and

pij are replaced by

pi = 1

Qi

Qi∑
q=1

�̄(ri + q − 1 | ai , λili),

and

pij = 1

QiQj

Qi∑
qi=1

Qj∑
qj =1

(ri+qi−1)∨(rj +qj −1)∑
�=0

φ(� | ai∩j , λi∩j li)

× �̄((ri + qi − 1 − � | a−j

i , λ−j

i li)

× �̄(rj + qj − 1 − � | ãj , λj (lj − li) + λ−i
j li)

+ �̄((ri + Qi − 1) ∨ (rj + Qj − 1) | ai∩j , λi∩j li).

The result in Theorem 5 is based on that each class k order
is for a random number of class k product, and each prod-
uct k contains exactly one item of component i, i ∈ Dk . We
remark that a similar result can be obtained when each class

of order contains multiple and varying number of items for
components in Dk . Notation will be more involved in that
case but the type of result is similar to what is reported in
Theorem 5.

4. NUMERICAL STUDIES

We present three sets of numerical examples to test the
effectiveness of the Stein–Chen approximation and its error
bounds. As will be seen, the Stein–Chen approximation
performs very well in general.

If we rewrite (2) as

FL
SC = e−�k − (bk

1 + bk
2)(1 − e−�k )/�k ≤ Fk ≤ e−�k

+ (bk
1 + bk

2)(1 − e−�k )/�k = FU
SC,

we then obtain, as by-products, a lower bound and an upper
bound for fill rate Fk , FL

SC, and FU
SC, respectively, as defined

above. We remark that these bounds are usually not very tight,
and indeed, the main intention of the Stein–Chen approxima-
tion is to provide an approximation, and the error bound is a
somewhat loose theoretical guarantee of the approximation.
Our numerical studies show that FL

SC is not as good as the
lower bound (10); the upper bound FU

SC, on the other hand,
often performs better than the upper bound of Song [12],
especially when the component fill rates are high.

The first example is taken from Song [12], which is on
a personal computer ATO system. There are six types of
components in the system: (1) interior tape backup; (2) stan-
dard hard drive; (3) high profile hard drive; (4) video mem-
ory card; (5) Pentium processor; (6) Pentium-Pro processor.
And there are six classes of orders: {2, 5}, {3, 5}, {1, 2, 5},
{1, 3, 6}, {1, 3, 4, 5}, {1, 3, 4, 6}. The lead time is constant and
L = {1, 1, 1, 1, 2, 2}, and the arrival rates are

λ25 = 0.1λ, λ35 = 0.4λ, λ125 = 0.15λ, λ136 = 0.1λ,

λ1345 = 0.2λ, and λ1346 = 0.05λ.

In our numerical computations, we will use different values
of λ.

The first seven columns of Table 1 are the total arrival
rate λ and the base-stock levels for controlling the six com-
ponents. Among the other columns, FSC is the Stein–Chen
approximation of the aggregate fill rate, computed using (1),
F is the exact order fill rate, FL and FU are the lower and
upper bounds of Song [12], FL

DSX is the setwise-bonferroni
combination lower bounds reported in Dayanik et al. [5], and
%Err is the relative error of the Stein–Chen approximation,
defined by

%Err = 100 × |FSC − F |
F

%.
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Table 1. Personal computer example.

λ S1 S2 S3 S4 S5 S6 FL FL
DSX FL

SC FSC F FU
SC FU %Err

4 5 2 7 2 17 3 0.809 0.817 0.717 0.823 0.830 0.929 0.842 0.84
4 6 3 9 3 20 3 0.932 0.933 0.913 0.934 0.938 0.955 0.943 0.43
4 7 3 10 3 23 4 0.952 0.953 0.946 0.953 0.955 0.960 0.960 0.21
4 7 4 10 4 23 5 0.986 0.986 0.984 0.986 0.986 0.988 0.989 0.14
8 6 3 9 3 20 3 0.595 0.622 0.149 0.631 0.660 1.000 0.728 4.39
8 8 4 12 4 27 4 0.862 0.867 0.792 0.869 0.876 0.946 0.894 0.80
8 10 5 15 5 34 6 0.964 0.964 0.957 0.964 0.968 0.971 0.970 0.41
8 10 6 15 6 34 7 0.985 0.985 0.981 0.985 0.986 0.989 0.990 0.17
16 12 6 18 6 40 7 0.774 0.788 0.602 0.786 0.807 0.970 0.848 2.60
16 14 7 21 7 47 8 0.904 0.909 0.867 0.908 0.913 0.949 0.929 0.55
16 16 8 24 8 54 9 0.961 0.954 0.954 0.962 0.960 0.970 0.968 0.21
16 16 10 24 10 54 11 0.989 0.989 0.986 0.989 0.989 0.992 0.994 0.12

We observe from Table 1 that the approximation performs
very well in general. The highest percentage of error is 4.39%.

Next, we conduct a numerical study for a more complex
scenario. Consider an ATO system which contains 12 compo-
nents and all possible combinations of order classes. In other
words, any subset of {1, 2, . . . , 12} is an order class. There are
a total of 212 − 1 order classes, and the computation of the
exact fill rates becomes impossible. We randomly generate
a set of data and test the performance of the approxima-
tion result. Specifically, we randomly generate arrival rate of
orders from a uniform distribution on [0, 0.1]; the determinis-
tic leadtimes are randomly generated from a uniform distribu-
tion on [0, 2]; the component base-stock level for component
i, Si , is determined using a guaranteed component-based fill
rate, that is, Si is set to guarantee that the component-based
fill rate is α (here, we set α to 95, 97.5, and 99%, respec-
tively). Note that due to problem complexity, the order fill
rates are not possible to compute exactly, hence we define
%ErrB as the ratio of the error bound with the Stein–Chen
approximation of fill rate, again measured in percentage, as

%ErrB = 100 ×
212−1∑
k=1

λk(bk
1 + bk

2)(1 − e−�k )

λ�kF
k
SC

%.

The results of this numerical study are rather consistent and
here we only report the results for three random instances, in
Table 2.

As mentioned earlier, in our numerical examples FL
SC is

not as good as the lower bound (10), but FU
SC often performs

better than the upper bound of Song [12], especially when
the component fill rates are high. For instance, for the ATO
system above with component-based fill rates α = 95%,
Song’s upper bounds for the fill rates are better than FU

SC, but
when α = 97.5% or 99%, FU

SC is better than Song’s upper
bounds. Indeed, in all our numerical examples, we noted that
the larger α and the correlation among order classes, the bet-
ter the upper bounds FU

SC for the order fill rates. We also

compared the Stein–Chen approximation with the approxi-
mation of Song [12], which is the average of the upper and
lower bounds developed in Song [12], and we found that the
Stein–Chen approximation performs very well in general,
and it outperforms Song’s approximation when the demand
processes of the components are highly correlated, and/or
when the component fill rates are high.

Finally, we present an example to demonstrate the effects
of variability of leadtimes on the Stein–Chen approximation
and its error bound. To do this, we consider three ATO systems
which differ only in leadtime distributions. The ATO system
consists of 12 components and all possible classes of orders.
As in the previous set of numerical examples, all order classes
have the same arrival rate 0.1, and the component base-stock
levels Si are set based on component-based fill rate α = 99%.
Let L

j

i denote the leadtime for replenishing component i in
system j . For i ∈ {1, 2, . . . , 12}, L1

i = 1, L2
i ∼ U [0.7, 1.3],

L2
i ∼ U [0.2, 1.8], where U [a, b] is the uniform random vari-

able on [a, b]. It is obvious that L1
i ≤cx L2

i ≤cx L3
i . Table 3,

Figs. 2, and 3 reveal the impact of leadtime variability on the
errors of the Stein–Chen approximation. In Table 3, FSC is the
Stein–Chen approximation of fill rate, F i

U and F i
L, i = 1, 2, 3,

represent the upper and lower bounds FU
SC and FL

SC of the fill
rates for three different component leadtimes, respectively,

Table 2. ATO with randomly generated data.

No. α FL FL
SC FSC FU

SC FU %ErrB

95% 0.7604 0.5619 0.7651 0.9684 0.9130 26.57
1 97.5% 0.8729 0.8035 0.8742 0.9450 0.9548 8.10

99% 0.9476 0.9305 0.9478 0.9651 0.9813 1.80
95% 0.7649 0.5876 0.7695 0.9513 0.9123 23.63

2 97.5% 0.8664 0.7996 0.8679 0.9361 0.9518 7.86
99% 0.9470 0.9320 0.9473 0.9626 0.9815 1.62
95% 0.7566 0.5554 0.7615 0.9675 0.9131 27.05

3 97.5% 0.8707 0.8006 0.8721 0.9435 0.9541 8.19
99% 0.9480 0.9315 0.9482 0.9650 0.9820 1.77
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Table 3. Comparison of ATO systems with different leadtimes.

D3 D4 D5 D6 D7 D8 D9

FSC 0.978 0.971 0.964 0.957 0.950 0.943 0.936
F 1

U 0.983 0.980 0.977 0.976 0.975 0.976 0.978
F 2

U 0.982 0.978 0.975 0.973 0.971 0.970 0.970
F 3

U 0.981 0.976 0.972 0.968 0.965 0.963 0.961
F 1

L 0.973 0.962 0.950 0.938 0.924 0.909 0.894
F 2

L 0.974 0.964 0.953 0.941 0.928 0.915 0.901
F 3

L 0.975 0.966 0.956 0.945 0.934 0.922 0.910
%Err1

B 0.51 0.93 1.35 1.99 2.63 3.50 4.49
%Err2

B 0.41 0.72 1.14 1.67 2.21 2.86 3.63
%Err3

B 0.31 0.51 0.83 1.15 1.58 2.12 2.67

and %Err
j

B is the ratio of error bound for system j and FSC,
measured in percentages. In Figure 2, we also display the ratio
of the error bound and the Stein–Chen approximation of fill
rate, for order classes D1 to D9, measured in percentage. In
Figure 3, we display both the upper and lower bounds FL

SC
and FU

SC for three different component leadtimes. The curve
in the middle of Figure 3 is the result from the Stein–Chen
approximation.

It is interesting to note that leadtime variability has positive
effect on the error bounds of the Stein–Chen approximation.
In other words, when the mean leadtimes are the same, the
larger the variances of leadtimes, the smaller the error of the
approximations.

5. CONCLUDING REMARKS

In this article, we analyze the order-based fill rates of a mul-
tiproduct and multicomponent ATO system with stochastic
leadtimes. We develop the Stein–Chen Poisson approxima-
tion for order fill rates as well as its error bound. Our approxi-
mation and bounds have an interesting property that the larger
the leadtime variability, the smaller the error bound of the

Figure 2. Effect of leadtime variability on approximation error
bounds.

Figure 3. Effect of leadtime variability on the bounds of order fill
rate.

approximation. Furthermore, our numerical studies suggest
that the Stein–Chen approximation performs the best when
the component-based fill rates are high, and that the accuracy
of the approximation tends to improve as the leadtime vari-
ability increases. The Stein–Chen approximation presents an
explicit and extremely simple expression for the order-based
fill rate in terms of component-based fill rates. This expres-
sion allows the operations manager to analyze the benefits of
increasing the component base-stock levels on the fill rates
of each class of orders.

Some of the results in Section 3 can be further extended to
stochastic component leadtimes, as long as the leadtimes for
each component are sequential (or noncrossing). Stochastic
sequential leadtimes have nice properties and they have been
explored in Zhao and Simchi-Levi [20] for ATO systems.
Suppose the leadtime of component i has cumulative distrib-
ution function Gi(·). Then, for the first model in Section 3 on
order fill rate within a given time window, we can show that
when the component leadtimes are stochastically sequential,
then the Stein–Chen approximation for fill rate of class k

orders, within a give time window τ , is given by e−�k , where
�k = ∑

i∈Dk
pi and pi is computed as, borrowing some

notations from Zhao and Simchi-Levi [20],

pi = 1 − fi = 1 − P {T (Si) ≥ (Li − τ)+}
= 1 −

∫ τ

0
P {T (Si) ≥ 0}dGi(t)

+
∫ +∞

τ

P {T (Si) ≥ t − τ }dGi(t)

= 1 − Gi(τ)

−
∫ +∞

τ

(
1 −

Si−1∑
n=0

1

n!e
−λi (t−τ)λn

i (t − τ)n

)
dGi(t)

=
Si−1∑
n=0

λn
i

n!
∫ +∞

τ

e−λi (t−τ)(t − τ)ndGi(t).
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Unfortunately, we cannot obtain an exact formula for pij ,
which means that we do not have the error bound for the
Stein–Chen approximation of order fill rates for this case.

If the component leadtimes are stochastically sequential,
we can also obtain the Stein–Chen approximation result for
the case when component i is controlled by (ri , Qi) pol-
icy. To achieve that, we will need Proposition 5.2 of Zhao
and Simchi-Levi [20] and a result that the uniform distribu-
tion of component inventory position extends to the case of
component stochastic sequential leadtimes. In that case, the
Stein–Chen approximation for order fill rates are still given
by e−�k with �k = ∑

i∈Dk
pi , but pi is now computed as

pi = 1 − fi

= 1 − 1

Qi

ri+Qi∑
qi=ri+1

P {T (qi) ≥ (Li − τ)+}

= 1 − 1

Qi

ri+Qi∑
qi=ri+1

{∫ τ

0
P {T (qi) ≥ 0

}
dGi(t)

−
∫ +∞

τ

P r{T (qi) ≥ t − τ }dGi(t)}

= 1 − Gi(τ) − 1

Qi

ri+Qi∑
qi=ri+1

∫ +∞

τ

×
(

1 −
qi−1∑
n=0

1

n!e
−λi (t−τ)λn

i (t − τ)n

)
dGi(t)

= 1

Qi

ri+Qi∑
qi=ri+1

qi−1∑
n=0

λn
i

n!
∫ +∞

τ

e−λi (t−τ)(t − τ)ndGi(t).

Again, we are unable to obtain the error bound for the Stein–
Chen approximation, as pij cannot be computed explicitly in
this case.

The components suppliers in this article are assumed to
have infinity capacities. That is, the order leadtime for a (or
a batch of) component is independent of the number of out
outstanding orders of this type of component (this is assumed
in both stochastic sequential component leadtimes and i.i.d.
component leadtimes). The model for the supply process of
a component with infinite capacity is M/G/∞ queue. If the
supplier of a component has finite capacity, then it cannot be
modeled as M/G/∞ queue anymore. One model for the sup-
ply process with finite capacity is M/G/1 queue (and more
generally, M/G/m queue), which assumes that the compo-
nent is produced one after another, see Glasserman and Wang
[6]. Because there is no closed form solution for the stationary
queueing length distribution of an M/G/1 queue, we cannot
extend the result of this article to the finite supply capacity
case. However, if the production times are exponentially dis-
tributed, we can still obtain the Stein–Chen approximation.

Suppose the production facility of component i is a single
server with production times having exponential distribution
and mean E[Li], then the Stein–Chen approximation of the
order-based fill rate of class k order is Fk

SC = e−�k , with �k

given by

�k =
∑
i∈Dk

(λiE[Li])Si .

In this case, however, we will not be able to provide the
error bound as in Theorem 1. This is because, when sup-
ply processes have finite capacity, the computation of pij

relies on the inventory processes of components i and j , that
are equivalent to two queues with a common Poisson arrival
process in addition to their own arrival processes. The analy-
sis of these two queues is a notoriously difficult problem in
applied probability; and their joint queue length processes do
not have an analytically tractable solution. The correspond-
ing queueing problem is known as the Flatto-Hahn-Wright
model (see e.g., Chapter 16 of Ref. 11, or 4), and only approx-
imations are available for its analysis. As the pij values are
not known in exact form, we cannot obtain the error bound
for the Stein–Chen approximation of order fill rates for this
case.

APPENDIX: PROOFS

In this appendix, we provide all the proofs of the technical results.
The Stein–Chen method bounds the total variation distance between the

distribution of the sum of a set of Bernoulli random variables Xi and the
distribution of a Poisson random variable with parameter λ = ∑

i E[Xi ].
For two random variables X and Y , the total variation distance between X

and Y is defined as

d(X, Y ) = sup
A

| P {X ∈ A} − P {Y ∈ A} |.

We briefly introduce the Stein–Chen method. Details can be found, for
example, in Arratia, et al. [1]. Let I be a finite or countable index set. For
any i ∈ I , let Xi be a Bernoulli random variable. For each i ∈ I , Bi is
called a dependent neighborhood of i, if Bi ⊂ I , and for any i, j ∈ Bi ,
Xi and Xj are dependent. Let b1 and b2 be defined by (4) and (5) but with
pi = P {Xi = 1} and pij given by

pij = E[XiXj ] = P {XiXj = 1} = P {Xi = 1, Xj = 1},

and let

b3 =
∑
i∈I

E[E[Xi − pi | Xj : j 	∈ Bi ]].

The following result can be found, for example, in Arratia et al. [1].

PROPOSITION 1: Let W = ∑
i∈I Xi be the number of occurrences of

some dependent events, and let Z be a Poisson random variable with mean
E[Z] = E[W ] = λ < ∞. Then

d(W , Z) ≤ 2

[
(b1 + b2)

1 − e−λ

λ
+ b3(1 ∧ 1.4λ−0.5)

]
, (11)
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and

| P {W = 0} − e−λ | ≤ (b1 + b2 + b3)
1 − e−λ

λ
. (12)

REMARK 1: The Stein–Chen method provides an approximation and an
error bound for the total variation distance between W and a Poisson random
variable Z with the same mean. For the fill rate application, we only need
an approximation for P {W = 0} and the error bound between P {W = 0}
and P {Z = 0}, that is (12). However, the first result, (11), also offers use-
ful insights; it provides an understanding on the probability for having any
number of components out of stock when a particular class of order arrives.

PROOF OF THEOREM 1. To apply Proposition 1 to the multicomponent
multiproduct ATO system, we need to construct a set of dependent Bernoulli
random variables. Fix k and we consider class k order. Without loss of gen-
erality, suppose Dk = {1, 2, . . . , K}, where K is the number of components
to assemble a class k order. We set I = Dk , and define

Xi =
{

0, if component i is available when needed,
1, otherwise.

The set of random variables, {Xi}Ki=1, are dependent Bernoulli. Let

Wk =
K∑

i=1

Xi .

Then, we have

Fk = P {Wk = 0}.

By Stein–Chen method, Fk is approximated by e−�k , where �k =
E[∑K

i=1 Xi ] = ∑K
i=1 pi and pi = P {Xi = 1}.

By Proposition 1, an error bound for the approximation is

|Fk − e−�k | ≤ (b1 + b2 + b3)(1 − e−�k )/�k . (13)

In particular, when Bi = I , then b3 = 0, and (13) is reduced to

e−�k − (b1 + b2)(1 − e−�k )/�k ≤ Fk

≤ e−�k + (b1 + b2)(1 − e−�k )/�k ,

where b1 and b2 are as given in (4) and (5), with pij = E[XiXj ] = P {Xi =
1, Xj = 1}.

For any i ∈ Dk , pi is the probability that a class k order arrives during a
backorder period of component i, which has been modeled as an M/G/∞
queue. In particular, INi = Si −IOi with IOi having probability mass func-
tion φ(· | λiLi). Hence, it follows from Poisson arrivals see time averages
(PASTA, see Ref. 17) that

pi = Pr{INi < 1} = Pr{IOi > Si − 1} = 1 − �(Si − 1 | λiLi)

= �̄(Si − 1 | λiLi).

It remains to compute pij . Note that for i, j ∈ Dk and i 	= j , we have

pij = P {Xi = 1, Xj = 1}
= P {INi < 1, INj < 1}
= P {IOi > Si − 1, IOj > Sj − 1}. (14)

We derive the joint pmf of steady-state inventory on order (IOi , IOj ) for
arbitrary components i and j . It can be seen that (IOi , IOj ) has a bivariate
Poisson distribution [2], thus pij can be computed by conditioning on the
common term in the order. Here, we follow Song and Yao [14] to compute
pij .

For any i, j with i 	= j , denote

Fi,j (h, l) = P {IOi > h, IOj > l}.

Then, (14) can be recast as

pij = Fi,j (Si − 1, Sj − 1).

For i 	= j it holds that

IOi = D
−j

i + D
i,j
i + +Di,j ,

and

IOj = D−i
j + D

i,j
j + Di,j ,

where D
−j

i is the steady state number of outstanding orders of component

i that were triggered by order classes in S(i) \ S(j), D
i,j
i is the steady state

number of outstanding orders of component i that were triggered by order
classes S(i) ∩ S(j) but the corresponding orders in component j have been
delivered, while Di,j is the number of outstanding orders that were triggered
by orders classes in S(i)∩S(j) and that are outstanding for both components
i and j . The other notations D−i

j and D
i,j
j are defined similarly.

Using the properties of Poisson processes, the dependency between IOi

and IOj only relies on Di,j . By Proposition 1 in Song and Yao [14], we
have

P {Di,j
i = q, Di,j

j = r , Di,j = s}

= (λi∩j θij )
s (λi∩j ϑij )

q (λi∩j δij )
r

s!q!r! e−λi∩j (θij +ϑij +δij )

= φ(q | λi∩j ϑij )φ(r | λi∩j δij )φ(s | λi∩j θij ),

where θij , ϑij , and δij are given by (6), (7), and (8). Thus, we have

Fi,j (h, l) = P {IOi > h, IOj > l}
= P {D−j

i + D
i,j
i + Di,j > h, D−i

j + D
i,j
j + Di,j > l}

=
∞∑

�=0

φ(� | λi∩j θij )

× P {D−j

i + D
i,j
i > h − �, D−i

j + D
i,j
j > l − �}

=
∞∑

s=0

φ(� | λi∩j θij )�(� | λ
−j

i Li + λi∩j ϑij )

× �(l − � | λ−i
j Lj + λi∩j δij )

=
h∨l∑
�=0

φ(� | λi∩j θij )�(h − � | λ
−j

i Li + λi∩j ϑij )

× �(l − � | λ−i
j Lj + λi∩j δij )

+ �(h ∨ l | λi∩j θij ).

This completes the proof of Theorem 1. �
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If the component leadtimes are deterministic, then IOi and IOj can be
expressed as, if we assume li ≤ lj ,

IOi = D
−j

i + Di,j , (15)

IOj = Dj (lj − li ) + D−i
j + Di,j , (16)

where Di,j is the number of orders of classes in S(i) \ S(j) during leadtime
Li , D

−j

i is the number of orders of classes in S(i)\S(j) during leadtime Li ,
D−i

j is the number of orders of classes in S(j) \ S(i) during leadtime Lj ,
and Dj (lj − li ) is the number of orders of classes in Sj during time interval
lj − li , all independent Poisson random variables. Thus,

Fi,j (h, l) = P {IOi > h, IOj > l}
= P {D−j

i + Di,j > h, Dj (lj − li ) + D−i
j + Di,j > l}

=
∞∑

�=0

φ(� | λi∩j li )P {D−j

i > h − �}

× P {Dj (lj − li ) + D−i
j > l − �}

=
∞∑

�=0

φ(� | λi∩j li )

× �̄(h − � | λ
−j

i li )�̄(l − � | λj (lj − li ) + λ−i
j lj )

=
h∨l∑
�=0

φ(� | λi∩j li )

× �̄(h − � | λ
−j

i li )�̄(l − � | λj (lj − li ) + λ−i
j lj )

+ �̄(h ∨ l | λi∩j li ). (17)

PROOF OF THEOREM 2. We next prove Theorem 2. Because |Fk −
e−�k | ≤ (b1 + b2)(1 − e−�k )/�k , and b1 and �k only depend on the mean
of leadtimes, they are the same for the two systems. Now we compare b2

with b̃2. Let IOi and ˜IOi denote the steady state inventory on order of
component i for the two systems with leadtimes Li and L̃i , respectively. It
follows from Proposition 2 of Song and Yao [14], that for all i 	= j and
h > 0, l > 0,

P {IOi ≥ h, IOj ≥ l} ≤ Pr{ĨOi ≥ h, ĨOj ≥ l}.

This shows that

pij = Pr{IOi ≥ Si , IOj ≥ Sj } ≤ Pr{ ˜IOi ≥ Si , ˜IOj ≥ Sj } = p̃ij .

Consequently, we have b2 ≤ b̃2, and the proof of Theorem 2 is complete. �

PROOF OF THEOREM 3. This result follows from Theorem 1 above and
Proposition 1.1 of Song [12], which states that when the leadtimes are deter-
ministic, the order-based fill rate with a time window x can be transformed
into another order-based fill rate problem with a time window 0. �

PROOF OF THEOREM 4. According to Song [12], we know that for
qi = 1, 2, . . . , Qi ,

P {IPi = ri + qi} = 1

Qi

,

and IP1(t), IP2(t), . . . , IPN (t) are independent of one another. It is easily
shown that IP1(t1), IP2(t2), . . . , IPN (tN ) are also independent. We illus-
trate this using N = 2. Suppose (IP1(t), IP2(t)) has reached steady state.

Let t1 ≤ t2, then IP1(t1) and IP2(t1)) are independent and uniformly distrib-
uted. Given IP (t1) and IP2(t1), IP2(t2) only depends on IP2(t1) and some
other events that are independent of IP1(t1), thus IP2(t2) is also independent
of IP1(t1). Because it is known that IP2(t2) is uniformly distributed, this
shows that IP (t1) and IP2(t2) are independent and uniformly distributed
random variables.

Using the fundamental identity of inventory, we have INi = IPi − IOi ,
where IOi is the leadtime demand for class i item and it has probability
mass function φ(· | λi li ). Hence, it follows PASTA, and by conditioning on
the inventory position IPi , we obtain

pi = P {INi < 1}

=
Qi∑

qi=1

P {IOi > ri + qi − 1}P {IPi = ri + qi}

= 1

Qi

Qi∑
qi=1

(1 − �(ri + qi − 1 | λi li ))

= 1

Qi

Qi∑
qi=1

�̄(ri + qi − 1 | λi li ).

It remains to compute pij . For i, j ∈ Dk and i 	= j . We first observe that,
the inventory positions IPi(t − li ) and IPj (t − lj ) are independent uniform
random variables. Thus, by conditioning on IPi and IPj , at times t − li and
t − lj , respectively, we obtain

pij = P {Xi = 1, Xj = 1}
= P {INi < 1, INj < 1}

=
Qi∑

qi=1

Qj∑
qj =1

P {IOi > ri + qi − 1, IOj > rj + qj − 1}

× P {IPi = ri + qi , IPj = rj + qj }

= 1

QiQj

Qi∑
qi=1

Qj∑
qj =1

Fi,j (ri + qi − 1, rj + qj − 1),

where Fi,j (h, l) is computed the same as before, and it is given by (17). �

PROOF OF THEOREM 5. The proof of Theorem 5 is similar to that
of Theorem 4, except that D

−j

i , Di,j , D−i
j , and Dj are now independent

compound Poisson random variables instead of Poisson random variables.
Therefore, in computing the joint distribution of IOi and IOj , we need to
condition on the pdf of Di,j which is compound Poisson. The rest of the
proof is similar to that of Theorem 4 and the analysis following the proof of
Theorem 1 on deterministic component leadtimes. �
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