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INTRODUCTION

Genome-wide association studies (GWAS) have become
a popular approach for identifying genetic variants that are
related to disease risk or quantitative traits. Such studies
are often performed in an initial discovery phase and
involve genotyping hundreds of thousands of single-
nucleotide polymorphisms (SNPs) across a large number
of subjects, and then searching for the specific variants that
are associated with the outcome of interest. The standard ap-
proach for identifying association in unrelated subjects is to
perform individual-SNP-based analyses, typically involv-
ing a regression model of phenotype on individual geno-
type (possibly controlling for additional covariates) and re-
sulting in a P-value for association for each SNP. Analyses
of related subjects from family studies are often similarly
analyzed on an individual SNP basis by incorporating a
random effect in the regression model encapsulating the
correlation of related subjects [e.g., Abecasis et al., 2000;
Atkinson and Therneau, 2009]. Due to the large number of
typed SNPs, the overall analysis is plagued with a substan-
tial multiple testing burden, making it difficult for SNPs
to reach genome-wide significance levels (e.g., P-values
<5 x 107%). Consequently, individual-SNP tests will tend
to have limited power in identifying SNPs with small ef-
fects, which have been observed in many GWAS of com-
plex traits [Manolio et al., 2009]. Many of the top SNPs are
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hence often false positives and cannot be replicated due to
weak signals. Moreover, epistatic effects of SNPs (i.e., SNP-
SNP interactions and joint effects) will fail to be detected in
individual-SNP analysis.

Numerous multi-SNP or multimarker tests have thus
emerged as promising alternatives to individual-SNP analy-
sis. Having selected a set of SNPs to be analyzed, e.g., based
on genes, haplotypeblocks, pathways, etc., one common ap-
proach for evaluating significance of the set of markers is to
use methods based on individual-SNP analysis and then ad-
just for multiple testing across multiple markers within the
SNP set to control the false-positive rate [e.g., Conneely and
Boehnke, 2007; Gao et al., 2008; Liu et al., 2010; Moskvina
and Schmidt, 2008]. Omnibus or global tests in regression-
type analysis for multiple markers avoid the problem of
multiple testing within the set by testing all markers si-
multaneously [e.g., Schaid et al., 2002], but can be plagued
by a large number of degrees of freedom [Wu et al., 2010,
2011]. A third class of methods attempts to address both
of these issues by using notions of pairwise similarity [e.g.,
Han and Pan, 2010; Mukhopadhyay et al., 2010; Tzeng et al.,
2009, 2011; Wessel and Schork, 2006]. The so-called “kernel-
based” methods of Kwee et al. [2008] and Wu et al. [2010]
also fall into this class, as they rely on kernel functions that
measure the pairwise similarity between subjects based on
the genotypes of the SNPs within the set, and result in a sin-
gle variance component test for each set. In a genome-wide
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setting, this type of analysis can improve power not only by
reducing the number of hypotheses being tested, but also
borrowing strength and information from correlated SNPs
(i.e., SNPsin linkage disequilibrium [LD]) in the set by com-
bining weak effects of individual SNPs for larger joint ef-
fects. The latter power gains will be realized when there
are multiple SNPs in moderate-to-high LD with the causal
variant(s). Thus, this approach is particularly appealing in
situations where the true causal SNPs are not genotyped
on a chip, but multiple-typed SNPs in at least moderate LD
with the true causal SNPs are available; hence, the typed
SNPs together can serve as a good surrogate for the un-
typed causal SNPs. The kernel machine (KM) models [Kwee
et al., 2008; Wu et al., 2010] easily allow for adjustment of
covariate effects, such as principal components to account
for population stratification [Price et al., 2006], and flexible
modeling of the functional relationship between SNPs in
the set and outcome. Pan [2009] considered a similar SNP
set test assuming linear SNP effects.

The aforementioned kernel-based methods are applica-
ble to studies of independent subjects. For family-based
subjects, such as those in the Genetic Epidemiology Net-
work of Arteriopathy (GENOA) study [Daniels et al., 2004;
FBPP Investigators, 2002], appropriate SNP set association
analysis needs to account for within-family correlation. One
objective of the GENOA study is to investigate the genetic
effects on C-reactive protein (CRP) [Dehghan et al., 2011;
Ridker et al., 2008]. Measures of several risk factors and a
large number of polymorphisms are available for the sib-
ships involved in the GENOA study. While the analyses as
implemented in the popular family-based software FBAT
may be viewed as multimarker tests [e.g., Rakovski et al.,
2007], these tests may also suffer from a large number of
degrees of freedom and consequently lose power by not
efficiently accounting for LD structure. Furthermore, the
FBAT approach assesses both linkage and association.

To accommodate association analysis of related subjects
in multiple independent families such as those in the
GENOA study, we propose extending the SNP set KM
framework of Kwee et al. [2008] by including a random
family-specific polygenic effect to account for within-family
correlation. Similar polygenic effects have been considered
in the individual-SNP-based framework [Abecasis et al.,
2000; Atkinson and Therneau, 2009], as well as in kernel-
based regression for estimation and prediction [Gianola and
van Kaam, 2008]. As we will show, the proposed family-
based KM testing approach allows for flexible modeling of
SNP set effect, such as joint effects of multiple SNPs and lin-
ear and nonlinear SNP-SNP interactions (epistatic effects);
the capability for covariate adjustment; and the improved
power over individual-SNP-based testing. The test itself is
a score-based variance component test that results from ex-
ploiting the connection between KM and mixed modeling
theory. While the original model explicitly posits a func-
tional relationship between SNPs in a set with the outcome,
the model can be re-expressed as a linear mixed model. In
contrast to previous KM SNP set analyses for independent
subjects [e.g., Liu et al., 2007, 2008; Wu et al., 2010, 2011], the
null model used to derive the score test is a mixed model in
order to incorporate the family-specific polygenic random
effects.

The remainder of the manuscript is organized as follows.
In the next section, we describe the proposed model and
SNP set analysis framework. Then, we present simulation
results comparing our testing approach to individual-
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SNP-based analysis. Finally, we apply our method using
data from the GENOA study, and conclude with a brief
discussion.

MODEL AND METHOD

Let the data consist of a response variable y;; for the
jth family member (j =1,...,n;) of the ith family (i =
1,...,m), a p x 1 covariate vector x;; associated with fixed
effects,and anr x 1 vectors;; of SNP genotypic values com-
prising a SNP set. Strategies for constructing SNP sets are
discussed further in subsection “Constructing SNP Sets.”
Typically, we assume an additive genetic model with s;;; €
{0,1,2}, t =1,...,r, representing the number of copies of
the minor allele at SNP t; dominant and recessive models
can also be considered. The response y;; is assumed to be a
normally distributed continuous outcome, which depends
on x;; and s;; through the following model:

Yij = XiTj‘l + h(sij) + bij + €ij, 1

where a is a p x 1 vector of regression coefficients, b;; is
a random effect that is normally distributed with mean 0
and variance o7 to model within-family correlation, € is
the random error that is normally distributed with mean
0 and variance o7, and the SNPs, s; i1, -+ - Sijr, influence y;;
through a general function h(-). As in Liu et al. [2007] and
Kwee et al. [2008], we assume h(-) is an arbitrary function
that has a form defined only by a positive semidefinite ker-
nel function K(-, ), i.e., h(-) € Hg, the function space gen-
erated by a K(-, -). Further details on the choice of K(,-)
can be found in subsection “Choice of Kernel Function,
K(,-).”

To account for correlation between family members, we
assume

bi = (bi1, bia, ..., bin,)" ~ N(0,2®;07) .

where 2®; is the n; x n; matrix with (j, j') element 2dy; ),
which is defined as the expected proportion of genes shared
identical by descent (IBD) by relatives j and j’ within family
i [Jacquard, 1974]. Note that ¢y(; ;) is known as the kinship
coefficient for subjects j and j’, and that 2dy(; ;) =1. We
emphasize that the covariance matrix 2®; depends on the
family index 7, as the covariance will not necessarily be the
same (in dimension or matrix entries) for all families. We
further assume that b;; and ¢;; are mutually independent
foralli and ;.

While testing is the main focus of this work, it is helpful to
briefly consider the estimation problem to motivate the con-
nection between KM and mixed modeling theory. A more
thorough development for estimation may be found in Gi-
anola and van Kaam [2008]. Let 7 denote the total number
of subjects, n =Y /-, n;, and let k index the (i, j)th subject
sothatk =1,...,n Writeh = (hy, ..., h,)" and let K be the
n x n matrix with (k, k') element equal to K (s, s¢'). Follow-
ing Liu et al. [2007] and using the Representer Theorem
[Kimeldorf and Wahba, 1970; Scholkopf et al., 2001], we can
show that estimation of @ and h can proceed by maximizing
the penalized log-likelihood
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J (o, h) = —%(y —Xa —h)'V(y — Xa —h) - %)\hTK’h,

@)
where y = (11, Y12, -+ Yings « « s Youls « « - » Youny) ' 1S the n x 1
vector of outcomes, X is the n x p covariate matrix, V =
blockdiag(V;,i =1,...,m) with V; = 2®;07 + I,,62, and A
is the penalty parameter; K~ denotes the generalized in-
verse. Simple calculations show that the solution (&, h) cor-
responds to the linear mixed model equations for the model

y=Xa+h+b+e, ®)

where h is an n x 1 vector of random effects from a
general distribution with mean 0 and covariance A'K
(e.g, N(O,\'K)), b=(b],...,b )" ~ N(0, D) where
nxn matrix D = blockdiag(2®;,i =1,...,m), and e~
N(O, 031,,), where I, denotes the n x nidentity matrix. Com-
parison of model (3) with model (1) indicates that the two
models have the same form, except now h is treated as a
vector of random effects with variance component T = A1
Thus, testing for a SNP set effect Hj : h(-) = 0 is equivalent
to testing the null hypothesis Hy : 7 = 0, as described in
subsection “KM Score Test.”

CONSTRUCTING SNP SETS

Wau et al. [2010] suggested several ways for constructing
SNP sets. While any grouping of SNPs will yield a valid
test in the sense that the type I error rate will be protected,
certain SNP groupings based on prior biological knowl-
edge can lead to additional power gains. The use of SNP
sets can be advantageous in that it allows us to (i) capture
joint effects of multiple SNPs, (ii) capitalize on LD between
SNPs to improve power, and (iii) incorporate other biolog-
ical information or prior knowledge about how SNPs may
collectively affect phenotype. Natural grouping strategies
could include taking all SNPs located in or near a gene, or
SNPs within LD blocks (e.g., using Haploview). For exam-
ple, one could group all SNPs between the start and end of
transcription, as well as regulatory regions up- and down-
stream of the gene, into a single SNP set. One could also con-
sider pathway-based SNP set analysis, where SNPs located
within a gene pathway could comprise a SNP set. While
grouping neighboring SNPs together is generally desirable
in order to harness correlation (i.e., LD), grouping neigh-
boring SNPs from multiple genes based on pathways may
additionally help capture epistatic effects. Other grouping
strategies that allow complete coverage of the genome, such
as by moving window or by recombination hot-spots, may
also be beneficial. For illustration purposes, we will form
SNP sets based on genes or LD blocks.

CHOICE OF KERNEL FUNCTION, K, -)

The choice of kernel function K(-, -) defines the underly-
ing basis for the nonparametric function i relating the SNPs
in the SNP set to the phenotype; thus, by selecting different
kernel functions, we can specify different models. It is con-
ceptually useful to think of K (s, si) as a function that mea-
sures the similarity between the two subjects k and k', based
on their genotypes of SNPs within the SNP set. A few pop-
ular choices considered for SNP data are linear: K (s, sp/) =
> Sksk, weighted linear: K(sg, sy, W) = Y __; WiSkiSut;

identical by state (IBS): K(st,sy) = {3 j_; 2I(sxt = sxt) +
I(Isk — swil = 1)}/2r; and weighted IBS: K(sk, s, w) =
>t wi {21k = st) + I(Isie — spel = 1)} /2r. The  linear
kernel corresponds to assuming linear SNP effects as in the
linear mixed model (4). As indicated in Wu et al. [2011], for
additively coded autosomal genotype data, the (weighted)
IBS kernels can be equivalently expressed by replacing
{21(skt = sprt) + I(Iske — spe| = 1)} with (2 — sy — sp¢]). Insit-
uations where imputed SNPs involving dosages are consid-
ered, the latter form of the (weighted) IBS kernel would be
more appropriate. Notably, both the IBS and weighted IBS
kernels allow for epistatic effects, as the implied function h
allows for nonlinear SNP effects. Other examples of kernel
functions can be found in Wessel and Schork [2006]; Lin
and Schaid [2009]; Mukhopadhyay et al. [2010]; Han and
Pan [2010]; Wu et al. [2011].

The weights w = (w1, ..., w,), if desired, can be specified
in a number of ways. Each weight w, reflects the relative
contribution of the tth SNP, with weights closer to zero pro-
viding smaller contributions. Advantageous choices could
thus include defining weights as a function of predicted
functionality [e.g., Ramensky et al,, 2002; Kumar et al.,
2009] or allele frequency [Wu et al, 2011]. A common
and flexible class of weights based on allele frequency can
be specified by setting ,/w; = Beta(MAF;, a1, o), the Beta
density function with shape parameters o; and o, evalu-
ated at the minor allele frequency (MAF) of SNP ¢. Note
that oy = o, = 1 corresponds to equally weighted variants
w; = 1, while oy = ap = 0.5 corresponds to weight w; pro-
portional to the inverse-variance of the tth SNP genotype:
Jwr =1/{/MAF(1 — MAF,). For analysis with only com-
mon variants (e.g., MAF > 5%), unweighted analysis can
be performed. Wu et al. [2010] also suggested considering
w; = 1/+/MAF, for common variants. As all simulations and
analysis considered in this work involve common variants,
we considered both the unweighted and weighted versions
of the linear and IBS kernels with this choice of weight.

We remark here on model (1) with choice of linear kernel
to provide further insight. Consider the linear mixed model

;l/i]'ZX?ja—l—STjB-i-bi]’—l—eij, (4)

where B = (B1,....B)T is the vector of regression coeffi-
cients for the r SNPs in the set, and the rest of the terms
are defined as in (1). Under (4), we may assess the effect
of the SNPs in the set on outcome, adjusting for covariates,
by testing the null hypothesis H, : p = 0 which typically re-
quires anr degree of freedom test. A more powerful alterna-
tive would assume each B; follows an arbitrary distribution
with mean 0 and variance 7. Letting S be the n x r matrix
with (k, t) element being the genotype of SNP ¢ of subject
k, then var(y) = 7SS” + 0?D + 0?1, and the relevant null
hypothesis Hy : 7 = 0 can be tested using a variance com-
ponent score test. This conveniently only requires fitting
the null linear mixed model y;; = x,-T]-a + bi; + €. Note that

SS” corresponds to the kernel matrix K using a linear ker-
nel function. Thus, by selecting alternative choices of kernel
function K(-,-), we may model more complex, nonlinear
functional relationships between the SNPs in the set and
the outcome. The most advantageous kernel function would
be the kernel that best captures the functional form of the
joint effects of SNPs on the outcome, i.e., the association be-
tween genetic similarity and phenotypic similarity between

Genet. Epidemiol.
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subjects. In particular, if the relationships are linear, then the
test using the (weighted) linear kernel will have the highest
power. If interactions are present, a test using the (weighted)
IBS kernel could improve power.

KM SCORE TEST

Using model (3), the test of the SNP set effect can be
formulated as Hy : 7 = 0. Denote ¢ = (a7, 67, 06?)Tand V =
07D + o?1,.. Following Lin [1997] and Zhang and Lin [2003],
one can show that the individual variance score statistic of
7 for testing Hy : 7 =0is

1
Q= Slly—Xe)' V'KV Iy = Xe)}) , )

@

where ¢ is the maximum likelihood estimator (MLE) of ¢
under null parametric model

y=Xa+b+e (6)

Note that statistic (5) can be simply computed, as ¢ can
easily be estimated under null linear mixed model (6). In
particular, the efficient function 1mekin within R packages
kinship or coxme can be used to find the MLE; modifica-
tions of this function allow for computation of the restricted
maximum-likelihood (REML) estimator. Note that unlike
the independent data setting [Kwee et al., 2008; Liu et al.,
2007], the null model (6) is a linear mixed model with co-
variates alone, instead of a simple linear regression.

To study the asymptotic distribution of the score statistic
Qunder T = 0, write

1 U 1
E(y—Xa)TV 'Kvi(y - X&) = EyTPKPy, )

where & = (X" V'X)"'X"V~'y and PVP = P for projection
matrix P = V' — VIX(X"V'X)"'X"V~! for V evaluated
under the null model. Using the results in the Appendix, it
can be shown that

1, !
EnyKPy =Y N, (8)

i=1

where z = (z1, ..., 2;)", ¢ <n, and z ~ iidN(0, 1); eigen-
values \; are defined in the Appendix. Thus, 1y’ PKPy is a
mixture of chi-squared distributions, each with one degree
of freedom.

The distribution of Q can be approximated using Sat-
terthwaite’s method by a scaled chi-squared distribution
kX2, where the scale parameter k and degrees of freedom
v are calculated by moment matching. Expression (7) has
mean and variance fi = tr(PK)/2 and Z,, = tr((PK)?)/2, re-
spectively, for known V. In contrast to previous KM-based
tests for independent subjects [e.g., Liu et al., 2007, 2008;
Wu et al., 2010, 2011], the inclusion of the random effect
for family structure requires modifying Z.. to account for
estimation of variance component of. Further details are
provided in the Appendix.

For test sizes of a near 0.05, Satterthwaite’s approxima-
tion is quite good, and is known to be accurate except in
the extreme right tail. However, for much smaller o appro-
priate for GWAS, we use the Davies method [Davies, 1980]
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to compute the P-value of a mixture of chi-square vari-
ates, as in (8), by inverting the characteristic function of the
mixture. Davies exact method is performed within R pack-
age CompQuadForm and our implementation using estimates
from lmekin of o and o under the null model works very
well in simulation (see Section “Simulations”). Further de-
tails on implementation are included in the Appendix, and
an R package allowing for both Satterthwaite and Davies
P-value computation is available upon request.

We remark that the score test, which operates under the
null hypothesis, results in valid tests (in terms of protecting
type I error) irrespective of the kernel (and weights) used,
and that the choice of kernel (and weights) affects power.
These results are verified in simulations, summarized in
Section “Simulations” below.

SIMULATIONS

To validate the proposed method in terms of appropri-
ate type I error and power, we carried out simulations
based on realistic patterns of LD among SNPs observed in
genotyped samples from the International HapMap Project
[HapMap; Altschuler et al., 2005]. We first investigated
the size and power of the score test in which the SNP
set is generated based on the LD structure of a single

ene. We considered a similar set-up to that in Wu et al.
[2010], based on N-acylsphingosine amidohydrolase (acid
ceramidase) 1 (ASAH1) and fibroblast growth factor recep-
tor 2 (FGFR2) representing genes with high and low LD
structure, respectively. In particular, we based our gene-
specific simulations on the LD structure using HAPGEN
[Spencer et al., 2009] and the CEU sample from HapMap.
For ASAH1, we also investigated the performance of our
test when families were nonrandomly ascertained based
on a disease outcome that was weakly associated with
the trait of interest. Finally, we evaluated the size and
power of our approach over a range of LD settings across
randomly selected gene-defined SNP sets for genes along
chromosome 10.

CANDIDATE GENE SIMULATIONS

To verify that the score test properly controls the type I
error rate, we conducted simulations under the null linear
mixed model for m families with

Yij = X,-TjOL + bij + €, 9)

which is just (1) with h(s;;) = 0. Here, x;; is the vector of
simulated covariates that are independent of the simulated
genotype data. Specifically, we simulated two covariates
corresponding to standardized age and gender, generated
with a standard normal distribution and Bernoulli (0.5) dis-
tribution, respectively. We considered two different family
structures and the use of the linear (LIN), IBS, weighted
linear (WLIN), and weighted IBS (wIBS) kernels. We gener-
ated 5, 000 replicate datasets using HAPGEN. Specifically,
we used HAPGEN to generate the parents of the m fami-
lies, and randomly created the desired number of offspring
from the generated parental haplotypes; only the offspring
were used in subsequent analysis presented below. Since
the genomic regions are relatively small, recombination
would be extremely rare and hence was not considered
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in the creation of the offspring genotypes. For the differ-
ent family structures, we considered (i) m = 300 families
consisting of all sib trios (n; =3 for all i =1,...,m) and
(if) m = 410 families consisting of different sized sibships.
For the latter, we mimicked the “mixed sibship” structure
in the GENOA dataset [Daniels et al., 2004; FBPP Investi-
gators, 2002], which contained a total of 881 subjects with
each subject having anywhere from 0 to 8 siblings in the
dataset. Note that HAPGEN generates genotype informa-
tion for all HapMap SNPs in the specified region, but we
only applied the testing approach to those SNPs which were
typed by the array. For example, using the Affymetrix 6.0
platform with the ASAH1 gene, there are 39 HapMap com-
mon (MAF > 5%) SNPs total in the interval specified, but
only 18 of these exist on the array; thus, the 18 typed SNPs
form the SNP set. In other words, we grouped the typed
SNPs for the given gene (ASAH1 or FGFR2) as a SNP set,
and computed a P-value evaluating the effect of the SNPs
in the set while adjusting for covariates in x;;. We consid-
ered variance due to polygenic effects of o € {1/3, 1, 3} and
o2 = 1, which corresponds to polygenic heritability values
vy = of[of + 027! € {0.25,0.50, 0.75}. The empirical size
of the test was calculated as the proportion of P-values
less than or equal to a.

To compute the empirical power of the SNP set test, we
generated datasets with m = 300 sib trios under the alterna-
tive model:

yij = X0+ Bes; + bij + €, (10)

where s,

¢ is the genotype for the “causal SNP,” B, is the
effect for the causal SNP, and x;; is again the vector of
simulated covariates that are independent of the simulated
genotype data and sj; (e.g., age, gender). Note that under
each simulation configuration, we allowed only one causal
SNP. We restricted attention to common SNPs with MAF
greater than 0.05. Each of the common HapMap SNPs was
set to be the “causal” SNP in turn, and we fixed B. = 0.2
in an additive genetic model so that heritability due to
the “causal” SNP, hi* = BZvar(sf;)/[B7var(s|;) + oy + 0/'], re-
mained less than 2% for chosen o and 7. The combinations
thus led to three SNP heritability levels, referred to hence-
forth as LOW, MED, and HIGH.

For each of the causal SNPs (HapMap common SNPs),
we generated 1,000 datasets with the testing approach ap-
plied only to the group of typed SNPs. Thus, in most con-
figurations, the causal SNP was actually unobserved. For
each configuration, we computed the power of the proposed
variance component test for the SNP set (i.e., the gene) as
the proportion of P-values less than or equal to o« = 0.05.

For comparison, we also performed a SNP set approach
based on individual-SNP analysis. More specifically, we cal-
culated the minimum P-valued based SNP set test, which
involves testing the significance of each of the typed SNPs
separately and then calculating the minimum P-value of
the individual P-values in the SNP set, while adjusting
for the same covariates using lmekin. To control for the
type I error rate in the minimum P-value-based test, we
use one of three multiple-testing corrections that account
for the between-SNP correlation: PCA [Gao et al., 2008],
K.¢r [Moskvina and Schmidt, 2008], and P, [Conneely and
Boehnke, 2007]. The first two procedures involve finding
the effective number of tests and making a modified Bon-
ferroni adjustment. The third method of correction involves

adjusting the raw P-values based on estimation of the over-
all type L error rate using multivariate normal theory. Taking
the minimum adjusted P-value as the comparable SNP set
P-value, we similarly defined power as the proportion of
minimum adjusted P-values less than or equal to 0.05. The
power of all three correction methods was very much con-
cordant, and thus we only report the Conneely and Boehnke
[2007] results in Section “Simulation Results.” Note that this
individual-SNP-based test gave the correct size when simu-
lating under the null model (results not shown). Analogous
size and power simulations were also conducted includ-
ing the parents, in addition to the sib trios (i.e., n; = 5 for
alli =1, ..., m=2300). The results from these simulations
were similar to those based on just siblings, and are thus
presented in the Supporting Information.

INFLUENCE OF ASCERTAINMENT

Often families observed in association studies are not ran-
domly selected from the population, but instead ascertained
according to certain traits (e.g., disease status) for some
family members. When interested in studying genetic as-
sociation with so-called “secondary traits” (i.e., traits other
than disease status), one must be mindful that the ascer-
tained sample does not constitute a random sample from
the population. For example, in the GENOA data analysis
discussed in Section “Data Analysis,” the goal is to assess
genetic association with a continuous measure of chronic
inflammation in a collection of sibships ascertained accord-
ing to hypertension status. This nonrandom sampling from
the population can in principle lead to inflated type I error
rate for tests of association between genetic markers and
a secondary trait that ignore or improperly account for as-
certainment. It has been shown in case-control studies that
ascertainment bias tends to be quite small in most situa-
tions, particularly when the disease is common and if both
the secondary phenotype and genetic marker are not as-
sociated with disease [Monsees et al., 2009]. We chose to
examine the performance of the KM test under this scenario
in simulation for family data, as our data analysis in Sec-
tion “Data Analysis” fits into this framework with a disease
prevalence of ~ 1/3 [Fields et al., 2004] and a weak associ-
ation of secondary phenotype (chronic inflammation) with
disease (hypertension) after adjusting for known risk factors
(p = 0.161). We thus performed a simulation similar to that
for ASAH1 described above, but implemented a sampling
scheme based on disease status. Specifying 02 = o7 = 1, we
generated y;; under a null model using model (9) and un-
der an alternative model (10) with B, = 0.2 for the size and
power simulations, respectively. The trios were created as
before using parental haplotypes generated from HAPGEN.
We then generated disease status with disease prevalence
7 = 1/3 to be weakly associated with 1;; in a logistic regres-
sion framework using the same effect size as observed in the
GENOA data, appropriately scaled for the medium (MED)
SNP heritability level (p = 0.065). For each simulation, we
simulated 5000 sib trios and selected m = 300 families with
at least one sibling having the disease. For evaluating size,
we performed 5,000 runs and computed empirical size as
described in subsection “Candidate Gene Simulations.” For
evaluating power, we performed 1,000 runs and computed
the power as a function of the causal SNPs as also described
in subsection “Candidate Gene Simulations.” To assess the
influence of ascertainment, we compare the results under
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TABLE 1. Empirical size for different kernels, polygenic effects, and family structures using Satterthwaite (top) and

Schifano et al.

Davies (bottom) methods to approximate the null distribution

LIN wLIN IBS wlIBS
Kernel
vop ™ 0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75
Results using Satterthwaite method
FGFR2
Sib trio 0.046 0.049 0.050 0.054 0.052 0.051 0.051 0.050 0.054 0.052 0.050 0.055
Mixed 0.053 0.057 0.054 0.054 0.055 0.059 0.055 0.055 0.056 0.056 0.056 0.057
ASAH1
Sib trio 0.052 0.052 0.048 0.048 0.051 0.047 0.050 0.051 0.052 0.049 0.051 0.053
Mixed 0.052 0.052 0.048 0.052 0.053 0.049 0.053 0.053 0.051 0.054 0.052 0.050
Results using Davies method
FGFR2
Sib trio 0.050 0.052 0.051 0.052 0.050 0.050 0.049 0.049 0.053 0.049 0.047 0.051
Mixed 0.053 0.056 0.054 0.051 0.053 0.056 0.053 0.053 0.055 0.052 0.053 0.054
ASAH1
Sib trio 0.051 0.052 0.048 0.048 0.051 0.048 0.049 0.050 0.052 0.049 0.050 0.052
Mixed 0.053 0.053 0.048 0.052 0.053 0.049 0.053 0.053 0.050 0.053 0.052 0.050

*vop = sz [sz + (rf]‘l is the heritability due to polygenic effects for within-family correlation.

nonrandom ascertainment to those in which families were
randomly sampled from the population.

SNP SETS ALONG CHROMOSOME 10

We also evaluated size and power under a variety of LD
settings across randomly selected gene-defined SNP sets.
Specifically, we generated 10,000 SNP sets using HAPGEN
where each SNP set is based on a gene on chromosome
10. This allowed for 660 possible SNP sets (sampled with
replacement for simulation) with the Affymetrix 6.0 SNPs.
Within each sampled SNP set, we randomly selected one
HapMap SNP to be the causal SNP, and again generated
datasets with m = 300 sib trios under the null model (9) (i.e.,
B. = 0) for size or the alternative model (10) with B, = 0.2
for power, both under an additive genetic model. Treating
the SNPs on the Affymetrix array as typed as before, we
tested the significance of the SNP set using the family-based
KM approach, this time using only the linear kernel. For
comparison, we also applied the individual-SNP analysis
testing procedure described in subsection “Candidate Gene
Simulations.”

SIMULATION RESULTS
CANDIDATE GENE SIMULATIONS

Table I shows the empirical size results at o = 0.05 using
both the Satterthwaite and Davies methods and confirms
that the KM-based tests maintain the correct type I error
rate, regardless of kernel and strength of polygenic effects.
Results for the Satterthwaite and Davies method are quan-
titatively similar and qualitatively identical at this size. Us-
ing the same candidate gene simulation set-up, but with 10”
replicate datasets, Davies method can maintain the correct
type I error rate for much lower sizes; size estimates start to
deteriorate for the Satterthwaite method at a = 0.001 (see
Figure 1).
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In the top, left portion of Figure 2, we see the power
results for gene FGFR2 where the data were generated un-
der an additive genetic model. Results from simulated data
generation under a dominant genetic model are illustrated
on the right for comparison (B. fixed at 0.3). Power is plot-
ted as a function of causal SNP, where the causal SNPs are
ordered by genomic location. Note that we display power
results using P-values computed only from Davies method
henceforth, as the power results at the 0.05 threshold us-
ing Davies method and Satterthwaite’s approximation are
nearly identical. The MAF of the SNPs is plotted imme-
diately below each power plot; the causal SNPs with low
MAF are largely responsible for the sudden power drops in
Figure 2 across all methods. These SNPs often have low LD
with neighboring SNPs. The LD plots on the bottom indi-
cate that power for the KM methods is related to the amount
of correlation among the SNPs. To see this, recall that only
the genotypic information from the typed SNPs (i.e., SNPs
on the Affymetrix 6.0 chip, indicated by an ‘x” on the bottom
of the plots) is used to compute the KM test statistics, but
each HapMap SNP (regardless of being typed) is treated
as causal in turn. Thus, in situations where the causal SNP
is not typed, we rely on the correlation of the causal SNP
with the observed typed SNPs in the set to help gain statis-
tical power. For example, focus attention to, say, SNP 32 in
Figure 2; SNP 32 is most correlated with the SNPs around
it (R? > 0.5 with SNPs 27, 30, and 33). However, SNP 32’s
neighbors (i.e., SNPs 24-39) are not typed and cannot be
used to compute the KM test, so they cannot help to boost
power for the KM test when SNP 32 is simulated as causal.
The displayed results are also consistent with other studies
that have observed when there is only a single true causal
SNP that is typed and tested (or one SNP in high LD with
the causal SNP that is typed and tested) but is not in strong
LD with other typed SNPs, the individual-SNP-based ap-
proach may lead to higher power than the KM method [e.g.,
Lin et al., 2011]. In contrast, in regions where the SNPs are
more correlated with observed typed SNPs in the set (par-
ticularly toward the right of the plots at SNPs 46-61), the
KM-based methods have higher power.
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Empirical Size: Davies vs. Satterthwaite
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Fig. 1. Empirical size for KM test (linear kernel) using Davies and Satterthwaite’s method and N = 107 simulated datasets.

Figure 3 shows the analogous results for gene ASAHI1.
Note again that power is influenced by the MAF of
the causal SNP. In particular, SNPs 1 and 28 in the top
panel of Figure 3 have the lowest MAFs (0.083 and 0.058,
respectively) causing them to have low power across all
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methods. The LD plots at the bottom indicate that the SNPs
have much higher correlation as compared to FGFR2. To
help see how power is affected by this correlation, the plots
in Figure 4 show the same information as the top row of
Figure 3, but with SNPs on the x-axis sorted by increasing
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Fig. 2. Top: Power to detect causal SNP for FGFR2 using additive (left) and dominant (right) genetic models under MED heritability due
to SNP (max(h?) = 1%). SNPs are ordered according to genomic location. Power was computed for the kernel-machine (KM) methods
using linear (LIN), weighted linear (WLIN), IBS, and weighted IBS (WIBS) kernels, as well as for the multiple testing adjusted individual-
SNP based approach (Indiv. SNP). The typed SNPs, indicated by an “x” along the bottom of the plot, compose the SNP set. Middle:
Corresponding MAF for SNPs plotted above. Bottom: Corresponding LD plot for SNPs plotted above (grayscale for squared correlation

R?: white—R? = 0, black—R? = 1).
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Fig. 3. Power to detect causal SNP for ASAH1 using additive (left) and dominant (right) genetic models under MED heritability due to

SNP (max(#?) = 1%). Legend is the same as Figure 2.
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Fig. 4. Top: power to detect causal SNP for ASAH1 using additive (left) and dominant (right) genetic models under MED heritability
due to SNP (max(h?) = 1%). SNPs are ordered according to median R2. Legend is the same as Figure 2. Bottom: corresponding MAF for

SNPs plotted above.

median R? value. Here, median R? is defined as median
squared correlation of the causal SNP with the SNPs in the
SNP set. As this measure of correlation increases, so does
the power of the kernel-based methods.

While the results in Figures 2, 3, and 4 depict the simu-
lation involving the MED SNP heritability level (max(h?) =
1%), the results are similar for both the LOW (max(h?) =
0.5%) and HIGH (max(h?) = 2%) SNP heritability scenarios,
with the power curves shifting down and up, respectively.
Focusing on only the kernel-based methods in Figures 24,
the linear and weighted linear kernels achieve the highest

Genet. Epidemiol.

power when the data are generated under the linear addi-
tive genetic model, while the IBS and weighted IBS kernels
achieve highest power when the SNP effects are generated
under the dominant (nonlinear) model. Additionally, power
for the weighted and unweighted versions of the same ker-
nel type are similar, but there tends to be a slight gain in
power for the weighted version when the causal SNP has
low MAF.

Finally, we remark on the impact of including all HapMap
SNPs (as opposed tojust typed SNPs) in the SNP set to better
understand the effect of the size (r) of the SNP set. Using all
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HapMap SNPs in the region, power can remain the same,
increase, or decrease from that found using only “typed”
SNPs in the set (see Figure 4 in the Supporting Information).
Indeed, the change in power depends on several factors, in-
cluding whether the causal SNPs are genotyped, the level
of LD between the causal SNPs and the typed SNPs, and the
number of untyped SNPs that are null SNPs. For example,
power for detecting untyped causal SNPs tends to increase
when all HapMap SNPs are used to define the SNP set, but
the amount of improvement is much more drastic for FGFR2
than ASAHI. This is because the typed SNPs in ASAH]1 al-
ready “captured” the nearby untyped SNPs, whereas the
typed SNPs in FGFR2 did not. This observation in ASAH1
is consistent with the results found in Lin et al. [2011] based
on including imputed SNPs, in addition to typed SNPs, in
the SNP set. However, if the additional SNPs in the set are
null SNPs with little to no correlation with the causal SNP,
power of the kernel-based tests could decrease when us-
ing all HapMap SNPs in the set. Furthermore, the change
in power for individual-SNP-based analysis is also influ-
enced by the (effective) number of additional SNPs, due
to the adjusted P-value computation accounting for more
multiple tests; i.e., gains in power by including causal SNPs
could be offset by including too many additional SNPs in the
set.

INFLUENCE OF ASCERTAINMENT

Regarding the influence of ascertainment, the empirical
size estimates for the kernel-based tests are reported in
Table II. As expected, with weak association of disease and
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TABLE II. Empirical size based on candidate gene
ASAHI1 when sibship trios are ascertained according to
disease status (at least one sibling must have disease)

Kernel
LIN wLIN IBS wIBS
Satterthwaite 0.049 0.050 0.053 0.054
Davies 0.049 0.051 0.053 0.053

Estimates computed assuming vo, = of[of + 62! = 0.50.

secondary trait, the size estimates have negligible bias in
type I error rate. While the distributions for the regression
coefficients a under the null model were essentially the
same, regardless of sampling mechanism, there were small
differences in the null estimates of the variance components.
Figure 5 displays the distribution of the variance compo-
nent estimates under the null model for both nonrandom
(solid histogram) and random selection (dashed histogram)
of families. Under nonrandom ascertainment, o tends to
be slightly underestimated while o tends to be slightly
overestimated. In terms of power, the relative ordering of
the curves under nonrandom ascertainment remained the
same as under random family selection. In addition, the
differences in power resulting from nonrandom ascertain-
ment and random selection of families are generally small,
as observed in the top portion of Figure 6. Interestingly, the
largest differences (~0.15 in magnitude) occur at SNPs 3, 18,
and 21, where there are few typed SNPs available in the set.
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Fig. 5. Distribution of variance component estimates under the null hypothesis of no SNP set effect: histograms with solid borders are
for estimates computed using nonrandom selection of families (ascertained according to disease status), while the overlaid histograms
in dashed lines are for estimates computed using random selection of families. True parameter values are indicated by thick vertical

lines.
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Difference in Power: Random (R} vs. Nen-Random (NR) Family Selection
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Fig. 6. Top: difference in power to detect causal SNP for ASAH1
(additive genetic model under MED heritability due to SNP) be-
tween simulations where families were randomly selected and
nonrandomly selected based on at least one sibling having a dis-
ease. SNPs are ordered according to genomic location. Legend is
similar to that in Figure 2, except that curves represent the sub-
traction of power using nonrandom (NR) family selection from
power using random (R) family selection. Middle: correspond-
ing MAF for SNPs plotted above. Bottom: corresponding LD plot
for SNPs plotted above (grayscale for squared correlation R%:
white—R? = 0, black—R? = 1).

SNP SETS ALONG CHROMOSOME 10

For the simulations involving SNPs sets based on differ-
ent genes along chromosome 10, we ultimately computed
10,000 P-values for significance under the null and alter-

10<r<20

Schifano et al.

TABLE III. Empirical size by SNP set size for
chromosome 10 simulation, using the linear kernel for
n = 300 sib trios under different polygenic effects

*

Vob
SNP set size No. of sets 0.25 0.50 0.75
r <10 4,244 0.050 0.055 0.050
10<r <20 2,831 0.047 0.057 0.052
r>20 2,925 0.046 0.054 0.049
All 10,000 0.048 0.055 0.050

*“vop = of [0 + 02] 7! is the heritability due to polygenic effects for
within-family correlation. Size estimates computed using P-values
from Davies method; Satterthwaite’s method yields qualitatively
and quantitatively similar results.

native models for both the KM and individual-SNP-based
multiple-testing corrected tests. To summarize these results,
we computed empirical size across all 10,000 simulations, as
well as by binning the 10,000 simulations into three groups
based on SNP set size (r): r < 10, 10 < r < 20, and r > 20.
The results in Table Il reveal that the size estimates from the
kernel-based test for theoretical size 0.05 remain accurate.
We computed power after binning the 10,000 simulations
based on SNP set size (1), and then also by the median
R? between the causal and typed SNPs. In particular, we
split the simulations again into the three groups: r < 10,
10 <7 <20, and r > 20. We then further divided each of
the three groups into subgroups by sorting the simulated
SNP sets based on median R?, and splitting the group into
50 evenly sized subgroups. Within each subgroup, we es-
timated the power as the proportion of P-values less than
a = 0.05. For each of the groups, we plot lowess-smoothed
power against median R* in Figure 7. A similar approach
was used in Wu et al. [2010], where it was noted that the
categorization by SNP set size (r) is needed because dis-
tantly located SNPs tend to be uncorrelated so that median
R? tends to decrease with increasing r. As expected, power
for both the kernel- and individual-SNP-based methods in-
creases as heritability due to SNP (h?) increases. Also, under
a variety of LD structures, we tend to see improved power
for the kernel-based method over the individual-SNP-based
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Fig. 7. Power from chromosome 10 simulation, plotted as a function of median R? for differing ranges of total number of SNPs in the
SNP set (r). Different line types correspond to LOW, MED, and HIGH heritability due to SNP (1?).
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multiple testing method as the correlation, as measured by
median R?, increases, even when simulating under the ad-
ditive, single-causal SNP model given in (10).

DATA ANALYSIS

One long-term objective of the GENOA study is the eluci-
dation of genetic susceptibility to atherosclerotic complica-
tions involving the heart. It is widely accepted that high lev-
els of CRP, a heritable marker of chronic inflammation, are
associated with increased risk of mortality and major dis-
eases such as coronary heart disease [e.g., Dehghan et al.,
2011]. At least two GWAS [Dehghan et al., 2011; Ridker
et al.,, 2008] have implicated SNPs near the region of the
genome encoding the leptin receptor (LEPR) as affecting
levels of CRP, with both studies requiring a relatively large
number of samples (>4,000 and >66,000 subjects, respec-
tively) to identify SNPs reaching genome-wide significance
ata = 5 x 1078. We sought to replicate this finding ina much
smaller dataset from the family-based GENOA study. Eli-
gibility of families for the GENOA study requires that a
sibship has two individuals diagnosed with essential hy-
pertension before the age of 60 years; any normotensive
siblings within the eligible sibships were also included. In
particular, genotyped SNPs near and within the LEPR gene,
as well as measures of CRP, are available for 881 subjects of
European ancestry from 410 independent families.

Using both measured (Affymetrix 6.0) and imputed
SNPs [MACH, Li et al., 2009], we examined the LD block
of SNPs that included the previously implicated “lead”
SNPs from Ridker et al. [2008] and Dehghan et al. [2011].
Figure 8 (left) shows the Haploview LD plot for the de-
sired region using the CEU samples within HapMap. This
block contains 106 common SNPs (15 were genotyped in
the GENOA study and the rest were imputed) located near
or within the LEPR gene (on 1p31) which will compose
our SNP set. As the SNPs in the region are quite correlated
(Figure 8), the multiple-SNP KM-based analysis has the po-
tential to be more powerful than the individual-SNP-based
approach. As observed in subsection “Candidate Gene Sim-
ulations,” the additional correlation gained by including the

Haploview Plot for HapMap CEU population near or at LEPR

NI,

=log10(p-valua}
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imputed SNPs will likely be advantageous to the kernel-
based analysis if the imputed SNPs are correlated with the
unknown causal variant(s). We performed both SNP set
tests, the KM SNP set test and the individual-SNP-based
minimum P-value test adjusting for multiple comparisons,
with response log(C RP) and covariates age, gender, body
mass index, and smoking status. Note that after adjusting
for these covariates, hypertension status and log(C RP) lev-
els were not significantly associated (P = 0.161).

Individual-SNP analysis using 1mekin revealed 17 SNPs
with unadjusted P-values <0.01 (Figure 8, right; with pre-
viously implicated “lead” SNPs depicted by solid, filled-
in circles). Taking into account multiple testing for cor-
related SNPs using the method described in the simula-
tions, the minimum adjusted [Conneely and Boehnke, 2007]
individual-SNP-based P-value was 0.039. For the KM SNP
set analysis, we chose the weighted IBS kernel as there is a
range of MAF values and the IBS kernel tends to perform
well in both linear and more complex genetic models in
simulation. The KM SNP set analysis P-value for the set
using this choice of kernel was 0.010. For comparison, the
KM SNP set P-values obtained using the linear, weighted
linear, and IBS kernels were 0.013, 0.014, and 0.011, respec-
tively. Indeed, regardless of the kernel function used, the
KM-based analysis yields a lower P-value than that from
the multiple testing-adjusted individual-SNP-based analy-
sis, as the KM test was able to borrow information across
multiple correlated SNPs within the SNP set.

DISCUSSION

We have proposed a KM-based framework for SNP set
analysis for continuous outcomes when the subjects come
from multiple different families. The underlying model
can incorporate families of various sizes and relationships
within the same association analysis. The proposed test
is a score-based variance component test, which relies
only on fitting the null linear mixed model (which needs
only to be computed once for a GWAS dataset) to com-
pute the test statistic. Notably, the P-values are computed
analytically, without the need for permutation, as we have
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shown that these values are accurate for even very small o
levels. Furthermore, our simulations verify that when the
causal SNP is correlated with multiple-typed SNPs, the KM-
based tests have improved power over the individual-SNP-
based analysis using minimum adjusted P-values.

Like the SNP set based tests for independent subjects, the
approach takes advantage of prior biological knowledge to
group the SNPs into sets and each set is tested as an easily
interpretable single entity. This not only has the potential
to improve power by decreasing the number of tests in a
genome-wide setting, but also by borrowing strength and
information from correlated SNPs grouped together. Addi-
tionally, the KM approach allows for flexible modeling of
the SNP set effects on phenotype by specifying different
kernel functions. The proposed methodology is valid irre-
spective of the selected kernel and SNP sets, but the power
of the approach will be affected by the choice of kernel and
choice of grouping. The best choice of kernel in terms of the
most power improvement is an open question, but we have
found that the (weighted) IBS kernel performs quite well
in most simulated settings in that it loses little power when
the effect of the SNP is linear, but can gain power when the
effects of the SNPs are more complex.

Using the IBS kernel, our approach incorporates infor-
mation on allele sharing among individuals within and be-
tween families to construct an appropriate test statistic of
association. With pedigree data, we also possess informa-
tion on alleles shared IBD within families. An open ques-
tion then becomes whether we can use this IBD information
to construct an association test similar to our existing IBS-
based test. However, due to the fact that pairs of individu-
als from different families are unrelated and by definition
share 0 alleles IBD, we believe a variance-component score
test using an IBD kernel is not a test of association in a
population of related subjects (since it ignores information
from alleles shared across families) but rather is a test of
linkage within families. To support this idea, we note that
application of model (3) using a kernel matrix K derived
from the proportion of alleles shared IBD at a gene will lead
to the same variance-component model previously used for
linkage analysis of quantitative traits [Amos, 1994; Almasy
and Blangero, 1998].

The choice of SNP grouping will also influence power,
as the amount of information available to borrow across
SNPs depends on the SNPs present in the set. In particu-
lar, the KM-based SNP set test improves power over the
individual-SNP-based minimum P-value test when there is
at least moderate LD among the SNPs in a SNP set, or in
the presence of multiple causal variants within the set. If
there are only a few causal SNPs (or few SNPs in LD with
the causal SNP) in a set of predominantly null SNPs, power
gains may not be realized. In the simulations and data anal-
ysis, we grouped SNPs based on either their proximity to a
gene, or on the basis of LD structure in order to take advan-
tage of the correlation of nearby SNPs. As previously men-
tioned, while we have the ability to model joint effects of
multiple causal SNPs and epistatic effects, using the above
strategies will only be able to identify these multiple SNP
effects if they are located close enough to one another to be
placed in the same SNP set. While it is not clear what the
best strategy is for capturing the effects of multiple distantly
located SNPs, forming SNP sets based on gene pathways or
networks can potentially help capture these effects.

The simulations and data analysis considered in this pa-
per both focused on common variant SNP effects. How-
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ever, the family-based KM approach can also easily be ap-
plied in sequencing association studies for rare variant ef-
fects. In these situations, it is often desirable to up-weight
rare variants [e.g., Kryukov et al., 2007]. This can naturally
be accommodated by appropriately specifying weights, w,
in the kernel function. For example, if rarer variants (e.g.,
MAF < 5%) are expected to be more likely to have larger
effects, Wu et al. [2011] recommend setting 0 < oy < 1 and
a > lin \/w; = Beta(MAF;, oy, ap) to up-weight rarer vari-
ants and down-weight common variants (e.g., o1 =1, =
25) for sequencing association studies. Such analyses could
be beneficial in family-based data, e.g., if members within
the same family carry the same rare mutation while other
families may carry different mutations within the same gene
(SNP set).

The simulations also examined the influence of ascertain-
ment on the KM test when the families were selected based
on the presence of disease, but association between disease
and continuous phenotype was weak. Under this scenario,
our simulations confirmed that there is little to no inflation
in type I error rate. These results are consistent with those
in Monsees et al. [2009] regarding case-control ascertain-
ment: when the association between secondary outcome
and primary outcome (disease) is weak, ascertainment bias
is negligible. In the context of case-control studies, Monsees
et al. [2009] found in simulation that ascertainment bias is
generally quite small except when both the genetic marker
and secondary outcome are associated with disease. In this
situation for family-based data, proper accounting for ascer-
tainment (e.g., inverse probability weighting) would likely
be needed and is an area for future research. In addition,
our results are also in agreement with those in de Andrade
and Amos [2000], who examined the impact of ascertain-
ment bias on the testing of variance parameters in variance-
component linkage analyses of quantitative traits. The au-
thors found that assessing major-gene effect using Wald and
Likelihood Ratio tests in a variance-component model was
not affected by ascertainment bias.

The proposed methods can be extended for more com-
plicated models. For example, one can extend the proposed
test to accommodate binary outcomes in family studies.
An estimating equation-based approach is currently being
investigated to handle nonnormal data, with results to be
reported in a separate manuscript. Additionally, alternative
random effects could be considered to model within-family
(or generic within-group) correlation structures. A key ad-
vantage of the proposed methodology is that it allows for
flexible modeling of the relationship between SNPs within a
set and the outcome of interest. This will become an increas-
ingly valuable feature as our understanding of the underly-
ing biological processes, and hence our modeling abilities,
improves.

ACKNOWLEDGMENTS

The authors wish to thank Seunggeun Lee for his help in
implementing Davies method and developing the R pack-
age, Karen Conneely for her useful comments on a previous
version of the manuscript, and the anonymous reviewers
whose comments greatly improved this manuscript. This
work was supported by the National Institutes of Health
[T32 ES007142 and T32 ES016645 to E.D.S., R0O1 HG003618
to M.P.E., R01 HL87660 to S.L.R.K., R37 CA076404 and P01
CA134294 to X.L.].



SNP Set Analysis for Familial Data 809

REFERENCES

Abecasis GR, Cardon LR, Cookson WO. 2000. A general test of asso-
ciation for quantitative traits in nuclear families. Am ] Hum Genet
66:279-292.

Almasy L, Blangero J. 1998. Multipoint quantitative-trait linkage anal-
ysis in general pedigrees. Am ] Hum Genet 62:1198-1211.

Altschuler D, Brooks L, Chakravarti A, Collins F, Daly M, Donnelly P.
2005. International hapmap consortium. A haplotype map of the
human genome. Nature 437:1299-1320.

Amos CI. 1994. Robust variance-components approach for assess-
ing genetic linkage in pedigrees. Am ] Hum Genet 54:535-
543.

Atkinson B, Therneau T. 2009. Kinship: mixed-effects Cox models,
sparse matrices, and modeling data from large pedigrees. R package
version 1.1.0-23.

Conneely KN, Boehnke M. 2007. So many correlated tests, so little time!
Rapid adjustment of P values for multiple correlated tests. Am ]
Hum Genet 81:1158-1168.

Daniels PR, Kardia SL, Hanis CL, Brown CA, Hutchinson R, Boerwinkle
E, Turner ST. 2004. Familial aggregation of hypertension treatment
and control in the Genetic Epidemiology Network of Arteriopathy
(GENOA) study. Am ] Med 116:676-681.

Davies R. 1980. Algorithm as 155: the distribution of a linear com-
bination of chi-2 random variables. J] R Stat Soc Ser C 29:323—
333.

de Andrade M, Amos CI. 2000. Ascertainment issues in variance com-
ponents models. Genet Epidemiol 19:333-344.

Dehghan A, Dupuis ], Barbalic M, Bis JC, Eiriksdottir G, Lu C, Pellikka
N, Wallaschofski H, Kettunen J, Henneman P, Baumert J, Strachan
DP, Fuchsberger C, Vitart V, Wilson JF, Pare G, Naitza S, Rudock ME,
Surakka I, de Geus EJ, Alizadeh BZ, Guralnik J, Shuldiner A, Tanaka
T, Zee RY, Schnabel RB, Nambi V, Kavousi M, Ripatti S, Nauck M,
Smith NL, Smith AV, Sundvall J, Scheet P, Liu Y, Ruokonen A,
Rose LM, Larson MG, Hoogeveen RC, Freimer NB, Teumer A, Tracy
RP, Launer L], Buring JE, Yamamoto JF, Folsom AR, Sijbrands EJ,
Pankow J, Elliott P, Keaney JF, Sun W, Sarin AP, Fontes JD, Badola
S, Astor BC, Hofman A, Pouta A, Werdan K, Greiser KH, Kuss
O, Meyer zu Schwabedissen HE, Thiery J, Jamshidi Y, Nolte IM,
Soranzo N, Spector TD, Volzke H, Parker AN, Aspelund T, Bates D,
Young L, Tsui K, Siscovick DS, Guo X, Rotter JI, Uda M, Schlessinger
D, Rudan I, Hicks AA, Penninx BW, Thorand B, Gieger C, Coresh
J, Willemsen G, Harris TB, Uitterlinden AG, Jarvelin MR, Rice K,
Radke D, Salomaa V, Willems van Dijk K, Boerwinkle E, Vasan
RS, Ferrucci L, Gibson QD, Bandinelli S, Snieder H, Boomsma DI,
Xiao X, Campbell H, Hayward C, Pramstaller PP, van Duijn CM,
Peltonen L, Psaty BM, Gudnason V, Ridker PM, Homuth G, Koenig
W, Ballantyne CM, Witteman JC, Benjamin EJ, Perola M, Chasman
DI.2011. 80 000 subjects identifies multiple loci for C-reactive protein
levels. Circulation 123:731-738.

FBPP Investigators. 2002. Multi-center genetic study of hypertension:
the Family Blood Pressure Program (FBPP). Hypertension 39:3-9.

Fields LE, Burt VL, Cutler JA, Hughes J, Roccella EJ, Sorlie P. 2004. The
burden of adult hypertension in the United States 1999 to 2000: a
rising tide. Hypertension 44:398-404.

Gao X, Starmer J, Martin ER. 2008. A multiple testing correction method
for genetic association studies using correlated single nucleotide
polymorphisms. Genet Epidemiol 32:361-369.

Gianola D, van Kaam JB. 2008. Reproducing kernel hilbert spaces re-
gression methods for genomic assisted prediction of quantitative
traits. Genetics 178:2289-2303.

Han F, Pan W. 2010. Powerful multi-marker association tests: unifying
genomic distance-based regression and logistic regression. Genet
Epidemiol 34:680-688.

Jacquard A. 1974. The genetic structure of populations. New York:
Springer-Verlag.

Kimeldorf G, Wahba G. 1970. Some results on Tchebycheffian spline
functions. ] Math Anal Appl 33:82-95.

Kryukov GV, Pennacchio LA, Sunyaev SR. 2007. Most rare missense
alleles are deleterious in humans: implications for complex disease
and association studies. Am ] Hum Genet 80:727-739.

Kumar P, Henikoff S, Ng PC. 2009. Predicting the effects of coding non-
synonymous variants on protein function using the SIFT algorithm.
Nat. Protocols 4:1073-1081.

Kwee LC, Liu D, Lin X, Ghosh D, Epstein MP. 2008. A powerful and
flexible multilocus association test for quantitative traits. Am ] Hum
Genet 82:386-397.

Li Y, Willer C, Sanna S, Abecasis G. 2009. Genotype imputation. Annu
Rev Genomics Hum Genet 10:387—406.

Lin WY, Schaid DJ. 2009. Power comparisons between similarity-based
multilocus association methods, logistic regression, and score tests
for haplotypes. Genet Epidemiol 33:183-197.

Lin X. 1997. Variance component testing in generalized linear models
with random effects. Biometrika 84:309-326.

Lin X, Cai T, Wu MC, Zhou Q, Liu G, Christiani DC, Lin X. 2011.
Kernel machine SNP-set analysis for censored survival outcomes
in genome-wide association studies. Genet Epidemiol 35:620-
631.

Liu D, Ghosh D, Lin X. 2008. Estimation and testing for the effect of
a genetic pathway on a disease outcome using logistic kernel ma-
chine regression via logistic mixed models. BMC Bioinformatics 9:
292.

Liu D, Lin X, Ghosh D. 2007. Semiparametric regression of multi-
dimensional genetic pathway data: least square kernel machines
and linear mixed models. Biometrics 63:1079-1088.

LiuJZ, McRae AF, Nyholt DR, Medland SE, Wray NR, Brown KM, Hay-
ward NK, Montgomery GW, Visscher PM, Martin NG, Macgregor
S, Mann GJ, Kefford RF, Hopper JL, Aitken JF, Giles GG, Armstrong
BK. 2010. A versatile gene-based test for genome-wide association
studies. Am J Hum Genet 87:139-145.

Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindor LA, Hunter
DJ, McCarthy MI, Ramos EM, Cardon LR, Chakravarti A, Cho
JH, Guttmacher AE, Kong A, Kruglyak L, Mardis E, Rotimi CN,
Slatkin M, Valle D, Whittemore AS, Boehnke M, Clark AG, Eichler
EE, Gibson G, Haines JL, Mackay TF, McCarroll SA, Visscher PM.
2009. Finding the missing heritability of complex diseases. Nature
461:747-753.

Monsees GM, Tamimi RM, Kraft P. 2009. Genome-wide association
scans for secondary traits using case-control samples. Genet Epi-
demiol 33:717-728.

Moskvina V, Schmidt KM. 2008. On multiple-testing correction
in genome-wide association studies. Genet Epidemiol 32:567-
573.

Mukhopadhyay I, Feingold E, Weeks DE, Thalamuthu A. 2010. Asso-
ciation tests using kernel-based measures of multi-locus genotype
similarity between individuals. Genet Epidemiol 34:213-221.

Pan W. 2009. Asymptotic tests of association with multiple SNPs in
linkage disequilibrium. Genet Epidemiol 33:497-507.

Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich
D. 2006. Principal components analysis corrects for stratification in
genome-wide association studies. Nat Genet 38:904-909.

Rakovski CS, Xu X, Lazarus R, Blacker D, Laird NM. 2007. A new mul-
timarker test for family-based association studies. Genet Epidemiol
31:9-17.

Ramensky V, Bork P, Sunyaev S. 2002. Human non-synonymous SNPs:
server and survey. Nucleic Acids Res 30:3894-3900.

Ridker PM, Pare G, Parker A, Zee RY, Danik JS, Buring JE, Kwiatkowski
D, Cook NR, Miletich JP, Chasman DI. 2008. Loci related to
metabolic-syndrome pathways including LEPR, HNF1A, IL6R, and
GCKR associate with plasma C-reactive protein: the Women's
Genome Health Study. Am ] Hum Genet 82:1185-1192.

Schaid DJ, Rowland CM, Tines DE, Jacobson RM, Poland GA. 2002.
Score tests for association between traits and haplotypes when link-
age phase is ambiguous. Am ] Hum Genet 70:425-434.

Scholkopf B, Herbrich R, Smola AJ. 2001. A generalized represen-
ter theorem. In: Proceedings of the 14th Annual Conference on

Genet. Epidemiol.



810 Schifano et al.

Computational Learning Theory and and 5th European Conference
on Computational Learning Theory. London, UK: Springer-Verlag.
COLT "01/EuroCOLT "01. p 416-426.

Spencer C, Su Z, Donnelly P, Marchini J. 2009. Designing genome-wide
association studies: sample size, power, imputation, and the choice
of genotyping chip. PLoS Genet 5(5):e1000477.

Tzeng JY, Zhang D, Chang SM, Thomas D, Davidian M. 2009. Gene-
trait similarity regression for multimarker-based association analy-
sis. Biometrics 65:822-832.

Tzeng JY, Zhang D, Pongpanich M, Smith C, McCarthy MI, Sale MM,
Worrall BB, Hsu FC, Thomas DC, Sullivan PF. 2011. Studying gene
and gene-environment effects of uncommon and common variants
on continuous traits: a marker-set approach using gene-trait simi-
larity regression. Am ] Hum Genet 89:277-288.

Wessel ], Schork NJ. 2006. Generalized genomic distance-based regres-
sion methodology for multilocus association analysis. Am ] Hum
Genet 79:792-806.

Wu MC, Kraft P, Epstein MP, Taylor DM, Chanock SJ, Hunter DJ, Lin
X. 2010. Powerful SNP-set analysis for case-control genome-wide
association studies. Am ] Hum Genet 86:929-942.

Wu MC, Lee S, Cai T, Li Y, Boehnke M, Lin X. 2011. Rare variant asso-
ciation testing for sequencing data using the sequence kernel asso-
ciation test. Am ] Hum Genet 89:82-93.

Zhang D, Lin X. 2003. Hypothesis testing in semiparametric additive
mixed models. Biostatistics 4:57-74.

APPENDIX

To show that Q under T =0 can be expressed as a
mixture of chi-square distributions, note that P = vl
VIXXTVIX)IXTV~! for V evaluated under the null
model can be expressed as P = V- ?MV "2, where

M=1-Vv2xx'vIix)y'xTv-12

is an idempotent matrix. Thus,

Genet. Epidemiol.

1

1
5Y' PKPy = Zy V- /MV 2KV MV 1y

1
EyTMV_l/ZKV_l/ZM)NI,

where MV ™2y = My and § ~ N(0,T). Let \; > --- > N >
0 be the g <n ordered nonzero eigenvalues of K=
IMV?KV~*M and A = diag(\;,i =1,...,q). Let E be
the g x n matrix of eigenvectors corresponding to A; such
that EE" = I. Then,

1
EyTPKPy =y E'AEy =) Az,

where z=(z,...,2z,)" =E§ and z ~iidN(0,1). Thus,
%yT PKPy is a mixture of chi-square distributions, each with
one degree of freedom.

Specifically for the Satterthwaite approximation withd =
(o2, 02), we calculate & = 7., /2{i and » = 2fi%/Z,,, where

Zo = T.. — Ty Ty I, with
1 oV 1 [ 9V_aV
Ty = ~tr (PKPLY- ) and Ty = ~tr (Pow P2,
%= ) r( aﬁ,~> and Soin =3 r( 29, aﬁk)

and all terms are evaluated at ¢, which is the ML or REML
estimate calculated under the null model (6). This leads to
the test statistic Q(¢)/&k with approximate null distribution
X;-

In the implementation of Davies method, we use the
eigenvalues of K, where the null estimates of 6/ and o are
used to calculate V, to compute the P-values for test statistic
Q(@), for ¢ again representing the ML or REML estimator
under the null model. Note that with a small number of
covariates, both the ML and REML versions of the statistics
perform quite similarly when the sample size is decent.



