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[1] This paper introduces a Maximum Likelihood (ML) approach for estimating the
statistical parameters required for the covariance matrices used in the solution of Bayesian
inverse problems aimed at estimating surface fluxes of atmospheric trace gases. The
method offers an objective methodology for populating the covariance matrices required
in Bayesian inversions, thereby resulting in better estimates of the uncertainty associated
with derived fluxes and minimizing the risk of inversions being biased by unrealistic
covariance parameters. In addition, a method is presented for estimating the uncertainty
associated with these covariance parameters. The ML method is demonstrated using a
typical inversion setup with 22 flux regions and 75 observation stations from the National
Oceanic and Atmospheric Administration-Climate Monitoring and Diagnostics
Laboratory (NOAA-CMDL) Cooperative Air Sampling Network with available monthly
averaged carbon dioxide data. Flux regions and observation locations are binned
according to various characteristics, and the variances of the model-data mismatch and of

the errors associated with the a priori flux distribution are estimated from the available

data.
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1. Introduction

[2] The use of inverse modeling methods as tools for
estimating fluxes of atmospheric trace gases has become
increasingly common as the need to constrain their
global and regional budgets has been recognized
[Intergovernmental Panel on Climate Change (IPCC),
2001; Committee on the Science of Climate Change,
Division on Earth and Life Studies, National Research
Council, 2001; Wofsy and Harriss, 2002]. Inverse methods
attempt to deconvolute the effects of atmospheric transport
and recover source fluxes (typically surface fluxes) based on
atmospheric measurements. Information about regions that
are not being directly sampled can potentially be inferred
from downwind atmospheric measurements. Inverse
modeling methods have been used to estimate regional
contributions to global budgets of trace gases such as
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CFCs, CHy4, and CO,, and a review of recent applications is
presented by Enting [2002, chap. 14—17].

[3] A vast majority of recent inverse modeling studies
have relied on a classical Bayesian approach, where the
solution to the inverse problem is defined as the set of flux
values that represent an optimal balance between two
requirements. The first criterion is that the optimized, or a
posteriori, fluxes should be as close as possible to the first-
guess (a priori) fluxes. The second is that the measurement
values that would result from the inversion-derived
(a posteriori) fluxes should agree as closely as possible
with the actual measured concentrations. For the case where
the advection scheme is linear, this solution corresponds to
the minimum of a cost function L defined as:

Ju—

Ly = E(Z —Hs)'R™!(z — Hs) +% (s — s],)TQ’1 (s—sp), (1)
where z is an n X 1 vector of observations, H is an n X m
Jacobian matrix representing the sensitivity of the observa-
tions z to the function s (i.e., H;; = 0z,/0s)), s is an m x 1
vector of the discretized unknown surface flux distribution,
R is the n x n model-data mismatch covariance, s, is the
m x 1 prior estimate of the flux distribution s, Q is the
covariance of the errors associated with the prior estimate
sp, and the superscript 7' denotes the matrix transpose
operation. A solution in the form of a superposition of all
statistical distributions involved can be computed, from
which a posteriori means and covariances can be derived
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[e.g., Enting et al., 1995]. The solution is [Tarantola,
1987; Enting, 2002],

§=s,+QH' (HQH” +R) ' (z — Hs,) )

V.= Q- QH' (HQH' + R) 'HQ, (3)

where § is the posterior best estimate of s, and Vj is its
posterior covariance.

[4] In most Bayesian studies, both R and Q have been
modeled as diagonal matrices. In this case, the diagonal
elements of R represent the model-data mismatch variance
of each observation, which is the sum of the variances
associated with all error components such as, for instance,
the observation error, the transport modeling error, and the
representation error. The diagonal elements of Q, on the
other hand, represent the error variance of the prior flux
estimates and specify the extent to which the real fluxes are
expected to deviate from prior flux estimates. It is important
to note that although the vast majority of Bayesian inversion
studies have used diagonal covariance matrices, some errors
are known to be both temporally and spatially correlated.

[s] One of the challenges of the Bayesian approach is the
need to estimate the parameters defining the model-data
mismatch covariance matrix R and the prior error covari-
ance matrix Q. These covariances determine the relative
weight of prior information versus available data in esti-
mating individual fluxes, and are therefore key components
in estimating the posterior covariance (and thereby the
uncertainty) of these fluxes. As a result, identifying appro-
priate covariance parameters is essential to accurate flux
estimation. The importance and challenge of accurately
estimating these parameters [Kaminski et al., 1999; Rayner
etal., 1999; Law et al., 2002; Peylin et al., 2002; Engelen et
al., 2002] and the lack of objective methods for doing so
[Rayner et al., 1999] have been increasingly recognized in
the literature.

[6] Past inversion studies have relied on a variety of
methods for estimating these parameters. In the original
synthesis inversion work of Enting et al. [1995], the data
uncertainty was based on a statistical characteristics of the
NOAA flask sampling procedures [7ans et al., 1990], but
the uncertainty associated with errors in the atmospheric
transport model could not be quantified. Many more recent
studies have derived model-data mismatch from the residual
standard deviation of flask samples around a smooth curve
fit [e.g., Hein et al., 1997; Bousquet et al., 1999; Gurney et
al., 2002; Peylin et al., 2002]. Others have relied on values
independently obtained from the literature [e.g., Kandlikar,
1997]. The a priori flux errors have been even more difficult
to quantify [Kaminski et al., 1999], and the choice of prior
errors has even been described as “mostly arbitrary” in
some studies [Bousquet et al., 1999], even though it is
recognized that these parameters are crucial to the inversion.
Often, researchers have applied what are considered to be
“loose” priors [e.g., Peylin et al., 2002; Law et al., 2002] in
order to yield conservative estimates of the flux uncertain-
ties. On the basis of assessments of available data, oceanic
fluxes have usually been considered more certain than
terrestrial fluxes [e.g., Kaminski et al., 1999]. Although
considerable effort has been put into estimating covariance
parameters, the specification of the prior uncertainties has
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been described as the “greatest single weakness” in some
studies [Rayner et al., 1999].

[7] Recently, several researchers have scaled the model-
data mismatch and/or prior error covariance parameters to
obtain a data misfit function that follows a x? distribution
with a given number of degrees of freedom [e.g., Rayner
et al, 1999; Gurney et al., 2002; Peylin et al., 2002;
Rédenbeck et al., 2003]. The correct number of degrees
of freedom to be used in such an analysis is equal to the
total number of independent pieces of information intro-
duced into the system (equal to the number of observa-
tional data plus the number of prior flux estimates in the
case of diagonal Q and R matrices), minus the number of
variables estimated in the inversion (typically equal to the
number of estimated fluxes). If the covariance parameters
are reasonable, the sum of the squared residuals, scaled
by their uncertainties and normalized by the number of
degrees of freedom, should be close to 1 (reduced chi-
squared x7 = 1). Some researchers have applied this test
to the residuals between the available observations and
those that would result from the a posteriori fluxes
obtained from the inversion, while others have applied it both
to these observation residuals and to residuals of the a
posteriori fluxes from their prior estimates. Such tuning,
however, does not yield a unique solution because more than
one combination of covariance farameters can lead to the
residuals having an acceptable . In addition, looking at the
X2 cannot guide the relative allocation of error between
the model-data mismatch and prior flux estimates [Rayner
et al., 1999]. Therefore examining the variance of the
residuals is a necessary, but not a sufficient, condition for
evaluating the appropriateness of covariance parameters.

[8] A few recent studies have attempted to systematically
quantify one or more components of the model-data mis-
match. Engelen et al. [2002] divided the model-data mis-
match covariance into four additive covariances (which
were modeled as diagonal matrices) representing: (1) the
observation error, (2) the error in mapping concentrations at
a specific location into the measured quantity, (3) the model
transport error, and (4) the representation error describing
the effects of model resolution. Each of these error sources
was then quantified based either on available additional
information (e.g., known precision of analytical methods) or
numerical experiments (e.g., comparing inversion results
obtained using various transport models in order to estimate
transport error). Kaminski et al. [2001] focused on the errors
introduced as a result of imposing potentially erroneous
fixed flux patterns within regions, and estimated the addi-
tional variance that should be added to the model-data
mismatch covariance to account for this effect. Krakauer
et al. [2004] estimated single scaling factors for both the
model-data mismatch and prior error covariances using a
generalized cross-validation approach, to show that the
Transcom inversion results for the global land/ocean parti-
tioning, particularly in the Southern Hemisphere and trop-
ical regions, were influenced strongly by the Transcom
choice of parameters. The fluxes resulting from this analysis
and their associated residuals were not analyzed to deter-
mine whether these parameters result in fluxes that are
consistent with the underlying statistical assumptions, and
the uncertainty associated with the estimated covariance
parameters was not quantified.
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[9] The method that will be developed in this paper
allows the available data to shed light on the covariance
parameters to be used in the inversion, both in defining the
model-data mismatch and the error associated with the prior
flux distribution. This can be done in a consistent manner by
identifying the Maximum Likelihood (ML) estimates of
these parameters, given the prior flux estimates s,, the
available measurements z, and the sensitivity H of these
measurements to the fluxes to be estimated. The method is
applicable whenever estimates of the covariance parameters
are to be obtained from the atmospheric data themselves. A
ML approach has previously been used in estimating spatial
drift and covariance parameters of hydrologic variables,
based on limited measurements of these parameters [Kitanidis
and Lane, 1985]. Also, a related restricted maximum likeli-
hood (RML) approach has been used for estimating covari-
ance parameters in geostatistical inverse modeling [e.g.,
Kitanidis, 1995; Michalak and Kitanidis, 2004]. Recently,
this technique was applied to the estimation of covariance
parameters in a geostatistical implementation of the atmo-
spheric trace-gas inversion problem [Michalak et al., 2004].
In this paper, we develop and demonstrate a maximum
likelihood methodology for estimating the model-data mis-
match and prior-error covariance matrix parameters needed in
the application of the classical Bayesian inverse modeling
approach. This method can be directly applied to all studies
where the objective function is of the form presented in
equation (1), which is the most common setup currently being
used in atmospheric inversion studies. This method allows,
for the first time, for an objective and data-driven estimation
of both the model-data mismatch and prior error covariance
parameters required for the solution of the flux estimation
inverse problem. Several covariance parameters can be esti-
mated simultaneously, the resulting fluxes yield residuals that
follow the assumed distribution (e.g., X2 = 1), and the
uncertainty associated with the covariance parameters can
also be estimated. In the sample application presented in this
work, both R and Q are modeled as diagonal matrices, but the
method is directly applicable to cases where these matrices
include spatial and temporal correlation (i.e., off-diagonal
terms). In such cases, parameters such as the correlation
length of flux deviations from their prior estimates can also
be estimated.

2. Maximum Likelihood Estimation

[10] We are interested in finding the maximum likelihood
estimate of the model-data mismatch and prior error covari-
ance parameters in Bayesian inverse modeling. Note that
throughout this discussion, the term prior errors refers to the
errors between the actual fluxes and the prior flux estimates. In
the case where both the model-data mismatch matrix and the
prior error covariance matrix are diagonal matrices of varian-
ces, this can be thought of as optimizing the variances in

Or 0 0 00,1 0 0
R — 0 ‘7%?,2 Q= oé‘z ’
0 : 0
0 0 oﬁrn 0 0 oéﬁm
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where 0'123’1' are the model-data mismatch variances of
individual observations and on’,- are the prior-error variances
of individual prior flux estimates. In the simplest case, we
could assume that a single variance describes the model-
data mismatch at all sites, and another variance describes
the prior error for all source regions, yielding a total of two
parameters to be estimated. On the other end of the
spectrum, a different model-data mismatch could be
estimated for each measurement location and each source
region. Other options would be to populate the covariance
matrices with scaling factors that we believe to be
representative of the relative errors of certain measurements
or priors and solve for overall proportionality constants that
would adjust the magnitude of these variances, or to
estimate the covariance (in space and/or in time) of the
errors. Various options will be demonstrated in section 3 of
this paper. It is important to note that one would not go as
far as estimating a different variance for each individual
flask measurement, because one cannot estimate a variance
using a single measurement.

2.1. Probability Density Function

[11] We are interested in the probability density function
of the covariance parameters of R and Q, which we will
jointly call @, given the available observations z, the prior
estimates s, and the transport matrix H. In the example
given in equation (4) 0 = {ofm,. e cf{m O'ZQ’I,. . GZQ,,,,},
which would be binned into subgroups based on flux
regions and measurement stations, and potentially further
grouped by regions or stations that are expected to have
similar properties (e.g., marine boundary layer stations).
According to Bayes’ rule, the pdf of the parameters 6 can be
defined as

p(z[H,s,,0)p' (8[H,s,)

" _
P (O, sy, 2) = Tp(zH,s,,0)p (0]H,s,) 6’

(5)

where the denominator is simply a normalizing constant
equal to the probability of the data p(z|H, s,), and where a
prime denotes a prior distribution while a double prime
denotes a posterior distribution. We assume that, a priori,
the probability of the parameters 0 is uniform over all
values, p(6|H.s,) o< 1, which corresponds to the assumption
that we do not have any prior knowledge about these
parameters. Then

p"(8H,s,,z) < p(z/H,s,,0), (6)

yielding the likelihood function of 0. In other words, if we
assume that we have no prior information on 0, its pdf is
defined by the likelihood of the observations, and the best
estimate corresponds to the set of values that maximize this
likelihood.

[12] The observations z are modeled as

z=Hs+e., (7)

where €, is a vector representing the model-data mismatch,
typically modeled as a vector of n x 1 normally distributed
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random numbers with variance(s) defined by the matrix R.
A priori, the expected value of z is

E[z] = E[Hs + €]
= Hs,. (8)

The covariance matrix of z is
E[(z— El2)) (2 — El2))"
= E[(Hs +e. — E[Hs +&.])(Hs + € — E[Hs +Q])T}

= HQH’ +R. ©9)

This expected value and covariance can be used to define
the Gaussian probability density function p(z/H, s,, 9),
which, from (6) is proportional to p”(8|H, s, z):
p"(6|H,s,,z) o p(z|H,s,,0)
o [HQH'+R|"

: exp(— % (z—Hs,) (HQH” +R) ' (z — Hsp)) ,

1/2

(10)

where | | denotes a matrix determinant, and Q and R are
functions of 0. Note that the above equation is normally
distributed with respect to z but not 0. Also, this pdf is
independent of the actual flux distribution s.

2.2. Best Estimate

[13] In order to obtain the maximum likelihood estimate
of the covariance parameters, we want to maximize
equation (10) with respect to 0, or alternately, minimize
its negative logarithm,

L= 3 QN R 4] (o 1) (HQU 4 R) (2 11,
(11)

Note that higher variance values in Q and R will tend to increase
the value of the first term and decrease the value of the second
term in this equation. The 0 values that minimize this overall
objective function are the ML estimates of these parameters.
[14] Conceptually, differences between the available
observations and observations predicted by the prior flux
estimates result from two types of error. First, the model-
data mismatch error, parameterized by the covariance
matrix R, results from random measurement and transport
errors. Second, the prior error that is parameterized by the
covariance matrix Q accounts for more systematic errors in
the predicted observations because, as a result of the mixing
that takes place as gases are transported downwind, error in
a single flux region will be sampled at multiple observation
locations. Although these two sources of error cannot be
separated perfectly, the maximum likelihood approach
offers a rigorous method for estimating the contributions
of these two forms of error. Looking at the objective
function in equation (11), the model-data mismatch error
in R is included directly in the optimization, whereas the
prior error in Q is ‘filtered’ using the transport matrix H.
Therefore, the effect of the model-data mismatch is
expected to behave as an independent, identically distributed
(i.i.d.) additive error for the case of a diagonal R, whereas the
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effect of the prior error will have a more systematic effect
on a group of observations. The intuitive separation
between the model-data mismatch and prior error is
illustrated in Figure 1.

2.3. Parameter Uncertainty

[15] An estimate of the uncertainty of parameters 0 can be
obtained from the inverse of the Hessian of equation (11),

Vo= (M), (12)

where the Hessian is defined as

Ly

Hij = 3000

(13)

and has dimensions p x p, where p is the total number of
parameters to be estimated. In order to simplify the notation,
we define the additional variables,

¥ = HQH” + R (14)
o 0Q ., R

@ =HGe (15)
’Q _,  OR

T =Hog05™ T o600, (16)

which all have dimensions n x n. Also, we will use the
following properties [Schweppe, 1973]:

g -y

% (17)

2 (1njw)) = v[w '),

% (18)

where 7r is the “trace” operator, which is the sum of the
diagonal elements of a matrix. Given these additional
variables, the Hessian becomes

H;‘,‘ = — Tr[\Pilqli\Pil‘I{/} +%Tr[qlilqlij]

J’_

— N =

z—Hs,) &' 0,0 WU (z - Hs,)

(z—Hs,) &0, &' (z - Hs,).

(19)

N[ —

Note that in the case where both R and Q are diagonal
matrices of variances, ¥, = [0], and 'H;; simplifies to

Hy = — % Tr [0, ]
+(z—Hs,) T OO GO (- Hs,).  (20)

[16] In some other cases, the second derivative ¥;; may
be difficult or expensive to compute, in which case the
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Figure 1. This figure presents a conceptualization of (a) a prior flux estimate and (b, c, d) three possible
scenarios of how actual observations relate to this prior flux (transported to the time when observations
are made). It illustrates the difference between the effects of model-data mismatch error and prior error.
The prior estimate of a flux is depicted in Figure la. After a given time, the compound is advected
(assuming only advection and no mixing) to a downwind location. On the basis of the prior estimate in
Figure la, the a priori predicted distribution at the new time is presented as the thick line in Figures 1b,
Ic, and 1d. The effect of model-data mismatch is expected to be relatively independent for each
observation and is presented in Figure 1b. The effect of prior error in the magnitude of the flux is
correlated among several observations and is presented in Figure 1c. Their combined effect is presented
in Figure 1d.

covariance of the parameters can be approximated using the Fy=E[Hy] = — 1 Tr[@ 0,0 ] 4 1 T[]
Cramer-Rao inequality [Schweppe, 1973] by 2 2

+ 7 [0 W E| (2~ Hs,) (2 - Hsy)

Vo> (Fy) s (21) _%Tr[\IJ*‘\IJ,-j\If]}E[(Z—Hsp)T(Z_Hsl')]

where F; is the Fisher information matrix and is the 1

expected value, with respect to z, of the Hessian H;:

= ETr[\If‘I\II,-\II‘I\IIj]
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The diagonal elements of Vg represent the uncertainty of the
estimates of the covariance parameters, as defined by their
estimation variance. The uncertainty of the covariance
parameters could be incorporated into the subsequent
inversion by drawing an ensemble of samples of the
covariance parameters based on their best estimates and
uncertainty, and solving the inversion for each set of
parameters [e.g., Kitanidis, 1986].

2.4. Gauss-Newton Method

[17] In general, an iterative method is needed to find the
minimum of equation (11) with respect to the vector of
values 0. One efficient option is the Gauss-Newton algo-
rithm [e.g., Gill et al., 1986]. Starting from an initial
estimate of 0 denoted 0, the algorithm proceeds as

01 =0 — Fi 'y, (23)
where F is the expected value, with respect to z, of the
Hessian H of the likelihood function, H; and F; are as
defined in equations (19) and (22), g is a vector of the first
derivatives of the likelihood function Ly with respect to 0,

oLy 1 _ 1 T .
g./zaT)jngr[‘I’ '] =3 (z—Hs,) O GE (2 — Hs))

(24)

and the subscript £ in g and F means that they are
calculated using 6,. The indices take on the values i = 1,. . .,
pandj=1,..., p, where p is the total number of parameters
0 to be estimated. Note that g is calculated using the latest
estimate 0. In the special case where both R and Q are
linear in O, g, is a constant vector.

2.5. Method Validation

[18] In order to demonstrate and validate the proposed
method, sample applications are presented in the section 3.
For each case, once the covariance parameters and their
uncertainties have been estimated, the results are examined
by performing a standard Bayesian inversion (equations (2)
and (3)) using the estimated parameters. The residuals from
these inversions are analyzed to ensure that the method has
successfully identified covariance parameters consistent
with the statistical setup of the inversion.

[19] As discussed by Tarantola [1987], the squared resid-
uals from the inversions should follow a x? distribution. If
both R and Q are diagonal and the residuals are calculated
using the posterior best estimate of the flux distribution, the
sum of the squared data and flux residuals, normalized by
the variances in R and Q, should follow a Xz distribution
with n degrees of freedom [7arantola, 1987]. This results
from the fact that the residuals are not independent, and
there are only n degrees of freedom among the n + m
residuals for the case where the R and Q matrices are
diagonal. This criterion is applicable to the full set of
residuals, and cannot be applied directly to only flux or
observation residuals, or to residuals from individual sta-
tions or regions. Note that the covariance parameters are
treated as deterministic parameters in the inversion step, and
the number of covariance parameters therefore does not
affect the number of degrees of freedom of the residual >
distribution.
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[20] If, instead of using the best estimates of the fluxes,
the residuals from prior fluxes and observations are calcu-
lated using conditional realizations of the a posteriori fluxes
(see Appendix A), the residuals are expected to follow the
statistical distributions specified in the covariance matrices
R and Q. If these matrices are diagonal, this implies that the
residuals from the actual fluxes (and from the conditional
realizations) are expected to be independent. The conditional
realizations represent the range of possible flux distributions,
given the assumptions and data incorporated into the inver-
sion. For the case where residuals are expected to be inde-
pendent, the number of degrees of freedom is equal to the
number of residuals. Therefore the sum of the squared
residuals from individual conditional realizations, normal-
ized by the variances in R and Q, should follow a y*
distribution with n + m degrees of freedom. More
importantly, because the residuals should follow the
distributions specified in R and Q, which do not include
a cross-covariance between data and flux residuals, ob-
servation residuals can be analyzed separately from flux
residuals to determine whether both the observations and
the prior fluxes are reproduced to the extent assumed by
the parameters in the model-data mismatch and prior error
covariance matrices. In addition, residuals from individual
stations and/or regions can also be analyzed. Whether
residuals are calculated from the best estimate or condi-
tional realizations, the y? statistic (with the appropriate
number of degrees of freedom) should be equal to 1 in
the case of a sufficiently large number of observations.

[21] Once a conditional realization s; has been generated,
the x? statistic can be calculated both for the observations
and the prior flux estimates,

1
x2, =—(z — Hs,)"R™(z — Hs,;) (25)
” n

—5) Q7 (s — 5y), (26)

1
Xf,s = % (sCi

where 7, is the statistic for the full set of observations used
in the inversion, and Xf,s is the statistic for the full set of
fluxes estimated in the inversion. As mentioned earlier, a
x2 =1 statistic is not a sufficient condition for identifying
the optimal set of covariance parameters, but it is a necessary
condition. Therefore, although this statistic is not used in
estimating the covariance parameters, inversions using the
optimal parameter values should yield residuals with x; =1
[22] Similarly, a 7 statistic can be calculated for indi-
vidual stations and/or flux regions. Because we are classi-
fying observation locations and flux regions into a small
number of groups, we do not expect the x; for individual
stations or regions to be exactly equal to one. This is
because this setup yields a single variance for a subset of
stations/regions, whereas in reality these stations/regions
may exhibit slightly different error characteristics. Instead,
if we have grouped the observation locations and flux
regions in a manner that yields groups with similar charac-
teristics, we expect the Xf statistic for individual locations
and regions to be distributed around 1. As we allow for
more groups (i.e., more estimated covariance parameters)
the x; statistic of individual members of these groups will
cluster more closely around 1. The ; statistics for individ-
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Figure 2. NOAA CMDL cooperative air sampling network sites used in the analysis. Sites indicated in

blue and in green represent ship tracks.

ual locations (Xizi) and individual flux regions (Xisk) are
defined as

5 1

an,- = E (Zj — Hch,‘) TR;I (Zj — HjS”') (27)

1 _
Xz,sk = (Seik — sp,k)TQk ! (Seise — Sp ) (28)

where z; are the observations taken at a given location j, H;
is the transport matrix relating these observations to all
fluxes, R; is the portion of the model-data mismatch
covariance matrix relating to observations z;, s, are the flux
components for a given region k, s.;; and s, are the flux
conditional realization values and the prior flux estimates
for the same region, and Qy is the portion of the prior error
covariance matrix relating to fluxes s;.

3. Application to CO, Data

[23] The method is illustrated using monthly averaged
carbon dioxide data for 1996 through 2000, from 75 Climate
Monitoring and Diagnostics Laboratory (CMDL) coopera-
tive air sampling network sites (Figure 2). These data
represent a total of 2698 monthly averaged observations.
The earth is broken up into 22 flux regions (Figure 3),
according to the divisions used in the TransCom3 experi-
ment, an atmospheric transport inversion intercomparison
study [Gurney et al., 2002,2003, 2004]. The transport matrix
H was obtained by running month-long unit pulses originat-
ing from each region and in each month of the study period,
and recording the monthly averaged response at each sam-
pling time and location. The spatial flux patterns within

7 of

regions were based on work by Randerson et al. [1997] for
net ecosystem production (NEP), and Takahashi et al. [2002]
for net oceanic carbon exchange. The influence of fossil fuel
emissions, based on work by Brenkert [1998] and Andres et
al. [1996], was presubtracted from the measurements. This
setup is similar to that used in TransCom3 [Gurney et al.,
2002]. The transport model used was TM3 [Heimann, 1996]
run at 7.5° latitude by 10.0° longitude resolution, with nine
vertical levels spanning the surface to 10 hPa and a 3-hour
integration time step. The model was implemented with
National Center for Environmental Prediction (NCEP) wind-
fields corresponding to the modeled years. It is important to
note that the obtained covariance parameters are a function of
the particular setup, and are not necessarily representative of
optimal values to be used in significantly different inversion
setups. We recommend that researchers implement the ML
method with their particular data and setup in order to obtain
optimal values to be used in their own work.

3.1. Setup and Results

[24] In the presented applications, observation locations
and flux regions are grouped according to various char-
acteristics commonly thought to be indicative of their
relative uncertainty. This is done partly to limit the
number of parameters to be estimated, but, more impor-
tantly, to demonstrate that the method is able to identify
differences between various observation locations and
regions that we expect (from our conceptual understand-
ing of the problem) to behave differently. The number of
covariance parameters estimated in the presented exam-
ples ranges from 2 to 7, but a larger number of
parameters could be estimated if deemed necessary in
future studies.
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Figure 3. Definition of 22 Transcom3 regions on a 1° latitude by 1° longitude scale.

[25] Four different cases were considered. These cases are
designed to (1) demonstrate the applicability of the
derived method given different assumptions regarding
the uncertainty associated with measurements and flux
regions, (2) verify that the method can be used to
distinguish the covariance characteristics of different
groups of observations and/or flux regions, (3) verify
that the fluxes resulting from inversions incorporating
ML estimates of covariance parameters yield residuals
with the specified covariance structure, and (4) demon-
strate the versatility of the proposed method.

[26] In the first case, the uncertainty associated with all
measurements is assumed to be the same for all measure-
ment locations, and the uncertainty of the prior flux esti-
mates is assumed not to vary with flux regions. In the
second case, observations are grouped into marine boundary
layer sites, high elevation or desert sites, and all other
remaining (i.e., continental) sites, because such a distinction
is commonly thought to strongly contribute to the degree to
which measurements can be reproduced. Measurements
from marine boundary layer sites can typically be repro-
duced most closely, and high elevation and desert sites may
also exhibit lower model-data mismatch relative to other
continental sites. Regions in this and subsequent cases are
separated into land and ocean regions, because prior fluxes
for ocean regions are considered to be less uncertain than
those in land regions, and separating the regions in this way
allows the ML algorithm to potentially identify this feature.
In the third case, observation locations are separated into
five groups. Contrary to case 2, however, the distinction is
not based on specific physical characteristics of the loca-
tions. Instead the observation locations are separated in an
ad-hoc fashion based on the observed model-data mismatch
at those locations. In the fourth case, finally, the residual

standard deviation from a smooth curve of measurements
taken at individual locations is assumed to be indicative of
the expected model-data mismatch. Therefore, instead of
separating observation locations into a set number of groups
with a constant model-data mismatch variance for each
group, the relative variance for each observation location
is assumed to be proportional to the residual variance from a
smooth curve. The ML method is then used to solve for a
single scaling factor which determines the model-data
mismatch variance at each site.

[27] All cases presented here involve diagonal model-data
mismatch (R) and prior error (Q) covariance matrices.
Estimated covariance parameters are summarized in
Table 1. For all the presented cases, implementing an
inversion w1th the optlmlzed parameters resulted in an
overall sz and er of 1.0. This indicates that the ML
method yields covariance parameters that lead to fluxes and
modeled observations with overall variances that are exactly
consistent with the specified model-data mismatch and
prior error covariance parameters. As already outlined,
this is not the criterion used by the ML method to select
parameters, but simply a side-effect of identifying the
correct parameters.

3.1.1. Case 1 (Figure 4)

[28] The first case considered a single variance for the
model-data mismatch for all stations, and a second single
variance for the prior error for all regions. The model-data
mismatch standard deviation was determined to be
og = 1.63 £ 0.03 ppm, where the intervals represent
1 standard deviation. This error range is consistent with
typical values used in inversions. The overall prior error
standard dev1at10n was op = 2.17 £ 0.08 GtCl/yr.

[29] The sz statistic, broken down by individual stations
is presented in Figure 4 (top) and the er statistic broken
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Table 1. Estimated Covariance Parameters for Examined Cases”
Model-Data Mismatch by Station Prior Error by Region
Case Station Mismatch Region Prior Error
1 all stations oz =1.63 = 0.03 ppm All regions op = 2.17 £ 0.08 GtC/yr
2 marine boundary layer or =0.71 + 0.02 ppm ocean op = 1.07 £ 0.07 GtC/yr
high elevation and desert oz =1.49 + 0.06 ppm land 0o =2.02 +£0.12 GtC/yr
other og =3.16 £ 0.10 ppm
3 subset 1 oz =0.58 £ 0.01 ppm ocean oo = 1.21 £ 0.06 GtC/yr
subset 2 oz = 1.04 £ 0.04 ppm land op = 1.76 £ 0.10 GtC/yr
subset 3 or =191 + 0.07 ppm
subset 4 og = 4.36 £ 0.23 ppm
subset 5 og = 7.64 £ 0.72 ppm
4 all stations, weighted oz =0.11 £ 0.002 ppm ocean oo = 0.89 + 0.08 GtC/yr
t0 5.96 £ 0.13 ppm land

op =2.08 £ 0.15 GtC/yr

“Intervals represent 1 standard deviation.

down by individual regions is presented in Figure 4 (bot-
tom). As can be seen in the figure, the fact that measure-
ments taken at some stations cannot be reproduced as
precisely as those from certain other stations cannot be
captured by this simple setup. As a result, a few observation
stations, and especially Hungary (HUN), have a large

overall impact on the model-data mismatch variance, be-
cause they are much more difficult to reproduce relative to
other stations. Also, the Europe flux region deviates from its
prior flux estimate much more strongly than all other
regions. As will be seen in the other cases, however, this
effect disappears once certain stations such as HUN are
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Figure 4. The 7 statistics calculated from conditional realizations of the a posteriori fluxes resulting
from an inversion with covariance parameters optimized accordmg to case 1. (top) The X” for 1nd1v1dual

observation stations. (bottom) The er for individual

which is the mean x in both panels (across all stations or regions).

flux regions. The solid lines represent X7 = 1.0,
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Figure 5. The . statistics calculated from conditional realizations of the a posteriori fluxes resulting
from an inversion with covariance parameters optimized accordlng to case 2. (top) The sz for individual
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observatlon locations and flux regions accordmg to the definitions presented in case 2. The solid lines
represent 2 = 1.0, which is the mean 2 in both panels (across all stations or regions).

allowed to have higher model-data mismatch variances
relative to other stations. The covariance parameters esti-
mated using this simplest setup still guarantee that, on
average, measurements and prior flux estimates are repro-
duced to the degree prescribed by the covariance parameter.
This is evidenced by the fact that, in this and all subsequent
cases, lmplementmg an 1nver51on w1th the optimized param-
eters results in an overall X, » and er of 1.0.

3.1.2. Case 2 (Figure 5)

[30] The second case broke observation locations into
three groups: Marine boundary layer (MBL) sites, high
elevation or desert sites, and other sites. The flux regions
were separated into land regions and ocean regions. There-
fore setup 2 requ uired the estimation of a total of five
variances. The Xz, and X, s, Statistics for individual mea-
surement locations and regions, respectively, are presented
in Figure 5.

[31] One interesting thing to notice is that the ML
algorithm clearly recognizes that observations at marine
boundary layer stations can be reproduced with a higher
precision relative to non-MBL sites. In addition, the model-

data mismatch for high elevation and desert sites is lower
than that for other continental sites. The model-data mis-
match standard deviation for MBL sites estimated by the
ML routine and then incorporated into the R matrix is oz =
0.71 £ 0.02 ppm, whereas it was o = 1.49 + 0.06 ppm for
high elevation and desert sites, and oz = 3.16 = 0.10 ppm
for other non-MBL sites. This is consistent with both our
intuitive understanding of the problem and with past inver-
sion studies that have found that a higher variance needed to
be used for continental sites.

[32] Similarly, the ML algorithm assigned a higher prior
error to land flux regions relative to ocean regions. The prior
error standard deviation was oo = 2.02 £ 0.12 GtC/yr for
land regions, and op = 1.07 £ 0.07 GtC/yr for ocean
regions. Again, past inversion studies have also assigned
greater uncertainties to the land priors relative to ocean
priors. In this study, however, this conclusion is derived
directly from the available data. This confirms that the ML
method is able to identify and corroborate the common
assumption that land flux prior estimates are more uncertain
that ocean flux prior estimates.
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Figure 6. The Y statistics calculated from conditional realizations of the a poster10r1 fluxes resulting
from an inversion with covariance parameters optimized accordlng to case 3. (top) The sz for individual
observation stations. (bottom) The er for individual flux regions. Color codlng desrgnates grouping of
observation locations and flux regions according to the definitions presented in case 3. The solid lines
represent x2 = 1.0, which is the mean x?2 in both panels (across all stations or regions).

3.1.3. Case 3 (Figure 6)

[33] In case 3, observation locations were separated into
groups purely based on the model’s ability to reproduce
the observations Five different groups were formed. The
resulting sz and er statistics for individual measure-
ment locations and regions, respectively, are presented in
Figure 6, with the colors indicating the various groups.
The resulting model-data mismatch and prior error standard
deviations are presented in Table 1.

[34] This fourth case results in the sz and ers statistics
being most closely clustered around 1.0. "Part of this is due
to the fact that we are estimating the largest number of
parameters, getting closer to a case where each stations and
each regions would have its own variance, and where these
statistics would be expected to be very close to 1.0 for all
stations and regions. The second reason for this clustering is
that we are using the performance of the model itself to help
group observation locations, instead of relying exclusively
on our physical understanding of the problem. In such a

setup, sites for which we may expect lower errors due to
their physical locations may be assigned to groups with
higher errors, recognizing potential transport errors due to,
for instance, biased wind fields, incorrect assigned regional
flux patterns, and/or sampling error at coastal sites. In
practice, when applying this method, researchers can choose
how they want to group sites, whether they want to rely on
physical differences for classification, or allow the numer-
ical results to direct their choices.

3.1.4. Case 4 (Figure 7)

[35] In this last case (Figure 7), instead of breaking the
observation locations into groups and estimating a single
model-data mismatch variance for each group, each station
was assigned a scaling factor based on the average variance
between observations taken at that station and a smooth
curve fit. These constants were taken from results obtained
during the TransCom3 experiment, and were scaled by the
proportion of real data in the GLOBALVIEW-CO, [2000]
record [Gurney et al., 2003]. The ML routines were then
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used to derive a single proportionality constant that would
scale these variances to obtain an optimal overall model-
data mismatch for each site. The resulting model-data
mismatch covariance function was

Co2, 0 - 0
2
R— 0 Coyg, ’ (29
: .0
0 o0 Co%,

where ofq,i are the variances of the deviations of samples
taken at individual sites from a smooth curve fit, and C is
the single multiplicative factor that we will estimate using
the ML method. The R matrix still has dimensions n X n,
where 7 is the total number of samples considered, but the
values on the diagonal correspond to the residual variances
observed at the site where each observation was taken. The
prior error was broken into land and ocean groups, as in
cases 2 and 3. Note that this final case uses only 41 stations,
which are the subset of the examined 75 stations used here
which were also used in the TransCom3 annual-average
inversion study [Gurney et al., 2003]. This also means that
there are a total of 41 different variances that populate the
matrix in equation (29).

[36] The optimal value of the multiplicative factor was
found to be 0.80, with a standard deviation of 0.14,
indicating that residual standard deviations should be scaled
by a factor of 1/0.80 = 0.89 in order to, on average, represent
an, appropriate model-data mismatch. The sz and
er statistics for individual measurement locations and
regions, respectively, are presented in Figure 7. As can be
seen from the figure, classification based on the deviation
of the observations from a smooth curve is a much better
predictor of model-data mismatch relative to using a
constant variance for all stations (Figure 4). Better, in
thls case refers to the amount of scattermg of X%z and
X: s, around one, because the overall X” and er are 1.0
for both cases. This last case does not behave as well as
subdividing the stations into a moderate number of constant-
variance groups (Figure 6), however. For a few stations
(HUN, POC13, PSA, SHM in Figure 2) the model-data
mismatch appears to be significantly higher relative to the
variance of deviations from a smooth curve as compared to
other stations. This is not to say that the variance of the
deviation from a smooth curve could not be used as part of
the determinant of the relative variance expected at a site,
but it does indicate that this criterion may not be effective
if used as the only guiding principle.

[37] Whereas the model-data mismatch standard devia-
tions used in the TransCom3 annual inversion study [Gurney
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Figure 8. Examples of the effect of the four different covariance parameter cases on estimated fluxes
and their uncertainties. The circles represent the estimated average flux for 2000 for four Transcom
regions for the four examined cases. The bars represent the estimated standard deviations.

et al., 2003] ranged from 0.04 ppm (SYO) to 2.23 ppm
(ITN), depending on the residual standard deviation of
samples taken from individual sites from a smooth curve
fit, the current analysis suggests that, if all stations are
considered to have variances proportional to their residual
standard deviations, the model-data mismatch standard
deviations range from 0.11 ppm (SYO) to 5.96 ppm
(ITN). The stations with the maximum/minimum model-
data mismatch are consistent for these two studies because
all model-data mismatch standard deviations are determined
by multiplying the residual standard deviations of samples
taken at a given site by a constant factor. Overall, the model-
data mismatch variances inferred using the ML method are
higher relative to those used in the TransCom3 annual
inversions. This is likely due, at least in part, to the fact
that the Transcom study used smoothed Globalview data
[GLOBALVIEW-CO,, 2000] in their analysis, whereas the
current estimates were obtained using CO, flask data
directly. In addition, whereas the Transcom study was
focusing on annually averaged fluxes, we have instead
estimated monthly fluxes. Additional differences such as the
prior flux uncertainties, the selected transport models, and
the subsets of sampling sites used would also contribute to
this difference. Note also that, in the Transcom study, all
model-data mismatch standard deviations were ultimately
modified to be at least 0.25 ppm, whereas no such
adjustments were made here.

3.2. Effect on Flux Estimates

[38] The purpose of this work is to present a method for
estimating covariance matrix parameters used in Bayesian
inversions, and presenting detailed flux estimates for the
examined period falls outside the scope of this work.
However, given that each of the sets of covariance param-
eters is optimal for its respective setup, it is interesting to
examine the effect of the choice of covariance structure on
estimated fluxes.

[39] The choice of covariance parameter setup has an
effect on both the flux magnitudes and their estimated
uncertainties. The effect on the posterior covariance of the
fluxes is relatively straightforward. From equation (3), it
is apparent that once a transport model has been selected
(thereby fixing H), the covariance matrices fully deter-
mine the posterior covariance. What is more difficult to
ascertain is the effect on the best estimates of the fluxes.

Some of the key differences are illustrated in Figure 8.
This figure represents the total non-fossil-fuel flux and
uncertainty for the year 2000 for four of the 22 Transcom
regions. These estimates were obtained by summing the
monthly estimated fluxes for 2000. The uncertainties were
obtained by summing the appropriate elements of the
posterior covariance matrix, including off-diagonal tem-
poral correlation terms. The results for Temperate North
America are typical of relatively well-constrained land
regions. The different cases yield different total fluxes,
but these fluxes generally fall within the other cases’
confidence bounds. The results for South America are
typical of poorly constrained land regions. The different
cases have little effect on either the fluxes or their
uncertainties because the measurements contain little
information regarding these regions. The fluxes for
Europe show quite dramatic variation, most likely due
to how these four cases treat measurement from the
Hungary (HUN) observation site. Data from this site
are very difficult to reproduce as is also evidenced in
Figures 4 to 7. The fluxes for the North Atlantic are
typical of results for oceanic regions. The strongest
difference is between case 1, where land and ocean prior
fluxes are represented by a single error variance, and the
other cases, where prior estimates of fluxes over land are
assigned a different error variance than the oceanic prior
fluxes. In case 1, the prior error on ocean regions is
significantly higher relative to the other cases, yielding a
higher posterior uncertainty for these regions.

[40] The main conclusions for this analysis are that the
choice of covariance matrix setup, and not only the choice
of covariance parameter values, can have a strong effect on
estimated fluxes. Therefore expert knowledge must be used
to guide the selection of an inversion setup.

3.3. Discussion

[41] In all cases, the ML approach is able to estimate
covariance parameters that result in residuals that have the
variability specified in the covariance matrices (i.e., X2 = 1).
This had been the primary goal of previous attempts to
estimate covariance parameters. In addition, the method has
been demonstrated as a tool for estimating the overall and
relative variance associated with different stations and
regions. In all cases, the ML method results in covariance
parameters that are qualitatively consistent with our phys-
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ical understanding of the relative variance of observations
from various stations and fluxes from various regions. The
method goes beyond this qualitative assessment, however,
and quantifies the differing uncertainties associated with
individual stations and/or regions. In addition, the method
was demonstrated as being an effective guiding tool for
grouping observation locations into groups that behave
similarly. The method can also incorporate additional infor-
mation, such as standard deviations of observations from
smooth curve fits, into the estimation of covariance param-
eters. Last, the method provides uncertainty bounds on the
covariance parameters, which could allow for sensitivity
runs exploring the effect of covariance parameter uncertainty
on the estimated flux distributions.

[42] As expected and as can be seen from Table 1,
increasing the number of possible variance parameters
allows for individual groups of stations or regions to have
different behavior. When the grouping corresponds to real
differences in the model-data mismatch, the Xizf statistics of
individual stations are clustered more closely around 1.0, as
can be seen then comparing Figures 4 to 7. It appears
especially important to assign a different variance to stations
that are particularly difficult to match, such as Hungary
(HUN). Otherwise, as can be seen in Figure 4, these few
stations have too great an influence on the overall
covariance parameters, and as a result most stations have
X%,z, significantly below 1.

[43] Case 3 also demonstrated that one does not neces-
sarily need to separate stations based on our conceptual
understanding of the difference between various sites, but
can in fact let the model guide group selections, and thereby
identify sites that behave similarly, in terms of the degree to
which their observations can be reproduced given the
selected inversion setup.

[44] Case 4 demonstrated the possibility of using the ML
algorithm to solve for variance proportionality constants,
instead of solving for individual group variances. Future
studies could explore indices based on other physical
attributes, to determine whether they can predict variability
at given sites, and whether they can do this better relative to
binning sites into fixed-variance groups, as was done in
cases 1-3.

[45] Finally, as would be expected, the larger the
number of covariance parameters that are to be estimated,
the higher their uncertainty. This is a direct result of the
fact that, as the number of observation location groups
increases, there are fewer measurements to constrain the
covariance parameters of each individual group. Overall,
however, the uncertainty of the covariance parameters
appears quite small. It is important to note that this low
uncertainty is only valid if all the assumptions used in the
problem setup are valid. As is currently typical in flux
inversions we have assumed that model-data mismatch
errors are independent, as are the prior flux errors for
large regions. In addition, we have binned the covariance
parameters into a relatively small number of representa-
tive groups. Therefore the uncertainties on the covariance
parameters should be interpreted in the context of the
specific setup used here. If, for example, a different
model-data mismatch uncertainty were to be calculated
for each observation site, we would expect a higher
uncertainty on these parameters relative to the uncertainty
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on the covariance parameter averaged over several sites,
as was done here.

4. Conclusions

[46] The method presented in this paper uses a maximum
likelihood framework with available observations, prior flux
estimates and transport information to optimize the covari-
ance parameters needed in the solution of Bayesian inverse
problems used to estimate surface fluxes of atmospheric
trace gases. The method can also be applied to estimate the
uncertainty in these parameters. The strong influence and
critical importance of these parameters has been discussed
in many studies [Kaminski et al., 1999; Rayner et al., 1999;
Law et al., 2002; Peylin et al., 2002; Engelen et al., 2002].
Up to this point, however, no objective method was avail-
able to estimate these parameters from the available data
and guarantee that the resulting flux and observation resid-
uals would follow the assumed distribution.

[47] In addition to optimizing covariance parameters for a
given inversion setup, the method can also be used to
evaluate whether grouping certain measurement stations or
flux regions is justified given the available information. For
example, if stations are grouped according to whether or not
they constitute marine boundary layer sites, and the result-
ing model-data mismatch variances are different for the two
groups, this suggests that whether or not a station samples
marine boundary layer air is a predictor of the precision
with which the data can be reproduced.

[48] The examples presented in this paper were for
diagonal model-data mismatch and prior error covariance
matrices. The method can be directly applied, however, to
more complex covariance matrices, where correlation
lengths or other parameters must be estimated in addition
to variances. Such applications have been demonstrated
using the restricted maximum likelihood approach used in
geostatistical inverse modeling [Michalak et al., 2004].

[49] Note that we do not advocate researchers using the
model-data mismatch variances and prior error variances
derived in this work directly, because the optimal values
will depend not only on the data set used, but also on the
transport model, the defined flux regions, flux patterns
within regions, etc. Instead, we recommend that researchers
implement the maximum likelihood algorithm described in
this work in order to gain insight into covariance parameters
that are appropriate for their specific applications. The
examples presented in this work simply demonstrate the
applicability of the presented method to typical inversions.

[s0] Most importantly, in all the presented cases, the ML
method identified the most likely covariance parameter
values, given the selected inversion setup and covariance
matrix definitions. These variances are optimized solely
using the available data, transport information, and prior
flux estimates.

Appendix A: Generation of Conditional
Realizations

[s1] If the model-data mismatch and prior-flux error
covariance parameters are selected appropriately, residuals
calculated from conditional realizations of the a posteriori
fluxes will follow the distributions specified in Q and R.
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The method presented here generates equally likely condi-
tional realizations of the function s. The first step is to
generate an unconditional realization s,; of the unknown
function s from the prior covariance Q. Here the subscript u
indicates that the realization has not been conditioned on the
data, and the subscript i serves as a counter and a reminder
that there is an infinite number of possible realizations.
There are several methods for generating s,,, and the
method presented here is based on eigenvalue decomposi-
tion. In the general case,

s = V2, (A1)

where V is an (m X m) matrix containing the eigenvectors
of Q, N2 is an (m x m) diagonal matrix with the square
root of the eigenvalues of Q on the diagonal, and g is an
(m x 1) vector of normally distributed random numbers
with mean zero and variance one. For the case where Q is
a diagonal matrix, as is often the case in classical Bayesian
inverse modeling, the above equation simplifies to

Sui = Q1/2€S7 (AQ’)
where Q' is a diagonal matrix with the square root of the

prior error variances on the diagonal.
[52] The conditional realization is then obtained through

Sii =S, + 8, -+ QH' (HQH + R)7l (z+e. — Hs, — Hs,)

=§+s,+QH (HQH +R) ' (. — Hs,), (A3)

where the subscript ¢ refers to the fact that the realization
has been conditioned on the data z, and €, is an (n x 1)
vector sampled from the model-data mismatch covariance
matrix R, using the same method as was described in
equation (A1). The validity of this algorithm can easily be
demonstrated numerically by generating a large number of
conditional realizations and verifying that their statistics
(e.g., median and 95% confidence intervals) are identical to
those implied by § and Vi

[53] In addition, substituting the definition of §
(equation (2)) and using the definitions

z=Hs +e (A4)

s, =S + &, (A5)

the expected covariance of residuals from conditional
realizations can be shown to be

Sei — S Q O
ol i) 18 &)

verifying that, given appropriate covariance parameters, we
expect these residuals to be sampled from Q and R.

(A6)
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