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Effects of clock frequency stability on digital microwave
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[1] A new generation of digital microwave radiometer back ends replaces conventional
analog square‐law detectors with a high‐speed digital signal processing (DSP) stage to
enhance their performance. The enhancements can include frequency subbanding for
improved spectral resolution and mitigation of radio frequency interference, complex
cross‐correlation of orthogonally polarized signals for full Stokes polarimetry, and high‐
order moment (kurtosis) detection for improved radio frequency interference detect-
ability. In each of these cases, the quality of the performance enhancement can be
degraded by the nonideal realization of the desired DSP algorithm. In particular,
instability in the master clock, which times the cadence of the DSP stage, can affect
the performance. Analytical expressions are developed to model critical radiometer
performance criteria as functions of the clock frequency stability. Experimental results
are presented to validate the expressions. These results can be used to derive clock
frequency stability requirements for future digital microwave radiometers.
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1. Introduction
[2] Clocks perform a vital function in complex digital

systems. They pace all digital signal processing (DSP)
functions, including the initial sampling of the analog
signal. The quality of a clock can be described by its
frequency stability, which refers to its ability to maintain
a constant frequency. Frequency instability is usually
induced by thermal and shot noise, mechanical vibra-
tion, and temperature‐dependent parasitic reactances
[Gonzalez, 2007]. It can be periodic, random, or a
mixture of the two. Periodic variations in clock fre-
quency can cause harmonics and spurs in the output
spectrum, whereas random variations raise the noise floor
and broaden the desired spectral line. Either source of
instability can result in serious performance degradation
from intermodulation distortion and logic timing errors
[McCorquodale et al., 2003; Reinhardt, 2005]. Therefore,
clock frequency stability can be an important parameter
for determining the performance of digital systems.

General expressions that relate clock stability to particular
performance metrics of DSP functions that are performed
in radiometry are developed here. These expressions can
be used to determine the level of clock stability needed
to meet particular DSP performance requirements. This
can be especially useful in spaceflight and other low‐
power applications. Increased clock stability often comes
at the price of higher power, e.g., by more tightly con-
trolling oscillator temperature or by phase locking one
oscillator to another, more stable, master clock. The ex-
pressions developed here will help to determine the min-
imum clock stability, and hence the lowest power, needed
to meet particular DSP requirements.
[3] Conventional microwave radiometer receivers

typically consist of an analog front end stage, which
amplifies the antenna or calibration signal and sometimes
downconverts it to a lower carrier frequency, followed by
an analog back end stage, which rectifies and averages
the signal using a square‐law detector diode and video
amplifier/low‐pass filter [Skou and Le Vine, 2006]. The
detected video signal is then digitized. A digital radi-
ometer replaces the analog back end stage with a high‐
speed digitizer (typically clocked faster than twice the
predetection bandwidth of the radiometer signal), fol-
lowed by a DSP module. The DSP module can be either
a field‐programmable gate array (FPGA) or an applica-
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tion‐specific integrated circuit, depending on the speed
and power requirements of a particular radiometer.
[4] A number of microwave radiometers with digital

back ends have been built previously. Fully polarimetric
capabilities were added to a dual‐linear polarized con-
ventional radiometer by digitally cross correlating the
individual v‐ and h‐pol signals [Piepmeier and
Gasiewski, 2001]. The need for an analog frequency
down‐conversion stage was eliminated by digitizing a
radiometer’s RF signal at a subsampled clock rate and
using the resulting aliasing as a digital mixer [Fischman,
2001]. The detection of low‐level radio frequency
interference (RFI) was enabled by a digital high‐order
moment detector (kurtosis detector), and the RFI was
then mitigated by digital subband filters [Ruf et al.,
2006]. All of these features have recently been com-
bined into a single‐radiometer digital back end module.
The module, which is described in greater detail in the
following section, was developed as a proof‐of‐concept
design for a possible spaceborne digital microwave
radiometer. Its specific DSP algorithm is used as the
basis for the performance analysis results presented in
section 3. The module itself was also used, together with
a custom clock that is capable of operating with a vari-
able and controlled level of instability, in a series of tests

intended to demonstrate experimentally the effects of
clock instability. Those results are presented in section 4.

2. Description of Radiometer Digital Back
End Module
[5] The digital back end module is a two‐channel

digitizer and signal processor designed for use by an
L‐band microwave radiometer. It uses commercial com-
ponents, for all of which space‐qualified equivalents are
available. Two (v‐ and h‐pol) analog input signals are
digitized by a two‐channel 8‐bit analog‐to‐digital converter
(ADC) chip (National Semiconductor ADC08D1000).
The digitized signals are processed by a single Virtex II
FPGA, which performs all critical DSP functions. Figure 1
shows an overview of the data path and processing inside
the FPGA.
[6] The analog signals entering the ADC are filtered by

the analog front end of the radiometer to lie between
1401.75 and 1425.75 MHz. The digitizing rate, fs in
Figure 1, is 279.26 MHz. Immediately following the
ADC, the data rate is decimated by 4 to reduce the cal-
culation load on later stages while still meeting the Nyquist
sampling criterion. The high original sample frequency is
necessary because the minimum clock frequency of this

Figure 1. Radiometer digital back end signal processing flow.
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ADC is 200 MHz. Note that the sample frequency is still
well below the Nyquist rate dictated by the 1425.75‐MHz
highest‐frequency component of the signal; subsampling
the signal in this way effectively mixes it down from
1413.75 to ~34.9 MHz by controlled aliasing. It should be
noted that successful subsampling in this manner requires
that the analog input bandwidth of the ADC must be at
least as wide as the highest‐frequency component of the
signal to be digitized.
[7] The DSP‐intensive core of the FPGA begins with

two separate but identical sets of subband filter banks,
one set for each of the two polarization channels. Each
filter bank consists of 16 separate but equidistant sub-
band filters with equal 3‐dB bandwidths of 1.5 MHz.
Their outputs are decimated (subsampled) by a factor of
16 to further reduce the data rate of signals exiting each
subband. The output data rate of each subband filter is
4.36 MS/s, which is well above their 3.0‐MHz Nyquist
rate.
[8] The data from each subband filter are fed into

digital I/Q demodulators. The quadrature (Q) component
is produced by passing the input signal through a finite
impulse response (FIR) filter implementation of the
Hilbert transform, while the in‐phase (I) component is
simply a time‐delayed version of the input signal delayed
by an appropriate amount to stay synchronized with the
Q output. An ideal Hilbert transform provides a phase
shift of +90° for positive frequencies and −90° for neg-
ative frequencies. It accepts a single real‐valued input
signal and produces a complex (I, Q) output signal. The
complex version of the Nyquist sampling theorem states
that each of the I and Q signals can be sampled at a
frequency that is equal to the bandwidth of the real‐
valued input signal without loss of information (as
opposed to sampling the input signal itself at twice its
bandwidth). For this reason, the I and Q signals are
decimated by a factor of 2 without loss of information.
This helps reduce the data rate of subsequent DSP stages.
The complex correlation between the v‐ and h‐pol sig-
nals in each subband is computed by multiplying all
possible pairs of I and Q components of one polarization
with those of the other. The products are then averaged
(accumulated) for an integration period.
[9] In parallel with the Hilbert transform filters, the

data from each subband filter are also fed into moment
calculators. The first, second, third, and fourth moments
of the digitized data are computed by raising the signal to
each of these powers and then averaging (accumulating)
for an integration period. The second moment is essen-
tially a digital version of the analog square‐law detector
used in conventional microwave radiometers. The lowest
four moments can be combined together to compute the

kurtosis of the signal, with which the presence of low‐
level RFI can be detected.

3. Theoretical Models for the Impact of
Clock Noise

3.1. Clock Noise Model

[10] The output of an ideal clock can be expressed as a
sine wave with constant amplitude, carrier frequency, and
phase reference. Its spectrum is an impulse at the carrier
frequency. For a practical (nonideal) clock, the output is
more generally given by [Hajimiri and Lee, 1999]

v tð Þ ¼ V0 1þ n tð Þ½ � cos 2�f0t þ � tð Þ½ � ð1Þ
where V0 is the maximum voltage swing, n(t) is ampli-
tude fluctuation, f0 is the center frequency, and �(t) is the
phase fluctuation of the signal. V0 and f0 represent the
shape of the ideal clock output waveform. The spectrum
of a practical clock has sidebands close to the center
frequency, f0, and to its harmonics. The sidebands are
generally referred to as phase noise in the frequency
domain.
[11] Because of amplitude‐limiting effects, the ampli-

tude noise in an oscillator output is significantly reduced
and can generally be ignored [Hajimiri and Lee, 1999].
Furthermore, because phase fluctuations can produce a
random frequency, which is the derivative of the random
phase fluctuation with respect to time, the phase fluctu-
ation �(t) can instead be represented by a frequency
modulated component, or

v tð Þ ¼ V0 cos 2�f0t þ 2�fD

Z t

0

x �ð Þd�
2
4

3
5 ð2Þ

where fD represents the maximum frequency shift away
from f0 in one direction and x(t) is the frequency mod-
ulating signal. Equation (2) assumes that x(t) is limited to
the range ±1. The signal x(t) is usually a random signal
and represents frequency modulation noise in the oscil-
lator. However, it might also contain a deterministic
component. For example, an unwanted nonrandom signal
might leak into an oscillator circuit or a signal might be
added intentionally. In this article, we intentionally
introduce sinusoidal frequency modulation signals, x(t),
into a modified clock circuit to investigate their effect on
digital radiometer performance.
[12] Using the clock model described by equation (2),

the clock frequency stability can be defined as

�f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 �ð Þh i

p
fD

f0
ð3Þ
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where h·i denotes expectation in the case of a random
signal and the average over one period in the case of a
sinusoidal signal.

3.2. Linear Tap Delay Line Filter Response to Clock
Noise

[13] The digital back end includes a bank of FIR filters
that divide the complete signal bandwidth into narrow
subbands. Each of the subband filters can be represented
as [Oppenheim et al., 1983]

H zð Þ ¼
XN
n¼0

bnz
�n ð4aÞ

and its Fourier transform is

H ejW
� � ¼ XN

n¼0

bne
�jnW ð4bÞ

where {bn ∣ n = 0, 1, …, N} is the set of the filter
coefficients and W is the normalized frequency. Each
individual subband filter has its own set of coefficients.
[14] Instability in the clock frequency can cause var-

iations in the sample frequency, the bandwidth, and the
center frequency of the subband filters. It results in a
band‐pass filter “shaking” in the frequency domain. A
signal in the rejection region of a filter will have more
chance to enter the passband of the filter. The degree of
leakage will depend on the statistical distribution of the
clock frequency.
[15] To simplify the analysis, we normalize the fre-

quency of the input signal to that of the sample frequency.
For example, for a sinusoidal input signal with frequency f,
its normalized frequency after down‐sampling will be

W ¼ f

fs=4
� N

¼ 4f

fck
� N

¼ 4f

fck;0 þ fd
� N

ð5Þ

where N is the down‐sampling factor, fck,0 is the nominal
clock frequency, and fd is the frequency deviation of the
clock. For the digital back end module considered here,
N = 20. The instantaneous clock frequency is referred to
as fck,m, and the instantaneous frequency deviation is fd,m
(= fck,m − fd,m). The frequency response of the subband
filter stage, including the effects of instantaneous changes
in clock frequency, will be given by

HðejWmÞ ¼
XN
n ¼ 0

bn exp �jnWmf g

¼
XN
n ¼ 0

bn exp �jn
4f

fck;0 þ fd;m
� N

� �� �

ð6Þ
The output power of the subband FIR filter is determined
as the expected value of the filter response, weighted with
respect to the probability distribution of the clock fre-
quency deviation. The final expression is given by

Ptj fð Þ ¼
Z

H ejWm
� �		 		2p fdð Þdfd

¼
Z XN

n¼0

bn exp �jn
4f

fck;0 þ fd
� N

� �� �					
					
2

p fdð Þdfd
ð7Þ

Figure 2. (a) Impulse response and (b) frequency
response of the 27‐tap Hilbert transform filter used in
the digital radiometer back end.
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The solution to equation (7) can be obtained numerically.
Using this approach, the out‐of‐band rejection of the
subband filter can be characterized if the statistical distri-
bution of the clock frequency is known.

3.3. Complex Correlation Response to Clock Noise

[16] An ADC is a device that converts continuous sig-
nals to discrete digitals at a rate set by its clock, and it can
be treated as a mixer in analog circuits except that the
output of the ADC is discrete. The spectrum of the con-
tinuous signal differs from that of discrete samples in that
the discrete sample spectrum is periodic with a frequency
fs, the sample frequency. If the ADC clock is not stable, the
spectrum of the ADC output is broadened, and aliasing is
induced. The width of the spectrum and aliasing increases
with increased instability of the ADC clock.
[17] The band‐pass filters in each subband are flat in

magnitude and linear in phase. Therefore, they will not
change the correlation coefficient of the signals if the
signals are within the passband. The output of the band‐
pass filter is split into two paths. One path is simply de-
layed and is used as the real part of the signal, whereas the
other is passed through a Hilbert transform filter to form
the imaginary part of the signal. The impulse response
corresponding to an ideal Hilbert transform filter in the
frequency domain is odd‐symmetric, and it has interleaved
zeros. Because there is a step function in the frequency
domain at DC, the impulse response in the time domain is
infinite. When realized in practice, the impulse response
must be truncated to a finite length. For example, the
digital radiometer considered here uses is a 27‐tap
approximation. Its impulse response is shown in Figure 2a
and its frequency response is shown in Figure 2b.
[18] As Figure 2b shows, the phase response of the

truncated Hilbert transform filter is ideal, but its magni-
tude response is rippled in the frequency domain. It is
this ripple that can cause magnitude imbalances between
the in‐phase and quadrature components of the signal
when the clock is not stable. Variations in the magnitude
imbalance, due to clock noise, can lead to the changes in
the complex correlation.
[19] The impact of clock noise on the complex corre-

lation can be assessed by considering the case of a
sinusoidal radiometer input signal. Assume the input
signal to the radiometer digital back end is sinusoidal
with frequency, f, and phase angle, ’, between the v‐ and
h‐pol inputs. The I and Q filter outputs represent the real
and imaginary components, respectively, of the complex
signals to be correlated. They can be expressed as

� ¼ cos 2�ftð Þ þ j H fð Þj jF sin 2�ftð Þ ð8aÞ

� ¼ cos 2�ft þ ’ð Þ þ j H fð Þj jF sin 2�ft þ ’ð Þ ð8bÞ

where x and h are the complex signals in the v‐ and h‐pol
channels, F is a scale factor representing the amplitude
balance (or gain balance) between I and Q filters (F = 1
with an ideal Hilbert transform filter), and it is the ratio of
the I channel gain to the Q channel gain. In the plots of
theoretical prediction shown later, the value of F is cal-
culated assuming a stable clock. The function H(f) is the
frequency response of the Hilbert transform filter. After
leaving the I and Q filters, the complex signals are cross‐
correlated (i.e., multiplied and averaged). The normalized
complex correlation coefficient between the v‐ and h‐pol
signals is given by

� ¼
��*

D E
ffiffiffiffiffiffiffiffiffiffiffiffiffi
��*

D Er
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��*

D Er

¼ cos ’ð Þ � j
2 H Wð Þj jh iF

1þ H Wð Þj j2
D E

F2
sin ’ð Þ

ð9Þ

where h·i denotes a time average and W, the normalized
frequency after down‐sampling, is given by equation (5).
[20] If the magnitude of the frequency response of the

Hilbert transform filter is ideal, or flat, the product of
h∣H(f)∣i and the scale factor F will be 1 and equation (9)
reduces to

� ¼ cos ’ð Þ � j sin ’ð Þ ð10Þ
In this case, the phase of the complex correlation coeffi-
cient is ’ and the magnitude is unity, independent of ’.
On the other hand, if the Hilbert transform filter is not
ideal and the magnitude of its frequency response is not
constant versus frequency, then the factor h∣H(W)∣iF will
not equal 1 and will vary with frequency. In this case, we
have (see Appendix for proof)

2 H Wð Þj jh iF
1þ H Wð Þj j2

D E
F2

6¼ 1 ð11Þ

If the inequality in equation (11) holds, then a more
general expression for the magnitude and phase of the
complex correlation coefficient is given by

�j j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2 ’ð Þ þ 2 H Wð Þj jh iF

1þ H Wð Þj j2
D E

F2

2
4

3
5
2

sin2 ’ð Þ

vuuut

ð12aÞ

ff� ¼ � arctan
2 H Wð Þj jh iF

1þ H Wð Þj j2
D E

F2
tan ’ð Þ

8<
:

9=
; ð12bÞ
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Comparing equations (10) and (12), the change of the
complex correlation coefficient is given by

D �j j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2 ’ð Þ þ C2 sin2 ’ð Þ

q
� 1 ð13aÞ

Dff� ¼ � arctan C tan ’ð Þf g þ ’ ð13bÞ

where C is a factor given by

C ¼ 2 H Wð Þj jh iF
1þ H Wð Þj j2

D E
F2

ð14Þ

The sensitivity to clock noise of the errors in magnitude
and phase of the complex correlation coefficient will vary,
depending on the phase angle itself. This can be seen by
examining the derivative of equation (13) with respect to
phase angle. Maximum sensitivity to noise occurs when
the phase angle satisfies

sin 2’p;mag

� � ¼ 0 and sin 2’p;mag

� � 6¼ 0 ð15aÞ

sin2 ’p;pha

� � ¼ 1

1þ C
ð15bÞ

where ’p,mag is the phase angle at which the magnitude of
the complex correlation coefficient is most sensitive to
clock noise and ’p,pha is the phase angle at which the
phase of the complex correlation coefficient is most sen-
sitive. Over the range [−180, 180], the solution for ’p,mag

is ±90°. For ’p,pha, there are four solutions, given by

’p;pha ¼ � arcsin
1ffiffiffiffiffiffiffiffiffiffiffiffi

1þ C
p

� �
and

’p;pha ¼ � arcsin
1ffiffiffiffiffiffiffiffiffiffiffiffi

1þ C
p

� �
þ 90�


 � ð16Þ

Assuming the clock frequency instability is not serious, C
will be close to 1, and the solutions for ’p,pha are ±45° and
±135°.
[21] To illustrate the effect of clock frequency insta-

bility on the correlation measurements, two numerical
examples are considered. The first example assumes that
the clock frequency is varied sinusoidally; the second
example assumes that the clock frequency is varied in a
random Gaussian manner. The correlation coefficient
magnitude and phase variations with clock frequency
instability are shown in Figure 3. From these plots, it can
be seen that the sensitivity of the correlation coefficient is
indeed related to the phase angle of the correlation. If the
input phase angle is equal to 0° or 180°, the sensitivity is

0; otherwise, the correlation coefficient magnitude has
the highest sensitivity at input phase angle 90° (also at
−90°; not shown in Figure 3), whereas the correlation
coefficient phase has the highest sensitivity near 45° and
135° (also at −45° and −135°; not shown here).
[22] Note that, with sinusoidal perturbations in clock

frequency, the sensitivity of the correlation coefficient
has two local maxima as the RMS clock instability is
increased, whereas with random Gaussian perturbations
the sensitivity grows monotonically with RMS clock
noise. This is due to the distribution of the clock fre-
quency in the sinusoidal case. In both cases, however, the
phase angles at which sensitivity to noise is maximum
are the same and are as predicted by equations (15) and
(16).

4. Experimental Validation
[23] A test system was developed to evaluate the sen-

sitivity of the digital radiometer back end to clock fre-
quency instability. An HP 8656B signal generator served
as the clock; its capability for modulation can be used to
generate controlled levels and types of clock noise.
Sinusoidal clock instability is generated using the internal
1‐kHz modulation option of the signal generator. Random
Gaussian clock instability is generated using the signal
generator’s external modulation option. In this case, the
external modulation signal is supplied by an arbitrary
waveform generator programmed to produce band‐limited
white Gaussian noise. For both modulation signals, the
maximum frequency deviation value (fD in equation (1))
can be varied to change the RMS level of the clock fre-
quency instability.
[24] A second signal generator is used to produce a

sine wave as the radiometer input signal. Its frequency is
centered on 1 of the 16 subbands of the digital radiom-
eter. The sine wave is split into two paths by a power
divider to form the v‐ and h‐pol input signals. The RF
cables connecting the power divider to the radiometer
have equal lengths so that the v‐ and h‐pol signals are in‐
phase. Tests were also performed with varying relative
lengths of the two RF cables to verify the sensitivity
dependence on the input phase angle of the signals.

4.1. Out‐of‐Band Rejection Sensitivity to Clock
Noise

[25] The out‐of‐band rejection of the digital band‐pass
filters was tested using as an input signal a sinusoid
positioned 1.5 MHz from the center of the filter (which
also has a 1.5‐MHz 3‐dB bandwidth). Nominal out‐of‐
band rejection, relative to the response at band center, is
approximately 24 dB when no intentional clock noise is
added. Increasing levels of clock noise were then added,
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and the resulting out‐of‐band rejection was measured and
compared with the theoretical predictions given by
equation (12). The results are shown in Figure 4 for both
sinusoidal and random Gaussian cases of clock modu-
lation. In both cases, the degradation in out‐of‐band
rejection is seen to grow with clock noise and to closely
follow the theoretical predictions based on equation (12).
Note, however, that there is a consistent offset between
theory and measurements, with the measured filter per-
formance consistently a little worse than predicted. This
is likely due to the noise that is already present in the
clock when no additional clock modulation has been
added by us. The RMS clock frequency stability noted in
Figure 4 only represents the noise due to our external
modulation of the clock.

4.2. Correlation Coefficient Sensitivity to Clock
Noise

[26] The magnitude and phase of the correlation coef-
ficient measured by the digital complex correlator were
tested using as input signals a pair of sinusoids positioned
at the center of one of the band‐pass filters’ passbands.
The relative phase of the two sinusoids (entering the v‐ and
h‐pol channels of the radiometer) was set to 10°, 51°, and
96° by varying RF cable lengths between the signal source
and the radiometer. Increasing levels of clock noise
were then added, and the measured changes in magni-
tude and phase of the complex correlation coefficient
were compared with the theoretical predictions given by
equation (13). The results are shown in Figures 5 and 6 for
the magnitude and phase, respectively. In each case, the

Figure 3. Variation of component of correlation coefficient with type of jitter: (a) magnitude
with sinusoidal clock frequency, (b) phase with sinusoidal clock frequency, (c) magnitude with ran-
dom clock frequency (Gaussian), and (d) phase with random clock frequency (Gaussian).
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change in correlation magnitude and phase grows with
clock noise and closely follows the theoretical predictions.
Note that the measured sensitivity to clock noise does
depend strongly on the relative phase of the v‐ and h‐pol
input signals, as predicted by equation (13). Overall, the
correlation magnitude is seen to be much more strongly
affected by clock noise. The impact of clock noise on the
correlation phase is sufficiently small (<0.05° for all cases
considered here) that the 0.01° standard error in the phase
measurements (because of the finite number of samples
accumulated in each integration period) introduces
noticeable scatter in the plots in Figure 6. Nonetheless, the

correlation phase measurements do also confirm the
dependence of sensitivity to noise on the phase of the input
signals.

5. Conclusions
[27] Analytical expressions have been developed to

relate several critical performance criteria of a microwave
radiometer digital back end to the RMS instability of the

Figure 4. Out‐of‐band rejection of a digital band‐pass
filter with (a) sinusoidal and (b) random Gaussian clock
noise.

Figure 5. Variation of correlation coefficient of magni-
tude with (a) sinusoidal and (b) random Gaussian clock
noise. The magnitude is largely insensitive to clock noise
for input signal phase angles near 0° and has maximum
sensitivity for input signal phase angle near 90°.
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digital clock that times the signal processing operations
performed. A general expression for the effect of clock
noise on a linear‐tap delay line filter is presented, and
then the special case of a band‐pass filter is considered.
The out‐of‐band rejection of the filter is shown to
degrade as the clock noise increases. Expressions are also

developed for the change in magnitude and phase of a
digital complex correlator as a function of the clock
noise. The change is found to depend strongly on the
phase of the correlation. For both the magnitude and
phase, sensitivity to clock noise is smallest at phase an-
gles of 0° and 180°. In the case of the magnitude, the
sensitivity to noise is greatest at phase angles of −90° and
90°. In the case of the phase, the sensitivity to noise is
greatest at phase angles of ±45° and ±135°.
[28] The analytical expressions relating clock noise to

performance have been validated experimentally using
an L‐band digital radiometer with a digital clock that has
been modified so that its noise level can be varied in a
controlled way. Deterioration of the band‐pass filter
response and the complex correlation with clock noise
level and, in the case of the complex correlation, with
the correlation phase all closely match the theoretical
predictions.
[29] The results presented here can be used as the basis

for deriving stability requirements on the digital clock
used in a digital microwave radiometer. A specific RMS
stability requirement would follow from the performance
requirements levied on the back end DSP stage of the
radiometer. On the basis of the results presented here,
with a particular digital radiometer design, an RMS clock
stability of 10−5 or better is found to result in no sig-
nificant degradation in performance. Designs with sig-
nificantly higher clock rates or with significantly larger
numbers of bits of quantization could be more sensitive
to clock noise, so the general sensitivity expressions
developed here should be re‐evaluated for that particular
design.

Appendix A
[30] Assume that the following equation holds, or

2 H Wð Þj jh iF
1þ H Wð Þj j2

D E
F2

¼ 1 ðA1Þ

Because F is real and constant, it can be moved inside the
operation ∣·∣. Then the above equation becomes

H Wð ÞFj j2
D E

� 2 H Wð ÞFj jh i þ 1 ¼ 0 ðA2Þ

or

H Wð ÞFj j � 1½ �2
D E

¼ 0 ðA3Þ

The equation holds only if the following equation holds

H Wð ÞFj j ¼ 1 ðA4Þ

Figure 6. Variation of correlation coefficient phase
with (a) sinusoidal and (b) random Gaussian clock noise.
The phase is largely insensitive to clock noise for input
signal phase angles near 0°and 90° and has maximum
sensitivity for input signal phase angle near 45°. How-
ever, in all cases, the absolute magnitude of the phase
error is quite small, measuring less than 0.05° for the
worst case. Scatter in the measured correlation phase in
the figure is due to measurement error, which had a stan-
dard deviation of 0.01°.
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Because F is real and constant, the magnitude of H(W)
should be constant and will not be a function of W;
otherwise, equation (A1) cannot be hold.

[31] Acknowledgments. The work reported here was supported
in part by the NASA Goddard Space Flight Center and its Earth Science
Technology Office under grants NNG05GB08G and NNG05GL97G.
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