
GEOPHYSICAL RESEARCH LETTERS, VOL. 16, NO. 4, PAGES 275-278, APRIL 1989 

A NEW METHOD FOR DETERMINING THE LONG-PERIOD COMPONENT 

OF THE SOURCE TIME FUNCTION OF LARGE EARTHQUAKES 

Jiajun Zhang and Thorne Lay 

Department of Geological Sciences, The University of Michigan 

Abstract. Inversions of seismic body waves indicate that most 
large earthquakes involve spatial and temporal heterogeneity of 
the moment release, but seismic body waves usually lack 
sufficient bandwidth to constrain the long-period component of 
the radiation. Analysis of long-period surface waves and free 
oscillations can constrain the overall source duration and 

moment; however, most procedures assume simple trapezoidal or 
boxcar source-time histories, inconsistent with the body wave 
complexity. We find that source-time function complexity can 
affect long-period surface waves sufficiently to impact estimates 
of the source moment tensor, rupture duration and centroid depth. 
We present a procedure to objectively determine the long-period 
component of complex source-time functions in which we 
directly utilize results from body wave analysis. The method is 
applied to two great normal fault events of June 22, 1977 
(Tonga, M,,=8.2) and August 19, 1977 (Indonesia, M,,=8.5). 
Standard long period analysis procedures underestimate the total 
slip duration in both cases. The overall source process times of 
both earthquakes are longer than 120 s. 

Introduction 

Investigation of large earthquake ruptures provides important 
information on the physical processes occurring at plate boun- 
daries. Detailed seismic body wave inversions indicate that most 
events consist of several subevents which represent temporal and 
spatial inhomogeneities of the moment release during the rupture 
process [e.g., Schwartz and Ruff, 1985; Hartzell and Heaton, 
1985; Kikuchi and Fukao, 1987]. The resulting complex source 
time functions are often interpreted as reflecting variation in slip 
on the fault, or fluctuations in areal expansion rate of the rupture 
from. Since the signal wavelengths used in body wave analysis 
are relatively short, the details of fault rupture or source com- 
plexity can be well determined. However, for very large earth- 
quakes with moment magnitudes greater than about M,,=8.0, the 
body waves usually lack sufficient bandwidth to resolve the total' 
source duration and moment release so there is significant ambi- 
guity in inferring the slip distribution. To determine the long- 
period component or overall characteristics of the source process 
of large earthquakes, long-period seismic waves (with periods 
greater than 100 s) must be used. Since long-period surface 
waves and free oscillations provide better resolution of the 
overall faulting process, the moments and source durations from 
such analyses are usually combined with the body wave results 
to interpret the source process. However, this is seldom done in 
a self-consistent fashion. 

Our insufficient knowledge of propagation effects on short- 
period surface waves prevents complete resolution of earthquake 
source process using surface wave data alone. As a result, most 
long period analyses assume simple moment-rate function param- 
eterizations in the form of boxcars (i.e. ramp dislocation 
functions) or trapezoids (i.e. Haskell source models), regardless 
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of any complexities required by the body wave radiation [e.g., 
Kanamori and Given, 1981; Dziewonski and Woodhouse, 1983]. 
This is valid for small events with rupture durations much shorter 
than the periods of the waves being analyzed, but for great 
events this assumption must be appraised. Yet only a few pro- 
cedures have been introduced to analyze the body wave and sur- 
face wave data jointly [e.g., EkstriSm and Dziewonski, 1986], and 
typically the results from the different wave types are combined 
in an ad hoc fashion by smoothly adding the missing long-period 
moment to the body wave source function over a specified dura- 
tion [Kikuchi and Fukao, 1987; Beck and Ruff, 1987]. 

The determination of source depth from seismic waves 
requires an accurate description of the source-time function. The 
tradeoffs between depth and time function are severe when using 
waves with a narrow bandwidth. In this paper we will present a 
procedure for incorporating the results of body wave analysis of 
moment-rate function complexity into the inversion of long- 
period surface waves for the overall source process. The intro- 
duction of the source complexity into the inversion improves the 
accuracy of the source-finiteness correction to the long-period 
complex spectra, which is critical for the determination of the 
low-frequency characteristics of the seismic source. By applica- 
tion of this method to two great earthquakes we will show that 
not only do we obtain an internally consistent broadband source 
function, but we also find significantly different values of source 
depth, total moment and source duration compared with standard 
inversions. 

Procedure 

We use the basic moment tensor inversion approach developed 
for surface waves by Kanamori and Given [1981] as modified to 
a two-step inversion algorithm by Zhang and Kanamori [1988a,b 
(hereinafter referred to as ZKa and ZKb, respectively)]. The data 
are the digital seismograms recorded by the Global Digital 
Seismograph Network (GDSN) and International Deployment of 
Accelerometers (IDA) networks. The complex spectra of vertical 
component seismograms of Rayleigh waves of periods from 150 
to 300 s are used. Propagation corrections for travel times are 
made using the laterally heterogeneous earth model (M84C) 
obtained by Woodhouse and Dziewonski [1984], and the ampli- 
tudes are corrected for the Q model obtained by Dziewonski and 
Steim [1982]. First, we invert the spectra of a given period by 
solving the following system for a step-function point source of a 
moment tensor [ZKb]: 

• o = v (•) 

where D is the solution vector involving products of the moment 
tensor elements and corresponding excitation functions, and V 
the data vector calculated from the observed spectra vector by 
correcting for the effects of propagation, instrument response, 
and an assumed source finiteness model. Equation (1) is solved 
by least squares, and the weighted RMS error, which measures 
the misfit between the data and the given source finiteness model, 
is given by o(co) = e(co)[Z I/•i (to) 12 / N] 1/2, where e(co) is the RMS 

,, t 

error in solving (1), Ri(co) is the effect of the finiteness due to the 
given model, and N is the number of records used in the inver- 
sion. Since the RMS error depends on the source finiteness 
model used to correct the observed spectra, the first step is to 
isolate the source fmiteness effect. 

275 



27 6 Zhang and Lay: Earthquake Source Time Function 

The second step is to search for the best depth and determine 
the moment tensor by solving the following system [ZKb]' 

r a4 = ^ (2) 

where F is a matrix of excitation coefficients for a given source 
depth and earth model, M is the solution vector representing a 
moment tensor, and vector A is a stack of vector D's obtained by 
solving (1) at several periods using a given model of the 
moment-rate function. A has 5K elements; K is the number of 

periods. We solve (2) by least squares and find the depth that 
minimizes the non-dimensional error: p = [pipi] m, where the 
summation convention is used and pi=(Ai - 3,i)/(A rA) m 
(i=1 ..... n) with n=5K. Here Ai and 3,i are the observed and 
predicted components of vector A in (2). Ideally, we would find 
minima for p and o for identical complex source parameter com- 
binations; however, limitations intrinsic to long-period surface 
waves require that constraints from body waves be used in the 
analysis. 

The temporal variation of the source is usually represented by 
a point source with a synchronous moment-rate tensor M(t): 

M•i = f (t) • l•ii, (i ,j = 1,2,3) (3) 
(in Cartesian tensor notation eve•where in this paper), where 
f (t) is the moment-rate function, M is a real constant tensor of 
unit Euclidean norm (/0o/•o=1). For an arbitrary moment tensor 
source that varies as a step function in time, f (t) is a delta 
function. Using the notation of Silver and Jordan [1982], 
M(to)=q•Mr(to)•(to), it follows that their total moment, 
Mr(tO)= If(tO)l, and unit tensor, l•l(tO)=l• exp[i•(tO)] (of(tO) 
=If (tO)I exp[i •(tO)] denotes the Fourier transform of f (t)). 

Usually, the source finiteness corrections are made assuming a 
boxcar or trapezoid for the moment-rate function. We will adopt 
a more general parameterization so that the source model is con- 
sistent with body waves. In this parameterization, the complexity 
in the shape of the moment-rate function is represented using a 
composite of half-sine functions: rli (t) = (•r/2)rI0(t)sin[•r(t-ti)/xi ], 
where ti and x• are subevent start time and process time, and 
YIo(t) = [H (t-ti)-H (t-ti--xi)]/xi is a boxcar function. Using a 
series of these half-sine functions, each with its own start time, 
t•, and process time, x•, we construct various models of 
moment-rate functions, which allow for a moment-rate function 
consistent with body wave radiation to be included. Typically, 
the parameters to be determined are the relative moment and pro- 
cess time of the long-period component of the source process. 
The total process time, x, which represents the entire interval of 
source radiation, is distinct from the apparent source duration 
which we define as 

t• = y•-m•x lt• f (t ) dt (4) 
where f (t) has the height fraax and is time-limited within the 
interval of integration defined by the start time ti and x. t• is the 
base of a rectangle with height fmax and area equal to the area of 
the f (t) curve, thus it is always less than x except for a boxcar 
function. 

For simplicity, we call the integral in (4) the seismic moment 
M0:M0 = f m•x t•, which is the static moment or zero-frequency 
total moment, M•---Mr(O), of Silver and Jordan [1982]. If 1(/1 is 
deviatoric, there exists Mouoc > Mo > Moaoc, where M0uoc and 
M o•oc are the seismic moments of the major double couple [Gil- 
bert, 1980] and best double couple [Dziewonski and Woodhouse, 
1983], respectively. If 19I is almost a double couple, then Mo•oc 
is much closer to Mo than M ouoc (Mo - Mosoc << Mouoc - Mo). 
The solution vector in (2), M, represents the moment tensor 
ß t0, 

The centroid and variance of f (t) are often used to measure 
the fmiteness of the source process. The centroid time is given 

by tc=1/Moltt•'•f(t)tdt, and the variance time or characteristic 
time [Silver and Jordan, 1983] is given by 'C•=[4/Moltt•+•f(t) 

(t- tc)2dt] m. rs, t c , and % correspond to polynomial moments 
of order 0, 1 and 2 of f (t), respectively. For a Haskell source, 
which is a point source characterized by a rise time tR and rup- 
ture time t I , f (t) is a trapezoid with t• = tR + tl, x = 2 t• + t s , 
tc = t• + t•/2, and % = [(t•2+t•)/3] m. 

Application 

June 22, 1977 Tonga earthquake 

For the Tonga earthquake (1208:33.4UT, 22.88øS, 175.90øW, 
mb = 6.8, Ms = 7.2, Mv• = 8.2), body wave studies indicate that 
the high frequency source process consists of two major 
subevents spanning a combined process time of 50 s after the 
origin time [Christensen and Lay, 1988]. We model the Tonga 
source function as a composite of three subevents given by half- 
sine pulses rli: two pulses approximating the body wave time 
function as well as a long duration component representing any 
additional radiation. 

We determine the process time and relative moment of the 
third, long-period component of the Tonga source process using 
the variable moment-rate functions (V-m) in the inversion pro- 
cedure. Figure l a shows our preferred model, which comprises 
three components with a total process time of 165 s. The 
moment-rate function is obtained by assuming that. the first and 
second components, starting at 0 and 25 s respectively, have the 
same process time, 25 s, and the same moment (m• = m2), as 
indicated by body waves [Christensen and Lay, 1988]; with the 
third component, starting at 0 s, having a moment (m3) 40% of 
the total moment, rn• + m2 + m3. The relative moment assigned 
to the third component is estimated by comparing errors, p and 
o, obtained for various assumed moment ratios, m•/(m• + m2 + 
m3). 

Figures lb and l c show p, •, process time, and seismic 
moment for the Tonga event obtained for various moment ratios. 
Here • is shown for a 256-s period, which we consider more 
reliable than other periods. For a moment ratio of one, which 
corresponds to a single half-sine moment-rate function, •, p, and 
process time are about the same as obtained assuming a boxcar 
moment-rate function. For a ratio of about 40%, p is minimized; 
the process time is 165 s; and the seismic moment is the max- 
imum, 21.5 x 1020 N m. For a small ratio (less than 40%) which 
corresponds to a moment-rate function with a small third com- 
ponent, there is no process time with sufficient phase delay to 
satisfy the data; so • is large. The process times and seismic 
moments shown in Figure l c for moment ratios less than 0.4 are 
for the moment rate which has the maximum phase delay. We 
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Fig. 1. The Tonga earthquake results. (a) The moment-rate 
function. (b) The errors, p (solid line) and o (256-s period) 
(dashed fine), versus moment ratio curves. (c) The process time, 
x, (solid fine) and total seismic moment, m• + m2 + m•, (dashed 
fine) versus moment ratio curves. 
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conclude that the moment-rate functions with a smart ratio are 

not acceptable. Our preferred total moment estimate of 21.5 x 
102o N m and the average body wave moment of 12-15 x 10 eø N 
m [Christensen and Lay, 1988] indicate that about 30-45% of the 
moment is missed by the body waves. This is consistent with 
our moment rate parameterization, which assigns 40% of the total 
moment to the very long period component. 

Accounting for the realistic shape of the time function of the 
Tonga earthquake improves the long-period estimates of the 
seismic moment and source mechanism compared to standard 
assumptions of a boxcar or trapezoid time function. The source 
flniteness model shown in Figure la gives a better fit to the Ray- 
leigh wave data than any of the other source finiteness models 
tested, as indicated by the minimum value of p for this model. 
Although the details of the source finiteness model cannot be 
determined uniquely, the use of the source time function deter- 
mined from body waves to constrain pan of the source flniteness 
model improves the moment tensor solution from the long-period 
surface waves in this case. 

Figure 2a shows the p versus depth curves for two moment- 
rate functions and two earth models: the average ocean model of 
Regan and Anderson [1984] (hereinafter referred to as R-A) and 
PREM [Dziewonski and Anderson, 1981]. We consider the 
model R-A to be more appropriate for earthquakes in the Tonga 
region. For the constant moment-rate function (C-m), i.e. a box- 
car, with an optimal 84-s process time (or duration) determined 
using the method of ZKa, the centroid depth is 91 krn for R-A 
and 98 krn for PREM, respectively. For the more realistic V-m 
model with an 165-s process time, the centroid depth is 96 km 
with a (93, 104) 90% confidence depth range for R-A and 103 
krn with a (99, 112) 90% confidence depth range for PREM, 
respectively, found using a Student's t test [ZKb]. The errors in 
the inversion using the variable moment-rate function have a 
lower mean (about 45% smaller) and smaller variance with 90% 
confidence (using the Siegel-Tukey test) for both earth models 
compared to the errors for the constant moment-rate function. 
Moreover, the variable moment-rate function fits the body wave 
radiation, while the constant moment-rate function does not. The 
moment tensor solution obtained by using R-A for a point source 
at 96-krn depth with the variable moment-rate function is our 
preferred solution for the Tonga earthquake. 

This estimate of the centroid depth is somewhat greater than 
the 65-km depth of the earthquake hypocenter determined from 
the first P wave arrivals (NEIS). This indicates that much of the 
long-period energy of the earthquake is released at depths below 
the depth of initiation of the earthquake. The confidence bounds 
on depth are obtained for fixed models of source finiteness, exci- 
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Fig. 2. (a) Error p in the inversion for the Tonga event obtained 
for two source time functions: the constant (boxcar) moment rate 
function (C-m), and the variable source time function (V-m). 
Two earth models are used: the average ocean model of Regan 
and Anderson [1984] (R-A) and PREM [Dziewonski and Ander- 
son, 1981]. (b) Error versus centroid-depth curves for the 
Sumba event for the C-m, V-m, and uniform-slip fatfit (C-f) 
models. 
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Fig. 3. The Sumba earthquake restfits. (a) The moment rate 
function. (b) The errors, p (solid line) and (• (256-s period) 
(dashed line), versus moment ratio curves. (c) The process time, 
'•, (solid line) and total seismic moment, mz + me, (dashed line) 
versus moment ratio curves. 

tation, and propagation corrections, Consideration of the addi- 
tional model variance will restfit in broader bounds [ZKb]. 

The source duration and centroid depth of the Tonga event 
have been estimated in several previous investigations, using 
either a boxcar for the time function [e.g., Lundgren and Okal, 
1988; Giardini, 1984], or an roe-model for the total moment 
[Silver and Jordan, 1983]. Our restfits are generally consistent 
with the previous studies, but we have better resolution of the 
broadband source function. 

August 19, 1977 Sumba, Indonesia earthquake 

For the Sumba earthquake (0608:55.2UT, 11.085øS, 118.464øE, 
mr, = 7.0, Ms = 7.9, Mv• = 8.5), a preferred model of the 
moment-rate function (Figure 3a) is obtained, which comprises 
two components with a total process time of 120 s. The 120-s 
process time is obtained by assuming that the first component 
with moment m•, starting 12-s after the origin time, has a process 
time of 24 s; and the second component, starting at 0 s, has a 
moment m2 equal to m•. The assumptions on the start time and 
process time of the first component are based upon the body 
wave time function of the earthquake obtained by Lynnes and 
Lay [1988] and Kikuchi and Fukao [1987]. The size of the 
moment assigned to the second component, 50% of the total 
moment, is estimated by comparing errors obtained in inversions 
for various assumed moment ratios and by matching m• with the 
moment obtained from body waves for this earthquake. The 
assumption that the second component starts at the origin time is 
somewhat arbitrary; however, using different start times for the 
second component yields similar estimates of the depth and 
moment (with differences less than 5%). 

Figures 3b and 3c show errors, p and (•, process times, and 
seismic moments obtained for various moment ratios, 

me / (m• + m2). For a ratio of about 50%, the process time is 120 
s, and the seismic moment is 63 x 102o N m (for 36-km centroid 
depth); the first component has a moment almost the same as the 
30 x 102o N m obtained from body waves [Lynnes and Lay, 
1988]. For a ratio of 42%, the seismic moment is 79 x 1020 N m 
(for 31-km centroid depth), and m• is 1.5 times as large as the 
moment obtained from body waves, so we have a weak prefer- 
ence for the 50% ratio case. For a smaller ratio (less than 40%), 
the moment-rate function with any process time does not have 
sufficient phase delay to match the data; thus, (• is large. 

Using the V-m model, we obtained a 36-km centroid depth, 
which is significantly shallower than the 44-km depth obtained 
for a C-m model with an optimal 80-s duration determined using 
the method of ZKa, and the 46-km depth for a model of bilateral 
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faulting with constant dislocation on the fault plane (C-f) 
obtained by ZKa. The variance in the inversion using V-m is 
slightly smaller than that using C-m and C-f, with the minimum 
p for V-m reduced from that for C-m and C-f by less that 10% 
(Figure 2b). Given the small size of our data set, the small rela- 
tive variance reduction and large depth variation obtained for 
different finiteness models indicate that determination of the cen- 

troid depth of the Sumba earthquake is difficult. The V-m model 
for the Tonga earthquake gave a factor of two reduction of p 
relative to the C-m model, which is possibly due to the higher 
quality data available for that study. 

From the observations of fundamental spheroidal modes in the 
frequency interval 1-11 mHz (50% of the data have periods less 
than 155 s) recorded by IDA stations, Silver et al. [1986] obtain 
'cc=25 s and a depth less than 25 km. Their 25-s xc corresponds 
to an 43-s process time (for a boxcar time function), consistent 
with that of ZKa using the same earth model; however, their esti- 
mate of depth appears much shallower than that obtained in this 
study. There are several possible causes of this discrepancy. 
First, because of the very large size of the event, all usable 
phases at IDA stations correspond to waves with very long pro- 
pagation paths. Secondly, at periods shorter than 150 s, the 
effect of the earth's lateral heterogeneity is severe, and presently 
available earth models do not give reliable path corrections. This 
effect is most pronounced for free oscillation analysis. Thirdly, 
the differences between depths obtained for various earth models 
are not negligible [ZKb]. For these reasons, accurate transfer 
functions for a broad frequency range including excitation and 
effects of lateral heterogeneities on both amplitudes and phase 
are required for ultimate resolution of the discrepancy. 

Discussion and Conclusions 

Table 1 summarizes the source function results. For the Tonga 
earthquake, the use of the variable moment-rate function with 
165-s process time reduces the error p in the moment tensor 
inversion significantly compared to assuming the boxcar time 
function with 84-s process time. For the Sumba earthquake, 
although the decrease in p using the variable moment-rate com- 
pared with the C-m and C-f models is much smaller, the variable 
moment-rate is still preferred, since it approximately fits the body 
waves. 

Relative to the solutions assuming boxcar time functions, the 
variable moment-rate function models have longer source process 
times and shorter apparent durations, but about the same centroid 
times for both the Tonga and Sumba earthquakes. This suggests 
that apparent duration and process time can be used to provide a 
first order characterization of the source complexity of large 
earthquake rupture process. 

The seismic moments and total process times obtained in this 
long-period surface wave study differ from body waves estimates 
for these two great earthquakes. This suggests that much of the 
energy of the long-period waves is radiated from a larger area 
and over longer time scale than the energy in the body waves. 

Table 1. Low Frequency Properties of two Great Earthquakes 

Event Tonga 1977 Mw=8.2 Sumba 1977 Mw=8.5 
Moment-Rate Model C-m* V-m** C-m V-m 

Apparent Duration (s) 84 47 80 25-27 
Total Process Time (s) 84 165 80 120-145 
Centroid Time (s) 42 48 40 42-44 
Centroid Depth (km) 91 96 42 31-36 
Moment •' 17 21.5 56 63-79 
ß: Constant moment rate function (Boxcar) 
ß ,: Variable moment rate function 

•': The seismic moment (in tmits of 1020 N m) of the best double 
couple of the moment tensor. 

This interpretation supports the asperity model of rupture process 
of earthquakes. 
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