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[11 Geostatistical inverse modeling has been shown to be a viable alternative to
synthesis Bayesian methods for estimating global continental-scale CO, fluxes. This
study extends the geostatistical approach to take advantage of spatially and temporally
varying auxiliary data sets related to CO, flux processes, which allow the inversion to
capture more grid-scale flux variability and better constrain fluxes in areas undersampled by
the current atmospheric monitoring network. Auxiliary variables are selected for inclusion
in the inversion using a hypothesis-based variable selection method, and are then used in

conjunction with atmospheric CO, measurements to estimate global monthly fluxes for
1997 to 2001 at a 3.75° x 5° resolution. Results show that the inversion is able to infer
realistic relationships between the selected variables and flux, with leaf area index and
the fraction of canopy-intercepted photosynthetically active radiation (fPAR) capturing a
large portion of the biospheric signal, and gross domestic product and population densities
explaining approximately three quarters of the expected fossil fuel emissions signal. The
extended model is able to better constrain estimates in regions with sparse measurements, as
confirmed by a reduction in the a posteriori uncertainty at the grid and aggregated
continental scales, as compared to the inversion presented in the companion paper (Mueller

et al., 2008).
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1. Introduction

[2] Atmospheric inverse modeling is a technique using
observed variability in atmospheric concentration meas-
urements and an atmospheric transport model to infer
CO, sources and sinks at relatively large spatial scales.
Given the sparsity of the current atmospheric monitoring
network and the diffusive nature of atmospheric transport,
however, inverse problems aimed at CO, flux estimation
are ill-posed and frequently underdetermined. To circum-
vent these problems, most previous inverse modeling
studies have used a synthesis Bayesian inversion approach,
where a priori assumptions about both the magnitude and
spatial patterns of fluxes are included in the inversion.
This prior information is typically derived from biospheric
model output, extrapolated ocean ship-track data, and
fossil fuel inventories, and is then updated using atmo-
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spheric CO, observations [e.g., Kaminski et al., 1999;
Rédenbeck et al., 2003; Gurney et al., 2004; Baker et
al., 2006].

[3] Geostatistical inverse modeling differs from these
previous approaches by eliminating the need for explicit
prior flux estimates, thereby allowing for more strongly
atmospheric data-driven estimates of global flux distribu-
tions [Michalak et al., 2004; Mueller et al., 2008]. The
geostatistical approach uses a modified Bayesian setup to
estimate the flux distribution as the sum of a deterministic
but unknown spatial and temporal trend, and a stochastic
spatially and/or temporally autocorrelated flux residual. The
trend in a geostatistical framework can be as simple as global
average land and ocean fluxes [Michalak et al., 2004], but
could also include linear combinations of grid-scale auxiliary
environmental data sets related to CO, flux. The stochastic
component of a geostatistical estimate represents features of
the flux distribution that are inferred from the CO, observa-
tions, but that cannot be explained using the covariates
included in the trend.

[4] In a companion paper, Mueller et al. [2008] demon-
strated the ability of the geostatistical approach to recover
monthly regional (3.75° x 5°) CO, fluxes using atmospheric
concentration data from a subset of the NOAA-ESRL
cooperative air sampling network [Tans and Conway,
2005]. In that application, the trend was defined as monthly
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Figure 1. Schematic of geostatistical inversion compo-

nents and algorithm, which are identical to those presented
by Mueller et al. [2008] with the exception of the variable
selection step. White boxes indicate inversion inputs, light
gray boxes indicate inversion steps, and dark gray boxes
represent inversion outputs. Grey circles indicate the
sequence of steps in the algorithm.

varying land and ocean global average fluxes. Mueller et al.
[2008] showed that the information content of available
atmospheric measurements was sufficient to constrain
fluxes at aggregated continental scales, particularly on land.
Grid-scale estimates, however, had limited subcontinental
spatial variability and high a posteriori uncertainties.

[5] In the current work, monthly CO, fluxes and their
uncertainties are estimated for 1997 to 2001 at 3.75° x 5°
resolution within a geostatistical inverse modeling frame-
work incorporating auxiliary environmental variables.
Therefore the primary objective of the current paper is
to investigate the additional constraint provided by these
auxiliary data sets on a posteriori flux distributions and
uncertainties. These data sets, which significantly explain
flux variability evident from the atmospheric data, may
include variables such as leaf area index and gross
domestic product, which correlate well with the spatio-
temporal pattern of biospheric and anthropogenic CO,
exchange, respectively. Given their global coverage, these
variables also provide information about flux in regions
underconstrained by the atmospheric measurements. Over-
all, the auxiliary variables should allow the inversion to
recover more realistic CO, flux variability with lower a
posteriori uncertainties, relative to a setup relying exclu-
sively on the limited atmospheric CO, measurement
network. The impact of these variables on a posteriori
estimates and their associated uncertainties is investigated
at two spatial (grid and continental) and two temporal
(monthly and annual) scales, as compared to the results
presented by Mueller et al. [2008].

[6] The second objective of this study is to investigate the
relationships between the selected auxiliary data sets and
flux as identified using the atmospheric CO, observations,
the uncertainties associated with this inferred model, and the
impact of this uncertainty on the overall a posteriori
uncertainty associated with the flux distribution. The rela-
tionships between each of the variables and the estimated
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fluxes are not prespecified in a geostatistical inversion, but
rather quantified using the atmospheric observations. If the
environmental data sets are relatively objective quantities
with global coverage, the inclusion of auxiliary variables in
the inverse model can incorporate process-based informa-
tion into the final flux estimates while minimizing assump-
tions about the relationship between the auxiliary data and
CO, flux.

[7] Note that the presented application estimates the total
CO, flux, including the biospheric, anthropogenic and
oceanic components, as was also done by Mueller et al.
[2008]. This is in contrast to other inversion studies which
considered fossil fuel emissions well-known and estimated
only the biospheric and oceanic portions of the flux distri-
bution [e.g., Rédenbeck et al., 2003; Baker et al., 2006]. By
presubtracting a static data set of fossil fuel emissions from
the observational data, previous inversion studies aliased
any spatial and temporal uncertainty in the fossil fuel flux
distribution onto the biospheric fluxes or nearby ocean
regions. Given that fossil fuel emissions, at least in the
Northern Hemisphere, are known to vary seasonally, pre-
subtracting assumed annual fossil fuel emissions can con-
found the interpretation of a posteriori fluxes [Gurney et al.,
2005].

[8] The paper is organized as follows. Section 2 presents
an overview of the geostatistical inverse modeling method,
with an emphasis on the approach used for incorporating
auxiliary environmental data into the estimation. Section 3
presents the results of the analysis, including the selected
auxiliary variables and their impact on flux estimates.
Section 4 summarizes the main conclusions of the study.

2. Methods

[0] The surface flux estimates presented in this paper are
obtained using a geostatistical inverse modeling approach, a
full description of which is provided in the companion
paper [Mueller et al., 2008]. This section presents a sum-
mary of the method, as well as a description of extensions
developed and implemented in the current work. A diagram
of the overall algorithm is presented in Figure 1.

2.1. Geostatistical Inverse Modeling Objective
Function

[10] Geostatistical inverse modeling is a Bayesian ap-
proach that does not rely on prior estimates of the
magnitude and spatial distribution of surface fluxes. The
approach models the flux distribution as the sum of a
deterministic but unknown component, X3, referred to as
the model of the trend, and a zero-mean stochastic
component with a spatial and/or temporal autocorrelation
described by the covariance matrix Q. The model of the
trend defines the portion of the flux signal that can be
explained by a set of covariates included in the matrix X.
This spatiotemporal trend can be as simple as a constant
mean, but can also include linear relationships with any
number of auxiliary variables related to flux. In the
discussion that follows, m represents the number of
estimated fluxes, n is the number of atmospheric concen-
tration measurements, and p is the number of components
within the model of the trend.
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[11] The objective function L g for a geostatistical inver-
sion is defined as

Lip =2 (2= B9 R (2~ H9) + L (s~ XB) Q! (s - XB).

(1)

N —

where z is an n x 1 vector of atmospheric concentration
measurements, H is an n x m matrix defining the sensitivity
of each available measurement to each estimated flux, X
(m x p) is a prespecified matrix defining the structure of the
model of the trend, and B (p x 1) are the estimated
coefficients relating the components in X to the estimated
fluxes s (m x 1). Q is an m X m matrix representing the a
priori spatiotemporal covariance of flux deviations from X3,
and R is an n x n diagonal matrix representing the variance
of measurement, transport and representation errors for each
observation. Further descriptions of each of these compo-
nents are presented in the following sections and in the
companion paper [Mueller et al., 2008].

2.2. Observational Data (z) and Transport Model (H)

[12] Monthly averaged atmospheric CO, flask measure-
ments (z) from 44 unevenly spaced global measurement
locations within the NOAA-ESRL cooperative air sampling
network [7ans and Conway, 2005] are used to constrain the
global flux distribution, together with a transport matrix, H,
describing the sensitivity of measured concentrations to
estimated fluxes. These components of the inversion are
identical to those presented in the companion paper [Mueller
et al., 2008]. The observational subset in z is similar to that
used by Rodenbeck et al. [2003], and the number of
measurements in any given month ranges from 35 to 42
between 1997 and 2001. The H matrix was derived from an
adjoint implementation of the atmospheric transport model
TM3 [Heimann and Korner, 2003], which has a spatial
resolution of 3.75° latitude by 5° longitude with 19 vertical
levels, and is driven by interannually varying winds from
the NCEP Reanalysis [Kalnay et al., 1996].

2.3. Model of the Trend (X3)

2.3.1. Structure of the Model of the Trend

[13] The X matrix (m X p) defines the structure of the
model of the trend, and includes values for a selected subset
of environmental variables that covary with flux. Each of
the p covariates is defined at the time and location of each of
the m estimated fluxes. The 3 vector (p x 1) of coefficients,
estimated as part of the inversion, corresponds to the
variables in X and represents the linear relationships be-
tween the variables and CO, flux, as seen through the
atmospheric data. The overall trend X3 is conceptually
similar to a multivariate linear regression where the com-
ponents in X are predictor variables that explain some
portion of the flux variability, and 3 are the coefficients
on these variables. However, unlike multivariate linear
regression, the relationships are estimated in an inverse
modeling framework (using concentration measurements
to infer the covariates of flux), and the approach does not
assume independent residuals. In order to be consistent with
terminology commonly used in statistics, the 3 values in
this study will henceforth be referred to as drift coefficients.
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[14] The simple model of the trend implemented by
Mueller et al. [2008] includes estimated average fluxes for
cach calendar month over land and ocean, and thereby
captures both seasonal variability and differences in the
expected flux magnitude over these separate spatial
domains. The model of the trend presented in the current
study replaces these monthly average land fluxes with a
subset of spatially and temporally varying auxiliary envi-
ronmental variables, selected using the procedure presented
in section 2.3.3. In addition, a monthly varying terrestrial
latitudinal gradient, expressed as sin (2 X latitude), is
included to represent the expected opposing sources and
sinks in the Northern and Southern Hemispheres. The
strength and direction of this gradient is allowed to vary
monthly, in order to reflect the seasonality in the two
hemispheres. A monthly varying spatially constant mean
is also assumed for ocean fluxes, similarly to the Mueller et
al. [2008] study.

[15] Overall, the structure of the trend is represented by
an (m x p) matrix X, where p =24 + k. The first 24 columns
contain the monthly terrestrial latitudinal flux gradients and
ocean constants, and the subsequent & columns contain the
auxiliary variables for each month and location, i.e.,

X=1[A; .. A;z by --- by, (2)

where b; (m x 1) includes values of the ith auxiliary
variable, and A; (m x 2) contains nonzero entries only for
fluxes within a single calendar month j. For a given month,
the relevant portion of A;, defined as the 3456 x 2 matrix a;,
contains values of sin (2 X /latitude) for land grid cells in the
first column, and ones for ocean grid cells in the second
column,

sin(2 * latitude) 0
= |2 patitude) 0] G)

2.3.2. Auxiliary Environmental Variables

[16] The goal of incorporating auxiliary variables associ-
ated with carbon cycle processes into the model of the trend
is to better represent the expected spatial and temporal
variability of a posteriori grid-scale flux estimates, while
only including variables that provide significant information
as seen through the atmospheric monitoring network. A
preliminary set of auxiliary variables with global coverage
for the study period was selected on the basis of known
associations with biospheric or fossil fuel fluxes. In contrast,
few oceanic variables with complete spatial and temporal
coverage are available for 1997 to 2001. Available oceanic
variables, such as sea surface temperature, were initially
considered but eliminated from further consideration given
preliminary results showing that the atmospheric data were
not able to infer physically reasonable relationships to ocean
flux. As more oceanic data sets with gridded, global
coverage become available, especially from the MODIS
(Moderate Resolution Imaging Spectroradiometer) instru-
ments on the Terra and Aqua satellites, future geostatistical
inversion studies may be able to use of this information to
better explain oceanic flux variability.
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Table 1. Auxiliary Variables and Their Observed Significance Levels for Each Round of the Variance Ratio Test®

Variable Round 1 Round 2 Round 3 Round 4 Round 5 Round 6
GDP density <107'¢
Population density <107'¢ 3x 107" 3x 1071 2x 1078 3x10°°
LAI 0.37 3x10°3
fPAR 7x10°° 0.39 <10 '¢
NDVI 4x10°* 0.80 <1016 0.31 0.04 0.41
Shortwave radiation 0.03 0.29 5% 107 0.64 0.01 0.12
Surface air temperature 1074 0.02 4%x10°° 2x 1073 3x 1073 0.06
Precipitation 6 x107° 7x 107 1x10 " 3x107? 0.02 0.25
PDSI 0.84 0.72 0.55 0.44 0.51 0.77
Percent agricultural land <107'¢ 1077 6x 10" 3x 107 0.06 0.81
Percent forest cover 1078 3x107° <107'¢ 0.03 0.97 0.51
Percent forest/shrub cover 0.87 0.59 0.04 3x 1077 0.97 0.51
Percent grassland 0.12 0.30 0.81 0.01 0.22 0.38
Percent shrub cover 3 x107° 2 x 1077 6 x 10°° 2x 107!

“Variables included in the model of the trend are bold.

[17] The auxiliary variables considered in this study are
presented in the first column of Table 1, and described
below. All variables were regridded from their native
resolutions to the 3.75° x 5° resolution of this study using
area-weighted averaging.
2.3.2.1. Downwelling Shortwave Radiation

[18] Downwelling shortwave radiation is approximately
proportional to the amount of photosynthetically active
radiation (PAR), which drives photosynthesis. Downwelling
shortwave radiation data over land were obtained for 1997—
2001 from the National Centers for Environmental Predic-
tion (NCEP) reanalysis [Kalnay et al., 1996].
2.3.2.2. Surface Air Temperature

[19] Surface air temperature is positively correlated with
PAR (and hence photosynthesis), as well as with the rates of
all metabolic reactions including respiration. Surface air
temperature data were obtained from the NCEP/NCAR
Reanalysis Monthly Means [Kalnay et al., 1996].
2.3.2.3. Precipitation

[20] Precipitation affects water availability, and thereby
affects both plant growth and soil respiration. The absence
of precipitation, or drought, can limit CO, uptake and also
promote forest fires. A precipitation data set was obtained
from the Monitoring Product of the Global Historical
Climatology Centre in Germany [Adler et al., 2003].
2.3.2.4. Palmer Drought Severity Index (PDSI)

[21] The PDSI tracks atmospheric moisture at the surface
of the earth relative to local mean conditions, and is
calculated using both precipitation and surface air temper-
ature. The Palmer Drought Severity Index (PDSI) was
formulated by Palmer [1965] as a hydrological accounting
system for the central United States, and was subsequently
extended globally by Dai et al. [2004].
2.3.2.5. Vegetation Indices: LAI, NDVI, fPAR

[22] The Normalized Difference Vegetation Index (NDVI)
is the dimensionless normalized difference between solar
and infrared surface reflectances. Because leaves absorb
solar but reflect infrared radiation, NDVI is a measure of
green leafy biomass. Leaf area index (LAI) is the total
surface area of leaves per unit ground area (m”/m?). The
absorbed fraction of photosynthetically active radiation
(fPAR) is the fraction of incident solar radiation absorbed
by plants during photosynthesis. NDVI was sourced from
the GIMMS data set, version g [Tucker et al., 2005] based on

radiances from the Advanced Very High Resolution Radi-
ometer (AVHRR). fPAR was estimated from the NDVI data
using the average of the simple ratio and NDVI methods
[Los et al., 2001; Schaefer et al., 2002, 2005], and LAI was
estimated from fPAR by inverting Beer’s law assuming leaf
radiative characteristics from Sellers et al. [1996].

2.3.2.6. Land Cover

[23] Different land cover types are associated with vary-
ing levels of net primary productivity (NPP). The DISCover
Global Land Cover data set, obtained from the Global
International Geosphere-Biosphere Program [Loveland et
al.,2001], contains 18 categories of land cover derived from
satellite imagery recorded from April 1992 through March
1993. This data set was further binned into six categories:
Forest, Shrub, Grassland, Agriculture, Barren (including
Urban) and Inland Water, and a percent cover for each of
these six land cover categories was calculated at the 3.75° x
5° resolution. Only Agricultural Land, Forest Cover, Shrub
Cover, Grassland and a combined Forest/Shrub Cover
category were selected for further assessment. These de-
rived land cover variables form a static data set used for the
full study period.
2.3.2.7. Population Density

[24] Fossil fuel emissions generally trend well with hu-
man population density, although some densely populated
countries (e.g., Bangladesh, which is 9th in the world in
population, but 69th in emissions [Marland et al., 2008;
Central Intelligence Agency, 2007]) weaken this relation-
ship. The population density data set used in this study was
created by Environment Canada with support from the
United Nations Environment Programme [Li, 1996].
2.3.2.8. GDP Density

[25] A global gridded gross domestic product (GDP) data
set, representing the total economic output of the population
living in a given area, was sourced from the International
Satellite Land Surface Climatology Project Initiative II Data
Collection [Yetman et al., 2004].

[26] The population and GDP data sets are static snap-
shots of the year 1990, and both are normalized by grid cell
area to create a density indicator.

2.3.3. Variable Selection Using the Variance-Ratio Test

[27] The Variance-Ratio test [Kitanidis, 1997] is a
hypothesis-based variable selection method that was orig-
inally developed to justify the inclusion of a more
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complex trend in geostatistical interpolation. A modified
method, compatible with an inverse modeling setup, is
presented and implemented here. In a geostatistical inver-
sion, improving the model of the trend’s ability to represent
CO, flux variability can increase the accuracy of, and reduce
the a posteriori uncertainty associated with, the recovered
flux distribution. However, adding auxiliary variables with
only a spurious correlation to flux can bias the model, and
yield unreasonable estimates in poorly constrained areas.
The Variance-Ratio test is designed to balance the risks of
including too few versus too many variables, by quantifying
the significance of the improvement in model fit resulting
from the addition of one or more variables to the model of
the trend.

[28] In this approach, the weighted sum of squares
(WSS) of the orthonormal residuals is defined for an initial
(Xo, m x p) and an augmented (X;, m X (p + ¢)) model of
the trend (where X is a subset of X;) as

wss =2 (o' - o HX(XHTeTHX) T XTHe )y,
4)
where
¥ = HQH” +R. (5)

WSS is a measure of fit that assesses how well the two
trends, X, and X, explain the variability in fluxes as seen
through the atmospheric concentration measurements, z,
and weighted by the appropriate covariance matrices (R
and Q). The WSS equation, as presented here, accounts
for the spatial correlation of the residuals in order to
create a test analogous to model selection for multivariate
linear regression. The WSS equation was also modified
for an inversion setup from that presented by Kitanidis
[1997].

[29] A trend with more auxiliary variables will always be
able to represent more of the inferred variability relative to a
simpler model. Therefore, WSS; is always less than or equal
to WSSy, given that X, includes all the variables in X, as
well as one or more additional variables. The significance of
the improvement in model fit is evaluated using the normal-
ized relative difference between WSS, and WSS,

v— (WSS, — WSS1)/q (6)
WSS\ /(n—p—gq)’

and the level of significance is quantified using an F
distribution with ¢ and n-p-q degrees of freedom (where n
represents the number of available measurements, p the
number of components in Xy, and ¢ the number of
additional components in X, relative to Xo).

[30] For this application, a trend with 12 monthly latitu-
dinal land gradients and 12 monthly ocean constants is set
as the initial model X,. The Variance-Ratio test is then run
for each of the 14 candidate auxiliary variables (Table 1),
adding each individually into X; (i.e., ¢ = 1). A single
variable that significantly improves the trend is selected for
inclusion, and this augmented trend becomes the new X,.
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The test is then performed again using each of the other 13
remaining variables. Multiple rounds of the test are per-
formed until no significant variables remain at the o = 0.05
significance level. Only a single variable is added in each
round, even if more than one variable represents a signif-
icant improvement to the model. The choice among signif-
icant variables is based on its relative level of significance,
as well as the importance of its known association with key
flux drivers (i.e., photosynthesis, respiration, fossil fuel
emissions, etc.).

2.4. Covariance Matrices (Q and R)

[31] The covariance matrix Q represents the spatial auto-
correlation of flux residuals from the trend, and therefore
the magnitude of this correlation depends on the degree to
which the model of the trend (X3) can represent the flux
variability inferred using available observations. In an
idealized case where the model of the trend captures all
processes underlying the inferred spatial variability, the flux
residuals would be uncorrelated random noise and Q would
become a diagonal matrix. In practice, however, flux
residuals are almost always correlated, and the goal of
improving the trend, as discussed in section 2.3, is to
decrease the magnitude of the residuals.

[32] As in the Mueller et al. [2008] study, the Q matrix is
modeled using an exponentially decaying spatial correlation
among flux residuals from the trend

0y (hylo*,1) = o* eXP(‘?) (7)

where /;; is the separation distance between two estimation
locations. The practical correlation length is approximately
31, beyond which ¢” represents the expected variance of
independent flux residuals. Parameters for land and ocean
fluxes are optimized separately, and no correlation is
assumed between them, as described by Mueller et al.
[2008].

[33] The model-data mismatch variances in the R matrix,
which are assumed uncorrelated, include measurement,
transport, and representation errors for each observation.
These variances are assumed to be proportional to the
square of the residual standard deviation (RSD) of flask
observations from a smoothed curve [GLOBALVIEW-CO,,
2008], with the RSDs scaled by the proportion of real data
in the record for each station [Gurney et al., 2003].

[34] The parameters of the Q and R matrices are opti-
mized using the Restricted Maximum Likelihood (RML)
method [Kitanidis, 1995; Michalak et al., 2004; Mueller et
al., 2008], a quantitative approach that helps to reduce
biases in the flux estimates associated with errors in the
covariance matrices. The covariance parameters for the Q
matrix are optimized using process-based and inventory
flux estimates from the Carnegie-Ames-Stanford Approach
(CASA) model [Randerson et al., 1997] for monthly net
ecosystem production (NEP), Takahashi et al. [2002] for
monthly oceanic net carbon exchange, and Brenkert [1998]
for yearly averaged fossil fuel and cement production
emissions. The scaling parameter, c, applied to the squared
RSDs in the R matrix, is optimized using the atmospheric
concentration measurements. The RML method is imple-
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mented for both the R and Q matrices using the model of
the trend (X) derived from the variable selection process
described in section 2.3.3.

2.5. Geostatistical Inversion System of Equations

[35] By minimizing the objective function defined in
equation 1 with respect to s and 3, the inversion simul-
taneously minimizes differences between the estimated
fluxes (s) and the model of the trend (X3), and the
residuals between actual atmospheric CO, measurements
(z) and concentrations derived from the estimated fluxes
(Hs). The R and Q covariance matrices control the balance
between achieving these two objectives. For example, low
variances in the model-data mismatch covariance matrix
(R) drive the inversion to reproduce the measurement data
at the expense of keeping flux estimates close to the model
of the trend. Also, in areas sensitive to the available
measurements, as described through the matrix H, the
inversion relies more heavily on reproducing observations,
whereas in areas lacking measurements, the inversion
reverts more strongly to the model of the trend (X03)
and the spatial correlation of flux residuals (Q).

[36] Minimizing equation (1) with respect to fluxes, s,
and drift coefficients, 3, yields the following system of
linear equations:

¥  HX|[AT] [HQ g
mx)" o |[[m]|  |[X| )
The weights A (m x n) and Lagrange multipliers M (p x m)

are used to define the estimated fluxes (8) and their posterior
covariance (Vj) as

§=Az )
(10)

Estimates of the drift coefficients, @, and their uncertainty
covariance, V3, are calculated as

Vi=—-XM+Q—QH'AT.

B=(X"Q'X)'X"Q Az (11)

V, = (XTHT(HQHT+R)71HX)71 (12)

/H )
where the diagonal elements of V3 represent the uncertain-
ties of the drift coefficients, and the off-diagonal terms
represent their error covariances.

[37] The estimated fluxes (8) can also be expressed in a
form more similar to that used in synthesis Bayesian
inversions, as the sum of a deterministic component (X3),
1.e., the estimated model of the trend of the flux distribution,
and a stochastic component that is a function of the a priori
correlation structure in Q,

§=X3+QH" (HQH + R) "' (z—HxB). (13)

3. Results and Discussion

[38] This section presents CO, fluxes estimated using a
geostatistical inversion, which are informed both by atmo-
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spheric CO, measurements and selected auxiliary environ-
mental data. Results are also compared to those obtained by
Mueller et al. [2008] using only the atmospheric data
constraint.

3.1. Variance-Ratio Test and Selection of Auxiliary
Variables

[39] The Variance-Ratio test is applied as described in
section 2.3.3 to select a subset of auxiliary variables that
best represent flux variability, as inferred using the atmo-
spheric CO, observations. As previously mentioned, the
approach is complemented with scientific understanding
regarding the variables and their relationship to flux pro-
cesses to select among variables that are significant in each
round of the test. Fully automatic model-building proce-
dures are not recommended as a means for identifying the
best interpretable model, because such procedures can
potentially select models that represent only spurious rela-
tionships, and can fail when applied to comparable data sets
[Judd and McClelland, 1989]. Note that the Variance-Ratio
test determines the significance of the linear relationship
between surface flux and auxiliary variables as identified
through the relatively sparse atmospheric measurement
network. Therefore, selected variables may be more repre-
sentative of relationships in well-constrained regions.

[40] GDP Density is selected in the first round of auxil-
iary variable selection (Table 1) because it significantly
improves the trend, and is believed to best isolate the fossil
fuel emission signal, which is the largest single net source of
CO, on annual timescales. LAI is selected in the second
round for its association with NPP, and because it is the
most significant among the three vegetation indices. For all
subsequent rounds, the most significant variable is selected
for inclusion in the augmented model of the trend. These
variables are fPAR, % Shrub Cover, and Population Den-
sity, in the third, fourth, and fifth rounds, respectively. No
additional variables are significant beyond the fifth round.
Results from the Variance-Ratio test also confirm that the
monthly latitudinal gradients are a significant improvement
upon the monthly land constants implemented by Mueller et
al. [2008], a result which holds regardless of whether or not
auxiliary variables are also included in the analysis.

[41] Overall, the selected variables are associated with
different drivers of terrestrial CO, flux, including photo-
synthesis, respiration, land cover type, and fossil fuel
emissions. Additional auxiliary variables and/or functional
forms could be applied in the future in order to capture
additional processes (e.g., biomass burning, deforestation
and oceanic productivity/gas exchange) and identify more
complex or regional relationships between auxiliary varia-
bles and CO, flux variability. However, given that geo-
statistical inversions estimate both the model of the trend
and flux deviations from this trend, any processes that are
not represented by the auxiliary variables are still repre-
sented in the final best estimates of flux as part of the
stochastic component of the best estimate.

3.2. Optimized Covariance Parameters

[42] The optimized parameters for the covariance matri-
ces (Q and R) are presented in Table 2 for the model of the
trend presented in the last section, as well as the simple
trend implemented by Mueller et al. [2008]. Both of the
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Table 2. Optimized Model-Data Mismatch and Spatial Covariance Parameters With +1 Standard Deviation for Simple and Complex

Models of the Trend®

Qland rocan
Trend o (pmolcon/(m?s))? [ (km) o2 (umoleoy/(m?s))? [ (km) R, ¢
Simple 0.40 + 0.03 2700 + 200 0.0030 + 0.0003 5700 + 500 0.63 + 0.04
Complex 0.28 + 0.01° 1800 + 100° 0.0030 = 0.0003 5700 + 500 0.58 + 0.04°

“Model-data mismatch, R; and spatial covariance, Q. Simple model from Mueller et al. [2008].

*Two standard deviation reduction from simple to complex trend.
“One standard deviation reduction from simple to complex trend.

land Q parameters (02Q and /p) show a significant decrease
of approximately 30% from the simple to the complex
trend. The optimized scaling parameter (c) for R decreases
by 8%, a smaller but also significant change. Given the
absence of any oceanic variables in the complex trend, the
ocean Q parameters remain unchanged between the two
trends.

[43] The reduction in the model-data mismatch parameter
(c¢) and the land Q variance parameter (O'ZQ) provide addi-
tional confirmation that the complex trend is better able to
represent the spatial variability of CO, flux relative to the
simple trend. The reduction in the estimated model-data
mismatch demonstrates that fluxes estimated using the
complex trend are better able to reproduce the atmospheric
concentration measurements relative to those derived using
the simple trend. The decrease in O'2Q indicates that, as more
of the flux variability is explained by an improved trend, the
flux residuals decrease in magnitude. In other words, the
complex trend explains a larger fraction of the variability of
CO, fluxes. Shorter correlation lengths in the residuals also
indicate that more of the large-scale spatial variability is
being captured by the complex model of the trend, leading
to residuals that are correlated on shorter spatial scales. As
will be discussed in section 3.5, the changes in the Q and R
parameters also lead to a decrease in grid-scale a posteriori
uncertainties for the best estimates of flux.

3.3. Estimated Drift Coefficients (B) and Contributions
to Flux (X3)

[44] The estimated drift coefficients (3) corresponding to
the auxiliary variables, their coefficients of variation
((7,53 /B), and the correlation coefficients (p) among them
are presented in Table 3. A positive sign on the drift

coefficients indicates a positive correlation with CO, flux
(i.e., a source or reduction in sink), while a negative sign
indicates a negative correlation (i.e., a sink or reduction in
source). A coefficient of variation less than 0.5 implies a
significant contribution to the trend at the 203 level, and all
drift coefficients on the auxiliary variables are therefore
significant at the 95% level. The recovered signs on the drift
coefficients for the five auxiliary variables show that the
inversion is able to infer reasonable relationships between
these parameters and CO, flux. GDP and Population
Densities are associated with sources, as expected given
their correlation with fossil fuel emissions, while the
opposite signs on LAI and fPAR imply that these variables
collectively represent the opposing photosynthesis and
respiration signals. These results lend support to the validity
of the Variance-Ratio test for selecting auxiliary variables, as
well as provide indirect evidence that the improved model of
the trend is able to correctly represent flux variability in the
final flux estimates, particularly in underconstrained regions.
[45] The annually averaged global contribution to flux
(X;3;) in GtC/a is also displayed in Table 3 for each of the
auxiliary variables, which makes it possible to assess the
magnitudes of the recovered drift coefficients in consistent
units. GDP and Population Densities together contribute a
source of 4.8 GtC/a globally, which is approximately 70% of
the estimated 6.7 GtC/a global source from fossil fuels and
cement production over this period [Marland et al., 2008].
[46] LAI and fPAR have the largest annually averaged
contributions to flux among the different components of the
trend. These data sets have similar spatial patterns, and the
collinearity between them, as demonstrated by the strong
anticorrelation between their estimated drift coefficients (p =
—0.94), implies that the interpretation of their combined

Table 3. Estimated Drift Coefficients, Coefficients of Variation, Annual Average Global Contribution to Flux, and Correlation
Coefficients Between Auxiliary Variables in the Model of the Trend®

B 03/8 XB(GtCla) _ p(GDP) _ p(Pop)  p(LAD _ p(fPAR) _ p (Shrub)
GDP density (thousands/(m*yr)) 180 0.35 1.6 1.00 — — — —
Population density (people/m?) 1700 0.26 32 —0.42 1.00 — — —
LAI (m*/m?) —0.49 0.08 —42.1 0.02 0.01 1.00 — —
fPAR 1.9 0.08 46.8 —0.12 —0.12 —0.94 1.00 —
Shrub Cover (%) —0.0038 0.18 -35 0.14 0.23 0.06 —0.21 1.00
Land latitudinal gradients —0.5t0 0.3 0.2to 1.1 0.6
Ocean constants —0.08 to 0.01 0.2 to 6.7 -2.8
Complete trend 3.8

*Drift coefficients, ﬁ; coefficients of variation, oy / @; annual average global contribution to flux, Xﬁ; and correlation coefficients, p. Also shown is the
range of monthly values for the individual [i and o4 / Zi for the land latitudinal gradients and ocean averages, as well as their annual average global
contribution to flux. The annual average contribution to flux of the complete trend represents a sum of the contributions by each of the previous

components. .
°The drift coefficients (3) have units of ,umolcoz/(mzs) divided by the units of the individual auxiliary variables. Owing to differences in units on the
auxiliary variables, the magnitudes of the drift coefficients are not directly comparable.
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Figure 2. (a) Contribution to flux estimates by LAI and fPAR within the model of the trend (Xﬁ) for
May 2000, (b) contribution by LAI and fPAR for July 2000, (c) best estimates of flux (§) for May 2000,

and (d) best estimates of flux (8) for July 2000.

contribution to flux is more reliable than that of their
individual contributions. Specifically, the combined contri-
bution of LAI and fPAR within the trend shows net sources
and sinks on a seasonal basis that are consistent with the
expected biospheric signal, while this contribution also
plays a large role in defining the spatial variability of the
overall terrestrial flux estimates, as shown in Figure 2. The
combined annually averaged global contribution to flux of
LAI, fPAR and % Shrub Cover is a source of 1.2 GtC/a,
implying that these variables together represent a large
portion of the biospheric signal, which has a strong season-
ality but a relatively small annually averaged net flux.

[47] The positive drift coefficient associated with fPAR
(representing sources or reductions in sinks) and the nega-
tive drift coefficient associated with LAI (representing the
opposite) appear to contradict process-based understanding
of the relationship between these variables and biospheric
CO, fluxes. Photosynthesis is frequently estimated from
fPAR, given assumed rates of autotrophic respiration [ Tucker
and Sellers, 1986; Potter et al., 1993], while LAI, as a
measure of biomass, is more commonly associated with
autotrophic and heterotrophic respiration [e.g., Reichstein
et al.,2003]. However, at the spatial and temporal resolution
of this study, LAI appears to capture the strong seasonality
expected for photosynthesis, while fPAR, with a weaker
seasonal cycle, captures variability expected for total ecosys-
tem respiration (Figure 3). A

[48] Figure 4 shows the contribution to the trend (X;03;)
by the monthly terrestrial latitudinal gradients, which show
strong seasonality. For example, the latitudinal gradient in
June shows a sink in the Northern Hemisphere midlatitudes
with a corresponding source in the Southern Hemisphere,
while the gradient shows the opposite flux pattern in
January. This result demonstrates that the atmospheric data
are able to correctly identify seasonal variability between

the hemispheres that is unexplained by the other auxiliary
variables within the trend. Eight of the twelve multipliers
show a source in the Northern Hemisphere, likely as a result
of the year-round fossil fuel sources from industrialized
areas in North America, Europe and Asia that are not
completely captured by the contributions of GDP density
and population density within the model of the trend.

[49] The complete model of the trend including the
latitudinal gradients, ocean constants and auxiliary varia-
bles, represents a 3.8 GtC/a annually averaged source to the
atmosphere from 1997 to 2001. The overall annually
averaged global flux estimate from the inversion is a source
of 4.0 GtC/a, which indicates that the complex model of the

4
% LAl ]0.8
3.5t
—m— fPAR lo7
3L
0.6
%‘2.5-
~ -05—"
NE 2 E
= )
S 1.5 0.4
1 {0.3
0.5¢ 0.2
Jan Mar May Jul Sep Nov

Figure 3. Average monthly LAI and fPAR (from 1997 to
2001) for the combined Northern Hemisphere land regions
of Boreal Asia, Europe, and Boreal North America (as
defined in Figure 8).
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Figure 4. Contribution to flux by the 12 monthly latitudinal
land gradients within the model of the trend (X3).

trend captures approximately 95% of the global atmospheric
increase on an annually averaged basis, and is therefore
explaining a substantial portion of total flux at this aggre-
gated scale. As shown in equation (13), the residual com-
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ponent of the flux estimates are explained by the stochastic
component, such that the additional source apparent in the
atmospheric measurements but not captured by the trend is
still incorporated into the final flux estimates.

3.4. Spatial Distribution of the Deterministic and
Stochastic Components of the a Posteriori Flux
Estimates (8)

[50] Figure 5 illustrates the spatial distribution of each
component of the model of the trend (X/3), the spatially
correlated flux residuals (QH'W~'(z — HX3)), and the best
estimates of flux (8) for July 2000. The shrublands in arid
regions like central Australia and the boreal regions of North
America and Asia show small negative contributions to the
overall flux, while LAI and fPAR show large, but opposite,
contributions to flux in vegetated areas, as previously dis-
cussed in section 3.3. Both GDP and population densities
show positive contributions to flux, although their spatial
patterns differ. The terrestrial latitudinal flux gradient reflects
climatic variability unexplained by the other auxiliary vari-
ables, and shows the largest negative contribution to flux in
the Northern Hemisphere midlatitudes for this month. It
should be noted that % Shrub Cover, GDP density and
population density are static data sets and therefore, the July
2000 contributions of these variables shown in Figure 5
represent only long-term average contributions to flux.

pmol/(m23s)

Figure 5. Contribution of various components within the model of the trend (X,@) toward the best
estimates of flux (8) in July 2000: (a) GDP density, (b) population density, (c) LAL (d) fPAR, (¢) % Shrub
Cover, (f) latitudinal gradient and ocean constant, (g) stochastic component of best estimates, and (h) full

best estimates (8).
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Figure 6. Percent change in a posteriori uncertainty (o)
from the simple to the complex trend inversion, annually
averaged for year 2000. Triangles represent measurement
locations.

[51] While the magnitude of the stochastic component
is generally reduced as the ability of the trend to explain
flux variability becomes stronger (as evidenced by the
reduction in the 02Q land parameter shown in Table 2), the
stochastic component associated with the flux estimates in
July 2000 is still responsible for positive contributions
over South America and most of North America, and
slight negative contributions in northeast Asia, Australia
and parts of Africa. In fact, the stochastic component adds
a positive contribution to flux in tropical Central and
South America for approximately eight months of each
year of the inversion. This shows that although the
complex model of the trend cannot capture a systematic
flux signal in this region, possibly owing to the lack of
auxiliary variables associated with biomass burning and/or
deforestation, the stochastic component identifies a net
additional source in these regions. .

[52] In the Mueller et al. [2008] study, X3 is simply an
average flux over land and an average flux over oceans for
each calendar month. Therefore, the spatial variability of
the best estimates at the grid scale is entirely determined
by the spatially correlated stochastic component. In con-
trast, for the complex trend with auxiliary variables, each
component within the trend adds an additional layer of
spatial variability to the a posteriori flux estimates, weighted
by that component’s estimated relationship to flux (3).
Therefore, the complex trend inversion is able to more
realistically represent grid-scale variability without relying
on the use of explicit prior flux estimates used in synthesis
Bayesian inversions.

3.5. A Posteriori Grid-Scale Uncertainty Reduction
From Simple to Complex Trend

[53] The greater ability of the complex trend to capture
flux variability relative to the simple trend, implemented by
Mueller et al. [2008], which can be seen in the reduction in
the optimized land variance parameter in the Q matrix and
the scaling parameter in the R matrix, leads to an overall
decrease in a posteriori uncertainty on the flux estimates
(see equation (10)). Figure 6 shows the average percent
change in uncertainty at the grid scale between the simple
and the complex trend inversion for the year 2000. The

GOURDII ET AL.: GLOBAL GEOSTATISTICAL CO, FLUXES, 2

D21115

uncertainty on land is reduced by up to 14%, with higher
decreases in underconstrained areas such as Africa, South
America and Southeast Asia, which are now informed by a
better deterministic model of the trend. For the oceans, the
uncertainty is reduced by approximately 2% for most
regions. Whereas the reduction in the variances in Q and
R leads to a direct decrease in the a posteriori uncertainties,
including additional variables in the model of the trend also
leads to additional uncertainties resulting from the estima-
tion of the corresponding drift coefficients (3). These
uncertainties contribute to the final a posteriori uncertainties
through the term —XM in equation (10), which is always
positive. Therefore, some regions actually show a slight
increase in a posteriori uncertainty when moving from the
simple to the complex trend. For example, the high values
of GDP and Population Densities in central Europe, China
and Bangladesh, lead to increases in estimated uncertainty
of up to 11%.

[s4] The general reduction in a posteriori grid-scale
uncertainty (o) from the simple to the complex trend shown
in Figure 6 leads to a small increase in the number of
significant terrestrial sources and sinks estimated at the grid
scale (17% of grid cells for the simple trend versus 25% for
the complex trend at the 1o level, or 2% versus 6% at the
205 level). Overall, however, grid-scale uncertainties are
high relative to flux magnitudes in both inversions owing to
the limited network of atmospheric measurements, as
expected. Note that the reduction in uncertainty from the
simple to the complex trend described here is not analogous
to the reduction in uncertainty described in synthesis
Bayesian inversion studies [e.g., Rédenbeck et al., 2003;
Baker et al., 2006]. In synthesis Bayesian inversions, the a
priori uncertainty is described by the matrix Q, whereas the
a priori uncertainty in geostatistical inversions is effectively
infinite given that there are no a priori assumptions about
the drift coefficients 3. Instead, the reduction in uncertainty
reported here represents the relative constraints on fluxes
achieved by two different inversion setups, namely those
described by the simple and complex trends.

3.6. Continental-Scale Seasonal Cycle for Year 2000

[s5s] Figure 7 presents monthly flux estimates and lo;
confidence intervals for the year 2000 resulting from the
simple and complex trend inversions, aggregated to the 22
TransCom regions [e.g., Gurney et al., 2003] shown in
Figure 8. In some regions, such as Boreal North America,
Temperate North America and Northern Africa, results from
the application of the two trends are nearly identical. In
other regions, the auxiliary variables and terrestrial latitu-
dinal gradients in the complex trend have an impact on the
flux estimates. For example, the complex trend inversion
shows a larger summertime sink in Boreal Asia and Europe
and a slightly higher year-round flux in Tropical Asia, with
this latter result most likely due to the positive contribution
to flux associated with densely populated areas in Bangla-
desh and southern China. The better constraint on terrestrial
fluxes provided by the improved trend also slightly alters
fluxes in nearby ocean regions.

[s6] However, apart from these small differences, the
magnitude and seasonality of aggregated fluxes inferred
using the two trends agree well for both land and ocean
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Figure 7. Monthly best estimates (§) aggregated to 22 TransCom regions with 1oy confidence intervals
for year 2000 for simple [Mueller et al., 2008] and complex trend inversions.

regions. This result shows that there exists a relatively
strong atmospheric constraint on the seasonal cycle of
geostatistical flux estimates at the scale of the 22 TransCom
regions, particularly important given that flux patterns at the
grid-scale vary significantly between the two inversions.
This result also supports the hypothesis that the flux
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estimates at the aggregated scale are representative of the
information content of the atmospheric data.

3.7. Annually Averaged Aggregated Sources and Sinks

[57] Figure 9 presents annually averaged fluxes for 1997
to 2001 from the simple and complex trend inversions,
aggregated to the 22 TransCom regions. Uncertainty
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Figure 8.

Locations of 11 land and 11 ocean TransCom regions [e.g., Gurney et al., 2003].
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Figure 9. Annually averaged flux for simple and complex trend inversions for TransCom (a) land and
(b) ocean regions for 1997 to 2001. Land fluxes include both biospheric and fossil fuel components. Error

bars represent 1o and 20 confidence intervals.

associated with the annually averaged fluxes is 7% to 19%
lower for land regions and 2% to 7% lower for ocean
regions in the complex trend inversion relative to the
simple trend inversion, demonstrating that the improved
trend helps to better constrain flux estimates at aggregated
spatial and temporal scales, as well as at the grid scale (as
discussed in section 3.5).

[s8] For the complex trend, most land regions show
significant (105) net sources, whereas Boreal North America
and Boreal Asia are flux-neutral, and Australia is a signif-
icant sink. The predominance of continental-scale terrestrial
sources reflects the impact of fossil fuel emissions on the
annually averaged CO, fluxes. An analysis of the biospheric
annually averaged flux, derived by subtracting fossil fuel

inventory data [Brenkert, 1998] from the annual total values
shown in Figure 9, shows that Temperate North America,
Europe, Temperate Asia and Australia all act as significant
biospheric sinks (10;) in the complex trend inversion.

[s9] For all ocean regions, fluxes from both inversions
show a significant (10;) sink, and the results from the two
inversions are not significantly different from one another.
However, as discussed by Mueller et al. [2008], the rela-
tively constant oceanic flux estimates across regions reflect
the limited information content of the atmospheric measure-
ments, with oceanic flux estimates in many regions remain-
ing close to the global average in the model of the trend.
Despite the lack of oceanic auxiliary variables, a better
constraint on terrestrial fluxes within the complex trend
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reduces the strength of the overall ocean sink (from —3.0 to
—2.7 GtC/a), bringing these estimates into closer agreement
with independent results from extrapolated ocean ship-track
data [Takahashi et al., 2002] and inverse modeling studies
that make direct use of these data [Rédenbeck et al., 2003;
Baker et al., 2006].

[0] A few underconstrained land regions, such as Trop-
ical Asia, Tropical America and Australia, show significant
(10g) changes in estimated average flux between the two
inversions. The significant increase in Tropical Asia and
decrease in Tropical America demonstrate that the addition
of auxiliary information with global coverage helps to
constrain regions remote from measurement locations (see
map in Figure 6), especially given that the estimates
obtained using the complex trend are closer to “bottom-
up” estimates for these regions. For example, CASA
estimates of net ecosystem exchange (NEE) [Randerson et
al., 1997] with regional corrections for deforestation and
regrowth, as applied by Baker et al. [2006], and fossil fuel
emission estimates from Brenkert [1998] yield a 0.7 GtC/a
source for Tropical America and a 1.4 GtC/a source for
Tropical Asia, which are similar to the independent esti-
mates obtained using the complex trend inversion. The
significant decrease in the net flux from Australia, however,
is not consistent with estimates from previous inverse
modeling studies [Rdodenbeck et al., 2003; Baker et al.,
2006] and bottom-up models, which show a near-neutral
biospheric flux. The stronger estimated sink in Australia is
likely caused by the negative drift coefficient on % Shrub
Cover in the complex model of the trend, together with the
large areas of open shrublands in this region. Given that this
drift coefficient represents a globally averaged estimated
relationship between % Shrub Cover and CO, flux, estimates
in Australia may be unduly influenced by the relationship
between shrublands and flux in the better-constrained
boreal regions.

[61] The main conclusion to be drawn from the compar-
ison between the annually averaged, continental-scale
fluxes for the two trends is that, as with the seasonal cycle
of continental-scale fluxes, there is a relatively strong
atmospheric constraint on fluxes at this aggregated spatial
scale. However, when aggregating in time, auxiliary varia-
bles can significantly impact the flux estimates for certain
underconstrained regions in a manner consistent with pro-
cess-based understanding of CO, flux, where this improve-
ment is contingent on the validity of assuming a global
relationship between auxiliary variables and CO, flux.
Overall, as evidenced by lower a posteriori uncertainties,
the complex trend inversion is better able to constrain
annually averaged continental-scale fluxes relative to the
simple trend inversion.

4. Conclusions

[62] This paper presents a method for incorporating
auxiliary information provided by spatially distributed data
sets associated with CO, flux processes into a geostatistical
inverse modeling approach. This approach is then used to
estimate monthly averaged, global, grid-scale CO, fluxes
using concentration measurements from a subset of the
NOAA-ESRL cooperative air sampling network. The aux-
iliary data sets with spatially and temporally heterogeneous
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global coverage help to constrain flux estimates, especially
in regions far from measurement locations, and also help to
recover fine-scale flux variability that cannot be inferred
through the concentration data alone, owing to atmospheric
transport and mixing. The resulting flux estimates therefore
have more realistic variability at smaller scales, and have
lower uncertainty, than those presented in the Mueller et al.
[2008] geostatistical inversion study, which relies only on
the information content of the atmospheric data. This
conclusion is supported by the physically reasonable rela-
tionships (3) between the auxiliary variables and flux
recovered by the inversion, as well as the reduction in
grid-scale a posteriori uncertainty achieved by the complex
model of the trend.

[63] The Variance-Ratio test is used to determine the
combination of the candidate auxiliary variables that is best
able to explain the flux variability evident in the atmospher-
ic measurement data. From an initial superset of 14 auxil-
iary variables, five variables, associated with either
biospheric activity or fossil fuel emissions, were found to
significantly improve the model of the trend. An analysis of
the estimated drift coefficients on the auxiliary variables
shows that LAI and fPAR capture a substantial portion of
the combined signal of photosynthesis and respiration. The
negative drift coefficient for LAI and the positive one for
fPAR are opposite to mechanistic relationships typically
assumed between these variables and CO, flux; however, an
analysis of these data sets shows that the weaker seasonality
in the fPAR data set relative to LAI allows this variable to
more strongly explain the signal associated with total
ecosystem respiration at the scales examined in this study.
The drift coefficients for the other selected variables indi-
cate that % Shrub Cover explains residual biospheric sinks
(or decreases in sources), while GDP and Population
Densities explain approximately 70% of the expected global
fossil fuel emission signal. One aspect that is the subject of
ongoing work is the impact of the assumption of a constant
global relationship between the auxiliary variables and flux
within the model of the trend, which is more strongly
affected by fluxes in well-constrained regions.

[64] As reflected in the optimized covariance parameters
associated with the flux residuals and the model-data
mismatch, the model of the trend implemented in this study
is able to explain significantly more of the flux variability
evident from the atmospheric data relative to a simple
model of the trend containing monthly flux averages over
land and ocean, as implemented by Mueller et al. [2008].
The reduction in the covariance parameters leads to reduced
a posteriori uncertainties on the flux estimates of up to 14%
for the annually averaged grid-scale fluxes, and up to 19%
at the annually averaged continental scale. This uncertainty
reduction is strongest in underconstrained regions in Africa,
South America and Southeast Asia.

[65] A comparison of the seasonal cycle of flux estimates
at continental scales shows no significant differences be-
tween the simple trend inversion of Mueller et al. [2008]
and the complex trend inversion implemented in this study.
However, at the annually averaged continental scale, the
auxiliary variables in the complex trend significantly change
fluxes in a few terrestrial regions underconstrained by the
measurement network, in a manner consistent with bottom-
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up understanding of flux in these regions. Conversely, the
stronger inferred sink in Australia shows that a global
average linear relationship between auxiliary variables and
flux may not be representative for some regions or varia-
bles. Apart from these few terrestrial regions, the agreement
among both the monthly and annually averaged fluxes at the
continental scale points to a strong atmospheric constraint
on flux estimates at spatially aggregated scales.

[66] Finally, the geostatistical inverse modeling approach
presented here provides a method for validating scale-
dependent understanding of the relationship between vari-
ous data sets associated with CO, flux processes and actual
CO, flux variability, as seen through the existing atmo-
spheric monitoring network. In future work, the use of
biospheric model output and nonlinear and regional rela-
tionships in the model of the trend could help to differen-
tiate among competing hypotheses about processes
controlling flux variability, and thereby contribute to pro-
cess-based understanding of CO, flux drivers. This ap-
proach will also continue to improve flux estimates, while
minimizing a priori assumptions inherent to inversion
studies. As such, the geostatistical approach provides a
unique opportunity for reconciling top-down and bottom-
up estimates of CO, flux variability at various spatiotem-
poral scales.

[67] Acknowledgments. The authors gratefully acknowledge Adam
Hirsch and Deborah Huntzinger for important feedback on this manuscript,
as well as Andy Jacobson and Pieter Tans for discussion about this work. In
addition, the authors thank NOAA-ESRL for providing the atmospheric
CO, concentration data used in this work, Christian Rédenbeck for
providing the transport matrix (H) from his 2003 study, and Kevin Gurney
for providing measurement residual standard deviation values for the
examined measurement locations. Additionally, the authors thank Charles
Humpbhriss for help with sourcing many of the auxiliary data sets used in
this study. This material is based on work supported by the National
Oceanic and Atmospheric Administration under contract RA133R-05-SE-
5150 “Geostatistical Analysis of NOAA Climate Monitoring and Diag-
nostics Laboratory Carbon Dioxide Data for 1997-2001,” issued by the
Climate Modeling and Diagnostics Laboratory, now part of the Earth
System Research Laboratory. Additional support was provided by the
National Aeronautics and Space Administration under grant
NNXO06AE84G “Constraining North American Fluxes of Carbon Dioxide
and Inferring Their Spatiotemporal Covariances through Assimilation of
Remote Sensing and Atmospheric Data in a Geostatistical Framework™
issued through the ROSES A.6 North American Carbon Program to the
University of Michigan, and grant NNX06AE65G to the National Snow
and Ice Data Center, University of Colorado.

References

Adler, R. F., et al. (2003), The version-2 global precipitation climatology
project (GPCP) monthly precipitation analysis (1979-present), J Hydro-
meteorol., 4(6), 1147—-1167.

Baker, D. F., et al. (2006), TransCom 3 inversion intercomparison: Impact
of transport model errors on the interannual variability of regional CO,
fluxes, 1988—-2003, Global Biogeochem. Cycles, 20, GB1002,
doi:10.1029/2004GB002439.

Brenkert, A. (1998), Carbon dioxide emission estimates from fossil-fuel
burning, hydraulic cement production, and gas flaring for 1995 on a
one degree grid cell basis, Tech. Rep. NDP-0584, Carbon Dioxide Inf.
Anal. Cent., Oak Ridge Natl. Lab., Oak Ridge, Tenn. (Available at http:/
cdiac.esd.ornl.gov/npds/npd058a.html)

Central Intelligence Agency (2007), World Factbook, Washington, D. C.
(Available at http://www.cia.gov/cia/publications/factbook/)

Dai, A. G., K. E. Trenberth, and T. T. Qian (2004), A global dataset of
Palmer Drought Severity Index for 1870—2002: Relationship with soil
moisture and effects of surface warming, J. Hydrometeorol., 5(6), 1117—
1130.

GLOBALVIEW-CO, (2008), Cooperative Atmospheric Data Integration
Project—Carbon dioxide [CD-ROM], Clim. Monit. and Diag. Lab.,
NOAA, Boulder, Colo.

GOURDIJI ET AL.: GLOBAL GEOSTATISTICAL CO, FLUXES, 2

D21115

Gurney, K. R., et al. (2003), TransCom 3 CO, inversion intercomparison: 1.
Annual mean control results and sensitivity to transport and prior flux
information, Tellus, Ser. B, 55, 555—-579.

Gurney, K. R., et al. (2004), Transcom 3 inversion intercomparison: Model
mean results for the estimation of seasonal carbon sources and sinks,
Global Biogeochem. Cycles, 18, GB1010, doi:10.1029/2003GB002111.

Gurney, K. R., Y. H. Chen, T. Maki, S. R. Kawa, A. Andrews, and Z. X.
Zhu (2005), Sensitivity of atmospheric CO, inversions to seasonal and
interannual variations in fossil fuel emissions, J. Geophys. Res., 110,
D10308, doi:10.1029/2004JD005373.

Heimann, M., and S. Kérner (2003), The Global Atmospheric Tracer Model
TM3: Model description and user’s manual, release 3.8a, Tech. Rep. 5,
Max Planck Inst. for Biogeochem., Jena, Germany.

Judd, C. M., and G. H. McClelland (1989), Data Analysis: A Model-
Comparison Approach, 635 pp., Harcourt Brace Jovanovich, San Diego,
Calif.

Kalnay, E., et al. (1996), The NCEP/NCAR 40-Year Reanalysis Project,
Bull. Am. Meteorol. Soc., 77(3), 437—471.

Kaminski, T., M. Heimann, and R. Giering (1999), A coarse grid three-
dimensional global inverse model of the atmospheric transport: 2. Inver-
sion of the transport of CO, in the 1980s, J. Geophys. Res., 104(D15),
18,555-18,582, doi:10.1029/1999JD900146.

Kitanidis, P. K. (1995), Quasi-linear geostatistical theory for inversing,
Water Resour. Res., 31(10), 2411-2419.

Kitanidis, P. K. (1997), A variance-ratio test for supporting a variable mean
in kriging, Math. Geol., 29(3), 335—-349.

Li, Y. F. (1996), Global Population Distribution Database: A report to the
United Nations Environment Programme, report, U. N. Environ. Pro-
gramme, Nairobi.

Los, S. O., G. J. Collatz, L. Bounoua, P. J. Sellers, and C. J. Tucker (2001),
Global interannual variations in sea surface temperature and land surface
vegetation, air temperature, and precipitation, J. Clim., 14(7), 1535—
1549.

Loveland, T. R., B. C. Reed, J. F. Brown, D. O. Ohlen, J. Zhu, L. Yang, and
J. W. Merchant (2001), Development of a global land cover character-
istics database and IGBP DISCover from 1-km AVHRR data, Int. J.
Remote Sens., 21(6/7), 1303—1330.

Marland, G., T. A. Boden, and R. J. Andres (2008), Global, regional, and
national fossil fuel CO, emissions, in Trends: A Compendium of Data on
Global Change, http://cdiac.ornl.gov/trends/emis/overview.html, Carbon
Dioxide Inf. Anal. Cent., Oak Ridge Natl. Lab., Oak Ridge, Tenn.

Michalak, A. M., L. Bruhwiler, and P. P. Tans (2004), A geostatistical
approach to surface flux estimation of atmospheric trace gases, J. Geo-
phys. Res., 109, D14109, doi:10.1029/2003JD004422.

Mueller, K. L., S. M. Gourdji, and A. M. Michalak (2008), Global monthly
averaged CO, fluxes recovered using a geostatistical inverse modeling
approach: 1. Results using atmospheric measurements, J. Geophys. Res.,
113, D21114, doi:10.1029/2007JD009734.

Palmer, W. C. (1965), Meteorological drought, Res. Pap. 45, 58 pp., U. S.
Dep. of Commer., Washington, D. C.

Potter, C. S., J. T. Randerson, C. B. Field, P. A. Matson, P. M. Vitousek,
H. A. Mooney, and S. A. Klooster (1993), Terrestrial ecosystem produc-
tion: A process model—based on global satellite and surface data, Global
Biogeochem. Cycles, 7(4), 811-841.

Randerson, J. T., M. V. Thompson, T. J. Conway, I. Y. Fung, and C. B. Field
(1997), The contribution of terrestrial sources and sinks to trends in the
seasonal cycle of atmospheric carbon dioxide, Global Biogeochem. Cycles,
11(4), 535-560, doi:10.1029/97GB02268.

Reichstein, M., et al. (2003), Modeling temporal and large-scale spatial
variability of soil respiration from soil water availability, temperature
and vegetation productivity indices, Global Biogeochem. Cycles, 17(4),
1104, doi:10.1029/2003GB002035.

Rédenbeck, C., S. Houweling, M. Gloor, and M. Heimann (2003), CO, flux
history 1982—-2001 inferred from atmospheric data using a global inver-
sion of atmospheric transport, Atmos. Chem. Phys., 3, 1919—-1964.

Schaefer, K., A. S. Denning, N. Suits, J. Kaduk, I. Baker, S. Los, and
L. Prihodko (2002), Effect of climate on interannual variability of terres-
trial CO, fluxes, Global Biogeochem. Cycles, 16(4), 1102, doi:10.1029/
2002GB001928.

Schaefer, K., A. S. Denning, and O. Leonard (2005), The winter Arctic
Oscillation, the timing of spring, and carbon fluxes in the Northern Hemi-
sphere, Global Biogeochemical Cycles, 19, GB3017, doi: 10.1029/
2004GB002336.

Sellers, P. J., S. O. Los, C. J. Tucker, C. O. Justice, D. A. Dazlich, G. J.
Collatz, and D. A. Randall (1996), A revised land surface parameterization
(SiB2) for atmospheric GCMs: 2. The generation of global fields of ter-
restrial biophysical parameters from satellite data, J. Clim., 9(4), 706—737.

Takahashi, T., et al. (2002), Global sea-air CO, flux based on climatological
surface ocean pCO(2), and seasonal biological and temperature effects,
Deep Sea Res., Part II, 49(9-10), 1601 —1622.

14 of 15



D21115 GOURDII ET AL.: GLOBAL GEOSTATISTICAL CO, FLUXES, 2 D21115

Tans, P., and T. J. Conway (2005), Monthly atmospheric CO, mixing ratios
from the NOAA CMDL Carbon Cycle Cooperative Global Air Sampling
Network, 1968—2002, in Trends: A Compendium of Data on Global
Change, Carbon Dioxide Inf. Anal. Cent., Oak Ridge Natl. Lab., Oak
Ridge, Tenn.

Tucker, C. J., and P. J. Sellers (1986), Satellite remote-sensing of primary
production, Int. J. Remote Sens., 7(11), 1395—1416.

Tucker, C. J., J. E. Pinzon, M. E. Brown, D. A. Slayback, E. W. Pak,
R. Mahoney, E. F. Vermote, and N. El Saleous (2005), An extended
AVHRR 8-km NDVI dataset compatible with MODIS and SPOT vegeta-
tion NDVI data, Int. J. Remote Sens., 26(20), 4485—4498.

Yetman, G., S. Gaffin, and D. Balk (2004), Global Grids of Gross Domestic
Product (GDP) Density for 1990 [DVD/CD-ROM], NASA Goddard
Space Flight Cent., Greenbelt, Md.

S. M. Gourdji, A. M. Michalak, and K. L. Mueller, Department of
Civil and Environmental Engineering, University of Michigan, Ann
Arbor, MI 48109-2125, USA. (sgourdji@umich.edu; kimlm@umich.edu;
amichala@umich.edu)

K. Schaefer, National Snow and Ice Data Center, University of Colorado,
Boulder, CO 80309-0449, USA. (kevin.schaefer@nsidc.org)

15 of 15



