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[1] This paper presents a weather generator that allows simulation of
hydrometeorological variables representative of a given geographic location:
precipitation, total cloud cover, incoming shortwave radiation, air temperature, humidity,
and wind speed. The approach captures the essential relationships among the quantities
of interest, while modeling the diurnal variation of weather conditions at the hourly
scale. Precipitation is considered to be the key driver of simulated hydrometeorological
conditions, which leads to a consistent covariation of the weather variables. The
generator was calibrated and validated with data from three meteorological stations
located in New Mexico, Arizona, and Oklahoma. The set of variables reproduced by the
weather generator can serve as input to a number of models of environmental systems,
involving hydrological, ecological, water resources, and agricultural applications. The
model is also suitable for creating scenarios of climate regimes (e.g., dry versus wet
climates) useful in sensitivity studies. The source codes of the weather generator,
manual, and test applications are publicly available.
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1. Introduction

[2] The forcing of weather and the features of its
temporal variability need to be considered in most hydro-
logical, ecological, water resources, and agricultural appli-
cations. Using series of observed meteorological data is
always the best option to account for the local weather and
climate characteristics, however, this may lead to under-
representation of extreme events. Using only observed
meteorological data also makes it impossible to explore
the effects of changes in climate. Weather generators have
been commonly used to overcome these issues [Wilks and
Wilby, 1999]. While new models have been recently
constructed [e.g., Parlange and Katz, 2000; Schnorbus
and Alila, 2004; Schoof et al., 2005], it can be noted that
they generally (1) do not simulate all the required variables
in a single framework, suggesting implicit simplifying
assumptions, (2) use daily time step in contrast to the
hourly scale important for capturing diurnal behavior, and
(3) have intensive data requirements due to the common
Fourier series representation of parameter seasonality. The
climate simulator of Curtis and Eagleson [1982] over-

comes many of the above problems and the weather
generator presented here builds on their ideas.

2. Formulation of Weather Generator

[3] The weather generator simulates precipitation, total
cloud cover, shortwave radiation, air temperature, atmo-
spheric humidity, and wind speed. With these variables, it is
possible to drive detailed models of the water and energy
balances. The diurnal cycle is important for all these
quantities, so hourly simulations are required. In a consis-
tent climate most of these variables are physically and
thermodynamically related. A sound weather generator
must preserve most of such interactions to maintain
consistency and realism.

2.1. Precipitation

[4] Precipitation is the most crucial meteorological vari-
able for many applications. Its presence or absence also
affects statistics of many other hydrometeorological varia-
bles. A large variety of stochastic models of precipitation
has been developed over the past years [e.g., Bonta, 2004;
Buishand, 1978; Chin, 1977; Gabriel and Neuman, 1962;
Marien and Vandewiele, 1986; Morissey and Krajewski,
1993; Smith and Schreiber, 1973; Woolhiser, 1992;
Woolhiser and Osborn, 1985]. The full bibliography of
rainfall stochastic models is quite extensive, and the reader
is referred to the review papers by Georgakakos and
Kavvas [1987] and Foufoula-Georgiou and Krajewski
[1995] for a concise summary. In the following, the
discussion only deals with studies relevant to the described
weather generator.
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[5] Among the widely used precipitation models [Wilks
and Wilby, 1999] are the seasonally varying first-order two-
state Markov models [e.g., Richardson, 1981] and the
‘‘renewal’’ models, also referred to as the spell length
models. An apparent advantage of the latter type of models,
which simulate precipitation by generating random numbers
from the fitted dry and wet spell-length distributions, is in
the knowledge of the time limits of a current hydrometeo-
rological period (dry or wet spell) at any time. As will be
shown later, this facilitates an explicit coupling of the
precipitation model and other components of the weather
generator, such as cloud cover and air and dew point
temperatures. The renewal model approach is adopted in
the discussed weather generator. While recognizing the
existence of more advanced options, a simple Poisson
arrival model that implies the exponential distribution for
dry spell (interstorm) periods [Todorovic, 1968; Todorovic
and Yevjevich, 1969] is implemented in the discussed
framework. This model does not represent any diurnal
effects on wet or dry spells. Nevertheless, as will become
evident in the following discussion, any hourly simulator of
rainfall arrival (or observed data) could be used to drive the
generation of the rest of the hydrometeorological variables.
The influence of the rainfall regime will be consistently
accounted for by the coupling mechanisms.
[6] Grayman and Eagleson [1969] showed that storm

durations and interstorm times could be treated as indepen-
dent events. Thus the precipitation model can be expressed
by successive sampling from the fitted probability density
functions. Time between two successive storms tb [hour]
follows the exponential distribution with parameter mb

[hour], which is the mean time between storms. The storm
duration tr [hour] is also simulated using the exponential
distribution, with mr [hour] as the mean storm duration.
Grayman and Eagleson [1969] showed that storm depths
were highly dependent on storm durations. Storm depths
h [mm] are thus assumed here to follow a gamma distribution
conditioned by the ratio tr/mr, with the parameter md [mm],
which is the mean storm depth.
[7] The following procedure is used to simulate rainfall.

At some initial time t0, an interstorm duration tb is generated
from the fitted exponential distribution. The period [t0, t0 + tb]
is considered dry. When the time reaches [t0 + tb], the storm
duration tr is generated. Using the value set for tr, a storm
depth h is generated from the gamma distribution. The
period [t0 + tb, t0 + tb + tr] is then considered wet. When
time reaches [t0 + tb + tr] the process is repeated to
determine the next storm-interstorm sequence. The adopted
method assumes the model of rectangular pulses that con-
siders a uniform rainfall intensity throughout the entire
period tr. Such a simplification is not a serious constraint
for a variety of applications that do not exhibit high
sensitivity to rainfall rates. The model of rectangular pulses
is still commonly used and appears in the current work.
Nevertheless, many applications do call for more sophisti-
cates models that allow for diurnal and intrastorm variability.
As will become clear, the weather generator presented here
is fairly independent of the choice of rainfall driver. More
advanced schemes (e.g., that include intrastorm and diurnal
rate variability) can be implemented [e.g., Bonta, 2004] in
the context of the model presented in this paper.

2.2. Cloudiness

[8] Simulating cloudiness is necessary when one needs to
explicitly consider the components of the energy balance,
their temporal dynamics, and dependence on occurrence of
precipitation events. The cloud cover, however, is not
explicitly modeled by most of the existing weather gener-
ators. They commonly circumvent the problem by simulat-
ing the net solar radiation thus only implicitly accounting
for daily cloudiness (e.g., as in commonly used models
WGEN, CLIGEN, and USCLIMATE (later GEM))
[Richardson, 1981; Nicks and Gander, 1993, 1994; Hanson
et al., 1994, 2002]. Where studies have been performed
[e.g., Falls, 1974; Chia and Hutchinson, 1991; Aguiar and
Collares-Pereira, 1992], the cloud cover is treated indepen-
dently of other hydrometeorological variables at the daily
timescale, which is theoretically incorrect. Curtis and
Eagleson [1982] provide a framework for hourly cloud
cover simulation using information on the occurrence of
intrastorm and interstorm periods.
[9] Cloud cover is defined here as the fraction of the

celestial dome covered by clouds. The cloudiness process,
N(t) [dimensionless], is therefore bounded by ‘‘0’’ (clear
sky) and ‘‘1’’ (overcast). Intermediate values can define a
variety of hydrometeorological conditions, e.g., ‘‘0.2’’,
scattered, . . ., ‘‘0.7’’, broken, etc., Curtis and Eagleson
[1982] consider N(t) as a random nonstationary process
composed of intrastorm and interstorm periods. During the
intrastorm period, the expected value of the mean of the
process is close to 1.0, while if N(t) is examined near
the middle of a sufficiently long interstorm period, the
expected value is usually quite different from 1.0. The
central assumption made in the model of Curtis and
Eagleson [1982] is that there is a loosely centered subre-
gion, R0, around the midpoint of the interstorm period in
which the process N(t) can be assumed stationary. By
examining the first and second moment properties of the
process, they conclude that the ‘‘fair weather’’ cloud cover
process in this subregion is unaffected by approaching or
receding precipitation systems:E(N(t) j tb)t 2 R0

=E(N(t))t 2 R0
=

M0, Var(N(t) j tb)t 2 R0
= Var(N(t))t 2 R0

= sm
2 , M0 [dimen-

sionless] is the mean and sm
2 [dimensionless] is the variance

of the fair weather N(t). Another major assumption is that
there is a smooth transition of mean and variance from the
boundaries of fair weather period:

N tð Þ ¼ M0 þ 1�M0ð Þ 1� J tð Þð Þ þ m tð ÞJ tð Þ; ð1Þ

where J(t) is an assumed transition function and m(t) is the
stationary sequence of correlated deviations with E(m(t)) =
0 and Var(m(t)) = sm

2 , and autocorrelation function rN(t),
where t [hour] is the lag. The time varying conditional
expectation and variance of cloud cover under this
assumption are obtained as [Curtis and Eagleson, 1982]

E N tð Þ j tbð Þ ¼ M0 þ 1�M0ð Þ 1� J tð Þð Þ; ð2Þ

Var N tð Þ j tbð Þ ¼ s2
mJ

2 tð Þ; ð3Þ
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where t 2 tb. The autocorrelation structure of the cloud
cover process (1) is not affected by J(t) and is identical to
the autocorrelation function of the process m(t): rN(t) =
rm(t). The transition function J(t) is assumed to be of an
exponential form

J tð Þ ¼ 1� e�& t�t0ð Þ
� �

1� e�g t0þtb�tð Þ
� �

; ð4Þ

where & and g [h�1] are decay coefficients controlling the
transition rates from the boundaries (end/beginning of
precipitation events) to/from the region R0. These rates are
assumed to be equal in the current model implementation.
As follows from (4), for t 2 R0, limtb!1J(t) = 1. J(t) reaches
a value close to 1.0 for all reasonable values of the decay
coefficients and therefore the fair weather cloudiness is
essentially simulated as limtb!1N(t) = M0 + m(t), where
m(t) is taken to be a first-order Markov process:

m tð Þ ¼ rm 1ð Þm t � 1ð Þ þ e tð Þsm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2m 1ð Þ

q
; ð5Þ

where e(t) is a random deviate. In the model of Curtis and
Eagleson [1982], e(t) is assumed to be a normally
distributed variable, N(0, 12). However, a modification is
introduced here and e(t) is simulated as a random deviate
from the Beta probability distribution. The lower and upper
bounds (y1, y2) of this distribution are found from (1) and
(5) at every simulation step, i.e., the knowledge of m(t � 1)
and J(t) at every time t allows one to derive y1 and y2 by
imposing the requirement for the cloud cover N(t) to be in
the range [0, 1]. The Beta distribution shape parameters a
and b are estimated based on conditioning by the cloudiness
value at (t � 1) (see section 4.2).

2.3. Shortwave Radiation

[10] The spatial and temporal distribution of surface solar
irradiance exerts one of the fundamental controls on the
land-surface energy and water dynamics. While hydrolog-
ical estimation is typically limited to using only global
shortwave radiation, a number of applications require radi-
ation partition into type as well as wave band. For instance,
the spectral band [0.38 mm 
 0.71 mm] corresponds to
photosynthetically active radiation (PAR), which constitutes
one of the principal determinants of biomass production.
Therefore an ecological or ecohydrological simulation must
consider PAR as one of the inputs. The methodology
presented here attempts to satisfy such needs, permitting
the parameterization of the model for essentially any geo-
graphic location and a wide range of atmospheric conditions.
[11] For all practical purposes, the Sun radiates its energy

at a constant rate. Outside the atmosphere, at the mean solar
distance, the beam irradiance, i.e., the solar constant, So, is
1366.1 [W m�2], as adopted by the American Society for
Testing and Materials [Darula et al., 2005]. To allow for the
varying solar distance (due to eccentricity of the Earth’s
orbit), a ratio of the actual Earth-Sun to the mean Earth-Sun
distance, r [dimensionless], is introduced so that So

0 = So/r
2,

where r ¼ 1:0þ 0:017 cos½ð2p=365Þð186� JDayÞ, where
JDay is the Julian day. Several other variables defining
the Sun’s position with respect to a location on Earth are

used in the following. Their definitions are provided in
auxiliary material Text S1, section A.1

[12] Themodel considers twowide bands of solar spectrum:
the ultraviolet (UV)/visible (VIS) band, BL1 [0.29 mm 

0.70 mm], where ozone absorption and molecular scattering
are concentrated, and the infrared in near- and short-wave-
length range (NIR), BL2, [0.70 mm 
 4.0 mm], where water
and mixed gases absorptions are concentrated. The spectrum
separation into two bands facilitates the transmittance mod-
eling of beam and diffuse clear sky irradiances because
overlap between scattering and selective absorption is limited
[Gueymard, 1989]. In the presence of clouds, the chosen
spectral limits are also convenient due to the above differ-
ences in absorption properties by water droplets. Moreover,
separate treatment of these two bands allows one to explicitly
compute PAR, which is used in the process of leaf photosyn-
thesis. According to Slingo [1989], the energy contained in the
two bands, BL1 and BL2, is 46.6% and 53.4% of So

0 , respec-
tively. These fractions are applied to obtain the extraterrestrial
flux densities in the two bands: SoL1 and SoL2 [W m�2].
2.3.1. Clear Sky
2.3.1.1. Direct Beam Irradiance
[13] It is assumed that direct rays entering the atmosphere

encounter extinction processes, which are limited to the
effects of [Gueymard, 1989] ozone, uniformly mixed gases,
water vapor, and aerosol absorption, and Rayleigh and
aerosol scattering. The transmittances TX due to an extinc-
tion process X are defined in Text S1, section B. Separate
extinction layers are considered, so that the total direct beam
flux at the ground at normal incidence is Sb

m = SoL1
Q
X

TX,1 +
SoL2

Q
X

TX,2 = SbL1
m + SbL2

m .

2.3.1.2. Diffuse Irradiance
[14] The diffuse irradiance at the ground level is modeled

as a combination of three components IdX corresponding to
(the X index) the two scattering layers (molecules and
aerosols) and to a backscattering process between ground
and sky (Text S1, section B2). The total diffuse flux at the
ground is therefore Sd =

P
X

IdX,1 +
P
X

IdX,2 = SdL1 + SdL2.
2.3.2. Cloudy Sky
[15] Clouds alter transmission and reflection properties of

the atmosphere. Therefore the effects of cloud cover need to
be carefully accounted for. Cloud parameterizations provided
in hydrological literature typically use empirical functions
of the fractional cloud cover [e.g., Becker, 2001] or specify
fixed bulk properties. However, cloud radiative character-
istics strongly depend on cloud type, structure, and density
[Thomas and Stamnes, 1999]. Also, different spectral inter-
vals exhibit distinct absorption and scattering characteristics
[Slingo and Schrecker, 1982].
[16] The framework used here relies on parameterizations

developed by Stephens [1978] and Slingo [1989]. On the
basis of both observational and theoretical evidence, these
studies infer that the cloud radiative properties are mainly
determined by the cloud total vertical liquid water path,
LWP [g m�2]. Stephens [1978] showed that the broadband
optical thickness is essentially the same for clouds of
different types that have the same LWP. Slingo [1989]
introduced an additional independent relationship between

1Auxiliary materials are available in the HTML. doi:10.1029/
2006WR005364.
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cloud radiative properties and the effective radius of drop
size distribution. The advantage of using LWP is that this
quantity can be obtained by satellite microwave radiometry
[e.g., Han et al., 1994] and allows the introduction of
seasonality effects in the cloud properties.
[17] The approach developed by Stephens [1978] is used

here to derive the effective radius of drop size distribution
based on LWP. The four-band model of Slingo [1989] is
then used to derive the cloud transmittances and reflectances
for the incident clear sky direct SbLi

m and diffuse SdLi
m fluxes

(assumed to be incident on top of clouds).
2.3.2.1. Direct Beam Irradiance
[18] The model uses the simulated cloud cover, N [0.0 


1.0], to differentiate between the cloudless, (1 � N), and
cloudy, N, sky fractions. The direct beam flux from the clear
sky fraction is assumed to reach the ground surface unal-
tered. The cloudy sky fraction is assumed to contain a
homogeneous layer of clouds characterized by LWP
[g m�2]. The total direct beam normal irradiance SB0Lj

m
in

each of the bands j, j = 1,. . .,4 of Slingo’s [1989] param-
eterization (Text S1, section C) is estimated as a linear
combination of the fluxes from the clear sky and cloudy
fractions of the sky dome:

S
m
B0Lj ¼ S

m
bLi 1� Nð Þ þ TDBj N

� � kj
K
; ð6Þ

where TDBj [dimensionless] is the cloud transmissivity for
the direct beam flux in band j, kj is the respective fraction
of solar irradiance at the top of the atmosphere in each band
[0.466, 0.320, 0.181, 0.033] (Text S1, section C1), and K =
0.466 if i = 1, K = 0.534 if i = 2. The fluxes in the two
bands BL1 and BL2 are then obtained as SBL1

m = SB0L1
m

and

SBL2
m =

P4
j¼2 SB0Lj

m
.

2.3.2.2. Diffuse Irradiance
[19] As above, diffuse flux from the clear sky fraction is

assumed to reach the ground surface unaltered. The diffuse
radiative flux at the cloud bottom may result from both the
diffuse and beam radiation incident at the cloud top. The
total diffuse irradiance SD0Lj in each of the bands j = 1,. . .,4
(Text S1, section C2) is estimated as a linear combination of
the fluxes from the clear sky and cloudy fractions:

SD0Lj ¼ 1� Nð ÞSdLi þ N TDIRj S
m
bLi þ TDIFj Sd Li

� � kj
K
; ð7Þ

where TDIRj [dimensionless] is the diffuse transmissivity for
direct incident radiation and TDIFj [dimensionless] is the
diffuse transmissivity for diffuse incident radiation. The
fluxes in the two bands BL1 and BL2 are then obtained as:

SDL1 = SD0L1 and SDL2 =
P4

j¼2 SD0Lj.
2.3.3. Terrain Effects
[20] The spatial distribution of solar radiation over the

surface is strongly affected by small-scale topographic
features such as slope angle, aspect, and screening or
reflection effects from the surrounding terrain. Any appli-
cation that takes into account the geometry of irradiated
surface needs to explicitly consider the corresponding
effects of shading or exposure. The implemented approach

follows Olseth et al. [1995]. Details can be found in Text S1,
section D.

2.4. Air Temperature

[21] A number of stochastic weather generators that
include the capability for modeling air temperature have
been proposed for agricultural simulations and climate
studies [e.g., Richardson and Wright, 1984; Hanson et al.,
1994, 2002; Nicks and Gander, 1993, 1994]. These models
typically simulate daily maximum and minimum tempera-
ture. The majority of these models are based on the
multivariate stationary process that permits autocorrelation
in the individual time series and cross correlations between
the time series of air temperature and precipitation, e.g.,
conditioning by the wet or dry day occurrence (e.g., WGEN
and USCLIMATE [Richardson and Wright, 1984; Hanson
et al., 1994]). The common problem, however, is that the
temperature diurnal variation is neglected. Moreover, these
approaches are seriously handicapped because they do not
consider the effects of other variables (e.g., cloud cover) on
a continuous basis. The model of Curtis and Eagleson
[1982] deals with both problems. The model assumes that
the hourly air temperature, T(t) [�C], is a sum of two
variables: a deterministic air temperature component ~T (t)
and a random variate dT(t):

T tð Þ ¼ ~T tð Þ þ dT tð Þ: ð8Þ

2.4.1. Definition of the Deterministic Component ~T~T~T (t)
[22] The deterministic component is built on an empirical

method of Bryan [1964] that attributes temporal variation of
the air temperature to the divergence of radiative heat flux
and the divergence of eddy heat flux. In essence, an
assumption is made that hourly temperature increments
can be regressed on several hydrometeorological variables:

d~T tð Þ
dt

¼ b0 � b1~T tð Þ þ b2K tð Þs tð Þ þ b3K tð Þr tð Þ þ b4q tð Þ; ð9Þ

where bi-s (i = 0, 1,. . ., 4) are the regression coefficients, s(t)
and r(t) are the variables of the Sun position and geographic
location, K(t) = 1 � 0.65N2(t) is the radiation attenuation
factor, and q(t) is the estimate of incoming longwave
radiation. Expression (9) excludes several terms of the
original model of Curtis and Eagleson [1982]: the ground
temperature (not a standard measurement variable and not
readily available), and wind speed and direction (assumed to
have generally minimal contribution in modifying the air
temperature). Equation (9) relates the change in temperature
to a number of factors that operate throughout the daily and
seasonal cycle. For example, higher values of cloud cover
result in lower amplitude of the daily temperature because
of the terms containing s(t) and r(t). The term containing
q(t) is nonzero throughout the entire day and should explain
some of the differences in cooling observed on clear nights
as opposed to cloudy nights. Absolute magnitudes of s(t)
and r(t) vary for different seasons and geographic locations
(Text S1, section E).
[23] The first-order differential equation (9) can be solved

if the initial temperature is provided. Curtis and Eagleson
[1982] provide a solution method summarized in Text S1,
section E.
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2.4.2. Definition of the Random Deviate Component
dT(t)
[24] The deterministic component in the model of Curtis

and Eagleson [1982] essentially represents the expected
temperature value. It cannot explain all of the temperature
variability and therefore the random deviate dT(t) [�C] is
introduced, defined as: dTo(t) = To(t)� ~T (t), where To(t) [�C]
is the observed air temperature and ~T (t) [�C] is the deviation
component. The deviations are assumed to be approximated
by a first-order Markov process:

dT tð Þ ¼ dT þ rdT 1ð Þ dT t � 1ð Þ � dT
	 


þ eT tð ÞsdT

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2dT 1ð Þ

q
;

ð10Þ

where dT , sdT
2 , and rdT(1) are the mean, variance, and lag-1

value of autocorrelation of random temperature deviates,
respectively, and eT(t) is the standard normal deviate.

2.5. Air Humidity

[25] Some weather generators do include simulation of
quantities that can be translated into air humidity. Ahmed
[1974] generated air humidity within the framework of a
multivariate model using mean weekly relative humidities.
Hanson et al. [2002] simulated the daily dew point assum-
ing that it is normally distributed. Parlange and Katz [2000]
extended the model of Richardson [1981] to include the
dew point temperature as a component of multivariate
stochastic process. Curtis and Eagleson [1982] offer a
multiple linear regression model for cases when the cross
correlation of dew point with other hydrometeorological
variables is significant. The model uses 11 parameters.
Commonly, however, dew point temperatures are found to
stay relatively constant during the day [e.g., Glassy and
Running, 1994], which suggests the possibility of a simpler
model with fewer parameters.
[26] Observations have shown that nightly minimum

temperatures, Tmind [�C], tend to come into equilibrium
with daily dew point temperatures, Tdew [�C] [Running et
al., 1987]. Therefore Tmind is often used as an indirect
measure of Tdew. However, Kimball et al. [1997] showed
that substantial differences may exist between these two
quantities, especially in arid and semiarid climates. On the
basis of long-term records for a number of climatic regions,
Kimball et al. [1997] proposed an empirical model that
allows for the adjustment of daily dew point temperature
with respect to minimum air temperature using information
on daily potential evaporation and a degree of region
aridity:

Tdew ¼ Tmind �0:127þ 1:121 1:003� 1:444EFð½
þ 12:312EF2 � 32:766EF3



þ 0:0006DTd

�
� 273:15;

ð11Þ

where DTd [�C] is the amplitude of daily air temperature
and EF [dimensionless] is the evaporative factor, 0 EF 1
that Kimball et al. [1997] define as

EF ¼ 1

Pann

Ep

rw
DLH ; ð12Þ

where Ep [kg m�2 s�1] is the daily potential evapotran-
spiration, rw [kg m�3] is the water density, DLH [s] is the
day length (Text S1, section A), and Pann [m] is the annual
precipitation. When estimating Ep following Priestley and
Taylor [1972], Kimball et al. [1997] assume that the ground
surface has a seasonally constant albedo, daily net radiation
can be approximated using air temperature, and that ground
heat flux is 10% of net radiation. Kimball et al. [1997] show
that the model (11) improves estimates of Tdew based on
Tmind.
[27] The major difficulty in using (11) is to compute the

daily values of Ep and DTd, since both quantities have to be
available at the beginning of each day when Tdew is
estimated. Both Ep and DTd, however, are determined by
a number of variables simulated at the hourly scale that
cannot be readily predicted for the entire day. For instance,
cloudiness affects temperature estimation and since both
models use random deviates, there is no exact method to
predict daily air temperature amplitude in advance. It is
assumed that adjusted values of Ep and DTd from the
previous day, (d � 1), can be used for estimation of Tdew
on the current day d. Since cloud cover affects net radiation
and therefore energy available for evapotranspiration, an
adjustment factor based on the radiation attenuation factor,
K(t), is introduced:

~A dð Þ ¼
eK dð Þ

K d � 1ð Þ
¼ 1� 0:652 eN dð Þ

1� 0:652N d � 1ð Þ
; ð13Þ

where K(d � 1) is the average factor value for the previous
day and eK(d) is the mean expected value for the day of
estimation. The use of ‘‘renewal’’ model of rainfall arrival
allows for the estimation of eK(d): at any time between
successive storms, both the end time of the previous and
beginning time of the next storm are known. The cloud
cover model (1) is thus used to estimate an expected value
of cloudiness for the following day, from which the factor
~A(d) is then estimated. Once ~A(d) is known, the expected
values of Ep and DTd that appear in equations (11)–(12) are

approximated as eEp(d) = ~A(d)Ep(d � 1), D~Td(d) =
~A(d )DTd (d � 1).
[28] Two other variables are required for the estimation of

Tdew: Tmind and Pann. The problem of computing Tmind is
similar to the one described above. Air temperature at the
hour preceding sunrise can be usually associated with Tmind.
Hence the air temperature from (8) at the hour preceding
sunrise is taken as Tmind and used in the estimation of Tdew.
Kimball et al. [1997] used the mean annual precipitation
Pann for all days throughout the year. Here, it is assumed
that a monthly basis is more appropriate since different
months/seasons have different degree of dryness. Therefore
Pann is considered as a precipitation parameter for each
month, Pann* .

2.6. Wind Speed

[29] Typically, the cross-correlation coefficients between
wind speed and other hydrometeorological variables are
small. For example, using hourly weather data for Massa-
chusetts and Kansas, Curtis and Eagleson [1982] estimated
cross-correlation with maximum values of 0.35, usually
around 0.1 (for air and dew point temperature and cloud
cover). Parlange and Katz [2000] used daily data from
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Oregon and reported cross correlation not exceeding 0.2 (for
daily maximum and minimum air temperatures and dew
point). Therefore wind speed has been conventionally
simulated as an independent variable [Curtis and Eagleson,
1982; Nicks et al., 1990; Hanson et al., 2002].
[30] The distribution of both hourly and daily wind speed

is positively skewed [Carlin and Haslett, 1982; Hennessey,
1977]. To generate skewed hourly wind speed data, while
preserving the first two moments of its distribution, Curtis
and Eagleson [1982] use the AR(1) model, where the
random term forces skewness on the results of the autore-
gressive model, leading to an approximately Gamma distri-
bution of wind speed [Maass et al., 1962]:

Ws tð Þ ¼ Ws þ rs 1ð Þ Ws t � 1ð Þ �Ws

	 

þ etss

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2s 1ð Þ

q
; ð14Þ

where Ws [m s�1], ss
2 [m2 s�2], and rs(1) [dimensionless]

are the mean, variance, and lag-1 value of autocorrelation of

wind speed, respectively. The term et(t) is [Wilson and
Hillerty, 1931] et = 2

ge
[1 +

geyt

6
� g2e

36
]3 � 2

ge
, where yt is a

standard normal deviate and ge(t) is the skewness of et(t): ge =
(1 � rs

3)gs/(1 � rs
2)1.5, where gs(t) is the skewness

determined from the wind speed data. While Curtis and
Eagleson [1982] considered variation of Ws and ss

2 with
time of the day, this implementation assumes that these
parameters are time-invariant.

3. Data

[31] The model was tested using data from three meteo-
rological stations: Albuquerque International Airport (New
Mexico), Tucson International Airport, (Arizona), and Tulsa
International Airport, (Oklahoma). This paper only shows
the representative results for the location of Albuquerque
(Ivanov [2006] and Text S1, section F, provides the other
test results). The Albuquerque International Airport (New
Mexico) is located at 35.05�N, 106.617�W. The data were

Table 1. Parameters Used in the Weather Generator

Parameter Definition Estimation Period

mb [hour] mean time between storms month-season
mr [hour] mean storm duration month-season
md [mm] mean storm depth month-season
M0 [dimensionless] mean fair weather cloudiness month
sm
2 [dimensionless] variance of fair weather cloudiness month

rm(1) [dimensionless] lag-1 autocorrelation of fair weather cloudiness month

& = g [h�1] cloudiness decay rates from the end of precipitation
event/‘‘fair weather’’ region to ‘‘fair weather’’ region/beginning
of precipitation event

month

a and b [dimensionless] shape parameters of the Beta distribution (conditioned by
cloudiness at the previous hour)

month

So [W m�2] solar constant, So = 1366.1 constant
DGMT [hour] time difference between the local time zone and GMT constant
uo [cm] ozone amount in a vertical column month-season
b [dimensionless] Angström turbidity parameter constant/season
wAi [dimensionless] aerosol single-scattering albedos (VIS and NIR bands) constant/season
rg [dimensionless] spatial average regional albedo constant/season
LWPo [g m�2] cloud total liquid water path for overcast conditions month
ai � s and bi � s (i = 0, 1,. . ., 4) regression coefficients in the

equation for ‘‘deterministic’’ hourly temperature increment
month

dT [�C] mean of random temperature deviates month

sdT
2 [�C] variance of random temperature deviates month

rdT(1) [dimensionless] lag-1 autocorrelation of random temperature deviates month
~A(d) [dimensionless] parameter used for adjustment of Ep(d) and DTd(d � 1) constant

Pann* [mm] precipitation index in dew temperature model month

W [m s�1] mean wind speed month-season

ss
2 [m2 s�2] variance of wind speed month-season

rs(1) [dimensionless] lag-1 autocorrelation of wind speed month-season
gs(t) [dimensionless] skewness of wind speed month-season

Figure 1. Observed and simulated mean monthly rainfall (Albuquerque, New Mexico). The vertical
bars denote the estimated standard deviation of the monthly value.
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Figure 2. Estimated mean cloud cover value and standard deviation of the estimate as a function of the
length of transition period (Albuquerque, New Mexico).
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Figure 3. Analytical and observed transition functions J(t) corresponding to the estimated transition
period lengths (Albuquerque, New Mexico).
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available for the period of January 1961 to December 1995.
The climate of Albuquerque is arid continental with a wide
seasonal range of temperatures. More than 75% of the
daylight hours have sunshine. The air is normally dry and
humid days are rare. Nearly half of the annual precipitation
in Albuquerque results from afternoon and evening thunder-
storms during the summer. Thunderstorm frequency
increases rapidly at the beginning of July, peaks during
August, then diminishes by the end of September. Thunder-
storms are usually brief and sometimes heavy. Small
amounts of precipitation fall in the winter. Temperatures
in Albuquerque are those characteristic of a dry, high-
altitude, continental climate. The average daily range of
temperature is relatively high. High temperatures during the
winter are near 10�C with only a few days on which the
temperature is below zero. In summer, daytime maxima are
about 32�C. Sustained winds of 5.4 [m s�1] or less occur
approximately 80% of the time.

4. Parameter Estimation and Model Verification

[32] Parameter estimation is discussed and statistics
derived from the observed hydrometeorological data are
compared with those obtained from a 100-year simulation
period. The generated series correspond to complete weather
simulations, which involve synthetic modeling of the entire
set of climate variables, accounting for the discussed link-
ages among them. A complete list of model parameters is
provided in Table 1.

4.1. Precipitation

[33] The required parameters for the precipitation simu-
lator include the mean values of time between storms mb,
storm duration mr, and storm depth md. The major challenge
in estimating these parameters is separating point precipi-
tation records into statistically independent storms
[Restrepo-Posada and Eagleson, 1982]. Multiple mesoscale
precipitation events are embedded in a single synoptic-scale
disturbance and each event may produce intervals of rainfall
followed by periods without rainfall before the next event
arrives. A statistical method is generally required when
operating with series of point precipitation data.
[34] While identifying independent interarrival times con-

sistent with Poisson arrivals process, Restrepo-Posada and
Eagleson [1982] found tbmin (the minimum separation

interval between independent storms) ranging between
8 and 76 hours at various locations. Dry climates had higher
values, while more humid climates were found to have
lower values. Restrepo-Posada and Eagleson [1982] thus
concluded that for precipitation models that assume rectan-
gular pulse of storm rate, a strict requirement of indepen-
dence is operationally impractical. If such long separation
intervals (e.g., 8–76 hours) are imposed, long storm dura-
tions would result and these intervals would contain many
periods without precipitation. It was therefore suggested
that for problems where the dynamic response of a hydro-
logic system to precipitation inputs is of major interest, the
rainfall model parameters should be estimated from raw
storm data. Grace and Eagleson [1967] and Sariahmed and
Kisiel [1968] used autocorrelation of successive storm
depths as a surrogate indicator for storm independence.
The time lag at which autocorrelation was not significantly
different from zero was used as the tbmin. They found tbmin

to be between 2 and 3 hours (for convective storms). Curtis
and Eagleson [1982] used the value of 2 hours. The same
methodology is used here and for Albuquerque (New
Mexico) the minimum lull duration is taken to be 3 hours.
[35] For climates with pronounced precipitation season-

ality, the parameters mb, mr, and md have to account for the
intraannual variability. Precipitation seasons are identified
by analyzing the mean annual cycles of precipitation. For
Albuquerque, four seasons were identified: months
November–June, July–August, September, and October.
The corresponding mean values of md/mr [mm h�1], mr

[hour], and mb [hour] are [0.778/3.61/152.7], [1.661/2.44/
70.3], [1.161/3.197/85.9], and [1.048/3.96/122.7] for each
season, respectively. Since the parameters are sampled from
the assumed analytical distributions, their statistical proper-
ties are inherently preserved in the simulated data. Figure 1
illustrates the annual cycle of the rainfall process for
Albuquerque.

4.2. Cloud Cover

[36] The parameters of the cloud cover model are M0, sm
2 ,

rm(1), g, a, and b. The procedure of parameter estimation
follows that of Curtis and Eagleson [1982] with some
modifications.
[37] The existence of stationary interstorm ‘‘fair weather’’

cloud cover process is the central assumption of the model.
Therefore identification of sequences of these periods in
series of meteorological data is essential. The methodology
introduced by Curtis and Eagleson [1982] employs an
iterative approach that estimates the mean cloud cover for
some subregion Dt within an interstorm period between
successive precipitation events. Each interstorm period of
length Tis [hour] is considered to be constrained by the last
hour of the first rainfall event and the first hour of the
following one. By successively eliminating 1 hour from
both ends (Dt1 = 1 hour, Dt2 = 2 hours, etc.), a number of
subregions, not exceeding in total (Tis/2 � 1), can be
defined for each period. For any given subregion, Dtk,
corresponding to k eliminated hours from each end, a mean
value of the cloud cover is estimated over all interstorm
periods in the precipitation record exceeding 2k hours.
Since k 2 [0, Tismax/2 � 1], where Tismax is the maximum
duration of an interstorm period in the record, a vector of
the mean values of cloud cover of length (Tis max/2 � 1) is
obtained.

Table 2. Parameter Values of M0, sm
2 , and rm(1) of the Cloud

Cover Model for the Location of Albuquerque, New Mexico

Month

ALB

M0 sm
2 rm(1)

January 0.363 0.407 0.916
February 0.424 0.410 0.909
March 0.402 0.400 0.893
April 0.391 0.389 0.896
May 0.381 0.376 0.896
June 0.302 0.349 0.908
July 0.288 0.321 0.879
August 0.323 0.354 0.853
September 0.210 0.329 0.918
October 0.228 0.345 0.922
November 0.257 0.357 0.904
December 0.275 0.384 0.911
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Figure 4. Histograms of deviates e(t) in the cloud cover model and the corresponding probability
density function (solid line) approximated with the Beta distribution. The cloud cover N(t � 1) for the
month of July is given on a [0, 10] basis (Albuquerque, New Mexico).
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Figure 5. Observed and simulated cloud cover distribution (Albuquerque, New Mexico). Symbols m
and s are the mean and standard deviation values, correspondingly, for the observed (subindex ‘‘o’’) and
simulated (subindex ‘‘s’’) data.
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Figure 6. Seasonal cycles of the observed and simulated direct beam and diffuse flux on a horizontal
surface in clear sky conditions for hours 10–15 (on a 24-hour basis, Albuquerque, New Mexico).
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[38] Curtis and Eagleson [1982] argue that with the
increasingly larger number of eliminated hours, the estimated
mean value of cloud cover stabilizes, reaching the fair
weather mean value, M0. The number of hours, Tr, elimi-
nated from both ends of all interstorm periods after which
there is no significant change in the mean cloudiness value,
is considered to be the length of the transition period.
Consequently, a necessary condition for an interstorm
period to contain a fair weather cloud cover sequence is
to be of duration Tis > 2Tr [hour].
[39] A note has to be made regarding a particular case of

interstorm periods for which the described approach is not
appropriate. Sometimes, passing atmospheric precipitation
systems do not necessarily result in rainfall at a given
location. However, the cloud cover process is obviously
nonstationary during such periods and the estimated mean
value can be significantly affected. The approach used here
cannot identify such a situation, which would, perhaps,
require auxiliary information about cloud vertical structure
and spatial characteristics of the precipitation process.
Nevertheless, the procedure is efficient for most of the
interstorm periods and results in reasonable estimates of
the transition period as long as the above situation does not
occur often. Still, caution has to be taken when interpreting
the results of the described method.
[40] Figure 2 illustrates the outlined procedure for

the Albuquerque station. In addition to the mean values,
the standard deviation of the mean estimate is plotted. For

the selected values of the transition period Tr, both the
analytical and observed transition functions J(t) are plotted
in Figure 3. As one can see, the exponential form of J(t) fits
the observed cloud cover transition sufficiently well some of
the months. In several cases, the performance is not as
satisfactory, which may question the validity of the assumed
exponential form for the location of Albuquerque (compare
with results in Text S1, section F, for other locations). There
can be also observed a particularly considerable bias for the
months of July and August, which is likely attributed to the
situation described in the note above (these months are
associated with the monsoon period for Albuquerque).
[41] Once Tr is established, the fair weather sequences

contained in the interstorm periods of length Tis > 2Tr are
combined in a new series containing only fair weather cloud
cover values. For these series, created for each month or the
entire period of analysis, the parameters M0, sm

2 , and rm(1)
are determined by conventional methods. Estimated values
of the parameters for Albuquerque are provided for refer-
ence in Table 2. As can be seen, the fair weather cloudiness
varies throughout the year sometimes changing in magni-
tude by a factor of two between September and February.
Cloudiness exhibits high autocorrelation at lag 1 hour
(�0.9), which is relatively unchanged throughout the year.
The parameter g, with g = &, is computed as g = 4.61/Tr
[Curtis and Eagleson, 1982]. The parameters a and b are
estimated by analyzing random deviates e(t), which are
calculated from the observed cloud cover series by inverting

Figure 7. Seasonal cycles of mean monthly observed and simulated direct beam flux, diffuse flux, and
global radiation on a horizontal surface for all sky conditions (Albuquerque, New Mexico).
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(1) and (5). The estimation of e(t) is conditioned by the
cloud cover at time (t � 1). Therefore 11 vectors of deviates
are composed from the cloud cover records for every
month, each vector corresponds to one of the values of
N(t � 1): 0.0, 0.1, . . ., 1.0. For each N(t � 1), the cor-
responding distribution of deviates is approximated by the
Beta distribution with parameters a and b estimated from
these deviates. Figure 4 illustrates the procedure for the
month of July for Albuquerque. The last plot shows the
skewness of the deviates as well as their first two moments
scaled to be in the range [0, 1]. The behavior of these
variables with respect to N(t � 1) is similar for all months:
while the mean and standard deviation are essentially
constant throughout the entire range of N(t � 1) values,
the skewness of the deviates varies significantly, changing
its sign from positive to negative. The probability density
functions of the Beta distribution, corresponding to the
same N(t � 1), can significantly vary among different
months. Since the variability is quite substantial for most
months, a and b are estimated on a monthly basis.
[42] When the parameter values have been estimated, the

performance of the model is evaluated based on the first two
moments and frequency histogram of the cloud cover
simulated for fair weather periods. In general, the frequency
distributions of fair weather cloudiness tend to be U-shaped
with spikes at zero and one, as Figure 5 illustrates. As can
be seen, there is a generally good agreement between the
observed and simulated data. A note has to be made
concerning the cloud cover during consecutive months
that have different cloudiness statistics (e.g., August and
September). The cloud cover model considers monthly
values of the parameters. Cloudiness of an interstorm period
that overlaps 2 months is therefore simulated using param-
eters for both months. The procedure that identifies the fair
weather cloud cover sequences considers an interstorm
period starting in 1 month and ending in a subsequent
month as belonging to 1 month only, depending on the
relative duration of the dry spell within each month.
Consequently, the cloud cover statistics derived for any
given month can be affected by the presence of interstorm
periods during which cloudiness is simulated using two
parameter sets.

4.3. Shortwave Radiation

[43] The model includes the following parameters (Text
S1, sections B and C): the ozone amount in a vertical
column uo [cm], the Angström turbidity parameter b (same

for both VIS and NIR bands), the aerosol single-scattering
albedos wAi [dimensionless], and the spatial average regional
albedo rg [dimensionless]. The liquid water path, LWP
[g m�2], is a measurable state of cloud thickness [Han et
al., 1994], however, this quantity may not be readily
available. Furthermore, when the radiative transfer model
produces forcing in conjunction with the stochastically
generated variables, it is reasonable to link LWP to features
of regional climatology.
[44] The parameters uo, b, wAi, and rg are derived for

clear sky atmospheric conditions. The parameter uo is
assumed to be seasonally constant (Text S1, section B)
and uo = 0.34 is used here. The parameter b is obtained
through calibration, which is done by comparing the
observed and simulated total direct beam flux for clear
sky conditions. For example, Figure 6 illustrates the annual
cycle of the mean observed and simulated direct beam
radiation on a horizontal surface for a variety of daylight
hours for different Julian days. The seasonally invariant
calibrated value of the parameter is b = 0.017. Similarly, the
albedos wAi and rg are calibrated to obtain the proper cycle
of the clear sky diffuse radiation. In this example, the values
are rg = 0.1, wA1 = 0.92, and wA2 = 0.833. The assumed
seasonal invariance of these parameters can partly contrib-
ute to the smaller than observed variability of the simulated
clear sky diffuse radiation throughout the year (Figure 6).
[45] Once clear sky radiative fluxes are reproduced at a

satisfactory level, LWP is considered as the model param-
eter to account for overcast and partially cloudy sky con-
ditions. Note that for proper estimation, the parameters of
both the rainfall and cloudiness model need to be already
obtained. Seasonally varying monthly values of LWPo for
overcast conditions are assumed here to account for the
intra-annual differences in cloud structure and origin. Fur-
thermore, it is assumed that LWP for any sky condition is
simply LWPN = eNln(LWPo) � 1, where N is bounded by ‘‘0’’
(clear sky) and ‘‘1’’ (overcast, LWPN = LWPo). The monthly
values of LWPo are calibrated based on comparison between
the simulated and observed direct beam and diffuse fluxes
for all sky conditions. Figure 7 illustrates the annual cycles
of the radiative fluxes for Albuquerque (New Mexico) with
the calibrated values of LWPo = 110 for January, 80 for
February, 80 for March, 60 for April, 65 for May, 75 for
June, 95 for July, 60 for August, 100 for September, 100

Table 3. Regression Parameters bi of the Air Temperature Model

for the Location of Albuquerque, New Mexico

Month b0 b1 b2 b3 b4

January �5.52 0.139 3.70 18.0 14.5
February �5.32 0.145 3.56 17.3 14.2
March �4.76 0.147 3.16 16.4 13.2
April �4.03 0.147 2.74 16.0 12.0
May �2.87 0.156 2.74 14.9 10.4
June �0.776 0.156 2.99 13.3 6.73
July 2.60 0.168 3.36 10.2 0.763
August 2.31 0.183 3.44 10.3 1.79
September �0.403 0.156 3.15 12.8 5.62
October �2.66 0.147 3.20 17.1 9.29
November �4.30 0.149 3.40 18.0 12.3
December �5.07 0.145 3.54 19.9 13.4

Table 4. Parameters dT , sdT
2 , and rdT(1) of the Air Temperature

Model for the Location of Albuquerque, New Mexico

Month

ALB

dT sdT
2 rdT(1)

January 0.0059 2.947 0.930
February 0.0161 3.032 0.928
March 0.00048 3.188 0.926
April �0.0064 3.184 0.924
May �0.0208 3.018 0.918
June �0.0455 2.901 0.913
July �0.0063 2.638 0.903
August �0.0185 2.366 0.891
September 0.0013 2.7752 0.923
October 0.0018 3.125 0.925
November 0.0246 3.133 0.925
December 0.0154 2.891 0.924
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Figure 8. Observed and simulated daily cycles of air temperature and its standard deviation
(Albuquerque, New Mexico).
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Figure 9. Observed and simulated mean values of air and dew point temperature and their standard
deviations (Albuquerque, New Mexico). Mean monthly values and daily standard deviation of (a) air
temperature; (b) maximum air temperature; (c) minimum air temperature; (d) dew point temperature;
(e) maximum dew point temperature; and (f) minimum dew point temperature.
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for October, 130 for November, 150 for December. An
alternate procedure would be to obtain LWP seasonality from
other sources, such as World Climate Research Programme
International Satellite Cloud Climatology Project (ISCCP)
cloud data products (Rossow and Schiffer, 1991] that have
near-global coverage [Han et al., 1994].

4.4. Air Temperature

[46] The parameters of the air temperature model that
need to be estimated involve the regression coefficients bi-s
(i = 0, 1,. . .,4), dT , sdT

2 , and rdT(1) (Text S1, sections E1 and
E2). The bi-s are estimated first on a monthly or seasonal
basis, or as representative values for the entire period of
interest. Table 3 provides monthly estimates of the regres-
sion parameters for air temperature data in Albuquerque
(New Mexico). Once the regression parameters have been
estimated, the air temperature model can be used to simulate
the deterministic component of the hourly temperature
change, starting at midnight of each day. The initial value
is taken as the deterministic temperature component esti-
mated for 2300 LT of the previous day. As discussed in
section 2.4, the difference between the observed and esti-
mated deterministic temperature components defines the
temperature random deviate. Consequently, series of devi-
ates can be estimated for each period of interest, e.g., for
each month or season. The parameters dT , sdT

2 , and rdT(1)
(equation (10)) are then obtained using conventional esti-
mation techniques (Table 4).
[47] When simulating hourly temperature, it is important

to reproduce both its mean daily cycle and features of its
variability. Figure 8 illustrates the mean daily cycles of air
temperature and its standard deviation for each month. The
model (8) mimics the daily air temperature fluctuations
quite well. On a monthly scale, the air temperature statistics
are also well reproduced, as is shown in Figures 9a–9c.

4.5. Dew Point Temperature

[48] An adjustment factor ~A(d) was introduced in section
2.5, given by equation (13). A comparison of the factors es-
timated for a complete simulation using (13) and data from a
simulation when both the average potential evaporation,
Ep(d), and the daily temperature fluctuation amplitude,
DTd, are known is illustrated in Figure 10. As can be seen,
the use of ~A(d) is satisfactory for estimating Ep(d). However,
the definition of ~A(d) is not suitable for adjustingDTd(d� 1),
and therefore the parameter ~A(d) was not used for such an ad-
justment in the case of data for Albuquerque (New Mexico).

[49] The values of Pann* depend on wetness of a particular
month and are determined iteratively by comparing the mean
observed and simulated monthly dew point temperatures. The
estimated cycle for the location of Albuquerque: Pann* = 65 for
January, 60 for February, 60 for March, 55 for April, 70
for May, 70 for June, 120 for July, 160 for August, 105 for
September, 60 forOctober, 50 forNovember, 55 forDecember.
[50] Since dew point temperatures exhibit little variability

on any given day, only monthly statistics are presented.
Figures 9d and 9f show the mean daily dew point temper-
atures as well as the mean daily maximum and minimum
dew point temperatures simulated for each month. Since the
dew point temperature model is rather simple, the simulated
and observed series are in less agreement as compared to the
results of the air temperature simulation.

4.6. Wind Speed

[51] The mean, variance, lag-1 value of autocorrelation,
and skewness of wind speed (Ws, ss

2, rs(1), and gs) are
estimated from wind speed data using conventional meth-
ods. For Albuquerque they are 3.491, 2.452, 0.755, and
1.688, respectively.
[52] As was discussed in section 2.6, the frequency

distribution of wind speed data is positively skewed. Both
the skewness properties and the first two moments of the
distribution are preserved with the model (14). Figure 11
illustrates the wind speed histograms computed from the
observed and simulated data for Albuquerque.

5. Covariation of Hydrometeorological Variables

[53] The weather generator explicitly couples a number of
simulated variables. Although the cross-correlation proper-
ties are not directly accounted for as, for example, in the

Figure 10. Comparison of ~A(d), the predicted factor, as
defined in (13) and the factor obtained from the simulated
data when bothEp(d) andDTd become known (Albuquerque,
New Mexico).

Figure 11. Histogram of hourly wind speed from the
observed and simulated data (Albuquerque, New Mexico).
Symbols m and s are the mean and standard deviation
values, correspondingly, for the observed (subindex ‘‘o’’)
and simulated (subindex ‘‘s’’) data.
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WGEN model of Richardson [1981], one may expect that
the weather variables should exhibit consistent covariation.
Figure 12 illustrates such interdependencies in a qualitative
manner. Simulations start in August and extend through half
of September. As can be seen, the cloudiness dynamics
respond to precipitation events and the incoming shortwave
is correspondingly affected by the presence of clouds. The
air temperature series exhibit both lower magnitude and
diurnal variability during the days with precipitation. The
dew point temperatures become less differentiated from the
air temperatures during wet periods and show a substantial
deviation from the minimum daily temperatures during drier
hot days.
[54] Figure 13 illustrates the dependence of the mean

monthly cloud cover on rainfall occurrence. As can be seen,

there is a good correspondence between the simulated and
observed data. The cloud cover model slightly overesti-
mates the mean observed values, which can be attributed to
both (1) overestimation of the rainfall occurrence for some
months due to the introduced seasonality in rainfall model
parameters and (2) some inadequacy of the exponential
form of the transition function J(t) to describe the cloud
cover dynamics during transition to/from fair weather
periods.
[55] Figure 14 shows the mean maximum and minimum

air temperatures on rainy and rainless days for different
months, derived from the simulated and observed data.
While the air temperature model accounts for precipitation
occurrence only implicitly (via K(t) and q(t) in equation (9)),
a generally good agreement can be observed.

Figure 12. Simulated hourly hydrometeorological variables based on parameters derived for the
location of Albuquerque (New Mexico) (start on 1 August): (a) rainfall; (b) cloud cover; (c) incoming
shortwave radiation; and (d) air and dew point temperature.
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[56] Figure 15 shows sample cross-correlation functions
between the mean daily cloud cover and air temperature
amplitude for observed and simulated data. As can be seen,
the highest cross correlation between the two variables is at
zero lag, which is well reproduced by the model. The
observed data also show that cloud cover somewhat leads
temperature amplitude, i.e., a nonzero cross correlation
exists at the lead time of 1 day (the asymmetry observed
in Figure 15). This effect is not reproduced by the discussed
model. Note, however, that the relationships between var-
iables are causal, not statistical. Changes in temperature at
the hourly timescale are related to the hourly cloud cover

values. One would therefore expect that zero lag cross
correlations should be reasonable; however, the asymmetry
observed at longer lead times may not be necessarily well
reproduced by the construct.

6. Summary

[57] This paper discusses a weather generator that allows
one to synthetically simulate several hydrometeorological
variables at the hourly scale: rainfall, total cloud cover, the
incoming shortwave radiation, air temperature, humidity,
and wind speed. The weather simulator of Curtis and

Figure 13. Observed and simulated mean monthly precipitation occurrence and cloud cover
(Albuquerque, New Mexico): (a) mean number of storms and (b) mean cloudiness.

Figure 14. Mean maximum and minimum air temperatures derived from the observed and simulated
data (Albuquerque, New Mexico) on (a) rainy days and (b) rainless days.
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Eagleson [1982] was used as the core framework for the
model. A new shortwave radiation model was introduced
based on work of Gueymard [1989], allowing one to
represent separately the atmospheric radiative transfer for
the two essential bands, VIS and NIR. Other necessary
modifications were also implemented, which lead to a better
or more efficient representation of the simulated statistics.
[58] Precipitation is considered to be the key driver of

simulated hydrometeorological conditions, capturing the
essential relationships among the processes of cloud cover,
shortwave radiation, and air temperature and humidity.
Consistent time series of hydrometeorological quantities
are thus obtained: Although the cross-correlation properties
are not directly accounted for, all major weather quantities
exhibit proper covariation. While the Poison storm arrival
model with rectangular pulses was used here, in principle,
any rainfall generation routine, e.g., accounting for intra-
storm/diurnal variability of the precipitation process, can be
used as the driver of the simulated hydrometeorological
series. The weather generator can also be forced using real
rainfall observations, which are more commonly available,
to create a consistent realization of climate for a location of
interest.
[59] The generator was calibrated and validated with the

long-term (30–35 years) data for three meteorological
stations located in New Mexico (results are given in this
paper), Arizona, and Oklahoma. The results show a consis-
tent behavior. Further studies are needed to apply the model
for wetter and colder climates.
[60] Standard micrometeorological observations of the

simulated variables at the hourly scale are used for model
parameterization. At many locations, however, certain cli-
mate variables are not observed. Only partial measures can
thus be used, when parameterizing the described simulator.
Remote sensing observations can be utilized to derive the
arrival characteristic and magnitude of precipitation (e.g.,
Tropical Rainfall Measuring Mission data) as well as the
properties and dynamics of cloud cover (e.g., MODIS
sensor data). Methods combining remote sensing observa-
tions and topography can be used to derive estimates of
near-surface atmospheric humidity [e.g., Han et al., 2005].
Shortwave model and wind model can be fairly well
parameterized using reasonable parameter values for the
geographic location of interest. Air temperature data are

fairly abundant and can be extrapolated from the nearest
location. Obviously, a careful decision is needed in every
particular situation since the lack of data may preclude
using the described model on a consistent basis.
[61] The weather generator operates at the point scale,

which can be assumed to be sufficiently representative for
creating forcing for systems such as a hillslope or a small
basin. The set of simulated variables can serve as input to a
number of models of environmental systems, including
hydrological, geomorphological, ecological, water resour-
ces, and agricultural applications. The model is also suitable
for creating scenarios of climate regimes (e.g., dryer and
wetter, warmer and colder climates) applicable in a variety
of sensitivity studies. Other potential applications may
involve gap filling in observed meteorological series. A
variety of associated problems can be dealt with provided
the simulator is extended to include the spatial aspect, for
example, to create meteorological forcing in conditions of
complex topography or larger areas or to address the
subgrid variability of large-scale weather predictions. The
extension to include spatial variability has not been done.
(The source code of the weather generator, the manual,
and the test applications are publicly available at http://
hydrology.mit.edu.)
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