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GENERATION OF LONG WAVELENGTH HETEROGE•ITY IN THE MANTLE 
BY THE DYNAMIC INTERACTION BETWEEN PLATES AND CONVECTION 
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Abstract. Lateral variations in seismic velocity (through its 
dependence on temperature) can easily be generated at the 
gravest harmonics, including degrees one and two, by the 
dynamic interaction between plates and convection. Models of 
thermal convection with a single non-subducting plate have 
been formulated in a cylindrical geometry. Plates of width one 
to four times times the thickness of the convecting region 
strongly modulate the flow by being pushed over cold 
downwellings and inhibiting cooling of the fluid beneath. 
During rapid motion off of hot regions, a large-scale pattern of 
shear is developed causing small uprising limbs to be swept 
into the largest upwellings. Both insulation and plume-plume 
collisions pump energy into the lower wavenumber 
harmonics. 

Introduction 

The resolution of lateral seismic velocity variations through 
the deep mantle has revealed significant power at the gravest 
spherical harmonics, including degrees one through six 
[Dziewonski, et al., 1977; Masters, et al., 1982; Dziewonski, 
1984; Gudmundsson, 1989; Hager and Clayton, 1989; Inoue, 
et al., !990; Tanimoto, 1990]. The lower mantle body wave 
tomographic inversions [Dziewonski, 1984; Hager and 
Clayton, 1989; Inoue, et al., 1990] give comparable results at 
degrees two and three, but are inconsistent at shorter 
wavelengths [Inoue, et al., 1990]. Confidence in the long 
wavelength lower mantle body wave inversions is bolstered by 
the coherence between the observed degree two non- 
hydrostatic geoid and a geoid computed from dynamic flow 
models driven by densities constrained from tomography 
[Hager and Clayton, 1989; Ricard and Vigny, 1989]. Power 
spectra are not fully consistent at degrees one through six 
[Gudmundsson, 1989; Hager and Clayton, 1989; Tanimoto, 
1990], but still share a fundamental attribute: a spectra with 
long wavelength power which is either dominated by the 
longest wavelengths or one which is white. In other words, 
for the lower manfie, power does not diminish with decreasing 
wavenumber. Significant heterogeneity at the gravest 
harmonics is a fundamental constraint on the dynamics of the 
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mantle. We show that such heterogeneity can easily be 
generated in a system where non-subducting rafts (similar to 
continental lithospheric plates) are allowed to dynamically 
interact with thermal convection. 

Model Formulation 

Without any question, the model formulated here is 
simplified from the complexity needed to fully understand the 
seismic variations spectrum produced by mantle convection. 
The models incorporate plates, however, which have been 
lacking in previous studies [Jarvis and Peltier, 1990; Machetel, 
1990]. The flow has been solved within a two-dimensional 
cylindrical geometry with gravity pointing toward the origin, O 
(Figure 1). This geometry has important advantages over 
Cartesian geometry: azimuthal interconnectivity and realistic 
inner and outer boundaries. Azimuthal interconnectivity is vital 
to resolve the two-way dynamics between plates and 
convection [Gumis, 1988; 1991; Gumis and Hager, 1988]; 
without such interconnectivity, or periodic boundary 
conditions, there cannot be a mean flow between the bulk of 
the fluid and a plate. In addition, the scales of heterogeneity 
extracted with this model can be directly compared to observed 
scales of heterogeneity extracted with tomography. 

Within the two-dimensional cylindrical geometry (Figure 
!), the equations of motion, continuity, and energy are solved 
simultaneously for an infinite Prandtl number and 
incompressible fluid 

V2u =-Vp + Ra T•r (1) 

V-u = 0 (2) 

•T 
•)--•-= -u' VT + V2T (3) 

where u = (u0, Ur) is the velocity, • is the unit vector pointing 
toward the origin, p is the pressure, T is the temperature, and t 
is time. These equations have been non-dimensionalized such 
that the Rayleigh number and the geometry, (a-c)/a, 
characterize the flow. The Rayleigh number is defined as 

Ra = PøgmSTD3 (4) 

where tz is the coefficient of thermal expansion, Do is the 
density, g is the acceleration of gravity, AT is the temperature 
difference between the inner and outer isothermal boundaries, 
•c is the thermal diffusivity, rl is the dynamic viscosity, and D 
is the depth of the conveering layer, a-c, where a and c are the 
outer and inner radii, respectively. With finite elements, the 
equations of motion and continuity are solved with a penalty- 
function formulation and the energy equation with a Petrow 
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Galerkin method [King, et al., 1990]. 
A single, non-subducting plate has been incorporated into 

the flow using a similar technique developed for Cartesian 
flows [Gurnis, 1988; 1991]. The cylindrical geometry has 
natural periodic boundary conditions (as does a sphere) and 
one finite element node is pinned, forming the basis for a 
frame of reference. A high viscosity "rectangular" region 
surrounds this pinned node (lightly shaded area, Figure 1) 
with two weak margins on its periphery. The plate has a 
viscosity 103 times the background viscosity and the weak 
margins are 10 -1 times the background; the background is 
isoviscous. With respect to this pinned node, there can be a 
non-zero, mean velocity in the azimuthal (0) direction. The 
velocity merely represents the motion of the pinned node with 
respect to the bulk of the fluid. The frame of reference of the 
system is transformed [Gumis, 1991] by first determining the 
mean azimuthal velocity 

tOref = S (5) 
x(a2- c 2 ) 

where S is the total cross-sectional area of the cylinder. Then 
the azimuthal offset, 0ref, between the pinned node and center 
of mass as a function of time can be determined from 

t 

0ref = f•ref dt' (6) 
During post processing, visualizations of the temperature can 
be created by adding -Orcf to the azimuthal coordinate of each 
node, including those defining the plate. 

A number of measures have been made in order to 

understand the long wavelength heterogeneity and its time 
dependence. First, the temperature field has been deconvolved 
into its frequency components: 

N-1 r2 

T(k) = • r2-r• (r,nA0)dr exp(-i-•-k) 
n=0 r 1 

(7) 

where T(k) is the azimuthal Fourier transform of the 
temperature averaged between r 1 and r 2. In order to track the 
change in heterogeneity with time we have defined, A(k), the 
relative importance of harmonic k to the average of the first L 
harmonics 

A(k) = L [•(k) [ [ • [•(j) [ ]-• (8) 
j=l 

For all the results presented here, L=12. A phase offset 
between this long wavelength heterogeneity and the position of 
the plate is measured by the first moment of the density 
distribution 

M = jpxids eq / Jpds (9) 
P = Po[ 1 - ct(T- To)] (10) 

where the components e•i are in a Cartesian system centered on 
the origin, 0 (Figure 1), with the e2 direction defined by the 

plate. In general, M depends on ct, but since we will only be 
interested in the orientation and relative magnitude, ct can 
remain unspecified. With no boundary deformations, M also 
represents the offset between the center of mass of the system 
and the geometric center. M is plotted with the tail of the vector 
on the time axis. When the vector points toward the right, the 
cold area of higher density is directly underneath the plate. As 
shown in Figure 1, positive 0m is measured counterclockwise 
with respect to the plate. 

node 
ß 

Fig. 1. Geometry of convection problem in a cylindrical 
geometry (see text for definition of parameters). 

Results 

Six cases have been solved within a mesh consisting of 33 
x 241 nodes for 2.4 x 104 Courant time steps at Ra = 1.0 x 
105. The geometry was fixed such that (a-c)/a = 0.5 -- very 
close to the value appropriate for the whole-mantle (0.45). The 
cases are summarized in Table 1 and animations of the entire 

time histories of the thermal fields and spectra are recorded on 
video (Appendix). The initial temperature field for all cases 
was To = - lnr/ln2 - ecos(ko0)sin(2xr), where r = 0.5 at c 
and r = 1 at a. The first four cases had identical initial 

conditions, œ = 0.01 and ko = 2, while the plate width, w, was 
varied between 1 and 4. Two additional cases allowed 

exploration of three different initial conditions, ko, for the 
same plate size, w = 3. For reference, we also ran two cases 
with no plates. Not surprisingly, both reached a steady-state 
rapidly, but with the number of cells dependent on ko. We 
found six cells for ko = 1 and eight for ko=4, but in neither case 
was there significant power at the first or second harmonics 
(Table 1). However, for those cases with plates, the initial 
condition, ko, did not influence the time history statistics, but 
plate size did exert a strong influence. Because our major 
observation of large scale, time-dependent heterogeneity is 
insensitive to plate dimension, we will only concentrate on one 
case with a plate here. 

The results for Case 3 with a plate width of three times the 
thickness of the convecting region is explored in detail. The 
time histories of the first moment of the density, M, mean 
angular velocity with respect to the plate, -r0ref, and the 
relative amplitude of the first and second harmonics of the 
temperature field, A(1) and A(2), are shown in Figure 2. The 
plate velocity, -00ref, shows much the same pattern of 
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Table 1. Summary of Models 

Case w ko time t0ref? 
1 1 2 0.204 251.1 0.038 0.047 
2 2 2 0.212 381.2 0.079 0.040 
3 3 2 0.214 294.8 0.064 0.032 
4 4 2 0.216 274.7 0.082 0.052 
5 3 1 0.212 274.7 0.074 0.044 
6 3 4 0.216 317.6 0.084 0.039 
7 0 1 0.231 0.0 0.002* 0.005* 
8 0 4 0.124 0.0 0.004* 0.003* 

?Peak value. 
*Steady-state value 

A B 

C D 

intermittency which was discovered in a Cartesian geometry 
[Gurnis, 1988]: periods of stationarity interrupted by shorter 
burst of rapid translation. The results of the other five cases 
are similar to the Cartesian models, except that for smaller 
plates periods of stationarity are much longer and well defined 
and interrupted by short bursts of plate velocity (see video). 
For larger plate widths, w = 4, the plate is almost always in 
motion, although still time-dependent (see video). The 
intermittency is due primarily to the insulation of the interior of 
the fluid by the relatively thick plate [Gumis, 1988]. The plate 
rotates with respect to the fu'st moment of the density, M, and 
the intermittency of plate velocity is in phase with fluctuations 
in the strength of the first and second harmonics of the 
temperature, A(1) and A(2). During peak plate velocity M is 
perpendicular to the plate center and A(1) and A(2) reach their 
maximum. The controlling physics is quite evident in the 
animations, but can also be understood in the context of the 

four thermal fields shown in Figure 3. The spectra, I l 
versus k, at these four instants are shown in Figure 4. 
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Fig. 2. Time history of first moment of the temperature field, 
M, mean angular velocity of the plate, •ref (labelled V in the 
figure), and relative strengths of the first and second 
harmonics of the temperature field, A(1) and A(2) for Case 3. 
The vertical lines labelled A-D denote times for which the 
temperature fields and spectra are shown in Figures 3 and 4. 
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Fig. 3. Temperature fields and plate locations for the times 
indicated in Figure 2. The locations of the plate is denoted by 
the green "rectangle" on the top of the outer boundary. The 
images are in the "mantle" reference frame. The times of the 
frames are 0.091 (A), 0.102 (B), 0.108 (C), and 0.115 (D). 

At time = 0.091 (Figure 3a) the plate is relatively stationary 
and M points •; radians away from the plate; although A(2) is 
at an approximate minimum, A(1) is growing out of a 
minimum as the temperature under the plate increases. The 
spectra is skewed toward smaller harmonics (Figure 4a). The 
plate soon starts to move in a positive direction and M rotates 
through •/2 (Figure 3b) as the first harmonic continues to 
growth (Figure 2); the low order spectra is dominated by the 
first harmonic (Figure 4b). M rotates to 0, as the plate setties 
in over the "cold" hemisph.ere which gives rise to so much 
power at k=l (Figure 3c). I•(1)l and 1(2) 1 diminish in 
strength and new hot upwellings are established under the 
plate which has again become stationary by time 0.115 (Figure 
3d and 4d). During lateral translation of the plate, plume- 
plume collisions maintain the strength of the large-scale flow 
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Fig. 4. Spectra of the average temperature field between rl= 
0.625 and r2 = 0.875 for the first 12 harmonics. 
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(video). This is evident in Figure 3b as the three uprising 
limbs under the plate merge into one. When the flow is highly 
unsteady and the flow dominated by a large-scale circulation, 
small plumes are continuously swept into the larger plumes. 
Indeed, the plumes probably move towards a common 
centroid, a thermal attractor [Vincent and Yuen, 1988], such 
that the largest Iimbs appear to be relatively stationary. This 
large scale circulation is similar to stable large-aspect ratio cells 
with traveling boundary instabiIities found in Cartesian 
geometry with no plates [Christensen, 1987; Hansen and Ebel, 
1988]. Plate insulation may generate the large scale circulation 
(and eventually destroy it), but plume-plume collisions tend to 
reinforce and maintain longer wavelength components of the 
temperature field. 

Conclusions 

Current tomography techniques smooth and distort the 
spectra of manfie anomalies, but this does not mean we should 
rule out the possibility the Earth has gross structure. Indeed, 
the ability to predict the degree two and three geoid with 
seismic tomography [Hager and Clayton, 1989; Ricard and 
Vigny, 1989] strongly suggests that the Earth has gross 
structure and that it is partly resolved with seismic 
tomography. Past studies have shown that isoviscous 
convection with stress free boundary conditions is incapable of 
producing significant power at low wavenumbers [Jarvis and 
Peltier, 1990; Machetel; 1990]. We have shown here that once 
a non-subducting plate is introduced, however, heat loss is 
laterally inhibited and large-scale temperature variations 
(internal heterogeneity) become a dominant feature of the flow. 

Appendix: Video 

Animations of the temperature fields and spectra for the first 
six cases with plates have been recorded on video. The flames 
which make up the video are each separated by 20 
computational time steps. The first 400 time steps are not 
presented. The spectral amplitudes are normalized by the 
maximum amplitude which occurred after the initial transient 
overturn. The videos are shown as a repeating loop and two 
complete cycles are shown; the window containing the thermal 
field and spectra blanks just before the cycle repeats. 
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