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[1] Theoretical and numerical modifications to an inner magnetosphere model—Hot
Electron Ion Drift Integrator (HEIDI)—were implemented, in order to accommodate for a
nondipolar arbitrary magnetic field. While the dipolar solution for the geomagnetic

field during quiet times represents a reasonable assumption in the near-Earth closed

field region, during storm activity this assumption becomes invalid. HEIDI solves the
time-dependent, gyration- and bounce-averaged kinetic equation for the phase space
density of one or more ring current species. New equations are derived for the
bounce-averaged coefficients for the distribution function, and their numerical
implementation is discussed. Also, numerically solving all the bounce-averaged
coefticients for the dipole case does not change the results significantly from the analytical
approximation of Ejiri (1978). However, distorting the magnetic field changes all
bounce-averaged coefficients that make up the kinetic equation. Initial simulations

show that changing the magnetic field changes the whole topology of the ring current.
This is because the drifts are altered due to dayside compression and nightside stretching of
the field. Therefore, at certain locations, the nondipolar magnetic drifts can dominate the
convective drifts, considerably altering the pressure distribution in the equatorial plane.

Citation: Ilie, R., M. W. Liemohn, G. Toth, and R. M. Skoug (2012), Kinetic model of the inner magnetosphere with arbitrary
magnetic field, J. Geophys. Res., 117, A04208, doi:10.1029/2011JA017189.

1. Introduction

[2] Numerous studies, both data analysis and numerical
simulations, have attempted to unravel the complex pro-
cesses that control the nature, transport, and losses of the
ring current population. Statistical studies involving large
databases of in situ magnetic field measurements in the inner
magnetosphere [Lui, 2003; Tsyganenko et al., 2003;
Jorgensen et al., 2004; Le et al., 2004] showed that under
disturbed conditions, large depressions in the geomagnetic
field strength (down to ~—400 rT) are associated with the
ring current.

[3] The configuration of the storm time ring current
changes dramatically depending on the storm phase and has
a strong dependence on the magnetic local time (MLT) [e.g.,
Brandt et al., 2002]. The ring current induced magnetic field
alters the grad B and curvature drift velocities of all the
trapped particles [e.g., Ebihara and Ejiri, 2000]. Several
empirical models of the ring current-induced magnetic field
[e.g., Kim and Chan, 1997; Nakamura et al., 1998] attempted
to quantify the adiabatic changes of the ring current popula-
tion using empirical magnetic field models that are a function
of the geocentric distance and Dst.
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[4] The coupling between plasma and fields in the inner
magnetosphere plays a key role in the overall behavior of the
magnetosphere. In the inner magnetosphere, plasma does not
behave like a fluid, therefore a kinetic description of this
region is needed. While most kinetic models treat the plasma
transport realistically, they lack a consistent treatment of the
fields, that is, a dipolar assumption is used in the description
of the magnetic field along with empirical formalisms for the
electric fields [Fok et al., 1993; Chen et al., 1993; Liemohn
et al., 1999]. On the other hand, MHD numerical models
have self consistency but they lack the ability to reproduce
essential gradient curvature drifts and their description of the
inner magnetosphere is overly simplified.

[5s] A realistic time-varying magnetic field is crucial for
understanding the ring current and plasma sheet dynamics,
especially during magnetic activity. Several ring current
simulations that incorporate a self-consistent magnetic field
have been developed. One example is the Rice Convection
Model (RCM) coupled with the magnetofriction (MF) code
of Toffoletto et al. [2003], an inner magnetospheric model
which self-consistently accounts for the inner magneto-
spheric currents in calculating the magnetospheric B field
configuration and also accounts for the coupling between
these currents with ionospheric currents. Using this config-
uration, Lemon et al. [2004] obtained a force-balanced
magnetic field by solving a set of ideal magnetohydrody-
namic (MHD) equations with a frictional dissipation term.
Their simulation results of the plasma transport from the
plasma sheet to the ring current suggest that the perturbation
associated with the injection of plasma sheet ions in the
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inner magnetosphere inhibits the formation of a significant
ring current. Several models have been developed that use
the T96 or TO1 magnetic field model [Tsyganenko, 1995;
Tsyganenko and Stern, 1996; Tsyganenko, 2002], that take
IMF and Dst as inputs [Fok and Moore, 1997; Fok et al.,
2001; Ganushkina et al., 2001; Ganushkina and Pulkkinen,
2002; Vapirev and Jordanova, 2007]. Zaharia et al. [2006]
solved quasi 2-D elliptic equations to obtain a self-consistent
magnetic field expressed by the Euler potentials. Compari-
son with a dipolar configuration shows that depressions of
the plasma pressure on the nightside are lower (higher
equatorial perpendicular pressure) when the magnetic field
is consistently accounted for. Two way coupling between a
ring current model [Jordanova et al., 2006] and this 3-D
plasma force balance model [Zaharia et al., 2008] also
shows significant differences in the inner magnetosphere
compared to the case when the ring current model is based
on a dipolar approximation.

[6] Another study by Chen et al. [2006] used a tracing
method for the equatorially mirroring ions under a self-
consistent magnetic field, extrapolating the particle pressure
along the field line with an assumed equatorial pitch angle
distribution, and showed that the self-consistent feedback
between the plasma pressure and the magnetic field sup-
presses ring current energization. Liu et al. [2006] reported
on the need of a consistent representation of the fields in an
inner magnetosphere model and showed that their magneti-
cally self-consistent model reasonably reproduced many of
the general features of the storm time ring current.

[7] Moreover, Liemohn and Brandt [2005] discussed
electric field feedback as a limiter of future ring current
enhancement. Numerical simulations of the ring current and
plasmasphere indicate that an accurate description of the
electric field is essential in reproducing their large-scale
morphology and bulk parameters [Liemohn et al., 2004,
2006]. Ridley and Liemohn [2002] and Ebihara et al. [2005]
also commented on this nonlinear feedback, suggesting that
strong electric fields in the inner magnetosphere as observed
by CRRES [Wygant et al., 1998; Rowland and Wygant,
1998] are of ring current origin.

[8] On the other hand, De Zeeuw et al. [2004] presented
initial results of self consistent RCM coupling with the
BATS-R-US MHD model. The authors report on the infla-
tion of the magnetic field in the tail due to the presence of the
ring current. With a similar setup, Zhang et al. [2007] per-
formed a real storm simulation using the coupled RCM-
MHD code now as part of the Space Weather Modeling
Framework (SWMF) [Toth et al., 2005, 2012]. Their simu-
lation results are in good agreement with geosynchronous
plasma and fields observations. Other studies using RCM in
conjunction with a realistic magnetic field from MHD model
have shown that the global magnetosphere responds non-
linearly to solar wind energy inputs [/lie et al., 2010b] and
that a certain signal-to-noise ratio is needed for a periodicity
to penetrate to the inner magnetoshere [/lie et al., 2010a].

[9] Nevertheless, the RCM model has the disadvantage
that it assumes an isotropic pitch angle distribution and
charge exchange processes are not explicitly considered (at
least not in the version of RCM used in the SWMF).

[10] The Hot Electron Ion Drift Integrator model was
extensively used in previous years and just a few relevant
findings are detailed below. A numerical study by Liemohn
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et al. [1999] suggests that dayside ion flow-out is the
major ring current loss process during the main phase of
intense magnetic storms and the eastward component of the
solar wind electric field sets up the timescale for ion loss due
to these drifts. Elevated convection corroborated with
decreasing plasma sheet density will lead to a gradual
replacement of the higher-density plasma with the lower
density plasma on the open drift trajectories, yielding a sig-
nificant loss of ring current energy. Conversely, if the
plasma sheet density remains high but the convection
strength gradually decreases, then newly injected high-
density plasma will move along open drift paths at higher
radial distances. Liemohn and Kozyra [2005] show that the
former scenario leads to a two phase decay of the ring
current, while the latter is producing a single dip storm
profile. Kozyra and Liemohn [2003] show that the ion flow-
out losses dominate the main phase of the storm while the
charge exchange processes are significantly contributing to
the ring current decay during the recovery phase. The con-
vection strength controls this loss process, that is, increasing
convection will increase the flow-out loss and vice versa.

[11] Due to the long duration of a magnetic storm, the
particles that are injected on the nightside are able to drift
completely through the inner magnetosphere. This drift is
energy- and convection-dependent and therefore, under
times of high convection, it can take only a few hours for the
energetic particles moving on open drift paths to reach the
magnetopause and to be lost. Liemohn et al. [2001] and
Kozyra et al. [2002] suggest that during this time the ring
current is highly asymmetric, and most of its energy (up to
90%) is flowing along open drift paths.

[12] Another important finding comes from Liemohn et al.
[2005] who seek to quantify the influence of nightside
conductance morphology and intensity on the storm time
ring current and plasmasphere. Their work reveals the exis-
tence of an optimal conductance level for maximal ring
current intensity. That is, it is shown that too little conduc-
tance leads to large shielding potentials that effectively
inhibit ring current growth. On another hand too much
conductance leads to continual flow-through of the hot ions
therefore no build up of the ring current.

[13] In this paper we describe the changes to the Hot
Electron Ion Drift Integrator (HEIDI) model, that includes
both charge exchange losses as well as full pitch angle dis-
tributions and therefore, pitch angle-dependent drifts and
losses, so it can handle arbitrary magnetic fields. A similar
alternative to modifying HEIDI would be to use the non-
dipolar version of RAM [e.g., Jordanova et al., 2006;
Vapirev and Jordanova, 2007], which also solves the pitch
angle-dependent hot ion drift motion on an equatorial plane
grid. Presented below is the complete set of equations for
implementing a nondipolar magnetic field in a drift physics
model with an equatorial plane spatial grid.

2. The Model

[14] The Hot Electron Ion Drift Integrator model is the
Liemohn et al. [2004] version of the Ring Current Atmo-
sphere Interaction Model (RAM) based on earlier versions
by Fok et al. [1993] and Jordanova et al. [1996], devel-
oped at the University of Michigan. It computes the time-
dependent, gyration- and bounce-averaged kinetic equation
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for the phase space density of one or more ring current
species (e, H', He', O") on an equatorial based grid. The
bounce-averaged kinetic equation,

_|_ JR—

(o) + 55 ((a)2)
vz (F(%)0) * iy
(o (32)0) = (%)

solves for the phase space distribution function Q(Ry, ¢, E, o, ?),
where R, represents the radial distance in the equatorial
plane, ¢ is the geomagnetic east longitude (¢ = 0 at mid-
night), E is the kinetic energy of the particle and yo = cos «,
where «y is the particle equatorial pitch angle.

[15] The various terms of equation (1) describe changes in
the distribution function due to loss processes generated by
flow of plasma out to the dayside outer boundary, colli-
sionless drifts, energy loss and pitch angle scattering due to
Coulomb collisions with the thermal plasma, charge
exchange loss with the hydrogen corona, and precipitative
loss to the upper atmosphere (included in the left hand side
term). Time, geocentric distance in the equatorial plane,
magnetic local time, kinetic energy, and cosine of the
equatorial pitch angle are the five independent variables. The
distribution function in both space and velocity space can be
computed in HEIDI for all pitch angles and local times, with
an energy range typically spanning 10 e to 400 kel and
L shell values ranging from 2 to 6.5.

[16] The brackets () in equation (1) denote bounce-
averaging and for a quantity y and is defined as the following:

> _i\/xm’ dS
X SB Sm X 17@
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where B(s) is the magnetic field along the field line, s is the
distance from the ionospheric foot point along the field line,
B,, represents the magnitude of the magnetic field at the mirror
points s, and s, and fmally S represents the half-bounce path
length (S = [i"—%_—= 2Ryh), as defined by Roederer

1,_
[1970]. Moreover, the function 4 in equation (1) is related to
the half-bounce period of the particles.

" 2R, / ﬁ

An accurate description of the convection electric field is very
important for a complete description of the ring current. HEIDI
includes a variety of electric field models: empirical Volland-
Stern two-cell convection pattern [Volland, 1973; Stern, 1975;
Maynard and Chen, 1975], modified Mcllwain ESD model
[Mcllwain, 1986; Liemohn et al., 2001] along with a self-
consistent electric field described by Liemohn et al. [2004] and
Liemohn and Kozyra [2005]. The Volland-Stern model for the
electric field is based on the Kp index dependence with a
shielding factor of v =2 as determined by Maynard and Chen
[1975]. The Mcllwain model uses boundary conditions
derived from the Defense Meteorological Satellites Program
(DMSP) along with a Weimer model generated transpolar
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potential. The self consistent model for the electric field
employs coupling with the Ridley Ionosphere Model (RIM),
given that the field aligned currents calculated by HEIDI are
used as source terms in the Poisson equation for the iono-
spheric potential, solved by RIM [Ridley and Liemohn, 2002;
Ridley et al., 2004]. Liemohn et al. [2006] quantify the accu-
racy of these models in order to determine the electric field
morphology that allows the best ring current representation.

[17] The source term for the phase space density equation
is provided by the nightside outer boundary of the simula-
tion domain. That is, geosynchronous observations of par-
ticle fluxes are used as input functions. The composition of
the plasma sheet is assumed to have Kp dependence and is
described using the empirical formulation of Young et al.
[1982]. However, Ganushkina et al. [2006] show that ring
current models are very sensitive to the choice of the initial
and boundary conditions and these have significant effects
on the modeled ring current intensity. For more details about
the numerical model, see the work of Liemohn et al. [1999,
2001, 2004].

2.1. Dipole Field Model

[18] Along with an accurate description of the electric
field, the magnetic field plays a major role when modeling
the ring current since the magnetic gradient curvature along
with the E x B drift velocities determine the particle’s total
drift at ring current energies. In a dipolar magnetic field, the
gradient curvature drift can be approximated by the analyt-
ical formulation of Ejiri [1978]:

(-5 -

where ¢ is the charge of the particle and M, is the dipole
moment of the Earth. / is a quantity related with the second
adiabatic invariant and is defined by:

'dsﬂl 7@
Bm

[19] Since any point along a field line can be used to track
the E x B drift across flux tubes, we choose the equator as
the reference plane so the bounce-averaged drift velocity is
determined from the equatorial field [Roederer, 1970]:

— E 0 X B 0 dRo d(f)
() =2 (a)+ (@)
Where E() == V(Uconvectian + Ucarotutian) and Ucurotation =
with C=0.0144 R2Vm ",
[20] In the absence of parallel electric fields and assuming
the particles move in a dipolar magnetic field configuration,
the bounce-averaged rate of change of the cosine of the

equatorial pitch angle and the bounce-averaged rate of
change of the particle’s kinetic energy over a bounce period

[Ejiri, 1978] are:
1 — pig 1(o) <@>
4Ro 14 h(uo) dt
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[21] The A(uo) and I(p) integrals, as defined by
equations (3) and (5), are evaluated using the approxima-
tions of Ejiri [1978], valid only for a dipole magnetic field.

Therefore, the <

on the radial distance in the equatorial plane and pitch angle,
as the /(uo) and I(p) are only pitch angle-dependent.

2.2. Arbitrary Magnetic Field Model

[22] Extensive modifications of the HEIDI model were
carried out in order to accommodate for a nondipolar mag-
netic field. This involves the development of new theoretical
formulations for the bounce-averaged coefficients, to replace
the previously used analytical approximations of Ejiri
[1978]. The new model is valid for arbitrary magnetic
fields including any empirical or analytical descriptions.
Moreover, this generalized formalism is eliminating the
assumption that the equatorial plane is the plane of minimum
magnetic field. Therefore it contains a generalized descrip-
tion of the particles drift. Details of the derivations are
described in Appendix A.

[23] The bounce-averaged rate of change of the cosine of
the particle’s pitch angle is derived assuming the conservation
of the magnetic moment 1, and the second adiabatic invariant
J and for an arbitrary magnetic field can be written as:

)--

v (2; (VBo). +1 (V). )

> and (“E) quantities are dependent solely

2
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Llam a
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where By, represents the equatorial value of the magnetic field.
As opposed to the dipole field case (see equation (7)), <d“°>

has a more complex description, depending explicitly on the
magnetic field gradients, equatorial drifts and pitch angle.
Moreover, the / and 4 quantities are now varying with the
equatorial radial distance, pitch angle, and for time varying
magnetic fields, time.

[24] Additionally, the bounce-averaged rate of change of
the kinetic energy of the particle is derived from the con-
servation of the first adiabatic invariant and for the case of
no parallel electric fields, the general form is:

(51D o(a Lo
_ % (Rio + (VI)RU)) + Evy (Blo (1 21h> (VBo);

(10)

[25] The description of (“E) is also more involved that the
one for the case of a dipole field (see equation (8)), con-
taining dependencies on the magnetic field gradients, pitch
angles as well as temporal variations of B,. However, sub-
stituting a dipolar magnetic field in equations (9) and (10)
we obtain the Ejiri [1978] formulae (equations (7) and (8),
respectively).

[26] The analytical approximation of Ejiri [1978] for the
bounce-averaged gradient-curvature drift (equation (4)) is
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replaced by the bounce average of the following general
formula, that now includes both contributions from the
azimuthal and radial components,

2
me (5 V] B =
— B
S (13)[(75) 4
where m; is the ion mass and v and v, represent its parallel
and perpendicular velocity. Moreover, all bounce-averaged

quantities that make up the terms in equation (1) (e.g., geo-
corona hydrogen density (Hengi) = "2 ﬁ) are
Bm

(11)

Vec =

SB my N

numerically calculated, for an arbitrary magnetic field. The
model described above is valid for arbitrary magnetic fields,
including empirical magnetic field models. The details of the
numerical implementation and testing are described in
sections 3, 4, and 5.

3. Implementation of Numerical Integrals
of I and h

[27] The first step to arbitrary magnetic field representa-
tion in HEIDI was to replace the analytical formulae for /
(equation (5)) and /4 (equation (3)) with numerical integrals
along the field line. To do so, the integration was performed
assuming that the magnetic field varies linearly in between
two consecutive grid points along the field line and the value
of the integral was analytically estimated between any two
neighboring grid points. That is:

Sz+1 -5
%23

v B B1+1

(B = Biar) = (B — B)?)

(12)

2R Zz\/-‘;lJrl ;Jr] (B 7Bl+l) 1/2 - (Bm 7Bi)1/2>
(13)

where ds; is the length of the field line element at the current
grid point. At the mirror points / and 4 become

2 1

Al, == ——As\/(Bn — B; 14
s VB B) (14)

As
Ahy = 2+/By ———o 15
i (15)

where

As = B = Blsi—sim1) (16)

Bi 1 —B;

is the estimated length of the last field line segments within
the mirror points.

[28] This approximation avoids the singularities occurring
at the mirror points in the calculation of 4. Moreover, this
method gives much more accurate results than using a sim-
ple trapezoidal integration rule. The grid along the field line
is uniform in latitude and symmetric with respect to the
equatorial plane. Nevertheless, this means that the grid is not
uniform in the element of the field line length, although
HEIDI can accommodate nonuniform grids as well (e.g.,
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Figure 1. Relative error for / calculations versus number of points along a field line for three choices of
pitch angle: (top) 30°, (middle) 60°, and (bottom) 88° for L shell = 4. Black line shows the results of the
integral, while the blue, red, and green lines show slopes of 1, 1.5, and 2, respectively.

field aligned grids that are more refined in the equatorial
region, to better resolve the equatorially mirroring particles).
[20] Figure 1 presents the numerical integration results of

= Rio N S”'I”' ds /1 — %SI) for three choices of the particle’s
pitch angle: 30° (Figure 1, top), 60° (Figure 1, middle), and
88° (Figure 1, bottom) for a L shell value of 4. The choice of
88° pitch angle was made in order to illustrate the profile of
these parameters for nearly equatorially mirroring particles.
For easy reference, in each plot the blue, red and green lines
have constant slopes of 1.0, 1.5 and 2.0, respectively. This
is a proxy for the order of accuracy of the integration
method. Note that the scale is logarithmic. The relative error
was calculated as the difference between the true value (the
value of the integral for a very refined grid, in our case
100001 points) and the value of the / integral for nPoint grid
size. We use the trapezoidal-like rule to evaluate the integral,
which results in second-order accuracy.

[30] Similarly to Figure 1, Figure 2 shows the integration

_ 1 Syl ds . . . .
results for 2 =5 7o fs y —\/T—E Since this expression contains
Bm

a singularity at the mirror points, our method of linearizing
the magnetic field in between two consecutive field line grid
points is less accurate than second order. The 1.5 conver-
gence rate and the fluctuations seen in the behavior of / are
due to the fact that the integration on the last segment has a
relatively large contribution to the total value of the integral.
However, this is a good method for the purpose of our work
and both integrals are converging quite fast for a reasonably
sized field aligned grid, that is 101 points.

[31] To further reinforce our choice of 101 grid points,
Figure 3 (left) shows the relative error to the converged
value (black line) and the relative error to the analytical
value (the value as provided by Ejiri [1978] formula) for the
three choices of pitch angle described above. On the right,
we show a close-up of the same plots on the left. A dotted
blue line marks the 101 point choice. Only the X axis is
logarithmic for this plot. We note that the relative error for
both comparisons is under 0.1%. However, the Ejiri [1978]
expressions for / and 4 are numerical approximations as
well and not analytical solutions (although for simplicity we
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Figure 2. Relative error for /4 calculations versus number of points along a field line for three choices of
pitch angle: (top) 30°, (middle) 60°, and (bottom) 88° for L shell = 4. Black line shows the results of the
integral, while the blue, red, and green lines show slopes of 1, 1.5, and 2, respectively.

refer to them as “analytical,” because they are expressed as a
trigonometric polynomial function).

[32] Figure 4 is a replica of Figure 3, only now for the 4
integration results. Again, the relative difference between
both the converged and analytical values are under 1%
for all pitch angles for 101 grid points along the magnetic
field line.

4. Nondipolar Field Specifications

[33] To illustrate the differences between the dipolar and
nondipolar HEIDI, extensive tests were performed using an
idealized magnetic field configuration, that is a stretched
dipole with a stretching factor that is local time-dependent.
The dipolar magnetic field is stretched in the X direction by a
factor a« = a + b - cos ¢, where a and b are two constants
which determine the extent of the stretching. If « is constant
for constant ¢, then its gradient is orthogonal to the radial
vector and the resulting field is divergence free. Therefore, o
can only depend on the azimuthal angle, otherwise the
divergence free condition for the magnetic field would not

be met. The resulting field and its components expressed in
cartesian coordinates are:

1 3zxc .
Bi=— & (17)
(cor ey e 2]
3
B=— o (18)
((xa)2 +? +22>2
22 202 12
A e B A (19)

((ra)* 4 +zz)%

Note that the é stretching factor only appears in the B, for-
mula so only B, is being compressed or stretched. However,
« appears in all 3 formulas, therefore all components are
modified by it.
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Figure 3. Relative error of the results of numerical integration of / for three choices of pitch angle: (top)
30°, (middle) 60°, and (bottom) 88° for L shell = 4 and local time (LT) = 0.0. Close-ups of the profile are
shown on the right. Note that the x axis is logarithmic.

[34] The motivation behind this choice is that this con-
figuration provides us with a simple, intuitive, nondipolar
solution for the magnetic field that can be easily tested.
When the stretching is approaching zero, namely the mag-
netic field would approach the dipolar configuration, we are
able to recover the dipole solution. The HEIDI model run
including only two ring current species (" and O"), with a
Volland-Stern electric field [Volland, 1973; Stern, 1975].
The field aligned grid size was set to 101 points. Further-
more, this testing also enabled us with a measure of how
much the distribution function changes when not only the
magnetic field is not dipolar but also the bounce-averaged
coefficients are calculated consistently.

[35] To get a better picture of the magnetic field stretching,
Figure 5 shows the ratios between the magnetic field mag-
nitude of a dipole and the magnitude of the stretched dipole

with a = 1.0 and » = 0.1 (Figure 5, left) and with a = 1.0 and
b = 0.2 (Figure 5, right) in the equatorial plane. Comparing
the values of the magnetic field magnitude for the stretched
versus nonstretched configuration, we see that the stretching
coefficient b = 0.1 is equivalent to a reduction of the field on
the nightside to 2/3 of the dipole value while the dayside is
compressed by roughly the same amount. However, on the
dusk and dawn sides the field has dipolar values (Bgpoze/
Byirescnea = 1.0). Similarly, for b = 0.2 the distortion is double
that for the dipole case, with the values of By, c/cneq ON the
dayside significantly higher for the nondipolar cases, while
the nightside magnetic field displays increased depression
with increasing stretching (larger b). Another advantage of
using this magnetic field for testing is that it resembles the
Earth’s magnetic field during disturbed conditions.
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Figure 4. Relative error of the results of numerical integration of % for three choices of pitch angle:
(top) 30°, (middle) 60°, and (bottom) 88° for L shell =4 and local time (LT) = 0.0. Close-ups of the profile
are shown on the right. Note that the x axis is logarithmic.

[36] For easy reference, the field lines in the y = 0 plane
are shown in Figure 6. Red lines show the dipolar magnetic
field lines, while the blue, green, and orange lines show the
field lines for an asymmetrically stretched dipole with dis-
tortion factors of b = 0.1, b = 0.2, and b = 0.4, respectively.
The stretched field lines start on the same latitude grid (have
the same foot points) as the dipole field, so the differences
represent the stretching.

[37] Figure 7 presents dial plots of the 7 results for 30°
(Figures 7a—7c), 60° (Figures 7d-7f), and 88° (Figures 7g—71)
equatorial pitch angles for a dipolar magnetic field (Figures 7a,
7d, and 7g), an asymmetrically stretched dipole field with
distortion factor » = 0.1 (Figures 7b, 7e, and 7h), and an
asymmetrically stretched dipole field with distortion factor
b= 0.2 (Figures 7c, 7f, and 7i). For the case of the dipole, the
values of / are relatively constant, in agreement with the ana-
lytical formula of Ejiri [1978], which shows only dependence

on the pitch angle and predicts a constant value, independent
of the radial distance. Nevertheless, for nearly equatorially
mirroring particles (oy = 88°) in a dipole magnetic field, the
values of / display small radial gradients with azimuthal
symmetry and span over a larger range. This is due to
numerical artifacts of the integration since the integration
domain is small for large pitch angles and therefore the
numerical errors are largest for our uniform grid. Also, the
density of points along the field line decreases with increasing
radial distance and therefore the solution is less accurate the
farther away we go from the inner boundary. However, as the
particle’s equatorial pitch angle decreases, the numerical
integration provides a more uniform solution for 7, with no
evident dependencies on the radial distance from the Earth.
We also note an inverse proportionality between the values of /
and those of pitch angles. This is to be expected since for lower
pitch angles, field line length between mirror points is greater
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Figure 5. Dial plots of the ratios between the magnetic field magnitude of a dipole and the magnitude of
the stretched field (left) with @ = 1.0, b = 0.1 and (right) with a = 1.0, b = 0.2.

and therefore the integration is done over a larger domain.
Nevertheless, the relative errors to the “analytical” solution are
small (see Figure 3).

[38] For the case of a stretched dipole magnetic field, the
configuration changes dramatically. For all pitch angles, the
values of / on the dayside are significantly smaller than
the values of 7 on the nightside. This is consistent with the
fact that the magnetic field magnitude at these locations
displays the exact opposite behavior (remember that / is
%i) between the
mirror points). As opposed to the case of a dipole where the
values of / are relatively constant for a given pitch angle, in
the cases of the stretched dipole, the values of / range over a
larger domain for all pitch angles. Moreover, the / distribu-
tions show a dawn-dusk symmetry, which is to be expected
due to the symmetry of the field at these locations as well a
dipolar values for field lines close to the dawn and dusk.
We also note that the more distorted the magnetic field,
the larger are the differences between the / values on the
nightside as opposed to the dayside.

[39] Similarly to Figure 7, Figure 8 shows the distribution
of h values for a dipolar magnetic field configuration
(Figures 8a, 8d, and 8g), an asymmetrically stretched dipole
field with distortion factor b = 0.1 (Figures 8b, 8e, and 8h),
and an asymmetrically stretched dipole field with distortion
factor b = 0.2 (Figures 8c, 8f, and 8i) for the three choices of
pitch angle described above. Again, for the dipole case and
for a fixed pitch angle, the values are relatively constant and
similar to the analytical solution. The gradients that are
apparent in the solution for ay = 88° are due to the oscilla-
tory nature in the error from the integration on the end seg-
ments, near the mirror points. To understand the behavior of
h we need to remember its definition (see equation (3)). So
the profile of 4 would be given by the interplay between the
two terms in the integrand. Although the term —- i

120

proportional with the integral of 4/1 —

Bm
increasing with increasing magnetic field, the length of the
field line between the mirror points has the opposite

behavior due to the field compression along the x axis. When
the equatorial magnetic field becomes depressed, the dis-
tance between the mirror points can be shortened by the ring
current in order to conserve the first adiabatic invariant. Just
as in the case of 7, /i values for nearly equatorially mirroring
particles span over a larger range for the same reasons
explained above. For the case when the magnetic field is no
longer dipolar, we note the day/night asymmetry as well as
the symmetry in the dawn-dusk direction. This is consistent
with the magnetic field configuration, with higher values of

Dipole Field (a=1.0, b=0.0)

Stretched Dipole(a=1.0, b=0.1)
Stretched Dipole (a=1.0, b=0.2)
Stretched Dipole (a=1.0, b=0.4)

Z (Re)
HH|‘‘Hl‘‘Hl‘‘H‘ljm‘|HH|HH|HH|

Figure 6. Magnetic field lines for various configurations of
the magnetic field. Red lines show the dipole field lines,
while blue, green, and orange lines show the asymmetrically
stretched dipole field lines fora = 1.0 and »=0.1, fora=1.0
and b = 0.2, and for @ = 1.0 and b = 0.4, respectively.
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Figure 7. The distribution of / for (a, d, g) a dipole configuration, (b, e, h) a stretched dipole with a = 1.0
and b = 0.1, and (c, f, 1) stretched dipole with @ = 1.0 and b = 0.2. The results for three choices of pitch
angles are 30° (Figures 7a—7c), 60° (Figures 7d-7f), and 88° (Figures 7g—71).

the magnetic field magnitude yielding depressed values of
the /& parameter.

5. Results

5.1.

[40] To illustrate the profile of the bounce-averaged rate of
change in the particle’s energy, Figure 9 presents the distribu-
tion of (%) for a 107 ke’ energy particles moving in a dipole
magnetic field (Figures 9a, 9d, and 9g), an asymmetrically
stretched dipole field with distortion factor b = 0.1 (Figures 9b,
9e, and 9h), and an asymmetrically stretched dipole field with
distortion factor b = 0.2 (Figures 9c, 9f, and 9i). Again, the (%)
profiles are displayed for the three choices of pitch angle
aforementioned.

Particle Drift Analysis

[41] In the dipolar magnetic field case, the distribution
of the bounce-averaged rate of change of the particles
kinetic energy is only slightly varying with pitch angle. For
example, for 30° pitch angle <‘fi—f> varies between [—7.6, 7.6],
for 60° pitch angle (4£) varies between [—8.6, 8.6] while for
88° pitch angle (%) varies between [—9.0, 9.0]. Moreover,
it displays dawn/dusk symmetry, with positive changes
in the particles’s energy on the nightside and negative
changes on the dayside. In the case of a dipole field, (%)
varies only with the particle’s radial drift, which in this
case is only provided by the convective drift. This also
explains the symmetric distribution due to symmetric elec-
tric potential pattern provided by the Volland-Stern model
(see Figure 10).
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Figure 8. The distribution of / for (a, d, g) a dipole configuration, (b, e, h) a stretched dipole with @ = 1.0
and b = 0.1, and (c, f, i) a stretched dipole with @ = 1.0 and & = 0.2. The results for three choices of pitch
angles are 30° (Figures 8a—8c), 60° (Figures 8d—8f), and 88° (Figures 8g—8i).

[42] When the magnetic field is distorted by a b = 0.1
distortion factor (Figures 9b, 9e, and 9h), the <(f1_€> distribu-
tion changes dramatically. A positive change in the particle’s
energy is seen in the evening sector (1800 LT-0000 LT
quadrant) while the post dawn and the dayside regions are
dominated by a negative change in energy. This is due to the
change in the magnetic field, with a stronger field on the day
side and dawn/dusk sides have the same values at the same
radial distance as compared to the dipole field. This in turn
changes the gradient curvature drift, altering the particles
total radial drift. Fresh particles injected on the night side,
now encounter a weaker magnetic field and drift faster
toward the dayside. Moreover, the radial component of the
gradient curvature drift is nonzero, therefore contributing to

the total radial drift. If for the dipole case, %> varies in a

range centered on 0.0, for the nondipole field, this is not the
case. For instance, for a 30° equatorial pitch angle, ‘%>
ranges from —5.9 to 15.3.

[43] When distorting the field even more (Figure 9, right),
larger peaks develop on the evening while in the postdawn
sector the changes in the particles energy are depressed even
more. We note that (4£) not only is slightly changing shape
but it increases in value with decreasing pitch angle. This is
of course due to the longer bounce lengths, and therefore
higher values of the integrals. Therefore, when the magnetic
field departs from the dipolar configuration, the bounce-
averaged rate of change in the particle’s energy changes
significantly, both in value and distribution.
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Figure 9. The distribution of <%> for (a, d, g) a dipole configuration, (b, e, h) a stretched dipole with
a=1.0and b =0.1, and (c, f, 1) a stretched dipole with @ = 1.0 and b = 0.2. The results for three choices
of pitch angles are 30° (Figures 9a—9c), 60° (Figures 9d-9f), and 88° (Figures 9g—9i).

[44] Similarly to Figure 9, Figure 11 presents the distri-
bution of <%> for 107 kel particles moving in a dipole

configuration (Figures 11a, 11d, and 11g), along with the
stretched dipole cases » = 0.1 (Figures 11b, 11e, and 11h)
and b = 0.2 (Figures 11c, 11f, and 111i) for all three choices
of pitch angle. For the dipole magnetic field, the change in
the particles equatorial pitch angle seems to be constant at all
radial distances. However, the value of <%> increases with
decreasing pitch angle.

[45] The changes in the particle’s equatorial pitch angles
are more dramatic when the magnetic field is distorted. A

peak in <%> develops on the evening sector, while a well

develops in the postdawn region, similarly to (4£). We note
that in the dawn and dusk regions the change in the particle’s
pitch angle is the same as in the dipole case, as expected.

[46] The variations in the <%> distribution are due to not

only the change in the magnetic field strength but to the
changes to the field line length between the mirror point.

Furthermore, the distribution of <% presents more pro-

nounced wells on the nightside while new ones are appear-
ing in the afternoon sector as the field becomes more
distorted. ~

[47] Figure 12 shows the drift in the ¢ (Figures 12a—12f)
and 7 (Figures 12g—121) direction of a charged particle with
kinetic energy 107 keV, moving in a dipolar magnetic field
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Figure 10. Convection electric potential contours gener-
ated by the Volland-Stern model. The view is over the north-
ern hemisphere and the distances are expressed in Earth
radii (R,).

(black line) and the azimuthal (Figures 12a—12f) and radial
(Figures 12g—121) drift in a stretched dipole configuration
with a distortion factor of » = 0.1 (blue line) and 5 = 0.2 (red
line). Figure 12a shows the V,, component of the gradient
curvature drift for a nearly equatorially mirroring particle
versus L shell at midnight, for all three cases, while
Figure 12b shows the same parameter values extracted at
noon local time. We note that when the magnetic field is
compressed on the dayside, the gradient curvature drift in the
ng direction is decreasing (weakens) with increasing distor-
tion factor. This is to be expected since the drift velocity
goes as ~ z%’ therefore a particle in a compressed field will
experience slower drifts relative to a dipolar magnetic field
configuration. For instance at local midnight and at a radial
distance of 5 R, from the Earth, ¢ component of the gradient
curvature drift is increased by ~1.6 (~2.6 ) times when the
magnetic field is distorted by » = 0.1 (b = 0.2) distortion
factor. Moreover, the azimuthal drift on the dayside (at local
noon) has the opposite behavior; at 5 R, on the dayside, the
percent difference between the dipolar gradient curvature V,
and the stretched dipole with 5 = 0.1 (b = 0.2) is of about
184% (222%). Therefore, the azimuthal drifts are increasing
with larger (weaker) distances (B fields) as expected.

[48] Figure 12c shows the variation of ¢» component of the
gradient curvature drift with the particles equatorial pitch
angle for midnight local time, followed by the same quan-
tities extracted at local noon (Figure 12d). Again, we note
that the drifts are decreasing in magnitude with increasing
compression of the magnetic field.

[49] Figure 12e presents the behavior of the gradient cur-
vature V,, as a function of local time. The azimuthal drift a
particle experiences in a dipolar magnetic field is constant
with local time due to the azimuthal symmetry of the dipolar

ILIE ET AL.: TECHNIQUE
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magnetic field. However, for a particle mirroring in the
vicinity of the equatorial plane, the stretched dipole produces

a magnetic drift in the gfﬁ direction that is largest on the
nightside, where the magnetic field is depressed and mini-
mum on the dayside (noon) where the field has the maxi-
mum compression. Also, dawn and dusk drifts are the same
as in the dipole case, as expected. The drift at both dawn and
dusk for the distorted dipole fields have identical values to
the drifts in a dipolar field (not shown here). Additionally, as
we increase the compression on the dayside, the azimuthal

drift approaches zero. Figure 12f presents the total (2) drift
(including convection too). We note the contribution from
the convective drift due to the Volland-Stern electric field, as
the imposed sine wave pattern.

[50] In the case of the radial gradient curvature drift (see
Figures 12g—12l), a particle moving in a more compressed
magnetic field experiences a larger drift, that are also
increasing with increasing radial distance from the Earth.
Similar behavior is noted regarding the pitch angle depen-
dency; the radial component of the gradient curvature drift
shows increase with increasing compression. We also note
that gradient curvature ¥, as a function of magnetic local
time (Figure 121) has an oscillatory behavior, approaching
zero at dawn and dusk (by construction of the magnetic
field) and also at noon and midnight. Therefore, at these
local times, the ring current particles experience only con-
vection drifts, as it can be seen from Figure 121, where the
total radial drift is presented.

[51] An important conclusion can be drawn from
Figures 12f and 121. For the stretched dipole configurations
selected for this study, the nondipolar magnetic drifts can be
(at certain places) larger in magnitude than the convective
drifts. For example, the maximum percent difference
between the total azimuthal drift in a dipole magnetic field
and in a stretched field with b = 0.1 (b = 0.2) is of about
~183% (~245%). Similarly, the maximum percent differ-
ence between the total radial drift in a dipole magnetic field
and in a stretched field with b = 0.1 (b = 0.2) is of approx-
imately ~623% (~872%) for high-energy ions. That is, the
radial component of the gradient curvature drifts for a non-
dipolar field can completely overpower the radial convective
drift. Therefore, under certain disturbed conditions, the dis-
torted magnetic field would alter the gradient curvature drifts
in such a way that they dominate the total particle drift.

5.2. Hot Ion Pressure Analysis

[52] As a final test, we conducted idealized input simula-
tions with HEIDI involving all magnetic field configurations
aforementioned. /" and O" are the only ring current ions
considered for these simulations and the calculations start
with an empty magnetosphere. The electron densities are set
to be equal to the proton densities, however the electron
temperature is lower by a factor of 7.8 [Baumjohann et al.,
1989]. The electric potential is given by the Kp driven
Volland-Stern model [Volland, 1973; Stern, 1975]. Please
note that for our experiment, the particles were injected on
the nightside at a constant rate and the Kp index was set to
the value 7 throughout the simulations.

[53] Figure 13a shows the pressure distribution in
the equatorial plane for HEIDI with dipole field and Ejiri
[1978] formulations for both the / and /4 integrals and
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Figure 11. The distribution of <%> for (a, d, g) a dipole configuration, (b, e, h) a stretched dipole with

a=1.0and »=0.1, and (c, f, i) a stretched dipole with @ = 1.0 and » = 0.2. The results for three choices of
pitch angles are 30° (Figures 11a—11c), 60° (Figures 11d—11f), and 88° (Figures 11g—11i).

for the bounce-averaged coefficients (“Analytical Approxi-
mation”). Figure 13b shows the pressure distribution simu-
lation results for HEIDI with dipole field, but this time
obtained from HEIDI with a dipole field and the new for-
mulations and numerical integrations for the bounce-
averaged coefficients (“Numeric Integration”). Figures 13c
and 13d show the pressure distribution in the equatorial plane
obtained with HEIDI with a stretched dipole with 5= 0.1 and
b = 0.2 distortion factor, respectively. Each column presents
pressure results at different times (4, 8, 12, 16, 20, 24 h)
into the simulation.

[s4] Comparing Figures 13a and 13b, the “Analytical
Approximation” results versus the “Numeric Integration”
results, we note that the latter produces lower pressures,
although the topology remains the same. One reason for this
is that the numerical integrals are underestimated due to the

fact that the algorithm we use to avoid the mirror point sin-
gularities assumes that the magnetic field varies linearly
between two consecutive grid point. Although this assump-
tion helps avoid this singularity and provides a good solution
for a reasonable sized field aligned grid, it also shortens the
field line length (as compared to the analytical solution).
Therefore the values of the bounce-averaged coefficients as
well as the values of [ and / are underestimated. The dif-
ferences between the peak pressures in those two cases are
of the order of 20%. This might seem a high, however, the
“analytic dipole” that uses the Ejiri [1978] formulae is not at
all analytic. Rather, the Ejiri [1978] solutions are polynomial
fits to numerical solutions of the same quantities. Moreover,
the differences come from cumulative errors of less than 1%
over 4000 time steps in all bounce-averaged quantities.

14 of 21



A04208 ILIE ET AL.: TECHNIQUE A04208

a) Pitch Angle = 88 deg, Energy = 107 keV, LT = 24 9) Pitch Angle = 88 deg, Energy = 107 keV, LT = 17
2 3 0.06[ .
TN :
38 ooz =
o=10b=00 E /_///
a=1.0,b=01 2 000
a=10,b =02 3 [ ]
2 -0.02L ]
2 3 4 5 6 2 3 4 5 6
L shell L shell
b)  pitch Angle = 88 deg, Energy = 107 keV, LT = 12 h) " Pitch Angle = 88 deg, Energy = 107 keV, LT = 03
0.05 0.3

PN P AT AT 1| P

N e

0.2E
= 0.

3 4 5 6 3 4 5 6
L shell ) L shell
<) Energy = 107 keV, L shell = 5, LT = 24 ! Pitch Angle = 88 deg, Energy = 107 keV, LT = 17
-0.00F 3 0.06F E
-0.05F E U
-0.10F 3 f——— 4
3ot 18 0w z
-0.20F 4 -0.02F E
-0.25F 4 -004f =
-0.30¢ i -0.06t e
0 20 40 60 80 0 20 40 60 80
Equatorial Pitch Angle . Equatorial Pitch Angle
d) Energy = 107 keV, L shell = 5, LT = 12 J) Pitch Angle = 88 deq, Energy = 107 keV, LT = 03
0.02F ] 0.3F 3
0.00F = E 3
E 3 0.2F E
-0.02fF 3 //—\
8 -0.04F EA S /\f
-0.06 F - g E
E ] 0.0E E
-0.08 = E
-0.10E -0.1E
0 20 40 60 80 0 20 40 60 80
) Equatorial Pitch Angle k) Equatorial Pitch Angle
Pitch Angle = 88 deg, Energy = 107 keV, L shell = 5 Pitch Angle = 88 deg, Energy = 107 keV, L shell = 5
E 3 0.4[ ]
0.2F .
% >8 OAOV ‘%
i -o2f .
-0.3E 3 _oaf 1
0 5 10 15 20 0 5 10 15 20
MLT MLT
Pitch Angle = 88 deg, Energy = 107 keV, L shell = 5 I) Pitch Angle = 88 deg, Energy = 107 keV, L shell = 5

_ =00

FRYPRTTON CRFFTEET VY SYTTY FAYYFRYOV eI

0 5 10 15 20
MLT MLT

Figure 12. Particle drifts in the (left) ¢ and (right) 7 direction for a dipole (black lines) and the stretched
dipole configuration with » = 0.1 (blue lines) and b = 0.2 (red lines). On the left, we present the ¢ com-
ponent of the gradient curvature drift versus L shell for (a) LT = 24 and (b) LT = 12, pitch angles for
(¢) LT =24 and (d) LT = 12, and (e) local time. (f) The ¢ component of the total particle drift is shown
as a function of local time. On the right, we present the 7 component of the gradient curvature drift versus
L shell for (g) LT = 17 and (h) LT = 03, pitch angle for (i) LT = 17 and (j) LT = 03, and (k) local time.
(1) The ¢ component of the total particle drift is shown as a function of local time. Please note that the drift
velocities are expressed in units of L shells/sec.
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Figure 13. Pressure distribution in the equatorial plane for different model simulations. (a) The HEIDI
results for the “Analytical Approximation” for a dipole field (Ejiri [1978] formulations for both the
I and / integrals and for the bounce-averaged coefficients). (b) The HEIDI simulation results for the
“Numerical Integration” (HEIDI with a dipole field and the new formulations and numerical integrations
for the bounce-averaged coefficients), followed by the stretched dipole cases with (¢c) = 0.1 and (d) 5 =0.2.
Each column presents a different time snapshot during each simulation.

[s5s] Figures 13c and 13d show the pressure distribution
when the magnetic field is no longer dipolar. We note that a
stretched dipole field configuration produces a significant
increase in the buildup of the particle pressure during the
first few hours of the simulation. This is because the changed
fields modifies the particle drifts, increasing the drift speeds
in regions of weaker magnetic field (nightside) and
decreasing it in regions of stronger magnetic field (on the
dayside). This will push particles from the nightside faster
into the dayside, building up the pressure in this region and
lowering the pressure on the nightside as compared to the
dipole case. Moreover, the pressure stays on the duskside
and does not wrap around the dayside as in the dipolar case.
This is due to the fact that, for the two distorted magnetic
field configurations examined, the gradient curvature drift
slows down significantly on the dayside (see Figure 12). The

total g} drift stalls from about LT =9 to LT = 14 and the flow

is mainly driven by the 7# component of the total drift.
Therefore the field compression on the dayside acts as a
barrier to the flow of ring current particles. The asymmetry
of the ring current pressure is dramatically increased due to
the B field distortion.

[s6] Figure 14 presents the variation of the maximum
pressure during each of the simulations. The dotted black
line shows the results from the “Analytical Approximation”
run, black line corresponds to the pressure peaks values in
the equatorial plane for the “Numeric Integration” run while
the blue (red) line presents results from the run that used
stretched dipole configuration with a distortion factor of b =
0.1 (b=0.2). We note that in the first couple of hours of each
simulation, the peak pressures are closer to each other, only
to diverge more after 2 h. In Figure 14b, we see that, while
for the dipole cases the peak pressure happens at more or
less the same magnetic local time, when the magnetic field is
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Figure 14. Pressure peaks evolution as a function of (a) simulation time, (b) magnetic local time, and

(c) radial distance from the Earth. (d) The evolution

of the total energy content during the simulation.

The dotted black line shows the results from the “Analytical Approximation” run, the black line presents

the results from the “Numeric Integration” run, and th
with a distortion factor of » = 0.1 (b = 0.2) run.

highly distorted, the pressure peak moves to lower local
times and stay there throughout the simulation. However, the
radial distance varies with simulation time only during the
first half of the simulation. After several hours, it remains at
the same radial distance for all cases.

[57] Figure 14d presents the total energy content of the
ring current for the three simulation setups. It is noted that in
the case for which the magnetic field is dipolar, the total
energy is the highest, a result consistent with the work of

e blue (red) line shows results from stretched dipole

Zaharia et al. [2006, 2008]. Lemon et al. [2004] and Liu
et al. [2006] show that when the magnetic field is treated
self-consistently, the developed ring current is weaker as
compared to the dipole or dipole-like magnetic field models,
producing a weaker disturbance of the geomagnetic field.
Also, this magnetic field perturbation prevents the injection
of aring current particles closer to the Earth. Our results also
support this findings.
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[s8] For the distorted dipole cases, the drifts on the night-
side are consistently higher for the distorted dipole case,
while much lower on the dayside. On the other hand, not only
the nightside particle injection is constant (by construction),
but it is the same for all simulations. In the nondipolar cases,
more drift paths are open leading to larger drift-out loss and
lower energy content in the inner magnetosphere.

6. Conclusions and Future Work

[59] We now have a new version of the Hot Ion Electron
Drift Integrator model that is capable of accommodating
arbitrary magnetic fields. A new formalism for the bounce-
averaged coefficients has been developed, implemented and
tested within HEIDI and the derivations of these bounce-
averaged coefficients are presented for the first time. We
show that during times of distorted magnetic field the
change in particle’s pitch angle and energy deviates greatly
from the corresponding distribution as predicted by the
dipolar Ejiri [1978] formulation. The bounce average
change in the particles energy is no longer symmetrical as in
the dipolar magnetic field case, but the new arbitrary mag-
netic field formulation allows for skewed distributions with
new peaks and wells developing in regions of distorted
magnetic field as a result of modified magnetic drifts. Also,
the change in pitch angle is now anisotopic, showing minima
and maxima that are local time dependent.

[0] We have found that changing the way the magnetic
field is handled in HEIDI, changes the whole topology of
the ring current. The drifts are altered due to distortion in the
magnetic field, i.e., slower drifts on the dayside due to the
field compression and increasingly higher magnetic drifts on
nightside proportional to the magnetic field stretching.
Therefore ring current ions are being moved faster from the
nightside toward the dayside, where they start to slow down,
building up the pressure in this region. We showed that
under certain disturbed conditions, the nondipolar magnetic
drifts can be dominate the total particle drift, significantly
increasing the ring current ion pressure on the duskside.
Therefore, the field compression on the dayside can act as a
barrier to the flow of ring current ions, dramatically altering
the pressure distribution in the equatorial plane and
increasing the asymmetry of the ring current. Moreover, the
timing of the pressure buildup is heavily dependent on the
nature of the magnetospheric magnetic field.

[61] However, additional improvements are necessary for a
more comprehensive model. Electric fields in the magneto-
sphere have both potential and inductive components. For
instance, the inclusion of inductive electric fields that arise
due to the time varying nature of the magnetic field are
believed to play an important role in a realistic description of
the convection. Previous models that included such fields
[Fok and Moore, 1997] were based on ionospheric grids and
used the assumption that the ionospheric foot point of the
magnetic field is fixed in the ionosphere for the process of
magnetic reconfiguration. Therefore a measure of the field
displacement can be used as a proxy for the inductive com-
ponent of the electric field. On the other hand, inclusion of
inductive electric fields can be quite a challenging task when
using equatorial based grids, since it requires a Biot Savart
like integration over the whole domain. This will be achieved
by full inclusion of this new nondipolar version of HEIDI
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within the Space Weather Modeling Framework [Toth et al.,
2006]. This coupling, and the new scientific studies it allows,
will be the focus of a follow-up paper in the very near future.

Appendix A: Bounce-Averaged Coefficients

[62] For the interested reader, and for completeness, the
derivation of the bounce-averaged coefficients for an arbi-
trary magnetic field is detailed below.

[63] In the presence of external forces which are perpen-
dicular to the magnetic field lines at all times (equipotential
field lines), the particle’s momentum and the magnetic field
at the mirror points are not conserved. However, the mag-
netic moment and the second adiabatic invariant remain
constants. The bounce-averaged rate of change of the cosine
of the particle’s pitch angle at the magnetic equator is
derived from the conservation of the magnetic moment g,

2 2
_1lmvi 1 msin’ag

= = =_ Al
I =375 =3 B (A1)
and the second adiabatic invariant J
Sm! B
J:2mv/ dsUlfBLS) (A2)

where B, represents the equatorial value of the magnetic field,
B(s) is the magnetic field along the field line, s is the distance
from the ionospheric foot point along the field line, B,, denotes
the magnitude of the magnetic field at the mirror points s,, and
s, and v is the particle’s velocity. The velocity of the particle
can be eliminated by combining the two invariants:

% = constant (A3)
Letting y = sin «y yields:

2
Fim y
Ll A— Ad
J2 8mByI’R3 (A4)

Furthermore, differentiating (A4) with respect to time we get:

L dBy 2dRy 2dl_
By dt Ry dt [Idt

(AS)
Equation (A1) along with energy conservation yields a rela-
tionship between the magnetic field at the mirror point (B,,),
magnetic field at the equator (B) and the particle’s equatorial
pitch angle (av):

By

sin® oy

Therefore, using the expressions of / (equation (5)) and
h (equation (3)) together with equation (A6) we can rewrite
these expressions as below:

Lo B(s)y*
I=— dsy[1— A7
RO Sm BO ( )

and
1 R ds
=— A8
2Ry / 1 _ Bep? (A8)
By
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However, the last term in equation (AS) ( ) needs further
dl

examination and differentiating (A7) we can express %; as:
a_ (1 [ B\ (1 [ B?) s
dr Ry By dt Ry By dt
o 1
+ / % T ———— (A9)
s tRo 1 — By

By

We can easily show that the first two terms on the right-hand
side of the equation above are zero.

1 | B(sw)y? \ dsw [ 1 | B(s)y? \ dsm
Ry By dt  \Ro By dt
2
L B (A10)
Ry By
Therefore, % becomes:
d_[vo_ N0 alay ol Ry a3
d J, ot Ro /1 — B2 Ot dyot ORy Ot 0 ot

By
(Al1)
The second term in equation (A11) can be further simplified
by solving for y) first and then relating the &/ term with

I and % quantities.

10!

o (1 1
B I Al2
oy (y) »oyoy (A12)
[ 1 [ B
3_:_/ _B(s)y  ds (A13)
» R, By [y _Bep?
By
a S
Z (=) = dsy |1 -
oy ) Roy / ' / <v»
(A14)
0
= (A15)
oy (»V) Ry’ / NOTs
‘ Bn
So we obtain
o1 2h
— == Al6
dyy (A16)
From equation (A12) and equation (A16) we get
ol I—2h
== Al7
>y (A17)
Therefore, equation (A11) becomes:
dI _ol (I-2h)dy O Ry 0Ol ¢ (A18)
dt ot y Ot ORy 0t ¢ Ot
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Now, we evaluate the third term (- %) in equation (A11).
ol 8R0 - 1 6R0/ S 2 1 6R0
ORy 0t R} ot "R 6t
0
C— d Al
3R BO ’ (A19)
ol Ry 1 Ry 1 8B, ORy
ORy &t Ry 0t 2RyBy OR, ot
(1 ﬁ £ i
L LR, 2o(ds) ¥ ORg /
RO 8t OR, ZR()B() ot S
- ds tha (A20)
| _ By?
B
Aoy S L G- L
oRy ot ot Ry 2By ORy
B d: 2 B
[ _Bewows) s foB a21)
By ORy 2RoBy \ORy

In the case of a dipolar magnetic field it can be shown that the

ol — ol 09 _ 8]7
B Oaswellas[.j 5 Oad

[64] Returning to equation (AS) and solving for & -, using
equation (A18), this yields:

dv y(1dB 2R 2dl
& _ fo_=-& A22
dt 2 <Bo dt +R0 dt 1 dt> ( )
G (AR 1 dR 101 Ry 101 06
dt — 2h\2By dt 'Ry dt 1ot I0Ry ot 1 0¢ ot
(A23)

Please note that in our model Ry, ¢y, E, g are independent
variables, therefore % G = (Z{ as well as dg“ Ry,
[65s] Considering that By is a function By(%, Ry, ¢), the total

derivative dz" becomes:

B,
dt

0By 0By ORy

_ OBy 8¢
ot +aRO ot

ki A24
o6 ot (A24)
The total velocity vector in the equatorial plane in spherical
coordinates,

OR
=R 70 + ¢Ro

a¢> (A25)
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has its components defined as:

ORy m 5, B2 2 5
Vor = E = {E <VH + 7 V7 X Bo | + Veonvection ¢ Ro
(A26)
¢ m (5 Vi By B J
Vop = RO E = {ﬂ <VH + 7 V7 X BO ~+ Veorotation ¢)
(A27)

Going back in equation (A23), we are able to obtain an
expression for % as a function of 7, &, B, field magnitude and
total drift components vz and vo:

dy Iy 1 6By 1 1 oI
dz_Zh{ (23 6R0+ +16R0)
aBO_i_Lg +

IR, 0¢

1
+vop (ZBORO oni
Transforming 1, = /1 — »? and taking into account that in
the case of no parallel electric fields, we have:

1 0B,

10l

1ot

di\ _ (—m) ) (1 1
< dt > - 2ht, VOR 2B, (VBo) +R +— (V[)
1 0By 10l
(A29)

Additionally, the bounce-averaged rate of change of the
kinetic energy of the particle is derived from the conserva-
tion of the first adiabatic invariant:

d (1 mv] d (Ey* _
E(z B) dt( )_0 (A30)
dEE dBy 2Edy
- =2 A3l
dt By dt  y di (A31)
Substituting % % and dB” in the expression for 42 > €quation (A31)
becomes:
dE E 0By 1 0By
e ) e ey 1—
dt ~ By ( 2h> a " VOR(BO ( 2/1) R,
1/1 ol 1 1\ 1 0By
- E —(1-=
h(Ro+aRo)) ! V"Q”(Bo( )Ro o0
1 ol E ol
- ) -=Z A32
IR, a¢) h ot (A32)

Again, bounce-averaging, for the case of no parallel electric
fields, we obtain:

dE\ E 1\ 0By 1 I
<E> ~ B (1 - ﬂ) TEV“(B—O (1 zh) (VE,

;:(RIO + (VD) >) +Ev00(b10 (pﬁ)(vgo)(;
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The expressions for < > and < > derived above are valid for
any magnetic field configuration.
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