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The Jablonowski test case is widely used for debugging and evaluating the numerical characteristics of global

dynamical cores that describe the fluid dynamics component of Atmospheric General Circulation Models.

The test is defined in terms of a steady-state solution to the equations of motion and an overlaid

perturbation that triggers a baroclinically unstable wave. The steady-state initial conditions are zonally

symmetric. Therefore, the test case design has the potential to favor models that are built upon regular

latitude-longitude or Gaussian grids. Here we suggest rotating the computational grid so that the balanced

flow is no longer aligned with the computational grid latitudes. Ideally the simulations should be invariant

under rotation of the computational grid. Note that the test case only requires an adjustment of the Coriolis

parameter in the model code.

The rotated test case has been exercised by six dynamical cores. In addition, two of the models have been

tested with different vertical coordinates resulting in a total of eight model variants. The models are built

with different computational grids (regular latitude-longitude, cubed-sphere, icosahedral hexagonal/

triangular) and use very different numerical schemes. The test-case is a useful tool for debugging, assessing

the degree of anisotropy in the numerical methods and grids, and evaluating the numerical treatment of the

pole points since the rotated test case directs the flow directly over the geographical poles. Special treatments

such as polar filters are therefore more exposed in this rotated test case.
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1. Introduction

The need for developing global test cases for dynamical

cores is becoming increasingly important as modeling

groups move towards seamless modeling systems where

the same flow solvers are intended for both high weather

resolutions as well as for coarser climate resolutions. Hence

the dynamical core should be accurate across an even wider

range of scales. To meet the requirements of a high degree of

computational parallelism and scalability in the numerical

algorithms non-traditional spherical grids, that are more

isotropic than the widely used regular latitude-longitude

grids, are being explored. In addition, novel numerical

techniques are being assessed by the global atmospheric

modeling community. All these factors raise questions about

the accuracy of these new models as compared to traditional

approaches that have been tested and used extensively

during the last 20–30 years.

At any resolution it is inevitable that a numerical method

introduces errors and thereby misrepresent the flow in some

way. It is hard to distinguish cause and effect in model runs

with parameterized physical processes. Therefore, running

idealized test cases have become standard during model

development. Standard test cases for passive tracer transport

(see Machenhauer et al. 2008 for an overview) and two-

dimensional shallow water tests (e.g., Williamson et al. 1992,

Galewsky et al. 2004, Läuter et al. 2005) are well established

in the atmospheric modeling community whereas global test

cases for three dimensional models are not as widespread. A

global test case gaining popularity was recently proposed by

Jablonowski (2004) and examined by Jablonowski and
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Williamson (2006a; hereafter referred to as JW06). It consists

of a steady-state solution and a baroclinic wave resulting from

adding a perturbation to the steady-state initial condition. The

Jablonowski test case targets the large scale (hydrostatic)

performance of the model and its ability to retain a balanced

flow. An analytic solution exists for the steady-state test case

provided the model utilizes a hydrostatic or non-hydrostatic

shallow-atmosphere equation set. No analytic solution exists

for the baroclinic wave test and therefore the ‘exact’ solution

must be approximated numerically. The test is deterministic

and convergence can be established based on an ensemble of

high resolution reference solutions (JW06). Other idealized

test cases for three-dimensional dynamical cores have also

recently been proposed by Polvani et al. (2004), Staniforth and

White (2008b), Staniforth and White (2008c) and

Jablonowski et al. (2011). In addition, test cases targeting

the smaller scale and non-hydrostatic performance of the

dynamical cores were suggested by Wedi and Smolarkiewicz

(2009). Global non-hydrostatic models should also be able to

retain large scale balances in the flow. It is therefore expected

that the non-hydrostatic models run at hydrostatic resolutions

(scales) converge to the hydrostatic model reference solutions.

Here we propose a variant of the Jablonowski test cases

where the physical flow remains the same but the computa-

tional grid is rotated with respect to the physical flow.

Ideally the dynamical core should be invariant under rota-

tion of the computational grid. However, usually the

numerical algorithms are less challenged when the flow is

aligned or quasi-aligned with the computational grid in

contrast to flows that predominantly traverse the computa-

tional grid lines at a slantwise angle. Therefore the

Jablonowski test cases somewhat favors regular latitude-

longitude grids since the flow is predominantly parallel to

the latitude circles throughout the domain. The grid rota-

tions suggested in this paper are schematically explained in

Fig. 1. The figure shows a regular latitude-longitude grid

with different rotation angles a that are superimposed upon

a zonally symmetric flow field. The white thick lines depict

the rotated coordinate system in geographical coordinates.

In the rotated latitude-longitude grids the flow is no longer

aligned with the coordinate lines throughout the global

domain of integration, thereby challenging the schemes’

ability to maintain balances in the flow.

In this paper we present results from six dynamical cores

that participated in a 2-week summer colloquium at the

National Center for Atmospheric Research (NCAR) in 20081.

In addition, two of the models are tested with different

vertical coordinates resulting in a total of eight model

variants. The colloquium was entitled Numerical Techniques

for Global Atmospheric Models and was part of the annual

NCAR Advanced Study Program (ASP) colloquium series

(for more information see http://www.cgd.ucar.edu/cms/pel/

colloquium.html). Apart from its educational aspects the

summer colloquium presented an unprecedented opportun-

ity to intercompare a wide range of global dynamical cores

with different spherical grids and numerical methods. All

models were tested with an identical dynamical core test suite

that is documented in Jablonowski et al. (2011).

The paper is organized as follows. In Section 2 the rotated

test case is defined. In Section 3 we briefly describe the suite

of models that ran the test cases. Section 4 discusses the

simulation results followed by conclusions in Section 5.

2. Test case description

Since the new rotated test case is expressed in terms of the

unrotated test case described in JW06, we first present the

unrotated initial conditions. Then the rotated initial condi-

tions are formulated.

2.1. Unrotated initial conditions

2.1.1. Steady-state

The initial conditions comprise a zonally symmetric basic

state with a jet in the midlatitudes of each hemisphere and a

quasi-realistic temperature distribution. They are formu-

lated in terms of the zonal wind component u, meridional

Figure 1: Color scales show the zonal wind (m s21) at model level 3 near 14 hPa. White solid lines show the regular latitude-longitude
grid rotated at the angle a 5 0˚(left), a 5 45˚(middle) and a 5 90˚(right), respectively. The coordinate axis refer to the geographical
coordinates.

1 results from participating models that did not produce a complete dataset

are not included in this study
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wind component v, temperature T, surface pressure ps and

surface geopotential Ws. Extensions to other prognostic

variable sets are straightforward. In addition, we assume

vertical coordinates that are typically used in General

Circulation Models (GCMs) today. These are the pressure-

based s 5 p/ps (Phillips 1957) coordinate or an g (hybrid s
– p; Simmons and Burridge 1981) vertical coordinate as

defined by

p l, Q, gð Þ~A gð Þp0zB gð Þps l, Qð Þ: ð2:1Þ

The interface coefficients A and B (half indices) are given in

Table 1, l [0, 2p] and Q [2p/2, p/2] denote the

longitudinal and latitudinal directions, the reference pres-

sure p0 is set to 1000 hPa, and the initial surface pressure ps

is constant and set to ps 5 1000 hPa. Throughout this

paper, 26 vertical model levels are used. The hybrid coord-

inate g [0, 1] is unity at the surface and approaches a

constant at the model top. Note that the value of p0 might

not be standard in all GCMs that utilize the hybrid vertical

coordinate system.

The flow field is comprised of two symmetric non-

divergent zonal jets in the midlatitudes:

usteady l, Q, gð Þ~u0 cos
3
2gv sin2 2Qð Þ, ð2:2Þ

vsteady l, Q, gð Þ~0, ð2:3Þ

where gv is defined as gv 5 0.5(g 2 g0)p, g0 5 0.252 is the

center position of the jet, and the maximum amplitude u0 is

set to 35 m s21. This velocity distribution resembles the

zonal-mean time-mean jet streams in the troposphere. For

non-hydrostatic models the vertical velocity is set to zero.

The temperature distribution consists of a horizontal-

mean temperature and a horizontal variation at each level.

The horizontally averaged temperature �TT gð Þ is given by

�TT gð Þ~ T0 g
RdC

g for gs§g§gt

T0 g
RdC

g zDT gt{gð Þ5 for gtwg

8<
: ð2:4Þ

with the surface level gs 5 1, tropopause level gt 5 0.2 and

horizontal-mean temperature at the surface T0 5 288 K. The

temperature lapse rate C is set to 0.005 K m21 which is

similar to the observed diabatic lapse rate. The empirical

temperature difference DT is set to 4.8 6 105 K, Rd 5

287.04 J (kg K)21 represents the ideal gas constant for dry

air and g 5 9.80616 m s22 is the gravitational acceleration.

The three-dimensional temperature distribution is then

defined by

T l, Q, gð Þ~�TT gð Þz 3

4

g p u0

Rd

sin gv cos
1
2 gv|

{2sin6 Q (cos2 Qz
1

3
)z

10

63

� �
|

�

2 u0 cos
3
2 gvz

8

5
cos3 Q (sin2 Qz

2

3
){

p

4

� �
a V

�
,

ð2:5Þ

where V 5 7.29212 6 1025 s21 is the Earth’s angular

velocity and a 5 6.371229 6 106 m is the radius of the

Earth. The geopotential W 5 gz completes the description of

the steady-state initial conditions where z symbolizes the

elevation of a model level g. The total geopotential distri-

bution comprises the horizontal-mean geopotential �WW and a

horizontal variation at each level. This is analogous to the

description of the temperature field. The geopotential is

given by

W l, Q, gð Þ~�WW gð Þzu0 cos
3
2 gv|

{2sin6 Q (cos2 Qz
1

3
)z

10

63

� �
|

�

u0 cos
3
2 gvz

8

5
cos3 Q (sin2 Qz

2

3
){

p

4

� �
a V

�
,

ð2:6Þ

with

�WW gð Þ~
To g

C 1{g
RdC

g

� �
for gs§g§gt

To g

C 1{g
RdC

g

� �
{K for gtwg

8><
>: ð2:7Þ

Table 1: Vertical coefficients used do define the hybrid g-vertical coordinate, where k is the vertical index, the parameter Akz1
2

denotes
the pure pressure component and Bkz1

2
defines the s part of the vertical coordinate. The coefficients are the same as used in JW06.

k Akz1
2

Bkz1
2

k Akz1
2

Bkz1
2

k Akz1
2

Bkz1
2

0 0.002194067 0. 9 0.07590131 0.03276228 18 0.04468960 0.4243822
1 0.004895209 0. 10 0.07424086 0.05359622 19 0.03752191 0.5143168
2 0.009882418 0. 11 0.07228744 0.07810627 20 0.02908949 0.6201202
3 0.01805201 0. 12 0.06998933 0.1069411 21 0.02084739 0.7235355
4 0.02983724 0. 13 0.06728574 0.1408637 22 0.01334443 0.8176768
5 0.04462334 0. 14 0.06410509 0.1807720 23 0.00708499 0.8962153
6 0.06160587 0. 15 0.06036322 0.2277220 24 0.00252136 0.9534761
7 0.07851243 0. 16 0.05596111 0.2829562 25 0. 0.9851122
8 0.07731271 0.01505309 17 0.05078225 0.3479364 26 0. 1.
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where

K~Rd DT| ln(
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This formulation enforces the hydrostatic balance ana-

lytically and ensures the continuity of the geopotential at

the tropopause level gt. In hydrostatic models with pres-

sure-based vertical coordinates, it is only necessary to

initialize the surface geopotential Ws 5 gzs. It balances

the non-zero zonal wind at the surface with surface

elevation zs and is determined by setting g 5 gs in (2.6).

This leads to the following equation for the surface geo-

potential

Ws l, Qð Þ~u0 cos
3
2 gs{g0ð Þ p

2

� �
|

{2sin6 Q (cos2 Qz
1

3
)z

10

63

� �
|

�

u0 cos
3
2 gs{g0ð Þ p

2

� �
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4
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:

ð2:9Þ

Note that Ws is a function of latitude only. The geopotential

equation (2.6) can fully be utilized for dynamical cores with

height-based vertical coordinates. Then, a root-finding

algorithm is recommended to determine the corresponding

g-level for any given height z. This iterative method, which

is also applicable to isentropic vertical coordinates, is out-

lined in the Appendix of JW06. The resulting g-level is

accurate to machine precision and can consequently be used

to compute the initial data set.

The test design guarantees static, inertial and symmetric

stability properties, but is unstable with respect to baroclinic

or barotropic instability mechanisms.

2.1.2. Baroclinic wave

A baroclinic wave can be triggered if the initial conditions

for the steady-state test described in the previous subsection

are overlaid with a perturbation. Here a perturbation with a

Gaussian profile is selected and centered at (lc, Qc) 5 (p/9,

2p/9) which points to the location (20 E̊,40 N̊). The per-

turbation overlays the zonal wind field. The zonal wind

perturbation upert is given by

upert l, Q, gð Þ~up exp {
r

R

� �
2

� �
ð2:10Þ

with the great circle distance r

r~a arccos sin Qc sin Qzcos Qc cos Q cos l{lcð Þð Þ: ð2:11Þ

The radius of the perturbation is R 5 a/10. The maximum

perturbation amplitude is set to up 5 1 m s21. It is super-

imposed on the balanced zonal wind field (2.2) by

adding upert to the wind field at each grid point at all model

levels:

uwave l, Q, gð Þ~usteadyzupert : ð2:12Þ

The meridional wind component is zero as in the steady-

state initial condition: vwave 5 vsteady 5 0.

The baroclinic wave, although idealized, represents very

realistic flow features. Strong temperature fronts develop

that are associated with the evolving low and high pressure

systems. Note that the baroclinic wave test case does not

have an analytic solution. Therefore, high resolution ref-

erence solutions and their uncertainties are used (JW06).

2.2. Rotated initial conditions

The rotated initial conditions are formulated in terms of the

unrotated initial conditions. The physical flow remains the

same but the computational grid is rotated with respect to

the physical flow. However, two changes are necessary. First,

because of the rotations the Coriolis parameter f is a

function of both latitude Q and longitude h:

f l, Qð Þ~2V {cos l cos Q sin azsin Q cos að Þ: ð2:13Þ

Second, the initial conditions need to be rotated. The

rotation is schematically depicted in Fig. 2 that shows the

location of the rotated North pole (lp, Qp) with respect to

the North (N) and South (S) poles of the unrotated Earth. In

short, the rotated coordinate locations (l9, Q9) need to be

determined in terms of the unrotated coordinates (l, Q).

Figure 2: A position (l, h) at the equator (dashed arrow) of a
rotated coordinate system (l9, h9) whose North pole is at (lp, hp)
with respect to the regular (l, h) sphere. N and S are the poles of
the unrotated Earth and the dashed line is the equator of the
unrotated coordinate system (geographical coordinates). The
flow orientation parameter a (rotation angle) is the angle
between the axis of the unrotated Earth and the polar axis of
the rotated Earth.
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This allows the analytical evaluation of the initial conditions

at that location. Note that the unrotated coordinates are also

referred to as the geographical coordinates.

2.2.1. Transformations for rotated coordinates

The rotation of the coordinates, together with their inverse

relations, has been described in, e.g., Ritchie (1987), Nair

and Jablonowski (2008) and Staniforth and White (2008a).

Note that the trigonometric functions as outlined below

might suffer from precision problems due to multiple

applications of trigonometric functions. Therefore, a slightly

different but highly precise method has been implemented

in the Fortran example code made available to the modeling

groups on the NCAR web page http://www.cgd.ucar.edu/

cms/pel/colloquium_links.html.

The following steps illustrate the basic principle behind

the rotations. Let the North pole of a rotated coordinate

system (l9, h9) be located at the point (lp, Qp) of the regular

unrotated (geographical) coordinate system as shown in

Fig. 2. Let us assume lp 5 0. For a flow orientation

parameter (or rotation angle) a the North Pole position is

given by (lp, p/2 2 a). The following identities hold

between the rotated (l9, Q9) and unrotated (l, Q) coordinate

systems:

sin Q0~sin Q sin Qpz

cos Q cos Qp cos l{lp

� 	
,

ð2:14Þ

sin Q~sin Q0 sin Qp{

cos Q0 cos Qp cos l0,
ð2:15Þ

cos Q0 sin l0~cos Q sin l{lp

� 	
, ð2:16Þ

(see, e.g., Ritchie 1987). For the steady-state conditions of

section 2.1.1, expressed in the unrotated (l, Q) coordinate

system, the horizontal wind components at each vertical

level satisfy

u Qð Þ~a cos Q
dl

dt
, v~a

dQ

dt
~0, ð2:17Þ

whilst the wind components in the rotated system satisfy

u0 l0, Q0ð Þ~a cos Q0
dl0

dt
, v0 l0, Q0ð Þ~a

dQ0

dt
: ð2:18Þ

Differentiating (2.14) with respect to time and using equa-

tions (2.17) and (2.18) gives

v0 l0, Q0ð Þcos Q0~{cos Qp sin l{lp

� 	
u Qð Þ: ð2:19Þ

Differentiating Eqs. (2.15) and (2.16) with respect to time

and manipulating the resulting equations using (2.16) -

(2.19) then yields

u0 l0, Q0ð Þ~u Qð Þ cos l0 cos l{lp

� 	
z



sin Qp sin l0 sin l{lp

� 	i
:

ð2:20Þ

2.3. Procedure for computing rotated initial
conditions

Suppose now that the initial conditions in sections 2.1.1 and

2.1.2 are to be expressed in the (l9, Q9) coordinate system,

whose North Pole is located at the point (lp, Qp) of the

unrotated (geographical) coordinate system (l, Q). The

steps for obtaining the initial conditions at the mesh-points

(l9, l9) of the rotated system are:

1. Compute the latitude location Q using (2.15) which

yields

Q~arcsin sin Q0 sin Qp{cos Q0 cos Qp cos l0
� �

: ð2:21Þ

2. Compute the inverse relation l derived as

l~lpz

arctan
cos Q0 sin l0

sin Q cos Qpzcos Q0 cos l0 sin Qp

 !
:

ð2:22Þ

Inverting the trigonometric functions, particularly for l
can be problematic due to the non-unique nature of

the inverted (arctan) function values. To avoid this

problem we recommend using the intrinsic Fortran
function atan2 (y, x) for arctan (y/x) which

provides values in the range [-p, p]. The negative

values between [-p, 0) then need to be shifted by adding

2p. This guarantees the proper branch cut in the

longitudinal direction between [0, 2p].

3. Depending on the choice of the test case compute the

zonal wind field for either the unperturbed conditions

according to equation (2.2) and (2.3) or the perturbed

initial conditions for the baroclinic wave test (equation

2.12). Use the results from Eqs. (2.21) and (2.22) for Q
and l. Note that the center position (lc, Qc) of the

perturbation in Eq. (2.11) needs to be expressed in the

unrotated coordinates (p/9, 2p/9).

4. Now rotate the wind vector components, that is,

compute u9 (l9, Q9, g) and v9 (l9, Q9, g) using (2.20)

and (2.19). The (l9, Q9) coordinates are the mesh-

points of the computational grid. For the computation

of cos(l - l9) and sin(l - l9) in (2.19) and (2.20) one

can also use Eqs. (2.14) and (2.16) instead of (2.21) and

(2.22). Equations (2.14) and (2.16) yield

cos l{lp

� 	
~

sin Q0{sin Q sin Qp

cos Q cos Qp

: ð2:23Þ
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sin l{lp

� 	
~

cos Q0 sin l0

cos Q
: ð2:24Þ

5. Compute the scalar fields T9 (l9, Q9, g) and (Ws)9 (l9,

Q9, g) in the rotated system by using the result of (2.21)

in the temperature equation (2.5) and the expression

for the surface geopotential (2.9).

This completes the definition of the rotated initial con-

ditions for the steady-state and baroclinic wave test cases.

2.4. Test case strategy

We suggest the following test strategy for the steady-state

test case. The dynamical core is initialized with the balanced

initial conditions and run for 30 model days at varying

horizontal resolutions and rotation angles a 5 0 ,̊ 45 ,̊ 90 .̊

Here we assess the convergence with resolution and the

dependence of the simulated solution on the rotation angle.

Ideally the model results should be invariant under rotation.

Any shortcomings with regard to rotation of the computa-

tional grid are due to lack of isotropy in the model. Note

that a discretization scheme on an anisotropic grid can be

isotropic (as is the case for the spectral transform method)

and that a quasi-isotropic grid (such as the icosahedral type

grids described below) not necessarily guarantees that the

model dynamics is isotropic.

In addition, different horizontal resolutions should be

assessed for the baroclinic wave test case to estimate the

convergence characteristics. The results should also be

examined as a function of rotation angle a 5 0 ,̊ 45 ,̊ 90 .̊

The baroclinic wave starts growing observably around day 4

and evolves rapidly thereafter with explosive cyclogenesis at

model day 8. The wave train breaks after day 9 and generates

a full circulation in both hemispheres between day 20–30

depending on the model. Therefore the models herein are

run for 15 days to capture the initial and rapid development

stages of the baroclinic disturbance. As observed in JW06

the spread of the numerical solutions increases noticeably

from model day 12 onwards indicating a predictability limit

of the test case.

Here all models are run at two resolutions. The low

resolution simulations utilize a grid spacing of approxi-

mately 2˚ at the model equator, the high resolution corre-

sponds to a grid spacing of about 1˚ at the model equator.

For the baroclinic wave test case we use 7 high-resolution

reference solutions. High resolution reference solutions

with different models still produce a certain spread in the

solution. Therefore, we use the uncertainty of the reference

solution as defined in JW06 to define convergence (see

Section 4.2 for more details). When the ,2 errors are below

the uncertainty of the reference solutions given in JW06 the

model is within the spread of the reference solutions and

we can no longer term one model more accurate than

another.

3. Models

Below is a brief description of the dynamical cores assessed

in this paper. The corresponding model abbreviations used

in this paper are listed in Table 2. The metadata for the

models are given in Tables 3, 4 and 5. The definitions of the

metadata entries are defined in the Appendix. The model

metadata has been developed in collaboration with the Earth

System Curator and Earth System Grid teams at NCAR.

Models defined on three different spherical grids are con-

sidered: Regular or Gaussian latitude-longitude (Fig. 3a),

cubed-sphere (Fig. 3b) and icosahedral grids (Fig. 3c). For

the icosahedral class of grids one can either discretize on

hexagons-pentagons or triangles. Both types of icosahedral

grids are used by models in this ensemble.

Table 2: List of model abbreviations (left column), affiliation/full name of the dynamical cores assessed in this paper (middle column) as
well as spherical grid used by the model in question (right column). The acronym GFDL stands for NOAA’s Geophysical Fluid Dynamics
Laboratory in Princeton, NJ.

Model abbreviations Affiliation/Full name Grid

CAM_EUL NCAR’s Eulerian spectral transform dynamical core in the Community
Atmosphere Model (CAM)

Gaussian latitude-longitude

CAM_FV NCAR’s finite-volume dynamical core in the Community Atmosphere
Model (CAM)

regular latitude-longitude

CAM_ISEN same as CAM_FV but using a hybrid isentropic vertical coordinate regular latitude-longitude

GEOS_FV_CUBED GFDL/NASA’s Goddard Earth Observing System Model (GEOS) model
on a cubed-sphere grid

cubed-sphere

HOMME NCAR’s High Order Method Modeling Environment (HOMME) model cubed-sphere

ICON Max Planck Institute for Meteorology (MPI-M) Icosahedral
Nonhydrostatic model

icosahedral (triangles)

CSU_SGM Colorado State University’s (CSU) general circulation model using a s
vertical coordinate

icosahedral (hexagons)

CSU_HYB same as CSU_SGM but using a hybrid s – H vertical coordinate icosahedral (hexagons)
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3.1. Latitude-longitude grid models

The two dynamical cores defined on a regular or Gaussian

latitude-longitude grid are part of NCAR’s Community

Atmosphere Model (CAM) version 3 (Collins et al. 2006).

CAM_EUL is based on a spectral transform method on a

Gaussian grid whereas the two model variants CAM_FV and

CAM_ISEN are based on the Lin (2004) finite-volume

approach with a floating Lagrangian coordinate in the

vertical and regular latitude-longitude grid in the horizontal

direction. The latter two utilize the hybrid sigma-pressure

coordinates (CAM_FV) or isentropic coordinates (Chen

and Rasch 2010) as their reference grids. The prognostic

variables are interpolated back to the reference grid peri-

odically (every 4–10 time steps).

The Eulerian spectral transform dynamical core

CAM_EUL is based on the traditional vorticity-divergence

form using the three-time-level semi-implicit Leapfrog

time-stepping method. To damp the computational mode

of the Leap-frog time-stepping scheme a Robert-Asselin

filter (Asselin 1972) is applied which formally reduces the

time-stepping scheme to first order. The horizontal approxi-

mation is based on spectral transforms and a quadratically

unaliased transform grid with triangular truncation. In the

vertical direction, centered finite differences are utilized.

Note that the spherical harmonic functions are invariant

under rotation. The horizontal resolution is referred to as

T42, T85, etc. that denotes the triangular truncation with

the total wave numbers 42 and 85, respectively. The corres-

ponding Gaussian grids have 64 6 128 and 128 6 256

(latitude 6 longitude) grid points, resulting in a grid

spacing of < 2.8˚ (T42) and < 1.4˚ (T85), respectively. As

argued in Williamson (2008) these spectral resolutions are

comparable to other grid-point based dynamical cores with

Table 3: Metadata for the models based on a regular latitude-longitude grid with approximately 1˚grid spacing. f is the relative vorticity,
d the horizontal divergence and Dp 5 pk+1/2 2 pk-1/2 describes the pressure thickness of a model layer with vertical index k that is
surrounded by the interface levels with half indices k ¡ 1/2. The metadata entries are defined in the Appendix.

CAM_EUL CAM_FV/ISEN

Numerical method spectral transform Eulerian finite volume Eulerian with semi-Lagrangian
extensions in the longitudinal direction

Spherical grid Gaussian latitude-longitude regular latitude-longitude

Projection none none

Spatial approximation spectral, triangular truncation, quadratic
transform grid

Piecewise Parabolic Method (PPM); second-order

Advection Scheme spectral transform (dynamical core), tracers:
shape-preserving semi-Lagrangian Williamson
and Rasch (1989)

Lin and Rood (1996)

Conservation type none mass dry air

Conservation fixers total energy, mass of dry air total energy

Time Stepping semi-implicit explicit

Dt for approximately 1˚ at the equator 600s 180s

Internal resolution for Dt T85, < 156 km #lon5360, #lat5181, < 110 km

Temporal approximation three-time level, Leapfrog, first-order due to
Robert-Asselin filter (Asselin 1972)

two-time level, 2nd-order

Temporal filter Robert-Asselin (coefficient: 0.06) none

Explicit spatial diffusion 4th-order linear horizontal diffusion of f, d, T
(coefficient 1 6 1015 m4 s21), 2nd-order
diffusion near the model top

2nd-order horizontal divergence damping (see
equation (3.1))

Implicit diffusion none 1D monotonicity constraint in horizontal
coordinate directions, increased diffusion near
the model top (3-layer sponge) due to lower-
order numerical methods

Explicit spatial filter none polar Fast-Fourier-Transform (FFT) filter, 3-point
digital filter

Prognostic variables f, d, T, ln(ps) Dp, mass-weighted h, u, v

Horizontal staggering co-located f, d, scalars (spectral space), Arakawa
A (Arakawa and Lamb 1977) in grid point space

mixed Arakawa C & D

Vertical coordinate hybrid sigma-pressure floating Lagrangian coordinate (interpolated to
Eulerian hybrid sigma-pressure/isentropic
periodically)

Vertical staggering Lorenz grid (Lorenz 1960) none
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mesh spacings of about 2˚ and 1 .̊ To control the inertial

range of the total kinetic energy spectrum fourth-order

linear horizontal diffusion (also referred to as hyperdiffu-

sion) is applied to the vorticity (f), divergence (d) and

temperature (T). The horizontal and vertical grid staggering

utilizes the Arakawa A (Arakawa and Lamb 1977) and

Lorenz (Lorenz 1960) grid, respectively. The vertical coord-

inate is the traditional hybrid sigma-pressure coordinate. A-

posteriori total mass and total energy fixers are applied to

restore the conservation of these quantities at every time

step. Details about the energy fixer can be found in

Williamson et al. (2009).

CAM_FV is based on a flux-form finite-volume method

that is built upon the Lin and Rood (1996) advection

scheme and a CD-grid approach for the two-dimensional

shallow water equations. The algorithm involves a half-

time-step update on the Arakawa C grid that provides the

time-centered winds to complete a full time step on the

Arakawa D grid (Lin and Rood 1997). The momentum

equations are expressed in their vector-invariant form. The

Eulerian model design has semi-Lagrangian extensions in

the longitudinal direction as documented in Lin and Rood

(1996). The Lin-Rood advection scheme utilizes the mono-

tonic Piecewise Parabolic Method (PPM, Colella and

Woodward 1984) that implicitly prevents grid-scale noise

in the vorticity field through the use of limiters. However,

divergent modes must be controlled through the explicit

application of horizontal divergence damping where the

damping coefficient in CAM_FV is:

n~
C L2

Dt
, ð3:1Þ

where C 5 1/128 and L2 5 a2DlDh. This avoids a spurious

accumulation of energy at and near the grid scale. In

CAM_FV second-order divergence damping is used with

increasing strength near the model top. To stabilize the

model a one-dimensional digital filter is applied along

longitudes in the midlatitudes (approximately between 36˚
N/S to 66˚N/S) and a Fast Fourier Transform (FFT) filter is

used in the polar regions poleward of 69 .̊ The shallow water

system is extended to a three-dimensional hydrostatic model

using a floating Lagrangian vertical coordinate (Lin 2004).

The levels float for a few (4–10) consecutive time steps

before a vertical remapping step maps the variables back to

Table 4: Same as Table 3 but for models based on cubed-sphere grids.

HOMME GEOS_FV_CUBED

Numerical method spectral element Eulerian finite volume Eulerian

Spherical grid cubed-sphere cubed-sphere

Projection gnomonic (equi-angular) gnomonic, equal-distance along cube edges
(undocumented)

Spatial approximation piecewise polynomials of degree 3 Piecewise Parabolic Method (PPM); second-order

Advection Scheme spectral element Eulerian Putman and Lin (2007, 2009)

Conservation type total energy, mass dry air mass dry air

Conservation fixers none total energy

Time Stepping explicit explicit

Dt for approximately 1˚ at the equator 90s 180s

Internal resolution for Dt 30 6 30 elements per face with 4 6 4 Gauss-
Legendre-Lobatto points within each element
(< 110 km)

90 6 90 cells per cubed-sphere face < 110 km
spacing

Temporal approximation three-time level, Leapfrog, first-order due to
Robert-Asselin filter

two-time level, 2nd-order

Temporal filter Robert-Asselin (coefficient 0.05) none

Explicit spatial diffusion 4th-order linear horizontal diffusion of u, v, T
(coefficient 9.6 6 1014 m4 s21)

2nd-order and 4th-order horizontal divergence
damping, increased damping near model top,
external mode dam ping (coefficients 0.005 6
DAmin/Dt, [0.05 6 DAmin]2/Dt,0.02 6 DAmin/Dt)

Implicit diffusion none 1D monotonicity constraint in horizontal
coordinate directions

Explicit spatial filter none none

Prognostic variables u, v, T, ps Dp, mass-weighted h, u, v

Horizontal staggering Arakawa A (unstaggered) mixed Arakawa C & D

Vertical coordinate hybrid pressure-sigma floating Lagrangian coordinate (interpolated to
Eulerian hybrid sigma-pressure periodically)

Vertical staggering Lorenz grid none
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the reference vertical levels. CAM_FV uses hybrid-sigma

vertical coordinates as the reference grid. The Lin and Rood

(1996) advection scheme is formulated in terms of inner and

outer operators that are applied in the coordinate directions

in a combination to reduce the operator-splitting error. In

CAM_FV the outer operators are based on PPM, and the

inner operators are first-order (upwind scheme). The

stability properties of this scheme are discussed in

Lauritzen (2007). More details on e.g. the time step length

for a 1˚grid spacing are listed in Table 3. Note that the PPM

algorithm is formally third-order accurate in one dimen-

sion, but it reduces to a second-order advection algorithm in

the chosen two-dimensional finite-volume implementation

(i.e., the Lin and Rood, 1996, algorithm). An example of a

two-dimensional extension based on the PPM algorithm

that is third-order is given in, e.g., Ullrich et al. (2010).

CAM_ISEN is an isentropic version of CAM_FV. Instead

of the hybrid sigma-pressure vertical coordinate a hybrid

Table 5: Same as Table 3 but for models based on icosahedral grids. fa is the absolute vorticity, f is the Coriolis parameter.

ICON CSU_SGM/HYB

Numerical method finite difference Eulerian finite difference Eulerian

Spherical grid icosahedral triangular icosahedral hexagonal

Projection none none

Spatial approximation 2nd-order finite-differences 3rd-order finite-differences

Advection Scheme Ahmad el al. (2006) based on MPDATA
(Smolarkiewicz and Szmelter, 2005)

Appendix B of Hsu and Arakawa (1990)

Conservation type mass dry air mass dry air

Conservation fixers none none

Time Stepping semi-implicit (implicitness parameter is 0.7,
Wan 2009)

explicit

Dt for approximately 1˚ at the equator 300 s 60 s

Internal resolution for Dt 46080 triangular cells (mass points) 69120 edges
(velocity points), average mesh width < 93 km

40962 hexagonal cells, distance between cell
centers < 120 km

Temporal approximation 3-time level, Leapfrog, first-order due to Robert-
Asselin filter

4-time-level, Adams-Bashforth, 3rd-order

Temporal filter Robert-Asselin (coefficient 0.1) none

Explicit spatial diffusion 4th-order linear horizontal diffusion of u, v, T
e-folding times 0.45h and 0.2h for 2˚ and 1˚
resolutions

none

Implicit diffusion none monotonicity constraint

Explicit spatial filter none none

Prognostic variables u, v, T, ps fa, d, h, mass (pseudo-density)

Horizontal staggering C grid (Bonaventura and Ringler 2005) Z grid (Randall 1994)

Vertical coordinate hybrid sigma-pressure pure sigma/hybrid sigma-theta (Konor and
Arakawa 1997)

Vertical staggering Lorenz grid Charney-Philips (Konor and Arakawa 1997)

Figure 3: (a) The latitude-longitude grid, (b) the cubed-sphere grid based on an equi-angular central projection and (c) icosahedral grid
based on hexagons and pentagons. The triangular grids used by models herein are the dual of the hexagonal grid.
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sigma-h vertical coordinate is used (Chen and Rasch 2010).

Apart from the vertical coordinate the model design is

identical to CAM_FV.

3.2. Cubed-sphere grid models

The assessment includes two dynamical cores that are

defined on cubed-sphere grids. The finite-volume cubed-

sphere model (GEOS_FV_CUBED) is a cubed-sphere ver-

sion of CAM_FV developed at the Geophysical Fluid

Dynamics Laboratory (GFDL) and the NASA Goddard

Space Flight Center. The advection scheme is based on the

Lin and Rood (1996) method but adapted to non-ortho-

gonal cubed-sphere grids (Putman and Lin 2007, 2009). Like

CAM_FV, the GEOS_FV_CUBED dynamical core is sec-

ond-order accurate in two dimensions. Both a weak second-

order divergence damping mechanism and an additional

fourth-order divergence damping scheme is used with

coefficients 0.005 6 DAmin/Dt and [0.05 6 DAmin]2/Dt,

respectively, where DAmin is the smallest grid cell area in the

domain.

The strength of the divergence damping increases towards

the model top to define a 3-layer sponge. In contrast to

CAM_FV and CAM_ISEN, the cubed-sphere model does

not apply any digital or FFT filtering in the polar regions

and mid-latitudes. Nevertheless, an external-mode filter is

implemented that damps the horizontal momentum equa-

tions. This is accomplished by adding the external-mode

damping coefficient (0.02 6 DAmin/Dt) times the gradient

of the vertically-integrated horizontal divergence on the

right-hand-side of the vector momentum equation.

GEOS_FV_CUBED applies the same inner and outer

operators in the advection scheme (PPM) to avoid the

inconsistencies described in Lauritzen (2007) when using

different orders of inner and outer operators. The cubed-

sphere grid is based on central angles. The angles are chosen

to form an equal-distance grid at the cubed-sphere edges

(undocumented). The equal-distance grid is similar to an

equidistant cubed-sphere grid that is explained in Nair et al.

(2005). The resolution is specified in terms of the number of

cells along a panel side. As an example, 90 cells along each

side of a cubed-sphere face yield a global grid spacing of

about 1 .̊

The second cubed-sphere dynamical core is NCAR’s

spectral element High-Order Method Modeling Environ-

ment (HOMME) (Thomas and Loft 2005, Nair et al. 2009).

Spectral elements are a type of a continuous-Galerkin h-p

finite element method (Karniadakis and Sherwin 1999,

Canuto et al. 2007), where h is the number of elements

and p the polynomial order. Rather than using cell averages

as prognostic variables as in geos_fv_cubed, the finite

element method uses p-order polynomials to represent the

prognostic variables inside each element. The spectral ele-

ment method is compatible, meaning it has discrete analogs of

the key integral properties of the divergence, gradient and

curl operators, making the method elementwise mass-

conservative (to machine precision) and total energy conser-

vative (to the truncation error of the time-integration

scheme) (Taylor et al. 2007, Taylor et al. 2008). The cubed-

sphere grid consists of elements with boundaries defined by

an equiangular gnomonic grid (Nair et al. 2005) and each

element has (p + 1) 6 (p + 1) Gauss-Legendre-Lobatto

quadrature points. The positions of the Gauss-Legendre-

Lobatto quadrature points in each element are depicted in

Fig. 4. For the simulations presented here p 5 3 is used and

the resolution is determined by h, the number of elements

along a face side. The grid spacing at the equator is approxi-

mately 90 /̊(h 1 p) hence the approximately 1˚solutions use h

5 30 and p 5 3. The model applies fourth-order linear

horizontal diffusion to the prognostic variables u, v and T.

The diffusion coefficient is tuned empirically with the help of

kinetic energy spectra as done in CAM_EUL.

3.3. Icosahedral grid models

Two icosahedral-grid based models are tested with three

model variants. Among them is the model ICON that is

under development at the Max-Planck Institute for

Figure 4: (left) A graphical illustration of the Gauss-Legendre-Lobatto quadrature points (red unfilled circles) in an element (blue
boundary) of the HOMME model. (right) The mapping of every element onto the sphere. Green lines are the boundary of the cubed-
sphere faces.
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Figure 5: Surface pressure (hPa) at day 1 in model coordinates (not geographical coordinates) for models based on regular latitude-
longitude and cubed-sphere grids at approximately 2˚ horizontal resolution at rotation angles a 5 0˚ (left column), a 5 45˚ (middle
column) and a 5 90˚(right column). The figures also show some of the grid lines for the computational grid (white solid lines) as well as
the vector wind field at model level 3 near 14 hPa for the initial condition (the offset in the wind vectors around 120E in the first column
reflects a plotting problem rather than a change in the zonal winds). The wind vectors are only shown to indicate the location of the jets
with respect to the model grid. Each plot has different color contouring. The model abbreviation is above each plot (see also Table 2).
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Meteorology, Germany, and the German Weather Service

DWD. Some documentation on ICON is given in Wan

(2009). The second model labeled CSU has been developed

at the Colorado State University, Fort Collins, U.S.. Here

two model variant of CSU are assessed that use different

vertical coordinates. The icosahedral grids are special types

of geodesic grids where an icosahedron inscribed in a sphere

is subdivided recursively to form a quasi-uniform grid of

triangles. In the CSU model the grid resolution is specified

in terms of the number of refinement levels of the icosahed-

ron that initially consists of 20 triangles. Each refinement

level subdivides the mesh, thereby doubling its resolution.

The hexagonal grid is the dual of the triangular grid. It is

created by connecting the centroids of the triangles sharing a

vertex with great circle arcs. It consists primarily of hexa-

gons and 12 pentagons. If , is the number of bisections of an

original icosahedral edge the number of hexagonal grid cells

is given by

2z10|4‘: ð3:2Þ

A resolution of approximately 1˚ is obtained with , 5 6

(40962 cells) corresponding to a minimum and maximum

grid point distance between the cell centers of 110 km and

132 km, respectively. The number of triangles in this grid is

given by

20|4‘ ð3:3Þ

which corresponds to 81920 triangles for , 5 6. Note that

the ICON results discussed in this paper are based on a

slightly different distribution of the triangular grid cells. The

main difference is the initial refinement strategy for the

icosahedron. Instead of bisecting the grid, the original

icosahedron is first split by a factor of three along each edge

before further recursive bisections are introduced. If m 5 , -

2 5 4 is the number of bisections after the initial 3-way split

Figure 6: Same as Fig. 5 but for the icosahedral grid models at day 1. The pentagons of the hexagon grid are marked with thick white
lines.
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the number of triangular cells nc, triangle edges ne and

triangle vertices nv is then given by

nc~20|32|4m ð3:4Þ

ne~30|32|4m ð3:5Þ

nv~10|32|4mz2: ð3:6Þ

Figure 7: Surface pressure (hPa) at day 9 for models based on a regular latitude-longitude and cubed-sphere grids for different rotation
angles (left, middle and right columns are a 5 0 ,̊ 45˚ and 90 ,̊ respectively). The models use a grid spacing of < 2 .̊
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For the approximately 1˚ triangular grid with m 5 4, 46080

triangular cells with 69120 edges and 23042 vertices result in an

average mesh width of 93 km. One can either use the hexagons

(pentagons) or triangles as control volumes for the discretiza-

tion. The icosahedral grids give an almost homogeneous and

quasi-isotropic coverage of the sphere. The hexagonal grid has

a somewhat higher degree of symmetry than triangular grids

whereas triangular grids are more straight forward to refine if

mesh refinement is desired. Both icosahedral grid models

(CSU and ICON) optimize the icosahedral grid so that the

truncation error for the spatial finite-difference operators is

guaranteed to converge to zero as the grid-cell sizes decrease to

zero. See Heikes and Randall (1995) for more details.

In this study, we use a development version of the ICON

(Icosahedral Nonhydrostatic) dynamical core that utilizes

the triangular control volumes. Although the model abbre-

viation refers to a non-hydrostatic model, the version used

here is based on the hydrostatic equation set in vector-

invariant form. The model applies 2nd-order finite-differ-

ence approximations on an Arakawa C horizontal grid

(Bonaventura and Ringler 2005) and a Lorenz grid in the

vertical. The velocity reconstruction algorithm is based on

Radial Basis Functions (RBF). The vertical coordinate is the

hybrid sigma-pressure coordinate. The time-stepping algo-

rithm is semi-implicit using an implicitness parameter of 0.7

(see Wan 2009). The computational mode of the three-

time-level Leapfrog time-stepping scheme is damped with a

Robert-Asselin filter. The advection scheme is MPDATA

(Smolarkiewicz 1983; Smolarkiewicz and Szmelter 2005)

adapted to the icosahedral grid (Ahmad el al. 2006).

Efforts are ongoing to develop a higher-order advection

scheme for ICON (A. Gassman, personal communication

2009). Fourth-order linear horizontal diffusion is applied to

u, v, T along the model levels. The time steps used for the 1˚
(46080 cells) and 2˚ (11520 cells) runs are 300 s and 600 s,

respectively. It should be noted that the ICON model is

undergoing rapid development (partly due to the experience

with the test case suite run during the NCAR ASP 2008

summer colloquium). Hence, the results presented here are

with an older version of ICON.

Figure 8: Same as Fig. 7 but for the icosahedral grid models at day 9. To faciliate the visual comparison of ps among the models the
contour interval is from 997.5 hPa to 1002.5 hPa. Obviously the contours for ps for ICON, CSU_HYB and CSU_SGM go beyond this range
(the full range for ICON is approximately from 992 hPa to 1004 hPa).
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The CSU dynamical core is based on hexagons (and 12

pentagons). The model directly predicts vorticity and

divergence. Stream function and velocity potential are

obtained by solving elliptic equations using multigrid

methods. The vorticity and divergence are co-located at

cell centers following the Z-grid (Randall 1994) that pro-

vides attractive linear dispersion properties for, e.g., geo-

strophic adjustment and has no computational modes.

A four-time-level third-order Adams-Bashforth time-

integration method is used for mass (pseudo-density), h,

Figure 9: Same as Fig. 7 but for a grid spacing of < 1 .̊
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absolute vorticity fa, and divergence d. The advection

scheme of the CSU model is described in Appendix B of

Hsu and Arakawa (1990). Two options for the vertical

coordinates are used in these tests. One is the traditional

pure sigma coordinate (CSU_SGM) while the other is a

hybrid sigma-theta vertical coordinate (Konor and Arakawa

1997) referred to as CSU_HYB. The vertical staggering is an

equivalent Charney-Philips staggering (Konor and Arakawa

1997). Monotonicity constraints in the advection operator

(flux-corrected transport, Zalesak 1979) may produce

implicit diffusion. The time steps for the 1˚ (40962 cells)

and 2˚ (10242 cells) grid spacings are 60 s and 120 s,

respectively.

4. Results

To facilitate data handling and model comparisons the

output for each model was interpolated to a regular lat-

itude-longitude grid. In the model HOMME the interpola-

tion was performed by evaluating the internal basis

functions at the regular latitude-longitude grid points.

CSU_SGM and CSU_HYB use area-weighted interpolation

and GEOS_FV_CUBED use bilinear interpolation. For the

baroclinic wave test case, the ,2-error for a particular model

are computed by interpolating the non-rotated high-resolu-

tion reference solution (CAM_EUL at T340 resolution) to

the regular latitude-longitude grid to which the native

model data has been interpolated.

4.1. Rotated steady-state test case

The steady-state test case measures the model’s ability to

maintain a steady-state solution and its sensitivity to the

rotation of the grid while keeping the physical flow the

same. For simplicity the test is evaluated in terms of the

surface pressure field which avoids vertical interpolations to

pressure levels. No new insights are found when assessing

other variables like T, u, v, f, d. Figure 5 shows the ps field in

model coordinates (not geographical coordinates) at day 1

for models based on regular latitude-longitude and cubed-

sphere grids with the approximately 2˚ horizontal resolu-

tion. The figures also show some of the grid lines of the

Figure 10: Same as Fig. 9 but for models based on an icosahedral grid.
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computational grid as well as selected wind vectors at model

level 3 near 14 hPa. The wind vectors show the locations of

the jets in the model’s coordinate system. The computa-

tional grid lines illustrate how the grid impacts the numer-

ical solution (discussed separately below for each model).

Note that the contours for ps are not the same for all plots.

Figure 6 is the same as Fig. 5 but for the icosahedral-grid

based models.

In addition to model day 1 we also show the surface

pressure fields at day 9 when the grid effects are more

pronounced. Model day 9 is depicted in Figs. 7 and 9 that

show the dynamical cores based on regular latitude-longit-

ude and cubed-sphere grids at approximately 2˚ and 1˚
horizontal resolutions, respectively. A common contour

interval is used. Results for the icosahedral grid models

are presented in Figs. 8 and 10. The steady-state test has

an analytic solution (ps 5 1000 hPa) that allows the

computation of root mean square ,2 error. The ,2 error

for the regular latitude-longitude and cubed-sphere grids are

shown in Fig. 11. Figure 12 depicts the time series of the

surface pressure error for the icosahedral-hexagonal models.

The definition of the ,2-error is provided in JW06. Each

figure is discussed in greater detail below.

The three-dimensional steady-state flow is baroclinically

and barotropically unstable due to its horizontal and vertical

shear characteristics, hence any perturbation introduced

into the flow will grow. Due to the basic mechanisms in

baroclinic instability the flow is more sensitive to perturba-

tions introduced around the midlatitudes near the latitud-

inal position of the jets in contrast to, for example,

perturbations introduced at the equator.

Depending on the rotation angle when ,2 grows to a value

somewhere in the interval ]0.2, 0.4[ hPa the spurious

waves start growing exponentially. We define (somewhat

Figure 11: Time series of the root mean square ,2-error (in hPa) for dynamical cores defined on regular latitude-longitude and cubed-
sphere grids using rotation angles (left column) 0 ,̊ 45˚(middle column) and 90˚(right column), respectively. The model abbreviations
are defined in Table 2. Solid and dashed lines are for horizontal grid spacings of < 2˚and < 1 ,̊ respectively. In the upper row the y-axis
is on a logarithmic scale and in the lower row the y-scale is linear. The yellow region marks the ,2 , 0.5 hPa region.
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arbitrarily) ,2 5 0.5 hPa as the threshold value after which a

model is termed unable to maintain a balanced flow. At that

point the amplitude of the spurious waves has grown

beyond approximately 0.5 hPa and grows exponentially.

Note that the same conclusions could be drawn by using

any threshold value larger than approximately 0.3 hPa (and

less than approximately 8 hPa).

4.1.1. Regular latitude-longitude grid models
The unrotated results of the regular latitude-longitude

models show that the numerical schemes maintain the

balances in the flow for at least 30 days (left column in

Fig. 11). However, when the computational grid is rotated

so that the flow is no longer aligned with the grid lines,

spurious waves start growing early during the simulation. In

case of CAM_FV and CAM_ISEN (Fig. 5) noisy patterns

appear in the surface pressure fields by day 1. The spurious

waves have larger amplitudes for a 5 45˚ than for a 5 90 .̊

For a 5 45˚the jets cross the poles of the computational grid

(Fig. 1). Numerical approximations near the poles such as

filtering, averaging, etc., trigger a wave train in each

hemisphere similar to the wave train triggered by the

boundaries in the limited-area model of Lauritzen et al.

(2008). In their case however, the growing wave was

triggered by the boundary relaxation scheme and elliptic

solver in the boundary zone.

For a 5 90˚ the poles of the computational grid are at the

equator and hence far away from the baroclinically most

unstable region located in the mid-latitudes. Hence less

accurate approximations in the polar regions of the com-

putational grid are not the main trigger for spurious waves

rather the fact that the grid lines predominantly are at an

angle with respect to the jets (see, e.g., Fig. 1). In fact the

angle between the jet maximum and the computation grid

latitudes is approximately 45˚ in four locations and less than

45˚ elsewhere. The numerical approximations tend to be

most accurate for flow aligned with grid lines (angle between

jet and computational latitudes < 0 )̊ and least accurate for

traverse flow (angle between jet and computational latitudes

< 45 )̊. This seems to trigger the wavenumber four pattern

apparent in the surface pressure fields of the two finite

volume models at day 9 (Fig. 7, right column).

Figure 12: Same as Fig. 11 but for models defined on icosahedral grids.
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The growth of the baroclinic wave is slightly stronger in

CAM_ISEN than in CAM_FV. When doubling the hori-

zontal resolution similar results are obtained (Figs. 7 and

9). Nevertheless, the growth of the spurious waves is delayed

by approximately two days (Fig. 11) at the higher resolu-

tion. This is expected since higher resolutions reduce the

numerical truncation errors.

For CAM_EUL the results at day 9 at low and high

resolutions (Figs. 7 and 9) appear to be invariant under

rotation. This might be expected due to the fact that a

triangular truncation of spherical harmonics is invariant

under rotation. However, the ,2-error in Fig. 11 reveal that

the rotated versions of CAM_EUL cannot maintain a

balanced initial state throughout the 30-day integration.

At about day 19 and 26 the rotated versions of CAM_EUL

lose the symmetry at the 2˚ and 1˚ resolutions, respectively.

It is speculated that the spurious wave is triggered because

the spherical harmonic functions do not represent the initial

conditions exactly.

4.1.2. Cubed-sphere models

Both cubed-sphere models HOMME and

GEOS_FV_CUBED show a distinct wavenumber 4 grid

imprint in the surface pressure field at day 9 at the coarse

2˚ resolution (Fig. 7, last two rows). The grid imprint

appears in each hemisphere for a 5 0˚ and a 5 90 .̊ The

corners of the cubed-sphere in each hemisphere are located

near the centers of the jets for a 5 0˚ and a 5 90 ,̊ thereby

positioning them in the baroclinically most unstable

regions. This is depicted in Fig. 5 that shows the cubed-

sphere panel-side outline and the position of the jets. The

Figure 13: Surface pressure (hPa) at day 9 for the baroclinic wave test case for models based on a regular latitude-longitude and
cubed-sphere grids for different rotation angles (left, middle and right columns are a 5 0 ,̊ 45˚and 90 ,̊ respectively). The grid spacing is
< 2 .̊ The plots zoom into the baroclinic wave.
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discretizations tend to have the largest errors near the

corners of the inscribed cube. Since these are near the

baroclinically most unstable regions, the wavenumber 4

spurious wave is induced into the circulation and grows

fast. The amplitude of the spurious wave is larger in

GEOS_FV_CUBED than in HOMME. This is most likely

due to the high-order numerical scheme and consistent

finite-element-based treatment of the corners in HOMME.

There is some indication that the Putman and Lin (2007)

advection scheme introduces additional errors, in particular

near the edges, due to its dimensional split characteristics as

explained in the next paragraph.

In the challenging moving vortices advection test case of

Nair and Jablonowski (2008) the convergence rates for the

Lauritzen et al. (2010) scheme is approximately one order of

magnitude higher than for the Putman and Lin (2007)

scheme. Both schemes use the same order of reconstruction

function so the only major difference between the two

schemes is that the Lauritzen et al. (2010) scheme is fully

two-dimensional, in particular it uses a rigorous fully two-

dimensional treatment of the corners of the cube, whereas

the Putman and Lin (2007) scheme uses a dimensional split

approach. This seems to indicate that the dimensional split

approach has a less accurate treatment of the corners of the

cubed-sphere as compared to other approaches.

GEOS_FV_CUBED can no longer maintain the steady-

state at approximately day 6 and 12 for the 2˚ and 1˚
resolution (Fig. 11). Hence, doubling the horizontal resolu-

tion delays the break-down of the steady-state by 6 days

which is a large improvement compared to most other

models. This could indicate that GEOS_FV_CUBED is

below its minimal recommendable resolution at a 2˚ grid

spacing. The model HOMME can maintain the steady-state

for 16 and 18 days at the coarse and fine resolutions.

In the a 5 45˚ case (Fig. 11, middle column) we observe

that the performance of the models degrade and the break-

down of the steady-states occurs approximately 2 days

earlier in comparison to a 5 0 ,̊ 90˚ (apart from

GEOS_FV_CUBED at 2˚ resolution). The wave signature

in the surface pressure field has an overlaid wavenumber 2

and wavenumber 4 characteristic rather than a pure wave-

number 4 imprint as seen before (Figs. 7 and 9). The

following reasons are suggested. At the a 5 45˚ rotation

angle the flanks of the jets traverse two vertices rather than

four (Fig. 5). This triggers the wavenumber 2 error sig-

nature that overlays the wavenumber 4 background error. In

addition, the advection operators tend to be more accurate

when the flow is quasi-parallel to coordinate lines which is

predominantly the case for a 5 0˚ and a 5 90 .̊ At the a 5

45˚ rotation angle the flow mostly traverse the coordinate

lines at an angle, thereby triggering enhanced errors as also

discussed in Lauritzen (2007).

4.1.3. Icosahedral models

Similar to the corners of the cubed-sphere grid and the

pole points of the regular latitude-longitude mesh, the

hexagonal-icosahdral grids have 12 pentagons that usually

Figure 14: Same as Fig. 13 but for the icosahedral grid models.
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require special attention in the model discretizations. The

triangular-hexagonal grids show the largest deviations

from their almost uniform grid spacings near the dual-

grid pentagons. This triggers a distinct and expected

wavenumber 5 grid imprint in the icosahedral-grid based

models in the non-rotated case (Fig. 8). The spurious

wave trains in the Northern and Southern atmosphere

are offset by 36˚ degrees due to the relative location of the

pentagons in the two hemispheres (Fig. 8 and 10). Note

that the pentagons are located near the maximum intensity

of the jets (Fig. 6) where the flow is baroclinically most

unstable. The model ICON already shows the wavenumber

5 pattern at day 1.

In the rotated cases it is less clear how the numerical

discretizations near the pentagons adversely affect the solu-

tion. For a 5 45˚and a 5 90˚the locations of the pentagons

in each hemisphere of the computational domain are

not symmetric since (regular) hexagons have symmetry

properties for 60˚ rather than 45˚ and 90 .̊ This triggers

the asymmetric response in the surface pressure field in all

icosahedral simulations at the rotation angles a 5 45˚ and

90˚ (Fig. 8 and 10, middle and right column). At the 1˚
resolution (Fig. 10) the amplitudes of the growing spurious

waves in ICON are largest at the a 5 45˚ rotation angle,

whereas they are largest at the 90˚ angle in the models

CSU_HYB and CSU_SGM. All three icosahedral model

variants improve their representation of the steady-state at

the higher resolution. The ICON model can maintain the

steady-state solution the shortest. It breaks down after

approximately 8 and 10 days at the 2˚ and 1˚ resolutions,

respectively. The steady-states in the high-resolution ver-

sions of CSU_SGM and CSU_HYB break down after

approximately 12 days whereas the lower resolution version

differs by a day (Fig. 12). The CSU_HYB model variant

with the hybrid isentropic vertical coordinate shows that the

spurious perturbations introduced by the numerics grow

Figure 15: Same as Fig. 13 but for a grid spacing of < 1 .̊
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slightly faster than the perturbations in the traditional

sigma-pressure model version. A similar observation was

made for the CAM_FV and CAM_ISEN model pair.

4.2. Rotated baroclinic wave test case

As for the steady-state test case we consider the surface

pressure at day 9 with three rotation angles (a 5 0 ,̊ 45 ,̊

90 )̊ and the two 2˚and 1˚resolutions. The figures for surface

pressure are grouped as before for the steady-state test case. In

particular, the surface pressure field at the low resolution for

the regular latitude-longitude and cubed-sphere grid based

models are shown in Fig. 13. The icosahedral-grid based

models are depicted in Fig. 14. The plots zoom in on the

main wave train in the northern hemisphere. The corres-

ponding plots for the high 1˚resolution runs are presented in

Figs. 15 and 16. Since the relative vorticity fields for this test

case contain more fine-scale structures than the surface

pressure we also show the 850 hPa relative vorticity (see

Figs. 17, 18, 19 and 20). Finally, the l2 surface pressure error

for non-icosahedral and icosahedral grid based models are

presented in Figs. 21 and 22 at approximately 2 ,̊ respect-

ively, and similarly for the 1˚ solutions on Figs. 23 and 24.

To compute the l2-errors a reference solution is needed as

no analytical solution is known for the baroclinic wave test

case. Here we use all high-resolution reference solutions

available (at 0.25˚ resolution) to compute l2-errors. These

are GEOS_FV_CUBED, CAM_EUL (T340 truncation),

CAM_FV, HOMME, CSU_SGM as well as the reference

solutions used in JW06 that are not part of our model suite:

CAM_SLD and GME which are a semi-Lagrangian version

of CAM_EUL and a finite-difference icosahedral (hexa-

gonal) model developed at the DWD, respectively (for more

details see JW06). JW06 used four models (CAM_EUL,

CAM_SLD, CAM_FV, GME) to define the uncertainty of

the reference solutions based on the argument that by

increasing the resolution beyond 0.25˚ one does not get a

better estimate of the ‘true’ solution. This is illustrated on

JW06’s Figure 10 in that increasing the resolution from

approximately 0.5˚ to 0.25˚ the differences in l2-errors

between the models does not decrease. The maximum

difference in l2-error between any two models and any of

the 0.5˚ and 0.25˚ resolutions defines the uncertainty of the

reference solutions. Our model ensemble is larger than the

four models used in JW06 and one could argue that the

spread in the model solutions could increase by using more

models. However, by computing the l2-errors between all

0.25˚reference solution models for which we have data, all l2-

errors are within the uncertainty of the JW06 ensemble (see

Fig. 25) and we therefore find it adequate to use the JW06

uncertainty estimate (yellow regions on Fig. 21, 22, 23, 24).

We use the following terminology regarding convergence

of models to within the uncertainty of the reference solu-

tions: If all l2-errors based on all available reference solutions

are outside the yellow region, we term the model non-

converged at that particular resolution. And similarly, if all

l2-errors based on all available reference solutions are in the

yellow region, we term the model converged at that particu-

lar resolution. If none of the above, some reference solutions

produce l2 errors inside the yellow area and some outside,

the model is termed converging (tend to convergence) in the

sense that the model has started to converge but higher

Figure 16: Same as Fig. 15 but for models based on an icosahedral type grid.
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resolution is needed to term the model converged with

higher fidelity. As noted by JW06 the initial phase of the

wave growth (0–6 days) is easily dominated by interpolation

errors and the predictability of the test is approximately

12 days. So the terminology regarding convergence applies

to the time span from approximately 6 to 12 days.

4.2.1. Regular latitude-longitude models

The CAM_EUL model exhibits relatively little variation of

the surface pressure evolution with rotation angle at both

low and high resolution. Nevertheless, Fig. 13 shows a slight

indication that the development of the baroclinic wave in

CAM_EUL is less strong in the rotated versions of the test at

approximately 2˚ resolution. This becomes even clearer in

the relative vorticity field in Fig. 17. However, at the higher

resolution (Figs. 15 and 19) the observed anisotropy in the

solution is drastically reduced and CAM_EUL has con-

verged at the high resolution.

Overall, CAM_FV and CAM_ISEN show the same beha-

vior but with a generally less strong baroclinic development

in terms of the highs and lows in the wave train. This

observation is confirmed in the error measures in Fig. 23

where the approximately 1˚ runs with CAM_FV and

CAM_ISEN are converging but have not converged. At the

1˚ resolution the differences between the unrotated and

rotated model experiments is larger for the CAM_FV and

CAM_ISEN models than for the spectral transform model.

The observation that CAM_FV and CAM_ISEN need higher

resolution for convergence in this test case has also been

demonstrated in more complex simulations with physical

parameterizations. For example, Williamson (2008) showed

Figure 17: Relative vorticity (day 9) at 850hPa in units of 1025 s21 for models based on a regular latitude-longitude and cubed-sphere
grids for different rotation angles (left, middle and right columns are a 5 0 ,̊ 45˚and 90 ,̊ respectively). The models use a grid spacing of
< 2 .̊
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in so-called aqua-planet experiments (Neale and Hoskins

2000) that CAM_FV needs a higher horizontal resolution to

match the CAM_EUL results in terms of a wide range of

diagnostics.

4.2.2. Cubed-sphere models

The cubed-sphere models perform very similarly and show

little dependence on rotation angle. At the approximately 2˚
resolution the deep low in surface pressure at day 9 is

slightly deeper for the rotated cubed-sphere runs than for

the corresponding CAM_EUL run (Fig. 13). At high res-

olution CAM_EUL and the cubed-sphere models show

almost identical ps fields (Fig. 15). This indicates that the

cubed-sphere models have converged as is confirmed in the

l2 error measures in Fig. 23. There is a slight indication in

the l2 error that for a 5 45˚ the solutions are slightly less

accurate than for the other rotation angles. In fact

GEOS_FV_CUBED at a 5 45˚ is on the verge to be termed

converging rather than converged. Also, the relative vorticity

fields show some slight variation with rotation angle at both

low and high resolution for the cubed-sphere models

(Fig. 17 and 19). This is most likely due to the flow being

predominantly traverse to grid cells at a 5 45 .̊ In contrast

the flow is predominantly parallel to the grid lines for a 5 0˚
and a 5 90 .̊

4.2.3. Icosahedral models

Among the icosahedral models the ICON model shows large

variation in surface pressure and relative vorticity fields

under the rotation of the computational grid. This is

especially apparent at the low 2˚ resolution (Fig. 14). At

the higher 1˚ resolution the dependence of the solution on

the rotation angle strongly decreases (Fig. 16). It suggests

that the minimal recommendable resolution for the ICON

model is higher than approximately 2 .̊ However, even at the

1˚ resolution the relative vorticity field for ICON still shows

relatively large variation with rotation angle (Fig. 20).

The CSU_SGM and CSU_HYB models show fewer varia-

tions with rotation angle but differences are visible in the

surface pressure field for the low resolution runs (Fig. 14).

The deep low of the wave train is strongest for a 5 90˚
contrary to the regular latitude-longitude models that had the

strongest baroclinic developments for the non-rotated version

of the test case. This dependence on rotation angle practically

disappears at higher resolution as can be seen in both the ps

field (Fig. 16) and the 850 hPa relative vorticity fields

(Fig. 20). The CSU_HYB model based on isentropic vertical

coordinates has a stronger baroclinic development than its

conventional vertical coordinate counterpart (CSU_SGM).

The l2 error shows that CSU_HYB is on the verge of being

termed convergent at approximately 1˚resolution whereas the

CSU_SGM is not. In fact CSU_SGM is non-convergent at the

high resolution. Note that even in the steady-state test case the

spurious perturbations grew faster in the isentropic vertical

coordinate version of the model in comparison to the hybrid

sigma-pressure model variant (Fig. 12). It is unknown

whether this characteristic is due to a slightly inaccurate

initialization (e.g. introduced by interpolations) or a general

property of the isentropic vertical coordinate models.

Figure 18: Same as Fig. 17 but for the icosahdral grid models.
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5. Conclusions

In this paper a rotated version of the Jablonowski steady-

state and baroclinic wave test case for dry dynamical cores of

GCMs has been introduced. The underlying idea is to rotate

the computational grid with respect to the physical flow to

eliminate any symmetries between the grid and the flow

field. Models based on regular latitude-longitude grids are

somewhat favored by the unrotated version of the

Jablonowski test case since the flow is predominantly zonal

and thereby aligned with the grid lines. This makes it less

challenging for regular latitude-longitude grid based models

to maintain the balance in the steady-state test. Other grid

configurations such as cubed-sphere and icosahedral meshes

do not exhibit any zonal symmetries. Therefore, they are

more challenged to maintain the zonally symmetric balance.

However, these non-traditional grids provide a more uni-

form grid coverage on the sphere. Their variation of the grid

cell area is small in comparison to regular latitude-longitude

grids with converging meridians. It is therefore expected

that they only exhibit weak dependencies on the rotation

angle when displacing the computational grid poles from

the geographical poles.

The rotated steady-state and baroclinic wave test case

were tested by a wide variety of global dynamical cores that

participated in a dynamical core intercomparison. The latter

was part of the NCAR ASP 2008 summer colloquium that

evaluated the characteristics of 12 dynamical cores at large

scales. Here we present results of six models with eight

model variants. The models represent a wide spectrum of

numerical schemes and computational grids like regular

latitude-longitude grids, cubed-sphere meshes and ico-

sahedral grids. Among them are the four dynamical cores

that are part of the NCAR Community Atmosphere Model

CAM: CAM_EUL, CAM_FV, CAM_ISEN and HOMME. In

addition we present results from the CSU models

Figure 19: Same as Fig. 17 but for a grid spacing of < 1 .̊
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CSU_HYB, CSU_SGM, the newly developed MPI model

ICON as well as the GFDL/NASA dynamical core

GEOS_FV_CUBED on the cubed-sphere grid. We focus

on the simulations with the two horizontal resolutions 1˚
and 2˚ (at the model equator) and three rotation angles 0 ,̊

45 ,̊ 90 .̊

First, the ability to maintain a balanced steady-state flow

field was examined as a function of rotation angle and

resolution. Since the flow is baroclinically unstable any

perturbation will eventually grow and result in spurious

waves. After reaching a certain threshold level the spurious

waves grow exponentially. We term a particular model

unable to maintain a balanced flow when the l2 surface

pressure errors increase beyond a certain threshold level,

here set to ,2 5 0.5 hPa. The number of days a model retains

a balanced flow field as a function of resolution and rotation

angle was examined. For the models defined on different

grids we found different spurious forcings, also referred to

as grid imprinting. The grid imprinting depends on the

rotation angle, the relative latitudinal location of the jets,

which are also the baroclinically most unstable regions, and

the strong/weak singularities of the underlying spherical

grid. As expected, unrotated versions of the steady-state test

case developed a wavenumber 4 pattern for cubed-sphere

models and a wavenumber 5 pattern for models based on an

icosahedral grid. When rotating the grid at the 45˚ angle the

cubed-sphere models developed an overlaid wavenumber 2

and 4 pattern. The wavenumber 2 occurs since the flanks of

the jet now traverse two corners of the cubed-sphere grid

rather than four in this configuration. The icosahedral

models have symmetry properties for a 60˚ rotation angle

rather than 45 .̊ Therefore, the icosahedral models show an

asymmetric response under the 45˚ and 90˚ rotation.

Assuming that the growth rates for the spurious waves are

equal in all respective models, the strength of the grid

imprinting is proportional to the breakdown of the

steady-state. The times of the breakdown vary significantly

among the models and rotation angles. At the 1˚ and 2˚
resolutions they varied between 6–26 days.

For the rotated versions of the baroclinic wave test case the

surface pressure and 850 hPa relative vorticity at day 9 were

examined. In addition, the l2 surface pressure errors were

computed for all models using 7 high resolution reference

solutions. The l2 errors indicate the resolution at which the

models converge to within the uncertainty of the high-

resolution reference solutions (as defined in JW06). We term

a model converged when l2 based on all reference solutions are

within the uncertainty of the reference solutions and non-

converged when all l2 errors are outside. If some of the l2-

errors are outside and some inside the uncertainty region we

term the model converging in the sense that the model has

started to converge but higher resolution is needed to term

the model converged with higher fidelity.

All models were non-converged at the lower 2˚ resolution

and they showed large variation with rotation angle. At the

high 1˚ resolution most models show a decrease in (or

almost no) dependence on the rotation angle in terms of

ps, the relative vorticity and l2 errors. The models

CAM_EUL, HOMME and GEOS_FV_CUBED were con-

verged at 1˚grid spacing and CSU_HYB was on the verge of

Figure 20: Same as Fig. 19 but for models based on an icosahedral type grid. The unrotated results of the model ICON have been
filtered by a standard nine point filter.
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Figure 21: Time series of the root mean square ‘2 ps{pref
s

� 	
errors (in hPa) using rotation angles (left column) 0 ,̊ 45˚(middle column)

and 90˚(right column) for CAM_EUL (1st row), CAM_FV (2nd row), CAM_ISEN (3rd row), HOMME (4th row) and GEOS_FV_CUBED (5th
row), respectively, at approximately 2˚horizontal resolution. The errors on each plot have been computed using reference solutions pref

s

from CAM_SLD, GME (see JW06 for description), GEOS_FV_CUBED, CAM_EUL, CAM_FV and CSU_SGM at approximately 0.25˚
resolution, respectively. For the computation of ,2 the reference solutions have been bi-linearly interpolated to the regular latitude-
longitude grid on which the model data are available. The yellow region marks the uncertainty of the reference solutions as defined by
JW06.
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being termed converged. CAM_FV and CAM_ISEN were

converging at the high resolution but slightly higher resolu-

tion is needed to be termed converged. CSU_HYB and

ICON were non-convergent and therefore need higher

resolution for convergence.

We argue that this test case is a useful tool for debugging

model code and for model development in general when

evaluating the anisotropy in the solutions with various grid

systems. For example, the cubed-sphere model runs should

be identical for the non-rotated and 90˚ rotation angles

because of the symmetry properties of the grid. In addition,

the impact of filtering and numerical discretizations near the

(weak) singularities can be readily assessed with this test

case. It also provides a simple framework to estimate the

Figure 22: Same as Fig. 21 but for CSU_HYB (1st row), CSU_SGM (2nd row) and ICON (3rd row), respectively.
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Figure 23: Same as Fig. 21 but for approximately 1˚ horizontal resolution.
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minimal recommendable resolutions to simulate large

scale baroclinic instability. It is largely unknown how the

spurious grid forcing (grid imprinting) is impacting full

model simulations with physical parameterizations. For

example, the paleo-climate community models at low res-

olution (relatively speaking) mainly due to limitations in

computing power. The grid imprinting at low resolutions

could potentially be a problem in long runs if its magnitude

is comparable to the physical forcings in the system. More

research in this area is needed. The test cases presented

herein give an indication of the magnitude of the grid

forcing in a short term simulation.

In this study, we did not attempt to compute an effective

resolution of each model, e.g. the resolution needed to hold

Figure 24: Same as Fig. 22 but for approximately 1˚ horizontal resolution.
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a steady state for some fixed number of days. Nor did we

compare the relative computational cost between the differ-

ent models, e.g. we did not compute the ratio between

accuracy versus computational cost. Since some models

were highly optimized for the computer used during the

NCAR ASP colloquium and others were not, it was found

unfair to try and compare computational cost. Also, in the

light of massive parallel computing the performance of a

model at low processor count as used during the colloquium

may be very different in comparison to massive processor

usage. Our main goal was not to rank models but rather to

demonstrate the usefulness of the test in model devel-

opment. Obviously, good performance in an idealized test

case does not guarantee superior performance when coupled

to the full physics package or run at fine scales. However, if a

model show excessive spurious grid forcing and is unable to

maintain large scale balances in the flow, it would be

questionable if such a model would be adequate for long

term simulations, especially at coarse climate resolutions.

Acknowledgments: The data presented in this paper was

produced during the NCAR Advanced Study Program

(ASP) summer colloquium on Numerical Techniques for

Global Atmospheric Models held at NCAR in Boulder, June

1–13, 2008. Funding was provided by NCAR ASP, NASA,

DOE SciDAC and University of Michigan. We thank all the

modeling mentors for setting up their models and guiding

the students through the process of running their models

during the colloquium. The modeling mentors were:

William Putman, William Sawyer, Maxwell Kelley,

Rahman Syed, Almut Gassmann, Jochen Förstner, Detlev

Majewski, Robert Walko, Chih-Chieh (Jack) Chen, Mark

Taylor, Ramachandran D. Nair, Peter H. Lauritzen, Ross

Heikes, Jean-Michel Campin. Thanks to Jerry Olson and

David Williamson for assisting setting up the CAM_EUL

model for the test cases. We thank Dennis Shea for assisting

with NCL graphics before, after and during the colloquium.

Special thanks goes to the NCAR CISL division for the

generous support of the colloquium, especially Ginger

Caldwell, Mike Page, Sylvia Murphy, Cecelia DeLuca, Luca

Cinquini, Julien Chastang, Don Middleton, Michelle Smart

and Richard Loft. Thanks for Ross Heikes and Rashmi

Mittal for providing data to plot the icosahedral grid lines.

Thanks to Sylvia Murphy for encouraging the metadata

classification of the dynamical core scientific properties.

Thanks to Almut Gassman, Ross Heikes, David L.

Williamson and two anonymous reviewers for their helpful

comments on the manuscript.

Appendix: Definition of metadata

The definitions of the metadata entries used in Tables 3, 4

and 5 are given below:

Numerical method: The basic numerical method used to

discretize the equations of motion (excluding tracer trans-

port). Examples are finite-difference, finite-volume, spectral

element or spectral transform methods. In addition, the

Eulerian or semi-Lagrangian formulation of the equations is

denoted. Note that a combinations of the numerical meth-

ods are used in some models.

Projection: Any projection used for the discretization of

the equations of motion. For example, cubed-sphere grids

can use gnomonic (equiangular) or gnomonic (equal-dis-

tance along cube edges). Also, planar projections used in

some icosahedral grid models etc.

Spatial approximation: Spatial approximations used for

the discretization of the equations of motion. The formal

order of accuracy is denoted. Examples are second-order

finite-differences, finite-volume with polynomial subgrid

distributions (e.g. the piecewise parabolic method PPM).

Note that some models use different classes of spatial

approximations for different variables.

Advection Scheme: Scheme used to approximate the

advective operator in the equations of motion as well as

for tracers. Examples are the Lin and Rood (1996) scheme,

spectral transform, MPDATA (Smolarkiewicz and Szmelter

2005), etc. Note that some models use a different scheme for

the advection operator in the equations of motion than for

tracers.

Conservation type: Physical characteristics of the equa-

tions of motion that are conserved by the numerical dis-

cretization. For example, mass of dry air, total energy.

Figure 25: Time series of the root mean square ,2 errors (in hPa)
between ps for all high resolution reference solutions (< 1/4 )̊
used in this paper.
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Conservation fixers: Any physical quantities that are form-

ally conserved by the continuous equations of motion and

restored with an a-posteriori fixer in the dynamical core

(due to non-conservation in the numerical schemes). For

example, dry air mass, total energy.

Time Stepping: Time stepping used in the schemes used to

discretize the equations of motion. For example, explicit,

implicit, semi-implicit.

Dt for approximately 1˚ at the equator: Time step size Dt

used for running the model at approximately 1˚at the model

equator.

Internal resolution for Dt: Horizontal resolution used in the

model corresponding to the Dt given above. The resolution is

specified in terms of internal representation of resolution

used in the model. For example, 90690 cells per cubed-

sphere face (approximately 110 km grid spacing), T85 spectral

resolution (approximately 156 km), #lon5360 #lat5181 for

the regular latitude-longitude grid (approximately 110 km).

Temporal approximation: The temporal approximation

used in the time-stepping method for advancing the equa-

tions of motion forward in time. It is specified in terms of

number of time-levels, name of scheme (if applicable, with

reference) and order of accuracy. For example, three-time-

level Leapfrog (formally second-order, order reduced if

filtered), two-time-level (second-order accurate), four-

time-level Adams-Bashforth (third order accurate).

Temporal filter: Any filters applied to the time-stepping

method to remove spurious waves. For example, Robert-

Asselin (Asselin 1972).

Explicit spatial diffusion: Any explicit diffusion terms

added to the equations of motion. For example, 4th order

linear horizontal diffusion, 2nd order divergence damping.

Implicit diffusion: Implicit diffusion is inherent diffusion in

the numerical schemes not enforced through the addition of

diffusion operators in the equations of motion. For example,

monotonicity constraints in the sub-gridcell reconstruction

function, FCT (flux corrected transport), off-centering.

Explicit spatial filter: Filtering that is applied in space that

is not implemented in terms of explicit diffusion operators

and implicit diffusion. For example, FFT filtering, digital

filtering, Shapiro filter.

Prognostic variables: Prognostic variables used in the

discretizations of the equations of motion. For example,

(u,v,T,ps), (vorticity, divergence, potential temperature, sur-

face pressure).

Horizontal staggering: Staggering used in the horizontal.

For example, Arakawa A, B, C or D (Arakawa and Lamb

1977).

Vertical coordinate: Vertical coordinate used in the dis-

cretizations of the equations of motion. For example, hybrid

sigma-pressure, sigma, hybrid sigma-theta (isentropic).

Some models use a combination of Eulerian and

Lagrangian vertical coordinates, that is, an initial Eulerian

vertical coordinate evolves as a Lagrangian surface for a

number of time-steps and is then periodically remapped

back to an Eulerian reference vertical coordinate (Lin 2004,

Nair et al. 2009).

Vertical staggering: Staggering used in the vertical. For

example, Lorenz (Lorenz 1960) staggering.
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