Advanced Synthesis \& Catalysis

Supporting Information

© Copyright Wiley-VCH Verlag GmbH \& Co. KGaA, 69451 Weinheim, 2012

Supporting Information for:

Combining Transition Metal Catalysis with Radical Chemistry: Dramatic Acceleration of Palladium-Catalyzed C-H Arylation with Diaryliodonium Salts

Sharon R. Neufeldt and Melanie S. Sanford*

University of Michigan, Department of Chemistry
930 N. University Ave., Ann Arbor, MI 48109

Table of Contents

I. General Procedures and Materials and Methods p. S3
II. Synthesis and Characterization of Products in Table 2 p. S4
III. Synthesis and Characterization of Products in Table 3 p. S8
IV. Experimental Details for Table 4 p. S12
V. Experimental Details for Equation 1 p. S13
VI. Experimental Details for Table 5 p. S14
VII. References p. S15
VIII. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra p. S16

I. General Procedures

NMR spectra were obtained on a Varian vnmrs $700\left(699.76 \mathrm{MHz}\right.$ for ${ }^{1} \mathrm{H} ; 175.95 \mathrm{MHz}$ for ${ }^{13} \mathrm{C} ; 658.43$ for $\left.{ }^{19} \mathrm{~F}\right)$, Varian vnmrs $500\left(500.10 \mathrm{MHz}\right.$ for ${ }^{1} \mathrm{H}$; 125.75 MHz for ${ }^{13} \mathrm{C}, 470.56 \mathrm{MHz}$ for ${ }^{19} \mathrm{~F}$), Varian Inova 500 (499.90 MHz for ${ }^{1} \mathrm{H}$; 125.70 MHz for ${ }^{13} \mathrm{C}$), or a Varian MR400 (400.52 MHz for ${ }^{1} \mathrm{H} ; 100.71$ for ${ }^{13} \mathrm{C}$, 376.87 MHz for ${ }^{19} \mathrm{~F}$) spectrometer. ${ }^{1} \mathrm{H}$ NMR chemical shifts are reported in parts per million (ppm) relative to TMS, with the residual solvent peak used as an internal reference. Multiplicities are reported as follows: singlet (s), doublet (d), doublet of doublets (dd), doublet of doublets of doublets (ddd), doublet of triplets (dt), triplet (t), triplet of doublets (td), triplet of triplets (tt), quartet (q), quintet (quin), multiplet (m), and broad resonance (br). IR spectra were obtained on a Perkin-Elmer Spectrum BX FT-IR spectrometer. Melting points were determined with a Mel-Temp 3.0, a Laboratory Devices Inc, USA instrument, and are uncorrected. HRMS data were obtained on a Micromass AutoSpec Ultima Magnetic Sector mass spectrometer. Gas chromatography was carried out on a Shimadzu 17A using a Restek Rtx ${ }^{\circledR}$ 5 (Crossbond 5\% diphenyl - 95\% dimethyl polysiloxane; $15 \mathrm{~m}, 0.25 \mathrm{~mm}$ ID, $0.25 \mu \mathrm{~m} \mathrm{df}$) column. GC calibrated yields are reported relative to hexadecane as an internal standard.

Materials and Methods: Substrates $\mathbf{2}^{1}$ and $\mathbf{8}^{2}$ were prepared according to literature procedures. Substrate 9 was prepared by a palladium-catalyzed Suzuki coupling between 2-methoxyboronic acid and 2bromopyridine. Oxime ethers 10 and 11 were prepared by the reaction of the corresponding ketones with $\mathrm{MeONH}_{2} \cdot \mathrm{HCl}$ in pyridine. ${ }^{3}$ The remaining substrates were obtained from Aldrich (1, 5, and 7), Alfa Aesar (3 and 4), or Acros (6) and were used as received. $\left[\mathrm{Ph}_{2} \mathrm{I}\right] \mathrm{BF}_{4}$ and [Mes-I- Ph$] \mathrm{BF}_{4}$ were prepared by the reaction of $\mathrm{PhI}(\mathrm{OAc})_{2}$ or $\operatorname{MesI}(\mathrm{OAc})_{2}$ with $\mathrm{PhB}(\mathrm{OH})_{2}$ in the presence of $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$. ${ }^{4}\left[\mathrm{Ph}_{2} \mathrm{I}\right] \mathrm{OTf}$ and [$\left.\mathrm{Mes}_{2} \mathrm{I}\right] \mathrm{OTf}$ were prepared by the reaction of iodobenzene or iodomesitylene with $m \mathrm{CPBA}$ and benzene or mesitylene in the presence of $\mathrm{TfOH} .{ }^{5}$ Unsymmetrical $[\mathrm{Ar}-\mathrm{I}-\mathrm{Ph}] \mathrm{BF}_{4}$ salts were prepared by the reaction of an aryl iodide with m - CPBA and $\mathrm{PhB}(\mathrm{OH})_{2}$ in the presence of $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$. ${ }^{6}$ Symmetrical $\left[\mathrm{Ar}_{2} \mathrm{I}\right] \mathrm{BF}_{4}$ salts were prepared by the reaction of an aryl iodide with m-CPBA and the corresponding arylboronic acid in the presence of $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O} .{ }^{6} \mathrm{Pd}(\mathrm{OAc})_{2}$, obtained from Pressure Chemical, and $\mathrm{Pd}\left(\mathrm{NO}_{3}\right)_{2}$ and $\mathrm{Ru}(\mathrm{bpy}){ }_{3} \mathrm{Cl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$, obtained from Strem, were used as received. $\operatorname{Ir}(\mathrm{ppy})_{3}{ }^{7}$ and $\operatorname{Ir}(\mathrm{ppy})_{2}(\mathrm{dtbbpy}) \mathrm{PF}_{6}{ }^{8}$ were prepared according to literature procedures. Solvents were obtained from Fisher Chemical and used without further purification. Flash chromatography was performed on EM Science silica gel 60 (0.0400.063 mm particle size, $230-400 \mathrm{mesh}$) and thin layer chromatography was performed on Merck TLC plates pre-coated with silica gel $60 \mathrm{~F}_{254}$.

II. Synthesis and Characterization of Products in Table 2

General Procedure: Substrate (1 equiv), $\left[\mathrm{Ph}_{2} \mathrm{I}\right] \mathrm{BF}_{4}$ or $\left[\mathrm{Ph}_{2} \mathrm{I}\right] \mathrm{OTf}$ (2 equiv), $\left.\operatorname{Ir}(\mathrm{ppy})\right)_{2}(\mathrm{dtbbpy}) \mathrm{PF}_{6}(0.05$ equiv), and $\mathrm{Pd}\left(\mathrm{NO}_{3}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (0.10 equiv) were combined in MeOH in a 4 mL scintillation vial. For substrates containing N -acetyl moieties (noted below), MgO (1 equiv) was also included and appeared to help prevent substrate and/or product degradation. The reaction mixture was cooled in an ice bath (to prevent evaporation) and sparged with N_{2} using a submerged needle for 10 min , and the vial was then immediately sealed with a Teflon-lined cap. The vial was placed on a stir plate with two 26 W compact fluorescent light bulbs (one on either side of the vial about $5-8 \mathrm{~cm}$ away), and the reaction mixture was allowed to stir at room temperature for 15 h . The reaction mixture was diluted with EtOAc (50 mL) and washed with 10% aqueous $\mathrm{Na}_{2} \mathrm{SO}_{3}(2 \times 25 \mathrm{~mL})$ and brine $(1 \times 25 \mathrm{~mL})$. The combined aqueous layers were extracted with EtOAc ($3 \times 10 \mathrm{~mL}$), and the organic layers were then combined, dried over MgSO_{4}, filtered, concentrated, and purified by column chromatography on silica gel.

Pyrrolidinone 1a. The general procedure was followed utilizing substrate $\mathbf{1}$ (80.6 $\mathrm{mg}, \quad 0.50 \mathrm{mmol}, \quad 1.0$ equiv), $\left[\mathrm{Ph}_{2} \mathrm{I}\right] \mathrm{OTf}(430 \mathrm{mg}, \quad 1.00 \mathrm{mmol}, 2$ equiv $)$, $\operatorname{Ir}(\text { ppy })_{2}($ dtbbpy $) \mathrm{PF}_{6}\left(22.8 \mathrm{mg}, 0.025 \mathrm{mmol}, 0.05\right.$ equiv), $\mathrm{Pd}\left(\mathrm{NO}_{3}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}(13.3 \mathrm{mg}$, $0.05 \mathrm{mmol}, 0.10$ equiv), and $\mathrm{MeOH}(2.5 \mathrm{~mL})$. Product 1 a was obtained as a pale yellow oil ($96.3 \mathrm{mg}, 81 \%$ yield, $\mathrm{R}_{\mathrm{f}}=0.17$ in 20% hexanes $/ 80 \% \mathrm{Et}_{2} \mathrm{O}$). ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data matched those reported in the literature. ${ }^{9}$

(2a)

Pyrrolidinone 2a. The general procedure was followed utilizing substrate 2 (47.8 $\mathrm{mg}, \quad 0.25 \mathrm{mmol}, 1.0$ equiv), $\left[\mathrm{Ph}_{2} \mathrm{I}\right] \mathrm{OTf}(215 \mathrm{mg}, \quad 0.50 \mathrm{mmol}, 2$ equiv), $\operatorname{Ir}(\text { ppy })_{2}($ dtbbpy $) \mathrm{PF}_{6}(11.4 \mathrm{mg}, 0.0125 \mathrm{mmol}, 0.05$ equiv $), ~ \mathrm{Pd}\left(\mathrm{NO}_{3}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}(6.7 \mathrm{mg}$, $0.025 \mathrm{mmol}, 0.10$ equiv), and $\mathrm{MeOH}(1.8 \mathrm{~mL})$. Product 2 a was obtained as a pale yellow solid [62.5 mg, 94\% yield, $\mathrm{R}_{\mathrm{f}}=0.10$ in 20% hexanes $/ 80 \% \mathrm{Et}_{2} \mathrm{O}, \mathrm{mp}=72.9$ $74.7^{\circ} \mathrm{C}$ (lit. ${ }^{11} 61-64{ }^{\circ} \mathrm{C}$)]. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data matched those reported in the literature. ${ }^{9}$

Acetanilide 3a. The general procedure was followed utilizing substrate $\mathbf{3}(37.3 \mathrm{mg}$, $0.25 \mathrm{mmol}, 1.0$ equiv), $\left[\mathrm{Ph}_{2} \mathrm{I}\right] \mathrm{BF}_{4}\left(184 \mathrm{mg}, 0.50 \mathrm{mmol}, 2\right.$ equiv), $\operatorname{Ir}(\mathrm{ppy})_{2}(\mathrm{dtbbpy}) \mathrm{PF}_{6}$ $\left(11.4 \mathrm{mg}, 0.0125 \mathrm{mmol}, 0.05\right.$ equiv), $\mathrm{Pd}\left(\mathrm{NO}_{3}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}(6.7 \mathrm{mg}, 0.025 \mathrm{mmol}, 0.10$ equiv), and $\mathrm{MeOH}(1.25 \mathrm{~mL})$, with the addition of $\mathrm{MgO}(10.1 \mathrm{mg}, 0.25 \mathrm{mmol}, 1.0$ equiv). Product 3a was obtained as a pale yellow solid [$40.6 \mathrm{mg}, 72 \%$ yield, $\mathrm{R}_{\mathrm{f}}=0.17$ in 30% hexanes $/ 70 \% \mathrm{Et}_{2} \mathrm{O}, \mathrm{mp}=134.5-136.0^{\circ} \mathrm{C}$ (lit. $\left.\left.139-140{ }^{\circ} \mathrm{C}\right)\right] .{ }^{10} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$): δ
7.64 (br s, 1H); 7.42-7.39 (multiple peaks, 2 H); 7.35 ($\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}$); 7.32-7.31 (multiple peaks, 2H); $7.27(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 2 \mathrm{H}) ; 7.17(\mathrm{t}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}) ; 2.23(\mathrm{~s}, 3 \mathrm{H}) ; 1.85(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(176 \mathrm{MHz}$, $\left.\mathrm{CD}_{3} \mathrm{CN}\right): \delta 170.04 ; 141.30 ; 140.97 ; 138.16 ; 134.58 ; 130.52 ; 129.67 ; 129.03 ; 128.72 ; 128.14 ; 128.05$; 22.76; 18.54. IR (thin film, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) 3246, $3026,2922,1652,1522 \mathrm{~cm}^{-1}$. HRMS $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{NO}: 226.1226$; Found: 226.1234 .

(4a)
in 20% hexanes $/ 80 \% \mathrm{Et}_{2} \mathrm{O}, \mathrm{mp}=116.3-117.8^{\circ} \mathrm{C}\left(\right.$ lit. $\left.\left.117-119^{\circ} \mathrm{C}\right)\right] .{ }^{11} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data matched those reported in the literature. ${ }^{11}$

(5a)

Acetylindoline 4a. The general procedure was followed utilizing substrate $\mathbf{4}(80.5 \mathrm{mg}$, $0.50 \mathrm{mmol}, 1.0$ equiv), $\left[\mathrm{Ph}_{2} \mathrm{I}\right] \mathrm{BF}_{4}\left(368 \mathrm{mg}, 1.00 \mathrm{mmol}, 2\right.$ equiv), $\operatorname{Ir}(\mathrm{ppy})_{2}(\mathrm{dtbbpy}) \mathrm{PF}_{6}$ $\left(22.8 \mathrm{mg}, 0.025 \mathrm{mmol}, 0.05\right.$ equiv), $\mathrm{Pd}\left(\mathrm{NO}_{3}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}(26.6 \mathrm{mg}, 0.100 \mathrm{mmol}, 0.20$ equiv), and $\mathrm{MeOH}(2.5 \mathrm{~mL})$, with the addition of $\mathrm{MgO}(20.2 \mathrm{mg}, 0.50 \mathrm{mmol}, 1.0$ equiv). Product 4a was obtained as a pale yellow solid $\left[51.7 \mathrm{mg}, 44 \%\right.$ yield, $\mathrm{R}_{\mathrm{f}}=0.30$

Benzamide 5a. The general procedure was followed utilizing substrate $5(33.8 \mathrm{mg}$, 0.50 mmol , 1.0 equiv), $\left[\mathrm{Ph}_{2} \mathrm{I}\right] \mathrm{BF}_{4}\left(368 \mathrm{mg}, 1.00 \mathrm{mmol}, 2\right.$ equiv), $\operatorname{Ir}(\mathrm{ppy})_{2}(\mathrm{dtbbpy}) \mathrm{PF}_{6}$ $\left(22.8 \mathrm{mg}, 0.025 \mathrm{mmol}, 0.05\right.$ equiv), $\mathrm{Pd}\left(\mathrm{NO}_{3}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}(13.3 \mathrm{mg}, 0.050 \mathrm{mmol}, 0.10$ equiv), and $\mathrm{MeOH}(2.5 \mathrm{~mL}$). Product 5a was obtained as a white solid ($39 \mathrm{mg}, 40 \%$ yield, $\mathrm{R}_{\mathrm{f}}=0.26$ in $1: 1: 1$ benzene: $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{Et}_{2} \mathrm{O}, \mathrm{mp}=169.0-173.0{ }^{\circ} \mathrm{C}\right) .{ }^{1} \mathrm{H}$ NMR (700 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.79(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{td}, J=7.7,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.46-7.42$ (multiple peaks, 5 H), $7.39(\mathrm{~m}, 1 \mathrm{H}), 7.37(\mathrm{dd}, J=7.7,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.62(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.25(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(176 \mathrm{MHz}$, CDCl_{3}): $\delta 171.21,140.15,139.80,134.30,130.54,130.38,129.08,128.77,128.69,127.93,127.62$. IR (thin film, CDCl_{3}) $3383,3178,1653,1643 \mathrm{~cm}^{-1}$. $\mathrm{HRMS}[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{NO}: 198.0913$; Found: 198.0920 .

Benzamide 6a. The general procedure was followed utilizing substrate $6(67.6 \mathrm{mg}$, $0.50 \mathrm{mmol}, 1.0$ equiv), $\left[\mathrm{Ph}_{2} \mathrm{I}\right] \mathrm{OTf}\left(430 \mathrm{mg}, 1.00 \mathrm{mmol}, 2\right.$ equiv), $\operatorname{Ir}(\mathrm{ppy})_{2}(\mathrm{dtbbpy}) \mathrm{PF}_{6}$ $\left(22.8 \mathrm{mg}, 0.025 \mathrm{mmol}, 0.05\right.$ equiv), $\mathrm{Pd}\left(\mathrm{NO}_{3}\right)_{2} \bullet 2 \mathrm{H}_{2} \mathrm{O}(13.3 \mathrm{mg}, 0.05 \mathrm{mmol}, 0.10$ equiv), and $\mathrm{MeOH}(2.5 \mathrm{~mL})$. Product $\mathbf{6 a}$ was obtained as a pale yellow solid (56.7 mg , 54% yield, $\mathrm{R}_{\mathrm{f}}=0.27$ in 20% hexanes $\left./ 80 \% \mathrm{Et}_{2} \mathrm{O}, \mathrm{mp}=164.5-166.8{ }^{\circ} \mathrm{C}\right) .{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.69(\mathrm{dd}, J=7.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{td}, J=7.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-7.35$ (multiple peaks, $7 \mathrm{H}), 5.19$ (br s, 1H), 2.67 (d, $J=4.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 170.24,140.12$, $139.29,135.68,130.11,130.10,128.82,128.60,128.58,127.75,127.59,26.64$. IR (thin film, CDCl_{3})

3286, 3060, 2936, 1636, 1540, $1313 \mathrm{~cm}^{-1}$. HRMS $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{NO}: 212.1070$; Found: 212.1074 .

Benzamide 7a. The general procedure was followed utilizing substrate $7(74.6 \mathrm{mg}$, $0.50 \mathrm{mmol}, 1.0$ equiv), $\left[\mathrm{Ph}_{2} \mathrm{I}\right] \mathrm{OTf}\left(430 \mathrm{mg}, 1.00 \mathrm{mmol}, 2\right.$ equiv), $\operatorname{Ir}(\mathrm{ppy})_{2}(\mathrm{dtbbpy}) \mathrm{PF}_{6}$ ($22.8 \mathrm{mg}, 0.025 \mathrm{mmol}, 0.05$ equiv), $\mathrm{Pd}\left(\mathrm{NO}_{3}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}(13.3 \mathrm{mg}, 0.05 \mathrm{mmol}, 0.10$ equiv), and $\mathrm{MeOH}(2.5 \mathrm{~mL})$. Product 7a was obtained as a yellow oil $\left(9.8 \mathrm{mg}, 9 \%\right.$ yield, $\mathrm{R}_{\mathrm{f}}=$ 0.27 in 20% hexanes $/ 80 \% \mathrm{Et}_{2} \mathrm{O}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.48-7.44$ (multiple peaks, 3 H), 7.42-7.32 (multiple peaks, 6 H), $2.85(\mathrm{~s}, 3 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 171.33,139.93,138.67,135.74,129.30$, 128.47, 128.36, 127.70, 127.58, 127.41, 37.94, 24.53. Two aromatic ${ }^{13} \mathrm{C}$ resonances are coincidentally overlapping. IR (thin film, CDCl_{3}) 3057, 2924, 1624, 1394 cm^{-1}. HRMS $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{NO}: 226.1226$; Found: 226.1232 .

(8a)
the literature. ${ }^{9}$

Pyridine 8a. The general procedure was followed utilizing substrate $\mathbf{8}(84.6 \mathrm{mg}, 0.50$ mmol, 1.0 equiv), $\left[\mathrm{Ph}_{2} \mathrm{I}\right] \mathrm{OTf}\left(430 \mathrm{mg}, 1.00 \mathrm{mmol}, 2\right.$ equiv), $\operatorname{Ir}(\mathrm{ppy})_{2}(\mathrm{dtbbpy}) \mathrm{PF}_{6}(22.8$ $\mathrm{mg}, 0.025 \mathrm{mmol}, 0.05$ equiv), $\mathrm{Pd}\left(\mathrm{NO}_{3}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}(13.3 \mathrm{mg}, 0.050 \mathrm{mmol}, 0.10$ equiv), and $\mathrm{MeOH}(2.5 \mathrm{~mL})$. Product 8a was obtained as a clear viscous oil $(76.0 \mathrm{mg}, 62 \%$ yield, $\mathrm{R}_{\mathrm{f}}=0.09$ in 90% hexanes $\left./ 10 \% \mathrm{Et}_{2} \mathrm{O}\right) .{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data matched those reported in

Pyridine 9a. The general procedure was followed utilizing substrate $9(92.6 \mathrm{mg}, 0.50$ mmol, 1.0 equiv), $\left[\mathrm{Ph}_{2} \mathrm{I}\right] \mathrm{OTf}\left(430 \mathrm{mg}, 1.00 \mathrm{mmol}, 2\right.$ equiv), $\operatorname{Ir}(\mathrm{ppy})_{2}(\mathrm{dtbbpy}) \mathrm{PF}_{6}(22.8$ $\mathrm{mg}, 0.025 \mathrm{mmol}, 0.05$ equiv), $\mathrm{Pd}\left(\mathrm{NO}_{3}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}(13.3 \mathrm{mg}, 0.050 \mathrm{mmol}, 0.10$ equiv), and $\mathrm{MeOH}(2.5 \mathrm{~mL})$. Product 9a was obtained as a pale yellow solid [88.0 $\mathrm{mg}, 67 \%$ yield, $\mathrm{R}_{\mathrm{f}}=0.11$ in 60% hexanes $/ 40 \% \mathrm{Et}_{2} \mathrm{O}, \mathrm{mp}=83.5-86.4{ }^{\circ} \mathrm{C}\left(\right.$ lit. $\left.\left.77.7-85.4^{\circ} \mathrm{C}\right)\right] .{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data matched those reported in the literature. ${ }^{9}$

Oxime ether 10a. The general procedure was followed utilizing substrate $\mathbf{1 0}(81.6 \mathrm{mg}$, $0.50 \mathrm{mmol}, 1.0$ equiv), $\left[\mathrm{Ph}_{2} \mathrm{I}\right] \mathrm{OTf}\left(430 \mathrm{mg}, 1.00 \mathrm{mmol}, 2\right.$ equiv), $\operatorname{Ir}(\mathrm{ppy})_{2}(\mathrm{dtbbpy}) \mathrm{PF}_{6}$ $\left(22.8 \mathrm{mg}, 0.025 \mathrm{mmol}, 0.05\right.$ equiv), $\mathrm{Pd}\left(\mathrm{NO}_{3}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}(13.3 \mathrm{mg}, 0.050 \mathrm{mmol}, 0.10$ equiv), and $\mathrm{MeOH}(2.5 \mathrm{~mL})$. Product 10 a was obtained as a colorless oil (71.4 mg , 60% yield, $\mathrm{R}_{\mathrm{f}}=0.14$ in 98% hexanes $/ 2 \% \mathrm{Et}_{2} \mathrm{O}$). ${ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.39-$ 7.36 (multiple peaks, 4 H), $7.32(\mathrm{~m}, 1 \mathrm{H}), 7.29(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{dd}, J=7.0,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{dd}$, $J=7.7,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 1.69(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(176 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 156.52$,
$141.21,140.97,136.19,136.07,129.38,129.34,128.13,127.94,127.63,126.92,61.62,20.08,16.56$. IR (thin film, neat) $3060,2936,1459,1041 \mathrm{~cm}^{-1}$. HRMS [M+H] Calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{NO}: 240.1383$; Found: 240.1387.

Oxime ether 11a. The general procedure was followed utilizing substrate $11(74.6 \mathrm{mg}$, $0.50 \mathrm{mmol}, 1.0$ equiv), $\left[\mathrm{Ph}_{2} \mathrm{I}\right]$ OTf ($430 \mathrm{mg}, 1.00 \mathrm{mmol}, 2$ equiv), $\operatorname{Ir}(\mathrm{ppy})_{2}(\mathrm{dtbbpy}) \mathrm{PF}_{6}$ $\left(22.8 \mathrm{mg}, 0.025 \mathrm{mmol}, 0.05\right.$ equiv), $\mathrm{Pd}\left(\mathrm{NO}_{3}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}(13.3 \mathrm{mg}, 0.050 \mathrm{mmol}, 0.10$ equiv), and $\mathrm{MeOH}(2.5 \mathrm{~mL})$. Product 11a was obtained as a colorless oil consisting of a $\sim 1.5: 1$ mixture of oxime stereoisomers ($64.7 \mathrm{mg}, 57 \%$ yield, $\mathrm{R}_{\mathrm{f}}=0.28$ (major) and 0.14 (minor) in 6:1:0.2 hexanes/benzene/methylene chloride). Major Isomer: ${ }^{1} \mathrm{H}$ NMR $\left(700 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$: $\delta 8.26(\mathrm{~s}, 1 \mathrm{H}) ; 7.22(\mathrm{~m}, 2 \mathrm{H}), 7.09(\mathrm{tt}, J=7.4,1.4 \mathrm{~Hz}, 2 \mathrm{H}) ; 7.06-7.05$ (multiple peaks, 2H); 7.04-7.02 (multiple peaks, 2H); $3.76(\mathrm{~s}, 3 \mathrm{H}), 2.62(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 149.09, 143.18, $140.66,137.83,130.33,129.83,128.48,128.12,127.84,127.21,61.85,22.46$. Two aromatic ${ }^{13} \mathrm{C}$ resonances are coincidentally overlapping. IR (thin film, neat) $3059,2935,1460,1048 \mathrm{~cm}^{-1}$. HRMS $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{NO}: 226.1226$; Found: 226.1227. Minor Isomer: ${ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): δ $7.40(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}) ; 7.24(\mathrm{~s}, 1 \mathrm{H}) ; 7.19(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}) ; 7.13-7.10$ (multiple peaks, 2 H$) ; 7.08(\mathrm{t}, J=$ $7.7 \mathrm{~Hz}, 1 \mathrm{H}) ; 6.98(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}) ; 3.66(\mathrm{~s}, 3 \mathrm{H}) ; 2.22(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $147.58,140.70,140.66,136.43,130.19,128.87,128.84,128.74,128.05,127.36,126.99,61.79,20.13$. IR (thin film, CDCl_{3}) $3059,2935,1460,1057 \mathrm{~cm}^{-1}$. HRMS $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{NO}: 226.1226$; Found: 226.1228.

III. Synthesis and Characterization of Products in Table 3

General Procedure: Substrate (1 equiv), $\left[\mathrm{Ar}_{2} \mathrm{I}\right] \mathrm{BF}_{4}$ (2 equiv), $\operatorname{Ir}(p p y)_{2}(\mathrm{dtbbpy}) \mathrm{PF}_{6}$ (0.05 equiv), and $\mathrm{Pd}\left(\mathrm{NO}_{3}\right)_{2} \bullet 2 \mathrm{H}_{2} \mathrm{O}$ (0.10 equiv) were combined in MeOH in a 4 mL scintillation vial. The reaction mixture was cooled in an ice bath (to prevent evaporation) and sparged with N_{2} using a submerged needle for 10 min, and the vial was then immediately sealed with a Teflon-lined cap. The vial was placed on a stir plate with two 26 W compact fluorescent light bulbs (one on either side of the vial about 5-8 cm away), and the reaction mixture was allowed to stir at room temperature for 15 h . The reaction mixture was diluted with EtOAc (50 mL) and washed with 10% aqueous $\mathrm{Na}_{2} \mathrm{SO}_{3}(2 \times 25 \mathrm{~mL})$ and brine ($1 \times 25 \mathrm{~mL}$). The combined aqueous layers were extracted with EtOAc ($3 \times 10 \mathrm{~mL}$), and the organic layers were then combined, dried over MgSO_{4}, filtered, concentrated, and purified by column chromatography on silica gel.

Pyrrolidinone 1b. The general procedure was followed utilizing substrate 1 (80.6 $\mathrm{mg}, 0.50 \mathrm{mmol}, 1.0$ equiv), $\left[\left(p-\mathrm{CF}_{3} \mathrm{C}_{6} \mathrm{H}_{4}\right)_{2} \mathrm{I}\right] \mathrm{BF}_{4}(504 \mathrm{mg}, 1.00 \mathrm{mmol}, 2$ equiv), $\operatorname{Ir}(\text { ppy })_{2}(\mathrm{dtbbpy}) \mathrm{PF}_{6}(22.8 \mathrm{mg}, 0.025 \mathrm{mmol}, 0.05$ equiv $), \mathrm{Pd}\left(\mathrm{NO}_{3}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}(13.3 \mathrm{mg}$, $0.050 \mathrm{mmol}, 0.10$ equiv), and $\mathrm{MeOH}(2.5 \mathrm{~mL})$. Product 1b was obtained as a tan solid [106 mg, 69% yield, $\mathrm{R}_{\mathrm{f}}=0.17$ in 20% hexanes $/ 80 \% \mathrm{Et}_{2} \mathrm{O}, \mathrm{mp}=87.6-89.2{ }^{\circ} \mathrm{C}$ (lit. $86.1-88.0^{\circ} \mathrm{C}$)]. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data matched those reported in the literature. ${ }^{9}$

Pyrrolidinone 1c. The general procedure was followed utilizing substrate $\mathbf{1}$ (80.6 $\mathrm{mg}, 0.50 \mathrm{mmol}, 1.0$ equiv), $\left[\left(m-\mathrm{CF}_{3} \mathrm{C}_{6} \mathrm{H}_{4}\right)_{2} \mathrm{I}\right] \mathrm{BF}_{4}(504 \mathrm{mg}, 1.00 \mathrm{mmol}$, 2 equiv), $\operatorname{Ir}(\text { ppy })_{2}(\mathrm{dtbbpy}) \mathrm{PF}_{6}(22.8 \mathrm{mg}, 0.025 \mathrm{mmol}, 0.05$ equiv $), \mathrm{Pd}\left(\mathrm{NO}_{3}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}(13.3 \mathrm{mg}$, $0.050 \mathrm{mmol}, 0.10$ equiv), and $\mathrm{MeOH}(2.5 \mathrm{~mL})$. Product $\mathbf{1 c}$ was obtained as a tan solid [$86.1 \mathrm{mg}, 56 \%$ yield, $\mathrm{R}_{\mathrm{f}}=0.23$ in 20% hexanes $/ 80 \% \mathrm{Et}_{2} \mathrm{O}, \mathrm{mp}=79.2-83.5{ }^{\circ} \mathrm{C}$]. ${ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.64(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{t}$, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~m}, 1 \mathrm{H}), 7.41-7.40$ (multiple peaks, 2 H), $7.33(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.28(\mathrm{t}, J=7.0$ $\mathrm{Hz}, 2 \mathrm{H}), 2.40(\mathrm{t}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.91(\mathrm{tt}, J=8.1,7.0 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(176 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $175.42,139.84,138.11,136.29,131.80,130.71\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=32 \mathrm{~Hz}\right), 130.60,129.25,128.96,128.30,128.25$, $124.99\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=3.6 \mathrm{~Hz}\right), 124.21\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=3.8 \mathrm{~Hz}\right), 123.97\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=272 \mathrm{~Hz}\right), 50.30,30.93,18.83 .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-62.65$ (s). IR (thin film, CDCl_{3}) 2918, 1692, 1333, $1117 \mathrm{~cm}^{-1}$. HRMS $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{NO}$: 306.1100; Found: 306.1110.

Pyrrolidinone 1d. The general procedure was followed utilizing substrate 1 (40.3 $\mathrm{mg}, 0.25 \mathrm{mmol}, 1.0$ equiv), $\left[\left(o-\mathrm{CF}_{3} \mathrm{C}_{6} \mathrm{H}_{4}\right)_{2} \mathrm{I}\right] \mathrm{BF}_{4}$ ($252 \mathrm{mg}, 0.50 \mathrm{mmol}, 2$ equiv), $\operatorname{Ir}(\text { ppy })_{2}($ dtbbpy $) \mathrm{PF}_{6}\left(11.4 \mathrm{mg}, 0.0125 \mathrm{mmol}, 0.05\right.$ equiv), $\mathrm{Pd}\left(\mathrm{NO}_{3}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}(6.7 \mathrm{mg}$, $0.025 \mathrm{mmol}, 0.10$ equiv), and $\mathrm{MeOH}(1.25 \mathrm{~mL})$. Product 1 d was obtained as a white solid ($35.0 \mathrm{mg}, 46 \%$ yield, $\mathrm{R}_{\mathrm{f}}=0.13$ in 20% hexanes $/ 80 \% \mathrm{Et}_{2} \mathrm{O}, \mathrm{mp}=61.8$ $63.9^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.76(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{t}, J=7.7$ $\mathrm{Hz}, 1 \mathrm{H}), 7.46(\mathrm{td}, J=7.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{td}, J=7.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.32$ (multiple peaks, 2H), 3.36 (ddd, $J=14.0,7.7,5.6 \mathrm{~Hz}, 1 \mathrm{H}$), 3.03 (ddd, $J=14.0,8.4,5.6 \mathrm{~Hz}, 1 \mathrm{H}$), 2.40 (ddd, $J=16.4,9.1,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.22(\mathrm{ddd}, J=16.4,9.1,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.94(\mathrm{~m}, 1 \mathrm{H}), 1.67(\mathrm{~m}, 1 \mathrm{H})$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(176 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 175.57,137.43,136.99,136.76,132.08,131.25,131.05\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=\right.$ $2.1 \mathrm{~Hz}), 129.25,128.28\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=30 \mathrm{~Hz}\right), 128.08,127.96,127.17,126.21\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=5.3 \mathrm{~Hz}\right), 124.06(\mathrm{q}$, $J_{\mathrm{C}-\mathrm{F}}=274 \mathrm{~Hz}$), 49.90, 30.98, 19.05. ${ }^{19} \mathrm{~F} \operatorname{NMR}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta-57.09$ (s). IR (thin film, CDCl_{3}) 2920, 1697, 1313, $1111 \mathrm{~cm}^{-1}$. HRMS [M+H] ${ }^{+}$Calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{NO}$: 306.1100; Found: 306.1112.

Pyrrolidinone 1e. The general procedure was followed utilizing substrate 1 (80.6 $\mathrm{mg}, 0.50 \mathrm{mmol}, 1.0$ equiv), $\left[\left(p-\mathrm{ClC}_{6} \mathrm{H}_{4}\right)_{2} \mathrm{I}\right] \mathrm{BF}_{4}$ ($437 \mathrm{mg}, 1.00 \mathrm{mmol}, 2$ equiv), $\operatorname{Ir}(\text { ppy })_{2}($ dtbbpy $) \mathrm{PF}_{6}\left(22.8 \mathrm{mg}, 0.025 \mathrm{mmol}, 0.05\right.$ equiv), $\mathrm{Pd}\left(\mathrm{NO}_{3}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}(13.3 \mathrm{mg}$, $0.050 \mathrm{mmol}, 0.10$ equiv), and $\mathrm{MeOH}(2.5 \mathrm{~mL})$. Product $1 \mathbf{e}$ was obtained as a tan solid [104 mg, 77% yield, $\mathrm{R}_{\mathrm{f}}=0.13$ in 20% hexanes $/ 80 \% \mathrm{Et}_{2} \mathrm{O}, \mathrm{mp}=95.6-97.4^{\circ} \mathrm{C}$ (lit. 93.9-96.0 ${ }^{\circ} \mathrm{C}$)]. ${ }^{9} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data matched those reported in the literature. ${ }^{9}$

Pyrrolidinone 1f. The general procedure was followed utilizing substrate $\mathbf{1}$ (80.6 $\mathrm{mg}, 0.50 \mathrm{mmol}, 1.0$ equiv), $\left[\left(p-\mathrm{BrC}_{6} \mathrm{H}_{4}\right)_{2} \mathrm{I}\right] \mathrm{BF}_{4}(526 \mathrm{mg}, 1.00 \mathrm{mmol}, 2$ equiv), $\operatorname{Ir}(\text { ppy })_{2}(\mathrm{dtbbpy}) \mathrm{PF}_{6}(22.8 \mathrm{mg}, 0.025 \mathrm{mmol}, 0.05$ equiv $), \mathrm{Pd}\left(\mathrm{NO}_{3}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}(13.3 \mathrm{mg}$, $0.050 \mathrm{mmol}, 0.10$ equiv), and $\mathrm{MeOH}(2.5 \mathrm{~mL})$. Product $\mathbf{1 f}$ was obtained as a pale yellow oil ($125 \mathrm{mg}, 79 \%$ yield, $\mathrm{R}_{\mathrm{f}}=0.13$ in 20% hexanes $/ 80 \% \mathrm{Et}_{2} \mathrm{O}$). ${ }^{1} \mathrm{H}$ NMR (500 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.54(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.44-7.35$ (multiple peaks, 3 H) 7.33 (d, J $=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.27(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.44(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.93(\mathrm{tt}, J=8.0$, 7.0 Hz, 2H). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz, CDCl_{3}): $\delta 175.61,138.48,138.01,136.18,131.56,130.61$, $130.00,128.95,128.40,128.18,121.87,50.26,31.09,18.94$. IR (thin film, neat) $2879,1680,1402 \mathrm{~cm}^{-1}$. HRMS $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{BrNO}$: 316.0332; Found: 316.0340.

Pyrrolidinone 1g. The general procedure was followed utilizing substrate $\mathbf{1}$ (80.6 $\mathrm{mg}, 0.50 \mathrm{mmol}, 1.0$ equiv), $\left[\left(p-\mathrm{MeC}_{6} \mathrm{H}_{4}\right)_{2} \mathrm{I}\right] \mathrm{BF}_{4}(396 \mathrm{mg}, 1.00 \mathrm{mmol}, 2$ equiv), $\operatorname{Ir}(\text { ppy })_{2}($ dtbbpy $) \mathrm{PF}_{6}\left(22.8 \mathrm{mg}, 0.025 \mathrm{mmol}, 0.05\right.$ equiv), $\mathrm{Pd}\left(\mathrm{NO}_{3}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}(13.3 \mathrm{mg}$, $0.050 \mathrm{mmol}, 0.10$ equiv), and $\mathrm{MeOH}(2.5 \mathrm{~mL})$. Product 1 g was obtained as a tan solid $\left(109.8 \mathrm{mg}, 87 \%\right.$ yield, $\mathrm{R}_{\mathrm{f}}=0.17 \mathrm{in} 20 \%$ hexanes $\left./ 80 \% \mathrm{Et}_{2} \mathrm{O}, \mathrm{mp}=78.6-80.4{ }^{\circ} \mathrm{C}\right) .{ }^{1} \mathrm{H}$ NMR (700 MHz, CDCl_{3}): $\delta 7.40-7.35$ (multiple peaks, 3 H), $7.31(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H})$, $7.27(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.22(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.43(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.39$ (s, 3H), $1.88(\mathrm{tt}, J=8.0,6.9 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(176 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 175.61,139.52,137.28$, $136.27,136.16,130.86,129.12,128.34,128.30,128.18,127.98,50.06,31.20,21.18,18.97$. IR (thin film, CDCl_{3}) 3026, 2920, 1694, 1487, 1407, $1301 \mathrm{~cm}^{-1}$. HRMS [M+H] Calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{NO}: 252.1383$; Found: 252.1391 .

Pyrrolidinone 1h. The general procedure was followed utilizing substrate $\mathbf{1}$ (80.6 $\mathrm{mg}, 0.50 \mathrm{mmol}, 1.0$ equiv), $\left[\left(o-\mathrm{MeC}_{6} \mathrm{H}_{4}\right)_{2} \mathrm{I}\right] \mathrm{BF}_{4}(396 \mathrm{mg}, 1.00 \mathrm{mmol}, 2$ equiv), $\operatorname{Ir}(\text { ppy })_{2}(\mathrm{dtbbpy}) \mathrm{PF}_{6}(22.8 \mathrm{mg}, 0.025 \mathrm{mmol}, 0.05$ equiv $), \mathrm{Pd}\left(\mathrm{NO}_{3}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}(13.3 \mathrm{mg}$, $0.050 \mathrm{mmol}, 0.10$ equiv $)$, and $\mathrm{MeOH}(2.5 \mathrm{~mL})$. Product $\mathbf{1 h}$ was obtained as a pale yellow oil ($107 \mathrm{mg}, 85 \%$ yield, $\mathrm{R}_{\mathrm{f}}=0.20$ in 20% hexanes $/ 80 \% \mathrm{Et}_{2} \mathrm{O}$). NMR (500 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.40(\mathrm{ddd}, J=7.7,7.0,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{dd}, J=8.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{td}, J=7.7,1.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.27-7.24$ (multiple peaks, 3 H), $7.19(\mathrm{~m}, 1 \mathrm{H}), 7.16(\mathrm{~d}, 7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.23(\mathrm{ddd}, J=9.1,8.4,5.6$ Hz, 1H), 3.09 (ddd, $J=9.1,7.7,5.6 \mathrm{~Hz}, 1 \mathrm{H}) 2.32(\mathrm{~m}, 2 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}), 1.82(\mathrm{~m}, 1 \mathrm{H}), 1.75(\mathrm{~m}, 1 \mathrm{H})$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 175.10,138.89,138.60,136.96,135.88,131.11,130.13,129.39$, $128.3,128.1,127.72,127.29,125.47,49.94,31.15,19.93,19.02$. IR (thin film, neat) $2952,1696,1398$ cm^{-1}. HRMS $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{NO}$: 252.1383; Found: 252.1392 .

Pyrrolidinone 1i. The general procedure was followed utilizing substrate 1 (40.3 $\mathrm{mg}, 0.25 \mathrm{mmol}, 1.0$ equiv), $\left[\mathrm{Mes}_{2} \mathrm{I}\right] \mathrm{OTf}(257 \mathrm{mg}, 0.50 \mathrm{mmol}, 2$ equiv), $\operatorname{Ir}(\text { ppy })_{2}($ dtbbpy $) \mathrm{PF}_{6}\left(11.3 \mathrm{mg}, 0.0125 \mathrm{mmol}, 0.05\right.$ equiv), $\mathrm{Pd}\left(\mathrm{NO}_{3}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}(6.7$ $\mathrm{mg}, 0.025 \mathrm{mmol}, 0.10$ equiv), and $\mathrm{MeOH}(1.25 \mathrm{~mL})$. Product $\mathbf{1 i}$ was obtained as a white solid ($8 \mathrm{mg}, 11 \%$ yield, $\mathrm{R}_{\mathrm{f}}=0.17$ in $96 \% \mathrm{CH}_{2} \mathrm{Cl}_{2} / 4 \% \mathrm{Et}_{2} \mathrm{O}$, $\mathrm{mp}=121.2-$ $123.8{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.44-7.39$ (multiple peaks, 2 H), 7.34 $(\mathrm{td}, J=7.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{dd}, J=7.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{~s}, 2 \mathrm{H}), 3.12(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.36(\mathrm{t}, J=$ $8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 1.98(\mathrm{~s}, 6 \mathrm{H}), 1.80(\mathrm{tt}, J=8.0,6.9 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(176 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $174.82,137.32,137.16,137.01,136.23,135.62,131.27,128.25,128.06,127.97,127.33,49.16,31.35$,
21.06, 20.41, 19.07. IR (thin film, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) 2918, 1699, 1398, $1301 \mathrm{~cm}^{-1} . \mathrm{HRMS}[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{NO}: 280.1699$; Found: 280.1705 .

Pyrrolidinone $\mathbf{1 j}$. The general procedure was followed utilizing substrate $\mathbf{1}$ (80.6 $\mathrm{mg}, 0.50 \mathrm{mmol}, 1.0$ equiv), $\left[\left(p-\mathrm{OMeC}_{6} \mathrm{H}_{4}\right)_{2} \mathrm{I}\right] \mathrm{BF}_{4}$ ($428 \mathrm{mg}, 1.00 \mathrm{mmol}, 2$ equiv), $\operatorname{Ir}(\text { ppy })_{2}($ dtbbpy $) \mathrm{PF}_{6}(22.8 \mathrm{mg}, 0.025 \mathrm{mmol}, 0.05$ equiv $), \mathrm{Pd}\left(\mathrm{NO}_{3}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}(13.3 \mathrm{mg}$, $0.050 \mathrm{mmol}, 0.10$ equiv), and $\mathrm{MeOH}(2.5 \mathrm{~mL})$. Product $\mathbf{1 j}$ was obtained as a tan viscous oil ($54.3 \mathrm{mg}, 41 \%$ yield, $\mathrm{R}_{\mathrm{f}}=0.07$ in 20% hexanes $/ 80 \% \mathrm{Et}_{2} \mathrm{O}$). ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data matched those reported in the literature. ${ }^{9}$

IV. Experimental Details for Table 4

Radical/Photocatalytic Procedure for Reactions in Table 4 (entries 1-5): Substrate $\mathbf{8}$ ($8.5 \mathrm{mg}, 0.050$ mmol, 1 equiv), $\left[\mathrm{Ph}_{2} \mathrm{I}\right] \mathrm{BF}_{4}\left(36.8 \mathrm{mg}, 0.100 \mathrm{mmol}, 2\right.$ equiv), $\operatorname{Ir}(\mathrm{ppy})_{2}(\mathrm{dtbbpy}) \mathrm{PF}_{6}(2.3 \mathrm{mg}, 0.0025 \mathrm{mmol}$, 0.05 equiv), $\mathrm{Pd}\left(\mathrm{NO}_{3}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}(1.3 \mathrm{mg}, 0.005 \mathrm{mmol}, 0.10$ equiv $)$, and galvinoxyl $(0,2.1$, or 5.3 mg ; 0 , 0.005 , or $0.0125 \mathrm{mmol} ; 0,0.10$, or 0.25 equiv) or TEMPO $(0,3.9$, or $7.8 \mathrm{mg} ; 0,0.025$, or $0.050 \mathrm{mmol} ; 0$, 0.50 , or 1.0 equiv) were combined in $\mathrm{MeOH}(0.25 \mathrm{~mL})$ in a 4 mL scintillation vial. The reaction mixture was cooled in an ice bath (to prevent evaporation) and sparged with N_{2} using a submerged needle for 1 min, and the vial was then immediately sealed with a Teflon-lined cap. The vial was placed on a stir plate with two 26 W compact fluorescent light bulbs (one on either side of the vial about 5-8 cm away), and the reaction mixture was allowed to stir at room temperature for 15 h . Reactions were then quenched with 10% aqueous $\mathrm{Na}_{2} \mathrm{SO}_{3}(0.25 \mathrm{~mL})$, diluted with EtOAc (3.5 mL), and analyzed by GC-FID. GC calibrated yields are reported relative to hexadecane as an internal standard. The yields reported in Table 4 are the averages of three separate trials.

Ionic/Thermal Procedure for Reactions in Table 4 (entries 6-9). Substrate 8 ($8.5 \mathrm{mg}, 0.050 \mathrm{mmol}, 1$ equiv), $\left[\mathrm{Ph}_{2} \mathrm{I}\right] \mathrm{BF}_{4}\left(20.2 \mathrm{mg}, 0.055 \mathrm{mmol}, 1.1\right.$ equiv), $\mathrm{Pd}(\mathrm{OAc})_{2}(1.1 \mathrm{mg}, 0.005 \mathrm{mmol}, 0.10$ equiv), and galvinoxyl (0 or $5.3 \mathrm{mg} ; 0$ or $0.0125 \mathrm{mmol} ; 0$ or 0.25 equiv) or TEMPO (0 or $7.8 \mathrm{mg} ; 0$ or $0.050 \mathrm{mmol} ; 0$ or 1.0 equiv) were combined in $\mathrm{AcOH}(0.42 \mathrm{~mL})$ in a 4 mL scintillation vial. The reaction was heated to $100{ }^{\circ} \mathrm{C}$ for 15 h , then quenched with 10% aqueous $\mathrm{Na}_{2} \mathrm{SO}_{3}(0.25 \mathrm{~mL})$, diluted with $\mathrm{EtOAc}(3.5 \mathrm{~mL})$, and analyzed by GC-FID. GC calibrated yields are reported relative to hexadecane as an internal standard. The yields reported in Table 4 are the averages of three separate trials. These conditions are similar to those reported previously for 2-arylpyridine substrates; ${ }^{11}$ however, the catalyst loading was increased to 10% (instead of 5%) to more closely resemble the conditions of the photocatalytic/radical trials.

V. Experimental Details for Equation 1

Radical/Photocatalytic Procedure for Reaction in Equation 1. Substrate $\mathbf{1}(8.1 \mathrm{mg}, 0.050 \mathrm{mmol}, 1$ equiv), $\left[\left(o-\mathrm{CF}_{3} \mathrm{C}_{6} \mathrm{H}_{4}\right)-\mathrm{I}-\mathrm{Ph}\right] \mathrm{BF}_{4}\left(43.6 \mathrm{mg}, 0.100 \mathrm{mmol}, 2\right.$ equiv), $\operatorname{Ir}(\mathrm{ppy})_{2}(\mathrm{dtbbpy}) \mathrm{PF}_{6}(2.3 \mathrm{mg}, 0.0025$ mmol, 0.05 equiv $)$, and $\mathrm{Pd}\left(\mathrm{NO}_{3}\right)_{2} \bullet 2 \mathrm{H}_{2} \mathrm{O}(1.3 \mathrm{mg}, 0.005 \mathrm{mmol}, 0.10$ equiv $)$ were combined in $\mathrm{MeOH}(0.25$ mL) in a 4 mL scintillation vial. The reaction mixture was cooled in an ice bath (to prevent evaporation) and sparged with N_{2} using a submerged needle for 1 min , and the vial was then immediately sealed with a Teflon-lined cap. The vial was placed on a stir plate with two 26 W compact fluorescent light bulbs (one on either side of the vial about 5-8 cm away), and the reaction mixture was allowed to stir at room temperature for 15 h . Reactions were then quenched with 10% aq. $\mathrm{Na}_{2} \mathrm{SO}_{3}(0.25 \mathrm{~mL})$, diluted with EtOAc $(3.5 \mathrm{~mL})$, and analyzed by GC-FID. GC calibrated yields are reported relative to hexadecane as an internal standard.

Ionic/Thermal Procedure for Reaction in Equation 1. Substrate 1 ($8.1 \mathrm{mg}, 0.050 \mathrm{mmol}, 1$ equiv), [(o$\left.\left.\mathrm{CF}_{3} \mathrm{C}_{6} \mathrm{H}_{4}\right)-\mathrm{I}-\mathrm{Ph}\right] \mathrm{BF}_{4}\left(43.6 \mathrm{mg}, 0.100 \mathrm{mmol}, 2\right.$ equiv), $\mathrm{Pd}(\mathrm{OAc})_{2}(1.1 \mathrm{mg}, 0.005 \mathrm{mmol}, 0.10$ equiv $)$, and $\mathrm{NaHCO}_{3}(6.3 \mathrm{mg}, 0.075 \mathrm{mmol}, 1.5$ equiv) were combined in toluene $(0.42 \mathrm{~mL})$. The reaction was heated to $100{ }^{\circ} \mathrm{C}$ for 15 h , then quenched with 10% aq. $\mathrm{Na}_{2} \mathrm{SO}_{3}(0.25 \mathrm{~mL})$, diluted with $\mathrm{EtOAc}(3.5 \mathrm{~mL})$, and analyzed by GC-FID. GC calibrated yields are reported relative to hexadecane as an internal standard. These conditions are similar to the conditions reported previously for substrate $1 ;{ }^{11}$ however, the equivalents of oxidant were increased to 2 (instead of 1.5) and the catalyst loading was increased to 10% (instead of 5\%) to more closely resemble the conditions of the photocatalytic/radical trials.

VI. Experimental Details for Table 5

$\mathbf{P h N}_{2}{ }^{+}$procedure. ${ }^{9}$ Substrate ($0.050 \mathrm{mmol}, 1$ equiv), $\operatorname{Pd}(\mathrm{OAc})_{2}(1.1 \mathrm{mg}, 0.005 \mathrm{mmol}, 0.10$ equiv), $\mathrm{Ru}($ bpy $){ }_{3} \mathrm{Cl}_{2} \bullet 6 \mathrm{H}_{2} \mathrm{O}\left(0.94 \mathrm{mg}, 0.00125 \mathrm{mmol}, 0.025\right.$ equiv), and $\left[\mathrm{PhN}_{2}\right] \mathrm{BF}_{4}(38.4 \mathrm{mg}, 0.200 \mathrm{mmol}, 4$ equiv) were combined in $\mathrm{MeOH}(500 \mu \mathrm{~L})$ in a 4 mL scintillation vial. The reaction mixture was cooled in an ice bath (to prevent evaporation) and sparged with N_{2} using a submerged needle for 1 min , and the vial was then immediately sealed with a Teflon-lined cap. The vial was placed on a stir plate with two 26 W compact fluorescent light bulbs (one on either side of the vial about $5-8 \mathrm{~cm}$ away), and the reaction mixture was allowed to stir at room temperature for 15 h . Reactions were then quenched with 10% aq. $\mathrm{Na}_{2} \mathrm{SO}_{3}(0.25 \mathrm{~mL})$, diluted with $\mathrm{EtOAc}(3.5 \mathrm{~mL})$, and analyzed by GC-FID. GC calibrated yields are reported relative to hexadecane as an internal standard.
$\mathbf{P h}_{2} \mathbf{I}^{+}$procedure. GC calibrated yields were obtained from the reactions described in Section II and are reported relative to hexadecane as an internal standard.

VII. References

1. Shakespeare, W. C. Tetrahedron Lett. 1999, 40, 2035.
2. Stowers K. J.; Sanford, M. S. Org. Lett. 2009, 11, 4584.
3. Neufeldt, S. R.; Sanford, M. S. Org. Lett. 2010, 12, 532.
4. Chen, D. W.; Ochiai, M. J. Org. Chem. 1999, 64, 6804.
5. Bielawski, M.; Olofsson, B. Chem. Commun. 2007, 2521.
6. Bielawski, M.; Aili, D.; Olofsson, B. J. Org. Chem. 2008, 73, 4602.
7. Stoessel, P.; Fortte, R.; Parham, A.; Breuning, E.; Heil, H.; Vestweber, H. U.S. Patent 20080312396A1, December 18, 2008.
8. Slinker, J. D.; Gorodetsky, A. A.; Lowry, M. S.; Wang, J.; Parker, S.; Rohl, R.; Bernhard, S.; Malliaras, G. G. J. Am. Chem. Soc. 2004, 126, 2763.
9. Kalyani, D.; McMurtrey, K. B.; Neufeldt, S. R.; Sanford, M. S. J. Am. Chem. Soc. 2011, 133, 18566.
10. Daugulis, O.; Zaitsev, V. Angew. Chem. Int. Ed. 2005, 44, 4046.
11. Kalyani, D.; Deprez, N. R.; Desai, L. V.; Sanford, M. S. J. Am. Chem. Soc. 2005, 127, 7330.

10SRN111_1H
Sample Name:
Data collected on:
Data Collected
Yb-vnmrs 700
Archive directory:
Sample directory:
FidFile: 10SRN111_1H
Pulse Sequence: PRoton (s2pul)

Solvent: cdcl3
Data collected on: May 272012
Temp. $25.0 \mathrm{C} / 298.1 \mathrm{~K}$
Operator: sharose
Relax. delay 0.500 sec
Relax. deay
Pulse 45.0 degrees
Acq. time 3.500 sec
Acq. time 3.500 se
Width 11160.7 Hz
8 repetitions
8 repetitions
OBSERVE H1, 699.7567663 MHz DATA PROCESSING
Line broadening 0.3 Hz FT size 131072
Total time $0 \min 40 \mathrm{sec}$

l

10SRN75_1H_MeCN
Sample Name:
Data Collected on:
Yb-vnmrs 700
Archive directory:
Sample directory:
FidFile: 10SRN75_1H_MeCl
Pulse Sequence: proton (s2pul)
Solvent: cd3cn
Data collected on: Jun 42012

Temp. $25.0 \mathrm{C} / 298.1 \mathrm{k}$
Operator: sharose
Relax. delay 0.500 sec
Pulse 45.0 degrees
Acq. time 3.500 sec
Acq. time 3.500
Width 11160.7 H
8 repetitions
OBSERVE H1, 699.7604859 MHz

OBSERVE H1, 699.7604859
DATA PRoCESSING

Line broadening 0.3 Hz
FT size 131072
Total time 0 min 40 sec

Agilent Technologies

10SRN55_1H_clean

Sample Name
Data Collected on
Te-vnmrs 500
Archive directory
Sample directory:
FidFile: 10SRN55_1H_clean
Pulse Sequence: proton (s2pul)
Solvent: acetone
Data collected on: May 122012
Operator: sharose
Relax. delay 0.500 sec
Pulse 45.0 degrees
Acq. time 3.500 sec
Width 8012.8 Hz
16 repetitions
OBSERVE H1, 500.0957657 MHz OBSERVE H1, 50
DATA PROCESSING
Line broadening 0.3 Hz FT size 65536
Total time 1 min 12 sec

10SRN116_1H
Sample Name
Data collected on
Yb-vnmrs 700
Archive directory
Sample directory:
FidFile: 10SRN116_1H
Pulse Sequence: proton (s2pul)
Solvent: cdcl3 $\begin{aligned} & \text { Data collected on: Jun } 22012\end{aligned}$
Temp. $20.0 \mathrm{C} / 293.1 \mathrm{~K}$
Operator: sharose
Relax. delay 0.500 sec
Pulse 45.0 degrees
Acq. time 3.500 sec
Width 11160.7 Hz
Width 11160.7 H
8 repetitions
OBSERVE
H1, $699.7567661 ~ M H z ~$
DATA PROCESSING
Line broadening 0.3 Hz FT size 131072
Total time 0 min 40 sec

10SRN106_13C
Sample Name:
Data Collected on:
Ga. Chem. LSA. UMich .edu-vnmrs 400
Archive directory:
Sample directory:
FidFile: 10SRN106_13C

Pulse Sequence: CARBON (s2pul)
Solvent: cdcl3
Data collected on: May 252012
Operator: sharose
Relax. delay 0.100 sec
Pulse. 45.0 degrees
Acq. time 2.621 sed
Acq. time 2.621 s
Width 25000.0 Hz
Width 25000.0 Hz
192 repetitions
OBSERVE C13, 100.4628327 MHz
OBSERVE C13, 100.4628327 MHz
DECOUPLE H1, $\quad 399.5357121 \mathrm{MHz}$
DECOUPLE
Power 42 dB
Power 42 dB
continuousily on
continuousiy on
WALTZ-16 modulated
DATA PROCESSING
DATA PRocEsSING
Line broadening 1.0 Hz
Line broadening
FT size 131072 Hz
FT size 131072
Total time 8 min 42 sec
ñ

10SRN107_1H
Sample Name:
Data Collected on:
Ga.Chem. LSA. UMich. edu-vnmrs 400
Archive directory:
Sample directory:
FidFile: 10SRN107_1H
Pulse Sequence: PROTON (s2pul)
Solvent: cdcl3
Data collected on: May 252012
Operator: sharose
Relax. delay 0.500 sec
Pulse 45.0 degrees
Acc. time 3.500 sec
Acq. time 3.500
Width 6377.6 Hz
8 repetitions
BSERVE H1, 399.5337065 MHz
OBSERVE H1, 399.5337065 MHz
DATA PRoCESSING
Line broadening 0.3 Hz
FT size 65536
Total time 0 min 40 sec

10SRN107_13C
Sample Name:
Data Collected on:
Ga. Chem. LSA UMich.edu-vnmrs 400
Archive directory
Sample directory:
FidFile: 10SRN107_13C
Pulse Sequence: CARBON (s2pui)
Data collected on: May 252012
Operator: sharose
Relax. delay 0.100 sec
Pulse 45.0 degrees
Acq. time 2.621 sec
Width 25000.0 Hz
192 repetitions
OBSERVE C13, 100.4628326 MHz OBSERVE C13, 100.4628326 MHz
DECOUPLE $\mathrm{HI}, \quad 399.5357121 \mathrm{MHz}$ DECOUPLE
Power 42 dB
continuously on
WAITZ-16 modulated
DATA PROCESSING
DATA PRocEsSING
Line broadening 1.0
Line broadening 1.0 Hz
FT size 131072
FT size 131072
Total time 8 min 42 sec

10SRN94_1H
Sample Name
Data Collected on
Yb-vnmrs 700
Archive direct
Archive directory
Sample directory:
FidFile: 10SRN94_1日

Agilent Technologies

Pulse Sequence: Proton (s2pui)
ola collected on: May 222012
Temp. $25.0 \mathrm{C} / 298.1 \mathrm{~K}$
operator: sharose
Relax. delay 0.500 sec
Pulse 45.0 degrees
Acq. time 3.500 sec
Width 11160.7 Hz
Width 11160.7 Hz
8 repetitions
OBSERVE H1, 699.7567685 MHz
DATA PROCESSING
FT size 131072
Total time 0 min 40 sec

10SRN95_1H
Sample Name
Data Collected on
Yb-vnmrs 700
Archive direct
Archive directory
Sample directory:
FidFile: 10SRN95_1H

Pulse Sequence: PRoton (s2pui)
Data collected on: May 222012
Temp. $25.0 \mathrm{C} / 298.1 \mathrm{~K}$
Operator: sharose
Relax. delay 0.500 sec
Pulse 45.0 degrees
Acq. time 3.500 se
Acq. time $3.500=$
Width 11160.7 Hz
Width 11160.7 Hz
8 repetitions
OBSERVE H1, $699.7567685 ~ M H z$
DATA PROCESSING
DAS
Line broadening 0.3 Hz
FT size 131072
Total time 0 min 40 sec

10SRN89_1H
Sample Name:
Data Collected on
Yb-vnmrs 700
Archive directory:
Sample directory:
FidFile: 10SRN89_1H
Pulse Sequence: PROTON (s2pui)
Solvent: cdcl3
Data collected on: May 202012
Temp. $25.0 \mathrm{C} / 298.1 \mathrm{k}$
Operator: sharose
Relax. delay 0.500 sec
Pulse 45.0 degrees
Acq. time 3.500 se
Width $11160 . \mathrm{Hz}$
Width 11160.7 H
8 repetitions
OBSERVE
H1, $699.7567676 ~ M H z$
OBSERVE H1, 699.75676
DATA PROCESSING
Line broadening 0.3 Hz
FT size 131072
Total time 0 min 40 sec

10SRN103_major_PhH
Sample Name
Data Collected on
Yb-vnmrs 700
Archive directory:
Sample directory:
FidFile: 10SRN103_major_PhH
Sulse Sequence: PROTON (s2pul)

Solvent: c6d6
Data collected on: Jun 2201
Temp. 20.0 C / 293.1 K
Operator: sharose
Relax. delay 0.500 sec
Pulse 45.0 degrees
Acq. time 3.500 se
Acq. time $\begin{aligned} & \text { Width } 11160.7 \mathrm{H} \\ & \text { Hen }\end{aligned}$
16 repetitions
OBSERVE H1, 699.7567977 MHz
OBSERVE H1, 699.75679
DATA PROCESSING
in FT size 131072
Total time 1 min 12 sec

10SRN103_minor_PhH
Sample Name:
bata collected on
Yb-vnmrs 700
Archive directory:
Sample directory:
FidFile: 10SRN103_minor_PhH
Pulse Sequence: PROTON (s2pul)
Solvent: c6d6
Data collected on: Jun 12012
operator: sharose
Relax. delay 0.500 sec
Pulse 45.0 degrees
Acq. time 3.500 sec
Acq- time 1.500
8 repetitions
OBSERVE H1, 699.7567981 MHz OBSERVE H1, 69
DATA PROCESSING
DATA PROCESSING
Line broadening 0.3 Hz
Line broadening
FT size 131072
Total time 0 min 40 sec

10SRN48_1H
Sample Name
Data Collected on
Yb-vnmrs 700
Archive directory:
Sample directory:
FidFile: 10SRN48_1H
Pulse Sequence: PROTON (s2pul)
Data collected on: May 42012

Temp. $25.0 \mathrm{c} / 298.1 \mathrm{~K}$
Operator: sharose
Relax. delay 0.500 sec
Pulse 45.0 degrees
Acq. time 3.500 sec
Width 11160.7
Acq. time 3.500
4 repetitions
OBSERVE H1, 699.7570869 MHz
OBSERVE H1, 699.7570869
DATA PRoCESSING
Line broadening 0.3 Hz
DATA PRocESSING
Line broadening 0.3 Hz
FT size 131072
Total time 0 min 24 sec

Sample Name
Data Collected on
Yb-vnmrs 700
Archive directory:
Sample directory:
FidFile: 10SRN59_1H-700
Pulse Sequence: proton (s2pui)
Solvent: cdcl3
Data collected on: May 122012

Temp. $-25.0 \mathrm{C} / 248.2 \mathrm{~K}$
Operator: sharos
Relax. delay 0.500 sec
Pulse 45.0 degrees
Acq. time 3.500 sec
Acq. time 3.500 sec
Width 11160.7 Hz
Acq. time 11160.7 Hz
4 repetitions
$\begin{aligned} & \text { OBSERVE H1, } 699.7567668 ~ M H z\end{aligned}$
OBSERVE H1, 699.7567668
DATA PROCESSING
Line broadening 0.3 Hz FT size 131072
Total time 0 min 24 sec

10SRN59_13C_clean_700
Sample Name:
Data Collected on
Yb-vnmrs 700
Archive directory:
Sample directory:
FidFile: 10SRN59_13C_clean_700
Pulse Sequence: CARBON (s2pul) Solvent: cdc13
Data collected on: May 122012
Temp. $-25.0 \mathrm{C} / 248.2 \mathrm{~K}$
Operator: sharose
Relax. delay 0.100 sec
Pulse 45.0 degrees
Acq. time 1.468 sec
Width 44642.9 Hz
Width 44642.9 Hz
736 repetitions
OBSERVE C13, 175.9539918 MHz OBSERVE C13, 175.9539918 MHz
DECOUPLE Hi,
699.7602734 MHz DECOUPLE
H1,
Power 46 dB
continuousiy on
WALTZ-16 modulated
DATA PRoCESSING
Line broadening 1.0 Hz
FT size 131072
Total time 19 min

ön

\footnotetext{
10SRN59_19F
Sample Name
Data Collected on
Yb-vnmrs 700
Archive directory
Sample directory:
FidFile: 10SRN59_19F
Pulse Sequence: FLUorine (s2pul)
Solvent: cdc13
Data collected on: May 122012
Temp. $-25.0 \mathrm{C} / 248.2 \mathrm{~K}$
Operator: sharose
Relax. delay 1.000 sec
Pulse 30.0 degrees
Acq. time 0.891 se
Width 147.1 kHz
OBSERVE F19, 658.4292598 MHz
OBSERVE F19, 658.429259
DATA PROCESSING
IIne broadening
FT size 26214
Total time 0 min 34 sec

20	0	-20	-40	-60	-80	-100	-120	-140	-160	-180

10SRN112_clean_1H
Sample Name
Data collected on
Yb-vnmrs 700
Archive directory:
Sample directory:
FidFile: 10SRN112_clean_1H

Pulse Sequence: PROTON (s2pul)
Solvent: cdcl3
Data collected on: Jun 22012
Temp. $20.0 \mathrm{C} / 293.1 \mathrm{~K}$
Operator: sharose 20.0 c
Relax. delay 0.500 sec
Pulse 45.0 degrees
Acq. time 3.500 sec
Width 11160.7 H
8 repetitions
OBSERVE H1, 699.7567661 MHz
OBSERVE H1, 699.75676
DATA PROCESSING
Line broadening 0.3 Hz FT size 131072
Total time 0 min 40 sec

10SRN112_clean_13C
Sample Name:
Data Collected on:
yb-vnmrs 700
Archive directory:
Sample directory:
FidFile: 10SRN112_clean_13C
Pulse Sequence: CARBON (s2pul) Solvent: cdc13
Data collected on: Jun 22012
Temp. $20.0 \mathrm{C} / 293.1 \mathrm{~K}$
Operator: sharose
Relax. delay 0.100 sec
Pulse 45.0 degrees
Acq. time 1.468 sec
Acq. time 1.468 se
Width 44642.9 Hz
Width 44642.9 Hz
OBSERVE C13, 175.9539830 MHz
OBSERVE C13, 175.9539830 MHz
DECOUPLE $\mathrm{Hi}, 699.7602734 \mathrm{MHz}$
DECOUPLE
Power 39 dB
continuousiy on
Continuously on
DATA PROCESSING
Line broadening 1.0 H
FT size 131072
Total time $1 \mathrm{hr}, 55 \mathrm{~min}$

$\stackrel{\infty}{\sim} \stackrel{\circ}{\circ}{ }_{\circ}^{\infty}$

200	180	160	140	120	100	80	60	40	20

```
10SRN112_19F
Sample Nam
Data Collected on
Ga.Chem.LSA. UMich.edu-vnmrs400
Archive directory:
Sample directory:
FIdFile: 10SRN112_19
N
Pulse Sequence: FLUORINE (s2pul)
Solvent: cdcl3 % Sun 3 2012
Operator: sharose
Relax. delay 1.000 sec
*)
Acq. time 0.734 s
Width 89285.7 Hz
OBSERVE F19, 375.9372901 MHz
OBSERVE F19, 375,
DATA PROCESSING
L
Total time 0min 31 sec
```


10SRN49_1H
Sample Name
Data collected on
Yb-vnmrs 700
Archive directory:
Sample directory:
FidFile: 10SRN49_1
Pulse Sequence: PROTON (s2pui)
Solvent: cdcl3
Data collected on: May 42012

Temp. $25.0 \mathrm{C} / 298.1 \mathrm{~K}$
Operator: sharose
Relax. delay 0.500 sec
Pulse 45.0 degrees
Acq. time 3.500 sec
Width 11160.7 Hz
Width 11160.7 H
8 repetitions
OBSERVE H1, 699.7567680 MHz
OBSERVE H1, 699.7567680
DATA PROCESSING
Line broadening 0.3 Hz FT size 131072
Total time 0 min 40 sec

10SRN60_1H
Sample Name
Data collected on
Te-vnmrs 500
Archive directory
Sample directory:
FidFile: 10SRN60_1H
Pulse Sequence: proton (s2pul) Solvent: cdc13

Operator: sharose
Relax. delay 0.500 sec
Pulse 45.0 degrees
Acq. time 3.500 sed
Acq- time 3.500
Width 8012.8 Hz
16 repetitions
OBSERVE H1, 500.0931592 MHz OBSERVE H1, 500
DATA PROCESSING
DATA PROCESSING
Line broadening 0.3 Hz

10SRN96_1H
Sample Name:
Data Collected on:
Yb-vnmrs 700
Archive directory
Sample directory:
FidFile: 10SRN96_1H
Pulse Sequence: proton (s2pul)
Solvent: cdcl3
Data collected on: May 222012
Temp. $25.0 \mathrm{C} / 298.1 \mathrm{~K}$
operator: sharose
Relax. delay 0.500 sec
Pulse 45.0 degrees
Acq. time 3.500 sec
Width 11160.7 Hz
Width 11160.7 Hz

OBSERVE H1, 699.756763
DATA PROCESSING
Line broadening 0.3 Hz FT size 131072
Total time $0 \min 40$ sec

10SRN50_1H
Sample Name:
Data collected on
Yb-vnmrs 700
Archive directory:
Sample directory:
FidFile: 10SRN50_1H
Pulse Sequence: PROTON (s2pui)
Solvent: cdcl3
Data collected on: May 42012
Temp. $25.0 \mathrm{C} / 298.1 \mathrm{~K}$
operator: sharose
Relax. delay 0.500 sec
Pulse 45.0 degrees
Acq. time 3.500 sec
Width 11160.7 Hz
Width 11160.7 H
8 repetitions
OBSERVE H1, 699.7567710 MHz
OBSERVE H1, 699.75670
DATA PRoCESSING
Ine broadening 0.3 Hz
FT size 131072
Total time 0 min 40 sec

10SRN85_1H
Sample Name
Data collected on
Yb-vnmrs 700
Archive directory:
Sample directory:
FidFile: 10SRN85_1H
Pulse Sequence: PROTON (s2pul)
Solvent: cdcl3
Data collected on: May 222012

Temp. $25.0 \mathrm{C} / 298.1 \mathrm{~K}$
Operator: sharose
Relax. delay 0.500 sec
Pulse 45.0 degrees
Acq. time 3.500 sec
Width 11160.7 H
8 repetitions
OBSERVE H1, 699.7567683 MHz

Line broadening 0.3 Hz
FT size 131072
Total time 0 min 40 sec
Agilent Technologies

10SRN61_1H
Sample Name
Data Collected on
Te-vnmrs 500
Archive directory:
Sample directory:
FidFile: 10SRN61_1H
Pulse Sequence: PROTON (s2pui)
Solvent: cdc13 $\begin{aligned} & \text { Data collected on: May } 122012\end{aligned}$
Operator: sharose
Relax. delay 0.500 sec
Pulse 45.0 degrees
Acq. time 3.500 sec
Acq. time 3.500
Width 8012.8 Hz
16 repetitions
OBSERVE H1, 500.0931673 MHz
data processing
Line broadening 0.3 Hz

10SRN61_13C
Sample Name:
Data collected on
Te-vnmrs 500
Archive directory:
Sample directory:
FidFile: 10SRN61_13C
Pulse Sequence: CARBON (s2pul)
Solvent: cdcl3
Data collected on: May 122012
Operator: sharose
Relax. delay 0.100 sec
Pulse 45.0 degrees
Acq. time 1.049 sec
Width 31250.0 Hz
464 repetitions
OBSERVE C13, 125.7485317 MHz DECOUPLE H1, 500.0956704 MHz Power 41 dB
ontinuously on
WALTZ-16 modulated
DATA PROCESSING
Line broadening 1.0 Hz
FT size 65536
Total time $8 \mathrm{~min} 53 \mathrm{sec}{ }_{\mathrm{c}}^{\infty}$

