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[1] When targeting small amplitude surface deformation, using repeat orbit Interferometric Synthetic Aper-
ture Radar (InSAR) observations can be plagued by propagation delays, some of which correlate with topo-
graphic variations. These topographically‐correlated delays result from temporal variations in vertical
stratification of the troposphere. An approximate model assuming a linear relationship between topography
and interferometric phase has been used to correct observations with success in a few studies. Here, we
present a robust approach to estimating the transfer function, K, between topography and phase that is rel-
atively insensitive to confounding processes (earthquake deformation, phase ramps from orbital errors, tidal
loading, etc.). Our approach takes advantage of a multiscale perspective by using a band‐pass decompo-
sition of both topography and observed phase. This decomposition into several spatial scales allows us
to determine the bands wherein correlation between topography and phase is significant and stable. When
possible, our approach also takes advantage of any inherent redundancy provided by multiple interfero-
grams constructed with common scenes. We define a unique set of component time intervals for a given
suite of interferometric pairs. We estimate an internally consistent transfer function for each component
time interval, which can then be recombined to correct any arbitrary interferometric pair. We demonstrate
our approach on a synthetic example and on data from two locations: Long Valley Caldera, California,
which experienced prolonged periods of surface deformation from pressurization of a deep magma cham-
ber, and one coseismic interferogram from the 2007 Mw 7.8 Tocapilla earthquake in northern Chile. In
both examples, the corrected interferograms show improvements in regions of high relief, independent
of whether or not we pre‐correct the data for a source model. We believe that most of the remaining signals
are predominately due to heterogeneous water vapor distribution that requires more sophisticated correction
methods than those described here.
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1. Introduction

[2] Interferometric SyntheticAperture Radar (InSAR)
images are widely used in the analysis of tectonic
deformation,magmatic activity, flow of glaciers, and
other surface deformation processes (for reviews,
seeMassonnet et al. [1994], Burgmann et al. [2000],
Hanssen [2001], and Simons and Rosen [2007]).
These observations are frequently plagued by spa-
tially heterogeneous propagation delays between the
radar platform and the ground. Propagation delays
have three major sources: wet delays, hydrostatic
delays and ionosphere effects. For microwaves, the
refractivity changes due to the dipole components of
water vapor, also known as “wet delays”, contribute
the most to the neutral atmospheric propagational
delays [Bevis et al., 1992]. Recent study also shows
that hydrostatic delays, which depends on the
pressure to temperature ratio, varies significantly at
low elevation and cannot be neglected [Doin et al.,
2009]. Ionospheric effects result from spatio‐tem-
poral variations in ionospheric electron density.
These effects are in general more obvious in the
higher latitude and in the L‐band SAR data than
the C‐band SAR, due to the dispersive nature of
the atmospheric medium [Gray et al., 2000]. Wet
delays and hydrostatic delays may strongly obscure
tectonic signals when the signal amplitude is small ‐
as is frequently the case with interseismic defor-
mation. For example, in two‐pass interferometry, a
20% change in humidity may result in 10 cm of
deformation error [Zebker et al., 1997], thereby
compromising the effectiveness for InSAR to detect
mm‐to‐cm scale deformation. Wet delays and
hydrostatic delays are non‐dispersive and therefore
the multiwavelength approach generally used to
correct for GPS ionospheric biases cannot be applied
to tackle this problem [Zebker et al., 1997].

[3] One way to mitigate the tropospheric delay
problem is to average N‐independent interfero-
grams, since the neutral atmospheric signals are

uncorrelated over timescales longer than 1‐day
[Zebker et al., 1997; Emardson et al., 2003]. This
simple technique can reduce the variance of
atmospheric errors by a factor of

ffiffiffiffi
N

p
. The aver-

aging method is practical and effective when trying
to estimate secular rates from a large number of
interferometric pairs. However, if time‐dependent
deformation is expected or only a few inter-
ferograms are available, the stacking approach is no
longer useful. One way to mitigate the tropospheric
delays in a time series is to apply filtering tech-
niques, such as the temporal plus spatial filters
suggested by Berardino et al. [2002]. The choice
of filter in this approach is subjective, leading to
the concern of smoothing out signals over the same
time scales as the noise.

[4] Other studies propose more complicated but
direct methods for estimating and removing the
effects of wet delays. Proposed methods include
use of GPS data [Onn and Zebker, 2006] and
radiometric data to produce zenith path delay dif-
ference maps for InSAR atmospheric correction,
for instance using either MODIS (Moderate Reso-
lution Imaging Spectroradiometer) [Li et al., 2005,
2006a], or MERIS (Medium Resolution Imaging
Spectrometer, for ENVISAT system only) [Li et
al., 2006b, 2006c]. Other approaches use weather
models together with radiometric data to generate
an instant water vapor map, such as MERIS with
MM5 (Mesoscale Meteorological Model) [Puysségur
et al., 2007], or use a weather model only to predict
atmospheric delays [Foster et al., 2006]. These
imagery‐based or model‐based approaches may
provide estimates of water vapor distribution from
independent data sources or models at the time the
SAR image was acquired. However, imagery‐based
approaches have limited application for older SAR
images. MODIS and MERIS was launched in 1999
and 2002, respectively. Radiometric systems require
solar illumination, so they can not be used to correct
for SAR images acquired at night. Some calibra-
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tion statement is also necessary for the user to
accommodate the radiometric data to different
study areas. GPS‐based approaches are limited by
the density and existence of GPS stations in some
remote area. Moreover, the efficacy of modeling‐
based approaches are still debated, especially the
extent to which they consistently reduce or add
noise to interferometric observations.

[5] The approach proposed in this study, compared
to the aforementioned methods, is relatively simple
and not limited by the availability of other inde-
pendent data. Our approach focuses on mitigating
the effects of the time‐variable vertically stratified
component of the atmospheric delays, as described
by Hanssen [2001]. Correction of the static com-
ponent is relatively straightforward and efficient,
and in some cases can be very effective. In a study
of the Lake Mead area, Nevada, Cavalié et al.
[2007] showed that static tropospheric delays can
be estimated by analyzing the correlation between
phase and topography. (To be more accurate, it is a
correlation between phase change and topography,
but for simplicity we use “phase” to refer to “phase
change”). This method, however, does not always
work well because in some cases phase does not
seem linearly related to topography due to multiple
tectonic/non‐tectonic sources and confounding effects
of delays due to turbulent atmospheric circulation.

[6] Our study proposes an improved method that is
less sensitive to all these confounding factors. We
use a multiscale approach to estimate variations in
topographically‐correlated propagation delays.
This approach is based on the same assumption
made by earlier works of a linear relationship
between phase and topography. We first test our
approach in a synthetic example, and validate that
in regions where there is no strong turbulent mix-
ing, this approach can serve as the first order cor-
rection. We then demonstrate our method with
examples from the Long Valley Caldera in Cali-
fornia, and northern Chile.

2. A Multiscale Approach to Estimating
Topographically Correlated Delays

2.1. Model

[7] Correlation between range change and topog-
raphy results from the variation of the refractivity
of the atmosphere along the vertical due to changes
in pressure (P), temperature (T), humidity and
water vapor content in the lowermost atmosphere

between two SAR acquisitions [Hanssen, 2001].
For a vertically stratified troposphere model, if
elevation changes across the scene, propagation
delays vary at different elevation with a rate
increasing with water vapor content and P/T ratio
[Doin et al., 2009]. In contrast to the effect of
turbulent mixing, this vertical stratification is con-
sidered static over a given area throughout a certain
period of time. As the concentration of water vapor
generally decreases exponentially with elevation,
the theoretical delay curve is an exponential func-
tion of elevation [Delacourt et al., 1998]. In an
interferogram subject to only static tropospheric
delays, the signal is the difference between the
delay curves for two individual SAR acquisitions.
If we take a Taylor series expansion over the
resultant exponential function, and ignore the sec-
ond order and higher terms, we can derive a simple
linear relation

D� ¼ bþ Kh ð1Þ

where b is a bias term and K is the transfer function
between topography (h) and phase (D�) [Cavalié
et al., 2007]. This simple linear model works for
most weather conditions, except for extraordinary
cases such as inverted or non‐monotonic tropo-
spheric stratifications. The transfer function, K,
is best determined by a global rather than a local
linear regression, since the phase/elevation rela-
tionship may have local trade‐offs with the
deformation/elevation relationship [Cavalié et al.,
2007]. This transfer function is therefore consid-
ered as a scene‐wide property rather than a value
that changes heterogeneously across the scene.
However, global correlations may result in large
uncertainties in the transfer function, making it
difficult to define the linear relationship, thus
emphasizing the need for a robust method to
determining K.

2.2. Estimation Approach

[8] Our approach explicitly recognizes that various
length scales, l, should have different sensitivities
to different sources of confounding noises. For
example, very large l(>100 km) may be more
sensitive to other processes such as tidal loading
[DiCaprio and Simons, 2008] or orbital error,
whereas the smallest l(≤2 km) may not be very
sensitive to larger‐scale tropospheric signals. Sur-
face deformation resulting from tectonic, magmatic
or glacial processes also has a rich scale‐dependent
spectrum. In the presence of all these confounding
factors, given that K is assumed to be a global
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property, there should be a reasonable range of l in
which the value of K almost stays constant and is
independent of l. Therefore, we can take advan-
tage of the multiscale perspective to robustly esti-
mate a spatially constant K which is relatively
insensitive to confounding processes.

[9] To begin with, we decompose both topography
and interferogram into different length scales
(Figure 1). We generate band‐passed images by
applying a series of Gaussian filters with different
spatial scales and taking the difference between
two neighboring scales. We choose filter limits that
scale with integer powers of two (in units of integer
numbers of pixels). To properly represent the
amount of information carried in each channel, we
resample them according to Shannon‐Nyquist
sampling theorem. We use the resampled point sets
from selected band‐pass channels to estimate K.

[10] Band‐pass (BP) components usually show
clearer and more constant linear relationship
between topography and phase than high‐pass (HP)
and low‐pass components (LP). The high‐pass and
low‐pass components are therefore excluded from
the estimation of K. Next, we rewrite equation (1)
as

D� �ið Þ ¼ bigram þ Kigramh �ið Þ ð2Þ

where h(li) and D�(li) are the ith band‐passed
components of h and D�. bigram and Kigram denote
the bias term and transfer function of each inter-
ferogram. When multiple interferograms are avail-
able for the same region we must estimate a
consistent set of values for K. We do so by defining
a unique set of component time intervals, DT, for a
suite of interferograms (Figure 2). Each DT has a
corresponding bDT and KDT, which represents the

Figure 1. Original and decomposed (top) topography and (middle) interferogram. LP, BP and HP indicate low‐pass,
band‐pass and high‐pass respectively. The surrounding blank area in each channel results from omitting points along
the scene boundaries to avoid edge effects when applying Gaussian filters. (bottom) The scatter plots of each decom-
posed band. The estimated value of K with uncertainties and correlation coefficient R for each channel are shown at
the top right corners of the scatter plots. The final estimate of K is −1.53 cm/km in this example, close to what is
derived from full‐interferogram correlation (−1.60 cm/km). The interferograms are produced from ERS SAR images
acquired on 1995/08/26 and 1993/09/02 (see Figure 3).
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internally consistent b and K changes over this time
interval. Next we construct the linear system

where hm(ln) represents the n selected decomposed
bands of topography corresponding to m inter-
ferograms, and D�m(ln) represents the n selected
decomposed bands of m interferograms, while KDTp

and bDTp
represent the transfer function and bias

term for the pthDT. By solving this large system of
equations, we can derive both the transfer function
and bias term at the same time, making the whole
system internally consistent.

[11] We assume that there exist minor outliers
in the data due to unwrapping errors or other
measurement or processing defects. Under this
assumption, an outlier‐resistant L1‐norm regres-
sion is a better choice than least‐squares regression.
In practice, we use a convex optimization algo-
rithm (available online as Matlab package cvx)
(M. Grant and S. Boyd, CVX: Matlab software for
disciplined convex programming, 2009, available
at http://stanford.edu/boyd/cvx) for L1 regression
to derive the best solution of KDT [Boyd and
Vandenberghe, 2004]. Since there is no analytical
equation to define model errors of L1‐norm regres-

sion, we estimate the standard error of KDT(sKDT
)

using a bootstrapping technique. Given that InSAR

data are correlated in space, ideally we should
include the full covariance matrix into our regres-
sions. However, because we apply a multiscale
decomposition by using a series of Gaussian filters,
there is an issue of transforming covariance matrix
into each band‐pass channel. The details are beyond
the scope of this study, so we ignore data covariance
in our regressions. The reader should keep in mind
that the standard errors of K may be larger than what
we present if the full covariance is considered.
Finally, we form the time series ofKT by choosing an
arbitrary origin (we use zero here) for the whole
series and sequentially adding up all KDT. Once the
time series of the transfer function KT is formed, it is
easy to determine the Kigram of an interferogram
from any arbitrary pair of SAR scenes.

2.3. Synthetic Test

[12] Our synthetic test is based on the inflation
event between 1997 and 1998 in the Long Valley
Caldera, California (Figure 3) [Langbein, 2003].

Figure 2. KDT is formed by defining a unique set of component time interval DT based on the acquisition dates.
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The components considered in the synthetic inter-
ferogram include tectonic (magmatic inflation),
static topographically‐correlated delays, turbulent
mixing and ramp signals. We construct the tectonic
signals by using a point source of inflation in an
elastic halfspace [Mogi, 1958]. We assume a source
depth at 10.5 km, consistent with Fialko et al.
[2001]. As for turbulent mixing signals, several
pre‐determined noise covariance functions have
been proposed, such as a power law or an expo-
nential decay [Hanssen, 2001; Emardson et al.,
2003; Lohman and Simons, 2005]. Here we chose
the expression of Lohman and Simons [2005]

Cij
d ¼ e�Lij=Lc ð4Þ

nc ¼ vu1=2nn ð5Þ

where Cd
ij and Lij are the covariance and distance

between the ith and jth points, Lc is the scale dis-
tance, nn is uncorrelated noise, and v and u are the
matrices of eigenvectors and eigenvalues of Cd,
respectively. We assume a ramp that varies bili-

nearly in space. The constructed ramp has a major
gradient in the NW‐SE direction, mimicking pos-
sible effects due to orbital error or horizontal water
vapor gradients from north to south.

[13] There are three major parameters that we vary
to see how they influence the estimate of K. The
first one is the standard deviation s of non‐
correlated noise nn. The value is set to be between
0 to 5 cm. The second parameter is the amplitude
of the ramp. A small ramp has values between
−0.5 to 0.5 cm, close to the amplitude of tectonic
signals. A large ramp has amplitude 10 times the
small ramp. The last parameter is the character-
istic length scale, Lc, of turbulent signals. Lc is the
distance over which the noise covariance decays
by one fold. Estimates from real observations sug-
gest a scale distance usually between 5 to 30 km
[Lohman and Simons, 2005].We test values of 5 km,
15 km and 30 km.

[14] Figure 4 shows one realization of our synthetic
interferograms. We project all the components into
the line‐of‐sight direction and combine them
together. In total we generate 120 interferograms
and retrieve K values from each of them by using
our multiscale approach. We then compare our
results with the K values derived from a full (not
multiscale) interferogram‐topography correlation,
with either ramp retained or ramp removed (Figure 5).
The results show that the multiscale approach gives
a stable estimate of K values regardless of noise
strength. For the cases where Lc = 5 km, K values
slightly deviate to higher values from the true K as
the noise s increases, but still within the error bars.
In general, at greater noise levels, the multiscale
approach tends to estimate transfer functions that
are smaller than the real values. This tendency
to under‐estimate K means that the multiscale
approach is a more conservative method, so that in
most cases it will under‐correct rather than over‐
correct the topographically‐correlated tropospheric
signals.

[15] We also considered the influence of phase
ramps across the scene. K values estimated from
the ramp‐retained full‐interferogram correlation
method are generally, but not always, better than
those estimated from the ramp‐removed full‐
interferogram correlation method. A sophisticated
ramp removal approach may allow one to avoid
some intertwining signals, such as using the region
outside the tectonically influenced zone to estimate
the ramp [Cavalié et al., 2007]. In contrast to the
full‐interferogram approaches, the multiscale anal-

Figure 3. Reference map of Long Valley Caldera and
the resurgent dome during the 1997–98 inflation epi-
sode. This map has the same extent as the data footprint
of ERS track 485 used in this study.
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ysis is not sensitive to ramp magnitude and there-
fore no ramp removal is needed.

[16] Lc also has some influence on the multiscale
method. The retrieved K values using the multiscale
approach seem to be more stable at larger Lc. To
explain this phenomenon, we compare the decom-
posed turbulent signals of different Lc (Figure 6).
At Lc = 5 km, turbulent signals have more evenly
spread amplitudes in all decomposed bands. As Lc
increases, turbulent signals become more concen-

trated in the long‐wavelength channels. Therefore
in general, at large Lc, estimation of K should be
less influenced by turbulent mixing effects, but still
depends on how the turbulent peaks and troughs
randomly correlate to topography. In real cases,
unfortunately, most turbulent signals are frequently
related to topography. The user should hence keep
in mind that the retrieved K is likely to be degraded
from the “true” K, with the level of deviation
depending on the characteristic length scale and
amplitude (standard deviation) of turbulent signals.

Figure 4. A schematic description of the construction of the synthetic interferometry. (a) The topography of Long
Valley Caldera (location is the same as ERS track 485 in Figure 3), with maximum elevation (red color) up to ∼4 km.
We use the point source model of inflation [Mogi, 1958] to calculate the (b) line‐of‐sight surface displacement due to
magmatic intrusion, and use topography to compute (c) topographically‐correlated tropospheric delays. (d) Turbulent
mixing signals and (e) small bilinear ramp are computed as described in the text. We project them to the line‐of‐sight
direction and combine them to form the (f) final synthetic interferogram. In this example, s for nn is 3 cm, and noise
scale distance Lc is 30 km.
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[17] To summarize the results from the synthetic
test, we find that a multiscale approach provides a
more robust way to estimate the transfer function,
K. This approach is insensitive to phase ramps, and
therefore can yield better estimates of K when
orbital error or long‐wavelength deformation sig-
nals are present. Of course, as just alluded to, there
may be a slight deviation of K depending on the
characteristic length scale and amplitude of turbu-
lent signals.

3. Correcting Real Interferograms

[18] We test the multiscale approach in two study
areas. Our first example is the 1997–98 magmatic
inflation episode in Long Valley Caldera, Cali-
fornia. This example presents a relatively simple
tectonic source, combined with complicated atmo-
spheric turbulent signals. We test the robustness of
K by removing the magmatic inflation signals from
the interferograms. We also use this example to

emphasize the stability of our algorithm in the
presence of large‐amplitude turbulent noise. Our
second example, the 2007 Tocopilla earthquake
(northern Chile), has “rich” tectonic signals that
cover large area and wide range of wavelengths.
We show how the K values may vary with scene
sizes and comment on whether it is reasonable to
correct a large‐size interferogram with a unique
value of K. Since this study focuses on estimating
topographically‐correlated tropospheric signals, we
do not discuss in detail the geophysical aspects of
the two study cases.

3.1. Long Valley Caldera

[19] Long Valley Caldera has experience two
phases of volcanic unrest since 1989. The first
phase started rapidly in 1989, and slowly decayed
through the early 1990s. The second phase started
slowly in mid‐1997, climaxed in late 1997, and
returned to quiescence by mid‐1998. During the
second phase, it first showed an exponential growth

Figure 5. Comparison of K values calculated by using full interferogram correlation (gray lines), full interfero-
gram correlation with ramp removed (black lines) and multiscale analysis (red lines). There are 20 realizations of
synthetic interferograms in each plot, with different levels of noise standard deviation. The input K is 2.3 cm/km
(blue dashed lines). Among the three methods, the multiscale approach gives K values that are most stable and
closest to assigned K.
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increase in mid‐April, and an exponential growth
decay in late November 1997, cumulating in ∼10 cm
of uplift [Newman et al., 2001; Hill et al., 2003;
Langbein, 2003].

[20] The only satellite that has acquisitions
throughout the whole 1997–1998 Long Valley
Caldera inflation episode is ERS. Unlike ENVISAT,
ERS does not have any onboard device that mea-
sures water vapor content in real time. To remove
troposphere‐related delays, one may want to use

GPS data instead to model the water vapor distri-
bution in that area. Unfortunately most of the
available permanent GPS stations were established
in 2000. In this case, our correction approach may
serve as the best available tool tomitigate these static
delays for older interferograms.

[21] We analyzed 65 interferograms based on
24 ERS acquisitions between 1992 and 2006. We
tried to minimize the number of interferograms
according to several criteria: (1) the length of the

Figure 6. Comparison of decomposed turbulent signals with different scale distance Lc. Noise standard error is
2.5 cm in all cases. Notice that short‐wavelength channels show higher amplitude at smaller Lc than at larger Lc.
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perpendicular component of baseline (B?) should
be less than 300 m; (2) the date of acquisition
should lie outside the winter season, according to
snow precipitation record (Daily snow depth data
of Rock Creek Lakes (RCK), California Data
Exchange Center, Department of Water Resources,
available at http://cdec.water.ca.gov/cgi‐progs/
staMeta?station_id=RCK); and (3) the difference
in Doppler frequency between two acquisitions
must be less than 900 Hz. The third criterion is
particularly important, because the Doppler fre-
quency starts to wander over a large range of values
starting in 2001 [Meadows et al., 2007].

[22] We first carried out a multiscale decomposition
of topography and interferograms with 720 m mean
ground resolution. The length scales thus chosen,
from low to high frequencies, are >44.5, 22.2–44.5,
11.1–22.2, 5.6–11.1, 2.8–5.6 and <2.8 km. As we
assume that smaller length scales (l ≤ 2 km) may
not be sensitive enough to larger‐scale tropospheric
signals, there is no need to use higher data ground
resolution, which also saves computation time. Of
course, once K is estimated, we can apply the

correction to the full resolution interferogram. We
then constructed and solved the linear system of
equations (3). The time it takes to solve this linear
system (65 interferograms) on an average PC is
currently usually less than half an hour. We apply a
bootstrapping technique [Tichelaar and Ruff, 1989]
and derive the standard errors for KDT, with the
average as 0.06 cm/km. Figure 7 shows the KDT

time series. Values of Kigram estimated from KDT

are nearly identical to those estimated on an inter-
ferogram by interferogram basis, except for few
outliers (Figure 8). After examining outlier inter-
ferograms individually, we found that these inter-
ferograms have larger areas with unwrappping
errors. In this case our assumption that there are
only minor unwrapping errors does not hold.

[23] We tested the sensitivity of our multiscale
approach to confounding tectonic signals. We
modeled the 1997–1998 inflation episode by using
point inflation source [Mogi, 1958]. Source parameters
are determined in the same way as in constructing
synthetic interferograms. We assume that the source
depth remains fixed during the whole inflation epi-

Figure 7. KT time series derived from multiscale approach. We arbitrarily set the first value in this KT time series as
zero, and sequentially add up all KDT values. The error bars here are shown with one standard error, derived by using
bootstrapping technique.
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sode, with inflation volume as the only changing
parameter. We then remove models from original
interferograms, and carry out the multiscale decom-
position and calculated the Kigram value again. The
Kigram values thus derived are almost identical to
the Kigram values derived before model removal
(Figure 9). This real case test proves that the esti-
mate of K by using multiscale approach is robust.
The full‐interferogram correlation approach, by
contrast, does not seem to be stable after the
inflation model is removed from the interferogram.

[24] This example also demonstrates significant
influence of intermediate‐wavelength turbulent
disturbance, particularly near the center of the
interferogram (Figure 9), where topography is not
as high as Sierra Nevada. This turbulent disturbance
is prominent in multiple interferograms, probably
due to the water vapor brought by the northerly or
southerly prevailing wind along Owens Valley
[Zhong et al., 2008]. The phase‐topography plot
for each band‐pass channel of this interferogram

shows large scatter (Figure 10b), similar to what
we derive from synthetic test when turbulent noise
(with mid‐to‐large Lc) is high (Figure 10a). From
what we have found through the synthetic test, our
estimates of K are more likely to under‐correct
than over‐correct the interferograms.

3.2. The 2007 Tocopilla Earthquake, Chile

[25] The Mw 7.8 Tocopilla earthquake occurred on
14 November 2007 (15:41 UTC) in northern Chile.
The epicenter is located 25 km south of the town of
Tocopilla and 150 km north‐northeast of the city of
Antofagasta (Figure 11) [Delouis et al., 2009]. The
Global Centroid Moment Tensor (GCMT) catalog
solution for the mainshock shows a centroid depth
of 38 km and a focal mechanism of a low‐angle
nodal plane with reverse motion. The solution
suggests that this event should be categorized as a
subduction underthrusting earthquake occurring at
the interface between the subducting Nazca plate
and the overriding South American plate. The

Figure 8. Comparison between observed Kigram, calculated directly from the phase‐topography correlation of each
interferogram as shown in equation (2), and estimated Kigram, derived from the K time series. Outliers are shown in
grey circles. These outliers result from larger unwrapping errors in the interferograms.
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Figure 9. Comparison between the interferograms in Long Valley Caldera example before and after correction by
using multiscale approach and full‐interferogram correlation approach (ramp‐retained). (a–c) The original interfero-
grams before and after correction. (d–f) The interferograms with inflation model subtracted before and after correc-
tion. The delays around the Sierra Nevada Mountains area (white rectangle) are properly removed after applying
multiscale correction. (g–i) The enlarged plots of the area within the white rectangles in Figures 9a–9c. The large blob
of noise near the center of the interferogram does not correlate well with topography and may mostly result from het-
erogeneous water vapor distribution in Owens Valley.
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resultant tectonic signal therefore covers a large
area (over 100 km × 500 km).

[26] We obtained data from ENVISAT ASAR
descending track 96 acquired on April 9, 2007 and
December 10, 2007 (Figure 11). We assume that
the interferogram made from these two SAR scenes
is dominated by coseismic deformation signals. We
use the aftershock distribution to construct the fault
plane, and use a finite‐fault inversion routine [Ji et
al., 2002a, 2002b] to invert for the slip on the fault
plane with constraints from both the interferogram
measurements. We then remove the modeled dis-
placement field from the interferogram.We estimate
K values with the model‐retained and model‐
removed interferograms, and find very close results:

0.43 ± 0.01 and 0.48 ± 0.01 cm/km (Figure 12).
These two values do not fall into each other’s 95%
confidence interval, but this is likely due to the fact
that we did not consider the full covariance matrix in
our calculation, which is computationally expensive
but gives larger and more reasonable values for
standard errors [Lohman and Simons, 2005]. After
correcting the topographically‐correlated tropo-
spheric signals by using these two K values, we
clearly see that the phase gradient in the Andes
(northern part of the interferogram) is reduced
(Figures 12b and 12e). Compared with the multi-
scale correction result, the full‐interferogram cor-
relation removes even more of the gradient, but
the derived K value is not stable, and in some
regions there exists the possibility of over‐correction

Figure 10. Scatter plots (phase vs. topography) between two real cases, Long Valley Caldera and Tocopilla, and two
synthetic examples. This comparison verifies the high‐amplitude and relatively low‐amplitude turbulent signals in the
Long Valley Caldera and Tocopilla interferograms, respectively. The high amplitude of turbulence in the Long Valley
Caldera may suggest that the K derived from multiscale approach may be smaller than “real” values, as shown by the
synthetic test (Figure 5).
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(Figure 12f, near the northeastern corner of the
Andes). In the southernmost part of the interfero-
gram near the Atacama Plateau, the phase in-
creases after applying both corrections. It looks
like on the original interferogram, there is positive
phase‐topography correlation, opposite to the
trend in the Andes (Figure 12a). However, if we
consider the phase change all the way from Anto-
fagasta up to the Atacama Plateau, the phase
decreases with elevation. Therefore, the K values
derived from both methods are self consistent
within the whole interferogram, and the correction
result should be valid.

[27] With an interferogram of such large scene size
(120 × 590 km), we should consider the validity of
using a single value for K to correct the whole
interferogram. We test this idea by cropping the
interferogram into various scene sizes and carrying
out multiscale correction individually. The resul-
tant K values do not stay constant (Table 1). The
values of K derived for the sub‐scenes using the
multiscale approach do not vary nearly as much as
do the values estimated by using the standard
approach. Furthermore, the average of the K values
derived from each sub‐scene is close to the K value
derived from the full‐length interferogram by using
the multiscale approach. Therefore for a given
scene, the K value represents the average condition
of the vertically stratified troposphere in that given
area. Treatment of a system in which K varies
slowly in space will be confounded by the effects
of convective processes, and is thus not likely to be
fruitful.

4. Discussion and Conclusions

[28] In the synthetic test, we show that the multi-
scale approach is insensitive to phase ramps. One
important implication of this result is that we can
apply this correction before baseline re‐estimation
without confounding the orbital phase ramp with
topographically‐correlated tropospheric signals.
When re‐estimating baseline model parameters
from the unwrapped phase and a DEM, large‐scale
differential atmospheric artifacts will be aliased
into the baseline estimate [Buckley et al., 2003]. Li
et al. [2006a] showed that correcting the interfer-
ogram for atmospheric artifacts can effectively
improve estimates of baseline parameters. When no
satellite imagery‐based or modeling‐based correc-
tion method is available, incorporating a multiscale
correction approach can reduce the long‐wavelength
topographically‐correlated phase to a reasonable
extent without over‐estimating it, allowing more
accurate baseline refinement.

[29] We demonstrate the robustness of the estima-
tion of K in two examples by using real observa-
tions. In our Long Valley Caldera example, the
corrected interferograms still show strong delays
near the caldera. This phenomenon is observed in
multiple interferograms, probably due to the water
vapor brought by the northerly or southerly pre-
vailing winds in the Owens Valley. This dynamic
signal has a strong amplitude (∼3–5 cm) and
intermediate spatial wavelength (∼20–40 km;
Figure 10). Despite the existence of such prominent

Figure 11. Reference map of the 2007 Tocopilla earth-
quake and the ENVISAT descending track 96. Contour
interval is 1000 m.
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turbulent mixing signals, out synthetic test shows
that the multiscale approach still can provide with
a robust and conservative estimate of K. In the
Tocopilla example, the cropping test shows that K
value can vary with scene sizes. The K value
derived from the full‐length interferogram by using
multiscale approach represents an average of the

vertically stratified troposphere in the given area,
and therefore is a more conservative estimate of the
transfer function. In conclusion, our multiscale
correction should be considered as a fast and handy
tool when nothing else is available, but it is not a
panacea that can cure all challenges posed by tro-
pospheric delays.

Figure 12. Comparison between the interferograms in the 2007 Tocopilla coseismic displacement example before
and after correction by using multiscale approach. (a–c) The original interferograms before and after correction,
wrapped by every 10‐cm displacement. (d–f) The model‐removed interferograms before and after correction. Notice
that the phase gradient around the Andes (white polygons) is reduced after correction. The scatter plots of each band‐
pass channel are shown in Figure 10d. Those plots indicate relatively small influence of turbulent signals in the
Tocopilla example. See text for more discussion about the comparison of the multiscale and full‐interferogram
correlation methods, and the explanation of the correction result in the Atacama Plateau region.
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