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[1] All Alfvén waves in the solar wind have parallel electric fields, which enable Landau
damping. The Alfvén waves’ Landau resonate with very low energy electrons; low‐energy
electrons are easily trapped in the Alfvén waves, and at low energies electron‐ion
Coulomb scattering is very rapid. Analytic fluid theory and numerical solutions to the
linear Vlasov equation are used to determine the properties of Alfvén waves (and kinetic
Alfvén waves) in the solar wind. Electrostatic potentials associated with the waves’
parallel electric fields are found to be relatively large. Owing to the large potentials,
electrons over a broad range of velocities interact with the wave to produce Landau
damping. Because of this broad range, linear Vlasov theory is invalid and the
Landau‐damping rates computed via linear Vlasov theory may not be accurate.
Electron velocity diffusion owed to electron‐ion Coulomb scattering is analyzed.
Electron diffusion times in the Alfvén wave Landau resonance are calculated and are
found to be faster than wave periods and much faster than Landau‐damping time scales.
Coulomb collisions should prevent the electron distribution function from evolving
away from a Maxwellian form, and thereby Coulomb collisions act to maintain
Landau damping (although at a rate different than that given by linear Vlasov theory).
Some complications of this Landau‐damping picture arise from the interplanetary
electric field competing with the Alfvén wave parallel electric fields and from
ion beams near the Landau resonance.
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1. Introduction

[2] Since the solar wind is not an infinite homogeneous
plasma [e.g., Burlaga, 1968, 1969, 1971; Bruno et al., 2001;
Riazantseva et al., 2005; Borovsky, 2008, 2010], all Alfvén
waves in the solar wind have k? ≠ 0. Owing to the divergence
of the ion polarization drift, all Alfvén waves with k? ≠ 0 have
parallel electric fields [Fejer and Kan, 1969; Goertz and
Boswell, 1979; Goertz, 1984; Thompson and Lysak, 1996;
Hollweg, 1999]. This parallel electric field makes all Alfvén
waves subject to dissipation by Landau damping [Stepanov,
1958; Fejer and Kan, 1969; Stéfant, 1970; Gary and
Borovsky, 2008].
[3] For Alfvén waves in the solar wind, Landau damping is

important. The k? cascade of MHD turbulence in the solar
wind is believed to be dissipated at high k? by Landau
damping on solar wind electrons and ions [Dobrowolny and
Torricelli‐Ciamponi, 1985; Leamon et al., 1999; Gary and
Borovsky, 2004; Howes et al., 2008] (but see Parashar et al.

[2009] for an alternative), and at all values of k? the dissipa-
tion of Alfvénically propagating flow shears by Landau
damping provides a coefficient of shear viscosity for the solar
wind [Borovsky andGary, 2009]. Forbi < 1 (which is typical in
the solar wind at 1 AU), electron Landau damping dominates
over ion Landau damping [Stéfant, 1970; Gary and Borovsky,
2008; Borovsky and Gary, 2009; Sahraoui et al., 2010].
[4] In the absence of collisions, Landau damping of waves

will result in a modification of the distribution function at the
resonant velocity owing to particle trapping [e.g., Knorr,
1963; Gary, 1967] (compare section 10.4 of Krall and
Trivelpiece’s [1973] work and section 4.2.3 of Davidson’s
[1972] work). This modification occurs on the time scale of
the trapped‐particle bounce time tb. For electron Landau
damping of Alfvén waves owing to the nonzero parallel
electric field of the wave [Stepanov, 1958; Fejer and Kan,
1969; Stéfant, 1970; Gary and Borovsky, 2008], a flattening
of the electron velocity distribution function (plateau for-
mation) near vk = vA should occur, reducing the strength of
Landau damping, which is proportional to ∂f/∂vk at vk = vA.
In a truly collisionless plasma this could happen. However, at
the vk ≈ vA resonance in the solar wind, the electron‐ion
collision times can be very short, a second or less, much
shorter than wave periods. This fast collision time can act to
ruin plateau formation in the electron velocity distribution
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function and continuously force the electron distribution func-
tion back to a Maxwellian form. This collisional process has
been quantified for plateau formation owing to the electron
Landau damping of Langmuir waves [Zakharov and Karpman,
1963; Denavit et al., 1968; Johnston, 1971; Auerbach, 1977;
Bilato andBrambilla, 2008]. Similar arguments about collisions
have been made for the electron Landau damping of Alfvén
waves [Potapenko et al., 2000] and of nonlinearly steepened
Alfvén waves [Medvedev et al., 1998; Medvedev, 1999].
[5] Note that it has been argued that the addition of a small

amount of scattering will not change the linear Landau‐
damping coefficient for Langmuir waves: Rather, it adds a
second collisional damping coefficient [Comisar, 1963;
Burgers, 1963]. For a small amount of scattering this should
similarly be the case for Alfvén waves, with Landau damping
being accompanied by a shear viscosity damping [e.g.,
Braginskii, 1965, equation (8.40)] of and a Pedersen con-
ductivity damping [e.g., Borovsky, 1993, equation (A4)]. An
argument as to why the Landau damping does not change
evenwhen electrons are scattered out of resonance is based on
the point that, statistically, for every electron scattered out of
resonance one is scattered into the resonance: The Maxwel-
lian distribution is maintained by collisions and the phase‐
space elements that participate in the Landau damping are
always populated. Note, however, that for Alfvén waves
with periods on the order of the electron‐ion collision time tei
it is expected that the electron‐Landau‐damping resonance
at vk ≈ vA will be broadened and that the electron Landau
damping will be reduced [cf. Hedrick et al., 1995].
[6] Coulomb collisions acting on particles in the Landau

resonance provide the pathway for entropy changes in the
plasma via the Landau damping of wave energy [Auerbach,
1977] and makes Landau damping irreversible [e.g., Ryutov,
1999]. Electron‐ion Coulomb scattering enables energy and
momentum exchange between electrons and ions (compare
with section 7–7 of Shkarofsky et al.’s [1966] work).
[7] Typical solar wind parameters at 1 AU are listed in

Table 1. The characteristic velocities in the solar wind plasma

are vA = 54 km/s, vTi = 26 km/s, and vTe = 1630 km/s. In
Figure 1 the reduced electron and proton distribution func-
tions f(vk) are plotted in the vicinity of the vk ≈ vA Landau
resonance for these typical solar wind parameters, assuming
the distribution functions to beMaxwellians. Note the relative
flatness of the electron distribution function in the region of
resonance. In Figure 1 the parallel kinetic energies of the
electrons are denoted in green. Note that the parallel kinetic
energies Ek of the electrons at this Alfvén speed resonance are
quite small: Ek =mevA

2 /2 = 8.3 × 10−3 eV.With the solar wind
electrons composed of a core plus halo population [Feldman
et al., 1975; Skoug et al., 2000] with core population tem-
peratures of 12 ± 3 eV and halo population temperatures of
83 ± 22 eV, the electrons at the Alfvén speed resonance are in
the “core of the core” of the electrons. Even with the solar
wind ram velocity, this region of the solar wind electron
distribution function is of too low an energy to be accessible
to measurement (Ruth Skoug, private communication, 2010)
owing to (1) the low‐energy cutoffs of electron instruments,
(2) spacecraft charging with respect to infinity, (3) the space‐
charge potential of spacecraft photoelectron clouds, and
(4) the contamination of the electron population by spacecraft‐
generated photoelectrons [e.g., Isensee and Maassberg, 1981;
Scime et al., 1994; Katz et al., 2001; Salem et al., 2001].
[8] In this paper the properties of Alfvén waves and kinetic

Alfvén waves in the solar wind are examined, and the roles of
electron trapping and electron‐ion Coulomb scattering are
explored. This paper is organized as follows. In section 2,
electron‐ion Coulomb scattering time scales are calculated.
In section 3 the parallel electric fields and the electrostatic
potentials of Alfvén waves are explored. In section 4 the role
of electron‐ion Coulomb scattering on disrupting electron
trapping in Alfvén waves is explored. The results of this
study are summarized in section 5, where an assessment is
made for the state of electron Landau damping in the solar
wind. Section 6 contains a discussion of other factors that
complicate the picture of Landau damping in the solar wind,
and section 7 contains a discussion on the impact of this
work on previous results.

2. Electron‐Ion Coulomb Scattering Times
on the Resonance Plane

[9] In Figure 2 the Alfvén speed resonance plane is shown
in red in vk − v? space relative to the ion thermal speed
(inner black sphere) and the electron thermal speed (outer
black sphere). Except for the small region of the resonance
plane where v? is small, electrons on the resonance plane
have pitch angles near 90°. To determine the effect of
electron‐ion Coulomb collisions on electron Landau damp-
ing, it is relevant to calculate the electron‐ion Coulomb
scattering times for electrons on this resonance plane.
[10] For electron‐ion Coulomb collisions, the rule‐of‐

thumb gauge of the collisionality of a population of elec-
trons in a plasma is the 90° random walk time tei for
electrons at the electron thermal velocity. This 90° scattering
time at the thermal speed can be written [e.g., Neufeld and
Ritchie, 1955, equation (33); Krall and Trivelpiece, 1973,
equation (6.4.10)]

�ei ¼ m2
e v3Te=8 � n e4 loge Lð Þ; ð1Þ

Table 1. Typical Solar Wind Parameters at 1 AUa

Symbol Value Definition

N 6 cm−3 Number density
Te 15 eV electron temperature (core)
Ti 7 eV Proton temperature
Bo 6 × 10−5 gauss magnetic field strength
vTe 1630 km/s Electron thermal speed
vTi 26 km/s ion thermal speed
Cs 51 km/s ion‐acoustic speed
vA 54 km/s Alfvén speed
tce = 2p/wce 5.9 × 10−3 s electron‐cyclotron period
tci = 2p/wci 11 s proton‐cyclotron period
tei 1.9 × 104 s electron‐ion 90° collision time
tii 1.2 × 105 s ion‐ion 90° collision time
tee 8.4 × 103 s electron‐electron 90° collision time
rgi = vTi/wci 45 km thermal ion gyroradius
L = Cs/wci 88 km ion acoustic gyroradius
c/wpe 26 km electron skin depth
c/wpi 113 km ion inertial length
lDe 800 cm Debye length
bi 0.47 ion beta
be 1.0 electron beta
B 1.5 total plasma beta
sk 2.9 × 1013 s−1 parallel electrical conductivity
sP 0.072 s−1 Pedersen conductivity

aFrom Borovsky and Gary [2008].
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where loge(L) = loge(12pN) is the Coulomb logarithm, with
N = nlDe

3 being the number of electrons per cubic Debye
length in the plasma. The tei of expression (1) is the time scale
for the velocity vector of a thermal electron to random walk
through 90° owing to multiple small‐angle scattering. For the
typical solar wind parameters of Table 1 (with loge(L) =
26.6), expression (1) yields tei = 1.9 × 104 s = 5.3 h for the
rule‐of‐thumb 90° electron‐ion collision time scale in the
solar wind at 1 AU.
[11] But sometimes the time scale for velocity diffusion

over smaller scales is relevant, and for electrons at other
than the thermal speed. For instance, the time to diffuse
electrons out of a Landau resonance is much less than the
time to diffuse thermal electrons by 90°. The electrons in a
local element of the electron velocity distribution function
will undergo multiple Coulomb scattering off the protons
and will diffuse in angle according to

@f=@t ¼ D�� @2f=@�2 ð2Þ

(compare with Scott’s [1963] equation (2.48) and discussion
thereafter). Here D�� is a diffusion coefficient representing

the collision frequency of electron‐proton Coulomb inter-
actions. The solution to expression (2) is

f �; tð Þ ¼ 4�D��tð Þ�1=2exp ��2=4D��t
� �

: ð3Þ

This is a Gaussian distribution of angle � with a half‐width
�o given by

�o ¼ D��tð Þ1=2: ð4Þ

According to expression (4), the time to evolve from a delta
function at t = 0 to a Gaussian with half‐width �o is

t ¼ �2o=4D��: ð5Þ

According to expression (5), the time tD� to scatter by a
small angle D� compared with the time t90 to scatter by
90° is

�D� ¼ �90 D�=90�ð Þ2: ð6Þ

Figure 1. A sketch of the electron and proton velocity distribution functions of the solar wind at 1 AU in
the vicinity of the vk ∼ vA Landau resonance. For the sketch, the distribution functions are taken to be
Maxwellians. The kinetic energies of electrons are noted in green.
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For electrons in the Alfvén speed resonance plane with vk ≈
vA, we would like to know the time required for Coulomb
collisions to scatter the electron out of the resonance.
[12] In Figure 3 the geometry of the scattering calculation

is shown in vk − v? space. The initial velocity vector of a
delta function element of the electron velocity distribution
function is shown as the black vector. Note that vk = vA
initially. As an example, the time for the electrons to come
out of the Alfvén speed resonance will be taken to be the
time scale for the electrons to random walk a distance of
FvA in vk, where F is a fraction. For F = 0.1, the planes of
vA + 0.1 vA and vA − 0.1 vA are shown in blue in Figure 3,
and one such velocity vector after the random walk is
shown in green. The random walk giving Dvk = FvA can
be represented by a random walk in the direction of the
velocity vector by an angle D�. In Figure 3, the black and
green vectors (with the same lengths) are separated by a
vector Dv that has length Dv = FvA/cos(a). Thus, the
angle D� between the black and green vectors is D� = Dv/
v = FvA/vcos(a). By examining Figure 3 one finds that
cos(a) = v?/v, so

D� ¼ FvA=v?; ð7Þ

which is valid for v? > vA. Taking “90°” to be 1 rad, with
expression (7) for D� expression (6) becomes

�D� ¼ �90 FvA=v?ð Þ2; ð8Þ

where t90 in expression (8) is the electron‐ion 90° random
walk time at velocity v.
[13] For electron velocities larger than vTi, the electron‐

ion 90° Coulomb scattering time varies as v3 [Neufeld and
Ritchie, 1955]. Hence, we can write

�90 vð Þ ¼ �90 vTeð Þ v=vTeð Þ3: ð9Þ

Using expression (9), taking v ≈ v?, and using the definition
t90(vTe) = tei, expression (8) becomes

�D� ¼ F2 �ei v?v2A=v
3
Te: ð10Þ

For the typical solar wind parameters of Table 1 expression (10)
becomes

�D� ¼ 1:3� 10�2 sec F2 v?=1 km= secð Þ: ð11Þ

Figure 2. In vk − v? space, a sphere at ∣v∣ = vTi (inner circle), a sphere at ∣v∣ = vTe (outer circle), and the
vk = vk resonance plane (red).
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For F = 0.1 and F = 1, expression (10) is plotted in Figure 4 as
the two diagonal solid curves labeled “angular scattering.”As
can be seen, the time scales for electrons to random walk
away from the vk ≈ vA Landau resonance are orders of
magnitude smaller than the tei = 1.9 × 104 s rule‐of‐thumb
scattering time given by expression (1).
[14] In the vicinity of v? = 0, electrons are scattered out of

the vk ≈ vA Landau resonance by energy‐scattering‐type col-
lisions with the protons rather than angular scattering collisions
with the protons. The velocity diffusion of the electrons being
isotropic (e.g., compare equations (6.4.8) and (6.4.9) of Krall
and Trivelpiece [1973]), for electrons with velocities v greater
than vTi, the time scale for random walking a distance FvA in
the parallel‐to‐B direction is obtained from Krall and
Trivelpiece’s [1973] equations (6.4.8)–(6.4.10) as

�k ¼ m2
e v3 F2=8 � n e4 loge Lð Þ; ð12Þ

where v = (vA
2 + v?

2 )1/2. Using expression (1) for tei,
expression (12) is conveniently written as

�k ¼ v2A þ v2?
� �

=v2te
� �3=2

F2 �ei; ð13Þ

which is valid for v? � vA on the resonance plane of
Figure 2. For the typical solar wind parameters of Table 1,
expression (13) can be written

�k ¼ 2900þ v2?
� �3=2

F2 4:4� 10�6 sec; ð14Þ

with v? expressed in km/s. Expression (14) is plotted for
F = 0.1 and F = 1 as the solid curves in the vicinity of
v? = 0 in Figure 4, labeled as “forward‐backward.” In
Figure 4, dashed curves are generated that connect the
slowing‐down (foreward‐backward) calculations valid for
v? � vA to the angular scattering calculations that are valid
for v? > vA. The method of generating the dashed curves is
explained in section 4.
[15] The curves in Figure 4 should approximate the

electron‐ion scattering time for electrons to be scattered
out of the Landau resonance at vk ≈ vA. As can be seen in
Figure 4, the time scales to collisionally diffuse electrons
away from the vk = vA resonance are quite fast, 10−2–101 s.
This is much faster than the periods of Alfvén waves in the
solar wind, which are limited to periods below the ion cyclo-
tron period tci = 2p/wci ∼ 10 s.
[16] In sections 3 and 4, more detailed comparisons

between electron‐ion Coulomb collision times and wave

Figure 4. For the parameters of the solar wind at 1 AU, the
time scale for an electron to be diffused out of the vk = vA
Landau resonance is plotted as a function of v? in the reso-
nance. The top curve (f = 1) is for a resonance of width ±vA,
and the bottom curve (f = 0.1) is for a resonance of width
±0.1vA.

Figure 3. In vk − v? space, the angular diffusion of an
electron at velocity v (black vector) out of the vk = vph res-
onance (green vector) is depicted. (The black circle is the
∣v∣ = vTi sphere.)
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time scales will be made for Alfvén waves in the solar wind
at 1 AU.

3. Parallel Electric Fields and the Electrostatic
Potentials of Alfvén Waves

[17] Following the fluid treatment of Hollweg [1999], the
properties of the parallel electric fields of Alfvén waves will
be estimated. Later in section 3, numerical solutions of the
linear Vlasov equation will be used to obtain more accurate
estimates. For a low‐amplitude MHD turbulence spectrum
for the solar wind at 1 AU in which the fluctuation amplitude
is dB = 0.01 Bo at k?rgi = 1 (John Podesta, private commu-
nication, 2010) [cf. Podesta and Borovsky, 2010, Figure 3],
where rgi is the thermal ion gyroradius rgi = vTi/wci. Various
Alfvén wave quantities are plotted in Figure 5 as functions
of k?rgi where the amplitude is dB = 0.01 Bo at k?rgi = 1.

For the Alfvén wave amplitudes, dB / k?
−1/3 is taken for

k?rgi ≤ 1 and dB / k?
−1 is taken for k?rgi ≥ 1. This is written

�B ¼ 0:01 Bo k?rgi
� ��1=3

for k?rgi � 1 ð15aÞ

�B ¼ 0:01 Bo k?rgi
� ��1

for k?rgi � 1 ð15bÞ

and plotted as the dark blue curve in Figure 5. The dB/ k?
−1/3

amplitudes correspond to a Kolmogorov k−5/3 energy spec-
trum in the “inertial subrange,” and the dB / k?

−1 amplitudes
correspond to a steeper k−3 energy spectrum in the “dissipa-
tion range” or “kinetic range” [cf. Leamon et al., 1998; Smith
et al., 2006; Alexandrova et al., 2009; Sahraoui et al., 2009,
2010]. For convenience it will be assumed that the functional
form of the velocity (= electric field) spectrum of the solar
wind is the same as the functional form of the magnetic field
spectrum, which is in fact not really true for the inertial
subrange: The velocity spectra tends to have a shallower
spectral index than the magnetic field, and the energy density
of the magnetic field fluctuations exceeds the energy density
of the velocity fluctuations [cf. Podesta et al., 2007; Roberts,
2010; Podesta, 2011; J. E. Borovsky, The velocity and
magnetic field fluctuations of the solar wind at 1 AU:
Statistical analysis of Fourier spectra, unpublished manu-
script, 2011; S. Boldyrev et al., Spectral scaling laws inMHD
turbulence simulations and in the solar wind, submitted to
Physical Review Letters, 2011].
[18] For most of the Alfvén wave quantities of interest

here, a value of kk is needed. Calculations will be done on
the critical balance curve [Goldreich and Sridhar, 1997]
kk = kk (k?). This curve is obtained by equating the wave‐
crossing time twave = lk/vph = 2p/kkvph with the eddy
turnover time teddy = l?/dv? = 2p/k?dv?, where vph is the
parallel‐to‐~B phase velocity of the wave and dv? is the
velocity amplitude of the wave. This gives

kk=k? ¼ �v?=vph: ð16Þ

The wave velocity perturbation dv? is an E × B drift in the
wave electric field dE?, so dv? = cdE?/B. The wave electric
field dE? is related to the wavemagnetic field dB by dE?/dB =
vph/c. This last relation means that dv? = vphdB/B. With
this, expression (16) for the critical balance curve becomes

kk=k? ¼ �B=Bo: ð17Þ

The wavelengths l? = 2p/k? and lk = 2p/kk are plotted as the
dark red and the pink curves in Figure 5.
[19] Hollweg’s [1999] equation (25) expresses the phase

velocity along the magnetic field vph = w/kk of the Alfvén
wave as

vph ¼ vA 1þ k2?C
2
s=!

2
ci

� �1=2
1þ k2?c

2=!2
pe

� ��1=2
; ð18Þ

where vA = Bo/(4pnmi)
1/2 is the Alfvén speed and Cs/wci is

an ion‐acoustic gyroradius, with the ion‐acoustic speed
being Cs = ((gikBTi + gekBTe)/mi)

1/2 and the ion cyclotron
frequency being wci = eBo/mic. We will take gi = 5/3 and
ge = 1 [e.g., Nicholson, 1983, section 7.5]. For the typical
solar wind parameters of Table 1, expression (18) for the

Figure 5. For Alfvén waves in the solar wind at 1 AU, a
number of quantities are plotted as functions of k?. The
amplitudes of the Alfvén waves as a function of k? are taken
to be the dark blue curve (see expressions (15a) and (15b)).
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phase velocity vph is plotted as a function of k?rgi as the
light blue curve in Figure 5. As can be seen, for k? � rgi

−1

the parallel phase velocity vph is at the Alfvén speed vA =
54 km/s. This is the fluid or MHD range of wave numbers
where the shear Alfvén wave is dispersionless [Gary and
Borovsky, 2008]. As k? approaches rgi

−1, the phase velocity
begins to increase above vA, and for k? > rgi

−1 there is strong
dispersion to the mode. In this range of wave numbers the
mode is known as the kinetic Alfvén wave [cf.Hasegawa and
Chen, 1976; Hasegawa, 1977; Goertz, 1984; Lysak and
Lotko, 1996; Gary and Nishimura, 2004]. For simplicity,
we will refer to the mode in both ranges of wave numbers as
the Alfvén wave.
[20] If dB is the magnetic field amplitude of the Alfvén

wave, then the perpendicular electric field dE? of the wave
is [Hollweg, 1999, equation (2)]

�E? ¼ vph=c
� �

�B: ð19Þ

Hollweg’s equation (23) expresses the parallel electric field
dEk of the Alfvén wave in terms of the perpendicular electric
field dE? as

�Ek ¼ �E? me=mið Þv2A � �e Te=Tið Þv2ti
� �

k?kk !�2
ci 1þ �ik

2
?r

2
gi

� ��1
:

ð20Þ

Unless be ≤ 2 me/mi, which is unlikely for the solar wind,
the inertial‐Alfvén‐wave term (me/mi)vA

2 in the square
bracket of expression (20) is ignorable. Ignoring this term
and using expression (19) for dE? and then expression (18)
for vph, expression (20) becomes

�Ek ¼ �B vA=cð Þ Te=Tið Þ kk=k?
� �

�ek
2
?r

2
gi 1þ �ik

2
?r

2
gi

� ��1

� 1þ k2?C
2
s=!

2
ci

� �1=2
1þ �ik

2
?c

2=!2
pe

� ��1=2
: ð21Þ

For the typical solar wind parameters of Table 1, and taking
kk from expression (17) and dB from expressions (15), the
parallel electric field Ek given by expression (21) is plotted
as a function of k?rgi as the light green curve in Figure 5.
[21] If the parallel electric field of a wave varies as Ek (z) =

dEk sin(kkz), where z is the direction along ~Bo, then the
electrostatic potential f =

R
Ek dz varies as f(z) = (dEk/kk)

cos(kkz) and the maximum potential difference within the
wave is

fk ¼ 2�Ek=kk ¼ �k �Ek=�: ð22Þ

Using expression (21) for dEk in expression (22), the
electrostatic potential of the Alfvén wave is

fk ¼ 2 �B rgi vA=cð Þ Te=Tið Þ�ek?rgi 1þ �ik
2
?r

2
gi

� ��1

� 1þ k2?C
2
s=!

2
ci

� �1=2
1þ �ik

2
?c

2=!2
pe

� ��1=2
: ð23Þ

Note that fk is independent of kk and of kk/k?. For the
typical solar wind parameters of Table 1, expression (23) is
plotted as the red curve in Figure 5. At long wavelengths
(low k?) the potential fk of the wave increases linearly
with k? even though the wave amplitude dB decreases with
increasing k?. In the “dissipation range” the potential fk of
the wave decreases with increasing k?.
[22] For comparison with the fluid calculations of this

section, the linear Vlasov‐Maxwell dispersion relation is
computationally solved without approximation [cf. Gary
and Borovsky, 2004; Podesta et al., 2010] to discern the
properties of Alfvén waves and kinetic Alfvén waves. The
plasma parameters of Table 1 are used with dB? of the Alfvén
waves given as a function of k? on the critical balance curve
by expression (15) and kk given as a function of k? by
expression (17). In the k? � kk regime where the Vlasov
calculations will be performed, damping via the Landau
resonance is much stronger than cyclotron damping [Gary
and Borovsky, 2004]. Note that in the Vlasov calculations
damping via the Landau resonance includes Landau damping
off the parallel electric field and transit time damping off the
compressional magnetic field (see sections 5 and 6.3). In
Figure 6 the parameters twave = 2p/wreal, tLandau = 1/wimag, vph,
and dEk are plotted as points from the linear Vlasov solutions

Figure 6. ForAlfvénwaves in the solarwind at 1AU, several
critical properties are plotted as the solid curves from fluid cal-
culations and as open circles from linear Vlasov solutions.
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where they are compared with twave, vph, and dEk from
Hollweg’s [1999] fluid approach used throughout this section
and with tLandau from Gary and Borovsky’s [2008] parame-
terization for electron Landau damping (with A ≈ 0.6). The
focus of the linear Vlasov solutions is on the transition from the
MHD regime to the kinetic regime: k?rgi = 0.1–10. As can be
seen in Figure 6,Hollweg’s [1999] fluid treatment does a good
job of describing the properties of the Alfvén waves from the
MHD regime into the kinetic‐Alfvén‐wave regime. Also, the
Borovsky and Gary [2009] (see also Gary and Borovsky
[2008]) long‐wavelength parameterization of the Alfvén
wave Landau‐damping rate (red curve in Figure 6) holds well
into the kinetic‐Alfvén‐wave regime k? > rgi

−1.

4. Coulomb Scattering Disrupting Distribution
Function Evolution

[23] For Coulomb collisions to disrupt plateau formation
on the electron distribution function, electrons must be
diffused out of the Landau resonance by collisions in a
diffusion time td that is comparable to or shorter than the
trapped‐electron bounce time tb [cf. Auerbach, 1977;
Kaganovich, 1999; Bilato and Brambilla, 2004, 2008]. The
distance Dvk in vk that an electron must be diffused is
given by the kinetic energy (in the wave frame) of elec-
trons that are trapped by the wave potential fk. The maximum
parallel‐to‐~Bo kinetic energy meDvk

2/2 that can be trapped
in the wave’s potential well efk gives

Dvk ¼ 2efk=me

� �1=2
ð24Þ

for the width of the Landau resonance. Using expression (23)
for fk, expression (24) is plotted as the green curve for
electrons in Figure 5 and as the purple curve for protons (with
mi replacing me in expression (24)). Note that since fk is
independent of the wave number anisotropy kk/k?, the trap-
ping velocity Dvk is independent of the anisotropy.
[24] The bounce time (= bounce period) tb for an electron

in a wave with electric field Ek is

�b ¼ 2� me=eEkkk
� �1=2¼ 2� 2me=efkk

2
k

� �1=2
; ð25Þ

where fk = 2Ek/kk was used. For kk given by expression (17)
and fk given by expression (23), the bounce time given by
expression (25) is plotted as the dark green curve in Figure 7.
Also plotted for comparison in Figure 7 is the wave period
twave = 2p/wreal = 2p/vphkk in red. The horizontal dashed lines
in Figure 7 represent the proton gyroperiod tci, the electron‐
ion scattering time tei (from expression (1)), the electron‐
electron scattering time tee, and the ion‐ion scattering time
tii. A resistive‐damping time scale tresistive (defined below) is
plotted in light green. An analytic expression for the Landau‐
damping time scale tLandau = 1/wimag of Alfvén waves
[Borovsky and Gary, 2009, equation (19)] valid in the long‐
wavelength limit is

�L BþG ¼ 1=� ¼ A�1 !�1
pe kk�De

� ��1
k?c=!pe

� ��2
; ð26Þ

where lDe is the Debye length. With the constant A ≈ 0.6 for
electron Landau damping, the damping time tL B+G given by

expression (26) is plotted as the orange curve in Figure 7. The
diffusion of the electron velocity distribution function in
velocity space goes according to

@f=@t ¼ D @2f=@v2; ð27Þ

where the diffusion coefficient D = D(v) for electron‐ion
Coulomb scattering is a function of electron velocity v in the
proton’s frame. For velocity v = vTe, the diffusion coefficient
in expression (27) is D(vTe) = vTe

2 /tei, which is the definition
of tei. Expression (1) for tei can be rewritten tei = g vTe

3 where
g ≡ me

2/8 p n e4 loge(L). With this expression for tei, the
diffusion coefficient D(vTe) = vTe

2 /tei = 1/gvTe. Hence, at any
electron velocity v the diffusion coefficient is D(v) = 1/gv.

Figure 7. For Alfvén waves in the solar wind at 1 AU, a
number of time scales are plotted as functions of k?. The
amplitudes of the Alfvén waves as a function of k? (which
controls the bounce time as a function of k?) are given by
expressions (15a) and (15b).
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Using g = tei/vTe
3 , the diffusion coefficient is conveniently

written

D vð Þ ¼ v3Te=�eiv: ð28Þ

With expression (28), expression (27) gives the diffusion time
td(v, Dvk) to random walk a velocity Dvk at velocity v as

�d v;Dvk
� � ¼ Dv2k=D vð Þ ¼ �ei Dvk

� �2
v=v3Te: ð29Þ

ForDvk = vA andDvk = 0.1 vA, expression (29) was used to
plot td as a function of v? along the vk = vA resonance as the
two dashed curves in Figure 4 labeled “method 2,” with v =
(v?

2 + vA
2 )1/2 in expression (29). As can be seen by comparing

the dashed curves with the solid curves, the generalized cal-
culation of the velocity diffusion (expression (35)) agrees
with the angular diffusion derivation in section 2 and with the
forward‐backward derivation in section 2.
[25] Using expression (24) for Dvk, expression (29)

becomes

�d ¼ 2efk�eiv=mev
3
Te ð30Þ

for the diffusion time on the resonance plane. Expressing the
velocity v on the vk = vph resonance plane as v = (v?

2 + vph
2 )1/2,

expression (30) becomes

�d ¼ 2efk�ei v2? þ v2ph

� �1=2.
mev

3
Te ð31Þ

for v? on the plane. In Figure 7 the Coulomb scattering dif-
fusion time td given by expression (31) is plotted for v? = 0

(blue curve labeled td(0)) and for v? = vTe (purple curve
labeled td(vTe)). As can be seen by examining the blue and
purple curves, except in the region where k? ∼ rgi

−1, the diffu-
sion times td(vTe) and td(0) are verymuch faster than the wave
time scales twave and the trapped‐electron bounce times tb.
[26] For plateau formation to be impeded by the Coulomb

scattering of trapped electrons, it is required that the diffusion
time td be less than or equal to the bounce time tb, written
td ≤ tb. With expression (25) for tb and expression (30) for
td, the relation td ≤ tb for prevention of plateau formation
can be written as

v? � v?crit; ð32Þ

where the critical velocity v?crit is

v?crit ¼ 2�2 v2Teme=efk
� �3

��2
ei k�2

k � v2ph

� 	1=2
: ð33Þ

With thewave electrostatic potentialfk given by expression (23),
for the typical solar wind parameters of Table 1 the critical
velocity v?crit of expression (33) is plotted as the red curve
in Figure 8.
[27] On the resonance plane of Figure 2, electrons with

v? < v?crit are scattered out of the trapping resonance faster
than their bounce time. Hence, regions of the resonance plane
with v? < v?crit will not experience plateau formation.
Electrons on the resonance plane with v? > v?crit are “colli-
sionless” and regions of the resonance plane with v? > v?crit

can experience plateau formation. Depending on the value of
v?crit, electron‐ion Coulomb collisions will be important or
ignorable for the Landau‐damping problem. Three regimes of
v?crit can be envisioned.

Figure 8. For Alfvén waves in the solar wind at 1 AU, v?crit is plotted as a function of k? and compared
with vTe. The amplitudes of the Alfvén waves as a function of k? are given by expressions (15a) and (15b).
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4.1. Regime I: v?crit � vTe
[28] In this regime, essentially all of the electrons on the

vk = vph resonance plane of Figure 2 are collisional, plateau
formation is disrupted, and the electron distribution function
remains Maxwellian in the vicinity of the vk = vph reso-
nance. Electron Landau damping occurs (although, owing to
trapping, it may occur at a rate other than that given by the
linear Vlasov calculations). In addition, a resistive damping
of the Alfvén wave occurs because of a dissipative Pedersen
current driven by dE? of the wave owing to the nonzero
Pedersen conductivity sP of the solar wind. Borovsky’s
[1993] equation (A4) gives the e‐folding time scale of the
damping to be tPed = c2/4pvA

2sP. For a fully ionized plasma
with tei � tce the Coulomb‐scattering‐produced Pedersen
conductivity sP is [cf. Mitchner and Kruger, 1973, p. 424]
sP = ne2/mewce

2 tei. (For the typical solar wind parameters of
Table 1, this is sP = 7.2 × 10−2 s−1.) Using this expression
for sP, the Pedersen damping time becomes

�Ped ¼ me=mið Þ c4=v4A
� �

=16�2�ei: ð34Þ
[29] For the parameters of Table 1, expression (34) becomes

tPed = 3.4 × 107 s = 1.1 yr, which is plotted as the dark blue
curve in Figure 7. Additionally, a resistive damping of Alfvén
waves occurs owing to electron‐ion Coulomb collisions resis-
tively dissipating field‐aligned currents associated with
Ek [Borovsky, 1993; Lessard andKnudsen, 2001]. The resistive
damping time scale for Alfvén waves is given by equation (A5)
of Borovsky [1993]: tresistive = 4psk/c

2k?
2 . For a parallel‐to‐B

electric conductivity sk = ne2tei/me (compare section 4.3.3 of
work byAlfvén and Falthammar [1963] or equation (12.4.6) of
Bostrom [1973]), this is

�resistive ¼ k2?c
2=!2

pe

� ��1
�ei: ð35Þ

For the typical solar wind parameters of Table 1, the resistive
damping time given by expression (35) is plotted as the light
blue curve in Figure 7. Bilato and Brambilla [2004, 2008]
argue that within regime I, if td < twave, then the Landau‐
damping rate will be collisionally lowered because the dura-
tion of wave‐particle interactions is governed by the collision
time, with a shorter collision time meaning a shorter interac-
tion time and a weaker Landau damping. A counterargument
to this is that the Landau‐damping rate is not altered by col-
lisions because for every electron knocked out of resonance
another electron is knocked in, and the Maxwellian phase
space is continuously populated and the Landau damping is
unimpeded.

4.2. Regime II: vTe > v?crit > 0

[30] In this regime a fraction of the electrons on the vk =
vph resonance plane of Figure 2 are collisional, the slower
electrons. In this regime, trapping occurs for the high‐v?
electrons and plateau formation can occur in the high‐v?
portions of the resonance plane. The low‐v? portion is
collisional and the electron distribution function remains
locally Maxwellian on this portion. Linear Landau damping
is reduced owing to a reduction in the number of electrons at
the resonance that participate in the damping.

4.3. Regime III: v?crit ≤ 0

[31] In this regime, none of the electrons on the vk = vph
resonance plane of Figure 2 are collisional, trapping occurs

for all regions of the resonance plane, and plateau formation
can occur for all regions of the resonance plane. Landau
damping can be turned off owing to plateau formation
flattening the electron velocity distribution function at the
Landau resonance.
[32] As can be seen in Figure 8, for the spectrum of

Alfvén waves chosen to match the spectrum of magnetic
field fluctuations in the solar wind, v?crit (red curve) is
greater than vTe (green curve) for most values of k?. This is
representative of regime I above. Hence, for most k? values,
Coulomb collisions maintain the Maxwellian distribution at
the Alfvén wave resonance, no plateau formation occurs,
and Landau damping persists indefinitely. For about a
decade of k? around k?rgi = 1, the critical velocity v?crit is
less than vTe but greater than zero: This is representative of
regime II above. For k? values around rgi

−1 the Maxwellian is
maintained only for the low‐v? electrons in the resonance,
and the faster electrons are subject to plateau formation.
Here Landau damping by the faster electrons can be
reduced, but Landau damping by the lower‐energy electrons
persists indefinitely. Around k? = rgi

−1 the total amount of
Landau damping is reduced, but that reduced level persists
indefinitely.
[33] In Figure 9 (top) the calculations are repeated for

parameters typical of fast wind (blue) and for parameters
typical of slow wind (purple), and the v?crit curve for the
two cases is plotted and compared with vTe (green). The
fast‐wind and slow‐wind parameters used are from two
corotating interaction region (CIR) collections utilized for
superposed‐epoch studies [Denton and Borovsky, 2008;
Borovsky and Denton, 2010]. The relevant average post‐
CIR fast‐wind parameters are Bo = 6.9 nT, Ti = 26.3 eV, and
n = 3.7 cm−3; the average pre‐CIR slow‐wind parameters
are Bo = 5.2 nT, Ti = 4.5 eV, and n = 8.4 cm−3. The CIR
collections do not have electron temperature measurements:
The electron temperature does not vary substantially with
wind speed [Skoug et al., 2000], so Te = 15 eV is taken for
both fast and slow wind. These give vA = 78.2 km/s, vTi =
50.3 km/s, and tei = 3.1 × 104 s for the fast wind and vA =
39.1 km/s, vTi = 20.8 km/s, and tei = 1.4 × 104 s for the slow
wind. For the Alfvén wave amplitudes the spectrum of
expression (15) is used for both the fast and the slow wind.
As can be seen in Figure 9 (top) the v?crit curves are similar
for fast wind, slow wind, and the typical wind parameters of
Table 1. Hence, the conclusions about which regime (I, II,
or III) the Landau resonance is on versus the value of k?
do not vary greatly with the type of wind.
[34] In Figure 9 (bottom) the calculations are repeated

with the amplitudes of the Alfvén waves varied. The typical
solar wind parameters of Table 1 are used. The red curve in
Figure 9 (bottom) is the v?crit curve from Figure 8 for a dB
spectrum with dB(k?rgi = 1) = 0.01 Bo (see expressions (15a)
and (15b)), which islk = 100l? at k?rgi = 1 (see expression (17));
the blue curve is v?crit for a dB spectrum that is 3 times
weaker and the green curve is v?crit for a dB spectrum that is
3 times stronger. As can be seen, for the blue curve corre-
sponding to lower‐amplitude Alfvén waves v?crit is greater
than vTe for all k? values so the Landau resonance is in
regime I (collisional) for all k? values. And as can be seen,
for the green curve corresponding to larger‐amplitude Alfvén
waves there is a region from k?rgi ≈ 0.3 to k?rgi ≈ 30 wherein
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the Landau resonance is collisionless (regime III) and plateau
formation could turn off Landau damping.
[35] Using a series of v?crit curves as in Figure 9 (bottom),

the regions of k? space that are collisional (regime I), col-
lisionless (regime III), or transitional (regime II) are mapped
out as a function of the amplitude of the Alfvén waves. As
in expressions (15a) and (15b), the Alfvén wave amplitude
spectrum is taken to be of the form dB / k?

−1/3 for k? ≤ rgi
−1

and dB / k?
−1 for k? ≥ rgi

−1 with amplitude dB/Bo = Bamp at
k?rgi = 1. (For the earlier calculations, Bamp = 0.01 has been
used; see expressions (15a) and (15b).) Figure 10 plots Bamp

(vertical) from Bamp = 0.001 to Bamp = 1, which is lk/l? =
1000 to lk/l? = l at k?rgi = 1. As can be seen in Figure 10,
at low amplitudes the Landau resonance is collisional (blue
shading) for all k? values. Hence, for low‐amplitude Alfvén
waves in the solar wind, at all k? values the collisional
diffusion time td is faster than the trapped‐electron bounce
time tb for all values of v? in the resonance: Plateau for-
mation in the electron distribution function will not occur
and Landau damping will not be shut off. For amplitudes
Bamp that are larger than about 5 × 10−3, there is a region of
k? space around k? = rgi

−1 where the Landau resonance is

Figure 9. For Alfvén waves in the solar wind at 1 AU, curves of v?crit are plotted as functions of k? and
compared with vTe. In both plots the red curve is the v?crit curve from Figure 8. In the top plot the
parameters of the solar wind are varied from typical slow wind (purple) to typical fast wind (blue). In the
bottom plot the amplitudes of the Alfvén waves are varied from Bamp = 0.007 (blue curve) to Bamp = 0.03
(green curve).
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collisionless (pink shading in Figure 10). The larger the
amplitude of the Alfvén wave, the broader this region of k?
space is. For the observed magnetic field fluctuations of the
solar wind at 1 AU, Bamp values of 0.01–0.05 are observed.

5. Summary: Assessment for Electron Landau
Damping in the Solar Wind

[36] For low‐amplitude Alfvén waves in the solar wind at
1 AU, electron‐ion Coulomb collisions should prevent
Landau damping from modifying the electron distribution
function and electron Landau damping should persist.
However, the Landau‐damping rate may be other than the
value given by linear Vlasov theory. For higher‐amplitude
Alfvén waves, there will be a region of k? space around
k? = rgi

−1 where collisions are not effective in the Landau
resonance and the electron distribution function may be
modified away from a Maxwellian form and electron
Landau damping may be shut off. However, ion Landau
damping will persist.
[37] The findings of this study are summarized in the

following eight points. (For points 6–8, see the discussion in
sections 6 and 7.)
[38] 1. For Alfvén waves in the solar wind, the electro-

static voltages associated with the parallel electric fields of
the waves are large compared with the kinetic energies of
electrons at the phase velocity. As a result, the velocity
range of trapped electrons is larger than the phase velocity
of a wave, and the portion of the electron velocity distri-
bution function that interacts with a wave is substantial. The
resonance is so broad that electrons moving in the direction
of the wave and electrons moving counter to the wave
interact with the wave. In light of this broad resonance it is
unclear whether linear Landau theory will accurately

describe the rate of Landau damping of the solar wind
Alfvén waves.
[39] 2. Trapped‐electron bounce times are about equal to

the wave‐crossing times and eddy turnover times. Hence,
the bounce times are comparable to correlation times and so
trapping effects will persist in a spectrum of Alfvén waves.
[40] 3. Electron‐ion Coulomb collisions will disrupt

electron trapping in the Alfvén waves of the solar wind: The
Coulomb scattering velocity diffusion time scales tend to be
shorter than the trapped‐electron bounce times.
[41] 4. Since electron‐ion Coulomb collisions rapidly

diffuse the velocity distribution function in the vicinity of
the Landau resonance, they prevent plateau formation and
maintain a Maxwellian form. This allows Landau damping
to proceed indefinitely in the presence of a Maxwellian
electron distribution function.
[42] 5. Electron‐ion Coulomb collision rates in the solar

wind are weak enough so that resistive damping by the par-
allel conductivity sk acting on Ek and by the Pedersen con-
ductivity sP acting on E? can be neglected for Alfvén waves.
[43] 6. Electron transit time damping, which can dominate

the linear Vlasov Landau‐damping decrement at higher
b values, has not been analyzed. The importance of electron
trapping in the Bk perturbations of the Alfvén waves and
the disruption of that trapping by electron‐ion Coulomb col-
lisions should be assessed.
[44] 7. Ion Landau damping associated with Ek and ion

transit time damping associated with Bk have not been ana-
lyzed here for Alfvén waves in the solar wind. Specifically,
the importance of ion trapping and the disruption of ion
trapping by Coulomb collisions should be assessed.
[45] 8. Three cautions about calculating the Landau

damping of Alfvén waves in the solar wind have been stated:
(1) The wave voltages are much bigger than the energies of

Figure 10. For Alfvén waves in the solar wind at 1 AU, the regions of k? where the electron Landau
resonance is collisional (blue), collisionless (pink), or transitional (yellow) are plotted out as functions of
the amplitude of the turbulence Bamp.

BOROVSKY AND GARY: COULOMB SCATTERING AND ALFVÉN WAVES A07101A07101

12 of 19



resonant particles, and so the portion of the electron distri-
bution function that interacts with the wave is large, requiring
a Landau‐damping analysis based on more than the local
value of ∂f/∂vk at the phase velocity. (2) Proton beams, alpha
particle beams, and heavy‐ion beams with velocities in the
range of the Alfvén wave phase velocities should be included
in any accurate analysis of the Landau damping of Alfvén
waves in the solar wind. (3) Heliospheric electric fields are
larger than the Alfvén wave parallel electric fields that pro-
duce the Landau damping; hence, the effects of these electric
fields on the Alfvén waves and the Alfvén wave damping
should be assessed.

6. Discussion 1: Other Factors Affecting Landau
Damping in the Solar Wind

[46] The case of Landau damping of Alfvén waves in the
solar wind is complicated by several factors, and a full
assessment of the damping must account for these factors.

6.1. Solar Wind Interplanetary Electric Field

[47] There is a voltage drop in the solar wind between the
Sun and the outer heliosphere. In the vicinity of 1 AU, that
interplanetary electric field is observed to be manifest by a
series of weak double layers, which are Debye‐scale elec-

trostatic structures. In the solar wind they are observed to
have potential drops across them with average values of 4 ×
10−3 V [Mangeney et al., 1999; Lacombe et al., 2002; Salem
et al., 2003] and are observed to occur about once per
second in the convection past a spacecraft [Lacombe et al.,
2002; Salem et al., 2003]. With a wind speed of 400 km/s,
this is a mean electric field Edl of Edl = 1 × 10−5 V/km
(pointing away from the Sun), which is on the order of the
interplanetary electric field [Lemaire and Scherer, 1971;
Pierrard et al., 2001]. The field‐aligned potential drops
associated with weak double layers in the solar wind can be
larger than the trapping potentials within the solar wind
Alfvén waves, particularly for kk � k? which is observed in
the solar wind [Sorriso‐Valvo et al., 2006; Horbury et al.,
2008; Podesta, 2009; Narita et al., 2010; Wicks et al.,
2010; Sahraoui et al., 2010] and which is expected to be
enhanced at higher wave numbers [Goldreich and Sridhar,
1997; Boldyrev, 2005]. For kk = kk(k?) given by critical bal-
ance, the electrical potential owed to solar wind double layers
over lk/2 of an Alfvén wave is plotted as the dashed curve in
Figure 11. Plotted as the solid curve for comparison is fk of
the Alfvén wave from expression (26) for dB(k?rgi = 1) =
0.01 Bo (as in Figure 5). As can be seen in Figure 11, the
interplanetary electric field dominates the Alfvénwave parallel
electric fields until k? ∼ rgi, i.e., until the Alfvén waves are

Figure 11. For Alfvén waves in the solar wind at 1 AU, the peak‐to‐peak electrostatic potential fk of the
wave (solid curve) is compared with the potential drop of the interplanetary electric field along one‐half
wavelength of the wave (dashed curve).
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of small enough perpendicular wavelengths to reach the
kinetic range. This interplanetary electric field will modify
the picture of electron trapping and nonlinear Landau damping
for Alfvén waves in the solar wind. An analysis is called for.

6.2. Ion Beams Near the Landau Resonance

[48] Often in the solar wind there are proton, alpha par-
ticle, and heavy‐ion beams in addition to the main proton
distribution. Proton beams with sunward and antisunward
parallel velocities ∼vA are common [Feldman et al., 1973;
Marsch et al., 1982b;Marsch, 2006], and alpha particle beams
with velocities ∼vA away from Sun relative to the main proton
beam are often seen [Asbridge et al., 1976; Neugebauer and
Feldman, 1979; Marsch et al., 1982a]. These beams in the
vicinity of the Alfvén wave resonance need to be incorporated
into the Landau‐damping calculations of the Alfvén and
kinetic Alfvén waves and into the distribution function evo-
lution via waves and collisions.

6.3. Electron Transit Time Damping

[49] Alfvén waves with nonzero k? have a parallel electric
field dEk that enables Landau damping by ions and electrons
at the vk ≈ vA Landau resonance; Alfvén waves with non-
zero k? also have a parallel magnetic field perturbation dBk
[Hollweg, 1999; Gary and Borovsky, 2008] that enables
transit time damping by ions and electrons at the vk ≈ vA

Landau resonance. Depending on the bi and be values of the
plasma, the relative importance of Landau damping to
transit time damping varies, with transit time damping in
general becoming dominant at higher b values. Hollweg’s
[1999] equation (28) expresses dBk of the Alfvén wave in
terms of dB of the wave as

�Bk ¼ �B k? C2
s v�1

A !�1
pi 1þ �ik

2
?r

2
gi

� ��1
ð36Þ

with plasma variables defined in section 3. For the solar wind
parameters of Table 1 and for the Alfvén wave amplitude as a
function of k? given by expressions (15a) and (15b), the
magnitude of the Alfvén wave parallel magnetic field per-
turbation dBk as given by expression (36) is plotted in green
in Figure 12. Plotted for comparison is the perpendicular
magnetic field perturbation dB? in blue. As can be seen, dBk
is usually small, but when k? ∼ rgi, the parallel field dBk of the
wave becomes comparable to dB?. Also plotted as the green
points in Figure 12 is dBk as a function of k? obtained from
the linear Vlasov solutions.
[50] Comparing Bmax = Bo + dBk to Bmin = Bo − dBk, a

“mirror ratio” R = Bmax/Bmin can be calculated, and from the
mirror ratio the loss cone pitch angle aloss = asin(R−1/2)
(compare sections 2–8 of Boyd and Sanderson [1969]) can
be calculated and the angular half‐width Da = 90° − aloss

about 90° pitch angle of the population of mirroring parti-
cles can be calculated. That angular half‐width Da is
plotted in dark red in Figure 12. Note that the angular width
Da of the population of mirroring particles is independent
of kinetic energy and is the same for protons and electrons.
For the solar wind parameters of Figure 12, Da peaks at
7.6°, meaning electrons from pitch angles of 82.4° to 90°
are trapped: For an isotropic population of electrons this
represents 13% of all of the electrons being trapped.
[51] The nonlinear quenching of this transit time damping

by an evolution of the velocity distribution function has not
been considered here. Neither has the Coulomb scattering
disruption of trapping between the Alfvén wave magnetic
mirrors, which amounts to an angular scattering changing
the electron pitch angle until it diffuses out of the mirroring
region of pitch angle space.

6.4. Applicability of Linear Vlasov Calculations

[52] Owing to the nonzero parallel potential fk of the
Alfvén wave, electrons are trapped in the wave. Expression
(31) (green curve in Figure 5) denotes the maximum elec-
tron velocity Dvk = Dvk(fk) in the wave’s reference frame
of electrons trapped in the wave. In the rest frame of the
plasma, electrons in the parallel velocity range from vk =
vph − Dvk to vk = vph + Dvk are trapped in the wave. For
k?rgi = 0.1 the range of the electron distribution function
that is trapped is shaded in gray in Figure 13 (top).
[53] As shown in Figure 13, owing to the nonnegligible

parallel potential of an Alfvén wave, the region of the
electron distribution function containing electrons trapped in
the wave can be substantial, with a velocity spread that is
much larger than the phase velocity vph of the wave. And
note that the parameters going into Figure 13 (which came
from Figure 5) are for low‐amplitude solar wind Alfvén
waves: For higher‐amplitude waves the trapping is more
severe.

Figure 12. For Alfvén waves in the solar wind at 1 AU, the
amplitude of the wave parallel magnetic field perturbation is
plotted in green from fluid theory and as green circles from
linear Vlasov solutions. The angular width about 90° pitch
angle of the zone of magnetically mirroring particles trapped
in the wave is plotted as the dark red curve.
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Figure 13. (top) A sketch of the electron and proton velocity distribution functions of the solar wind at
1 AU showing the widths of the electron and proton Landau resonances for k?rgi = 0.1. (bottom) The
electron velocity distribution is redrawn for that resonance (note difference in vertical scale), and the
∂f/∂vk at vk = vph tangent line is drawn in.
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[54] In Figure 13 (bottom) the electron Maxwellian
velocity distribution function is examined more closely. The
Alfvén wave phase velocity vph is denoted by the red vertical
line, and the trapped‐electron range vph −Dvk to vph +Dvk is
shaded in gray. The regions of resonant electrons “faster”
than vph and “slower” than vph are indicated in green. The
slope of the distribution function ∂f/∂vk at vk = vph is indicated
by the black line tangent to the distribution. By the trape-
zoidal rule the difference in the number of faster versus
slower electrons is Dvk ∂f/∂vk. When the trapping velocity
Dvk becomes large, ∂f/∂vk at vk = vph is no longer an accurate
indicator of the relative number of interacting electrons faster
than the wave versus slower than the wave, unlike the case
when the resonance width is small compared with the phase
velocity [cf. Nicholson, 1983, section 6.7]. For Dvk large,
integration of the Maxwellian may be needed instead of a
trapezoidal rule. (For the case of Figure 13, the faster‐minus‐
slower error between integration and the trapezoidal rule is
only 0.6%.) Hence, forDvk comparable to or larger than vph,
the ∂f/∂vk coefficient of linear Landau damping may not be
proportional to the actual damping decrement of the wave.
Even if Coulomb collisions foil the trapping of individual
electrons, the elements of theMaxwellian electron population
that interact with the wave will still be over the broad range
from vk = vph −Dvk to vk = vph +Dvk, and this range will not
be described by ∂f/∂vk at vk = vph.
[55] In the absence of collisions, one criterion for the validity

of a linear Vlasov calculation of damping is that tL < tb, i.e.,
for the linear theory of damping to be valid the Landau‐
damping time scale tL must be shorter than the bounce time tb
[Dawson, 1961;O’Neil, 1965;Alexeff and Ishihara, 1978] (see
section 4.4.2 of Davidson [1972]). If the wave evolution pro-
cess proceeds for a time longer than the bounce time, then

electron orbits are no longer approximated by free‐streaming
(unaccelerated) orbits and the linear Vlasov analysis breaks
down. As can be seen in Figure 7, bounce times in general are
shorter than the linear‐Landau‐damping times, and so particle
trapping invalidates the linear Vlasov estimate of the damping.
Further, when theAlfvénwave spectrum of the solar wind is of
larger amplitude than that considered here, the bounce times
are more rapid and the case for linear Vlasov theory is worse.
[56] For a single wave, electrons are trapped in the wave’s

electrostatic potential. For a spectrum of waves, electrons can
be detrapped if the coherence time or evolution time tevol of
the fluctuations is fast compared with the bounce period tb of
the trapped electrons [e.g., Alexeff and Ishihara, 1978;
Ryutov, 1999]. The coherence time is the minimum of the
wave‐crossing time twave = lk/vph or the eddy turnover time
teddy = l?/dv?. Since we are considering fluctuations on
the critical‐balance curve, twave = teddy = tevol. In Figure 7
the bounce period tb and the wave‐crossing time twave
are plotted as the green and red curves, respectively. As can
be seen, for k?rgi < 1 the two times are comparable. In this
k?rgi < 1 regime it is expected that electrons will be trapped
even in a spectrum of waves. Here, it may be improper to
use linear Vlasov theory to calculate damping rates. As seen
in Figure 7, for k?rgi > 1 the bounce time tb begins to be
longer than the wave‐crossing time twave, so electrons might
not be trapped. Here it is safer to use linear Vlasov theory.
[57] In Figure 14 the ratio of the bounce time tb to the

evolution time tevol = twave = teddy is explored as a function
of k? and of the amplitudes of the Alfvén waves. Regions
where the electron crossing time 0.5tb is shorter than the
evolution time tevol are shaded in brown: Here electron
trapping is important even in a spectrum of waves. Regions
where the electron crossing time 0.5tb is greater than three

Figure 14. For Alfvén waves in the solar wind at 1 AU, the regions of k? where the trapped‐electron
bounce time is faster than the wave evolution time (brown), where the bounce time is slower than the
wave evolution (green), and where the two times are comparable (blue) are plotted out as functions of
the amplitude of the turbulence Bamp.
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evolution times 3tevol are shaded in green in Figure 14: Here
the Alfvénic fluctuations in a spectrum can evolve faster than
the bouncing of trapped electrons. The regions shaded in blue
with tevol < 0.5tb < 3tevol are transition regions where
electron trapping will have an effect. In the brown and blue
regions, linear Vlasov theory is not valid for calculating the
electron‐Landau‐damping rates for Alfvénic fluctuations. In
the green regions, which mostly pertain to k? > rgi

−1, linear
Vlasov may be valid for the fluctuations in the spectrum. The
horizontal line at Bamp = 0.01 in Figure 14 corresponds to
Figure 7.
[58] Because the kinetic energies of protons that resonate

with Alfvén waves in the solar wind are high (∼20 eV), the
width of the Landau resonance for protons should be nar-
row. And because the protons are massive, the proton
bounce times should be long compared with wave evolution
times. For these two reasons, linear Vlasov theory should be
valid and accurate for calculating the proton‐Landau‐
damping rates for Alfvén waves in the solar wind.

6.5. Potentials of Short‐Wavelength Waves Disrupting
Orbits in Long‐Wavelength Waves

[59] Note in Figure 5 that even though the amplitudes of
high‐k? waves are much lower than the amplitudes of low‐
k? waves (see the blue dB curve), the parallel potentials
within the high‐k? waves greatly exceed the parallel po-
tentials within the low‐k? waves (see the red fk curve).
Hence, in a spectrum of fluctuations the large parallel
potentials of the short‐wavelength waves can interfere with
particle motion in the long‐wavelength waves. For the res-
onant electrons of a long‐wavelength wave, instead of the
“unperturbed” orbits (orbits in the absence of the wave)
being unaccelerated free‐streaming orbits or even electrons
bouncing across the long‐wavelength wave, the orbits will
be electrons bouncing in short‐wavelength waves between
localized potential minima that propagate through the long‐
wavelength wave. Linear Vlasov theory is dubious here.

7. Discussion 2: Impact on Previous Work

[60] The scenario in which Landau damping at high‐k?
dissipates the k? cascade of energy in MHD turbulence
[e.g., Dobrowolny and Torricelli‐Ciamponi, 1985; Leamon
et al., 1999; Gary and Borovsky, 2004; Howes et al., 2008]
is unaffected, although the details of electron Landau damp-
ing at high‐k? may be modified by the nonlinearities of the
solar wind Alfvén waves. Ion Landau damping in high‐b
regions of the solar wind is particularly unmodified.
[61] The production of a shear viscosity for a large‐scale

collisionless plasma such as the solar wind by Alfvén wave
Landau damping [cf. Borovsky and Gary, 2009] will still
occur. For large‐scale shears (>105 km) the previous cal-
culations using linear Vlasov theory are accurate. However,
for shear scales of less than ∼105 km or less, detailed cal-
culations for Landau damping in the presence of trapping
and collisions need to be carried out to obtain accurate
values of the viscosity. For a spectrum of fluctuations,
electron trapping by short‐wavelength fluctuations is an
issue that needs to be considered in calculating the Landau‐
damping viscosity versus k?.
[62] Coefficients for the Landau damping of Alfvén

waves at high k? in the solar wind [e.g., Gary and Borovsky,

2008; Podesta et al., 2010] need to be recalculated in light
of the failure of linear Vlasov theory and the inaccuracy of
∂f/∂vk to represent faster versus slower resonant electron
populations. At higher b, where ion Landau damping
dominates over electron Landau damping, the previous
calculations of the Landau‐damping coefficients are proba-
bly accurate.
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