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MULTI-TRACE DECONVOLUTION WITH UNKNOWN TRACE SCALE FACTORS: 
OMNILINEAR INVERSION OF P AND S WAVES FOR SOURCE TIME FUNCTIONS 
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Abstract. Seismic source and wave propagation theories allow 
seismologists to compute long period synthetic seismograms that 
commonly match even subtle details of observed waveshapes, 
but the overall trace amplitudes must be scaled by arbitrary fac- 
ton to emphasize the excellent waveshape correspondence. This 
unexplained amplitude scatter causes considerable difficulties 
when formally inverting observed waveforms for seismic source 
parameters. Omnilinear inversion simultaneously determines the 
linear model parameters and trace scaling factors to minimize 
the mismatch between observed and synthetic seismograms. 
Omnilinear inversion is applied to source time function alecon- 
volution from long period P and SH waves. A simulation with 
synthetic data shows that omnilinear inversion finds the proper 
scaling factors, and the source time function and focal depth are 
better determined than for "standard" linear inversion. Omni- 

linear inversion is then applied to a data set of seven P waves 
and one SH wave from the underthrusting earthquake of July 5, 
1968 (Ms 6.6) in northern Honshu, Japan. Omnilinear inversion 
produces a best-fit focal depth of 36 km with a single pulse 
time function of 6 s duration and seismic moment of 4x10 •8 N 

m (Mw 6.4). This focal depth supports the notion that the seism- 
ically coupled plate interface extends no deeper than 40 km in 
northern Honshu. 

Introduction 

Convolution appears in nearly every facet of geophysics. A 
typical situation is where some observed function results from 
the convolution of two functions, with one function "reasonably 
well-known" and the other function unknown. In many applica- 
tions, the observed function is a time series, e.g., a seismogram. 
Since convolution is a linear operation, deconvolution of the 
unknown function is a linear inverse problem. Unfortunately, 
inversion of the convolution integral is fraught with problems 
(see e.g., Parker, 1977). 

For the particular application of deconvolution of earthquake 
source time functions from body wave seismograms, problems 
arise since the "reasonably well-known" function (the 
earthquake Green's function) contains only a certain band of 
frequencies, and also possesses spectral holes within this pass- 
band (see Ruff and Kanamori, 1983). To obtain a more reliable 
source time function for a particular earthquake, one could 
deconvolve several seismograms to produce multiple estimates 
of the source time function, or even better, simultaneously 
invert several seismograms for a single "best" source time func- 
tion. This latter procedure is particularly appropriate for small to 
intermediate size earthquakes (up to magnitude 7). 

Unfommately, we encounter another problem when simultane- 
ously inverting long period P and S waveforms: while the 
waveshapes can be matched extremely well, unexplained abso- 
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lute amplitude variations of a factor of two or more degrade the 
significance of the solution. Recognition of this amplitude 
scatter began as early as the original development of the magni- 
tude scales by Richter and Gutenberg, who also established the 
practice of using log averages for amplitude data. Although we 
now have better theories and computational schemes to account 
for earthquake radiation patterns and the subsequent wave pro- 
pagation effects, the amplitude scatter remains. In fact, many 
seismologists will simply scale the seismograms in an ad hoc 
fashion to produce the best match when using long period P 
and/or S waves. Note that amplitude scatter is a special type of 
"noise"; it does not conform to the typical assumption of nor- 
mally distributed, uncorrelated, additive noise. It is time to for- 
mally acknowledge and accommodate the scaling factor incom- 
patibility when inverting a set of waveforms. Omnilinear inver- 
sion achieves this goal. 

Source Time Function Deconvolution 

Long period teleseismic P and S waves from a shallow 
(depth<70 km) intermediate size (magnitude of 6 to 7) earth- 
quake are strongly affected by the focal mechanism, depth, and 
source time history of the event (see Langston and Helmberger, 
1975). In many instances, a good estimate for the focal 
mechanism of an intermediate size earthquake is available (e.g., 
Harvard centmid moment tensor mechanisms). Thus, all the 
earthquake parameters are well-known except for depth and 
source time function. For a given depth, a seismogram at a par- 
ticular station results from the convolution of the effective point 
source Green's function, g(t), and the source time function, f(t), 
i.e., s(t)=g(t)*f(t). The source time function can be deconvolved 
from a single seismogram. 

Now suppose that a set of n seismograms, s•(t) ..... s•(t), are to 
be inverted for the overall best source time function. There is a 
different Green's function for each seismogram: g•(t) ..... gn(t). To 
proceed, discretize the convolution integral with each seismo- 
gram now given as: Gif=%, where the column vector % is the 
discretized i •h seismogram, Gi is a matrix that contains the i •h 
Green's function, and the unknown column vector f is the 
discretized source time function. With multiple seismograms 
providing multiple estimates of the source time function, the 
combined quasi-overdetermined problem is Gf=d, where G and 
d are defined as: GT=[G• T, G•: ..... Gn 'r] and dT=[s• T, S2 T ..... SnT], 
the transposed equations are used above to conserve space. 
Given some estimate for f, say fE, the error vector will be the 
difference between the observed and synthetic seismograms: 
e=d-Gf•.. Statistical statements concerning the "noise" in d can 
be used to determine f•.. In the standard least-squares statement, 
define the squared length of the error vector to be: w=eTe, and 
find the minimum of W with respect to the components of f•.. 
Thus a suitable f•. can be found for a given depth. Since focal 
depth is a single parameter that enters g(t) in a complicated 
manner, the typical procedure is to invert for the best fv. at a 
number of trial de 3ths, and then choose the depth that produces 
the overall minimum value for W as the best focal depth. We 
are now ready to enlarge the scope of the inversion problem. 
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Omnilinear Inversion 

The omnilinear equations differ from the above "standard" 
linear equations in that the seismogram scale factors 
(a•, a2 ..... a0 are explicitly included as factors in the data 
vector: [GflT=[a•s•, a2s2 T ..... ans•]. The key step is now simply 
rewriting the data vector in its column vector form as: Sa, 
where S is a matrix with n column vectors, the ½h column vec- 
tor contains s• and zeroes elsewhere; and the a vector contains 
the n scale factors. If all components of a are equal to one, then 
Sa is the "standard" data vector. As a brief digression, the term 
"omnilinear" makes the distinction between our statistical esti- 

mation problem and the analysis of a homogeneous linear sys- 
tem. In particular, omnilinear inversion can be viewed as a 
variation of Hotelling's (1936) canonical correlation analysis. 

The error vector for omnilinear equations is then: e=Sa-GfE, 
where fE is again the source time function estimate. The least- 
squares estimate for fE is: fE=(GTG)-IGTd=(GTG)-IGTSa. With the 
substitution of the latter expression for f•. into the error vector, e 
now depends on just a. Thus the squared length of the error 
vector, w=eTe, can now be minimized with respect to the com- 
ponents of a. There is a crucial difference between this minimi- 
zation problem and that for "standard" linear inversion: W is 
always identically zero if all components of a are zero. To 
exclude this trivial solution, the above minimization problem 
must be solved with an additional constraint equation for a. For 
the case of amplitude scatter in waveform inversion, the a priori 
statistical expectation (see earlier discussion) is that the a's fol- 
low a log-normal distribution. In other words, it is equally 
likely that the amplitudes are 50% larger or 50% smaller than 
predicted. The log-normal expectation is represented by the pro- 
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Fig. 1. Synthetic event experiment with amplitude scatter. Sta- 
tion locations for the eight P waves are shown on the focal 
sphere with the oblique underthrusting mechanism. Green's func- 
tions (column at right) are ordered top to bottom for stations #1 
through #8, and are constructed for the WWSSN-LP instrument 
and a focal depth of 30 kin. Green's functions are convolved 
with the trapezoidal source time function (s.t.f.) and the resultant 
seismograms are scaled with arbitrary scale factors, listed next to 
the final "observed" seismograms (column at left). 
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Fig. 2. Source time function and match to seismograms for 
"standard" linear inversion at a focal depth of 30 km. The eight 
"observed" seismograms are plotted as the solid traces, while the 
best-match synthetic seismograms are the dashed traces. The 
source time function and standard deviation are plotted on the 
left as the solid and dashed traces, respectively. Seismic moment 
is overestimated by 20%. 

duct of the a's set equal to one: Hia4=l. While other constraint 
equations are appropriate for different physical problems, there 
is no space to present them here. In the following applications, 
error will be measured by the scalar quantity: e =d(eTe/dWd), 
hence e is the ratio of the error vector length to data vector 
length. 

The omnilinear inverse problem for fE and a is thus: with 
fE=(GTG)-•GTSa, minimize •=eT•(Sa-GfE)T(Sa-GfE) with respect 
to the components of a, subject to the constraint that Hia4=l. 
After a is found, fE is completely specified. It is now important 
to assess the performance of omnilinear inversion--in short, does 
it work? 

Omnilinear Inversion of Synthetic Data 

Synthetic P waves are generated for a typical underthrusting 
mechanism at a depth of 30 km (Vv is 6.7 km/s and Vv/Vs is 
43) and a simple trapezoidal time function of 18 s duration (see 
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Fig. 3. Source time function and match to seismograms for 
omnilinear inversion at a focal depth of 30 km. The rescaled 
"observed" seismograms (solid traces) and the synthetic seismo- 
grams (dashed traces) exactly match at this depth. Omnilinear 
inversion recovers the correct source time function, shown at left. 
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Fig. 4. Seismological setting of the July 5, 1968 northem 
Honshu (Japan) earthquake (adapted from Tichelaar and Ruff, 
1988). The Pacific plate subducts to the west beneath Honshu. 
The 6/12/78 Miyagi-Oki mainshock epicenter is plotted as the 
large star, its teleseismic one-day aftershocks are the open dots, 
enclosed by the hachured region. The bold broken line depicts 
the mainshock rupture direction and extent. Other epicenters are: 
foreshock of the 1978 event (solid dot); other large underthrust- 
ing events from 1962 to present (open boxes), including the 
7/5/68 event (star). The wide stipled bar represents the transition 
between a coupled and uncoupled plate interface. 

Figure 1). To simulate amplitude scatter, the synthetic seismo- 
grams are then multiplied by the scale factors shown in Figure 
1. To now determine the best depth and source time function, 
the seismograms are inverted for seven trial depths between 10 
and 50 km. All other parameters are correctly specified. For 
each trial depth, both "standard" inversion and omnilinear inver- 
sion are applied to the seismograms. Omnilinear inversion 
matches the data exactly only at the correct depth of 30 km, 
while "standard" inversion produces an error curve with a weak 
minimum for depths from 25 to 35 km. The mismatch between 
"observed" and synthetic seismograms for "standard" inversion 
can be seen in Figure 2. For linear inverse problems, the a 
posteri variance is easily mapped into the model covariance 
matrix, and the diagonal elements can then be used to plot the 
standard deviation of the source time function (see Figure 2). 
Given this level of uncertainty in the time function, it is quite 
risky to base conclusions on subtle details of the time function. 

Omnilinear inversion error is zero at the correct depth of 30 
km as the correct scale factors are found. This is demonstrated 

graphically in Figure 3 where the "observed" seismograms are 
perfectly rescaled to eradicate data incompatibility. Conse- 
quently, the standard deviation of the source time function tends 
to zero; not perfectly recovering the source time function comes 
from poor model resolution. Although the error will never be 
reduced to zero with real seismograms, omnilinear inversion 
always serves to reduce data incompatibility and thereby 

TABLE 1. WWSSN station codes with epicentral distance, 
A, and azimuth, •, (deg.) from 5 JUL 68 Honshu event. 

COL ALQ CTA NDI AAE JER NOR 

A 48 83 58 54 95 83 60 

• 32 50 176 280 285 305 357 

improve model reliability. The robustness of omnilinear inver- 
sion makes scale factor determination quite reliable. But does 
omnilinear inversion work for real seismograms? 

The July 5, 1968 Northem Honshu Earthquake 

Tichelaar and Ruff (1988) studied the 1978 Miyagi-Oki earth- 
quake (Ms 7.5) to determine the downdip edge of seismic cou- 
pling in the northern Honshu (Japan) subduction zone. They 
concluded that the mainshock rupture extended no deeper than 
40 km. Determination of rupture extent for large earthquakes is 
difficult due to the long duration of the source time function. 
Smaller interplate events that occur at the downdip edge of a 
mainshock rupture provide the opportunity to better define the 
depth of the seismogenic zone. The earthquake of July 5, 1968 

7/5/68 h = 36 km 
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Fig. 5. Omnilinear inversion for source time function and scale 
factors at the best focal depth of 36 km. The rescaled seismo- 
grams are plotted as solid traces with best-fit synthetics as dashed 
traces, the omnilinear scale factors are listed on the right. The 
source time function and its standard deviation are plotted as the 
solid and dashed traces at top. 
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Fig. 6. Error parameter as a function of focal depth for "stan- 
dard" and "omni-" linear inversion of the body waves for source 
time function. For this data set, omnilinear inversion significantly 
reduces the error only in the depth range of 33 to 38 km, with 
the best match at 36 km. 

(Ms 6.6, Mm 6.4, ISC origin time and hypocenter, 11:28:13.0, 
38.54øN 142.14øE, depth 44 km) occurs adjacent to the down- 
dip edge of the Miyagi-Oki mainshock (see Figure 4). 

The first-motion mechanism for the July 5, 1968 event is 
well-constrained and compatible with the 1978 mainshock 
mechanism (•=190 ø, b=20 ø, L=76 ø, Seno et al., 1980). To 
demonstrate omnilinear inversion, seven P waves and one SH 

wave are selected (see Table 1 and Fig. 5). The procedure is the 
same as for the synthetic test (V•6.7 km/s, t*v=l s, t's--4 s); the 
error curves for "standard" and omnilinear inversion are plotted 
in Figure 6. The best focal depth is 36 km, and omnilinear 
inversion reduces e from 0.40 to 0.35 at this depth. Figure 5 
shows the omnilinear solution at the best depth. Note that the 
diffracted P wave at AAE is scaled up by a factor of two. The 
SH wave amplitude at COL is quite compatible with the P wave 
amplitudes. Omnilinear inversion enhances the error minimum at 
36 km to better resolve the focal depth, thus supporting the ear- 
lier conclusion of Tichelaar and Ruff (1988). 

Conclusions 

The future of waveform inversion studies is to extract more 

detailed, yet more reliable, quantitative information about both 
earthquakes and earth structure. A major source of incompatibil- 
ity between observed and synthetic waveforms is amplitude 
scatter. Omnilinear inversion explicitly includes and determines 
these seismogram scale factors. Future investigations shall tell 
whether these scale factors are useful for earth structure studies. 
Application of omnilinear inversion to P and SH waves from 
the northern Honshu underthrusting earthquake of July 5, 1968 
confirms that the downdip edge of the seismically coupled zone 
extends no deeper than 40 km in this region. 
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