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Abstract 

 

Surfaces are never perfectly flat. Because of the surface roughness on a microscopic 

scale, true contact between two conductors occurs only at the asperities (small 

protrusions) of the contacting surfaces, leading to contact resistance, an important issue to 

high power microwave sources, pulsed power systems, tribology, thin film devices, 

integrated circuits, and interconnects, etc. Another profound effect of surface roughness is 

the excessive local field enhancement that triggers RF breakdown, and the rapid loss of 

superconductivity in a superconducting cavity. This thesis models various effects of 

surface roughness, including electrical contact resistance for both bulk and thin film 

contacts. Scaling laws are constructed for a large range of resistivity ratios and aspect 

ratios. Also presented is roughness-induced enhanced RF heating, and the enhanced RF 

electric and magnetic fields.  

Presented first is the bulk contact resistance with dissimilar materials. For decades, 

the basic model for contact resistance remains that of Holm’s a-spot, where current flows 

through a circular constriction of small radius a and zero thickness at the bulk interface. 

We vastly extend Holm’s theory to higher dimensions, including dissimilar materials. 

Both Cartesian and cylindrical channels are analyzed. A scaling law for the contact 
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resistance has been constructed for arbitrary aspect ratios and resistivity ratios. This 

scaling law has been validated in various tests, simulations, and experiments.  

This thesis next presents the thin film contact resistance with dissimilar materials. 

Simple, analytical scaling laws have been developed, for both cylindrical and Cartesian 

geometries. We have identified the optimal condition for minimization of the thin film 

contact resistance. The current crowding effect, which may induce excessive ohmic 

heating, is also studied. Extension to general a-spot geometry is made. This work may 

offer useful insights for the design and fabrication of thin film devices and components. 

Presented also is roughness-induced enhanced RF heating, and the enhanced RF 

electric and magnetic fields. We analytically compute the power absorption due to a 

hemispherical protrusion with arbitrary permittivity ε, permeability μ and conductivity σ, 

on a flat surface. The local electric and magnetic field enhancements on the protrusion are 

calculated analytically. Scaling laws are derived. 
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CHAPTER 1  

INTRODUCTION 

 

Surfaces are never perfectly flat. On a presumably pristine surface, roughness arises 

from the manufacturing process intrinsically, even if only at the atomic level. In molding, 

surface finish of the die determines the surface finish of the workpiece. In machining, the 

interaction of the cutting edges and the microstructure of the material being cut contribute 

to the final surface roughness. Different manufacturing processes introduce different 

degrees of surface roughness [1], as summarized in Fig. 1.1. Other factors, such as 

impurities attached to the surface (e.g., dirt particles), and grain boundaries, may also 

contribute to the overall surface roughness. Correct function of the fabricated component 

often is critically dependent on its degree of roughness.  

1.1 Motivation and Background 

This thesis theoretically studies the effect of surface roughness. The main focus is on 

surface roughness induced electrical contact resistance, RF heating, and field 

enhancement. This study was motivated by the recognition of its importance in the 

ongoing studies at the University of Michigan’s Plasma, Pulsed Power, and Microwave 
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Laboratory, including Z-pinch [2-4], high power microwave generation [5], triple point 

junctions [6-8], field emitters [6,9], and heating phenomenology [10,11].  

 

 

Fig. 1.1. Typical surface finish tolerances in manufacturing [1] 

When two materials make contact with one another, the surface roughness causes 

only a fraction of the area between the materials to actually connect. Current flows only 
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through the true contact areas. This gives rise to contact resistance [12-30] (Fig. 1.2). In 

the wire Z-pinch, the electrical contacts at the cathode and the anode of the wires affect 

the current delivered to the wire load [2, 3, 31-34]. This in turn affects the Z-pinch 

plasma dynamics and has a significant influence on the X-ray yield for the Z-machine at 

the Sandia National Laboratories [35]. At University of Michigan, the contact resistance 

effects in a Z-pinch were mitigated by soft metal gaskets [2].  

 

 

Fig. 1.2 True points of contact occur only at the asperities of the contacting surface, leading 

to high contact resistance. 

Besides Z-pinch, surface roughness induced contact resistance has a significant 

impact on the electrical characteristics of thin film devices, such as thin film transistors 

[16, 36, 37]. The theoretical analysis to be developed in this thesis for bulk contacts 

provides a natural extension to thin film contacts, which have become increasingly 

important in the performance limit of integrated circuits [38-40]. Recently, dramatic 
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advances have fueled speculation that carbon nanotubes (CNTs) will be useful for 

downsizing circuit dimensions; however, their superior ballistic current carrying 

capability is greatly compromised by the unavoidable large contact resistances [41]. For 

CNT based cathodes [41-43] and interconnects [44-46], carbon-metal interfaces must be 

optimized to achieve low contact resistances required by the International Technology 

Roadmap for Semiconductors [47]. Contact resistance is also critical to 

micro-electromechanical system relays and microconnector systems, where thin metal 

films of a few microns are typically used to form electrical contacts [21, 22]. It is 

important that low contact resistance be achieved so as to reduce Joule heating and 

thereby achieve more reliable performance under high current, as the heat generated 

during switching cycles is the most significant factor leading to failure [48-50]. On the 

largest scales, faulty electrical contact has caused the recent failure of the Large Hadron 

Collider, and similarly threatens the International Thermonuclear Experimental Reactor 

[51, 52].   

Another profound effect of surface roughness is the enhanced RF power absorption 

and excessive local field enhancement both in the RF electric field and in the RF 

magnetic field. These effects severely limit the performance of RF cavities or slow wave 

structures [53-65], for example, in communication systems [54-56], particle accelerators 

[57-59, 65-69], material characterization at microwave frequencies [70,71], etc. Surface 

roughness may cause enhanced power absorption in these devices [62-65, 72, 73]. It may 

lead to excessive local electric field enhancement that triggers RF breakdown [56, 74-76]. 
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In a superconducting cavity, surface roughness may also cause local magnetic field 

enhancement that leads to abrupt quenching, [53, 57, 58] i.e., rapid loss of 

superconductivity. Surface finish is one of the most important current issues of the 

Niobium (Nb) superconducting radio frequency (SRF) cavities used in particle 

accelerators [77]. Hence, creating ultra-smooth, polished surfaces to retain 

superconductivity in the presence of large RF magnetic fields remains the current 

challenge in superconducting cavity fabrication [53, 66, 67]. 

In high speed interconnects and microelectronic packaging based on organic 

materials, the surface of the metal conductors (typically copper) is artificially roughened 

to enhance the interfacial adhesion between the dielectric and the conductive medium, 

subject to rigid industry specifications [78, 79]. However, such roughness of the surface 

can cause significant effects on conductor loss at microwave frequencies due to the skin 

effect. Experiments [80] demonstrated the decrease of effective conductivity of different 

copper foils by as much as 50%-70% in the multigigahertz region due to surface 

roughness. Accurate estimation of power loss due to surface roughness is instrumental for 

packaging and board substrate technology development, i.e., for making the tradeoff 

between thermomechanical reliability (adhesion), electrical performance (loss), and cost 

[78-80]. Surface finish is also known to be an issue for excessive power absorption in the 

development of gyrotrons, the millimeter wave source widely used in magnetic 

confinement fusion experiments.  
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1.2  Prior Works 

1.2.1 Bulk Contact Resistance 

For decades, the fundamental model of electrical contact has been that of Holm’s 

a-spot [12], which is a circular constriction of radius a between two contacting surfaces, 

as shown in Fig. 1.3. Current is allowed to flow only through the constriction spot (a-spot) 

from one conducting member to the other. The resistance due to this constriction is 

defined as contact resistance, or constriction resistance, Rc, which is found to be [12] 

2
cR

a


 ,                                                      (1.1) 

where ρ is electrical resistivity of the contact members and a is the contact spot radius. 

 

 

Fig. 1.3 Holm’s a-spot model of a circular constriction between two contacting members. 

Implicit in the theory of Holm [12] are three assumptions:  

(A) The a-spot has a zero thickness, i.e., zero axial length in the direction of current flow;  

(B) The current channel is made of the same material, e. g., the effects of contaminants 
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have been ignored; and 

(C) The contact members are bulk conductors, whose dimensions transverse to the 

current flow are infinite.  

Many subsequent models have been developed based on Holm’s a-spot theory, adopting 

these three assumptions. Because of Holm’s seminal contributions, IEEE has a dedicated 

conference on electrical contacts named after Holm, and the a-spot is used as the 

conference logo. Some results of this thesis were presented at the Holm conference [26]. 

In 1966, Greenwood [14] developed a statistical model to study the contact resistance 

of a cluster of a-spots, aiming to characterize the true contact between nominally flat 

surfaces, which is known to occur at a number of contact asperities (i.e. a number of 

clusters of micro-contacts), instead of a single a-spot. While Greenwood’s model is 

extensively used, it has adopted the three assumptions of Holm’s model listed in the 

preceeding paragraph. Holm’s a-spot theory has also been extended to other shapes, 

including elliptical [12], square [19], and ring shapes [19], etc. Again the three basic 

assumptions of Holm’s a-spot are always used. 

In the 1980s, Rosenfeld and Timsit [15] considered the contact resistance in a 

constricted cylinder of uniform material, with finite radius b and constriction radius a, 

shown in Fig. 1.4(a), and extended Holm’s a-spot theory to include the effects of finite 

bulk radius [15], thereby relaxing assumption (C) stated above. The contact resistance of 

such an a-spot with contact members of finite radius is expressed as 
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2
c cR R

a


  ,                                                         (1.2) 

where the normalized contact resistance cR  is plotted in Fig. 1.4(b). Holm’s a-spot value 

in Eq. (1.1) is recovered from Eq. (1.2) as b/a >> 1.  

 

     
Fig. 1.4 (a) Rosenfeld and Timsit’s extension [15] of Holm’s a-spot to an 

electrically-conducting cylinder of finite radius b, and (b) the normalized contact resistance 

as a function of b/a. 

 

 

 

Fig. 1.5 A rectangular current channel with connecting bridge of a finite axial length in the 

direction of current flow (a), a cylindrical current channel with a connecting bridge in the 

form of a cylinder (b), and of a funnel (c). [23]  
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More recently, Lau and Tang [23] extended the Holm-Rosenfeld-Timsit theory to 

include a connecting bridge of finite axial length (h) connecting two metal blocks, as 

shown in Fig. 1.5, thus relaxing Holm’s zero-thickness assumption (i.e. the assumption 

(A)) and the infinite transverse dimension assumption (i.e. the assumption (C)). Both 

Cartesian and cylindrical geometries of different connecting bridge types are treated, 

shown in Fig. 1.5. While the theory in Ref. [23] was validated in recent experiments [24], 

it is restricted to the special case where the current channels and their connecting bridges 

are made of the same material, and where the current channels are of equal geometrical 

dimensions. Thus, the model of Ref. [23] gives no hint on the important effects of 

contaminants at the electrical contact. 

This thesis [25, 26] extends Holm-Rosenfeld-Timsit-Lau-Tang’s theory to include the 

effects of dissimilar materials, thereby simultaneously relaxing assumptions (A), (B), and 

(C) mentioned in this sub-section.  

1.2.2 Thin Film Contact 

The bulk contact models discussed in Section 1.2.1 are inapplicable to the thin film 

contact, where one or more of the contact members are in the form of thin film and not 

semi-infinite. This is because in a thin film contact, shown in Fig. 1.6, the spreading 

resistance arises from the sharp bending of current flow lines in the immediate vicinity of 

the constriction edges, with subsequent spreading into the thin film over a distance of one 

constriction radius or less [20-22]. Beyond this distance, the current flow lines are 
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parallel to the film boundaries and any additional contribution of spreading resistance to 

overall resistance becomes insignificant [20].  

 

 

Fig. 1.6 (a) The current flow lines between two bulk marterials meeting at a contact spot as 

assumed in traditional contact theory. (b) The current flow lines between two thin films 

meeting at a contact spot. [21] 

 

  

Fig. 1.7 (a) Schematic comparison of the region of spreading resistance in a solid conductor 

with the corresponding region in a thin film conductor. (b) Normalized thin film spreading 

resistance as a function of the ratio of constriction radius a to thin film thickness h. [20]   
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Hall [16, 17] investigated the two-dimensional (2D) thin film resistance for 

various patterns in Cartesian geometry, using conformal mapping. Denhoff [27] studied 

the spreading resistance of a round thin film contact by solving Laplace equation using 

analytic, numerical, and finite element methods. The spreading resistance of 

three-dimensional (3D) thin film disks is also analyzed by Norberg et al. [22], and by 

Timsit [20]. These prior works assume either a constant and uniform electrical resistivity 

in all regions, or an equipotential at the constriction interfaces. In particular, Timsit [20] 

analytically calculated the spreading resistance of a circular thin conducting film of 

thickness h connected to a bulk solid via an a-spot constriction of radius a, as shown in 

Fig. 1.7(a), but with the assumption that the current density distribution through the 

a-spot of this film is the same as the known current density distribution through the 

a-spot in a semi-infinite bulk solid [12, 15]. The normalized thin film contact resistance 

/( / 4 )c cR R a is plotted in Fig. 1.7(b). Timsit’s theory is valid only for a/h < 0.5 [20], 

as shown in Fig. 1.7(b).  

This thesis [26, 28-30] provides extensive generalization of Hall’s models on 2D 

Cartesian thin-film contacts, and Timsit’s models on 3D cylindrical thin-film contacts, 

with inclusion of effects of dissimilar materials. 

1.2.3 RF Heating and Field Enhancement due to Surface Roughness   

An early work to investigate the roughness surface loss can be dated back to 1940’s 

when Morgan [81] first studied the increased resistive power loss for a periodic 2D 
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ridged structure. Morgan [81] used the finite-difference method to solve a quasi-static 

eddy-current problem for a 2D periodic rough surface. The results were then fitted as an 

empirical formula Eq. (1.3), which has since been the guideline model for qualifying 

surface-roughness-induced power loss in practice [81-83], 

2

12
1 tan 1.4r

Morgan

s

P h

P


 


  

     
   

.                                (1.3) 

Here, Pr and Ps are the power loss of a rough surface conductor and of its smooth surface 

counterpart, respectively, h is the RMS (root-mean-square) value of surface roughness, 

2 /   is the skin depth, σ is the conductivity,  is the wave frequency and μ is 

the free space permeability. 

In 1996, Groiss et al. [84] described a similar factor αGroiss for correcting conductor 

loss for the surface roughness and skin depth, using the same symbols as in Eq. (1.3), 

1.6

1 exp
2

r
Groiss

s

P

P h




  
     

   

,                                     (1.4) 

which was obtained by the finite-element method (FEM). Equation (1.4) is used directly 

in the commercial FEM software High Frequency Structure Simulator (HFSS) [85], for 

capturing the conductor loss with surface roughness.   

 Despite the extensive usage of Eqs. (1.3) and (1.4), they are only empirical fittings to 

numerical calculations on a restricted model. Thus, their regime of their validity is 

unclear. Figure 1.8 plots the increase in surface resistivity due to surface roughness 

obtained from Eqs. (1.3) and (1.4). Also superimposed in Fig. 1.8 is the experimental 
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curve from the Microwave Engineers Handbook [86]. The discrepancies among the 

models are apparent.    

 

 

Fig. 1.8 Comparison of different models on increase in surface resistivity due to surface 

roughness: Morgan 1949[81], Groiss et al. 1996 [84] and HFSS [85], and Microwave 

Engineers Handbook [86].  

Several authors have recently studied periodic [87, 88], as well as random [78] 2D 

roughness profiles using different methods. Holloway and Kuester [87] calculated the 

power loss associated with 2D periodic conducting and superconducting rough interfaces 

using a generalized impedance boundary condition. However, the fine details of the field 

near the surface are not resolved [87]. Matsushima and Nakata [88] utilized the 

equivalent source method to numerically study periodic rectangular, triangular, and 

semielliptical grooves both transverse and parallel to current flow. In Gu et al., [78], the 

effects of random 2D surface roughness are analyzed by using two methods: the analytic 
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small perturbation method and the numerical method of moments. There are also studies 

on modeling the surface roughness with randomly distributed bosses on surface [89, 90]. 

However, there is still lack of accurate model to evaluate both power absorption and 

electric and magnetic field enhancements due to surface roughness, where the roughness 

assumes arbitrary values of permittivity, permeability μ, and electrical conductivity σ. 

This thesis [11] derives simple scalings on the power loss and electric and magnetic 

field enhancements on a surface roughness that is represented by a hemispherical 

protrusion. The hemispherical protrusion may assume arbitrary values of , μ, and σ.  

1.3  Organization of this thesis 

Chapter 2 presents the model for contact resistance of bulk contacts with dissimilar 

materials. In this chapter, Holm’s classical a-spot theory [12] is vastly extended to higher 

dimensions, including dissimilar materials in the main current channels and in the 

connecting bridge joining them. Both Cartesian and cylindrical channels have been 

analyzed. A scaling law for the contact resistance has been constructed for arbitrary 

values of the dimensions of the channels and bridges, and for arbitrary electrical 

resistivity in each section. We shall present validation of the scaling laws in various tests 

and simulations, and experiments.  

Chapter 3 presents the models for thin film contact resistance with dissimilar 

materials. Simple, analytical scaling laws have been developed, for both cylindrical and 
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Cartesian geometries. The crowding of field lines (or current flow lines) near the 

constriction corner is investigated, which could lead to significant ohmic heating there. 

We also identified the optimal condition under which the thin film contact resistance may 

be minimized. Extension to arbitrary geometries of a-spot and to AC response of the 

electrical contacts is attempted. The transfer length estimated from the model is also 

compared with that of the “transmission line model” and the related experimental method 

that has been extensively used in the characterization of semiconductor devices [91]. 

Chapter 4 covers roughness-induced enhanced RF heating, and the enhanced RF 

electric and magnetic fields. We analytically compute the power absorption due to a small 

hemispherical protrusion on a resonant cavity’s surface. The local electric and magnetic 

field enhancement factors on the protrusion are also calculated analytically. This 

protrusion may represent a foreign object since its permittivity ε, permeability μ and 

conductivity σ may take on arbitrary values. Scaling laws are derived. 

The conclusion and suggestions for future work are given in Chapter 5. The major 

results are stated in the main text. The derivations are given in the Appendices. 
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CHAPTER 2  

BULK CONTACT RESISTANCE 

 

2.1  Introduction 

Because of the surface roughness on a microscopic scale, true contact between 

two pieces of conductors occurs only at the asperities (small protrusions) of two 

contacting surfaces. Current flows only through these asperities, which occupy a small 

fraction of the area of the nominal contacting surfaces. This gives rise to contact 

resistance [12, 13, 15, 23]. Shown in Fig. 2.1 is a schematic drawing of a single asperity. 

It is clear that contact resistance is highly random, depending on the surface roughness, 

on the applied pressure, on the hardness of the materials, and perhaps most importantly, 

on the residing oxides and contaminants at the contact [12, 13, 40]. We shall model the 

single asperity (Fig. 2.1) by the idealized model in Fig. 2.3 below.  

For decades, the fundamental model of electrical contact has been that of Holm’s 

a-spot [12], which consists of two semi-infinite cylinders of radius b placed together. 

Current can flow through them only via a “bridge” in the form of a circular disk of radius 

a << b, as shown in Fig. 2.2. While there are statistical treatments [14, 18] and extensions 
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of the a-spot theory to other disk shapes [15], Holm’s zero-thickness assumption (h = 0) 

is almost always used [12]. Most recently, an attempt has been made to relax Holm’s 

zero-thickness assumption to include a connecting bridge of finite axial length (h) 

connecting two metal blocks [3, 23]. While the theory in Ref. [23] was validated in recent 

experiments [24], it is restricted to the special case where the current channels and their 

connecting bridges are made of the same material, and where the current channels are of 

equal geometrical dimensions (Fig. 1.5). Thus, the model of Ref. [23] gives no hint on the 

important effects of contaminants at the electrical contact (Fig. 2.1). 

 

 

 
Fig. 2.1 A schematic of a single asperity, joining two current channels of different materials. 
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Fig. 2.2 Holm’s model of a straight cylinder current channel of radius b (>>a) joint by a 

zero thickness circular hole of radius a (a-spot). 

 

 

Fig. 2.3 Two current channels, II and III, are made in contact through the bridge region, I, 

in either Cartesian or cylindrical geometries. Holm’s a-spot corresponds to the cylindrical 

geometry with h = 0, a << b, a << c.  Current flows from left to right. 

In this chapter, we substantially generalize Holm’s classical a-spot theory to 

higher dimensions, including vastly different materials at the joints [25, 26]. In so doing, 
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we also greatly extend Ref. [23] by allowing the contact region to have an arbitrary 

electrical resistivity, as would be expected if there were oxides or contaminants in the 

contact region (Fig. 2.1). Figure 2.3 shows the geometry of such a generalized a-spot, 

Region I, which has a finite axial length 2h, joining two conducting current channels (II, 

III). This figure shows a Cartesian (cylindrical) current channel with half channel width 

(radius) of a, b and c (a ≤ b, a ≤ c), and electrical resistivity ρ1, ρ2 and ρ3. It is assumed 

that the axial extents of channels II and III are so long that the current flow in these 

channels is uniform far from the contact region, I. In this chapter, we construct the 

scaling laws for the total electrical resistance in Regions II, I, and III, including the 

interfaces of these regions for arbitrary values of a, b, c, h, ρ1, ρ2 and ρ3 [cf. Eqs. (2.7) 

and (2.8)]. 

 

 

Fig. 2.4  Semi-infinite current channel with dissimilar materials, Region I and II, in either 

Cartesian or cylindrical geometries. Current flows from left to right. 

We shall first consider the special case h >> a for the contact region, I, so that the 
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electrostatic fringe field at one interface (at z = 0) has an exponentially small influence on 

the other interface (at z = 2h), and vice versa. The contact resistance at the interface 

between Regions II and I, for instance, is then the same as if Regions II and I were 

semi-infinite in the axial (z) direction (Fig. 2.4).  The current flow in the semi-infinite 

geometry shown in Fig. 2.4 may be formulated exactly for both Cartesian and cylindrical 

channels. From this exact formulation, we obtain the interface resistance between 

Regions I and II for arbitrary values of a, b, ρ1, and ρ2.  The vast amount of data thus 

collected allows us to synthesize a simple scaling law for the interface resistance. This 

groundwork for the interface resistance then led to our proposed scaling laws for the total 

electrical resistance in Regions II, I, and III, for the geometry shown in Fig. 2.3, for 

general values of a, b, c, h, ρ1, ρ2 and ρ3. We should remark that we have not provided an 

exact formulation for the general geometry shown in Fig. 2.3. The validity of the scaling 

laws for Fig. 2.4 is then established by our demonstration that these scaling laws are 

indeed an excellent approximation in several known limiting cases. They are also 

spot-checked against the numerical code, MAXWELL 3D [85]. From these scaling laws, 

we conclude that, in general, the bulk resistance in the generalized a-spot region I (Fig. 

2.3) dominates over the resistance at the interfaces between Regions I and II, and 

between Regions I and III. The small intrinsic error in the scaling laws is also assessed. 

Only the major results will be presented in the main text. Their derivations are 

given in Appendices A and B. 
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2.2  Interface Resistance with Dissimilar Materials 

 The interface resistance between Regions I and II of Fig. 2.3, say, may be accurately 

evaluated when the axial extent of each region is much greater than the respective 

transverse dimension. It may be formulated exactly when the axial extent is semi-infinite 

(Fig. 2.4). This section presents the results of this exact formulation, together with a 

comparison with the proposed scaling laws, for both cylindrical and Cartesian geometry. 

In Fig. 2.4, we designate z = 0 as the axial location of the interface, the axial length of 

Region I is L1 (>> a) and the axial length of Region II is L2 (>> b).  Other parameters 

are defined in Fig. 2.4.     

2.2.1 Cylindrical semi-infinite channel 

For the semi-infinite cylindrical current channel (Fig. 2.4), we solve the Laplace’s 

equation for Region I and Region II, and match the boundary conditions at the interface, z 

= 0. The details of the calculations are given in Appendix A. The total resistance R from z 

= -L2 to z = L1 is found to be, 

 2 2 2 1 1 1

2 2

2

, .
4

c

L Lb
R R

b a a a

   

  

 
   

 
                              (2.1) 

 

In Eq. (2.1), the first and third term represents the bulk resistance in Regions II and I, 

respectively. The second term represents the interface resistance between Regions I and II, 

Rc, which is also the contact resistance for Fig. 2.4 (if Regions I and II are regarded as 

  Bulk     Interface     Bulk 
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two current channels). If we express this interface resistance as 2( / 4 ) ccR a R  for the 

cylindrical channel, we find that cR  depends only on the aspect ratio b/a and the 

resistivity ratio ρ1/ρ2, as explicitly displayed in Eq. (2.1). The exact expression for cR  is 

derived in Appendix A [cf. Eq. (A7)]. In Eq. (A7), the coefficient Bn is solved 

numerically in terms of ρ1/ρ2 and b/a, from the infinite matrix method [cf. Eq. (A4)]. The 

infinite matrix Eq. (A4), is solved directly by MATLAB, with increasing number of terms 

included until convergence is realized. As an independent check, we solve Eq. (A4) by 

the explicit iterative method for ρ1/ρ2 >1 [cf. Eq. (A10)]. The two methods yield identical 

numerical values of Bn. These numerical values of Bn then give cR  from Eq. (A7).  

The exact theory of cR  [cf. Eq. (A7)] is plotted as a function of b/a and ρ1/ρ2 in 

Fig. 2.5. It is clear from Fig. 2.5(a) that cR  increases as b/a increases, for a given ρ1/ρ2. 

It is a bit surprising, however, that for a very broad range of ρ1/ρ2 from 10
-2

 to 10
2
, cR  

varies only by a difference of 0.08076   for a given aspect ratio b/a, as is evident in 

Fig. 2.5(b). In the limit /b a , this maximum variation is proven to be 

232/3 1 0.08076     [cf. Eq. (A14)].  

Based on the exact theory and its data over the huge parameter space shown in 

Fig. 2.5, we propose a simple analytical scaling law of cR , the normalized interface 

resistance, for the cylindrical semi-infinite current channel with dissimilar materials (Fig. 

2.4),   

1 1
0

2 1 2

2
,

2
c c

Timsit

b b b
R R g

a a a

 

  

      
         

      
, (Cylindrical)            (2.2) 
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  2 3 4
0
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/ 1 1.41581( / ) 0.06322( / ) 0.15261( / ) 0.19998( / ) ,

( / ) 1 0.3243( / ) 0.6124( / ) 1.3594( / ) 1.2961( / )

c
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R b a a b a b a b a b

g b a a b a b a b a b

    

    

 

(2.3) 

where 232/3 1 0.08076    , and  0c
Timsit

R x  is the normalized contact resistance 

of the a-spot derived by Rosenfeld and Timsit [15] for the special case: h = 0, b = c, and 

2 = 3. Both g(x) and  0c
Timsit

R x are monotonically increasing functions of x = b/a with 

g(1) = 0, g(∞) = 1,  0 1 0c
Timsit

R  ,  0 1,c
Timsit

R    and therefore Eq. (2.2) yields 

 1 21, / 0,cR    as expected of the interface resistance from Fig. 2.4 in the limit b/a = 1. 

The scaling law of contact resistance, Eq. (2.2), is shown by the solid curves in Fig. 2.5, 

which compare extremely well with the exact theory, Eq. (A7), shown by the symbols, 

essentially for the entire range of 1 20 /  
 
and  b/a  1 for the cylindrical 

channel (Fig. 2.4).  
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Fig. 2.5  Comparison of 1 2( / , / )cR b a  
 
according to the exact theory (symbols) and to 

the simple scaling law (Eq. (2.2), solid lines) for semi-infinite cylindrical current channels, I 

and II. (a) cR  as a function of aspect ratio b/a. (b) cR  as a function of resistivity ratio 

ρ1/ρ2. The dashed lines in (b) respresent the cylindrical a-spot theory of Timsit 

(
0 ( / )c Timsit

R b a , Eq. (2.3)). 
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2.2.2 Cartesian semi-infinite channel 

Similarly, for the semi-infinite Cartesian current channel (Fig. 2.4), we solve the 

Laplace’s equation for Region I and Region II, and match the boundary conditions at the 

interface, z = 0. The details of the calculations are given in Appendix B. The total 

resistance R from z = -L2 to z =L1 is found to be, 

2 2 2 1 1 1

2

, ,
2 4 2

c

L Lb
R R

b W W a a W

   

 

 
   

  
                                (2.4) 

 

where W denotes the channel width in the third, ignorable dimension that is perpendicular 

to the paper, and the rest of the symbols have been defined in Fig. 2.4. In Eq. (2.4), the 

first and third term represents the bulk resistance in Regions II and I, respectively. The 

second term represents the interface resistance between Regions I and II, Rc, which is 

also the contact resistance for Fig. 2.4 (if Regions I and II are regarded as two current 

channels). If we express this interface resistance as 2( / 4 ) ccR W R   for the Cartesian 

channel, we find that cR  depends only on the aspect ratio b/a and the resistivity ratio 

ρ1/ρ2 (similar to the cylindrical case) as explicitly displayed in Eq. (2.4). The exact 

expression for cR  is derived in Appendix B [cf. Eq. (B7)]. In Eq. (B7), the coefficient 

Bn is solved numerically in terms of ρ1/ρ2 and b/a, from the infinite matrix method [cf. Eq. 

(B4)], and, as an independent check, from the explicit iterative method for ρ1/ρ2 >1 [cf. 

Eq. (B10)]. The two methods yield identical numerical values of Bn. These numerical 

values of Bn then give cR  from Eq. (B7).  

Bulk          Interface       Bulk 
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Fig. 2.6  Comparison of 1 2( / , / )cR b a  
 
according to the exact theory (symbols) and to 

the simple scaling law (Eq. (2.5), solid lines) for semi-infinite Cartesian current channels, I 

and II. (a) cR  as a function of aspect ratio b/a. (b) cR  as a function of resistivity ratio 

ρ1/ρ2. The dashed lines in (b) respresent the Cartesian a-spot theory (
0 ( / )c LTZ

R b a , Eq. 

(2.6)).  
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The exact theory of cR  [cf. Eq. (B7)] is plotted as a function of b/a and ρ1/ρ2, as 

shown in Fig. 2.6. It is clear from Fig. 2.6(a) that cR  increases as b/a increases, for a 

given ρ1/ρ2. In fact, cR  diverges logarithmically as b/a >> 1, as shown in Eq. (2.6) and 

Fig. 2.7 below. Again, similar to the cylindrical case, it is found that for a very broad 

range of ρ1/ρ2 from 10
-2

 to 10
2
, cR  varies at the most by a difference of 0.4548 for a 

given aspect ratio b/a of the Cartesian channel, as is evident in Fig. 2.6(b).  The constant 

0.4548 is derived in the limit b/a   in Appendix B.  

Based on the exact theory and its data over the huge parameter space shown in 

Fig. 2.6, we propose a simple analytical scaling law of cR , the normalized interface 

resistance, for the Cartesian semi-infinite current channel with dissimilar materials (Fig. 

2.4),   

1 1
0

2 1 2

2
, 0.2274c c

LTZ

b b b
R R g

a a a

 

  

      
         

      
, (Cartesian)          (2.5) 
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/ 4 ln(2 / ) 4ln( / 2) ( / ),

( / ) 0 0.03250( / ) 1.06568( / ) 0.24829( / ) 0.21511( / ) ,

( / ) 1 1.2281( / ) 0.1223( / ) 0.2711( / ) 0.3769( / )

c
LTZ

R b a b a f b a

f b a a b a b a b a b

g b a a b a b a b a b

   

    

    

(2.6) 

where  0c
LTZ

R x  is the normalized contact resistance of the Cartesian “a-spot” derived 

by Lau, Tang, and Zhang [23] for the special case: h = 0, b = c, and 3 [Fig. 2.7]. 

Note that the analytical formula, Eq. 2.6, is virtually identical to the exact theory of Ref 

[23], as shown in Fig. 2.7. It is the Timsit analog for the Cartesian channel [cf. Eq. (2.3)].  

In Eq. (2.6), f(1) = 1, f(  ) = 0, g(1) = 0, g(∞) = 1,  0 1 0,c LTZ
R 

 
and  
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0( ) / 0c LTZ
d R x dx  
 

 when x = b/a = 1. Note further that, from Eq. (2.5), the normalized 

interface resistance  1 21, / 0,cR     as expected of Fig. 2.4 in the limit b/a = 1. The 

scaling law of contact resistance, Eq. (2.5), is shown by the solid curves in Fig. 2.6, 

which compare extremely well with the exact theory, Eq. (B7), shown by the symbols, 

essentially for the entire range of 
1 20 /  

 
and b/a  1 for the Cartesian channel.  

 

 

Fig. 2.7 Comparison of the exact theory [Fig. 7 of Ref. 23] and the analytical formula, 

 0c
LTZ

R x , Eq. (2.6), for the normalized contact resistance of the Cartesian a-spot (h = 0). 

The less accurate formula 
2

4ln( ),c

b
R

a
  [Eq. 2 of Ref. 23] is also plotted. 

 
 

2.3  Total Resistance of Composite Channel 

The interface resistance established for the semi-infinite channel in Section 2.2 
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prompted us to postulate a scaling law for the total resistance in a complex channel that is 

modeled in Fig. 2.3. We decompose the total resistance into bulk resistance and interface 

resistance. For the time being, we pretend that the scaling laws for the interface resistance 

given in Section 2.2 are also applicable when the contact region, I, has an arbitrary axial 

length, 2h (Fig. 2.3). We shall then verify that such an assumption introduces an error of 

at most 10 percent in the contact resistance in the worst case, h = 0, by comparing with 

known results in such a limit. (Recall that the h = 0 limit is simply the a-spot for the 

symmetric case b = c, and 2 = 3).  

Thus, in terms of the parameters defined in Fig. 2.3, for the cylindrical channel, 

we propose that the scaling law for the total electrical resistance in Regions II, I, and III, 

including the interfaces of these regions is of the form,  

3 3 32 2 2 1 1 1

2 2 2

2 3

2
, ,

4 4
c c

LL hb c
R R R

b a a a a a c

     

    

   
      

   
,    (Cylindrical)    (2.7) 

 

where cR  is given by Eq. (2.2). Similarly, for the Cartesian channel, the proposed 

scaling law for the total electrical resistance in Regions II, I, and III, including the 

interfaces of these regions reads,  

3 3 32 2 2 1 1 1

2 3

2
, ,

2 4 2 4 2
c c

LL hb c
R R R

b W W a a W W a c W

     

   

   
      

     
,     (Cartesian) 

(2.8) 

where cR  is given by Eq. (2.5), and W denotes the channel width in the third, ignorable 

dimension that is perpendicular to the paper.  

Bulk     Interface       Bulk        Interface     Bulk 

Bulk         Interface       Bulk        Interface       Bulk 
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 In both Eqs. (2.7) and (2.8), the first, third, and fifth term represent, respectively, the 

bulk resistance in Regions II, I, and III. The second and fourth term represent the 

interface resistance, respectively, at the left interface between Regions I and II, and at the 

right interface between Regions I and III. If one considers Region I as the electrical 

contact between current channel II and current channel III, then the second, third and 

fourth terms combine to give the contact resistance between these two current channels. 

 We shall now compare the scaling laws, Eqs. (2.7) and (2.8), with the results in 

various limits, with sample calculations using a numerical code, and experimental 

validation. 

Case A.  h >> a 

 When the axial length (2h) of the contact Region, I (Fig. 2.3), much exceeds its 

transverse dimension, a, the electrostatic fringe field at one interface has an exponentially 

small influence on the other interface [cf. Eq. (A1) and Eq. (B1) of the Appendices A and 

B, respectively]. Thus, the contact resistance at the left interface between Regions II and I, 

for instance, is then the same as if Regions II and I were semi-infinite in the axial 

direction (Fig. 2.4), which has been discussed in great detail in Section II above. Similar 

comments apply to the contact resistance at the right interface between Regions I and III. 

Equations (2.7) and (2.8) are then clearly valid as the five terms represent the five 

components of the total resistance (bulk and interface), all in series from left to right in 

Fig. 2.3.  

 



31 
 

Case B.  h   0 

 In the opposite limit of Case A, the axial length 2h in Region I is much smaller than a, 

with h = 0 being the limiting case. In the latter limit, the third term in the RHS of Eqs. 

(2.7) and (2.8) vanishes identically, and the contact resistance is then given by the sum of 

the second and fourth terms, which we compare with known results in several special 

cases. This is the most stringent test because the interface resistance, represented by the 

second and the fourth terms, is derived under the assumption of h >> a, whereas in this 

subsection, h = 0! 

For the cylindrical (Cartesian) channel, the h = 0 limit becomes the a-spot 

analyzed by Holm [12], Rosenfeld and Timsit [15], and Lau, Tang, and Zhang [23, 25], 

for the symmetrical case 3 and b = c. The scaling laws for the contact resistance, 

Eqs. (2.7) and (2.8), indeed become identical to these a-spot theories for 2   0, as 

shown in Eqs. (2.2) and (2.5), and also in Fig. 2.5 (b) and Fig. 2.6 (b). The reason is that 

in this symmetrical case , b = c, h   0), the current flow is perpendicular to the 

contact area, at the location of the a-spot, by symmetry of the geometry. Thus the entire 

a-spot is an equipotential surface, the same as if Region I is made of perfectly conducting 

material (1   0). In the opposite limit 2  , the contact resistance according to 

the scaling law differs from the a-spot theory by at most 7.4% (8.2%) for a cylindrical 

(Cartesian) channel from the data presented in Fig. 2.5 and Fig. 2.6. 

In yet another limit, h 0 , b/a  , c/a  , but 2 3  , our scaling law, 

Eqs. (2.7) and (2.8) for the cylindrical channel, gives a value of contact resistance that 
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differs by at most 8% from Holm’s established value of 2 3( ) / 4a   for this limiting 

case [12]. 

Thus, conservatively, we categorically state that our scaling law for the interface 

resistance commits an error of at most 10% for all values of h, 0 ≤ h < ∞, and for all 

values of ρ1/ρ2, 0 ≤ ρ1/ρ2 < ∞. 

Case C.  Comparison of 3D Maxwell code to scaling law  

 

 

Fig. 2.8 Sample calculations of the total resistance R of a cylindrical channel according to 

MAXWELL 3D simulation (symbols) and the scaling law (solid lines).  

A sample comparison of the scaling law, Eq. (2.7), against the MAXWELL 3D 

[85] simulation of a cylindrical channel is shown in Fig. 2.8. Excellent agreement is 

noted. In this example, we set ρ1 = 0.25 (and 0.60) Ωm, ρ2 = 0.038 Ωm, ρ3 = 0.001 Ωm, a 

= 4 mm, b = 8 mm, c =10 mm, the lengths of conductor II and III were equal, 2h ranging 
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from 1.5 to 16 mm, the total axial length of the current channel simulated was fixed at 80 

mm, and an excitation voltage of 10V was applied.   

Case D.  Experimental validation with   

 

  

 

Fig. 2.9 Experimental validation of the scaling law for contact resistance, Eq. (2.7), for the 

special case of uniform resistivity by Gomez et al. [24]. (a) Experimental setup. All channels 

had diameter 2b=15.9±0.1 mm, and length L= 40.8±0.2 mm, 2a = 4(or 8)±0.1mm, h varied 

from 1.5 to 9.1±0.2mm. (b) Measured contact resistance in good agreement with theoretical 

results. 

In this case, all channels are made of the same material. The experimental validation 

was performed previously [24]. It is included here for completeness because 
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is a special case of the general theory presented in this thesis. The limiting 

case b = c was also analyzed in great detail in Lau and Tang [23], and was subjected to an 

experimental test by Gomez et al. at University of Michigan [24]. Due to its nature that 

contact resistance is highly random, it is very difficult to test the theory via experiments 

using solid conductor. Instead, Gomez et al designed an experiment to mimic the 

theoretical contact resistance geometry (Fig. 2.3 and Fig. 2.4), by machining holes of 

varying diameter in a piece of plastic and filling it with copper sulfate solution, as shown 

in Fig. 2.9 (a). The resistance of such copper sulfate channels was measured. The 

experimental results of Gomez et al. [24] were in good agreement with the theory, as 

shown in Fig. 2.9 (b). 

In summary, the scaling laws given in the present chapter, aimed at vastly different 

values of 2 and 3, introduces a small error that is represented by the last term in Eqs. 

(2.2) and (2.5). This small error, which is less than 10% in the worst case, is already 

included in Fig. 2.5 and Fig. 2.6, and is the price we pay for the explicit scaling law that 

is applicable over a huge variation in materials properties and in channel geometries, as 

demonstrated in these figures.  

2.4  Concluding Remarks 

 We model a single asperity (Fig. 2.1) by Fig. 2.3. Having performed several checks 

on the validity of the scaling laws for the contact resistance joining two current channels, 
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II and III (Fig. 2.3), we may now draw some general conclusions regarding the bulk 

contact resistance of a single asperity that is comprised of the second, third and fourth 

terms in the RHS of the scaling laws, Eqs. (2.7) and (2.8). The third term represents the 

bulk resistance of the electrical contact, Region I, and the second and fourth term 

represents the interface resistance at z = 0 and at z = 2h (Fig. 2.3).  

(a) If the electrical contact (Region I) is highly resistive (3), then the 

bulk resistance (the third term on the RHS of Eqs. 2.7 and 2.8) dominates over the 

interface resistance (the second and fourth term on the RHS of Eqs. 2.7 and 2.8) 

once the contact region’s axial length (2h) exceeds a few times 1)a and 

1)a. 

(b) Once the geometry (a,b,c,h) is specified, the interface resistance depends mainly 

on the electrical resistivity of the main channel 3); it is insensitive to the 

resistivity of the contact region (1). To see this, examine the second term in Eq. 

(2.7), or in Eq. (2.8), for instance. This term shows that the interface resistance is 

linearly proportional to the current channel resistivity, 2, but is quite insensitive 

to the ratio 1/2, as shown in Fig. 2.5(b) and Fig. 2.6(b). 

(c) The exact formulation for the interface resistance in Fig. 2.3 is quite difficult to 

obtain for general values of a, b, c, h, ρ1, ρ2 and ρ3. The interface resistance is not 

easy to extract from a numerical code either, especially when there is a large 

contrast between 1 and 2, or between 1 and 3, or between any of the geometric 

dimensions h, a, b, c, L2, and L3. Likewise, experimental verification for the 
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interface resistance is not easy to achieve either, if there is a large contrast in any 

of the above-mentioned parameters. Despite some small intrinsic errors, of order 

10 percent or less, the simple scaling laws established in this paper then offer 

some new insight that is hitherto unavailable in the existing literature.  

(d) The composite contact resistance in a realistic contact (Fig. 2.1) may be attempted 

with the model shown in Fig. 2.3, for which we solved almost exactly with 

accurate scaling law for the contact resistance. Figure 2.3 may be considered as a 

prototype for Fig. 2.1 for an individual asperity in a statistical theory.   
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CHAPTER 3  

THIN FILM CONTACT RESISTANCE 

 

3.1 Introduction 

Thin film contact is a very important issue in many areas, such as integrated 

circuits [38-40], thin film devices [16, 17, 37], carbon nanotube and carbon nanofiber 

based cathodes [41-43] and interconnects [41, 44-46], field emitters [9, 41, 43], and thin 

film-to-bulk contacts [20-22], etc. Even in the simplest form, film resistor remains the 

most fundamental component of various types of circuits [16, 17]. Recently, it becomes 

increasingly important in the miniaturization of electronic devices such as 

micro-electromechanical system (MEMS) relays and microconnector systems, where thin 

metal films of a few microns are typically used to form electrical contacts [21, 22]. In 

high energy density physics, the electrical contacts between the electrode plates and in 

Z-pinch wire arrays are crucial for high current delivery [2-4]. The methodology we used 

to treat bulk contacts with dissimilar materials in Chapter 2 is naturally extended in this 

chapter to treat thin film contacts with dissimilar materials, an important problem 

seemingly rarely analyzed with field theory in the open literature of the semiconductor 
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community.  

While Holm’s classical a-spot theory [12] has been extended to include the effects 

of finite bulk radius [15], of finite thickness of contact “bridge” [23, 24], and of 

dissimilar materials and contaminants [25], as discussed in Chapter 2, these prior works 

are inapplicable to the thin film geometry that is studied in this Chapter (Fig. 3.1 - Fig. 

3.3). This is particularly the case when the current is mostly confined to the immediate 

vicinity of the constriction and flows parallel to the thin film boundary.  

Figure 3.1 shows both Cartesian and cylindrical geometries of the thin film. The 

current flows inside the base thin film with width (thickness) h and electrical resistivity ρ2, 

converging towards the center of the joint region, and feeds into the top channel with 

half-width (radius) a and electrical resistivity ρ1, in Cartesian (cylindrical) geometry. This 

configuration is representative to various applications. The Cartesian case may represent 

a thin film sheet resistor (Fig. 3.2(a)) [16, 17], where the third dimension, which is 

perpendicular to the plane of the paper, is small. It may also represent a heatsink 

geometry (Fig. 3.2(b)), where this third dimension is large. The cylindrical case (Fig. 3.3) 

may represent a carbon nanotube [41-46] or a field emitter [41, 43] setting on a substrate; 

or it may represent a z-pinch wire connected to a plate electrode [2-4]. 

The two-dimensional (2D) thin film resistance has been investigated for various 

patterns in Cartesian geometry [16, 17]. The spreading resistance of three-dimensional 

(3D) thin film disks is also analyzed [20-22, 27]. These prior works assume a constant 

and uniform electrical resistivity in all regions. In particular, Timsit [20] analytically 
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calculated the spreading resistance of a circular thin conducting film of thickness h 

connected to a bulk solid via an a-spot constriction of radius a, but with the assumption 

that the current density distribution through the a-spot of this film is the same as the 

known current density distribution through the a-spot in a semi-infinite bulk solid [15, 

20]. Timsit stated that his model is reliable only for 0 < a/h ≤ 0.5 [20]. Here, we are able 

to confirm Timsit’s results for 0 < a/h ≤ 0.5, and at the same time to extend his results for 

a/h up to ten [29] [cf. the lowest solid curve in Fig. 3.11(a, b)].     

 

 

 

Fig. 3.1 Thin film structures in either Cartesian or cylindrical geometries. Terminals E and 

F are held at a constant voltage (V0) relative to terminal GH, which is grounded.  The 

z-axis is the axis of rotation for the cylindrical geometry. The resistivity ratio ρ1/ρ2 in 

Regions I and II is arbitrary. 
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Fig. 3.2 Two cases of Cartesian thin film contact represented by Fig. 3.1: (a) thin film sheet 

resistor, and (b) heatsink geometry
*
. 

 

 

Fig. 3.3 Cylindrical case of thin film contact represented by Fig. 3.1. 

We analyze the model shown in Fig. 3.1. We assume that the axial extent of the 

top channel (i.e. L1 in Fig. 3.1) is so long that the current flow in this region is uniform 

                                                             

* Typical heat sink structures can be found at http://en.wikipedia.org/wiki/Heat_sink 
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far from the contact region. Our analytic formulation (given in detail in the Appendices C 

and E) assume a finite length L2 in the base region (Fig. 3.1). Thus, we study the 

dependence of the contact or constriction resistance on the geometries and resistivities 

shown in Fig. 3.1, for arbitrary values of a, b, h, ρ1, and ρ2 (Fig. 3.4, Fig. 3.5, Fig. 3.10, 

Fig. 3.11). The potential profiles are formulated exactly, from which the interface contact 

resistances are derived. Simple, accurate scaling laws for the thin film contact resistance 

are synthesized (Fig. 3.7 and Fig. 3.13). The patterns of current flow are also displayed, 

where the crowding of the current flow lines in the contact region suggests intense local 

heating there. The conditions to minimize the contact resistance are identified in various 

limits. Validation of our theory against known results is indicated. 

In the limit of h → 0, the normalized thin film spreading resistance is found to 

converge to some finite constant values, for both Cartesian and cylindrical geometries. 

An interpretation of these limits is given. We conjecture that the same finite limits 

of normalized thin film spreading resistance would apply to the a-spot between bulk 

solids in the high frequency AC case where the skin depth δ → 0, if the thickness of the 

equivalent thin film is identified as the skin depth at the relevant frequency, i.e., h = δ. 

Extension to general a-spot geometry is given in Section 3.5. 

Section 3.2 considers Cartesian geometry. Section 3.3 considers cylindrical 

geometry. Section 3.4 considers the thin film limit (h→0). The insight obtained led to the 

proposed generalization to an arbitrary a-spot geometry and to the high frequency limits, 

which are treated in Section 3.5. Section 3.6 summarizes this chapter.   
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Similar to Chapter 2, only the major results will be presented in the main text. 

Their derivations are given in the appendices.  

3.2  Cartesian Thin Film Contact with Dissimilar Materials 

 Let us first consider the 2D Cartesian “T”-shape thin film pattern (Fig. 3.1 and Fig. 

3.2). The pattern is symmetrical about the vertical center axis. Current flows from the two 

terminals E, F to the top terminal GH (Fig. 3.1). We solve the Laplace’s equation for 

Region I and Region II, and match the boundary conditions at the interface BC, z = 0. 

The details of the calculations are given in the Appendix C. The total resistance, R, from 

EF to GH is found to be, 

2 2 2 1 1 1

2

, , ,
2 4 2

c

L La a
R R

h W W b h a W

   

 

 
   

  
                         (3.1)  

where W denotes the channel width in the third, ignorable dimension that is perpendicular 

to the paper, and the rest of the symbols have been defined in Fig. 3.1. In Eq. (3.1), the 

first term represents the bulk resistance of the thin film base, from A to F, and from D to 

E, where L2 = b – a. The third term represents the bulk resistance of the top region from B 

to G. The second term represents the remaining constriction (or contact) resistance, Rc, 

for the region ABCD. If we express the constriction (contact) resistance as 

2( / 4 ) ccR W R   for the Cartesian case, we find that cR  depends on the aspect ratios 

a/h and a/b, and on the resistivity ratio ρ1/ρ2, as explicitly shown in Eq. (3.1). The exact 

expression for cR  is derived in Appendix C [cf. Eq. (C8)].  In Eq. (C8), the coefficient 
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Bn is solved numerically in terms of ρ1/ρ2, a/h, and a/b [cf. Eq. (C6)]. The infinite matrix, 

Eq. (C6), is solved directly by MATLAB, with increasing number of terms included until 

convergence is realized. These numerical values of Bn then give cR  from Eq. (C8).  

 

 

Fig. 3.4 
cR for the Cartesian structure in Fig. 3.1 and Fig. 3.2, is plotted as a function of (a) 

L2/a, and (b) L2/h, for a/h = 0.1 and 8.0, and 1/2 = 10, 1.0, and 0.1 (top to bottom).  

The exact theory of cR  [cf. Eq. (C8)] is plotted in Fig. 3.4(a) as a function of L2/a, 

for various ρ1/ρ2 and a/h. To explicitly examine the dependence on the geometrical 

parameters, cR  in Fig. 3.4(a) is replotted as a function of L2/h in Fig. 3.4(b). It is seen 

from Fig. 3.4 that cR  becomes almost a constant if either L2/a >> 1 or L2/h >> 1, in 

which case cR  is determined only by the value of a/h and ρ1/ρ2, independent of b. Many 

other similar calculations (not shown) lead to the same conclusion. This is due to the fact 
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that if L2 >> a, the electrostatic fringe field at the corner B (Fig. 3.1) is restricted to a 

distance of at most a few a’s, making the flow field at the terminal F insensitive to b. 

Likewise, if L2 >> h, the electrostatic fringe field at the corner B is restricted to a distance 

of at most a few h’s, making the flow field at the terminal F also insensitive to b.  

 

 

Fig. 3.5 
cR
 

as a function of a/h, for the Cartesian structure in Fig. 3.1 and Fig. 3.2. The 

solid line represents the exact calculations [Eq. (C8)], where each curve consists of many 

combinations of b/a and b/h, with either L2 >> a or L2 >> h. The dashed lines respresent the 

limiting cases of 1 2/    [Eqs. (3.2)] and 1 2/ 0   [Eq. (3.3)], whose asymptotes 

for a/h >> 1 are, respectively, (2 / 3) /cR a h , and 4 2 2.77cR n  .  

In Fig. 3.5, the exact theory of cR  [cf. Eq. (C8)] is plotted as a function of a/h, 

for various ρ1/ρ2. Each solid curve in Fig. 3.5 consists of many combinations of b/a and 

b/h, with either L2 >> a or L2 >> h. Again, cR  is independent of b, provided either 
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L2 >> a or L2 >> h. For a given a/h, cR  increases as ρ1/ρ2 increases. It is clear that there 

exists a minimum value of cR  in the region of a/h near unity, for a given ρ1/ρ2. This a/h 

value for minimum cR  decreases slightly as ρ1/ρ2 increases. In the regime a/h < 1, the 

range of variation 1 2( / )cR    for a given a/h is insignificant (Fig. 3.5); however, in the 

regime of a/h > 1, 1 2( / )cR    for a given a/h may change by an order of magnitude or 

more.  

In the limit of ρ1/ρ2 , cR is simplified as (cf. Eq. (C10) in Appendix C),  
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which is also plotted in Fig. 3.5. Note that the exact theory for 1/2 = 100 overlaps with 

Eq. (3.2). In the limit of ρ1/ρ2 ,  the minimum cR   3.9 occurs at a/h = 0.85, as 

shown in Fig. 3.5. We prove in Appendix C that, as a/h → ∞, Eq. (3.2) yields 

 
1 2/

2 / 3 /cR a h
 




 , as shown in the top curve in Fig. 3.5, independent of b/a (>1).  

In the opposite limit, 1/2 0 , the region BCHG (Fig. 3.1) acts as a perfectly 

conducting material with respect to the base region BCEF. Thus, the whole constriction 

interface BC is an equipotential surface, as if L1= 0 and the external electrode is applied 

directly to the interface BC for the Cartesian geometry. This special case is analyzed by 

Hall (cf. Fig. 2 and Eq. (12) of Hall’s 1967 paper [16]), and from which cR  in the limit 

of 1/2 0 is given as,  

1 2/ 0
2 4ln sinh

2
c
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R

h h 






  
    

  
,                             (3.3) 

which is also plotted in Fig. 3.5. Note that the exact theory for 1/2 = 0.01 overlaps with 
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Eq. (3.3). This agreement may be considered as one validation of the analytic theory 

presented in Appendix C. In the limit of ρ1/ρ2 0,  Eq. (3.3) shows that cR  converges 

to a constant minimum value of 4ln2 = 2.77 as a/h → ∞, as shown in Fig. 3.5 for a/h ≥ 2. 

 Thus, the scaling law for a/h >> 1 in the two limits ρ1/ρ2 → ∞ and ρ1/ρ2 → 0 reads,  
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2
, / ;
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4 2 2.77, / 0.
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 
  

                                    (3.3a) 

These limits are apparent in Fig. 3.5 for a/h >> 1.  

 For the special case of ρ1/ρ2 = 1, the exact expression for cR  can be simply 

derived from conformal mapping (see Appendix D for details, and Eq. (D8)) [16, 17, 23, 

28, 92],   
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/ 1

1
4ln 4 tan 4 tan ,

4
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            
          (3.4) 

 

which is plotted in Fig. 3.6. For a/h >1, cR  increases as a/h increases. For a/h <1, cR  

increases as a/h decreases. This behavior is easily understood since the current flow paths 

will be lengthened whenever the aspect ratio of a/h deviates from 1. Thus, the 

constriction (contact) resistance is minimized when a = h, at which 

2 4ln 2 3.5106cR    . Taylor expansion of Eq. (3.4) yields the asymptotic 

expressions 

 

 1 2/ 1

4ln / 8ln 2 4, / 1;

4ln / 8ln 2 4, / 1,
c

a h a h
R

a h a h  

   
 

  
                       (3.5)

 

which is also shown in Fig. 3.6.  
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Included in Fig. 3.6 is the exact calculation of 
cR  for the special case of 1/2 = 

1 from the series expansion method [cf. Eq. (C8)]. Excellent agreement between the 

series expansion method and conformal mapping is noted [28]. This validation added 

confidence on the Fourier series expansion method as applied to the cylindrical geometry, 

reported in Section 3.3 below, which cannot be treated with conformal mapping. 

 

 

Fig. 3.6 
cR
 
as a function of a/h, for the special case of 1/2 = 1 of the Cartesian structure 

in Fig. 3.1 and Fig. 3.2. The solid line represents the conformal mapping results [Eq. (3.4)], 

the dashed lines respresent the asymptotes [Eq. (3.5)], and the symbols represents the exact 

Fourier series representation calculation [cf. Eq. (C8)].  

As another validation, consider the special case ρ1/ρ2 = 1 and L2 = 0 (Fig. 3.1). This 

case has an exact solution using conformal mapping, given by Eq. (3.3) but interchanging 

a and h. The exact values of cR  for a/h = 0.1 and a/h = 8 obtained from conformal 

mapping are, respectively, 2.77259 and 7.27116. In comparison, our numerical values 
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from series expansion method are, respectively, 2.7722 and 7.2692, as shown in the data 

for L2 = 0 in Fig. 3.4(a) or Fig. 3.4(b). 

The vast amount of data collected from the exact calculations allows us to 

synthesize a simple scaling law for the normalized contact resistance cR in Eq. (3.1) and 

Fig. 3.5 as, (for L2 >> a or L2 >> h), 
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                         (3.6) 
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(3.8) 

This scaling law of Cartesian thin film contact resistance, Eq. (3.6), is shown in Fig. 3.7, 

which compares extremely well with the exact theory, for the range of 1 20 /    and 

0.03≤ a/h ≤ 30. (We have not found the scaling law for a/h > 30 for general values of 

ρ1/ρ2, except in the limits ρ1/ρ2 → 0 and ρ1/ρ2 → ∞, that is stated in the caption of Fig. 3.5, 

and displayed in Eq. (3.3a).)  
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Fig. 3.7 
cR
 
for Cartesian thin film structures in Fig. 3.1 and Fig. 3.2, as a function of (a) 

aspect ratio a/h, and (b) resistivity ratio ρ1/ρ2; symbols for the exact theory, solid lines for 

the scaling law Eq. (3.6).  
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Fig. 3.8 Electric field lines in the right half of Region II of the Cartesian geometry in Fig. 3.1 

for 1/2 = 1 with (a) a/h = 0.1, (b) zoom in view of (a) for 0 ≤ y/a ≤ 3, (c) a/h = 1, and (d) a/h 

= 10. The results from series expansion method [Eq. (C1)] (solid lines) are compared to 

those from conformal mapping (dashed lines). 
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Fig. 3.9 Electric field lines in the right half of Region II of the Cartesian geometry in Fig. 3.1 

for a/h = 1 with (a) 1/2 = 0.1, (b) 1/2 = 1, and (c) 1/2 = 10. For 1/2 = 1, the results from 

series expansion method [Eq. (C1)] (solid lines) are compared to those from conformal 

mapping (dashed lines). 

The field line equation, y = y(z) for z < 0, may be numerically integrated from the 

first order ordinary differential equation / / ( / ) /( / )y zdy dz E E y z        

where  is given by Eq. (C1). Figure 3.8 shows the field lines in the right half of Region 

II (Fig. 3.1) for the special case of ρ1/ρ2 = 1, with various aspect ratios a/h. It is clear that 

the field lines are most uniformly distributed over the conduction region when a/h = 1, 
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which is consistent with the minimum normalized contact resistance cR  at a/h = 1 for 

ρ1/ρ2 = 1 (Fig. 3.6). The field lines are horizontally crowded around the corner of the 

constriction when a/h << 1 [Fig. 3.8 (b)], since in this limit most of the potential 

variations in the thin film (Region II in Fig. 3.1) are restricted to a distance of a few a’s. 

The field lines become vertically crowded around the corner of the constriction when 

a/h >> 1 [Fig. 3.8 (d)], since in this limit most of the potential variations in the upper 

region (Region I in Fig. 3.1) are restricted to a distance of a few h’s. Both limits lead to 

higher contact resistance in general (Fig. 3.5 and Fig. 3.6). The crowding of the field lines 

near the constriction corner could lead to significant ohmic heating there. In Fig. 3.9, the 

field lines are shown for the special case of a/h =1, with various resistivity ratios ρ1/ρ2. As 

ρ1/ρ2 increases, Region II becomes more conductive relative to Region I, the interface 

between Region I and II (i.e. BC in Fig. 3.1) becomes more and more like equipotential, 

therefore, the field lines (and the current density) at the interface become more uniformly 

distributed, as shown in Fig. 3.9 (c). For ρ1/ρ2 = 1, the calculated field lines [from Eq. 

(C1)] are also compared to those obtained from conformal mapping [cf. Eq. (D1)], with 

excellent agreement for all calculations, as shown in Fig. 3.8 and Fig. 3.9 (b). This close 

agreement of the field lines with the exact conformal mapping formulation is another 

validation of the series expansion method. 



53 
 

3.3 Cylindrical Thin Film Contact with Dissimilar Materials 

We now consider the cylindrical configuration of Fig. 3.1 using only the series 

expansion method, as conformal mapping can no longer be applied to this cylindrical 

geometry. A long cylindrical rod of radius a with resistivity 1, is standing on the center 

of large thin-film circular disk of thickness h, and radius b = a + L2 with resistivity 2. 

Current flows inside the thin-film disk, from circular rim, E and F, to terminal GH (Fig. 

3.1 and Fig. 3.3). We solve the Laplace’s equation for Region I and Region II, and match 

the boundary conditions at the interface BC, z = 0. The details of the calculations are 

given in the Appendix E. The total resistance, R, from EF to GH is found to be, 

2 2 1 1 1

2

2

ln , , .
2 4

c

Lb a a
R R

h a a b h a

   

  

  
    

   
                         (3.9) 

In Eq. (3.9), the first term represents the bulk resistance of the thin film in Region II, 

exterior to the constriction region ABCD. It is simply the resistance of a disk of inner 

radius a, outer radius b, and thickness h [20]. The third term represents the bulk 

resistance of the top cylinder, BCHG. The second term represents the remaining 

constriction resistance, Rc, for the region ABCD. If we express the constriction (contact) 

resistance as 2( / 4 ) ccR a R  for the cylindrical case, we find that cR  depends on the 

aspect ratios a/h and a/b, and on the resistivity ratio ρ1/ρ2, as explicitly shown in Eq. (3.9). 

The exact expression for cR  is derived in Appendix E [cf. Eq. (E8)]. In Eq. (E8), the 

coefficient Bn is solved numerically in terms of ρ1/ρ2, a/h, and a/b [cf. Eq. (E6)]. These 

numerical values of Bn then give cR  from Eq. (E8).  
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The exact theory of cR  [Eq. (E8)] is plotted in Fig. 3.10(a) as a function of L2/a, 

for various ρ1/ρ2 and a/h, where L2 = b - a (Fig. 3.1). To explicitly examine the 

dependence on the geometrical parameters, cR  in Fig. 3.10(a) is replotted as a function 

of L2/h in Fig. 3.10(b). Similar to the Cartesian case, we found that cR  becomes 

constant if either L2/a >>1 or L2/h >>1, in which case cR  is determined only by the 

value of a/h and ρ1/ρ2, independent of b. Many other similar calculations (not shown) 

lead to the same conclusion. This is due to the fact that if L2 >> a, the electrostatic fringe 

field at the corner B (Fig. 3.1) is restricted to a distance of at most a few a’s, making the 

flow field at the terminal F insensitive to b. Likewise, if L2 >> h, the electrostatic fringe 

field at the corner B is restricted to a distance of at most a few h’s, making the flow field 

at the terminal F also insensitive to b.  

 



55 
 

 

Fig. 3.10 
cR for the cylindrical structure in Fig. 3.1 and Fig. 3.3, is plotted as a function of (a) 

L2/a, and (b) L2/h, for a/h = 0.1 and 10.0, and 1/2 = 10, 1.0, and 0.1 (top to bottom).  

In Fig. 3.11, the exact theory of cR  [cf. Eq. (E8)] is plotted as a function of a/h, 

for various ρ1/ρ2 and a/b. Again, cR  is independent of b, provided either L2 >> a or 

L2 >> h. For a given a/h, cR  increases as ρ1/ρ2 increases, similar to the Cartesian case. It 

is clear that there is a minimum of value of cR  in the region of a/h near 1.5, for a given 

ρ1/ρ2. The a/h value for minimum cR  decreases slightly as ρ1/ρ2 increases. 
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Fig. 3.11 cR
 

in semi-log plot (a) and linear plot (b) as a function of a/h, for the cylindrical 

structure in Fig. 3.1 and Fig. 3.3. The solid lines represent the exact calculations [Eq. (E8)], 

where each curve consists of many combinations of b/a and b/h, with either L2 >> a or L2 >> 

h. The dashed lines respresent the limiting cases of ρ1/ρ2 → ∞ [Eq. (3.10)] and ρ1/ρ2 → 0 [Eq. 

(3.11), which is valid only for a/h < 0.5 [20]]. For a/h >> 1,  1/ 2 /cR a h  as ρ1/ρ2 → ∞, 

and   24 2 / 0.28cR n    as ρ1/ρ2 → 0. 



57 
 

In the regime a/h < 1, the variation 1 2( / )cR    for a given a/h is insignificant 

(Fig. 3.11(a)); however, in the regime of a/h > 1, 1 2( / )cR    for a given a/h changes by 

a factor in the single digits, up to an order of magnitude as shown in Fig. 3.11. The 

cylindrical case differs from the Cartesian case in one aspect, namely, as / 0a h , our 

numerical calculations show that cR  converges to constant values, ranging from about 1 

to 1.08, essentially for 1 20 /   . The explanation follows. If / 0a h , both the 

radius and thickness of the film region are much larger than the radius a of the top 

cylinder, as if two semi-infinite long cylinders are joining together with radius ratio of 

/b a . In this case, the a-spot theory [25] gives a value of cR  in the range of 1 to 

1.08, for 1 20 /   [c.f. Eq. (2.2)].  

In the limit of ρ1/ρ2 ,  cR is simplified as (cf. Eq. (E10) in Appendix E),  
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which is also plotted in Fig. 3.11. Note that the exact theory for 1/2 = 100 overlaps with 

Eq. (3.10). In the limit of ρ1/ρ2 ,  the minimum cR  0.48 occurs at a/h = 1.3, as 

shown in Fig. 3.11. In the limit of h → 0, Eq. (3.10) approaches the asymptotic limit 

1 2/
cR
  

→  
1

/
2

a h


, for all b/a ≥ 1, as shown in Eq. (E12) and Fig. E1 of Appendix 

E. 

In the opposite limit, 1/2 0 , the region BCHG (Fig. 3.1) acts as a perfectly 

conducting material with respect to the base region BCEF. Thus, the whole constriction 

interface BC is an equipotential surface, as if L1 = 0 and the external electrode is applied 
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directly to the interface BC for the cylindrical geometry. This special case is analyzed by 

Timsit (cf. Fig. 7 and Eq. (18) of Ref. [20]), whose cR  in the limit of 1/2 0  is,  
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

              (3.11) 

Timsit acknowledges that Eq. (3.11) is accurate only for the range of 0 / 0.5a h  [20], 

beyond which the assumption of equipotential contact that he introduces to derive Eq. 

(3.11) does not hold and the result is not accurate anymore. This insight of Timsit and the 

accuracy of his solution for a/h < 0.5 are evident in Fig. 3.11, where Eq. (3.11) is plotted. 

Note that the exact theory for 1/2 = 0.01 overlaps with Eq. (3.11) up to a/h = 0.5. For 

a/h > 0.5, the exact calculation of cR  (cf. Eq. (E8)) is also difficult in the limit of 

1/2 0 , since the determinant of the matrix for solving the coefficient Bn in Eq. (E6) is 

close to zero. [This is the main reason why the scaling law given in Eq. (3.13) below is 

valid only for / 10a h  ]. Nevertheless, our calculations of cR  for 1/2 = 0.01 shown 

in Fig. 3.11 are accurate up to / 10a h  , from the convergence of results as sufficiently 

large number of terms in the infinite series of Eqs. (E6) and (E10) are employed in our 

numerical calculations. Thus our agreement with Timsit’s calculations for a/h < 0.5 may 

be considered as a validation of our series expansion method, and we have extended 

Timsit’s calculations [20] to a/h = 10 in Fig. 3.11.   

For the special case of ρ1/ρ2 = 1, the minimum 0.42cR  occurs at / 1.6a h  [28]. 

cR  is fitted to the following formula for ρ1/ρ2 = 1 [28], 
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(3.12) 

 

 

Fig. 3.12 
cR
 

as a function of a/h, for the cylindrical structure in Fig. 3.1 with ρ1 = ρ2 = ρ. 

The theoretical result (line) [Eq. (3.12)] is compared to MAXWELL 3D simulation 

(symbols). In the simulation, we set ρ = 0.001Ωm, L1 = 10mm, a ranging from 0.01 to 4mm 

with fixed b = 10h = 5mm, and h ranging from 0.1 to 20mm with fixed b = 10a = 10mm, and 

a terminal voltage V0 = 10V was applied. The solid curve in this figure is the same as the 

green curve (ρ1/ρ2 = 1) in Fig. 3.11a. 

The theoretical cR  in Eq. (3.12) is also spot-checked against MAXWELL 3D code 

[85] with several combinations of a, h, and b, as shown in Fig. 3.12. Good agreement is 

noted in general. The discrepancies, e.g., in the leftmost and rightmost data point in Fig. 

3.12, are due to the large contrasts in the dimensions (L1, b, a, h), as well as insufficiently 

fine meshing of the MAXWELL 3D code, for which the MAXWELL 3D code results are 
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less accurate.  

The vast amount of data collected from the exact calculations allows us to synthesize 

a simple scaling law for the normalized contact resistance cR in Eq. (3.9) and Fig. 3.11 

as, (for L2 >> a or L2 >> h), 
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                                                              (3.15) 

This scaling law of cylindrical thin film contact resistance, Eq. (3.13), is shown in Fig. 

3.13, which compares very well with the exact theory, for the range of 0 <1/2 < ∞ and 

0.001≤ a/h < 10. (We have not found the scaling law for a/h > 10 for general values of 

ρ1/ρ2, as explained in the comments following Eq. (3.11).)  

 While we have not established the scaling laws for a/h >> 1 for general values of 

ρ1/ρ2, we did find the scaling laws for a/h >> 1 in the two limits ρ1/ρ2 → ∞ and ρ1/ρ2 → 0: 
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These limits are apparent in Fig. 3.11 for a/h >> 1. Equation (3.15a) was constructed 

using similar techniques that we used to derive Eq. (3.3a) for the Cartesian geometry. See 

also Fig. E1 of Appendix E for the validation of Eq. (3.15a). 

 

 

Fig. 3.13 cR
 
for cylindrical thin film structures in Fig. 3.1 and Fig. 3.3, as a function of (a) 

aspect ratio a/h, and (b) resistivity ratio ρ1/ρ2; symbols for the exact theory [Eq. (E8)], solid 

lines for the scaling law Eq. (3.13).  
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Similar to the Cartesian case, the field lines in the thin film region are calculated 

from Eq. (E1), by numerically solving the field line equation 

/ ( / ) /( / )dz dr z r      . Figure 3.14 shows the field lines in the right half of 

Region II (Fig. 3.1) for the special case of ρ1/ρ2 = 1, with various aspect ratios a/h. It is 

clear that the field lines are most uniformly distributed over the conduction region when 

a/h = 1, which is consistent with the smallest normalized contact resistance cR  near a/h 

= 1 for ρ1/ρ2 = 1 [Fig. 3.13(a)]. The field lines are horizontally crowded around the corner 

of the constriction when a/h << 1 [Fig. 3.14(b)], and become vertically crowded around 

the corner when a/h >>1 [Fig. 3.14(d)], leading to higher contact resistance in both limits, 

in the same manner as already explained for the Cartesian case. In Fig. 3.15, the field 

lines are shown for the special case of a/h =1, with various resistivity ratios ρ1/ρ2. As 

ρ1/ρ2 increases, Region II becomes more conductive relative to Region I, the interface 

between Region I and II (i.e. BC in Fig. 3.1) becomes more and more like equipotential, 

therefore, the field lines (and the current density) at the interface become more uniformly 

distributed, as shown in Fig. 3.15(c). 
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Fig. 3.14 Field lines in the right half of Region II of the cylindrical geometry in Fig. 3.1 for 

1/2 = 1 with (a) a/h = 0.1, (b) zoom in view of (a) for 0 ≤ r/a ≤ 3, (c) a/h = 1, and (d) a/h = 

10. 
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Fig. 3.15 Field lines in the right half of Region II of the cylindrical geometry in Fig. 3.1 for 

a/h = 1 with (a) 1/2 = 0.1, (b) 1/2 = 1, and (c) 1/2 = 10. 

3.4 Thin film spreading resistance as h → 0 [30] 

   The h → 0 limiting case offers substantial insight that lead to interesting 

generalizations and comparisons to existing experimental method for device 

characterization [91]; both will be studied in Section 3.5. Here, we first provide an 

in-depth analysis of an a-spot in a thin film contact, shown in Fig. 3.16. Due to symmetry, 

the a-spot area (the constriction interface AB) is an equipotential surface, and all current 

flow lines are perpendicular to this surface. This is also the situation for the two cases 

shown in Fig. 3.17, where Fig. 3.17(a) shows an electrode of size a being applied directly 
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to the conducting thin film, and Fig. 3.17(b) shows a post of zero resistivity kept in 

contact with the thin film with an interface of size a. Thus, the boundary conditions, the 

potential profile, and therefore the spreading resistance in the thin film region are 

equivalent in all three geometries shown in Fig. 3.16 and Fig. 3.17, for both Cartesian and 

cylindrical geometries. Once we know the spreading (or constriction) resistance of any 

one case, the result will be immediately applicable to the other two cases. Note that Fig. 

3.17(b) is a special case of Fig. 3.1, which was treated in detail in Section 3.2 and 3.3. 

 

 

Fig. 3.16 Cylindrical (or Cartesian) electrical contact between two thin films of the same 

material. The z-axis is the axis of rotation for the cylindrical geometry. 

We should mention that the spreading resistance for the configuration shown in Fig. 

3.17(a) was treated in Refs. [27, 93-97]. In these references, the boundary GD was an 

equipotential surface (and boundaries GH and CD are electrically insulated) so that the 

current flow just above GD was orthogonal to GD. In contrast, in this chapter, the current 

flow just above GD is parallel to GD, as we impose a constant potential on the 

boundaries CD and HG [20, 28, 29]. As a result, there is a key difference in the limit h → 

0, where the total resistance vanishes in Refs. [27, 93-97] as the current path length 

vanishes, whereas in this chapter, the total resistance becomes infinite because the 
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cross-sectional area of current flow vanishes.  

 

 

Fig. 3.17 Cylindrical or Cartesian geometries for (a) electrode applied directly on thin film, 

and (b) region of zero resistivity in contact with thin film. The z-axis is the axis of rotation 

for the cylindrical geometry. For both (a) and (b), the boundary conditions, the potential 

profile, and therefore the spreading resistance in the thin film are equivalent to that in Fig. 

3.16. 

3.4.1 Cartesian thin film a-spot 

The Cartesian thin film geometry in Fig. 3.17(a) was studied by Hall [16] using 

conformal mapping calculation. Hall’s exact calculation yields the spreading resistance, 

(cf., Fig. 2 and Eq. (12) of Hall’s 1967 paper [16]) 

4
s sR R

W




 ,                                                  (3.16) 

2 4ln sinh
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s

a a
R

h h




  
    

  
,                                     (3.17) 

where W denotes the channel width in the third, ignorable dimension, and the rest of the 
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symbols have been defined in Fig. 3.16 and Fig. 3.17 [98]. Note that Eq. (3.17) is 

identical to Eq. (3.3). The normalized thin film spreading resistance, Eq. (3.17), is plotted 

in Fig. 3.18, which is the same as the lowest curve in Fig. 3.5. The Cartesian thin film 

geometry in Fig. 3.17(b) has also been calculated by using the series expansion method 

(cf., Eq. (C8) and Fig. 3.5). In the limit of 1 → 0 in Fig. 3.17 (b) (1 = 0.01 was used in 

the calculation), Eq. (C8) gives identical results to that of Hall, Eq. (3.17), as shown in 

Fig. 3.18.   

 

 

Fig. 3.18 The normalized thin film spreading resistance
 
as a function of a/h, for the 

Cartesian structure in Fig. 3.16 and Fig. 3.17. The solid line is for the conformal maping 

calculations [Eq. (3.17)]. The dashed line, which overlaps with the solid line, is for the series 

expansion caluclations [cf., Eq. (C8) of Appendix C]. The symbols are for the MAXWELL 

2D simulation. Two sets of simulation were performed. The first set (circles) was fixed at a = 

2cm, and varying h from 2cm to 0.1cm; the second set (crosses) was fixed at h = 0.1cm, and 

varying a from 3cm to 7cm. 
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Fig. 3.19 The electric field lines in the right half of the Cartesian thin film in Fig. 3.17, 

calculated for the case of a/h = 10 and ρ1 = 0.01ρ [cf. Fig. 3.17(b)]. The crowding of the field 

lines near the constriction corner could lead to significant local ohmic heating there.  

  We already proved that [cf. Eq. (3.3a)], in the limit of a/h → ∞, sR  converges to 

the constant minimum value of 4ℓn2 = 2.77, which is valid for a/h > 2, as shown in Fig. 

3.18. It is worth noting that the conformal mapping calculation is exact, without any 

approximation, and is therefore valid for arbitrary values of a and h, even when a and h 

become arbitrarily small [98]. The field lines in the right half of the Cartesian thin film in 

Fig. 3.17 are shown in Fig. 3.19. The crowding of the field lines near the constriction 

corner could lead to significant local ohmic heating there. 

  To further confirm the nonzero limit of sR  = 2.77 as 0h  for the Cartesian thin 

film contact, we performed numerical simulations by using the MAXWELL 2D code [85] 

for various combinations of parameters on the geometry shown in Fig. 3.17(a). The 

MAXWELL 2D code results are included in Fig. 3.18 [98]. The finite element method 

based MAXWELL 2D simulations were performed with great accuracy – the 

convergence iteration error was controlled to be < 0.002% for each case represented by 
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the symbols in Fig. 3.18. It is clear that the simulations are in excellent agreement with 

the analytical calculations, from both conformal mapping and series expansion method. 

  To probe further into the nonzero limit of Rs = (4ln2)×(ρ/4πW) = 2.77×(ρ/4πW) as h 

→ 0, at a finite value of a [Fig. 3.17(a)], let us compute the width a’ such that the bulk 

resistance between y = a’ and y = b [98] (and between y = - a’ and y = -b) is equal to the 

total resistance RT as 0h . Thus, we have, RT = (b-a’)/2Wh = Rs + Rbulk = 

(4ℓn2)×(/4πW) + (b-a)/2Wh, yielding  

2 2
(1 / ) (1 0.44 / ), / 1

n
a a h a a h a h a


      .                  (3.18) 

Thus, a’ = 0.956a if h/a = 0.1, as in Fig. 3.19. That is, the distance between a’ and a gives 

the length scale over which the spreading resistance occurs (Fig. 3.19). Note the 

possibility of enhanced local heating between a’ and a because of the crowding of the 

field lines there. Such localized enhanced heating has been observed in bulk electrical 

contacts [12], but its contribution to contact overheating may be greatly magnified in a 

thin-film contact.  

3.4.2 Cylindrical thin film a-spot 

The spreading resistance of a thin conducting film for the cylindrical geometry (Fig. 

3.16) was analytically calculated by Timsit (cf., Fig. 7 and Eq. (18) of Ref. 20), who 

approximated the current density distribution through the a-spot of this film with the 

known current density distribution through the a-spot in a semi-infinite bulk solid [15]. 
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Timsit stated that this approximation is reliable only for 0 < a/h ≤ 0.5 [20] (cf. dashed 

curve in Fig. 3.20; see also Fig. 3.11). The contact resistance of cylindrical thin film 

geometry shown in Fig. 3.17(b) was calculated by using the series expansion method in 

Section 3.3(cf., Eq. (E8) and Fig. 3.11). In the limit of ρ1 → 0 in Fig. 3.17(b) (ρ1 = 

0.01was used in the calculation), the series expansion method confirmed Timsit’s 

results for 0 < a/h ≤ 0.5, and at the same time extended his results for a/h up to ten (cf. 

Fig. 3.11). The results from the exact theory of series expansion were synthesized into a 

simple, useful polynomial [29, 98] as,  

4
ssR R
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 ,                                                   (3.19)
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          (3.20) 

where Eq. (3.20) is Eq. (3.13) with ρ1 → 0. The solid curve in Fig. 3.20 plots Eq. (3.20).  

  For the cylindrical geometry of Fig. 3.16 and Fig. 3.17, accurate calculation from the 

analytical model of series expansion could only be carried up to a/h ~ 10, as seen from 

Eq. (3.20) and Fig. 3.20. Though limited in range, Fig. 3.20 showed the finite constant 

value of 
2

4 2
0.28

n


  for the normalized thin film spreading resistance as a/h → ∞, as 

suggested in Eq. (3.15a). Existence of a similar, nonzero asymptotic limit of 

4 2 2.77cR n   was proved for the Cartesian case [Eq. (3.3a)].  
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Fig. 3.20 The normalized thin film spreading resistance
 
as a function of a/h, for the 

cylindrical structure in Fig. 3.16 and Fig. 3.17. The solid line is for Eq. (3.20), synthesized 

from the results of series expansion calculations [cf., Eq. (E8)], the dashed line for Tismit’s 

calculations [cf., Eq. (18) of Ref. 20], the symbols for the MAXWELL 2D simulation. Three 

sets of simulation were performed. The first set was fixed at a = 2cm (circles), and varying h 

from 2cm to 0.1cm; the second set was fixed at h = 0.1cm (crosses), and varying a from 3cm 

to 7cm; the third set was fixed at a = 0.01cm (diamonds), and varying h from 0.025cm to 

0.00015cm. 

To verify the nonzero limit of 0.28sR   as h → 0 for the cylindrical thin film 

contact, we performed the MAXWELL 2D simulation [85] for various combinations of 

parameters on the geometry shown in Fig. 3.17(a). The MAXWELL 2D code results are 

included in Fig. 3.20 [98]. Similar to the Cartesian case, the simulations were performed 

with great accuracy – the convergence iteration error was controlled to be < 0.002% for 

each data point represented by symbols in Fig. 3.20. It is clear from Fig. 3.20 that the 

simulations are in excellent agreement with the analytical calculations, and again yield 

the asymptotic constant value of ~ 0.28. The field lines in the right half of the thin film 

for the cylindrical geometry in Fig. 3.17 are shown in Fig. 3.21. Note the striking 
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resemblance of field lines in Fig. 3.21 and Fig. 3.19.  

 

Fig. 3.21 The electric field lines in the right half of the cylindrical thin film in Fig. 3.16 and 

Fig. 3.17, calculated for the case of a/h = 10.1 and ρ1 = 0.01ρ [cf. Fig. 3.17(b)]. The field lines 

shown in this figure is indistinguishable from the field lines shown in Fig. 3.19, the 

Cartesian case. 

 To probe further into the nonzero limit of 0.28 ( / 4 )sR a   as 0h  at a finite 

value of a, let us compute the radius a’ such that the bulk resistance between r = a’ and r 

= b is equal to the total resistance RT as 0h  [Fig. 3.17(a)]. Thus, using the first term 

in the RHS of Eq. (3.9) for Rbulk, we have, RT = (ρ/2πh)ℓn(b/a’) = Rs + Rbulk = 0.28×(ρ/4a) 

+ (ρ/2πh)ℓn(b/a), yielding†  

0.28
0.44 /2 (1 0.44 / ), / 1

h

h aaa ae ae a h a h a


 
                      (3.21) 

which is identical to Eq. (3.18), derived for the Cartesian thin film. Thus, a’ = 0.956a if 

h/a = 0.1, as in Fig. 3.21 (and in Fig. 3.19). The distance between a’ and a gives the 

length scale over which the spreading resistance occurs (Fig. 3.21). The nonzero limit of 

0.28 ( / 4 )sR a   as 0h , at a finite value of a, is equivalent to the resistance of a 

                                                             
†
 The expression a’ = a×exp[-0.28(/2)h/a] in Eq. (3.21) was first derived by R. S. Timsit using the 

MAXWELL 2D data of Fig. 3.20. [Private communication, November 29, 2011]. See also [30]. 
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“residual” circular ring of thickness h, and of outer radius a and inner radius a’, 

residual circular ring

1
n n 0.28 ,    0,
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(3.22) 

where Eq. (3.21) and the first term in the RHS of Eq. (3.9) have been used. As seen from 

Eq. (3.22), as h decreases to zero, the resistance of the “residual” circular ring region 

(over which the spreading resistance occurs) remains a constant, and this might be 

considered as an interpretation of the  nonzero limit of the spreading resistance 

0.28 ( / 4 )sR a   as 0h  for the cylindrical case [30]. 

A similar argument may be made for the Cartesian case as Eqs. (3.21) and (3.18) are 

identical. The distance between a and a’ remains to be 0.44h, and Eq. (3.22) is modified 

to read 

residual rectangular strips

( ') 0.44
2.77,    0.

2 2 4
s

a a h
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hW hW W

  



 
           (3.23) 

Once a is fixed, in the limit h → 0, the edge “B” in Fig. 3.17(a) looks the same 

whether it is a circular arc (cylindrical geometry) or a straight line segment pointing out 

of the paper (Cartesian geometry), as far as the current flow patterns at B are concerned. 

This is why the factor 0.44 appears in both Eqs. (3.18) and (3.21), and Fig. 3.19 and Fig. 

3.21 look identical. Since 20.28 (4 2) /n  , we establish that the asymptotic value for 

the cylindrical thin film spreading resistance is  2 2(4 2) / 2.77 / 0.28sR n      as 

0h . The ratio between the “hard limits” of sR  for the Cartesian and cylindrical thin 

film is π2 as 0h . [cf. Eqs. (3.3a) and (3.15a)] 
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Finally, even though Rs approaches a finite constant as 0h , Rs/RT approaches to 

zero since Rbulk, and therefore, RT approaches infinity. That is, the spreading resistance 

contributes to a negligible fraction of the total resistance in the limit 0h . The latter 

property was also shared in Refs. [27, 93, 94, 95, 96, 97], even though in these references, 

both the total resistance and the spreading resistance vanish as 0h . 

3.5  Generalizations 

The insight obtained in the h → 0 limit allows two important generalizations of the 

theory: an a-spot of arbitrary shape (Section 3.5.1) and high frequency limit (Section 

3.5.2). In Section 3.5.3, we comment on the transfer length and include comparison of 

our model with the transfer length method (TLM) [91] that was used extensively in 

experimental characterization of thin film semiconductor devices.  

3.5.1 Extension to a-spot of arbitrary shape [30] 

Since the distance between a and a’ is always 0.44h as 0h  [cf., Eqs. (3.18) and 

(3.21)], and Fig. 3.19 and Fig. 3.21 are identical for both cylindrical and Cartesian a-spot 

shown in Fig. 3.16, the conclusions in Section 3.4.2 could perhaps be extended to an 

a-spot of an arbitrary shape in the 0h  limit, as shown in Fig. 3.22. Specifically, we 

propose that the spreading resistance Rs would assume the general form, 

2 2
,    0,s

n
R h

L





 
  
 

                                  (3.24) 
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where L is the circumference of the a-spot of an arbitrary shape, and Rbulk is the bulk 

resistance of the thin film exterior to this generalized a-spot. For a circular a-spot of 

radius a, L = 2πa, and Eq. (3.24) reproduces Eq. (3.22). For an a-spot in the Cartesian 

geometry, L = 2W (the factor of two to account for both edges A and B in Fig. 3.16), and 

Eq. (3.24) reproduces Eq. (3.23). 

 

 

 

Fig. 3.22 a-spot of an arbitrary shape. Note the current flow lines in the bottom figure are 

identical to Fig. 3.21 and Fig. 3.19 locally. 
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3.5.2 Extension to AC case 

 

 

Fig. 3.23 (a) High-frequency AC current in a bulk solid with constriction of size a where the 

current flow is limited to the skin depth  [20,99], and (b) The DC thin film contact [30] 

analyzed in this section (Fig. 3.16). 

Timsit pointed out that the DC spreading resistance in a thin film is comparable to 

the spreading resistance for high-frequency AC current in a bulk solid where the current 

flow is limited to the skin depth [20, 99], if the thickness of the equivalent thin film is 

identified as the skin depth, δ, at the relevant frequency, i.e., h = δ, as shown in Fig. 

3.23(a). Comparing with Fig. 3.23(b), we note the analogy between the region in the 

dashed box for the AC case and the DC thin film case studied in this thesis. Along this 

line, we speculate that the same finite limits of sR  = 2.77 for the Cartesian case and 

sR   0.28 for the cylindrical case, would apply to the AC case as the skin depth 0  . 

In fact, Figure 9 of Ref. [20] for the 1GHz curve is about 0.3 of that for the cylindrical 

DC curve, for all constriction diameters shown in that figure, which is reproduced in Fig. 
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3.24. If the frequency further increases, we expect the ratio would be ~ 0.28. Likewise, 

we conjecture that Fig. 10 of [20], which is reproduced in Fig. 3.25, would converge to 

the final value of ~ 0.28 as /a   . The blue solid curve of Fig. 3.25 is a plot of Eq. 

(3.20). 

 

 

Fig. 3.24 The DC thin film model (h→ 0) studied in this thesis may be considered as the 

limiting case for the high frequency AC bulk contact resistance [20, 99], once the skin depth 

δ for the AC bulk contact is identified with the thin film thickness h. 
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Fig. 3.25 Comparison of the DC thin film model studied in this thesis with the AC bulk 

contact resistance [20]. As /a   , we expect the curve would converge to a final value 

of 0.28, as predicted by our DC thin film model [Eq.(3.20) and Fig. 3.20].   

3.5.3 Transfer Lengths and Comparison with Experiment Method 

In semiconductor device and material characterization, one important parameter 

about electrical contacts is the transfer length, LT, which is defined as the length scale 

over which most of the current from a contact into a semiconductor thin film flows [91, 

100]. The simple transmission line model (TLM) is widely employed to characterize the 

metal-semiconductor contacts [91, 100].  

From Eq. (3.18) and Fig. 3.19, one may argue that the transfer length LT ~ 0.44h 

for the present Cartesian thin film model, and this transfer length is due only to the 

fringing fields. In the transmission line model [91], there is another component of transfer 

length, neglecting the fringing fields, that is approximately given by, LT2 = (rc/Rsh)
1/2

, 

where Rsh = /h is the sheet resistance (in /square) in the semiconductor thin film under 
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the contact, and rc = contact resistivity (in m
2
). The resistivity rc arises from the 

metal-semiconductor barrier so that in this chapter we would have rc = 0, yielding LT2 = 0 

in the conventional transmission line model [91]. The transmission line model does not 

include the effect of fringing fields studied in this chapter. 

Experimentally, the transfer length method [91] (also denoted as TLM, which 

should be distinguished from the Transmission Line Model), has been extensively used to 

characterize the metal-semiconductor contact resistance. A typical transfer length method 

test structure and a plot of total resistance as a function of contact spacing, d, is shown in 

Fig. 3.26. 

For contact size exceeding 1.5LT in Fig. 3.26, the total resistance between any two 

contacts (two darkened regions) is found to be [Eq. (3.30) of Ref. 91], 

2 2sh sh T
T bulk c

R R L
R R R d

Z Z
    ,                                      (3.25) 

where Rsh is the sheet resistance (in /square), Rc is the contact resistance, and LT is the 

transfer length, and all the other symbols are defined in Fig. 3.26. The total resistance is 

measured for various contact spacings d1, d2, d3, …, and RT is plotted as a function of d. 

Three parameters are extracted from such a plot. The slope Rsh/d leads to the sheet 

resistance. The intercept at d = 0 is RT = 2Rc giving the contact resistance. The intercept 

at RT = 0 gives -d = -2LT, which in turn is used to calculate the specific contact resistivity.  
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Fig. 3.26 A transfer length method test structure and a plot of total resistance as a function 

of contact spacing, d. [Fig. 3.22 of Ref. 91] 

 For contact size exceeding 1.5LT in Fig. 3.26, the contact size is usually much larger 

than the thin film thickness h, thus, the results obtained for the limit h → 0 in Section 

3.4.1 remain valid, giving a contact resistance  

2 2 2.77 ,    0,
4

c sR R h
Z





 
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 
                                   (3.26) 

where Z is the contact width in Fig. 3.26 (=W in Eq. (3.23)), and the factor 2 counts for 

the fact that only half of the contact under test is active, (i.e. equivalent to half of the 

geometry in Fig. 3.17 (a)). Putting Eq. (3.26) into Eq. (3.25) and using Rsh = /h, we have  

2.77
0.44 ,    0,

2
TL h h h


                                            (3.27) 

which gives the same result as that from our observation, stated in the beginning of the 

second paragraph of this subsection. This analysis implies that there are intrinsic errors in 

extracting the specific contact resistivity from the transfer length measured from the 
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transfer length method. The errors are due to the effect of fringing fields studied in this 

chapter.   

3.6 Concluding remarks 

 This chapter presents accurate analytic models which allow ready evaluation of the 

contact resistance or constriction resistance of thin film contacts with dissimilar materials 

over a large range of parameter space. We show the large distortions of the field lines as a 

result of a small film thickness, implying strong local heating. The models assume 

arbitrary aspect ratios, and arbitrary resistivity ratios in the different regions for both 

Cartesian and cylindrical geometries. From the large parameter space surveyed, it is 

found that, at a given resistivity ratio, the thin film contact resistance primarily depends 

only on the ratio of constriction size (a) to the film thickness (h), as long as either L2 >> a 

or L2 >> h. In the latter cases, the electrostatic fringe field is restricted to the constriction 

corner only, and becomes insensitive to the location of terminals for the thin film region.  

 The effects of dissimilar materials are summarized as follows. If the constriction size 

(a) is small compared to the film thickness (h), the thin film contact resistance is 

insensitive to the resistivity ratio. However, if a/h > 1, the contact resistance varies 

significantly with the resistivity ratio. Typically the minimum contact resistance is 

realized with a/h ~ 1, for both Cartesian and cylindrical cases. Various limiting cases are 

studied and validated with known results. Accurate analytical scaling laws are presented.  
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We also found that the normalized thin film spreading resistance converges to the 

finite values, 2.77 for Cartesian and 0.28 for cylindrical case in the limit h → 0.  An 

interpretation of these asymptotic limits is given. We conjecture that the same finite limits 

of normalized thin film spreading resistance would apply to the a-spot between bulk 

solids in the AC case as the skin depth δ → 0, if the thickness of the equivalent thin film 

is identified as the skin depth at the relevant frequency, i.e., h = δ.  Extension to a 

general a-spot geometry is attempted. We estimate that the transfer length LT ~ 0.44h for 

the present Cartesian thin film model, in contrast to the result LT = 0 from the 

conventional transmission line model [91]. The transmission line model does not include 

the effect of fringing fields studied in this chapter. 

Finally, one may adapt the results for the DC case in this chapter to the steady 

state heat flow in thermally insulated thin film structures with dissimilar thermal 

properties. This may be done by replacing the electrical conductivity (1/j) with the 

thermal conductivity (j), j = 1, 2, in the different regions, assuming that the j’s are 

independent of temperature.  
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CHAPTER 4  

SURFACE ROUGHNESS INDUCED ENHANCED RF 

ABSORPTION AND FIELD ENHANCEMENTS 

 

4.1  Introduction 

      Surface roughness may exert a profound effect in the performance of 

radio-frequency (RF) cavities or slow wave structures [53-65], for example, in 

communication systems [54-56], particle accelerators [57-59, 65-69], and material 

characterization at microwave frequencies [70,71], etc. Surface roughness may cause 

enhanced power absorption in these devices [62-65, 72-74]. It may lead to excessive local 

electric field enhancement that could trigger RF breakdown [56, 74-76]. In a 

superconducting cavity, surface roughness may also cause local magnetic field 

enhancement that leads to abrupt quenching [53, 57, 58], i.e., rapid loss of 

superconductivity.   

      Surface roughness may assume many forms. Small foreign objects might be 

attached to the cavity surface, and these impurities might have very different electrical 

properties from those of the presumably pristine metallic surface. Their presence is 
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known to cause localized damage [10, 62, 66, 67]. The metallic surface itself might not 

be perfectly smooth, in which case the roughness consists of the same material as the 

surface, i.e., no foreign materials are involved. Grain boundaries also make the surface 

microscopically rough [73, 101, 101]. Regardless of the origin of the roughness, of 

general interest is the additional RF power that would be absorbed due to the surface 

roughness, and the local enhancement in the RF electric field and in the RF magnetic 

field due to the change of the local geometry. 

 

 

Fig. 4.1 A small hemispherical bump on a conducting surface whose local RF electric field is 

E0 and local RF magnetic field H0 in the absence of the bump. 

      In this chapter, we provide an accurate assessment of the additional heating, as 

well as the local RF electric field and RF magnetic field enhancements due to a small, 

local surface roughness [11]. The crucial assumption is that this small roughness is 
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hemispherical in shape, whose radius, a, is much less than  (a/ << 1), where  is the 

RF wavelength exterior to the protrusion. To isolate the effects of this roughness, we 

assume that it is setting on a perfectly conducting surface so that in the absence of this 

roughness, the RF electric field there, E0, is orthogonal to the surface; whereas the RF 

magnetic field there, H0, is tangential to the surface (Fig. 4.1). The relative magnitudes 

and the relative phases between E0 and H0 may be arbitrary so that this local roughness 

may be located anywhere on the surface of a conducting cavity or of a conducting 

waveguide. Another crucial assumption is that the hemispherical protrusion has a 

constant (complex) permittivity, 1 = r1 - j, where  is the electrical conductivity at 

the RF frequency , and a constant (real) permeability, 1. While r1, , and 1 are real 

constants, all assumed to be known, their values may be arbitrary. Thus, this roughness 

may represent a foreign object, or it may be made of the same material as the conducting 

surface. The ratio /a may take on an arbitrary value ranging from zero to infinity, where 

 = (2/0)
1/2

 is the skin depth associated with protrusion material, with   

corresponding to an insulating protrusion and = 0 corresponding to a perfectly 

conducting protrusion. 

     In Section 4.2, we transform the irregular geometry of a “hemispherical protrusion 

on a surface” (Fig. 4.1) into an equivalent, but highly symmetrical problem of a 

“spherical particulate in a spherical cavity” (Fig. 4.3 below) under the assumption that the 

radius a of the protrusion is much smaller than the wavelength (and also much smaller 

than the local radius of curvature of the surface if the cavity wall is not a flat surface). 
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The perturbation by the small spherical particulate on the eigenfrequency of the spherical 

cavity then gives the RF power absorbed by the protrusion, as treated in Section 4.3. The 

enhancement factors of the RF fields, as a result of the protrusion, are presented in 

Section 4.4. They are obtained from the perturbation on the eigenfunctions of the 

spherical cavity by the spherical particulate. Both RF electric field and RF magnetic field 

enhancement factors reduce to the established results in the appropriate limits. Section 

4.4 also presents spot checks of the field enhancement factors against the Maxwell 3-D 

code [85] results, adding plausibility of our approach. Concluding remarks are given in 

Section 4.5. 

      Since the perturbations on the eigenmodes on the spherical cavity, by a small 

spherical particulate, were treated in detail by Bosman et al. [10, 102] and by Tang et al. 

[103], we shall only quote their results when needed. Furthermore, Refs. [102] and [103] 

focused mainly on the RF heating of an isolated, freely suspended particulate; this paper 

extends their results to include the field enhancement factors in the RF electric field and 

RF magnetic field, and the resultant RF heating, for the important case where a small 

hemispherical particulate is attached to a perfect conductor.  

4.2 The model  

     Despite the irregular geometry shown Fig. 4.1, and the possibly strong coupling 

between the RF magnetic field and the RF electric field through the hemispherical 
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protrusion, the problems of RF heating and of RF field enhancement at the protrusion can 

actually be solved analytically in the asymptotic limit a/ << 1, without any restriction on 

the skin depth, . Our argument follows. In the immediate neighborhood of the 

protrusion (Fig. 4.1), the RF electromagnetic field, represented as (E0, H0) when the 

protrusion is absent, may be considered as a linear combination of two modes: (E0, 0) and 

(0, H0), each oscillating at the same frequency  (Fig. 4.2). Because of the respective 

domination of the RF electric field and the RF magnetic field, we designate the (E0, 0) 

mode as the TE mode, and the (0, H0) as the TM mode. This mode designation, together 

with the corresponding ones in Fig. 4.3, follows Ref. [103]. As we shall see, it also 

applies to incident TEM plane wave in an open system with protrusions. 

 

 

Fig. 4.2 Decomposition of the local electromagnetic field (E0, H0) into (a) the TE mode (E0, 

0), and (b) the TM mode (0, H0). 

     For the action of (E0, 0) on a small hemispherical protrusion [Fig. 4.2(a)], we now 

consider an auxiliary problem [Fig. 4.3(a)]. Figure 4.3(a) shows a perfectly conducting 

spherical cavity of radius b, whose natural frequency for the fundamental TE mode is  

when this cavity is empty (i.e., by setting b = 2.7437c/), and whose vacuum eigenmode 

at the center of cavity is (E0, 0). We now insert a spherical particulate of radius a and of 



88 
 

the same permittivity 1 = r1 - j, and the same permeability 1 at the center of this 

spherical cavity [Fig. 4.3(a)]. The high degree of spherical symmetry allows us to 

analytically calculate the perturbation on the eigenmode and the perturbation on the 

eigenfrequency by this spherical particulate [102, 103].  

 

 

Fig. 4.3 Transformation of the “protrusion on surface” problem into a spherical eigenmode 

problem for (a) the TE110 mode and (b) the TM110 mode. The mode index (110) refers to 

variations in r, θ, and φ. Note that, by symmetry, the mode patterns in (a) or (b) are 

unchanged with or without a perfect conductor inserted in the horizontal mid-plane. 

     The perturbation on the TE eigenmode gives the RF electric field enhancement 
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factor, and the damping rate of the TE eigenmode gives the RF power dissipated in the 

lossy particulate [102, 103]. These are also precisely the RF electric field enhancement 

for the small hemispherical protrusion on the flat plate [Fig. 4.2(a)] and the RF electric 

field energy that the (lossy) protrusion dissipated. This follows from symmetry of the 

fields: the RF electric field and the (vanishingly small) RF magnetic field in the spherical 

cavity, including the spherical particulate, are unchanged if we insert a horizontal, 

perfectly conducting plate that cuts the spherical cavity and spherical particulate in half 

[Fig. 4.3(a)]. In the immediate vicinity of the protrusion, the geometry, and RF field 

configuration also, between Fig. 4.2(a) and Fig. 4.3(a) are then equivalent in the 

asymptotic limit a/ << 1. Since the perturbed TE eigenmode have been solved using the 

full set of the Maxwell equations for Fig. 4.3(a), with the inclusion of the particulate, the 

calculation of the RF electromagnetic field for the TE mode is intrinsically self-consistent 

[102, 103].   

    Similarly, for the action of (0, H0) on the hemispherical protrusion [Fig. 4.2(b)], we 

also consider the auxiliary problem [Fig. 4.3(b)], that of a perfectly conducting spherical 

cavity, whose natural frequency for the fundamental TM mode is also  when the cavity 

is empty (i.e., by setting the cavity radius b = 4.4934c/), and whose vacuum eigenmode 

at the center of cavity is (0, H0). We insert the same spherical particulate, of radius a and 

of the same permittivity 1 = r1 - j, and the same permeability 1 at the center of this 

spherical cavity [Fig. 4.3(b)]. The perturbation on the TM eigenmode gives the RF 

magnetic field enhancement factor, and the damping rate of the TM eigenmode gives the 
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RF power dissipated for the lossy particulate [102, 103]. These are also precisely the RF 

magnetic field enhancement for the small hemispherical protrusion on the flat plate and 

the RF magnetic field energy that the (lossy) protrusion dissipated. This follows from 

symmetry of the fields: the RF magnetic field and the (vanishingly small) RF electric 

field in the spherical cavity, including the spherical particulate, are unchanged if we insert 

a horizontal, perfectly conducting plate that cuts the spherical cavity and spherical 

particulate in half [Fig. 4.3(b)]. In the immediate vicinity of the protrusion, the geometry, 

and RF field configuration also, between Fig. 4.2(b) and Fig. 4.3(b) are then equivalent in 

the asymptotic limit a/ << 1. Since the perturbed TM eigenmode has been solved using 

the full set of the Maxwell equations, with the inclusion of the particulate, the calculation 

of the RF electromagnetic field for the TM mode is intrinsically self-consistent.  

4.3 RF power absorption 

    The perturbation due to a small particulate located at the center of a perfectly 

conducting spherical cavity is studied by Bosman et al.[102] and Tang et al.[103]. The 

particulate has radius a and the cavity has radius b. Hereafter, we follow Tang et al. [103] 

to use subscripts 1 and 2 to denote the values in region I (r < a) and region II (a < r < b) 

(Fig. 4.3). In these two regions, the permittivity is, respectively, 1 = r1 - j, and 2; 

and the permeability is, respectively, 1 and 2, where r1,, 2, 1 and 2 are all real and 

they may assume arbitrary values. Even though in this chapter, we will set 2 = 0 and 2 
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=0 the formulas will be written for general values of 2, and 2 to conform with the 

notation of [103]. In the absence of this particulate, the cavity admits the fundamental 

TE110 mode, which has a maximum RF electric field, and a null RF magnetic field, at the 

center [Fig. 4.3(a)], as well as the TM110 mode, which has a maximum RF magnetic field, 

and a null RF electric field, at the center [Fig. 4.3(b)]. In the empty cavity, both the TE 

mode and TM mode have an infinite quality factor Q since the cavity wall is lossless. The 

eigenfrequencies ωE and ωM (both equal to ) for the TE110 and TM110 modes are given 

by ηE = 2.74371 and ηM = 4.4934, respectively, with ηE,M = ωE,Mb(22)
1/2

 = 2b/ [104]. 

When a small, lossy particulate is introduced at the center of the cavity, the modes would 

be slightly damped, the eigenmode frequency becomes complex, and the quality factor Q 

becomes finite. The change of Q in the TE (TM) mode gives the power dissipation due to 

this lossy particulate by the RF electric (magnetic) field. The change in the 

eigenfrequencies, , which is complex in general, due to the particulate reads,  
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for the TE and TM modes respectively [cf. Eqs. (15) and (28) of Ref. 103], where 
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and the prime denotes the derivative with respect to the argument. In the arguments, 2E = 

E(a/b) and 2M = M(a/b) are both real, 1/ 2

1 1 1( )E E a    , 1/ 2

1 1 1( )M M a    , in 

which μ1 (permeability of region I) is real, 1 1 /r j      (permittivity of region I) is 

complex. Once more, Eqs. (4.1) and (4.2) are valid as long as a/ << 1, regardless of the 

values of r1,, 2, 1 and 2 .  

        The real parts of Eqs. (4.1) and (4.2) give the detune of the eigenmode 

frequency and the imaginary parts give the damping rate γE,M, which is related to the 

average power loss P and the quality factor Q through the relationship (Ref. [104], p. 

258),  

QUUP /2   ,                                               (4.8) 

where U is the average electromagnetic energy stored in the eigenmode of the empty 

cavity. The power dissipation for the TE and TM modes for Fig. 4.2, denoted by PE and 

PM respectively, then reads  
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where E0 (H0) is the peak value of the RF electric (magnetic) field of the TE (TM) mode 

at the center of the cavity in the absence of the spherical particulate (Fig. 4.3), whose half 

volume is 3(2 / 3)aV a , and E (H) is known as the particulate polarizability 

[105-107] for the TE (TM) mode [cf. Eqs. (20) and (32) of Ref. 103]. 

      The asymptotic formulas for αE in Eq. (4.9b) and αH  in (4.10b) may be 

expressed in terms of the skin depth  = (2/2)
1/2

 [cf. Eqs. (36) and (37) of Ref. 103], 
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Tang et al. [103] shows that the asymptotic formulas, Eqs. (4.11) and (4.12), give an 

excellent qualitative representation of the exact forms, Eqs. (4.9b) and (4.10b).  Figure 

4.4(a) shows the asymptotes of αE as a function of /a for different values of λ/a, for the 

special case 1 2 0    , and 1 2 0r    . Note that for a given λ/a, there are two break 
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points for αE. The first break point at a lower value of δ/a corresponds to a ~ δ, and the 

second break point at a higher value of δ/a corresponds to σE ~ 0E, i.e. the conduction 

current is on the order of displacement current, as shown clearly in Fig. 4.4(a). From the 

interception of the asymptotic expansions (4.11b) and (4.11c), i.e. the second break point, 

one estimates that the maximum value of αE is of order 3, occuring at a value of /a = 

0.13 (/a), as shown in Fig. 4.4(a). Figure 4.4(b) shows the asymptotes of αH as a 

function of /a for the same special case 1 2 0    , and 1 2 0r    . Note from Eqs. 

(4.12a) and (4.12b) that these asymptotes are independent of λ/a (for λ/a>>1). In contrast 

to αE, there is only one break point, corresponds to a ~ δ, as shown clearly in Fig. 4.4(b). 

The maximum value of αH is about 1.0, occuring at a value of /a = 0.446 approximately, 

as shown in Fig. 4.4(b). Taking the ratio of Eq. (4.11a) and (4.12a), one obtains αH / αE = 

(/2a)
2
 >> 1 for a good conducting particulate (/a << 1), as is also evident in Fig. 4.4. 

Thus, heating by the RF magnetic field dominates over the heating by the RF electric 

field when /a < 1 [62, 102, 103, 108].  
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Fig. 4.4 The asymptotes for (a) αE and (b) αH as a function of δ/a for μ1/μ2 = 1, 1r/2 = 1 and 

various values of λ/a. These asymptotes yield approximate maximum values of E = 3 and 

H = 1.0. Note that the scaling law for αH is independent of λ/a. 

We should emphasize that, physically, “heating by the RF magnetic field” is actually 

the ohmic heating due to the RF electric field that is induced within the 

particulate/protrusion by the external RF magnetic field component (via Faraday’s Law), 

and this is the physical basis of derivation of the magnetic polarizability for nonmagnetic 

materials by Landau and Lifshitz [107]. Using Eqs. (4.11) and (4.12), Eqs. (4.9) and (4.10) 



96 
 

yield [11],  
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where 2

0 0(1/ 2)EU E and 2

0 0(1/ 2)HU H  for the special case 1 2 0    , 

and 1 2 0r    . 

 Landau and Lifshitz [p. 303 of Ref. 107] derived both regions, δ/a << 1 and δ/a >> 1, 

for the PM in Eq. (4.14); but only the δ/a >> λ/a >> 1 regime for PE in Eq. (4.13). This 

thesis then provides an extension of Landau and Lifshitz on the electric polarizability αE, 

that is, for the entire range of 0 < δ/a < ∞.          

To quantify the additional heating due to surface roughness relative to the intrinsic 

ohmic loss in the flat surface, let us now assume that the flat surface is slightly lossy, 

characterized by its skin depth s. To get an idea on the order of magnitude, let us 

consider a planar, TEM wave that propagates on the flat surface whose electric and 

magnetic field amplitude satisfies E0 = (0/0)
1/2

H0 (Fig. 4.2). Over an area of 1m
2
 on this 

surface, the ohmic power loss on this flat surface is readily shown to be Pflat = (s/)S, 

where S = (1/2)E0H0 = (1/2)E0
2
(0/0)

1/2
 is the Poynting flux [cf. Eq. (5) on p. 157 of Ref. 
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104]. Over this unit surface area, let there be N hemispherical protrusions of radius a, so 

that the fraction of the surface area that is bumpy is fbump = Na
2
. These protrusions may 

be considered independent if their average separation is much larger than a [103]. If each 

protrusion consumes an additional RF power (PE + PM), where PE and PM are given by 

Eqs. 4.9(a) and 4.10(a), then we obtain  
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 ,                          (4.15) 

which is the ratio of the additional RF power dissipated by the surface roughness to the 

intrinsic ohmic loss on the pristine flat surface. Three cases are next examined to 

illustrate its order of magnitude.    

(A) If the hemispherical protrusions are made of the same conducting materials as the flat 

surface, we set  = s in Eq. (4.14a) and ignore PE in comparison with PM (assuming  < 

a) to obtain,   

bumpfR 3 ,           (4.16)  

where fbump = Nπa
2
 is the fraction of the surface area covered by roughness. Thus, for a 

nominally flat superconducting surface, where fbump is expected to be very small, the 

additional ohmic heating on the rough surface as measured by R (in the absence of 

foreign contaminants) is unlikely to be the reason for any loss of superconductivity. On 

the other hand, on an ordinary conductor, if its surface exhibits excessive RF power loss, 

the likely culprit would be foreign objects or grain boundaries that introduce significant 

additional surface resistance. 
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(B) If the protrusions are made of foreign objects, the maximum amount of their ohmmic 

loss through the RF electric field may be estimated by inserting the approximate 

maximum value of E = 3 into Eq. (4.9a); see Fig. 4.4(a). Equation (4.15) then gives, 

upon ignoring the PM term, 
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(C) Likewise, if the protrusions are made of foreign objects, the maximum amount of 

their ohmmic loss through the RF magnetic field may be estimated by inserting the 

approximate maximum value of H = 1.0 into Eq. (4.10a); see Fig. 4.4(b). Equation (4.15) 

then gives, upon ignoring the PE term, 
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      Equation (4.15) may provide a useful estimate on the additional loss due to 

surface features that are difficult to simulate directly in a numerical code. If ohmic loss is 

a serious issue, as expected in a submillimeter traveling wave tube because of its low gain 

[54], additional loss due to surface roughness poses a very serious threat.  Equation 

(4.15), together with experimental measurements of the geometric surface features, may 

provide a characterization of such additional loss, and the latter may then be included in a 

more realistic design.  
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4.4 RF field enhancements 

       The modifications of the eigenfunctions by the spherical particulate in Fig. 4.3(a) 

and Fig. 4.3(b) give the enhancements in the RF electric field and in the RF magnetic 

field for the hemispherical protrusions in Fig. 4.2(a) and Fig. 4.2(b), respectively. We 

treat these two cases separately below.   

4.4.1 RF Electric Field Enhancement    

        The local RF electric field at the location of the protrusion in Fig. 4.3(a) may be 

obtained from the r-component and θ-component of electric field in region II for the TE 

mode. They read [cf. Eq. (9) of Ref. 103] 
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where B is an arbitrary constant, ( ), ( ), ( ),  and Y( )j y J     are defined in Eqs. (4.3) - 

(4.5), 1/ 2

2 2 2( )k    , 2k b  , and the prime denotes the derivative with respect to the 

argument. For these fields to give a constant RF electric field E0, at the center of the 

cavity in the absence of the particulate, we find the constant B to be related to E0 by           
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where 2 / 2.74371E b    .     
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The introduction of a small protrusion modifies the eigenvalue by a small amount, 

E    , E    , and 2 2 2E     where 2E = 2a/E(a/b). It can be 

easily shown that 2 2/ / /E E E       , given by Eq. (4.1). By evaluating Eqs. 

(4.19) and (4.20) at point A, the apex, and at point C, the base, respectively [Fig. 4.3(a)], 

and expanding about the unperturbed values E , E  and E , we obtain the amplitude 

of the electric field at points A and C in the limit a/ << 1, 
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where EA  and EC  are the electric field enhancement factor at points A and C due to 

the presence of the hemispherical protrusion at the flat surface, respectively, and / E   

is given by Eq. (4.1).   

        Figure 4.5 shows EA  and EC  as a function of / a , setting 1 2/ 1   , 

1 2/ 1r    and / 100a  . As the skin depth becomes much smaller than the radius of 

the bump, / ~ 0a , the bump is nearly perfect conducting, the field enhancement factor 
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at apex is around 3, which agrees well with previous studies [109, 110]. At the base point 

C [Fig. 4.3(a)], the electric field is forced to become normal to both the hemispherical 

surface and the flat surface, which are perpendicular to each other [Fig. 4.3(a)], thus the 

electric field vanishes and the electric field enhancement factor approaches zero. On the 

other hand, as skin depth assumes a very large value, the bump is almost dielectric, with 

the same permeability and permittivity as vacuum, 1 2/ 1   , 2 1 2/ / 1r     , the RF 

electric field is not perturbed and the field enhancement factor at both points A and C 

converges to the value of 1, as expected, and shown also in Fig. 4.5. 

 

 

Fig. 4.5 The electric field enhancement factor on the hemispherical protrusion at the apex 

(EA, solid curve) and at the base (EC, dotted curve) as a function of/a, setting μ1/μ2 = 1, 

1r/2 = 1 and λ/a = 100. 
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Fig. 4.6 Maxwell 3D results of (a) electric field distribution around the hemispherical bump, 

(b) magnitude of electric field along a horizontal line 0.5 cm (=bump radius) above the flat 

surface (dashed line), which agrees extremely well with the analytical calculation (solid line). 

E0 is the electric field far away from the bump. 

A 3D finite element code Maxwell 3D [85] was used to verify the field enhancement 

factor calculated analytically as well as the field distribution. The hemispherical 

protrusion was situated on a flat, perfectly conducting surface, as shown in Fig. 4.6. The 

electric field is strongest at the apex and weakest at the base. In Fig. 4.6(a), by reading 
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the color bar, the electric field at the apex is roughly 3 times of the background value, 

which is confirmed in Fig. 4.6(b), where the magnitude of electric field, 2 2 1/ 2( )rE E , is 

plotted along a horizontal line at a distance of one protrusion radius above the flat surface, 

showing a field enhancement factor of 3 clearly. As shown in Fig. 4.6(b), the analytical 

calculation from Eqs. (4.19) and (4.20) gives identical results as the simulation. Note that 

the field enhancement profile is independent of the radius of the protrusion.  

4.4.2 RF magnetic field enhancement 

       The local magnetic field at the location of the bump on a flat surface can be 

similarly calculated using the model of Fig. 4.3(b). The θ-component and r-component of 

the RF magnetic field in region II of Fig. 4.3(b) are [cf. Eq. (25) of Ref. 103]  
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respectively, where D is an arbitrary constant, ( ), ( ), ( ),  and Y( )j y J     are defined in 

Eqs. (4.3) - (4.5), 1/ 2

2 2 2( )k    , 2k b  , and the prime denotes the derivative with 

respect to the argument. For these fields to give a constant RF magnetic field H0, at the 

center of the cavity in the absence of the particulate, the constant D is related to H0 by           
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where 2 / 4.4934M b    .         
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Fig. 4.7 The magnetic field enhancement factor on the hemispherical protrusion at the apex 

point A (MA, solid curve) and at the base point C (MC, dotted curve) as a function of δ/a, 

setting μ1/μ2 = 1, 1r/2 = 1 and λ/a = 100. 

The introduction of a small protrusion modifies the eigenvalue M  by a small 

amount. Analogous to Eqs. (4.22) and (4.23), we obtain the amplitude of the RF magnetic 

field at points A and C of Fig. 4.3b in the limit a/ << 1,  
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where MA  and MC  are the magnetic field enhancement factor at points A and C due 

to the presence of the hemispherical protrusion at the flat surface, respectively, 

2 2 / ( / )M Ma a b     , and / M   is given by Eq. (4.2).  

Figure 4.7 shows MA  and MC  as a function of / a , setting 1 2/ 1   , 

1 2/ 1r    and / 100a  . As the skin depth becomes much smaller than the radius of 

the bump, / ~ 0a , the bump is nearly perfect conducting, the magnetic field 

enhancement factor at apex is 1.5, which confirms the result obtained by Shemelin and 

Padamsee, who simulated the magnetic field enhancement at bumps on the surface of a 

pill-box cavity using the code SLANS2 [53]. Note that this magnetic field enhancement 

factor at the apex of a hemispherical bump on a flat surface is the same as that of an 

isolated perfectly conducting sphere inserted in a uniform magnetic field [111]. Note 

from Fig. 4.7 that the maximum magnetic field enhancement factor is given by materials 

with zero skin depth, i.e., a superconductor, in which case the local high magnetic field 

could exceed the critical magnetic field for superconductivity, even though the RF 

magnetic field is below this critical value for a pristine, flat surface. Thus surface 

roughness could lead to abrupt loss of superconductivity [53, 66, 67]. Note further that 

this magnetic field enhancement factor is independent of the size of the hemispherical 

protrusion. Thus, it is extremely important to create ultra-smooth, polished surfaces to 

retain superconductivity in the presence of large RF magnetic fields, and this is consistent 

with the current challenge in superconducting cavity fabrication [53, 57, 61]. At the base 

point C [Fig. 4.3(b)], the magnetic field normal to the bump surface vanishes and the 
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field enhancement factor becomes zero. When the skin depth becomes comparable to the 

bump radius, the magnetic field enhancement factor at both points A and C becomes 

nearly unity (Fig. 4.7). 

The Maxwell 3D code [85] was used again to verify the magnetic field enhancement 

factor calculated analytically as well as the field distribution due to the hemispherical 

protrusion situated on a perfectly conducting surface, as shown in Fig. 4.8. The magnetic 

field is strongest along the great circle whose plane is perpendicular to the applied 

magnetic field, according to color bar in Fig. 4.8(a). The magnetic field at the apex is 

roughly 1.5 times of the background value. The magnitude of the magnetic field, 

2 2 1/ 2( )rH H , is plotted along two horizontal lines at a distance of one bump radius 

above the flat surface, one line (Line 1) in the plane parallel to and the other line (Line 2) 

perpendicular to the applied magnetic field, as shown in Fig. 4.8 (b) and (c), respectively. 

Both plots clearly show a magnetic field enhancement of 1.5. The simulation results 

agreed extremely well with our analytically calculated results from Eqs. (4.24) and (4.25), 

as shown by the solid lines in Fig. 4.8 (b) and (c). The field enhancement profile is 

independent of the size of the protrusion. 
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Fig. 4.8 Maxwell 3D results. (a) Magnetic field distribution around the hemispherical bump 

in the plane parallel and perpendicular to the applied field.  Plot of the magnitude of 

magnetic field (dashed lines) along Line 1 (b), and along Line 2 (c), both are horizontal lines 

1.0 cm (=one bump radius) above the flat surface. Also shown are the analytical calculations 

(solid lines). H0 is the magnetic field far away from the bump. 
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4.5 Concluding remarks 

This chapter gives a self-consistent, accurate evaluation of the modification of the 

electromagnetic field due to a hemispherical protrusion setting on a locally flat 

conducting surface. Two major assumptions were made: (a) the size of the protrusion is 

small compared with the wavelength of the radiation, and with the local radius of 

curvature if the surface is curved, and (b) the complex permittivity and permeability of 

the protrusion are constant. The latter constants may assume arbitrary values, however. 

The local RF electric and RF magnetic fields, E0 and B0 in the absence of the protrusion, 

may have arbitrary magnitudes and phases between them. The ohmic absorption by the 

protrusion is calculated, and compared with the intrinsic ohmic absorption of an 

otherwise flat surface. Our study suggests that if excessive ohmic loss on a nominally flat 

metallic surface occurs, it is most likely due to foreign objects or grain boundaries that 

greatly increase the surface resistance. It could also be caused by pits or dimples which 

have much larger field enhancement factors. (Enhanced loss on pits or dimples is much 

more difficult to treat, and is beyond the scope of this thesis.) 

The RF electric field enhancement and RF magnetic field enhancement due to the 

hemispherical protrusion is also calculated. These field enhancement factors do not 

depend on the size of the protrusion, and they are modest (maximum value of 3 for RF 

electric field enhancement and 1.5 for RF magnetic field enhancement). While these are 

only modest enhancements and are simply the classical, static value expected on a 
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conducting protrusion, (due to the assumed smallness of the bump compared with the 

wavelength), the magnetic field enhancement due to surface roughness remains a major 

concern in the design of superconducting cavities. Once more, other surface defects, such 

as dimples and pits on surface [53], could induce significant RF electric and magnetic 

field enhancements, in contrast to the hemispherical protrusions considered here. 

It is interesting to note that in all of our calculations of the perturbed electromagnetic 

fields, we assume a small protrusion. Yet the above-quoted finite values of field 

enhancement factors remain as long as the protrusion exists, regardless of its size. That is, 

a regular perturbation technique yields a finite but different result in the limit of the 

vanishingly small expansion parameter (a/). The approach of decomposition into 

separate TE and TM modes, and the perturbation techniques in the smallness of the 

protrusion radius, apparently are valid, as our results agree with numerical codes, and 

with the known results in the appropriate limit in this purely classical (non-quantum 

mechanical) analysis. 

Since the amplitudes and the phases of E0 and B0 of the local electromagnetic field 

are arbitrary, this local electromagnetic field may be due to an incident wave at arbitrary 

incident angle and arbitrary polarization. As we have self-consistently, and accurately 

calculated the (nontrivial) modification of E0 and B0 by a local hemispherical protrusion, 

we have essentially paved the way to calculate the scattered radiation of an arbitrary 

incident wave due to such a protrusion, subject only to the two relatively weak 

assumptions stated in the first paragraph of this section.   
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Finally, what we have calculated here includes the complete RF field solutions at a 

triple point, defined as the interface between dielectric, metal and vacuum [8]. The 

maximum field enhancement factors are given by that of a perfect conductor, in the limit 

of a static field (electric or magnetic). Thus, if we are only interested in the maximum 

field enhancement factors for a complex protrusion geometry, we may simply use 

electrostatic and magnetostatic field solvers for that geometry [53, 74, 109-111]. However, 

the RF heating caused by the protrusion is considerably more difficult to assess. 
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CHAPTER 5  

CONCLUSION AND SUGGESTED FUTURE WORK 

 

This thesis addresses several issues on the effects of surface roughness. They include 

contact resistance of both bulk contacts and thin film contacts, surface roughness induced 

enhanced power absorption, and electrical field and magnetic field enhancements. These 

are important issues. They appear in a multitude of disciplines in science and engineering. 

5.1  On Bulk Contact Resistance  

 Simple, accurate, analytical scaling laws have been developed for the contact 

resistance with dissimilar materials of bulk contacts. Both Cartesian and cylindrical 

geometries are analyzed. The scaling laws are synthesized based on vast amount of data, 

obtained from exact calculations of the series expansion method. They have been 

validated in various limits, including experiments. The model is a substantial 

generalization of Holm’s a-spot theory, with a finite contact region, and with arbitrary 

values of dimensions and resistivities of the contact members. On an asperity (small 

protrusion) that joint the two current channels, we find the decomposition of the asperity 

resistance into bulk and interface resistance is valid in general. If the asperity is highly 
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resistive, then its bulk resistance dominates over its interface resistance. We also find that 

this interface depends mainly on the electrical resistivity of the two current channels that 

are jointed by the asperity, and is otherwise insensitive to the resistivity in the asperity 

itself. Interestingly, we also discover a close connection between the high frequency, bulk 

contact resistance and the DC contact resistance in thin film (Fig. 3.23).  

Future work on the bulk contact resistance study may include a statistical treatment 

for contacting rough surfaces, by using our scaling laws as the building block for the 

contact resistance of a single asperity. A statistical theory of finding the resistance of a 

cluster of micro-contacts may be derived to compare with resistance measurements of 

real contacting rough surfaces. Our model is based on the assumption that the contact 

members are semi-infinite in length. Thus, an important generalization of our theory is to 

consider the effects of the finite length of the contact members. One may also evaluate 

ohmic heating at the bulk contacts based on the newly calculated potential (and therefore 

current flow) profile, though caution is needed to account for the temperature dependence 

of electrical resistivity, thermal conductivity, dimensions, and heat loss mechanisms. The 

RF heating at these contacts should be studied, together with the capacitive and inductive 

effects of the asperities. Including semiconductors as contact members in our contact 

resistance model may also be explored in the future. With the recent advances in 

nanotechnology, electrical contacts may be formed in micro- or nano-scale. The behavior 

of such miniature electrical contacts may be significantly different from the classical 

contacts as studied in this thesis, due to quantum effects and long mean-free path effects, 
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for instance. One may also adapt the results of contact resistance to the steady state heat 

flow in thermally insulated structures with dissimilar thermal properties.  

5.2  On Thin Film Contact Resistance  

Accurate analytic models and scaling laws are also developed for the contact 

resistance (constriction resistance) of thin film contacts with dissimilar materials over a 

huge parameter space. The models assume arbitrary aspect ratios, and arbitrary resistivity 

ratios in the different regions for both Cartesian and cylindrical geometries. We quantify 

the large distortions of the field lines as a result of film thickness. We found that, at a 

given resistivity ratio, the thin film contact resistance primarily depends only on the ratio 

of constriction size (a) to the film thickness (h). In the latter cases, the electrostatic fringe 

field is restricted to the constriction corner only, and becomes insensitive to the location 

of terminals for the thin film region. The effect of dissimilar materials is also analyzed. 

Typically the minimum contact resistance is realized with a/h ~ 1, for both Cartesian and 

cylindrical cases. Various limiting cases are studied and validated with known results. 

This work may offer useful insights into the design and fabrication of thin film devices 

and components. 

We found that the normalized thin film spreading resistance converges to the finite 

values, 2.77 for Cartesian and 0.28 for cylindrical case in the limit h → 0. We conjecture 

that the same finite limits of normalized thin film spreading resistance would apply to the 
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a-spot between bulk solids in the AC case as the skin depth δ → 0, if the thickness of the 

equivalent thin film is identified as the skin depth at the relevant frequency, i.e., h = δ. 

This is an interesting link between the AC bulk contact resistance and the DC thin film 

contact resistance. Extension of the thin film contact model to a general a-spot geometry 

is made. Our DC thin film model is also compared with the widely used transmission line 

model and the experimental transfer length method for semiconductor device 

characterization [91].  

Future work on the thin film contact resistance study may include evaluating local 

ohmic heating due to current crowding at thin-film contacts. The local intense current 

crowding near the constriction corner would lead to excessive ohmic heating there, which 

typically will increase the local electrical resistivity and decrease the local thermal 

conductivity, which in turn would induce more ohmic heating, and eventually lead to 

circuit failure, a form of electro-thermal instability. Also, the non-uniform distribution of 

heat dissipation could introduce net stress at the contact interface and cause the migration 

of atoms there. These important issues need to be studied in the future. Our thin film 

model may also be extended to allow arbitrary voltages at the three terminals shown in 

Fig. 3.1.  

For the thin film contact studied in this thesis, the current is always assumed to flow 

parallel to the bottom boundary of thin film region (Fig. 3.1), i.e. a “horizontal” contact. 

The work may be naturally extended to study the “vertical” contact, where the current 

flows normally to the thin film bottom boundary, that is, the thin film bottom boundary is 
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considered as an equipotential. Future work may include experimental validation of the 

scaling laws for the contact resistance with dissimilar materials. Inclusion of our model 

for the fringing field effects into the widely used transmission line model is also of great 

interest. 

5.3  On RF Heating and Field Enhancement   

The thesis presented a self-consistent, accurate evaluation of the modification of the 

electromagnetic field due to a hemispherical protrusion setting on a locally flat 

conducting surface. It is assumed that the size of the protrusion is small compared with 

the wavelength of the radiation. The protrusion itself may assume arbitrary values of , μ, 

and σ. The local RF electric and RF magnetic fields in the absence of the protrusion may 

have arbitrary magnitudes and phases between them. The ohmic absorption by the 

protrusion is calculated, and compared with the intrinsic ohmic absorption of an 

otherwise flat surface. We conclude that if excessive ohmic loss on a nominally flat 

metallic surface occurs, it is most likely due to foreign objects, or grain boundaries, or 

pits or dimples that greatly increase the surface resistance. Grain boundaries, pits and 

dimples are not studied in this thesis. 

The RF electric field enhancement and RF magnetic field enhancement due to the 

hemispherical protrusion are also calculated. These field enhancement factors do not 

depend on the size of the protrusion, and they are modest (maximum value of 3 for RF 
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electric field enhancement and 1.5 for RF magnetic field enhancement). While these are 

only modest enhancements and are simply the classical, static value expected on a 

conducting protrusion, this magnetic field enhancement due to surface roughness remains 

a major concern in the design of superconducting cavities.  

Future work may use our scaling laws to estimate the effective resistivity of practical 

rough surface. This can be done by a statistical treatment, where the surface roughness is 

mimicked by a distribution of hemispherical bumps of different sizes and materials 

properties. If the power absorption of a hot spot on a superconducting surface is 

experimentally determined, our model can be used to evaluate the material properties of 

this spot, and therefore help determining the possible origin of its formation. The surface 

resistivity vs surface roughness in existing experimental scalings (Fig. 1.8) remains to be 

explained. Our analysis may also be extended to other useful geometries, such as 

cylindrical rod protrusion, or elliptical protrusions. Pits and dimples on surface, which 

usually give a much higher electric and magnetic field enhancement than protrusions, 

needs to be assessed in the future. In this thesis, we assume the protrusion is small 

compared to the wavelength, a << λ. Future work may explore the situation when the 

protrusion size is on the order of wavelength, a ~ λ, a regime important for 

optoelectronics. Since the amplitudes and the phases of electric and magnetic components 

of the local electromagnetic field are arbitrary, this electromagnetic field may be due to 

an incident wave at arbitrary incident angle and arbitrary polarization. Our study 

essentially paved the way to calculate the scattered radiation of an arbitrary incident wave 
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from a small protrusion with arbitrary , μ, σ.  
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 Appendix A                                               

The contact resistance of a constricted cylindrical channel 

 

Referring to Fig. 2.4, Regions I and II are semi-infinite in the axial z-direction, 

with the interface at z = 0. For the cylindrical case, the Laplace’s equation yields,  
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where Φ+ and Φ- are the electrical potential in the semi-infinite cylindrical channel I and 

II respectively, E  and E  are the uniform electric fields far from z = 0, J0(x) is the 

zeroth order Bessel function of the first kind, αn and βn satisfy αna = βnb = Xn, where Xn is 

the nth positive zero of J1(x) = -dJ0(x)/dx, and An and Bn are the coefficients that need to 

be solved. Without loss of generality, we set the coefficient B0 to zero in Eq. (A1) for 

convenience. Current conservation requires that 2 2

1 2/ /a E b E   .  

At the interface z = 0, continuity of electrical potential and current density leads to 

the following boundary conditions, 

, 0, (0, )z r a     ,                                    (A2a) 
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1 1
, 0,   r (0, )z a

z z 
  
  

 
,                            (A2b) 
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0, 0,   r ( , )z a b
z


  


,                                (A2c) 

From Eqs. (A1) and (A2a), An is related to Bn as,   
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A change of integration variable shows that gmn depends only on b/a, m, and n. 

Combining Eqs. (A2b), (A2c), and (A3b), we obtain 

 

 

 
12 2

2 2 2
11 0 1 0

2 /1
,  1,2,3...

n

n mn m

mn n n n

J X a ba
B B n

b X J X X J X

 


 





   ,              (A4) 

where 

 2
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  ,                                       (A5) 

and gml and gnl is in the form of the last part in Eq. (A3b). In writing Eq. (A4), we have 

set 1aE    for simplicity. It is easy to show that Eq. (A5) can be written as 

   2

1 1

n 2 2 2 2 2 2
1
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( )( )

m n l m n

nm m
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x a b

X X x X X x
 





  
 

 ,                    (A6) 

which indicates that 1/ 1/nm mn nX n     as n . From Eq. (A4), 

2 21/ 1/n nB X n   as n . Therefore, the infinite matrix equation, (A4), can be 

inverted directly to solve for Bn with convergence guaranteed.   

The total resistance between an arbitrary point (z = L1) in Region I and an 

arbitrary point (z = -L2) in Region II (Fig. 2.4), both far from the interface, is R = 

(ΦL2-ΦL1)/I, where 2

1 1/ /I a E a      is the total current in the conducting 
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channel. The contact resistance Rc, which is the difference between the total resistance R 

and bulk resistance 2 2

1 1 2 2/ /uR L a L b     , is found from Eq. (A1) and (A3a), 

 10 2 1 1
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 
 ,       (A7)         

which is the exact expression for the contact resistance at the interface of two 

semi-infinite cylindrical channels of dissimilar materials (Fig. 2.4). It appears in Eq. (2.1) 

of the main text. Given the resistivity ratio ρ1/ρ2 and aspect ratio b/a, the coefficients Bn 

are solved numerically from Eq. (A4) by using either the infinite matrix method, or the 

explicit iterative method, which will be discussed next. cR  is then obtained from Eq. 

(A7).   

To solve for the coefficient Bn more efficiently, an explicit iterative method is 

available for ρ2/ρ1 < 1. From Eq. (A4), to the lowest order in ρ2/ρ1, we have 

 
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To the next order,   
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To the kth order, the solution becomes, 
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which is the Taylor expansion of Bn in increasing power of ρ2/ρ1. This iterative scheme is 

explicit.  It gives identical numerical solutions as the infinite matrix method for ρ2/ρ1 < 1, 

but converges faster.  It converges very rapidly for ρ2/ρ1 << 1, in which case Eq. (A8) is 
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an excellent approximation and Eq. (A7) gives,   
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Equation (A11) can be further simplified if a/b << 1,   
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since the first few terms in the infinite sum of Eq. (A11) hardly contribute, and the 

remaining terms may be approximated by using the well-known asymptotic formula of 

J0(Xn) for large Xn.  Note that to within an error of less than 0.22 percent, 

         Xn   (n + ¼) ,   n > 3.                  (A13) 

Thus, in the limit / 0a b , we obtain from Eq. (A12), 

2 2

11 1
1 22 2 2

2 1 0

( / ) ( )8 32
, 8 ;    / 1, / 0

/ 3

n
c

n

J X a b Jb
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 
  ,  (A14) 

where we have used Eq. (A13) to write the second integral, which is evaluated exactly in 

Whittaker and Watson [112]. 

In the opposite limit, 2   0, cR  approaches the value for the a-spot 

analyzed by Holm [12] and Rosenfeld and Timsit [15] for the symmetrical case 3 

and b = c, as discussed in Section 2.3 Case B, and also shown in Fig. 2.5(b). As / 0a b , 

the exact theory of symmetrical a-spot gives cR =1. Thus, the maximum range of 

variation of cR  for different ρ1/ρ2 is 232/3 1 0.08076    , as displayed in Eq. (2.2) 

of the main text, and in Fig. 2.5.  
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Appendix B                                                 

The contact resistance of a constricted Cartesian channel 

 

Referring to Fig. 2.4, Regions I and II are semi-infinite in the axial z-direction, 

with the interface at z = 0. For the two-dimensional Cartesian channel, the y-axis is 

orthogonal to the z-axis in the plane of the paper.  The Laplace’s equation yields,  

0

1

( , ) cos , 0, (0, ),

( , ) cos , 0, (0, ),
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 





               (B1) 

where Φ+ and Φ- are the electrical potential in the semi-infinite cylindrical channel I and 

II respectively, E  and E  are the uniform electric fields far from z = 0, and An and 

Bn are the coefficients that need to be solved. For convenience, the coefficient B0 is set to 

zero in Eq. (B1). Current conservation requires that 1 2/ /aE bE   .  

At the interface z = 0, continuity of electrical potential and current density leads to 

the following boundary conditions, 

, 0, (0, )z y a     ,                                 (B2a) 
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From Eqs. (B1) and (B2a), An is related to Bn as,   
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A change of integration variable shows that gmn depends only on b/a, m, and n. 

Combining Eqs. (B2b), (B2c), and (B3b), we obtain 
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where 
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



  ,                                          (B5) 

and gml and gnl is in the form of last part in Eq. (B3b). In writing Eq. (B4), we have set 

1aE    for simplicity. It is easy to show that Eq. (B5) can be written as 

2

2 2 2 2 2 2 2
1

4 sin( )sin( )
,   /

( )( )
nm mn

l

mnlx n x m x
x a b

l n x l m x

 
 







  
 

 ,                   (B6) 

which indicates that 1/nm mn n    as n . From Eq. (B4), 21/nB n  as n . 

Therefore, the infinite matrix equation, (B4), can be inverted directly to solve for Bn with 

convergence guaranteed.   

The total resistance between an arbitrary point (z = L1) in Region I and an 

arbitrary point (z = -L2) in Region II (Fig. 2.4), both far from the interface, is R = 

(ΦL2-ΦL1)/I, where 1 12 ( / ) 2 /I aW E W    is the total current in the conducting 

channel, where W is the channel width in the third, ignorable dimension. The contact 
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resistance Rc, which is the difference between the total resistance R and bulk resistance 

1 1 2 2/ 2 / 2uR L aW L bW   , is found from Eq. (B1) and (B3a), 
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which is the exact expression for the contact resistance at the interface of two 

semi-infinite Cartesian channels of dissimilar materials. It appears in Eq. (2.4) of the 

main text. Given the resistivity ratio ρ1/ρ2 and aspect ratio b/a, the coefficients Bn are 

solved numerically from Eq. (B4) by using either the infinite matrix method, or the 

explicit iterative method, which will be discussed next. cR  is then obtained from Eq. 

(B7).   

To solve for the coefficient Bn more efficiently, an explicit iterative method is 

available for ρ2/ρ1 < 1. From Eq. (B4), to the lowest order in ρ2/ρ1, we have 
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To the next order,   
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To the kth order, the solution becomes, 
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which is the Taylor expansion of Bn in increasing power of ρ2/ρ1. This iterative scheme is 

explicit. It gives identical numerical solutions as the infinite matrix method for ρ2/ρ1 < 1, 

but converges faster. It converges very rapidly for ρ2/ρ1 << 1, in which case Eq. (B8) is an 
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excellent approximation and Eq. (B7) gives,  
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In the opposite limit, 1/2 , cR  approaches the a-spot value for the Cartesian 

channel that is analyzed in Ref. [23] for the symmetrical case 2 = 3 and b = c. This is 

discussed in Section 2.3 Case B, and also shown in Fig. 2.6 (b). Thus, the maximum 

range of variation of cR  for different ρ1/ρ2 is the difference between Eq. (B11) and 

 0c
LTZ

R x  that is given by Eq. (2.6) of the main text. This difference is approximately 

the constant 0.4548 for b/a >> 1, as shown in Eq. (2.5) of the main text, and in Fig. 2.6.  
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Appendix C                                                

The contact resistance of Cartesian thin film 

 

Referring to Fig. 3.1, we assume that L1 >> a, so that the current flow is uniform 

at the end GH, far from the joint region. For the two dimensional Cartesian channel, the 

y-axis and z-axis are in the plane of the paper. The solutions of Laplace’s equation are, 
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(C1) 

where Φ+ and Φ- are the electrical potential in the region BCHG and BCEF respectively, 

E  is the uniform electric fields at the end GH, V0 is the electrical potential at the ends 

E and F (y = ±b), and An and Bn are the coefficients that need to be solved.  

Since the current flows parallel to the thin film boundary EF, we have  

0, , (0, ),z h y b
z


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                                         (C2) 

which leads to 
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C B
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.                                            (C3) 

At the interface z = 0, from the continuity of electrical potential and current density, we 

have the following boundary conditions, 
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, 0, (0, )z y a     ,                                       (C4a) 
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From Eqs. (C4a) and (C1), the coefficient An is expressed in terms of Bn,   
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Combining Eqs. (C3), (C4b), (C4c) and (C5b), we obtain 
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where 
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
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and gnl and gml is in the form of the last part in Eq. (C5b). Note that in deriving Eq. (C6), 

we have set 1aE    for simplicity. It can be shown from Eq. (C6) that, 21/nB n  

as n  (c.f. Appendix B above). Thus, by writing Eq. (C6) in an infinite matrix 

format, Bn can be solved directly with guaranteed convergence.   

The total resistance from EF to GH is R = (ΦF - ΦG)/I = V0/I, where 
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1 12 ( / ) 2 /I aW E W    is the total current in the conducting channel, and W is the 

channel width in the third, ignorable dimension that is perpendicular to the paper. The 

contact resistance, Rc, is the difference between the total resistance R and the bulk 

resistance (exterior to ABCD) 
1 1 2 2/ 2 / 2uR L aW L hW   . From Eq. (C1) and (C5a), 

we find, 
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which is the exact expression for the contact resistance of Cartesian thin film of 

dissimilar materials (Fig. 3.1) for arbitrary values of a, b (b > a), h, and ρ1/ρ2. It appears 

in Eq. (3.1) of the main text. Given the resistivity ratio ρ1/ρ2 and aspect ratios a/h and a/b, 

the coefficient Bn is solved numerically from Eq. (C6), cR  is then obtained from Eq. 

(C8).   

In the limit of ρ1/ρ2 ,  Eq. (C6) may be simplified to,  
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Thus, from Eq. (C8), cR  is found as,  
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which appears as Eq. (3.2) in the main text.  
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As h/b → 0, Eq. (C10) may be further simplified as  

 

 
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1 22 2
1

sin ( 1/ 2) /4 / 2 ( )
, ,   / 0,  /

1/ 2 ( 1/ 2) /
c

n

n a ba a b h b a
R h b

b h hn n a b
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 

 
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

  
    

   
 (C11) 

Figure (C1) plots Eq. (C11), Eq. (C10), and the exact theory of Eq. (C8), in which ρ1/ρ2 = 

100. We shall show that Eq. (C11) may be simplified to read 

1 2

2
, ,    / 0,  /

3
c

a a a
R h a

b h h


 

   
     

   
,                             (C12) 

for all a/b ≤ 1. Equation (C12) is also plotted in Fig. (C1). Note that Eq. (C12) is 

independent of a/b, a result that cannot be anticipated mathematically from the equivalent 

expression (C11), even though it is anticipated on physical grounds. We shall now prove 

that (C12) and (C11) are equivalent.  

 

 

 
Fig. C1 Comparison of the exact theory Eq. (C8) with ρ1/ρ2 = 100 (solid line) and the 

asymptotic formulas, Eq. (C10), Eq. (C11), and Eq. (C12). 



130 
 

We first write Eq. (C11) as, 
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 
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where f(x) may be written as 
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                          (C14) 

Differentiating k(x) we get,  

 

 
3 3 3 3
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...

1 3 52 1n
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 .                 (C15) 

From Problem 38 (and 34a) of Chapter 5 of Hildebrand [p. 252 of Ref. 92], we know that  

3 3 3

8 sin sin3 sin5
( ) ... , 0

1 3 5

x x x
x x x 



 
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.                    (C16) 

Inserting Eq. (C16) into Eq. (C15), we have 

( )
( ), 0

8

dk x
x x x

dx


      ,                                     (C17) 

which is easily integrated, 

2
2 3( ) (0), 0

16 24
k x x x k x

 
      .                               (C18) 

Insert (C18) into the first equation of Eq. (C14) to obtain, 

2
( ) 1 , 0

3
f x x x 


    .                                          (C19) 

Inserting Eq. (C19) into the first equation of Eq. (C13), we obtain Eq. (C12).  
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Appendix D                                          

Conformal mapping for Cartesian thin film contact with uniform 

resistivity 

 

 

Fig. D1 (a) The half thin film geometry in the z  (x, y) plane, (b) its map onto the w  [u,v] 

plane. 

Due to symmetry, we consider only the right half of the Cartesian thin film geometry 

with uniform resistivity (Fig. 3.1 with 1 = 2). We represent in the x-y plane the top 

boundary ABC, the midplane DE (x = 0), and the bottom boundary EF, as shown in Fig. 
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D1(a). The top channel has half width a, and the bottom channel has width h. The two 

boundaries, ABC and DEF are streamlines. We solve the current flow of this Cartesian 

geometry by conformal mapping between the complex z- and w-planes where z = x+iy = 

(x, y) and w = u+iv = [u, v]. Following Refs. [9] and [23], we denote this mapping as (x, y) 

↔ [u, v] henceforth [Fig. D1 (b)]. Specifically, the maps of ABCDEF in Fig. D1 are, 

sequentially, (∞, h) ↔ [0
+
, 0], (a, h) ↔ [u1, 0], (a, ∞) ↔ [∞, 0], (0, ∞) ↔ [-∞, 0], (0, 0) 

↔ [-1, 0], and (∞, 0) ↔ [0
-
, 0]. In the maps A’ and F’, 0

+
 and 0

-
 denote values slightly 

greater and less than zero, respectively. This map is governed by the Schwarz–Christoffel 

transformation [92] 

1
( ) ( ) (0 0)

w

z w K dwf w i


   ,                                       (D1a) 

11
( )

1

w u
f w

w w





,                                                (D1b) 

In Eq. (D1), the constants u1 is real and positive, and K is another constant to be 

determined below. Branch cuts [not shown in Fig. D1(b)] extending downward from the 

two branch points, w = -1 and u1, render f(w) single valued in the upper half w-plane. 

Evaluating z(w) at the points F and A, and subtracting, we obtain,  

0
1

1
0 1

w udw
ih K K u

w w







 

 ,                                      (D2) 

Evaluating z(w) at point B, we obtain  

 1 1
1

1
1

1

u w udw h
a ih K K i u ih

w w u





      

 ,                      (D3) 

where we have used Eq. (D2). From Eq. (D3) we have, 
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1

1
,

a ia
K

h u 
  .                                                (D4) 

The complex electrostatic potential is 0( ) ( ) ln( )w K iE w i     . It represents a 

source at the origin of the w-plane which produces a constant electric field (iE0) far away 

from the constriction corner along the y-axis in the z-plane [Fig. D1(a)]. To see this, the 

components Ex and Ey of the electrostatic field in the (x, y) plane may be expressed as 

[92] 

0

1

/ 1

/
x y

d d dw w
E iE iE

dz dz dw w u

  
     


,                               (D5) 

where we have used Eq. (D1) for dz/dw. Equation (D5) clearly shows a constant electric 

field –iE0 (= EC) at w = ∞ and 0 1/E u  (= EA) at w = 0, e.g., at the location C(C’) and 

A(A’) in Fig. D1. Due to the continuity of current, I = EAhW/ρ = ECaW/ρ, where W is the 

third ignorable dimension, we have 1/ 1/a h u , which is Eq. (D4) obtained directly 

from the mapping function, Eq. (D1). 

We shall next derive the total resistance (therefore, the contact resistance) for the thin 

film constriction shown in Fig. D1(a). For the time being, let us consider points A and C 

to be finite in the z-plane [Fig. D1(a)], with the respective maps for A: zA = (xA , h) ↔ (uA, 

0), and for C: zC = (a, yC) ↔ (uC, 0). The voltage drop from A to C is V= K(iE0)ln(uA/uC) 

from the complex potential . The total resistance between A and C is then R = V/I = 

|[K(iE0)ln(uA/uC)]/ [–iE0aW/ρ]| = (ρ/πW)ln(uA/uC). We may next express this total 

resistance as R = Ru1 + Ru2 + Rc, where Ru1 is the resistance between B and C, Ru2 is the 

resistance between A and B, and Rc is the remainder that is solely due to the constriction 
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of the channel. From this definition, Ru1 = |ρ(zC-zB)/aW|,  and Ru2 = |ρ(zA-zB)/aW| where 

zA, zB and zC are given in terms of the integral in Eq. (D1), evaluated respectively, at w = 

[uA, 0], w = [uB, 0], and at w = [uC , 0]. Upon taking the limit uC →+∞, and uA →0
+
, we 

obtain the real integral for the contact resistance Rc = R – (Ru1 + Ru2) as 

1

1

1 1

0
1

1
, 4 1 1

4 1 1

u

c c c
u

u w w udw dw
R R R

W w w w wu





      
       

       
  ,    (D6)  

which may be simplified upon carrying out the integrals, 

1 11
8ln 8 tan 8 tan .

4
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             
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            
              (D7) 

For the Cartesian geometry shown in Fig. 3.1, the total resistance (therefore the contact 

resistance) is half of that shown in Fig. D1. Thus, the contact resistance for the geometry 

in Fig. 3.1 is half of the value in Eq. (D7),  

1 11
4ln 4 tan 4 tan ,

4
c

a a h h a a h
R

h h a a h h a

             
               

            
                 (D8)  

which is Eq. (3.4) of the main text.  
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Appendix E                                                 

The contact resistance of thin film to rod geometry 

 

Referring to Fig. 3.1, similar to the Cartesian case, we also assume that L1 >> a, 

so that the current flow is uniform at the end GH, far from the joint region. The solutions 

of Laplace’s equation in the cylindrical geometry are [20, 25, 29], 

 0 0

1

0 0

1

( , ) , 0, (0, );

( , ) sinh cosh , 0, (0, ),
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           

      




(E1) 

where Φ+ and Φ- are the electrical potential in the region BCHG and BCEF respectively, 

E  is the uniform electric fields at the end GH, V0 is the electrical potential at the thin 

film rim E and F (r = b), J0(x) is the zeroth order of the Bessel function of first kind, αn 

and n satisfy J1(αna) = J0(n ) = 0, and An and Bn are the coefficients that need to be 

solved.  

Since the current flows parallel to the thin film boundary EF, we have  

0, , (0, ),z h r b
z


   


                                        (E2) 

which leads to 

coth n
n n

h
C B

b

 
  

 
.                                                 (E3) 
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At the interface z = 0, from the continuity of electrical potential and current density, we 

have the following boundary conditions, 

, 0, (0, )z r a     ,                                        (E4a) 

1 2

1 1
, 0,   (0, ),z r a

z z 
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                               (E4b) 

0, 0,  ( , )z r a b
z


  


.                                       (E4c) 

From Eqs. (E1) and (E4a), the coefficient An is expressed in terms of Bn,   
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Combining Eqs. (E3), (E4b), (E4c) and (E5b), we obtain 
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where 

 2

0

1

nm mn nl ml l l

l

g g aJ a   




  ,                                      (E7) 

and gnl and gml is in the form of the last part in Eq. (E5b). Note that in deriving Eq. (E6), 

we have set 1aE    for simplicity. It can be shown from Eq. (E6) that, 

2 21/ 1/n nB n   as n  (c.f. Appendix A). Thus, by writing Eq. (E6) in an infinite 

matrix format, Bn can be solved directly with guaranteed convergence.   

The total resistance from EF to GH is R = (ΦF - ΦG)/I = V0/I, where 

2

1 1( / ) /I a E a      is the total current in the conducting channel. The contact 
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resistance, Rc, is the difference between the total resistance R and bulk resistance 

(exterior to ABCD) 2

1 1 2/ ( / 2 )ln( / )uR L a h b a     . From Eq. (E1) and (E5a), we 

find, 
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 ,             (E8) 

which is the exact expression for the contact resistance between a thin film and a coaxial 

rod of dissimilar materials (Fig. 3.1) for arbitrary values of a, b (b > a), h, and ρ1/ρ2. It 

appears in Eq. (3.9) of the main text. Given the resistivity ratio ρ1/ρ2 and aspect ratios a/h 

and a/b, the coefficient Bn is solved numerically from Eq. (E6), cR  is then obtained from 

Eq. (E8).   

In the limit of ρ1/ρ2 ,  Eq. (E6) may be simplified,  
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Thus, from Eq. (E8), cR  is found as,  
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which appears as Eq. (3.10) in the main text.  

As h/b → 0, Eq. (E10) may be further simplified to read  
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Figure (E1) plots Eq. (E11), Eq. (E10), and the exact theory Eq. (E8) in which ρ1/ρ2 = 100. 

If b >> h or b >> a, the exact theory, Eq. (E8) becomes independent of b [cf. Fig. 3.10]. 

 We propose that, Eq. (E11) is equivalent to  

1 2

1
, ,   / 0, /  

2
c

a a a
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b h h
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
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 
,                             (E12) 

for all b/a ≥ 1. Equation (E12) may be readily compared with Eq. (C12) which is proved 

in Appendix C. The equivalence of Eqs. (E11) and (E12) is evident in Fig. (E1). 

 

 

 
Fig. E1 Comparison of the exact theory Eq. (E8) with ρ1/ρ2 = 100, and the asymptotic 

formulas, Eq. (E10), Eq. (E11) and Eq. (E12). 
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