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ABSTRACT 

 

 

BIOMECHANICAL ANALYSES OF POSTERIOR VAGINAL PROLAPSE: 

MR IMAGING AND COMPUTER MODELING STUDIES 

by 

Jiajia Luo 

 

Co-Chairs: James A. Ashton-Miller and John O.L. DeLancey 

 

 

Pelvic organ prolapse is an abnormal downward displacement and deformation of 

the female pelvic organs. Because it adversely affects quality of life, over 200,000 

operations are performed annually for prolapse in the U.S at a cost exceeding $1 billion. 

Approximately 87% of those procedures involve repair of a posterior vaginal prolapse, the 

etiology of which is a focus of this dissertation. But, because operative failure rates can 

approach 30%, new insights are needed as to how and why a posterior vaginal prolapse 

develops in the first place so that treatment can be improved.  

We hypothesize that the occurrence, size and type of posterior vaginal prolapse is 

not explained by failure of any single structure; rather it involves failure of connective tissue 

supports at two and possibly up to as many as 20 anatomical sites, along with impairment of 

the levator ani muscle. 



xxi 

 

Using in vivo magnetic resonance imaging we first visualized the detailed 3-D pelvic 

floor anatomy of 84 healthy women. From these we then selected images from a pelvis of 

average dimensions and used them to create a detailed three-dimensional interactive 

model of the female pelvic floor complete with 23 structures. We then developed a 

method to measure and quantify the geometry of prolapse in forty 3-D magnetic 

resonance image-based models. Two main structures relating to the development of 

prolapse, fascia and apical vaginal supports, were then analyzed via two case-control 

studies. Finally, 2- and 3-D computer-based models were developed to identify the 

biomechanical interactions which lead to prolapse: levator muscle and connective tissue 

failure, and organ competition. These methodological approaches and computer models 

provide new insights into the biomechanical mechanisms underlying the development of 

posterior vaginal prolapse. Our hope is that they will lead to more effective surgical 

treatment strategies for this vexing condition. 
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CHAPTER 1  

INTRODUCTION 

1.1 Background and Significance 

1.1.1 What is posterior vaginal prolapse? 

Pelvic organ prolapse (POP) is a downward descent of the female pelvic organs, 

often including the bladder, uterus or post-hysterectomy vaginal cuff, and/or small or 

large bowel, resulting in protrusion of vagina, uterus or both (Hunskaar et al. 2005; 

Jelovsek et al. 2007). POP can prevent women from enjoying normal daily activities and 

can adversely affect quality of life (Jelovsek and Barber 2006). POP often occurs when the 

pelvic floor muscle and connective tissue supporting the female pelvic organs are damaged 

by vaginal childbirth, aging and increased intra-abdominal pressure, or a combination of 

these factors, which can vary from patient to patient (Hunskaar et al. 2005; Schaffer et al. 

2005). 

Posterior vaginal prolapse (PVP), including the clinical problems of rectocele 

(rectum protrusion) and enterocele (small or large bowel protrusion), is a distressing, 

though rarely discussed problem.  It is the second most common type of POP after 

cystocele (anterior compartment prolapse). Figure 1.1 illustrates the clinical problems of 

rectocele and enterocele. Rectocele occurs when the rectum pushes against and moves the 

back wall of the vagina ventrally. Enterocele (small or large bowel prolapse) occurs when 

the small or large bowel  presses against and moves the upper wall of the vagina ventrally. 
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As a result of enterocele, the cervix is usually visible at the apex as shown in Figure 1.1 

(right). 

 

Figure 1.1 Rectocele (left) and enterocele (right) protruding from the vaginal opening.  Note the 

cervix visible at the top of the enterocele. (Copyright © DeLancey) 

1.1.2 Why is research to understand the mechanisms of posterior vaginal prolapse 

important? 

Posterior vaginal prolapse including rectocele and enterocele is a remarkably 

common and distressing condition. It is also an important component of pelvic floor 

dysfunction. PVP is a socially embarrassing problem that can be disabling. Although the 

symptoms of POP are rarely discussed in public, women with posterior wall prolapse 

experience pelvic pressure and discomfort, incomplete rectal evacuation, anal 

incontinence, and impairment of sexual relations that often results in abstinence 

(Ellerkmann et al. 2001). These symptoms are strongly associated with the worsening 

stages of POP (Ellerkmann et al. 2001; Ghetti et al. 2005). Case series indicate that 50-75% 

of women with posterior wall prolapse feel that they have to strain too hard to defecate, 

while a third to a half need to splint the vaginal wall, or digitally disimpact the rectum, to 

have a bowel movement. While these symptoms demonstrate some correlation with the 

presence and severity of prolapse, the symptom that is most consistently acknowledged 
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by patients with severe prolapse is the discomfort of a bulge that can be seen or felt 

(Samuelsson et al. 1999; Ellerkmann et al. 2001; Burrows et al. 2004). 

Eleven percent of women will undergo surgery for pelvic floor dysfunction (POP 

and incontinence) by the age of 80 years (Olsen et al. 1997). A majority of the 

approximately 300,000 female pelvic floor operations performed each year, of which 

over 225,000 operations are performed annually for prolapse (Boyles et al. 2003), with 

repair of PVP included in 87% (Silva et al. 2006). The annual estimated cost for these 

operations exceeds US $1 billion (Subak et al. 2001) yet PVP remains the most complex 

and enigmatic among the types of pelvic floor dysfunction. The surgical correction of 

apical and posterior wall prolapse is far more complex, for example, than the more 

commonly discussed and widely studied surgical management of stress urinary 

incontinence (SUI). There are nearly twice as many procedures required for prolapse 

compared to that required for correction of SUI (Boyles et al. 2003, 2004).  Fortunately, 

surgical management of SUI is successful, with objective failures under 10% (Meschia et 

al. 2006), but the recurrence of prolapse is unfortunately much higher (Olsen et al. 1997; 

Blanchard et al. 2006).  Better information about PVP is clearly needed to improve both 

prevention and treatment.  

1.1.3 What is the normal supporting system for female pelvic floor? 

The pelvic floor consists of levator ani (LA) muscle and connective tissue, with 

pelvic organs filling the cavity of the pelvic canal (Ashton-Miller and DeLancey 2009). 

The most logical anatomic structures to provide the biomechanical support of posterior 

compartment of the pelvic floor include the levator ani muscle, apical connective mesenteric 



 4 

 

tissue such as cardinal and uterosacral ligaments, paravaginal connective tissue, perineal 

body and the posterior vaginal wall itself. 

Figure 1.2 shows the structures that might be involved in the normal support of 

the posterior vaginal wall.  

 

Figure 1.2 Cadaver dissection (left) and illustration (right) of posterior compartment of a 56 year 

old multipara showing structural relationships after the rectum has been removed.  Note apical 

connections of the upper posterior vaginal wall to the inside of the pelvic wall in a retroperitoneal 

position. These lie below the peritoneum and are dorsal and caudal to what is traditionally 

referred to as the uterosacral ligament.  These structures are continuous with the posterior arcus 

tendineus.  At the distal end of the vagina, the wall merges into the top of the perineal body.  The 

lateral and dorsal margins of the compartment are formed by the levator ani muscles (LA) and the 

levator plate. The asterisk (*) denotes the region of the sacrospinous ligament overlain by the 

coccygeus muscle. (Copyright © DeLancey) 

The posterior vaginal wall is connected to pelvic muscle and connective tissues 

that are well-positioned to provide support in different regions. For example, the vaginal 

apex is suspended by cardinal (did not show in Figure 1.2) and uterosacral ligaments, 

which are referred as “apical supports” or “Level I” supports (DeLancey 1992). In the 

middle portion of vagina, posterior arcus tendineus fascia pelvis  (Leffler et al. 2001) 

behind the posterior vaginal wall with other paravaginal connective tissue provide “Level 

II” supports (DeLancey 1992). The caudal margin is a closed structure consisting of the 
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perineal body and anal sphincter, which are referred as “Level III” supports (DeLancey 

1992). 

The levator ani muscle (Figure 1.3 and Figure 1.4) includes three components: 

pubovisceral complex (pubovaginal-puboperineal-puboanalis portions), puborectalis and 

iliococcygeus (Margulies et al. 2006). It plays an important role in maintaining closure of 

the urogenital hiatus while also providing support for urethral and pelvic organs 

(DeLancey 1994; Ashton-Miller et al. 2001).  

 

Figure 1.3 Schematic view of the levator ani muscles from below, after the vulvar structures and 

perineal membrane have been removed, that shows the arcus tendineus levator ani (ATLA); the 

external anal sphincter (EAS); the puboanal muscle (PAM); the perineal body (PB) uniting the 

two ends of the puboperineal muscle (PPM); the iliococcygeal muscle (ICM); and the puborectal 

muscle (PRM). Note that the urethra and vagina have been transected just above the hymenal ring.  

(Copyright © DeLancey 2003)  
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Figure 1.4 The levator ani muscle seen from above, looking over the sacral promontory (SAC), 

showing the pubovaginal muscle (PVM), sometimes called the pubococcygeal muscle. The 

urethra, the vagina, and the rectum have been transected just above the pelvic floor. PAM denotes 

the puboanal muscle. (The internal obturator muscles have been removed to clarify levator 

muscle origins.) (Copyright © DeLancey 2003) 

1.2 What is the current state of PVP mechanism research? 

The current concepts of structural abnormalities involved in posterior prolapse 

consist of observations concerning, 1) the abnormal displacement of the rectum and cul-

de-sac, and 2) theories concerning structural defects presumed to explain the abnormal 

displacement seen in rectocele and enterocele.  They can be summarized as follows: 

1) Observations about abnormal displacements of rectum. 

a. Abnormal protrusion of the rectum based on imaging studies (Bharucha et 

al. 2006). 

b. Presence of intestine between vagina and rectum in enterocele (Halligan et 

al. 1996) 

c. Abnormal cul-de-sac depth (Kuhn and Hollyock 1982; Baessler and 

Schuessler 2006). 
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Observations about displacements of posterior compartment have been helpful in 

correlating clinical findings with those displacements using barium defecography 

(Bharucha et al. 2006), ultrasound (Dietz and Steensma 2005) and MRI (Torricelli et al. 

2002).  Much of the debate in these areas concerns the superiority of imaging or clinical 

exam (Comiter et al. 1999; Cortes et al. 2004).  At present, the direct study of the 

relationship between specific sites of tissue failure and muscle dysfunction, and posterior 

compartment displacement is in its infancy.  Understanding the role of specific types of 

defect and development of specific types of prolapse requires the formulation and testing 

of specific hypotheses. 

2) Three core hypotheses have been proposed about what leads to pelvic organ 

prolapse and specifically posterior wall prolapse. 

a. Location of fascial failure:  The rectovaginal septum, whose attachments 

to the suspending ligaments, vaginal wall or distal defects at the perineal 

body may fail (Richardson 1993, 1996). 

b. Levator ani muscle: Neurological and mechanical damage (Gilpin et al. 

1989; Hoyte et al. 2004). 

c. Interaction between parts:  There is a valve like arrangement requiring 

suspension of the vaginal apex over the levator plate and intact 

neuromuscular function. Unless the vagina overlies the levator plate, then 

it cannot be supported during increases in intra-abdominal pressure 

(Zacharin 1980). Although the role of the interaction between parts has 

been studied in anterior vaginal prolapse (AVP) (Chen et al. 2006; Chen et 

al. 2009), the posterior vaginal wall was not considered in those studies.  

A mechanical interaction between the anterior and posterior compartments 

that can diminish or increase prolapse is possible but as yet unstudied. 

Each of these hypotheses concerning posterior prolapse are plausible.  The next 

step in our scientific investigation is to test each of these hypotheses.  We will seek to 
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develop an overall unifying disease model that can be used as the basis for experiments 

that will test these individual hypotheses to establish the relative contribution each makes 

to the presence and size of the posterior prolapse.   

1.3 Hypotheses and Specific Aims 

1.3.1 Working hypothesis 

In this dissertation we hypothesize that the occurrence, size and type of posterior 

vaginal prolapse is not explained by failure of any single structure; rather it involves 

failure of connective tissue supports at two, and possibly up to 20, anatomical sites, along 

with impairment of the levator ani muscle. 

1.3.2 Structure of the Dissertation 

This dissertation is presented in the form of a series of manuscripts. Chapter 2, 3, 

4, 5, 6, 7, 8, and 9 will be written as individual papers, including testable hypotheses, a 

main body and references.  Then a General Discussion (Chapter 10) will link these papers 

together and consider the contributions of the individual chapters to a hopefully improved 

understanding of the biomechanics of POP, particularly PVP.  It will also consider the 

strengths and weaknesses of the approaches, and whether the contributions have 

advanced the literature in any way.  A brief Conclusions (Chapter 11) section will 

summarize the conclusions from each chapter, and from the dissertation as a whole.  

Finally, a chapter with suggestions for future research (Chapter 12) is included, as are 

Appendices. 
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1.3.3 Specific aims 

The specific aims are as follows:  

Aim 1: MR-based anatomical study of normal pelvic floor anatomy 

(Chapters 2 & 3) 

Chapters 2 and 3 will investigate the pelvic floor anatomy of healthy women 

based on in vivo MR images. POP is associated with changes in vaginal size, shape, and 

position. So, Chapter 2 first develops a technique to quantify vaginal dimension and 

reports findings on their relationship to the demographic characteristics of 84 healthy 

women. Based on the finding of Chapter 2, in Chapter 3 a detailed geometric three-

dimensional (3-D) interactive model of pelvic floor of an average dimensioned pelvic 

floor is created. This includes 23 potential structures that may be involved in pelvic organ 

prolapse. Those structures include the muscles, ligaments, and fascia of the pelvic floor 

and the organs it supports. Bones, blood vessels, and the perineum are illustrated as well. 

The technique used in Chapters 2 and 3 will also be used in Chapters 4, 5, 6 and 7. 

Results of Chapters 2 and 3 will be utilized in formulating Aim 4. 

Aim 2: Investigate the pelvic organ prolapse shape and position changes at 

maximal Valsalva seen in 3-D MRI-based models (Chapters 4 & 5) 

Chapter 4 studies the posterior vaginal prolapse shape and position changes at 

maximal Valsalva seen in 3-D MRI-based models. Two-dimensional magnetic resonance 

imaging (MRI) of PVP has been studied but the 3-D mechanism underlying it is poorly 

understood. With 3-D models of 10 normal controls and 10 prolapse cases, the main 

geometric phenomena of PVP are found and defined. The results of Chapter 4 provide the 

geometric basis for an accurate computer model and a check on the results in Aim 4. 
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Although the main purpose of the dissertation is to understand the mechanism 

underlying the development of PVP, in reality the main two types of prolapse such as 

AVP and PVP may occur at the same time, but in differing degrees. This suggests AVP 

and PVP may result from similar failures but different mechanisms. Chapter 5 studies the 

AVP in 3-D using MR imaging and will function as a complementary research to help 

understand more of the mechanism underlying the most common form of pelvic organ 

prolapse, AVP. The results of Chapter 5 will also provide insights into Aim 4 to help 

understand how PVP can develop without AVP. 

Aim 3: Determine the contribution of fascial failures to prolapse (Chapters 6 

& 7) 

Chapters 6 and 7 investigate the failure of fascia and their contribution to prolapse.  

Chapter 6 focuses on the “Level 1” supports including cardinal and uterosacral ligaments. 

Based on one case and control study (10 cases and 10 controls), the apical support system 

is analyzed based on 3-D MRI-based prolapse and healthy models. Chapter 7 focuses on 

the “Level 2” supports including the arcus tendineus fascia pelvis (ATFP) and arcus 

tendineus levator ani (ATLA). This study analyzes the 3-D MRI-based arcus models of 

subjects with unilateral defects. Results of Chapters 6 and 7 will provide the basis for 

creating and validating the computer simulation models in Aim 4. 

Aim 4: Biomechanical modeling of posterior vaginal prolapse (Chapters 8 & 

9) 

Chapters 8 and 9 will use data from Chapters 2 through 7 to develop and validate 

2- and 3-D computer-based models, respectively, of the pelvic organ support system. The 



 11 

 

objective is to identify the interactions between muscle and connective tissue failures, 

and organ competition that lead to prolapse.  
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CHAPTER 2  

MR-BASED STUDY OF VAGINAL DIMENSIONS AND MORPHOLOGY 

 

Abstract 

 

Objectives:  Changes in vaginal shape and size can play important roles in pelvic organ 

prolapse. This study presents a technique for quantifying vaginal dimensions and reports 

preliminary findings in healthy women. 

Methods: MRI scans of 84 women (age: 46 ± 9 years) were selected from the control 

group of an ongoing case - control study. Each had a uterus and normal uterine support. 

Supine, multi-planar MR imaging was performed. ImageJ v1.44 was used to establish the 

vaginal and cervical locations in both axial and mid-sagittal scans. Vaginal width was 

assessed at 5 equally spaced locations based on axial scans. Location and dimension of 

cervix was also assessed. A MATLAB™ program was used for data analysis. 

Results: There was more variation in vaginal width proximally than distally. The average 

location of cervical os is about 3 mm left of the pelvic midline (51 cases on left and 33 on 

right side). The mean (± SD) lengths for the following structures were: anterior vaginal 

wall (cervix not included): 62 ± 10 mm; the cervix: 39 ± 10 mm; and the posterior 

vaginal wall 97 ± 18 mm. 

Conclusions: Vaginal dimensions exhibit large inter-individual variations. The average 

location of the cervical os was to the left of the pelvic mid-sagittal plane, and the left side 
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of the vagina extends further from the midline than the right side, on average, and there 

was more in variation in vaginal dimension and shape in the upper vagina than distally. 

Key words:  vagina, pelvic floor, dimension, shape, 3D model, magnetic resonance 

imaging, anatomy 

 

2.1 Introduction 

Changes in vaginal shape and size can play important roles in pelvic organ 

prolapse (Chen et al. 2009). Knowing what is abnormal can only be determined after the 

full extent of variation within a normal population is known.  

MR imaging has provided high quality images to help analyzing female pelvic 

floor system in a non-invasive way (Tan et al. 1998; Margulies et al. 2006; Hsu et al. 

2008; Luo et al. 2011). Recent studies (Hsu et al. 2005; Barnhart et al. 2006) have shown 

the ability to use MR images to measure the vaginal dimensions in 2- or 3- dimensional 

images (2-D or 3-D), which also provide useful information on vaginal length, thickness, 

fornix length, etc. However, the sample size and age range of those studies were small. 

Other studies used casting to obtain and analyze variation in vaginal shape (Pendergrass 

et al. 1991; Pendergrass et al. 1996, 2000). However a methodological limitation is the 

possibility that the casting compound artificially distorted the vagina. So, we are unaware 

that the variation in the normal range of vaginal size and shape has been systematically 

documented with a non-contact measurement method. In addition, there is no method for 

comparing vaginal morphology from women of different sizes and body types. 

This study was therefore undertaken to address these knowledge gaps.  We used a 

secondary analysis of data gathered from a larger on-going case-control study of pelvic 
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organ prolapse (IRB # 1999-0395), but using a new technique for quantifying the vaginal 

dimensions and shape that we described in this paper.  We tested the hypotheses that 

vaginal dimension and shape cannot be explained by any single demographic 

characteristic and the degree of variation will not be uniform along the vaginal length. 

The results of this study could help designing products related to pelvic organ prolapse, 

such as pessary, surgical tools, etc.  

2.2 Materials and Methods 

MRI scans of 84 women with normal support (controls) were selected from an 

ongoing University of Michigan institutional review board-approved (IRB # 1999-0395) 

case-control study of pelvic organ prolapse. Women in the control group were recruited 

by newspaper and radio advertisement for healthy volunteers and had to be asymptomatic 

and have normal vaginal support with all pelvic organ prolapse quantification (POP-Q) 

points < -1 cm. None of the subjects had previously undergone hysterectomy or prior 

pelvic floor surgery.   

As described in our previous work (Larson et al. 2010; Luo et al. 2011; Larson et 

al. 2012; Luo et al. 2012), each subject underwent supine multi-planar, two-dimensional, 

fast spin, proton density MR imaging both at rest and during maximal Valsalva using a 3 

T superconducting magnet (Philips Medical Systems Inc, Bothell, WA) with version 

2.5.1.0 software. At rest, 30 images were serially obtained in the axial, sagittal, and 

coronal planes using a 20x20 cm field of view, 4 mm slice thickness, and a 1 mm gap 

between slices.  

ImageJ v1.44 was used to establish the vaginal and cervical location and contour 

in both axial and mid-sagittal scans.  
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Figure 2.1 shows the method for the vaginal width measurement. On the axial 

scan, and moving in a distal to proximal direction, we began to trace the vaginal wall in 

the scan where we identified the transition from the labia being in the sagittal plane to the 

vagina lying in the frontal plane, and we ended the tracing when we could no longer see 

either the anterior vaginal wall (AVW) or posterior vaginal wall (PVW). The AVW and 

PVW were first traced together by considering that they were in contact with one another, 

and then once they were at least 1 cm separate (on the axial scan), they were traced 

separately. This process was made easier by some of the women having had ultrasound 

gel inserted into the vagina. 

 

Figure 2.1 Vaginal width measurement. Axial slices with 5 mm intervals are arranged from 

caudal to cephalad from the image in the upper left. The first vaginal wall tracing (image 0) was 

0 -1.0-0.5 -1.5

-2.0

-4.5

-3.0
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made when there was transition from ‘vertical’ to ‘horizontal’. Last vaginal wall tracing (image -

7.0) was made on the last slice where vaginal wall can be seen. Points 1 to 5 are used to identify 

contacted AVW and PVW (images 0 to -4.0). Points 1 to 8 are used to identify AVW (1 to 5) and 

PVW (1, 8, 7, 6 and 5) from images -4.5 to -6.0, where the biggest gap between AVW and PVW 

is at least 1 cm. When only PVW is visible, points 1 to 5 are used to only identify PVW (images -

6.5 to -7.0). Point 1 is always at the most anatomical lateral right and point 5 is always at the most 

anatomical lateral left. V: vagina; R: rectum; B: bladder. 

The cervix tracing based on axial slice was shown in Figure 2.2. The axial tracing 

of cervix is used to identify the cervical width and the location cervical os. 

 

Figure 2.2 Cervix measurement. Five points on axial slices were used to identify the cervix 

location. Point 1 and point 2 are on the most anatomical lateral right and left. Point 3 and point 4 

are on the most anterior and posterior. Point 5 is at the center of the cervix. Especially, the first 

point 5 (slice -6.0 cm) identified the location of the cervical os. 

In order to identify the symmetry of the vaginal wall and cervix, a reference bony 

pelvis mid plane was created using three points (Figure 2.3): one point at the middle of 

pubic symphysis and two points at the lower center and middle center of the sacrum. 

 

Figure 2.3 Bony pelvis mid plane. The mid plane was identified using three points with specific 

landmarks on different axial slices: Point 1 is at the center of pubic symphysis, Point 2 is at the 

center of lower sacrum, and Point 3 is at the center of middle sacrum. 

-6.0 -6.5 -7.0 -7.5 -8.0

1
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To compare the regional differences in vaginal width among different women, the 

vaginal width measurement result was resampled at five locations from the hymen (0%) 

to the top of vagina (100%) (Figure 2.4). 

 

Figure 2.4 Vaginal width. (A) and (B) middle sagittal MR image seen from left without and with 

labels, respectively. To compare transverse vaginal width at different locations along vaginal 

canal among different subjects, the width was resampled at five locations:  0% (level of hymen), 

25%, 50%, 75%, and 100% (top of vagina). Pb: pubic bone; U: uterus; V: vagina; R: rectum; B: 

bladder; S: sacrum. 

Vaginal wall length and configuration was measured in the mid sagittal plane for 

the vagina (Figure 2.5). In the mid sagittal plane of the vagina, the AVW, PVW and 

cervix were identified separately. The AVW was traced from the introitus to the anterior 

fornix. The PVW was traced from the introitus to the posterior fornix. Five points was 

used to identify the cervix location, with first point at the anterior fornix, third point at the 

cervical os, and the fifth point at the posterior fornix. To analyze the variation in vaginal 

wall shape among different women, a local coordinate system was created using bony 

landmarks: no significant differences were found between women with and without 

pelvic organ prolapse (Berger et al. 2012). A reference axis OX was created using the 

Pb

B

U

S
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sacrococcygeal-inferior pubic point (SCIPP) line, the axis OY is then perpendicular to the 

SCIPP line. 

 

Figure 2.5 Vaginal wall length and shape analyses system. (A) and (B), middle sagittal MR 

image seen from left without and with labels, respectively. In panel (B), anterior vaginal wall and 

posterior vaginal wall are identified with green lines (in reality, sampling points were put along 

the lines in Image J to get the coordinates); cervix is identified from anterior fornix to the 

posterior fornix using five points, with the third point at cervical os. To compare vaginal wall size 

and shape among different subjects, a local coordinate system (XOY in red) was created to 

quantify the morphology. Axis OX is the sacrococcygeal-inferior pubic point (SCIPP) line. Pb: 

pubic bone; B: bladder; U: uterus; C: cervix; AV: anterior vaginal wall; PV: posterior vaginal 

wall; and S: sacrum. 

A MATLAB™ program was used for data analysis, including analyzing the 

vaginal dimension, transforming MRI coordinates into local coordinates, and analyzing 

the vaginal shape. Vaginal width was measured as a frontal plane diameter, and also 

along the curve of the AVW and also the PVW in certain transverse plane sections.  In 

this dissertation, these are defined as the ‘vaginal diameter’, and the AVW or PVW 

‘curved width’, respectively. 
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The Pearson correlation analysis was applied to analyze the correlation between 

the vaginal dimension and the main demographics such height, age, weight, BMI and 

parity. Two-sided independent t tests were used with significance levels at p < 0.05, p 

<0.01 and p < 0.001. 

2.3 Results 

Subjects’ characteristics and POP-Q values are shown in Table 2.1. No subjects in 

this group had undergone a hysterectomy. Among the 84 subjects, only two of them were 

above 60 years, one was 67 years and another was 70 years. There were 6 nulliparous 

subjects among the 84 women.  

Table 2.1 Demographics 

Characteristics n=84 Minimum Maximum 

Age (yrs)a 45.5(8.9) 28 70 

Height (in)a 64.3(3.1) 50.3 72 

Weight (lbs)a 161.4(33.7) 100 265 

BMI (kg/m2)a 27.5(5.5) 18.7 44.1 

Paritya 2.1(1.2) 0 5 

Raceb 
 

       Caucasian 77(92%) 

  POP-Q (cm)a 
 

    Aa -1.4(1.0) -3 1 

  Ba -1.4(1.0) -3 1 

  C -6.6(1.3) -10 -3 

  D -9.0(1.3) -13 8.5 

  Ap -1.6(0.9) -3 0 

  Bp -1.5(1.0) -3 0 

  GHrest 3.3(1.0) 1 5.5 

  LHrest 6.3(1.1) 4 11 

  TVL 10.8(1.4) 7 14 

GHrest denotes genital hiatus at rest; LHrest, levator hiatus at rest; and TVL, total 

vaginal length 
a 
Data are mean (SD) 

  b Data are n (%) 
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Figure 2.6 Vaginal dimension and symmetry analysis. Vaginal width and symmetry information 

are shown in a bar plot at five equal locations as W1 to W5. W1 denotes vaginal width just above 

the hymen, W5 at vagina top, and other three (W2, W3, and W4) are equally located between W1 

and W5. Vaginal width mean (solid) and standard deviation (dash) on both left and right sides of 

bony middle plane are also shown. Zero on axis x denotes the pelvic mid line. Thin black lines 

show the average location (solid) and standard deviation (dash) of mid vagina point. Average 

location and standard deviation of cervical Os are shown in green. 

Descriptive statistics for vaginal width and symmetry analysis are shown in 

Figure 2.6. There was more variation in vaginal width at the top of the vagina than 

distally. On average, the vagina is essentially symmetric relative to the pelvic mid-sagittal 

plane, but again there was more variation proximally. W1 (17 ± 5 mm) was a little more 

towards to the right, W2 (24 ± 4 mm) and W3 (30 ± 7) mm were located more towards to 

the right too, but W4 (41 ± 9 mm) and W5 (45 ± 12 mm) were more towards to the left.  

The left side of the vagina was wider than the right side, on average. The average location 
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of cervical os was 83% of vaginal length and about 3 mm left from the pelvic mid-sagittal 

plane (51 cases on left and 33 on right side). 

The vaginal wall shape analysis is shown in Figure 2.7. Again, there was more in 

variation in vaginal length and shape proximally than distally. The average location of 

introitus is (12, -12) mm in the local coordinate system, which is 17 mm away from the 

local origin (pubic symphysis). All the locations of the cervix lay above the SCIPP line 

although a large variation exists. The coordinates for the average location of cervix was 

(53, 28) (anterior fornix), (59, 21), (66, 24) (cervical os), (74, 22) and (81, 31) (posterior 

fornix) in mm. The length of the SCIPP line was 115 ± 9 mm, and the angle between 

SCIPP line and horizontal line was 35 ± 6 degree.  

Figure 2.8 shows only cervix location as in Figure 2.7. Figure 2.9 shows the 

vaginal shape aligned with the average location with introitus. 
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The main vaginal dimension and correlation with height, age, weight, BMI and 

parity were shown in Table 2.2. The AVW length was 62 ± 10 mm (28 ~ 84 mm) and the 

PVW length was 97 ± 18 mm (51 ~ 144 mm) which is about 3 cm longer than the AVW 

length. 

From this table, the vaginal dimension cannot be explained by any single 

demographic parameter, such as height, or weight. Height was only positively correlated 

with PVW length, anterior fornix length, SCIPP line length and VW ‘straight line’ width 

W5, with p value < 0.05. Age was related with posterior fornix length (negatively) and 

VW driving width W2 and W5 (positively), with a p value < 0.05. Age was more related 
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Figure 2.7 Vaginal shape analysis. Middle sagittal shape and mean shape for anterior vaginal 

wall and cervix are shown in the local coordinate system with OX as SCIPP line (average angle 

of SCIPP line from horizontal line is 35.02°  and the average length is 115 mm for the 84 

subjects). Blue lines are profiles for 84 subjects with little blue dots showing the cervix location. 

Green line is the average shape with big red dots showing the cervix location. 
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with PVW length (negatively), anterior fornix length (negatively) and PVW curved width 

W4 (positively), with a p value < 0.01. Age was highly related with SCIPP line angle 

(negatively), VW frontal plane diameter width W3 and W4 (positively), AVW curved 

width W3 and W4 (positively), and PVW curved width W3 (positively), p value < 0.001. 

Weight was only positively correlated with SCIPP line length, AVW width W3 along the 

vaginal margin and PVW width W2 along the vaginal margin, p value < 0.05.  BMI was 

not correlated with vaginal dimensions.  Surprisingly, parity was only correlated 

positively with AVW width W3 along the vaginal margin with p value < 0.05. 

 

Figure 2.8 Cervix location. Middle sagittal shape and mean shape for cervix only, are shown in 

the local coordinates system with OX as SCIPP line. Blue lines are for 84 subjects and Green line 

is the average shape, with big red dots showing the cervix os location. 
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Figure 2.9 Vaginal shape aligned with introitus. Middle sagittal shape and mean shape for 

anterior vaginal wall and cervix are shown in the local coordinates system with OX as SCIPP line, 

aligned at the average location of introitus, with Blue lines are for 84 subjects and Green line is 

the average shape, with red dots showing the cervix os location.  
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2.4 Discussion 

The hypotheses were supported. Although there was large variation in vaginal 

dimension and shape found in these 84 healthy women, no single demographic 

characteristic could explain the variation in vaginal dimensions, and there was more 

variation in vaginal dimension and shape proximally than distally. 

The vagina is narrower caudally and becomes wider proximally based on the 

analysis of axial images. In the mid sagittal plane, although the curves of AVW have 

large variation at the top, the bottom of curves are quite near each other.  Those 

characteristics can be explained by the presence of the levator ani muscle reducing the 

distal variability through the imposition of a spatial constraint in the ‘high pressure’ zone. 

In this region the vagina is surrounded by the U-shaped levator ani at the back and sides 

of the vagina, which contract to close the hiatus and support the pelvic floor organs 

(Ashton-Miller and DeLancey 2009). 

Our findings are consistent with other studies (Barnhart et al. 2006) but 

quantitatively provide more information than they provide. Barnhart found that vaginal 

width was largest in the proximal vagina, decreased as it passed through the pelvic 

diaphragm and smallest at the introitus. We have quantified that the absolute variation at 

the top of vagina (W4: 41 ± 9 mm; W5: 45 ± 12 mm) is about twice the variation at the 

bottom (W1: 17 ± 5 mm; W2: 24 ± 4 mm). There are also similar findings on the location 

of the introitus and cervical os. The location for the introitus was 12 ± 5 and -12 ± 5 mm 

on the left and right sides, but for the cervical os the corresponding measures were 66 ± 

15 and 24 ± 10 mm indicating considerably more absolute variation. We also find that the 

cervical os has 50% more variation along the SCIPP line than perpendicular to the SCIPP 
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line. Those findings may be also explained by the functional anatomy of the levator ani 

muscle and the apical supports (DeLancey 1992), which includes the cardinal ligament 

holding the uterocervical portion vertically and the uterosacral ligament holding the 

cervix portion horizontally (Ramanah et al. 2012; Chen et al. 2012), but less traction 

force on the ligaments compared to the levator ani muscle (Bartscht and DeLancey 1988; 

Ashton-Miller and DeLancey 2009). Thus this helps explain why there is much flexibility 

in the proximal versus the distal vagina. 

Height was positively correlated with PVW length, anterior fornix length, SCIPP 

line length and VW diameter width W5, with p value < 0.05. The correlation between 

height and VW diameter W5 is consistent with another study (Barnhart et al. 2006). 

However, the correlation between height and PVW length was different than the other 

study (Barnhart et al. 2006). One reason might be that the other study had a smaller 

sample size and so the correlation result may have arisen by chance, which might be 

similar here, since the correlation is not very strong here also.   

The positive correlation between age and vaginal width is consistent with another 

study (Barnhart et al. 2006), but in our study we found negative correlation between age 

and fornix length and PVW length. This might show that with aging and more vaginal 

activity, the vaginal wall becomes more compliant in the transverse direction. But the 

lateral margin of the vaginal wall fuses with the levator ani muscle, as arcus tendineus 

facial pelvis (ATFP)  (DeLancey 1992) in the front and posterior arcus tendineus fascia 

pelvis (Leffler et al. 2001; Hsu et al. 2008) in the back. In the conjoined region the 

levator fiber direction is longitudinal, while the fiber direction is transverse away from 

that region. With the effect of fiber direction, the conjoined region was rendered stiffer in 
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the longitudinal direction while the laterally-located levator ani should be stiffer in the 

transverse direction. Under low intra-abdominal pressure (IAP), the vaginal wall length 

was probably constrained in the longitudinal direction, whereas the vaginal width may be 

constrained by levator ani under higher IAP. Meanwhile, considering the vaginal wall as 

a non-compressible continuum solid, with larger vaginal width, the length of vaginal wall 

then becomes smaller. 

Surprisingly, parity was only weakly positively correlated with AVW curved 

width W3 (p < 0.05). We did not find a significant correlation between parity and fornix 

length which has been shown in one study (Barnhart et al. 2006), but not another 

(Pendergrass et al. 2000). However, because we only had recruited six nulliparous 

women, our data may not be reliable.  

We have showed that the vagina is not symmetric in quantitative terms (top 

towards left) and cervical os is also more towards to the left (51 in the left versus 33 in 

the right). In addition, although we have shown there were large variation in vaginal 

dimensions and shape, we still found several significant correlations between the vaginal 

dimension and demographic characteristics. That information may be useful for the 

design of vaginal products. 

Several factors must be kept in mind when interpreting the result of these studies.  

This study has a moderate sample size with selected women having normal support.  The 

MR images were obtained in the supine position, which might systematically affect 

vaginal shape with respect to the standing posture. As we stated in Methods, the MR 

images have 4 mm slice thickness, and a 1 mm gap between slices, and this might 

generate partial volume errors. To avoid large measurement errors, we chose to measure 
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the vaginal width on axial scans, and to measure the vaginal length on the sagittal scans. 

It is a limitation that we used gel in the vagina of some women (23 of 84) to help with 

visualization; in some instances it filled the upper vagina thereby changing the contour 

and the internal surface of vagina (Barnhart et al. 2001).  However, by using gel, it helps 

us to identify the AVW and PVW separately, and also help to identify the anterior and 

posterior fornix.    

This study is a first step towards analyzing the vaginal dimension and shape of the 

healthy women. It quantifies vaginal dimensions based on axial and sagittal 2-D images 

with 3-D coordinates. The results were normalized in order to compare different subjects. 

In the future, one might study the vaginal shape in 3-D space and divide them statistically 

into characteristic shapes in order to better understand the role of the vaginal morphology 

in pelvic organ prolapse.  

  



 33 

 

References 

 

Ashton-Miller, J. A., & DeLancey, J. O. L. (2009). On the biomechanics of vaginal birth 

and common sequelae. Annual Review of Biomedical Engineering (Vol. 11, pp. 

163-176). 

Barnhart, K., Izquierdo, A., Pretorius, E. S., Shera, D. M., Shabbout, M., & Shaunik, A. 

(2006). Baseline dimensions of the human vagina. Hum Reprod, 21(6), 1618-1622. 

Barnhart, K., Pretorius, E. S., Stolpen, A., & Malamud, D. (2001). Distribution of topical 

medication in the human vagina as imaged by magnetic resonance imaging. Fertil 

Steril, 76(1), 189-195. 

Bartscht, K. D., & DeLancey, J. O. (1988). A technique to study the passive supports of 

the uterus. Obstet Gynecol, 72(6), 940-943. 

Berger, M. B., Doumouchtsis, S. K., & Delancey, J. O. (2012). Bony pelvis dimensions 

in women with and without stress urinary incontinence. Neurourol Urodyn. 

Chen, L., Ashton-Miller, J. A., & DeLancey, J. O. (2009). A 3D finite element model of 

anterior vaginal wall support to evaluate mechanisms underlying cystocele 

formation. J Biomech, 42(10), 1371-1377. 

Chen, L., Ramanah, R., Hsu, Y., Ashton-Miller, J. A., & Delancey, J. O. (2012). Cardinal 

and deep uterosacral ligament lines of action: MRI based 3D technique 

development and preliminary findings in normal women. Int Urogynecol J. 

DeLancey, J. O. (1992). Anatomic aspects of vaginal eversion after hysterectomy. Am J 

Obstet Gynecol, 166(6 Pt 1), 1717-1724. 

Hsu, Y., Chen, L., Delancey, J. O., & Ashton-Miller, J. A. (2005). Vaginal thickness, 

cross-sectional area, and perimeter in women with and those without prolapse. 

Obstet Gynecol, 105(5 Pt 1), 1012-1017. 

Hsu, Y., Lewicky-Gaupp, C., & DeLancey, J. O. (2008). Posterior compartment anatomy 

as seen in magnetic resonance imaging and 3-dimensional reconstruction from 

asymptomatic nulliparas. Am J Obstet Gynecol, 198(6), 651 e651-657. 

Larson, K. A., Hsu, Y., Chen, L., Ashton-Miller, J. A., & DeLancey, J. O. (2010). 

Magnetic resonance imaging-based three-dimensional model of anterior vaginal 

wall position at rest and maximal strain in women with and without prolapse. Int 

Urogynecol J, 21(9), 1103-1109. 

Larson, K. A., Luo, J., Yousuf, A., Ashton-Miller, J. A., & Delancey, J. O. (2012). 

Measurement of the 3D geometry of the fascial arches in women with a unilateral 

levator defect and "architectural distortion". Int Urogynecol J, 23(1), 57-63. 

Leffler, K. S., Thompson, J. R., Cundiff, G. W., Buller, J. L., Burrows, L. J., & Schon 

Ybarra, M. A. (2001). Attachment of the rectovaginal septum to the pelvic 

sidewall. Am J Obstet Gynecol, 185(1), 41-43. 

Luo, J., Ashton-Miller, J. A., & DeLancey, J. O. L. (2011). A model patient: Female 

pelvic anatomy can be viewed in diverse 3-dimensional images with a new 

interactive tool. Am J Obstet Gynecol, 205(4), 391.e391-391.e392. 

Luo, J., Larson, K. A., Fenner, D. E., Ashton-Miller, J. A., & Delancey, J. O. (2012). 

Posterior vaginal prolapse shape and position changes at maximal Valsalva seen 

in 3-D MRI-based models. Int Urogynecol J, 23(9), 1301-1306. 



 34 

 

Margulies, R. U., Hsu, Y., Kearney, R., Stein, T., Umek, W. H., & DeLancey, J. O. 

(2006). Appearance of the levator ani muscle subdivisions in magnetic resonance 

images. Obstet Gynecol, 107(5), 1064-1069. 

Pendergrass, P. B., Reeves, C. A., & Belovicz, M. W. (1991). A technique for vaginal 

casting utilizing vinyl polysiloxane dental impression material. Gynecol Obstet 

Invest, 32(2), 121-122. 

Pendergrass, P. B., Reeves, C. A., Belovicz, M. W., Molter, D. J., & White, J. H. (1996). 

The shape and dimensions of the human vagina as seen in three-dimensional vinyl 

polysiloxane casts. Gynecol Obstet Invest, 42(3), 178-182. 

Pendergrass, P. B., Reeves, C. A., Belovicz, M. W., Molter, D. J., & White, J. H. (2000). 

Comparison of vaginal shapes in Afro-American, caucasian and hispanic women 

as seen with vinyl polysiloxane casting. Gynecol Obstet Invest, 50(1), 54-59. 

Ramanah, R., Berger, M. B., Parratte, B. M., & Delancey, J. O. (2012). Anatomy and 

histology of apical support: a literature review concerning cardinal and uterosacral 

ligaments. Int Urogynecol J. 

Tan, I. L., Stoker, J., Zwamborn, A. W., Entius, K. A. C., Calame, J. J., & Laméris, J. S. 

(1998). Female pelvic floor: Endovaginal MR imaging of normal anatomy. 

Radiology, 206(3), 777-783. 

 

 



 35 

 

CHAPTER 3  

A MODEL PATIENT: FEMALE PELVIC ANATOMY CAN BE VIEWED IN 

DIVERSE 3-DIMENSIONAL IMAGES WITH A NEW INTERACTIVE TOOL 

 

3.1 Case Notes 

We developed, in portable document format (PDF), a detailed 3-dimensional (3D) 

interactive anatomic model of 23 pelvic structures that include the muscles, ligaments, 

and fascia of the pelvic floor and the organs it supports. Bones, blood vessels, and the 

perineum are illustrated as well. To produce this tool, 3D volumetric models were created 

from serial 5-mm–thick images that were obtained with a 3-Tesla magnetic resonance 

scanner. The subject was a healthy, 45-year-old, multiparous woman who was at the 50th 

percentile for height. Magnetic resonance images were then imported into 3D Slicer 

software (version 3.4.1; Brigham and Women’s Hospital, Boston, MA). Each structure 

was traced with the use of the most clearly visible axial and/or coronal plane images and 

lofted into a 3D virtual model that was based on our previous anatomic work(Hsu et al. 

2005; Margulies et al. 2006; Hsu et al. 2008; Brandon et al. 2009; Larson et al. 2010). 

Models were validated against the original scans and tracings. 

Next, the 3D models that had been generated by 3D Slicer were imported into 

Adobe 3D Reviewer (version 9.0; Adobe Systems Inc, San Jose, CA), exported as a 

universal 3D file, and, with the aid of the program’s 3D tool, inserted into Adobe Acrobat 

9 Pro (Adobe Systems Inc) and saved as a PDF file. 
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3.2 Conclusion 

The 3D PDF file allows the user to view and manipulate detailed 3D models of 

pelvic anatomy without any specialized visualization software. For example, the model 

can be rotated and magnified; and structures can be hidden or rendered transparent, which 

makes it easier to understand complex anatomic relationships (Figure 3.1 and Figure 3.2; 

an interactive model is available online at www.AJOG.org and in Appendix B). All that 

is needed is the readily available (and free) Adobe Reader; cross-section capability is 

available with Adobe Acrobat. Availability of this anatomically accurate model is critical 

to avoiding errors in comprehension that can arise from conceptually based anatomic 

representations. 

  



 37 

 

 
Figure 3.1 The user can manipulate the 3-dimensional model of pelvic structures. A, A three-

quarter right anterolateral view. B, Hiding the bones reveals selected features. C, Making the 

bladder and urethra transparent reveals the underlying structures. D, Sample sagittal cross-section 

of the remaining structures. E, Sample axial cross-section. B, bladder; CL, cardinal ligament; 

EAS, external anal sphincter; LA, levator ani; PeB, perineal body; R, rectum; Ura, urethra; USL, 

uterosacral ligament; Ut, uterus; V, vagina. © University of Michigan Pelvic Floor Research 

Group (2011).  
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Figure 3.2 The manipulation interface includes a model tree and toolbar. A, The model tree 

allows users to hide, isolate, or render transparent individual anatomic structures by right clicking 

on the label. B, Using this button in the 3-dimensional toolbar at the top, it is possible to zoom in 

or out, rotate the model, spin it, and pan over it. C, The model tree can be toggled on and off with 

this button. D, Cross-sections can be cut at a given location and orientation. E, The 3-dimensional 

model is activated by clicking on the portable document format file. © University of Michigan 

Pelvic Floor Research Group (2011). 
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CHAPTER 4  

POSTERIOR VAGINAL PROLAPSE SHAPE AND POSITION CHANGES AT 

MAXIMAL VALSALVA SEEN IN 3-D MRI-BASED MODELS 

 

Abstract 

 

Introduction and Hypothesis:  Two-dimensional magnetic resonance imaging (MRI) of 

posterior vaginal prolapse has been studied. However, the three-dimensional (3-D) 

mechanisms causing such prolapse remain poorly understood. This discovery project was 

undertaken to identify the different 3-D characteristics of models of rectocele-type 

posterior vaginal prolapse (PVP
R
) in women.  

Methods: Ten women with (cases) and 10 without (controls) PVP
R
 were selected from 

an ongoing case-control study. Supine, multi-planar MR imaging was performed at rest 

and maximal Valsalva.  3-D reconstructions of the posterior vaginal wall and pelvic 

bones were created using 3D Slicer v. 3.4.1.  In each slice the posterior vaginal wall and 

perineal skin were outlined to the anterior margin of the external anal sphincter to include 

the area of the perineal body. Women with predominant enteroceles or anterior vaginal 

prolapse were excluded. 

Results: The case and control groups had similar demographics. In women with PVP
R
 

two characteristics were consistently visible (10 of 10): 1) the posterior vaginal wall 

displayed a folding phenomenon similar to a person beginning to kneel (“Kneeling” 
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shape); and 2) a downward displacement in the upper 2/3 of the vagina. Also seen in 

some, but not all of the scans were: 3) forward protrusion of the distal vagina (6 of 10); 4) 

perineal descent (5 of 10); and 5) distal widening in lower third of the vagina (3 of 10). 

Conclusions: Increased folding (“Kneeling”) of the vagina and an overall downward 

displacement are consistently present in rectocele. Forward protrusion, perineal descent 

and distal widening are sometimes seen as well. 

Key words:  posterior vaginal wall prolapse, pelvic organ prolapse, rectocele, 3D model, 

magnetic resonance imaging, anatomy 

 

4.1 Introduction 

Pelvic floor dysfunction results in 11% of women undergoing surgery (Olsen et al. 

1997) in the USA during their lifespan. Over 200,000 operations are performed for 

prolapse (Boyles et al. 2003) with repair of posterior vaginal prolapse (PVP) included in 

87% (Silva et al. 2006). The annual estimated cost for these operations exceeds US $1 

billion (Subak et al. 2001).    

The structural deformations seen in women with anterior vaginal prolapse 

(cystocele) have received considerable attention and study (Hsu et al. 2008a; Chen et al. 

2009; Larson et al. 2010). The pathomechanics of PVP has received less attention and so 

is not yet well understood.  Current imaging studies concerning rectocele have focused on 

the contour of the rectum seen in midline sagittal projection (Kelvin et al. 2000; 

Ganeshan et al. 2008).  Changes in the overall contour of the posterior vaginal wall are 

less well documented and there is no consensus on what to measure.  Although there is 

obvious deformation of the posterior vaginal wall in PVP, the exact nature of this 3-D 
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deformation has not been clarified.  The potential changes present in posterior vaginal 

wall width and the relationships involving the lateral margins of the posterior vaginal 

wall are also not clear (Pannu et al. 2009; Lewicky-Gaupp et al. 2010). 

This study was therefore undertaken by conducting a secondary analysis of data 

from a larger on-going case-control study of pelvic organ prolapse.  We tested the 

hypothesis that it is possible to identify characteristic shapes of PVP visible on MR scans 

at rest and maximum Valsalva.   

4.2 Materials and Methods 

MRI scans of 10 women with rectocele type posterior vaginal prolapse (PVP
R
) 

and 10 with normal support (controls) were selected from an ongoing University of 

Michigan institutional review board-approved (IRB # 1999-0395) case-control study of 

pelvic organ prolapse. Women in the control group were recruited by newspaper and 

radio advertisement for healthy volunteers and had to be asymptomatic and had normal 

vaginal support with all pelvic organ prolapse quantification (POP-Q) points < -1 cm. All 

PVP
R
 cases had posterior vaginal prolapse with posterior vaginal wall (PVW) extending 

at least 1 cm below the hymen based on POP-Q and had symptoms of bulging or 

protrusion. In order to be included the rectocele had to be the predominant aspect of the 

prolapse and extend at least one centimeter lower than the most dependent part of anterior 

wall or the uterus/apex. Women with predominant enteroceles or anterior vaginal 

prolapse were excluded. None of the subjects had previously undergone hysterectomy or 

prior pelvic floor surgery.  The 26 scans of women with rectocele were further evaluated 

for inclusion according to the following criteria: prolapse size consistent with clinical 

examination (POP-Q), ability to hold Valsalva for the entire 17 seconds of scan 
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acquisition, freedom from significant motion artifact, inclusion of all necessary structures, 

evenly distributed intravaginal ultrasound gel and sufficient definition of vaginal walls to 

allow models to be made. Ten of the 26 scans were selected based on above criteria.  

Similarly, the matched controls (who had an age difference within ±2 years, number of 

vaginal deliveries within ±1, and were of similar race) had to meet the above criteria with 

the exception of not having prolapse.  

As described in our previous work (Larson et al. 2010; Larson et al. 2012b), each 

subject underwent supine multi-planar, two-dimensional, fast spin, proton density MR 

imaging both at rest and during maximal Valsalva using a 3 T superconducting magnet 

(Philips Medical Systems Inc, Bothell, WA) with version 2.5.1.0 software. At rest, each 

30 images were serially obtained at the axial, sagittal, and coronal, with 20x20 cm fields 

of view, 4 mm slice thickness, and a 1 mm gap between slices. During maximal Valsalva, 

each 14 images were serially obtained at the same three serial planes, with 36x36 cm 

fields of view, 6 mm slice thickness, and 1 mm gap. In order for the images to be 

considered adequate, they had to allow visualization of vaginal margins.  

The MR images from axial, sagittal and coronal planes were imported into 3D 

Slicer 3.4.2009-10-15 (Brigham and Women’s Hospital, Boston, MA). The resting axial 

and sagittal images were aligned first, with manual registration and fixed landmarks such 

as pubic bone and sacrum. 3-D models were made of the following resting structures: 

bony pelvis and ischial spines using axial images, and posterior vaginal wall using 

sagittal images based on our previous anatomic work (DeLancey 1999; Hsu et al. 2008b; 

Lewicky-Gaupp et al. 2010). Figure 4.1 illustrates the 3-D model generation process and 

subsequent reference line as described below. The vaginal wall was modeled using  
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Figure 4.1 Making a 3D prolapse model including the P-IS line. (A) Mid-sagittal MR image of 

subject with posterior prolapse; (B) Outline of posterior vaginal wall in pink; (C) Addition of 

midsagittal pelvic bones (white) and 3D model of posterior vaginal wall shown in slightly skewed 

sagittal image; (D) Straining posterior vaginal wall model and its relationship to the normalized 

ATFP, shown here as the turquoise lines extending from the public symphysis to the ischial 

spines (yellow squares), or the P-IS line. P, pubic symphysis; S, sacrum; B, bladder; R, rectum; V, 

vagina; Ut, uterus; IS, ischial spine. (© DeLancey 2011) 
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sagittal strips to avoid artifacts from smoothing. The models were compared to the 

original MR images to confirm their fidelity.  

To analyze deformation of posterior vaginal wall under load, 3-D models of mid-

sagittal pubic symphysis and sacrum were reconstructed using the MR images from 

maximal Valsalva and aligned with the pelvic bones of the resting images. This 

registration information was then applied to the soft tissue images making it possible to 

align the subsequently constructed 3-D posterior vaginal wall with the previously created 

resting models using the pubic symphysis and sacrum. A reference line was constructed 

on each side of the pelvis representing the normal location of the arcus tendineus fascia 

pelvis (ATFP) from its pubic attachments to the ipsilateral ischial spine (“P-IS” line) for 

visual reference and consideration for future measurement purposes (Larson et al. 2010; 

Larson et al. 2012b). 

To compare the 3-D reconstruction models among case and control groups, the 

resting and maximal Valsalva 3-D models were imported into Microsoft PowerPoint 
®

. 

All models were aligned by the position of the pubis and with a dotted line indicating the 

usual location of perineal body. Then the above models were compared visually among 

the case and control groups, with morphological changes identified using descriptive 

terminology. Two physician co-authors scored the frequency for the characteristic in both 

case and control groups. A descriptive statistical analysis was performed of case and 

control demographics. Fisher’s exact tests were used to determine the statistical 

significance (p<.01) of the proportions of women in each group who manifest each 

phenomenon. 
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4.3 Results 

Subjects’ characteristics and POP-Q values are shown in Table 4.1. The case and 

control groups were matched by race, age, and vaginal parity. No subjects in either group 

had undergone a hysterectomy and all cases were rectocele type prolapse predominantly. 

Statistically significance differences were found at points C, Ap, and Bp during clinical 

POP-Q examination for the two groups. 

The lateral views of rest and strain models in all 20 subjects are shown in Figure 

4.2. With Valsalva, two characteristics were consistently visible in women with PVPR 

(10/10): 1) the posterior vaginal wall displayed a folding phenomenon similar to a person 

beginning to kneel (“Kneeling”) (Figure 4.3C); and 2) downward displacement in the 

upper 2/3 part of the vagina (Figure 4.3C). In addition to the “Kneeling” and downward 

displacement characteristics, in women with PVPR the posterior vaginal wall underwent 

other morphologic changes. For example, forward protrusion of the distal vagina (6/10) 

can be seen in some subjects (Figure 4.3C). About half subjects (5/10) had perineal 

descent. To be considered as forward protrusion and perineal descent phenomena, the 

amount of forward or downward movement have to be significant enough (e.g., lower 1/3 

of vaginal wall lose contact compared to control group). In addition, distal widening in 

lower third of the vagina was seen in a few (3/10) subjects. The complete comparison of 

the frequency of the above morphologic findings is shown in Table 4.2 for the case and 

control groups. 
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Table 4.1 Demographics 

Characteristics Cases (n=10) Controls (n=10) p value 

Age (yrs)a 54.9(8.7) 54.2(8.9) .860 

BMI (kg/m2)a 28.9(5.5) 28.4(8.6) .825 

Paritya 2.6(0.7) 2.8(1.0) .678 

Raceb 

     Caucasian 9 (90%) 10 (100%) 1.00
c
 

POP-Q (cm)a    

  Aa -1.2(0.9) -1.9(1.0) .111 

  Ba -1.0(0.9) -1.9(1.0) .081 

  C -5.2(1.4) -6.8(1.2) <.001 

  D -7.5(1.6) -8.9(1.4) .003 

  Ap 1.7(0.8) -1.7(0.7) <.001 

  Bp 1.7(0.8) -1.7(0.7) <.001 

  GHrest 3.9(1.3) 3.3(1.0) .240 

  LHrest 7.5(1.7) 6.4(0.8) .066 

  TVL 10.3(1.3) 10.2(1.2) .790 

GHrest, genital hiatus at rest; LHrest, levator hiatus at rest; TVL, total vaginal length 
a Data are mean (SD) 
b Data are n (%) 
c p is from Fisher’s exact test 
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Figure 4.2 3D case and control models comparison. Lateral view of posterior vaginal walls of 10 

controls and 10 cases during rest (blue) and Valsalva (pink). The vaginal wall was modeled using 

sagittal strips to avoid artifacts from smoothing. Pubis and sacrum are shown in white. Dotted 

lines indicate the average level of the perineal body for visual reference. (© DeLancey 2011) 
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Figure 4.3 Characteristics of posterior prolapse. Comparison of control (A,B) and case (C,D) in 

lateral view (A,C) and oblique view (B,D) showing five characteristic features (C,D) during rest 

(blue) and Valsalva (pink): 1) Increased folding (“Kneeling”); 2) Downward displacement in the 

upper 2/3 part of the vagina; 3) Forward protrusion; 4) Perineal descent; 5) Distal widening in the 

lower third part of the vagina. Pubis and sacrum are shown in white. The P-IS line is shown in 

turquoise. (© DeLancey 2011) 
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Table 4.2 Frequency of morphologic characteristics within case and controls 

Characteristics Cases 

(n=10) 

Controls 

(n=10) 

p value 

(Fisher’s exact) 

Kneelinga 10(100%) 2(20%) <0.001 

Downward Displacementa 10(100%) 3(30%) <0.01 

Forward Protrusiona 6(60%) 2(20%) 0.170 

Perineal Descenta 5(50%) 3(30%) 0.650 

Distal Wideninga 3(30%) 0(0%) 0.211 

a Data are n(%); Downward displacement is mainly for upper 2/3 of vagina; Distal widening is 

mainly for the lower third of vagina. 
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4.4 Discussion 

We examined the appearance of the posterior vaginal wall at maximal Valsalva in 

normal women and women with rectocele as a secondary analysis of an on-going case-

control study of pelvic organ prolapse.  The hypothesis was supported in that we found 

consistent changes in the shape and position of the vagina in women with posterior 

vaginal prolapse. Increased folding (“Kneeling”) of the vagina and an overall downward 

displacement were consistently present in rectocele. Other less consistent phenomena 

included forward protrusion, perineal descent, and distal widening. 

The “Kneeling” is not just a forward protrusion of the distal vaginal wall, but a 

more complex phenomenon as it can occur in the absence of forward protrusion.  The 

addition of descent of the upper vagina in those with “Kneeling” seemed to ‘pinch off’ 

the bowel as the upper vagina moved toward the levator plate; this suggests that it may 

play a role in obstructive defecatory dysfunction. Further measurements will be needed to 

confirm or refute this hypothesis.   

These findings are consistent with findings in 2-D sagittal imaging (Lewicky-

Gaupp et al. 2010) but qualitatively are much richer in the information they provide. In 

addition, with this 3-D MR imaging-based modeling technique, we can better visualize 

the relationship between the lateral wall and reference lines such as the P-IS line so that a 

quantitative unified 3-D biomechanical model can be created to test different hypotheses 

related to mechanism of the PVP
R
.  Furthermore, it allows us to evaluate the degree of 

vaginal widening that is seen in some subjects. 

We were surprised that distal widening of the vagina was not seen universally in 

the population with PVP
R
.  Certainly it is an expected finding, but on reflection this fits 
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with clinical experience that not all rectoceles are the same. Now that it is possible to 

image vaginal width, researchers can pursue explanations for why one woman has this 

phenomenon and others do not, and determine if it is related to defecatory dysfunction 

seen in some women with PVP. 

One prominent aspect of rectoceles was the downward displacement of the upper 

vagina. This is accompanied by a change in the relationship between the vagina and the 

P-IS line that identifies the normal location of the fascial arch.  This raises the issue of 

whether or not there is a “posterior paravaginal defect”.  In work on the anterior vaginal 

wall (Summers et al. 2006; Larson et al. 2012a) we have seen that paravaginal defect and 

apical descent are essentially two aspects of the same phenomenon.  Further work will be 

needed to clarify this issue. 

There are significant differences of opinion among experts in the field regarding 

the anatomical factors responsible for rectoceles and the relationship between surgical 

approaches and outcome (Paraiso et al. 2006; Kleeman and Karram 2008). The 

differences of opinion start simply with how to define or quantify the rectocele. 

Urogynecologists often struggle with an adequate way of describing the rectocele 

(Kenton et al. 1997; Altman et al. 2005). Most imaging studies to date have focused on 

measurements of the rectal contour with contrast during defecation which is a different 

phenomenon than the movement of the posterior vaginal wall elicited during pelvic 

examination (Kenton et al. 1999; Kelvin et al. 2000).  Both have their separate roles in 

understanding problems with posterior vaginal wall support. Obtaining accurate 3-D 

information about the structural changes present in individual women shows great 

promise as an investigative technique and may lead to specific surgical therapies. 
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A lack of objective reproducible preoperative tests that can identify the specific 

nature of each patient’s defect has prevented clinical trials that test the hypothesis that a 

specific approach may have better results in patients who have a specific type of rectocele.  

The current project is a start towards developing an assessment strategy that can identify 

different anatomical defects responsible for a woman’s anatomical problem.  Next steps 

might include quantitative measures of posterior vaginal wall morphology to test specific 

hypotheses and then evaluation of these abnormalities to the status of surrounding 

structures such as the levator ani muscle and the pelvic fascia.  We are not implying by 

this research that we believe MR imaging is, at present, necessary for the clinical 

management of a rectocele, but if this line of investigation is successful in capturing 

clinically important differences between different types of rectoceles that affect surgical 

outcome then it may become helpful. Of course symptoms are not always tied to anatomy 

and this line of investigation does not diminish the importance of assessing other causes 

of defecation difficulty (Cundiff and Fenner 2004).   

Several factors must be kept in mind when interpreting the result of these studies.  

This is a small sample of specifically selected women with distal posterior vaginal wall 

prolapse.  We specifically selected women with predominant rectoceles in order to have a 

more homogeneous sample to analyze.  It will be necessary to study women who also 

have significant cystocele or uterine prolapse in association with rectocele to gain an 

understanding of more complex prolapses.  In addition, the changes seen in women with 

enteroceles will also need to be studied.  The MR images are obtained in the supine 

position and not during defecation.  However, these studies are similar to supine pelvic 

examination with Valsalva that clinicians use to examine the prolapse and perform a 
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POP-Q examination (except for somewhat less thigh abduction).  It is a limitation that we 

used gel in the vagina to help with visualization and in some instances in normal women 

it fills the upper vagina thereby slightly changing the contour.  The characteristic features 

were identified by consensus between two of the clinical authors (JOLD, KAL) based on 

morphological patterns in preparation for developing a quantitative system.     

This study is a first step to analyze the structural 3-D deformations involved in 

rectocele. It includes qualitatively studying the characteristic changes of posterior vaginal 

wall both at rest and maximal Valsalva from MR images for case and control groups. 

Future quantification of the differences between women with and without prolapse 

should give insights into the mechanism of the posterior vaginal wall prolapse and 

potentially lead to better surgical treatment strategies.  
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CHAPTER 5  

3D ANALYSIS OF CYSTOCELES USING MAGNETIC RESONANCE IMAGING 

ASSESSING MIDLINE, PARAVAGINAL, AND APICAL DEFECTS 

 

Abstract 

 

Introduction and hypothesis: This study assesses relative contributions of “midline 

defects” (widening of the vagina) and “paravaginal defects” (separation of the lateral 

vagina from the pelvic sidewall). 

Methods: Ten women with anterior predominant prolapse and ten with normal support 

underwent pelvic MR imaging. 3-D models of the anterior vaginal wall (AVW) were 

generated to determine locations of the lateral AVW margin, vaginal width, and apical 

position. 

Results: The lateral AVW margin was farther from its normal position in cases than 

controls throughout most of the vaginal length, most pronounced midvagina (effect sizes, 

2.2–2.8). Vaginal widths differed in the midvagina with an effect size of 1.0. Strong 

correlations between apical and paravaginal support were evident in mid- and upper 

vagina (r = 0.77–0.93). 

Conclusions: Changes in lateral AVW location were considerably greater than changes 

in vaginal width in cases vs controls, both in number of sites affected and effect sizes. 

These “paravaginal defects” are highly correlated with apical descent. 
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Key words: Cystocele, Paravaginal defect, Midline defect, Anterior wall prolapse, Pelvic 

organ prolapse, MR imaging 

 

5.1 Introduction 

The anterior vaginal wall is the most common site of pelvic organ prolapse and 

the most frequent site of operative failure (Benson et al. 1996; C. Maher and Baessler 

2006; C. F. Maher et al. 2001; J. K. Nguyen 2001; J. N. Nguyen and Burchette 2008; 

Olsen et al. 1997; Shull et al. 2000). The traditional discussion of causal factors involved 

in anterior compartment prolapse has centered on debate between midline and 

paravaginal defects. Apical descent has recently been strongly associated with cystocele 

size (Hsu et al. 2008; Rooney et al. 2006; Summers et al. 2006). Although surgical 

decisions are often based on which defect is presumed present, data are lacking regarding 

the relative importance of these defects. Furthermore, a technique which quantifies the 

magnitude of these clinically important factors is not currently available. 

Recently, 3-D magnetic resonance (MR) studies have allowed us to visualize not 

just the midline deformation of the anterior vaginal wall with Valsalva, but also the entire 

vaginal wall including its lateral margin (Larson et al. 2010). The present study quantifies 

changes in vaginal width in order to evaluate the effect of “midline defects” and changes 

in the position of the lateral vagina in order to evaluate the “paravaginal defect.” In 

addition, we determine the correlation between these “paravaginal defects” and vaginal 

apex location. 
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5.2 Materials and methods 

Magnetic resonance imaging (MRI) scans from 20 women (ten cases and ten 

controls) were selected from an ongoing University of Michigan institutional review 

board-approved (IRB no. 1999–0395), case–control study of pelvic organ prolapse. All 

women in the control group were asymptomatic based on Pelvic Floor Distress Inventory 

and Pelvic Floor Impact Questionnaires, had negative full bladder stress tests, and did not 

have prolapse beyond the hymen. All cases were symptomatic and had a Ba pelvic organ 

prolapse–quantification (POP-Q) value at least 1 cm beyond the hymenal ring on clinical 

examination. Selected subjects had cystocele-predominant prolapse; women in whom the 

cervix or posterior wall was the leading point of prolapse were excluded. None of the 

subjects had previously undergone hysterectomy or prior pelvic floor surgery. For our 

cases, we screened 21 of the most recent MR images to find ten with adequate 

visualization of the vaginal margins. The images of the ten selected cases also adequately 

demonstrated the full extent of their prolapse on dynamic MRI, allowing visualization of 

the changes in the anterior vaginal wall at Valsalva. 

As described in our previous studies (Larson et al. 2010), each woman underwent 

supine MR imaging both at rest and during maximal Valsalva using a 3 Telsa Philips 

Achieva scanner (Philips Medical Systems, Best, The Netherlands) with a six-channel, 

phased array coil. Ultrasound gel was placed in the vagina to outline its contour. For 

standard anatomical scans made at rest, turbo spin echo techniques were used to image 

the sagittal, coronal, and axial planes. At rest, 30 images were obtained in each plane 

(repetition time (TR) range, 2,300–3,000 ms; echo time (TE), 30 ms; 4-mm slice 

thickness; 1-mm gap; number of signal averages (NSA), 2; 256 × 255 voxels). Subjects 
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then performed a Valsalva maneuver which they held for approximately 20 s to obtain 

images of the pelvis with the prolapse protruding maximally. With the prolapse 

protruding, 14 images were serially obtained from one ischial spine to the other in sagittal 

plane (TR range, 1,249–1,253 ms; TE, 80 ms; 6-mm slice thickness; 1-mm gap; SENSE 

factor, 4; NSA, 2; 320 × 178 voxels). A research associate with the POP-Q data from 

each subject’s clinical examination was present during MR imaging to assure that the 

prolapse reached the same size that had been previously identified in the clinic. If the 

prolapse did not reach the same magnitude as had been observed on clinical examination, 

the MR study was repeated with additional coaching to obtain images with the prolapse at 

its fullest extent. 

The original axial, sagittal, and coronal Digital Imaging and Communications in 

Medicine static images were aligned with one another using rigid registration in the 3-D 

Slicer® software program (version 2.1b1, Brigham and Women’s Hospital, Boston, MA), 

ensuring that structures co-localized in all three axes by simultaneous review of 3-D scan 

planes in the viewer. Satisfactory alignment was possible in all 20 scans. Three-

dimensional models were made of the following resting structures: bony pelvis and 

ischial spines using the axial images. Figure 5.1a–f illustrates the modeling process and 

subsequent generation of a reference line as described below. 

To analyze the deformation of the anterior vaginal wall under load, 3-D models of 

the midsagittal pelvic bones (the pubic symphysis and sacrum) were constructed from the 

sagittal maximal Valsalva images and then aligned with the pelvic bones of the resting 

model. This identified the transformation (both rotation and translation) for the sagittal 

maximal Valsalva images such that subsequently constructed 3-D anterior vaginal wall 
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models could be aligned with previously created resting models of the ischial spines. This 

step was necessary to allow creation a reference line established on each side of the 

pelvis representing the normal location of the arcus tendineus fascia pelvis (ATFP) from 

its pubic attachments to the ipsilateral ischial spine (P-IS line). 
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Figure 5.1 Making a 3-D model with P-IS line. a Mid-sagittal MR image of subject with prolapse. 

b Outline of anterior vaginal wall in blue with cervicovaginal junction marked with a purple 

square. c 3D model of anterior vaginal wall shown in slightly skewed sagittal image. Mid-sagittal 

pelvic bones also in this image. d Illustrates more complete view of pelvic bones and rotating this 

slightly in e we can see the IS. A line from the insertion of the arcus tendineus fascia pelvis on the 

pubic bone to the ipsilateral ischial spine is then constructed (P-IS line in f). This serves as the 

reference line to generate the sidewall measurements. P pubic symphysis, S sacrum, B bladder, 

Va vagina, Ut uterus, IS ischial spine. ©DeLancey 2010 
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The maximal Valsalva models were imported into Imageware® (version 12, UGS 

Corporation, 2005) for measurement of vaginal width and determination of the distance 

of the lateral margin of the vagina from normal. Figure 5.2 illustrates how anterior 

vaginal wall width at maximal Valsalva was measured at five equidistant locations 

between the cervicovaginal and urethrovaginal junctions for both cases and controls. This 

measurement did take into account the nonlinear configuration of the anterior vaginal 

wall. This measurement, therefore, was not a straight-line distance between the lateral 

margins but followed the curve of the vagina so that the distance, in some cases, might be 

larger than the transverse diameter of the pelvis. In addition, we measured vaginal length 

between the cervicovaginal and urethrovaginal junctions. Secondly, we developed a 

technique to quantify the “paravaginal defect.” Using the P-IS line as our reference x-axis, 

the normal location of the lateral margin of the vagina was determined by calculating the 

mean three-dimensional coordinates (x, y, z) of women in the control group at each of 

these five equidistant points (see five points as illustrated on Figure 5.2, with their 

relationship to the P-IS line). Subsequently, for each subject at these five points, we 

calculated how far the lateral margin of the vagina was from the normal mean determine, 

if there was a difference in paravaginal distance in women with prolapse compared to 

those with normal support (Figure 5.3). A similar process was done to assess the distance 

of the apex from the normal mean position at the cervicovaginal junction. From this point 

onward, these two measurements will be referred to as the paravaginal distance and 

apical distance. 
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Figure 5.2 Measurement concept. Inset orients one to the view into the pelvis looking over the 

pubic symphysis towards the rectum. Five black dots are shown along the lateral portion of the 

anterior vaginal wall (AVW) on the patient’s right side illustrating the division of the vagina in 

five equidistant locations between the cervicovaginal junction and the urethrovaginal junction. 

Vaginal wall length between these two is indicated by the dotted line. The solid line represents an 

example of the vaginal width measurement. The arrows indicate paravaginal location relative to a 

reference line along the ATFP on the sidewall. ©DeLancey 2010 
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Figure 5.3 Determining distance from normal. a Vaginal width and lateral wall locations at five 

equidistant points from apex at cervicovaginal junction to urethrovaginal junction (UVJ) in 

normal support. Pubis-ischial spine (P-IS line) in green from insertion of ATFP on pubic 

symphysis to ipsilateral ischial spine. b Similar markings in anterior compartment prolapse. Note, 

cervicovaginal junction modeled as purple dotsalong the vaginal wall. c Alignment of control and 

prolapse data using P-IS reference line. d The distance that lateral locations and apex lie from 

normal is shown with arrows extending from normal location to location in prolapse. Apex 

(triangle), UVJ (square), lateral vaginal wall (circles), vaginal length (blue lines). ©DeLancey 

2010 
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Standard statistical analysis was applied using t tests to compare means of vaginal 

length and distance of apex from normal. PROC MIXED in SAS® (SAS statistical 

software version 9.1, SAS Institute, Inc., Cary, NC) was used to carry out a repeated 

measures analysis of variance for vaginal width and paravaginal distances. Spearman’s 

correlation coefficients were determined to assess the relationships between apical and 

paravaginal distances. Lastly, Cohen’s d effect sizes were determined for statistically 

significant relationships to determine the strength of their relationship with their 

case/control status. There was no previous work in this area to provide data for an a priori 

power analysis; post hoc analysis were performed to determine if the study was 

adequately powered to conclude that there truly is no difference in non-statistically, but 

clinically, significant findings. 

5.3 Results 

Subject characteristics and mean POP-Q values are shown in Table 5.1. The case 

and control groups were matched for age, parity, and BMI. No statistically significant 

differences existed between the two groups with the exception of the POP-Q, as was the 

study design. 

Group comparisons for paravaginal distances, vaginal width, and apical distance 

are shown graphically in Figure 5.4. Table 5.2 details the magnitude of these differences. 

At maximal Valsalva, the lateral margin of the vagina lies significantly farther from its 

normal position in women with prolapse than in women with normal support. As can be 

seen in Figure 5.4a, these phenomenon occurred along the length of the vagina, locations 

“1 to 4,” with the largest difference at location “3” in the mid-vagina, the area 

corresponding to the exposed area that slides beyond the support of the levator muscles 
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and perineal body. At this point, the prolapse group mean (combining right and left sides) 

was 1.8 cm farther from the normal position than the control group mean (3.2 ± 0.8 cm vs. 

1.4 ± 0.6 cm; p = 0.0001). 

Table 5.1 Demographics 

 
           BMI body mass index 
                 a Data are mean (SD) unless otherwise specified 
                 b Fisher’s exact used to calculate P 

  

Characteristics Cases (n  = 10) Controls (n  = 10) p value

Age (years)
a 56.3 (6.7) 62.9 (13.1) 0.17

BMI (kg/m
2
)

a 27.2 (4.4) 25.19 (4.5) 0.32

Median parity (range) 2 (1–5) 2.5 (2–6)

Race
b

  Caucasian 8 (80%) 10 (100%) 0.47

  African American 2 (20%) 0 (0%)

POP-Q
a

  Aa 1.5 (1.0) −1.7 (0.9) 0.0001

  Ba 2.2 (1.6) −1.6 (1.0) 0.0001

  C −3.2 (1.6) −6.0 (1.1) 0.0002

  D −6.5 (1.1) −8.9 (1.1) 0.0001
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Figure 5.4 Comparing apical and paravaginal distances from normal (a) and vaginal width (b). 

Note that “1” represents the apex at the cervicovaginal junction (CVJ) and position “5,” the 

urethrovaginal junction (UVJ) at the distal end. Asterisks mark statistically significant differences. 

Note that right and left paravaginal distance means have been combined to one overall mean. 

Standard deviation shown. ©DeLancey 2010 
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Table 5.2 Effect sizes and correlations 

a Data presented as mean (SD) 
b P value for test of equal means 
c P value for test of correlations 
d PROC MIXED 
e Equal variance t test 
f Unequal variance t test 

 

 

  

Measurement Case mean
a

Control mean
a Difference P

b Effect size

Spearman 

correlation 

with apex
P

c

 1 31.9 (12.5) 15.5 (8.2) 16.4 <0.001 1.6 0.92 <0.001

 2 36.0 (9.3) 16.5 (6.5) 19.5 <0.001 2.5 0.93 <0.001

 3 34.4 (8.9) 14.0 (5.9) 20.4 <0.001 2.8 0.85 <0.001

 4 25.1 (6.7) 12.1 (5.0) 13 0.001 2.2 0.69 <0.001

 5 15.3 (8.4) 12.2 (4.7) 3.1 0.419 0.5 0.42 0.06

 1 31.8 (11.1) 17.3 (7.0) 14.5 <0.001 1.6 0.85 <0.001

 2 32.0 (9.9) 17.3 (7.0) 14.7 <0.001 1.7 0.9 <0.001

 3 30.7 (7.9) 14.1 (7.0) 16.6 <0.001 2.2 0.77 <0.001

 4 25.0 (8.1) 12.4 (7.0) 12.6 0.0004 1.8 0.55 <0.001

 5 13.7 (5.6) 12.4 (5.8) 1.3 0.689 0.2 0.32 0.17

Vaginal width
d

 1 46.9 (9.0) 49.2 (12.7) −2.2 0.616

 2 41.1 (11.5) 40.3 (7.9) 0.8 0.851

 3 41.3 (10.2) 31.9 (8.9) 9.5 0.035 1

 4 34.2 (11.0) 27.9 (10.1) 6.4 0.154

 5 18.9 (8.9) 19.5 (6.4) −0.6 0.89

Apex
e 35.0 (13.6) 16.4 (8.0) 18.6 0.0016 1.7

Vaginal length
f 72.4 (15.3) 58.3 (7.4) 14.1 0.0216 1.2

Paravaginal right
d
 

Paravaginal left
d
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In addition, the apex was significantly farther from the normal mean location in 

women with prolapse (3.5 ± 1.4 vs. 1.6 ± 0.8 cm in controls; p = 0.002). The apical 

distance strongly correlated with paravaginal distances for locations 1 to 3 with Spearman 

correlation coefficients ranging from 0.77 to 0.93. This relationship was slightly weaker 

for position “4” and did not hold at position “5” near the urethrovaginal junction. Figure 

5.4 contains scatter plots of these relationships at positions “1–5.” Please note that while 

Figure 5.4a combines right and left sides when comparing cases and controls to simplify 

the comparison, these scatter plots keep right and left sides separate to better visualize the 

raw data. Statistical analysis using PROC MIXED did not show any statistically 

significant difference between sides. 

The mid-vagina was wider in women with prolapse compared to their normal 

counterparts. At location “3,” the mean vaginal width was 4.1 ± 1.0 cm in women with 

prolapse as opposed to 3.2 ± 0.9 cm in those with normal support (p = 0.04). There was a 

similar trend in position “4”; however, at the study sample size, this finding was not 

statistically significant (Figure 5.4b). We considered 20% a clinically significant 

difference in vaginal width, and at both positions “3” and “4,” the difference exceeded 

this. Post hoc power analysis for the non-statistically significant position “4” revealed 

that the current study was not powered adequately to detect this difference at position “4” 

and would require approximately 55 individuals in each group to reach 80% power with 

an alpha of 0.05. In addition, the mean anterior vaginal length was different in cases and 

controls (7.2 ± 1.5 and 5.8 ± 0.7 cm, respectively; p = 0.02). 

Effect sizes for statistically significant findings show that case–control 

paravaginal distances are more than twice as large as vaginal width changes (Table 5.2). 
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5.4 Discussion 

It has been possible to quantify apical descent, cystocele size, and vaginal length 

in the midline sagittal straining images. However, it has not previously been possible to 

quantify the size of paravaginal defects and the degree of vaginal widening, both of 

which are relevant to the two major hypotheses of cystocele causation. This study uses a 

recently developed 3-D MR imaging strategy (Larson et al. 2010) to visualize and 

quantify anterior vaginal wall displacement and deformation at maximal Valsalva so that 

women with prolapse can be compared to women with normal support. It objectively 

measures the deformation, determining whether the vaginal wall is wider, suggesting a 

midline defect, or separates from the sidewall, suggesting a paravaginal defect. The 

outcomes of our study include the following findings: (1) the largest differences are in 

paravaginal distance in women with prolapse; (2) this distance is strongly correlated with 

apical distance; (3) in women with prolapse, the vaginal wall widens somewhat in the 

area at mid-vagina, that region that extends below, the support of the levator muscles and 

perineal body; and (4) this effect size of vagina width between cases and controls was 

smaller than that associated with paravaginal changes. 

In essence, what this study shows is that the lateral vagina is displaced from its 

normal position in women with anterior wall prolapse proving the hypothesis that 

paravaginal defects exist. It also confirms anterior vaginal wall widening, albeit at a 

much lesser extent than the paravaginal changes. It is of special interest that paravaginal 

distance is highly correlated with apical distance. This confirms the mechanistic 

observation that these two phenomenon are related (DeLancey 2002) and the recent 

predictions of biomechanical models (Chen et al. 2009). While the 3D models appear 
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consistent with paravaginal defects, whether this fits with the classical description of the 

defect is another issue. We are not suggesting, at present, that MRI is required before 

selecting surgical management in treating anterior vaginal wall prolapse. However, it is 

possible to see the day when the ability to quantify paravaginal defect, apical descent, and 

vaginal widening could have great clinical utility and help in selecting which woman 

might need an apical suspension and which may need steps to reduce vaginal widening. 

This study both corroborates and extends existing literature and our current 

understanding of anterior vaginal wall support. As in other studies, our subjects with 

prolapse had increased apical distance and increased vaginal length when compared to 

women with normal support (Chen et al. 2006; Hsu et al. 2008; Rooney et al. 2006; 

Summers et al. 2006). Our findings expand upon our earlier published study (Larson et al. 

2010) establishing the appearance of the anterior vaginal wall at maximal Valsalva in 

which we describe the morphological changes seen in 3-D models to include downward 

translation (or downward movement along the length of the vagina) and vaginal cupping. 

This study quantifies these changes by defining the extent of lateral movement from 

normal and vaginal widening in response to Valsalva. 

The concept of a paravaginal defect has been described since the early 1900s. The 

first description of separation of the lateral vagina from the arcus tendineus fascia pelvis 

along the pelvic sidewall is attributed to White (White 1909). This observation went 

largely unnoticed until the landmark contributions of Richardson in the late 1970s/early 

1980s. Richardson et al. described the paravaginal defect and reported on the results of a 

novel repair in a large series of surgical patients (Richardson et al. 1981; Richardson et al. 

1976). Despite the fact that this separation had been described a century ago and actively 
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discussed for almost 30 years, there remains significant controversy on the subject, 

ranging from its prevalence in population studies of women with anterior wall prolapse 

(ranging from 37% to 88%) to the ability to diagnose these defects both preoperatively 

and intraoperatively (Barber et al. 1999; DeLancey 2002; Dietz et al. 2005; J. K. Nguyen 

2001; Richardson et al. 1981; Richardson et al. 1976; Segal et al. 2004). Barber et al. 

reported good sensitivity and negative predictive values, but poor specificity and positive 

predictive values for preoperative identification of these defects on physical examination 

(Barber et al. 1999). Segal et al. found lower sensitivities and higher specificities for 

clinical evaluation of these defects and found that the classic teaching of presence or 

absence of rugae did not correlate with defect status (Segal et al. 2004). Intraoperative 

identification of these defects is plagued with concerns of missing defects with vaginal 

assessment or creating iatrogenic defects when trying to assess the integrity of these 

tissues. In his comparison of clinical exam with ultrasound imaging of paravaginal 

defects, Dietz et al. found poor correlations between the two and suggested the 

paravaginal defect “be regarded as an unproven concept.” (Dietz et al. 2005). To date, we 

are not aware of other studies that have measured the degree of a paravaginal defect and 

widening of the vagina so that they could be compared between symptomatic and 

asymptomatic women. 

Our observations concern the distance that the lateral margin of the prolapsed 

vagina lies from its position in women with normal support. Technology currently limits 

our ability to see and model the thin ATFP accurately in women at maximal Valsalva, 

even though we can model it at rest. Therefore, although we know there is the significant 

difference in the paravaginal distance compared to women with normal support, we do 
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not know the relationship of the ATFP with the lateral vagina in these women. Even 

without knowing the position of the ATFP, the displacement described in our study 

clearly is what is clinically recognized in women as a paravaginal defect. One of the 

classic tests for diagnosing a paravaginal defect is to correct the presumed defect with 

support during Valsalva (using either a ring forceps, vaginal analyzer, or tongue 

depressor along the lateral vagina at the ischial spine to see if it reduces the prolapse, and 

if so, this is deemed a paravaginal defect). This “test” would also be minimizing the 

apical movement and may be reducing the cystocele for this reason. We propose that it is 

at least plausible that these are manifestations of the same phenomenon. 

The observation that apical and paravaginal distances are part of the same 

phenomena is in agreement with surgical results. For example, abdominal 

sacrocolpopexy eliminates cystocele in the vast majority of cases. Shippey et al. recently 

reported anatomic outcomes of sacrocolpopexy in women with and without paravaginal 

repair. Sixty-two patients had concomitant paravaginal repair while 108 subjects did not. 

Although the data trended towards higher anterior wall failure rates in the group without 

a paravaginal repair, the study was not powered to detect this difference. In addition, 

once they controlled for concomitant Burch, the presence/absence of a paravaginal repair 

did not seem as influential (Shippey et al. 2010). Although this may solely have been an 

inadequate power issue, it does raise the thought that perhaps restoration of the apical 

position in these women was adequate to restore normal anterior vaginal wall support. 

Although this “jibes” with why addressing apical support at the time of cystocele 

repair is crucial, it then begs the question as to why surgical approaches such as an 

anterior repair alone are successful for cystocele repair. In his discussion on the clinical 
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relevance of a paravaginal defect, Karram raises a similar question concerning anterior 

compartment recurrence rates of 5–15% which are independent of whether or not a 

paravaginal repair is performed (Karram 2004). Our study did reveal widening at one 

position in this area of exposed vagina, but it seems that this minor difference is not 

sufficient to explain why narrowing the vagina would correct the entire cystocele. A 

second area within this region (position 4) also appeared to trend towards having a 

significant (22%) widening, although was not statistically significant at this smaller 

sample size. Perhaps anterior colporrhaphy, by reducing the surface area of the exposed 

vagina, brings the anterior wall back into contact with the posterior vaginal wall, 

reducing the tension on the support ligaments. In a sample size of ten women with 

anterior wall predominant prolapse we cannot capture the full spectrum of defects: 

clinically we see women with good apical support and isolated anterior wall defects. 

Perhaps this latter population is the one that has a successful outcome with an isolated 

anterior repair. It is not possible to conclude this from our study; however, the present 

measurement technique allows quantification of the degree of defects present so that 

future outcome studies could determine which factors are correlated with treatment 

success or failure. 

So is there a midline defect? The widening visible in the mid to distal region of 

the vagina indicates a change from normal. It does not indicate whether this is the cause 

or effect of cystocele, nor whether it is a change in the material properties of the vaginal 

wall or the result of a break in the “anteroposterior separation of the fascia [that] occurs 

between the vagina and overlying bladder and/or urethra” as described by Richardson et 

al. (White 1909). The observed stretching may also be the result of the increased pressure 
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differential across the exposed portion of the vagina that no longer has the posterior 

vaginal wall to counteract increases in intra-abdominal pressure. This study cannot 

differentiate between stretching of the anterior vaginal wall and a break in the fascia (if 

these exist) because we are unable to visualize the presence of a break or separation of 

the fascia with the current MRI technology. Our results do indicate, however, that 

regardless of the underlying mechanism, this widening has a much smaller effect size 

than the paravaginal distances. 

Several factors must be considered when interpreting the results of this study. 

While we are able to identify large and significant changes in the location of the lateral 

vagina in women with prolapse and assess the relative size of the differences in 

paravaginal distance and vaginal width, our study sample size did not have the power to 

detect more subtle changes in vaginal width. These changes are of lesser magnitude as 

reflected in their small effect sizes and are not as great as the paravaginal distance 

changes. In addition, we recognize that a larger sample size and further studies are 

indicated to capture the full spectrum of different cystoceles. While mentioning this, it is 

important to recognize that we had to screen 21 cases to find ten adequate image sets in 

women with prolapse. Certainly, as imaging techniques improve, this ratio will also 

improve. As in our previous studies, supine MR images were obtained which may limit 

the descent of the pelvic floor, although earlier studies do not document differences when 

compared with images obtained in the seated position in open scanners (Bertschinger et 

al. 2002; Fielding et al. 1998). Clinicians do make the majority of their clinical decisions 

based on examinations performed in women who are supine, and we feel that with 

adequate Valsalva, the maximal extent of the prolapse can be achieved. The ability to 
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sustain Valsalva is difficult in some women and is a likely contributor to the large 

number excluded in the initial subject selection process. Because the sulci are difficult to 

differentiate on MR images, vaginal gel was used to illuminate the lateral extent of the 

vagina. Although it significantly improved visualization, this gel does result in some 

degree distortion of the vaginal shape by filling the vagina. We suspect this effect is 

minimal as the gel’s viscosity was such that Valsalva efforts seemed to result in 

expulsion of gel, rather than a redistribution which could distort the vaginal wall. 

So is it a midline or paravaginal defect? Our results indicate that there are changes 

in both regions of the vagina but show that the changes at the lateral vagina and the 

altered relationship with the pelvic sidewall are much larger than the widening of the 

mid-distal region of the vaginal wall. In addition, the strong correlation between the 

“paravaginal defect” and apical distance causes us to theorize that these may be 

manifestations of the same phenomenon. Which came first—the apical displacement or 

the pulling away from the pelvic sidewall? Although an answer is not possible with this 

study, the present method not only provides the means to explore this in the future, but 

also provides the ability to quantify paravaginal defects, apical descent and vaginal 

widening to aid in analyzing the outcomes of specific interventions and, ultimately, 

clinically impact treatment selection. 
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CHAPTER 6  

CHANGES IN LENGTH AND AXIS OF THE CARDINAL AND UTEROSACRAL 

LIGAMENTS IN WOMEN WITH AND WITHOUT PELVIC ORGAN 

PROLAPSE 

 

Abstract 

 

Introduction and Hypothesis:  We needed to develop a technique and strategy to test 

hypotheses concerning changes in the apical ligaments at rest and under maximal 

Valsalva. In this study we aimed to use subject-specific 3-D models based on MRI scans 

to test the hypotheses under physiological loading (maximal Valsalva) that a) the length 

of the ligaments at rest is no different between prolapse and normal women, and b) 

ligament elongation (length change from rest to Valsalva) for each ligament is greater in 

prolapse than normal women, and c) the change of length and angle of each ligament is 

not the same between women with and without prolapse. 

Methods: Ten women with (cases) and ten without (controls) pelvic organ prolapse were 

selected from an ongoing case-control study. Supine, multi-planar stress MR imaging 

was performed at rest and maximal Valsalva. Axial, sagittal, and coronal scans under 

both conditions were imported into an imaging software 3D Slicer v. 3.4.1 (Brigham and 

Women’s Hospital, Boston, MA) and aligned with bony anatomic landmarks. 3-D 
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reconstructions of the uterus and vagina, cardinal ligament, deep uterosacral ligament and 

pelvic bones were then created in 3D Slicer.  

Results: The mean age was 53.7 ± 4.5 (SD) for control group and 55.3 ± 8.1 years for 

prolapse group, and mean parity was 2.7 and 2.4, respectively.  The length change of 

cardinal ligament was 15 ± 9 mm and 30 ± 16 mm (p = 0.033) for healthy and prolapse 

group, respectively. The length change of uterosacral ligament was 7 ± 4 mm and 15 ± 12 

mm (p = 0.094) for healthy and prolapse group. During straining, the cardinal ligament 

was lengthened more in the prolapse group (101 ± 21 mm) than in the healthy group (73 

± 11 mm) with p = 0.003, while uteosacral ligament was lengthened to 50 ± 13 mm in 

prolapse group and 39 ± 6 mm in healthy group (p = 0.037). The angle with body axis of 

the cardinal ligament was 21 ± 6 deg in prolapse group and 30 ± 7 deg in the healthy 

group, while the angle with body axis of the uterosacral ligament was significantly 

smaller in the prolapse group (57 ± 16 deg) than in the healthy group (74 ± 18 deg), with 

p < 0.001 comparing the angle changing for CL vs USL. 

Conclusions: The length of both pairs of apical support ligaments at rest are no different 

between prolapse and normal women at rest; CL ligament elongation (length change from 

rest to Valsalva) was greater in prolapse than normal women, while USL was not (at this 

same sample size); CL exhibits greater differences in the ligament length, while USL 

exhibits larger differences in ligament inclination angle when comparing women with 

normal support and prolapse. 

Key words: pelvic organ prolapse, apical support, cardinal ligament, uterosacral 

ligament, 3D model 
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6.1 Introduction 

Pelvic floor dysfunction has resulted in 11% of women undergoing surgery 

(Olsen et al. 1997) during their lifespan in the USA. Over 200,000 operations are 

performed for prolapse (Boyles et al. 2003) each year and the annual estimated cost for 

these operations exceeds US $1 billion (Subak et al. 2001).    

The apical support provided by cardinal (CL) and uterosacral ligament (USL) is 

one of the main factors related to pelvic organ prolapse (Summers et al. 2006). However, 

the behaviour of CL and USL in living women with prolapse has not been studied.  

This study was therefore undertaken by conducting a secondary analysis of data 

from an on-going case-control study of pelvic organ prolapse. We built subject-specific 

3-D models of the CL and deep USL for each subject using MRI scans at rest and during 

Valsalva to establish ligament length in these conditions. We then tested the hypotheses 

that a) the length of the ligaments at rest is no different between prolapse and normal 

women at rest; b) ligament elongation (length change from rest to Valsalva) for each 

ligament is greater in prolapse than normal women; and c) the changes of length and 

angle of the ligaments are not the same. By quantifying how much each ligament 

lengthens, we can gain information about the degree of ligament shortening required to 

restore normal apical location and ligament prolapse dynamics. 

6.2 Materials and methods 

MRI scans of 10 women with pelvic organ prolapse (cases) and 10 with normal 

support (controls) were selected from an ongoing University of Michigan institutional 

review board-approved (IRB # 1999-0395) case-control study of pelvic organ prolapse.  
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Women in the control group were recruited by newspaper and radio advertisement for 

healthy volunteers and had to be asymptomatic and have normal vaginal support with all 

pelvic organ prolapse quantification (POP-Q) points < -1 cm. The prolapse group 

included five cystocele type anterior vaginal prolapse (AVP) subjects and five rectocele 

type posterior vaginal prolapse (PVP) predominant subjects. All cystocele cases had 

anterior vaginal wall (AVW) extending at least 1 cm below the hymen based on POP-Q. 

In order to be included, the cystocele had to be the predominant aspect of the prolapse 

and extend at least 1 cm lower than the most dependent part of posterior vaginal wall or 

the uterus/apex.  Similarly, all rectocele cases had posterior vaginal prolapse with 

posterior vaginal wall (PVW) extending at least 1 cm below the hymen based on POP-Q 

and had symptoms of bulging or protrusion. In order to be included, the rectocele had to 

be the predominant aspect of the prolapse and extend at least 1 cm lower than the most 

dependent part of anterior wall or the uterus/apex. Women with predominant enteroceles 

were excluded. None of the subjects had previously undergone hysterectomy or prior 

pelvic floor surgery.  Twenty scans of women with cystocele or rectocele were further 

evaluated for inclusion according to the following criteria: prolapse size consistent with 

clinical examination (POP-Q), ability to hold Valsalva for the entire 17 seconds of scan 

acquisition, freedom from significant motion artifact, inclusion of all necessary structures, 

evenly distributed intravaginal ultrasound gel and sufficient definition of vaginal walls to 

allow models to be made. Ten of 20 scans were selected based on above criteria.  

Similarly, the matched controls (who had an age difference within ± 3 years, number of 

vaginal deliveries within ± 1, and were of similar race) had to meet the above criteria 

with the exception of not having prolapse.  
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As described in our previous work (Larson et al. 2010; Larson et al. 2012; Luo et 

al. 2012), each subject underwent pelvic floor stress MRI. This involved obtaining supine 

multi-planar, two-dimensional, fast spin, proton density MR imaging both at rest and 

during maximal Valsalva using a 3 T superconducting magnet (Philips Medical Systems 

Inc, Bothell, WA) with version 2.5.1.0 software. At rest, each 30 images were serially 

obtained at the axial, sagittal, and coronal, with 20x20 cm fields of view, 4 mm slice 

thickness, and a 1 mm gap between slices. During maximal Valsalva, 14 images were 

obtained at the same three serial planes, with 36x36 cm fields of view, 6 mm slice 

thickness, and 1 mm gap. In order for the images to be considered adequate, they had to 

allow visualization of vaginal margins.  
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The axial, sagittal and coronal MR images were imported into imaging software 

3D Slicer 3.4.2009-10-15 (Brigham and Women’s Hospital, Boston, MA). The resting 

axial, sagittal and coronal MR images were manually aligned first with fixed landmarks 

such as pubic bone, hip joint, and sacrum. 3-D reconstructions of the uterus and vagina, 

CL, deep uterosacral ligament and pelvic bones were then created in 3D Slicer. The deep 

USL was identified (Umek et al. 2004) and traced on axial MR images with its origins 

from genital track and insertions to sacrospinous ligament-coccygeus muscle. The CL 

was identified (Tunn et al. 2001) and traced on coronal MR images with its origins from 

the pelvic side wall at the top of the greater sciatic foramen to its insertion on the genital 

tract centered on the cervix and upper vagina. Figure 6.1 illustrates the 3D models 

generated in three quarters view at rest with and without pelvic bone. The models were 

compared to the original MR images to check model fidelity. 

To analyze the deformation of CL and USL under load, 3-D models of mid-

sagittal pubic symphysis and sacrum were reconstructed using the MR images from 

A B

PS

Sa

Ut
CL USL

Vag

Ut

PB

Sa

USL

Figure 6.1 3D Model. (A) and (B), 3D models of pubic bone (PB), Sacrum (Sa), Uterus (Ut), 

Vagina (Vag), Cardinal ligaments(CL), and Uterosacral ligament (USL) in three quarters 

view. PS: Pubic symphysis. 
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maximal Valsalva (straining) and aligned with the pelvic bones of the resting images. 

This registration information was then applied to the soft tissue images making it possible 

to align the mid-sagittal straining images with resting images. The strain axial and 

coronal MR images were then manually aligned with the straining mid-sagittal images 

using bony landmarks as above. As described in our previous study (Chen et al. 2012), 

the models and anatomical landmarks were imported into Imageware v.13 (Siemens 

Product Lifecycle Management Software Inc, Plano, TX). The model and measurement 

strategy are shown in Figure 6.2 based on the model from MR scans under rest.  The 3-D 

lines-of-action of the four ligaments were determined by connecting center of the origin 

and insertion points (Figure 6.2A, B). To accurately measure the length and curvature of 

these ligaments, a cross-section was constructed for each ligament by cutting the model 

with a plane defined by its line-of-action and genital origin point of opposite side. The 

best fit curve of the ligament was constructed by connecting the center line of the cross-

section. The curve length of the ligaments was measured and distance between origins 

and insertions was assessed (Figure 6.2). The measurement for ligaments under maximal 

Valsalva was then executed following the same strategy.  
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Figure 6.2 Method of measurement. (A) Identification of origin-insertion line and best fit curve 

for the cardinal ligament in back view. Red dots are the landmarks identified for origins and 

insertions. Dark blue line connects the center of landmarks to establish the line-of-action. Red 

curve present the best fit curve of the ligaments on the cross-section showed as red dash on the 

top model and cyan line in the bottom. Length of the line-of-action is L. Length of the curve is Lc. 

(B) Identify uterosacral ligament line-of-action and best fit curve in axial plane. Ut: uterus; Cx: 

cervix; Vag: vagina; CL: cardinal ligament; USL: uterosacral ligament. (Modified from (Chen et 

al. 2012)) 

Descriptive statistical analysis and independent-samples T-test analysis were 

applied with a p value at significant levels of 0.05, 0.01 and 0.001. 
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6.3 Results 

The demographics and POP-Q data of the 20 subjects are shown in Table 6.1. 

None of the patients in case or control group has undergone hysterectomy. 

Table 6.1 Demographics 

Characteristics 
Cases (n=10) 

Controls (n=10) p value 
AVP (n=5) PVP (n=5) 

Age (yrs)a 53.2 (7.8) 57.4 (8.8) 53.7(4.5) 0.538 

BMI (kg/m2)a 24.7 (2.0) 29.7 (3.3) 26.5 (5.1) 0.181 

Paritya 2.6 (0.9) 2.2 (1.3) 2.7 (1.3) 0.745 

Raceb 

4 (80%) 5 (100%) 9 (90%) 

 

     Caucasian 

POP-Q (cm)a 
 

     Aa 1.4 (1.1) -1.0 (1.4) -1.9 (0.9) < 0.001 

  Ba 2.6 (1.5) -1.4 (0.9) -1.9 (0.9) < 0.001 

  C -0.8 (3.4) -5.5 (1.6) -7.0 (1.3) < 0.001 

  D -5.8 (2.6) -7.3 (1.3) -9.3 (1.2) 0.004 

  Ap -0.6 (1.7) 1.6 (0.5) -2.2 (0.4) < 0.001 

  Bp -0.6 (1.7) 1.8 (0.8) -2.2 (0.4) < 0.001 

  GHrest 5.3 (2.2) 4.4 (1.9) 3.0 (0.9) 0.031 

  LHrest 8.5 (2.1) 7.5 (1.7) 6.7 (1.3) 0.139 

  TVL 10.6 (1.1) 9.6 (1.1) 10.5 (1.1) 0.319 

GHrest, genital hiatus at rest; LHrest, levator hiatus at rest; TVL, total vaginal length 
a Data are mean (SD) 

   b Data are n (%) 

     

The lateral view of rest and strain models of one normal and one prolapse subjects 

were shown in Figure 6.3. The public symphysis (PS) to the ischial spines (yellow 

squares), or the P-IS line (Luo et al. 2012; Larson et al. 2012), was also shown for spatial 

reference. 
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Figure 6.3 Normal and prolapse ligaments comparison under resting and maximal Valsalva. (A) 

and (B) are left side view of 3D models of one normal subject under resting (A) and maximal 

Valsalva (B) with their relationship to the normalized arcus tendineus fascia pelvis (ATFP), 

shown here as the turquoise lines extending from the public symphysis (PS) to the ischial spines 

(yellow squares), or the P-IS line, for spatial reference. (C) and (D) are left side view of 3D 

models of one prolapse subject under resting (C) and maximal Valsalva (D). Pubic symphysis (PS) 

and sacrum (Sa) are shown in middle sagittal plane. Ut: uterus; Cx: cervix; Vag: vagina; CL: 

cardinal ligament; USL: uterosacral ligament. 
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Figure 6.4 reveals that the resting length of ligaments did not differ in women 

with and without prolapse (CL, p = 0.051; USL, p = 0.797). The straining length of 

cardinal and uterosacral ligaments differed significantly in women with and without 

prolapse (CL, p = 0.003; USL, p = 0.037). Cardinal ligament during straining was longer 

than that in resting in both healthy (p = 0.005) and prolapse (p = 0.003) groups. The 

cardinal ligament lengthened from resting to strain for women with (30 ± 16 mm) and 

without (15 ± 9 mm) prolapse (p = 0.033). Uterosacral ligament did not. In addition, at 

rest and during straining, the cardinal ligament was substantially longer than the 

uterosacral ligament in all comparisons (p < 0.001).  

By looking at the ligaments between rest and strain in Figure 6.3, it appeared that 

the uterosacral ligament rotated around its origin from the sacrum. We therefore 

quantified ligament axis relative to body axis from rest to strain, and found that the angle 

change for the uterosacral ligament (normal -23º  ± 17, prolapse -32º  ± 18) were greater 

than that for the cardinal ligament (normal -7º ± 10,prolapse -6º ± 5) as shown in Figure 

6.5. From resting to straining, both ligaments angles significantly differed in all 

comparisons (CL, p = 0.037 for normal and p = 0.036 for prolapse; USL, p = 0.003 for 

normal and p < 0.001 for prolapse). In addition at resting and straining, angle of cardinal 

ligament is smaller than uterosacral ligament in all comparisons (p < 0.001). 
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Figure 6.4 Ligament curve length comparison. Relationships between cardinal and uterosacral 

ligament curved lengths at rest and strain in women with normal support and prolapse. Statistical 

significant differences for rest versus strain comparisons, and ligament changes difference for 

normal versus prolapse comparisons are both marked (*, p < 0.05; **, p < 0.01). Other 

comparisons are discussed in the text. 



 92 

 

 

Figure 6.5 Angle with body axis comparison. Relationships between cardinal and uterosacral 

ligament angles with body axis at rest and strain in women with normal support and prolapse. 

Statistical significant differences for rest versus strain comparisons, and ligament changes 

difference for normal versus prolapse comparisons are both marked (*, p < 0.05; **, p < 0.01; 

***, p < 0.001). Other comparisons are discussed in the text. 

The measurement results were summarized in Table 6.2. 
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Table 6.2 Ligaments Measurement 

 

Lr: line length under rest; Lv: line length under strain; ΔL: line length change;   

LCr:curve length; LCv: curve length under strain;  ΔLC: curve length change;   

β is the angle from the ligament to body axis 

 

Figure 6.6 and Figure 6.7 show comparisons between anterior and posterior 

vaginal prolapse groups. The difference of curve length and angle of cardinal and 

uterosacral ligaments between women with AVP and PVP was not all significantly 

different. Only a few comparisons were found significantly difference at the 0.05 level. 

Cardinal was longer from resting to straining for AVP (p = 0.024). Length change of 

uterosacral ligament differed between AVP and PVP (p = 0.044). Resting uterosacral was 

significantly longer for PVP than AVP (p = 0.046). 

Normal

Mean ± SD

(mm)

Prolapse

Mean ± SD

(mm)

p-value

Normal

Mean ± SD 

(mm)

Prolapse

Mean ± SD 

(mm)

p-value

CL_Lr 50 ± 8 65 ± 15 0.013 USL_Lr 33 ± 9 35 ± 14 0.754

CL_Lv 59 ± 11 93 ± 24 0.001 USL_Lv 35 ± 5 45 ± 13 0.028

CL_ΔL 10 ± 10 29 ± 17 0.008 USL_ΔL 6 ± 3 13 ± 11 0.118

CL_LCr 59 ± 9 71 ± 16 0.051 USL_LCr 36 ± 11 38 ± 16 0.797

CL_LCv 73 ± 11 101 ± 21 0.003 USL_LCv 39 ± 6 50 ± 13 0.037

CL_ΔLC 15 ± 9 30 ± 16 0.033 USL_ΔLC 7 ± 4 15 ± 12 0.094

CL_βr (deg) 37 ± 7 27 ± 6 0.003 USL_βr 97 ± 10 88 ± 7 0.039

CL_βv (deg) 30 ± 7 21 ± 6 0.007 USL_βv 74 ± 18 57 ± 16 0.044

CL_Δβ (deg) -7 ± 10 -6 ± 5 0.849 USL_Δβ -23 ± 17 -32 ± 18 0.298

Straight 

Length

Curve 

Length

Angle

Cardinal Ligament Uterosacral Ligament
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Figure 6.6 Ligament curve length comparison between AVP and PVP. Relationships between 

cardinal and uterosacral ligament curved lengths at rest and strain in women with AVP and PVP. 

Statistical significant differences for rest versus strain comparisons, and ligament changes 

difference for AVP versus PVP comparisons are both marked (*, p < 0.05). Other comparisons 

are discussed in the text. 



 95 

 

 

Figure 6.7 Angle with body axis comparison between AVP and PVP. Relationships between 

cardinal and uterosacral ligament angles with body axis at rest and strain in women with AVP and 

PVP prolapse. Statistical significant differences for rest versus strain comparisons, and ligament 

changes difference for normal versus prolapse comparisons are both marked (*, p < 0.05; **, p < 

0.01). Other comparisons are discussed in the text. 

6.4 Discussion 

In these subject-specific 3-D Stress MR-based models studying CL and deep USL, 

we have detected that the length and angle of ligaments differed from resting to straining 

and changed between normal and prolapse subjects. We partially accept the hypotheses 

that a) the length of ligaments at rest is no different between prolapse and normal women 

at rest; b) CL ligament elongation (length change from rest to Valsalva) for each ligament 

is greater in prolapse than normal women, while this is not the case for USL; c) CL has 

greater changes in the ligament length, while USL has more changes in ligament angle.  



 96 

 

Significant difference was detected at the change of best fit curve of cardinal 

ligament (p =0.003) and uterosacral ligament (p = 0.037) under maximal Valsalva 

between case and control groups. Previous research (Larson et al. 2010; Luo et al. 2012) 

showed the downward translation of the upper part of vagina is one of the main 

characteristics of both cystocele and rectocele. In addition, the cardinal ligament is 

relatively vertical in the standing position while the deep uterosacral ligament is more 

likely dorsally directed (Chen et al. 2012), as we presented in the result section.  The 

direction of descent is influenced by the presence of the levator plate. These findings 

might help to explain that cardinal ligament has larger tension than uterosacral ligament 

when the apex is loaded with arbitrary force, and thus change of cardinal ligament with 

prolapse is greater than that of uterosacral ligament. But the angle change of uterosacral 

ligament with prolapse is larger than that of the cardinal ligament. 

The CL and USL are not like skeletal ligaments that consist of homogenous 

tissues. They are visceral ligaments and are most like a mesentery, comprised of varying 

combinations of blood vessels, nerves, smooth muscle and areolar tissue (Campbell 1950; 

Range and Woodburne 1964; Cole et al. 2006; Ramanah et al. 2012). The CL and USL 

support both the cervix and have distinct differences in composition (Campbell 1950; 

Range and Woodburne 1964). In addition, they have different lines of action (Chen et al. 

2012) with the cardinal being relatively vertical in the standing posture and the 

uterosacral more dorsally directed. It has been possible to study these in cadavers but 

understanding how they change in living women has only now become possible through 

their identification in MRI (Tunn et al. 2001; Umek et al. 2004). The degree to which 

each ligament lengthens can help determine the nature and direction of apical support 
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loss. Clinically it is known that different directions of apical support can result in 

different types of operative failure. In a study by Maher (Maher et al. 2004) sacrospinous 

colpopexy was associated with a higher rate of cystocele postoperatively (14%) than 

abdominal sacral colpopexy (7%) but the reverse was true for rectocele which was less 

frequent in the sacrospinous group (7%) than the abdominal group (17%). This is due to 

the more dorsal location of the sacrospinous suspension putting the anterior wall at risk 

and the more vertical sacral colpopexy putting the posterior wall at risk. Knowing how 

much each ligament changes under load in women with prolapse compared to normal 

support would help understanding the problems above. 

Surgeons use the apical ligaments in repair, shortening the cardinal ligaments and 

using the uterosacral ligaments to re-suspension the vagina as strategies to elevate the 

vaginal apex (Lee and Hagen 1992; Shull et al. 2000). Our study developed data 

concerning how much each ligament has lengthened and the amount of elevation needed 

to return to normal. This could help developing scientific strategies for surgical 

improvement.  

This study has several limitations. First, our study was based on a small sample of 

women with distal posterior and anterior predominant prolapse versus women with 

normal support. We specifically selected women with predominant rectoceles and 

cystoceles in order to have a more homogeneous sample. Some of the differences we 

found that did not reach statistical significance may do so with larger samples. This 

article provides estimates of these differences that form the basis for future power 

calculations. It would be worth studying women who have uterine prolapse in association 

with cystocele or rectocele to gain an understanding of more complicated prolapse. 
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Second, the MR images were obtained in the supine position and not during defecation. 

There might be small change of ligaments length and angles in the standing position. 

However, these studies are similar to supine pelvic examination with Valsalva that has 

been used by clinicians to examine the prolapse and perform a POP-Q examination 

(except for somewhat less thigh abduction).   

This study is a first step to create a technique and analyze the cardinal and 

uterosacral ligaments changes from resting to max Valsalva, with and without pelvic 

organ prolapse. It can compare the ligament length and angle for CL and USL, under 

resting and straining, with normal support and prolapse. To enhance the level of precision, 

Future study should be based on a larger sample size and more complex prolapse.  
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CHAPTER 7  

MEASUREMENT OF THE 3D GEOMETRY OF THE FASCIAL ARCHES IN 

WOMEN WITH A UNILATERAL LEVATOR DEFECT AND 

"ARCHITECTURAL DISTORTION" 

 

Abstract 

 

Introduction and Hypothesis: The arcus tendineus fascia pelvis (ATFP) and arcus 

tendineus levator ani (ATLA) are elements of anterior vaginal support. This study 

describes their geometry in women with unilateral levator ani muscle defects and 

associated “architectural distortion.” 

Methods: Fourteen subjects with unilateral defects underwent MRI. 3D models of the 

arcus were generated. The locations of these relative to an ilial reference line were 

compared between the unaffected and affected sides. 

Results: Pronounced changes occurred on the defect sides’ ventral region. The furthest 

point of the ATLA lays up to a mean of 10 mm (p = 0.01) more inferior and 6.5 mm 

(p = 0.02) more medial than that on the intact side. Similarly, the ATFP lays 6 mm 

(p = 0.01) more inferior than on the unaffected side. 

Conclusions: The ventral arcus anatomy is significantly altered in the presence of levator 

defects and architectural distortion. Alterations of these key fixation points will change 
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the supportive force direction along the lateral anterior vaginal wall, increasing the risk 

for anterior vaginal wall prolapse. 

Key words:  Pelvic organ prolapse, Cystocele, Paravaginal defect, Arcus tendineus fascia 

pelvis, Arcus tendineus levator ani, Levator ani muscle 

 

7.1 Introduction 

Some 11% of US women require surgical repair for their pelvic floor dysfunction, 

and this number will likely increase as the population ages (Olsen et al. 1997; He et al. 

2005; Jelovsek et al. 2007). The anterior vaginal wall is both the most common site of 

pelvic organ prolapse (Olsen et al. 1997) and the most frequent site of operative failure 

(Benson et al. 1996; Shull et al. 2000; J. K. Nguyen 2001; C. F. Maher et al. 2001; C. 

Maher and Baessler 2006; J. N. Nguyen and Burchette 2008). An improved 

understanding of the pathomechanics of anterior vaginal wall support is needed to 

understand the causes of anterior wall prolapse and operative failure. 

Magnetic resonance imaging (MRI) resolution has improved to the point that it is 

possible to examine the geometry of the individual structures and combinations of 

structures involved in anterior vaginal wall support. For example, a pattern of soft tissue 

abnormality termed “architectural distortion,” or AD, was recently described in which the 

lateral vaginal wall is seen to extend beyond its normal location, appearing to contact the 

obturator internus muscle (Huebner et al. 2008). Women with AD are more likely (78%) 

to have anterior wall prolapse than both women with levator defects but no AD (61%) as 

well as those with normal levators and no AD (31%) (Huebner et al. 2008). This 

distortion occurs in a structurally important region of anterior vaginal wall support at the 
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interconnection between three key support structures: (1) the arcus tendineus fascia pelvis 

or fascial arch, (2) the arcus tendineus levator ani or levator arch, and (3) the pubic 

portion of the levator ani muscle (Figure 7.1). We have observed the dislocation of these 

two arches in women with architectural distortion (Huebner et al. 2008). 

 
Figure 7.1 Right pelvic sidewall. View looking down into space of Retzius from above towards 

the right pelvic sidewall. PS pubic symphysis, IS ischial spine 
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The lack of a reliable method has hitherto precluded making measurements to test 

hypotheses concerning the status of these arches. This paper describes a technique using 

3D models to establish fascial and levator arch locations and to compare each structure’s 

location relative to a reference line in a unique group of women. Each of these women 

had a unilateral levator defect and architectural distortion on one side but with intact 

anatomy on the contralateral side. This offers a unique opportunity to compare normal 

and distorted pelvic sidewall anatomy in the same individual. The study goal was 

therefore to compare normal and distorted pelvic sidewall anatomy in women with 

unilateral defects in order to better understand why this population is more predisposed to 

anterior wall prolapse. 

7.2 Materials and methods 

MRI scans from 14 women with unilateral levator defects and architectural 

distortion were selected from the University of Michigan institutional review board-

approved (#1999-0395, #2002-0636, #1995-0477) case–control studies of pelvic organ 

prolapse and urinary incontinence. All 14 subjects had unilateral levator defects that were 

classified as “major defects” on MR imaging, meaning that more than half of the levator 

ani muscle was involved (Kearney et al. 2006) (Figure 7.2a). Architectural distortion was 

deemed present using earlier published criteria by Huebner, “lateral or posterior spill of 

the vagina from its normal position and posterior extension of the space of Retzius 

beyond the superior lateral sulcus of the vagina until it comes in contact with the superior 

surface of the iliococcygeal portion of the levator ani muscle”(Huebner et al. 2008) 

(Figure 7.2b). 
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Figure 7.2 Axial MR image of pelvis. a Unilateral levator defect (red arrow). b Unilateral levator 

defect and architectural distortion (red arrow). c Levator arch (LA) at the ventral insertion of the 

levator muscle and fascial arch (FA) at the lateral end of pubovisceral muscle labeled on non-

defect side. d Red arrow indicates the position of the placement of levator arch with bulkier 

portion of levator ani muscle converging with the obturator internus muscle. 

U urethra, V vagina, R rectum, OI obturator internus 
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All 14 subjects underwent MR imaging of the pelvis in the supine position at rest. 

MR imaging was performed on either a 1.5-T superconducting magnet (Signa; General 

Electric Medical Systems, Milwaukee, WI, USA) or a 3-T Philips Achieva scanner 

(Philips Medical Systems, Best, The Netherlands) with a six-channel, phased-array coil 

being available after 2006. The visibility of the structures was not altered by this 

transition. Ultrasound gel was placed in the vagina in later scans to better outline its 

contour. For these standard anatomical scans made at rest, turbo spin echo techniques 

were used to image the sagittal, coronal, and axial planes. At rest, 30 images were 

obtained in each plane (repetition time range 2,300–3,000 ms, echo time 30 ms, 4 mm 

slice thickness, 1-mm gap, number of signal averages 2,256 × 255 voxels). 

The original axial, sagittal, and coronal Digital Imaging and Communications in 

Medicine static images were imported into the 3D Slicer® software program (version 

2.1b1, Brigham and Women’s Hospital, Boston, MA, USA) and aligned, ensuring that 

structures co-localized in all three axes by a simultaneous review of 3D scan planes in the 

viewer. The 3D models were made of the pelvic bones, fascial, and levator arches on 

axial images by tracing their outlines (pelvic bones) or placing points on structure 

locations (arches) (Figure 7.3). 

The actual fascial and levator arches are too small to be seen with standard MR 

techniques. However, their location can be determined by the anatomical fact that they 

occur at the intersections of visible structures, thereby allowing their position to be 

marked in individual images. Ventrally, near the pubic symphysis, the levator arch was 

identified either on the medial aspect of the convergence of the levator ani and obturator 

internus muscles or at the ventral insertion of the levator muscle when this was not 
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present (Figure 7.2c). At the dorsal location near the ischial spine, where the levator 

muscle is often “split,” the levator arch was identified along with the bulkier portion 

(Figure 7.2d). The most dorsal aspect of the levator arch approached the ischial spine 

cranial to where the obturator internus wraps around the spine and in the plane where the 

sacrospinous ligament attachment is visible. 

 

Figure 7.3 Building 3D model. a Axial image showing fascial arch (FA) and levator arch (LA). 

3D models made from MRI showing arches with (b) and without (c) adjacent structures. P-IS 

reference line as X-axis in local pelvic sidewall coordinate system visible in c on defect 

side. LAm levator ani, OI obturator internus, PS pubic symphysis, R rectum, U urethra, V vagina 

The fascial arch is identified ventrally at the lateral aspect of the pubovesical 

muscle based on previous anatomical and MRI observations (Delancey 1989; Chou and 

DeLancey 2001) (Figure 7.2c). In the more dorsal region, it is no longer identified as a 

separate structure but fuses to become one with the dorsal portion of the levator arch, also 

known as the conjoined arch. For the remainder of this paper, this conjoined arch will 

still be referred to as the levator arch. The 3D–MR coordinates of each point along the 

arches were recorded using fiducial markers within the Slicer® software program. Figure 

7.3c illustrates the relationship of these models to the obturator internus, levator ani, 

bladder, vagina, and rectum. 

To analyze the location of these structures both within a single subject comparing 

the normal and abnormal anatomic sides of the pelvis and between subjects, the 
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coordinates of our models were then translated or reassigned within local pelvic sidewall 

systems. In order to create this local system, 3D–MRI coordinates of the fascial arch 

insertion into the pubic symphysis and location of the ischial spine were identified to 

generate a reference line, the pubis to ischial spine or P-IS line (Figure 7.3c). This line 

became the X-axis of a new pelvic sidewall coordinate system. It was then divided into 

ten equal deciles in each subject to normalize the distance along the reference line. Using 

a best-fit curve technique, the fascial and levator arches were re-sampled at each decile 

along X-axis for comparison. The X, Y, and Z values for the levator and fascial arches 

were then recorded in this new system for comparison. 

Blinded inter-rater reliability testing was performed on point placement with the 

senior and first author and found to have Pearson correlation coefficients ranging from 

0.92 to 0.99 depending upon which arch and which axis were compared. In addition, the 

mean differences between raters indicated no systematic rater bias. Statistical analyses 

were performed using paired t tests to compare distances above and lateral to the 

reference line at each decile in normal (non-defect side) and abnormal (defect side) 

anatomy. 

7.3 Results 

The mean age of the 14 study participants was 47 ± 12 (SD) years, median parity 

two, and mean body mass index 25.6 ± 4.2 kg/m2. All subjects were Caucasian and only 

one had undergone hysterectomy. None had prior surgery for pelvic organ prolapse. Six 

(43%) subjects had prolapse defined as at least one Pelvic Organ Prolapse Quantification 

system point at least 1 cm beyond the hymenal ring on clinical examination. The 

predominant prolapse was located in the anterior compartment in four individuals, the 
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apical compartment in one individual, and equally in the anterior and posterior 

compartment in the final individual. All subjects had major, unilateral defects and 

architectural distortion as defined in the “Materials and methods” section. Right-sided 

defects predominated (79% vs. 21%; Table 7.1). 

Table 7.1 Study participants’ characteristics 

 

                                          a Mean ± standard deviation or n (%) 

 

The most pronounced differences in arch location when comparing normal with 

architectural distortion sidewalls occurred in the ventral region in the craniocaudal 

direction. Figure 7.4 depicts the craniocaudal relationships of the fascial and levator 

arches relative to the P-IS line, showing their locations at each decile. The X-axis is 

oriented along the P-IS line where “0” depicts the pubic insertion and “100” is the ischial 

spine. 

Significant differences in location occurred at 10, 20, and 30 percentile for the 

fascial arch (p = 0.03, 0.001, and 0.012, respectively) and 30, 40, and 50 percentile for the 

levator arch (p = 0.008, 0.002, and 0.046, respectively). The most statistically significant 

differences for both arches occurred at the 30 percentile position. At this point, the fascial 

arch on the defect side was located 6 mm inferior to its position on the normal side (i.e., 4 

Characteristics Study population (n  = 14)

Age (years)
a 47 ± 12

BMI (kg/m
2
)

a 25.6 ± 4.2

Median parity 2

Race
a

  Caucasian 14 (100%)

Hysterectomy
a 1 (7%)

Levator defects
a

  Right side 11 (79%)

  Left side 3 (21%)
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mm below vs. 1.8 mm above, p = 0.01), while the levator arch was located more than 1 

cm inferior to its normal position (i.e., 6.8 mm inferior to the P-IS line for the defect side 

and 3.4 mm superior to the P-IS line on the intact side). 

 
Figure 7.4 Craniocaudal position relative to P-IS line. View of Y-axis looking at pelvic sidewall. 

“0” is pubic end and “100” is at ischial spine. Asterisks reveal statistically significant differences 

between normal and abnormal sides. 

 

Figure 7.5 depicts the mediolateral relationships of the arches relative to the P-IS 

line. Again, the most pronounced changes occurred in the ventral region. The ventral 

levator arch was more medially located on the defect side most significantly at the third 

decile (2 mm vs. 8.5 mm lateral to P-IS line at 30 percentile, p = 0.02). For the fascial 

arch, there was no difference in the mediolateral location when comparing intact and 

defect sides in both the fascial arch moved from medial to lateral as it fused with the 

levator arch. 
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Figure 7.5 Mediolateral position relative to P-IS Line. View of Z-axis looking into pelvis from 

above. “0” is pubic end and “100” is at ischial spine. Asterisks reveal statistically significant 

differences between normal and abnormal sides. 

 

7.4 Comment 

This study describes the development of a novel 3D geometric approach for 

comparing of the anatomy of the fascial arches on the pelvic sidewall in the presence or 

absence of levator defects and architectural distortion. It also reports early observations 

using this technique. The method allows the location of the fascial and levator arches to 

be determined so that specific structural hypotheses can be tested in living women with 

known characteristics (i.e., architectural distortion). Using this measurement technique, 

we have found that fascial and levator arch anatomy is significantly altered in the 

presence of levator defects and architectural distortion. The levator arch lies 10.2 mm 

more caudally and 6.5 mm more medially and does not come as close to the pubis along 

pelvic sidewalls on the side where a levator defect is present. In the upright posture, it 

could be said to have “fallen” downward and medially from its usual location. Similarly, 

-4.00

0.00

4.00

8.00

12.00

0 10 20 30 40 50 60 70 80 90 100

m
m

Decile along P-IS Line

Mediolateral Position Relative to P-IS Line

ATFP Defect

ATFP Non-Defect

ATLA Defect

ATLA Non-Defect

x

z
**



 112 

 

the fascial arch extends more caudally as well on the defect side. These changes are most 

pronounced in the ventral region near the symphysis. 

The fascial and levator arches form part of a larger structural complex involved in 

anterior vaginal wall support that we refer to as the “paravaginal complex.” It consists of 

the two arches, the fascial connections between the vaginal wall and the arches, and the 

pubovisceral portion of the levator ani muscle. Together these structures provide support 

to the mid and distal anterior vaginal wall. Richardson was the first to call attention to the 

abnormalities between the lateral vaginal margin and the arcus tendineus in this region, 

noting the detachment of the anterior vaginal wall’s pubocervical fascia from the arcus 

tendineus fascia pelvis in women with cystourethrocele (Richardson et al. 1976; 

Richardson et al. 1981). Later, muscle defects in this area were seen intraoperatively in 

approximately half of women with paravaginal defects, and these have later been 

objectively confirmed on MRI images (DeLancey 2002). The blinded comparison of 

normal and abnormal anatomy is not possible in the operating room; so, an assessment of 

these hypotheses has awaited the advent of modern imaging techniques. 

Alterations in these key fixation points will change the supportive force vectors 

along the anterior vaginal wall. With levator defects, the levator arch and levator ani fall 

inferior to the fascial arch, thereby not being able to provide upward support in response 

to increased intra-abdominal pressure. In addition, this distal support loss changes the 

distribution of stress along the length of the vaginal wall and increases the load on intact 

proximal structures. This then begs the question as to why only 43% of the subjects in 

this particular study have prolapse even though they all have a unilateral levator defect 

and distortion. Perhaps the other 57% have compensated with other intact support 



 113 

 

structures, suggesting that maybe Knudson’s “two-hit hypothesis” applies in pelvic organ 

prolapse as well as cancer (Knudson 1971). Our prior studies included a high percentage 

of women with bilateral defects that may not have been able to compensate (Huebner et 

al. 2008). 

Our findings support anatomical descriptions in the literature that note two arches 

which fuse to a single arch in the ventral region of the pelvis. Ocelli and Albright both 

visualized these features in cadaver dissections (Occelli et al. 2001; Albright et al. 2005). 

Albright divides the fascial arch into three regions with the levator arch joining the fascial 

arch in the proximal portion of the middle region, a little more dorsal than our findings; 

he also references an arcus tendineus rectovaginalis that is not included in our 

observations (Albright et al. 2005). Pit observed the levator and fascial arches merging in 

only four out of ten of their cadaver dissections; in the remaining six, it appeared to fuse 

with the ischial spine more laterally than the fascial arch (Pit et al. 2003). This 

discrepancy may be due to the distortion of these fine structures during the embalming 

process. 

Findings from the present study extend the current observations of normal 

paravaginal anatomy in the literature by defining the normal locations and providing a 

more detailed picture of the interactions occurring between two important elements of the 

paravaginal complex and their distortion due to levator defects. It also introduces a 

quantitative system where the measurements of location can objectively be recorded to 

compare measurements in normal and abnormal anatomy. Most of the literature is based 

upon cadaver studies in which patient status is rarely known in regard to normal or 

abnormal levator muscles nor was there any emphasis on the locations of these structures 
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relative to an anatomic reference system. Huddleston did publish an MRI study 

examining what was labeled as paravaginal defects and describes three characteristic 

findings in 12 patients with cystourethroceles: upper defects causing the chevron sign, 

middle defects causing saddlebag sign, and a lower defect causing the mustache sign 

(Huddleston et al. 1995). A review of the images in this article, given more recent 

insights, indicates that these are patients with levator ani muscle defects. 

Several factors must be considered when interpreting the results of this study. 

This study includes a modest number of unique subjects with unilateral defects, thus 

introducing the possibility that we are not capturing all the nuances of these unilateral 

defects. A strength of the study is that normal and abnormal anatomy can be compared 

within the same individual. In doing so, we make the assumption that the changes 

observed on the defect side do not influence arch geometry of the intact side. This seems 

reasonable because the anatomy on the unaffected side seems normal, and because if such 

changes were present, they would be expected to diminish the side-to-side differences, 

not exaggerate them. Although the normality of the side without architectural distortion 

was established by experienced examiners, it is possible that there may be subtle changes 

in this side when compared to individuals with no architectural distortion. This is under 

investigation at present. The modest sample size means that it is possible that some of the 

relationships that currently did not reach statistical significance in the ventral regions 

would do so in a larger sample. Another limitation is that a continuous structure was 

modeled using discrete points from serial MR images, then requiring a best fit curve to 

recreate this structure and possibly introducing error. We attempted to minimize this error 

by utilizing the best fit curve approach, incorporating our known 3D coordinates into our 
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final curve. In addition, we inspected the resulting lines and confirmed their fidelity using 

the original model. Finally, structures near the ischial spine are difficult to identify on the 

MR scans; however, our data appear reproducible given inter-rater reliability correlation 

coefficients between 0.92 and 0.99. 

We also acknowledge that this is a somewhat uniform population (all Caucasian) 

and that this may limit the generalizability of our results. Further studies that compare the 

findings in these unilateral defects with those seen in women with bilateral defects are 

also needed, but our experience in looking at these defects suggests that these studies will 

be confirmatory. Finally, acquiring high-resolution MRI images with sufficient detail for 

the present analysis can currently only be carried out in the supine position. It would be 

ideal to have images in the upright posture or during straining, but images of sufficient 

quality for such an analysis are not at present available. 

The present technique to create and quantify 3D models of the fascial and levator 

arches in the presence of unilateral levator defects and architectural distortion greatly 

enhances our ability to study anatomic alterations affecting mechanisms of pelvic floor 

prolapse. Our results suggest alterations in the anatomy within the paravaginal complex 

that may contribute to the increased rates of prolapse that we see among this population. 

Not only do our efforts bring us closer to understanding the normal locations of 

paravaginal structures, they also provide data to more accurately refine our 

biomechanical model of the pelvis to better understand the complex interactions between 

these structures and their roles in prolapse. In addition, now that we have a technique to 

establish the presence of architectural distortion and the geometric location of specific 
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structures, it will be possible in the future to conduct studies to compare the treatment 

outcomes of women with and without architectural distortion. 
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CHAPTER 8  

EFFECT OF INTERACTIONS BETWEEN APICAL, ANTERIOR AND 

POSTERIOR SUPPORT IMPAIRMENTS ON THE RELATIVE SIZE OF 

CYSTOCELE AND RECTOCELE: A DYNAMIC ANATOMICALLY-BASED 2-D 

FINITE ELEMENT MODEL 

 

Abstract 

 

Introduction and Hypothesis: Describe a novel simplified anatomically-based finite 

element (FE) model with both anterior vaginal wall (AVW) and posterior vaginal wall 

(PVW) and their support system, and test the hypothesis that the size of anterior vaginal 

prolapse (AVP) and posterior vaginal prolapse (PVP) are only dependent on the anterior 

and posterior support with no interaction. 

Methods: A simplified 2-dimensional FE model was created based on the mid-sagittal 

MR image of a 45 year-old multiparous healthy woman with average pelvic floor 

dimensions. The FE model included AVW, PVW, pubovisceral muscle (PVM), levator 

plate, cardinal and uterosacral ligaments (CL, USL), paravaginal anterior vaginal support 

(AVS), perineal membrane (PM), perineal body (PeB), and anal sphincter (AS). The 

changes of both AVW and PVW during a Valsalva were then simulated under different 

combinations of muscular and connective tissue impairments, and different intra-

abdominal pressures (IAP). 



 120 

 

Results: The development of rectocele and cystocele was sensitive to the levator and 

apical impairment, IAP, anterior and posterior support impairment. Type of prolapse was 

strongly related to the type of anterior or posterior support impairment. Increasing levator 

and apical impairment, and IAP resulted in a larger pelvic organ prolapse. 

Conclusions: The size of AVP and PVP are not only dependent on anterior, posterior or 

apical support impairment, but also reliant on the interaction between different 

combinations of impairments, as well as organ competition. 

Key words:  pelvic organ prolapse, cystocele, rectocele, 2D, finite element model, 

dynamic 

 

8.1 Introduction 

Over 200,000 operations are performed each year for pelvic organ prolapse 

(Boyles et al. 2003) with repair of posterior vaginal prolapse (PVP) included in 87% 

(Silva et al. 2006). Studies of structural deformations seen in women with anterior 

vaginal prolapse (AVP, cystocele) have received considerable attention (Hsu et al. 2008a; 

Larson et al. 2010a; Larson et al. 2012a). To investigate the interaction between muscular 

and connective tissue support on AVP, computer models (Chen et al. 2006; Chen et al. 

2009) were created to simulate the development of AVP under effect of combination of 

levator and apical supports. But a knowledge gap remains as to how and why a PVP 

(rectocele) forms. Although there are MR image-based PVP studies (Lewicky-Gaupp et 

al. 2010; Luo et al. 2012) that analyzed the structural deformation and characteristics, till 

today to our knowledge, there is no model for studying the interaction between muscular 

and connective tissue support on PVP. 
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There are nearly twice as many procedures required for prolapse compared to that 

required for correction of SUI (Boyles et al. 2003, 2004).  Fortunately, surgical 

management of SUI is successful with objective failures under 10% (Meschia et al. 2006), 

while prolapse recurrence is much higher (Olsen et al. 1997; Blanchard et al. 2006). 

Meanwhile, for some patients only with AVP and without PVP before surgeries, PVP 

happens after the patients’ AVP get repaired (Withagen et al. 2012; Milani et al. 2012). 

Same things can also be true for AVP happening after surgeries to patients with PVP and 

without AVP before surgeries (Withagen et al. 2012; Milani et al. 2012). As described 

above, there are computer models of cystocele (Chen et al. 2006; Chen et al. 2009) 

dealing with interaction with muscular and apical support, but we still lack of information 

on how AVP interacts with PVP. Interaction between AVP and PVP needs to be clarified 

to help with prevention and treatment improvement.  

Therefore, in this study, we aim to describe a novel simplified anatomically-based 

finite element (FE) model with both anterior vaginal wall (AVW) and posterior vaginal 

wall (PVW) and their support system, and to test the hypotheses that 1) the size of AVP 

and PVP are only dependent on the anterior and posterior support impairment, and 

levator and apical support system, and 2) the anterior and posterior prolapses do not 

interact with each other. 

8.2 Materials and Methods 

8.2.1 Geographic Model and Finite Element Mesh 

The simulation model was created based on a 45 year-old multiparous healthy 

woman, who was selected from an ongoing University of Michigan Institutional Review 

Board-approved (IRB # 1999–0395) case-control study of pelvic organ prolapse. In our 
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vaginal dimension analysis of 84 normal subjects in Chapter 2, this subject’s vaginal 

dimension (AVW: 59 mm; PVW: 98 mm; Cervix: 38mm) represented an average 

dimension. In mid-sagittal plane, for the 84 subjects, the AVW curved length was 62 ± 10 

mm, and the PVW curved length was 97 ± 18 mm, and the cervix curved length was 39 ± 

10 mm. 

As described in our previous work (Luo et al. 2012), the subject in this study 

underwent supine multiplanar, two-dimensional, fast spin, proton density MR imaging 

both at rest and during maximal Valsalva using a 3 T superconducting magnet (Philips 

Medical Systems Inc., Bothell, WA, USA) with version 2.5.1.0 software. At rest, each 30 

images were serially obtained at the axial, sagittal, and coronal, with 20×20 cm fields of 

view, 4 mm slice thickness, and a 1 mm gap between slices. 

A detailed 3-dimensional (3D) model of 23 pelvic structures was created, as 

previously described (Luo et al. 2011) using 3D Slicer software (version 3.4.1; Brigham 

and Women’s Hospital, Boston, MA). The model included the muscles, ligaments, and 

fascia of the pelvic floor and the organs it supports. Bones, blood vessels, and the 

perineum were illustrated as well. Each structure was traced with the use of the most 

clearly visible axial and/or coronal plane images, and lofted into a 3D virtual model that 

was based on our previous anatomic work (Hsu et al. 2005; Margulies et al. 2006; Hsu et 

al. 2008b; Brandon et al. 2009; Larson et al. 2010b). A 2-D finite element (FE) model 

was then created by projecting the 3-D geometry of AVW, PVW and its support system 

onto the mid-sagittal plane as shown in Figure 8.1. Panels (A) and (B) show the mid-

sagittal MR image without and with structures highlighted. Panels (C) and (D) show the 

FE models, one showing POP-Q (Bump et al. 1996) location, and the other showing 
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intra-abdominal pressure (IAP). Attachments of the pubovisceral muscle (PVM) and one 

portion of levator ani (LA) muscle to the pubic bone and the lines-of-action of the apical 

supports were located based on the 3D model.  

 

Figure 8.1 Model Development. (A)&(B) Mid-sagittal MR image without and with main 

structures highlighted; (C)&(D) Simplified 2-D finite element model (filled & free edges). In (C), 

POP-Q location Ba is shown as empty green circle and Bp is shown as empty turquoise triangle, 

both under resting condition by definition, 3 cm above the hymenal ring that is at the perineal 

membrane. Intra-Abdominal pressure is applied on both anterior and posterior compartment, 

showing as light blue arrows in (D). PS, pubic symphysis; SAC, sacrum; B, bladder; U, uterus; R, 

rectum; V, vagina; C, cervix; LA, levator ani; PVS, posterior vaginal support; AVS, anterior 

vaginal support; PVM, pubovisceral muscle; AS, anal sphincter; CL, cardinal ligament; USL, 
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uterosacral ligament; AVW, anterior vaginal wall; PVW, posterior vaginal wall; IAP, intra-

abdominal pressure.  

The 2-D FE model mesh was generated by Abaqus version 6.11 (Dassault 

Systèmes Simulia Corp., Providence, RI, USA) and the simulation was solved using 

Abaqus Explicit Solver.  

The anterior and posterior vaginal wall, cervix, and perineal body were modeled 

as 2D deformable element using 6-node modified quadratic plane strain triangular 

element with 1 mm thickness. The pubovisceral muscle was modeled as 2D linear truss 

element attached at a point corresponding to the midline projection of its origin to the 

midsagittal plane and attached to a levator plate hinged at its attachment to the distal 

sacrum (Larson et al. 2009).  The perineal membrane and levator plate were simulated as 

rigid body anchored laterally at the level of the ischiopubic rami (Stein and DeLancey 

2008; Brandon et al. 2009). The pubic bone and sacrum were simulated as display bodies. 

The cardinal and uterosacral ligaments, anterior vaginal support, and posterior vaginal 

support (showing as anal sphincter, in reality, it includes other structures) were simulated 

as connector elements (Larson et al. 2012b). 

8.2.2 Contact and Boundary Conditions 

The anterior and posterior vaginal wall used frictionless finite sliding kinematic 

contact, which is a strictly enforced contact algorithm. Posterior vaginal wall and levator 

plate used frictionless finite sliding penalty contact algorithm. Top of perineal membrane 

was fixed for translation but allowed for rotation. Bottom of perineal membrane was 

kinematic coupling with bottom of anterior vaginal wall. Bottom of pubovisceral muscle 

was kinematic coupling with levator plate. Bottom of perineal body was kinematic 

coupling with bottom of levator plate. Top of levator plate was fixed at the sacrum for 
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translation but allowed for rotation. The origins of anterior vaginal support were on the 

arcus tendineus fascia pelvis (ATFP) in 3D, and were only projected on the mid-sagittal 

plane. All origins for anterior vaginal and apical supports were fixed for translation and 

allowed for rotation. 

8.2.3 Material Properties 

In this study, all the deformed structures including the connector elements were 

assumed to be hyperelastic. For simplicity, the hyperelastic deformed structures were 

assumed to be isotropic and quasi-incompressible while using Abaqus explicit solver. All 

the material properties values were extracted from existing literatures (Yamada 1970; 

Bartscht and DeLancey 1988). The properties of levator muscle were only considered as 

representing passive stretch, since in Valsalva, patients were instructed to relax their 

pelvic floor muscle. 

8.2.4 Simulation Process 

The purpose of the simulation was to predict how the structures would deform 

under IAP increasing. Sensitivity analysis was applied with combinations of different 

muscular and connective tissue impairments, and different maximum IAP. The IAP was 

applied perpendicular to the nodes on the surface of anterior vaginal wall, cervix, 

posterior vaginal wall, perineal body, and levator plate (Figure 8.1 D).To reduce time for 

simulating Valsalva process, the simulation time was scaled to 1 second. 

8.2.5 Model Validation 

The model was validated by comparing the deformation of anterior and posterior 

vaginal wall (with perineal body), against with published MR-based cystocele and 
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rectocele deformation study (Larson et al. 2010a; Luo et al. 2012) to check whether 

predicted prolapse deformation characteristics were reasonable.    

8.3 Results 

Figure 8.2 shows two examples of the simulation results from model validation 

for rectocele and cystocele, respectively. Both were with levator 90% impairment and 

under 160 cm H2O IAP. The rectocele showed four main characteristics, including 

“kneeling”, downward displacement, forward protruding, and perineal descent. Those 

characteristics were also observed in our published case-control study (Luo et al. 2012), 

which analyzed 10 rectoceles and 10 controls. The cystocele showed three main 

characteristics, including “cupping”, downward displacement, and distal pivot. This was 

consistent with another case-control study (Larson et al. 2010a). 
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Figure 8.2 Posterior and anterior vaginal prolapses for model validation. (A) shows PVP with 

posterior 90% impairment and (B) shows AVP with anterior 90% impairment, both with levator 

function 90% impairment and 160 cm H2O. In (C), “kneeling”, downward displacement, forward 

protruding, and perineal descent are seen for PVP. In (D), “cupping”, distal pivot, and downward 

displacement are seen for AVP. Vaginal wall in resting is shown as dashed pink outline. POP-Q 

location Ba is shown as empty green circle and Bp is shown as empty turquoise triangle under 

resting condition. Under strain condition, Ba is shown as full green circle and Bp is shown as full 

turquoise triangle. Values of Ba and Bp are also shown at the right lower corner of each panel. 

Effect of interaction between anterior and posterior support impairment is shown 

in Figure 8.3, and change of prolapse size with the effect is shown in Figure 8.4. These 

simulations were all under 140 cm H2O with PVM 80% impairment, and no apical 
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support impairment. Increasing anterior impairment could result in greater variation of Ba 

of AVP than Bp, when keeping posterior support impairment constant. Increasing 

anterior support impairment could lead to larger cystocele (comparing Figure 8.4 C and A, 

F and D) and less exposed posterior vaginal wall (exposed vagina means non-contact area 

of the vaginal wall), which indicated the development of cystocele could protect PVW. It 

is also true that the development of rectocele could protect AVW. Bp of PVP showed a 

greater change than Ba with the increase of posterior support impairment while keeping 

anterior support impairment constant. Increasing posterior support impairment could lead 

to greater rectocele (comparing Figure 8.4 D and A, E and B, F and C) and less exposed 

anterior vaginal wall. 

 

Figure 8.3 Effect of anterior and posterior support impairment under 140 cm H2O with PVM 80% 

impairment. (A) to (C) show models without posterior support impairment, and with changes in 

anterior support 0%, 50% and 90% impairment. (D) to (E) show models with posterior support 90% 
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impairment, and with changes in anterior support 0%, 50% and 90% impairment. POP-Q location 

Ba is shown as empty green circle and Bp is shown as empty turquoise triangle under resting 

condition. Under strain condition, Ba is shown as full green circle and Bp is shown as full 

turquoise triangle. Values of Ba and Bp are also shown at the right lower corner of each panel. 

 

Figure 8.4 Prolapse size with effect of anterior and posterior impairment under 140 cm H2O with 

PVM 80% impairment. Vaginal wall is shown for reference as Ba is for anterior vaginal wall and 

Bp is for posterior vaginal wall. 

The effect of IAP, apical and levator impairment on the posterior vaginal prolapse 

is shown below. 
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Figure 8.5 shows the effect of IAP and apical impairment on posterior vaginal 

prolapse, with PVM 80% impairment, posterior support 90% impairment, and no anterior 

support impairment. Figure 8.6 shows the change of prolapse size based on this effect. 

With the increase of the IAP and apical impairment, the values of Ba and Bp both 

increased, but Bp increased faster than Ba with only posterior support impairment. The 

average compliance of posterior compartment was 0.33 mm/cm H2O without apical 

impairment and 0.36 mm/cm H2O with 60% apical impairment, while for anterior 

compartment was 0.16 mm/cm H2O without apical impairment and 0.17 mm/cm H2O 

with 60% apical impairment. 

 

Figure 8.5 Effect of IAP and apical impairment on PVP with PVM 80% impairment, posterior 90% 

impairment, and no anterior impairment. POP-Q location Ba is shown as empty green circle and 

Bp is shown as empty turquoise triangle under resting condition. Under strain condition, Ba is 

shown as full green circle and Bp is shown as full turquoise triangle. Values of Ba and Bp are 

also shown at the right lower corner of each panel. 
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Figure 8.6 Prolapse size with effect of IAP and apical impairment with PVM 80% impairment, 

posterior support 90% impairment, and no anterior support impairment. 

Figure 8.7 shows the change of prolapse size based on the effect of apical and 

levator impairment on posterior vaginal prolapse, under 140 cm H2O with posterior 

support 90% impairment and no anterior support impairment. Without anterior support 

impairment, the change of the anterior vaginal wall dependent location Ba was less than 
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that of the posterior vaginal wall dependent location Bp. All the Ba values were negative 

(above the hymen) which indicated no anterior vaginal prolapse happened, while all the 

Bp values were positive (below the hymen) and 7 of 9 were above 1.0 which indicated 

bigger posterior vaginal prolapse. In addition, when LA had impairment from 50% to 

90%, both Ba and Bp showed greater changes than those when LA had impairment from 

10% to 50%. Ba’s maximum change was 0.03 cm from LA’s 10% to 50% impairment 

and 0.25 cm from LA’s 50% to 90% impairment; Bp’s maximum change was 0.14 cm 

from LA’s 10% to 50% impairment and 0.72 cm from LA’s 50% to 90% impairment; 
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Figure 8.7 Prolapse size with effect of PVM impairment and apical impairment on posterior 

vaginal prolapse under 140 cm H2O with posterior 90% impairment and no anterior impairment. 
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8.4 Discussion 

This 2-D novel dynamic FE model included both anterior and posterior vaginal 

walls, muscular and connective tissue supports. It was used for simulating the formation 

of a cystocele and rectocele, or both, dependent on the conditions. Based on the 

simulation results, we rejected the hypothesis and concluded that the size of AVP and 

PVP are not only dependent on the anterior and posterior support impairment, as well as 

levator and apical support system, and the anterior and posterior prolapses do interact 

with each other. The levator and apical impairment, along with the anterior and posterior 

support impairment, could result in prolapse happening. Moreover, the development of 

either cystocele or rectocele could protect the posterior or anterior compartment. 

Levator and apical impairment could result in cystocele, which has been 

demonstrated in previous simulation studies (Chen et al. 2006; Chen et al. 2009). This 

study not only confirmed previous result, but also proved that levator and apical 

impairment could also result in rectocele. Our findings are also consistent with clinical 

studies about apical and levator impairment (Summers et al. 2006; DeLancey et al. 2007; 

Dietz and Simpson 2008). Study also showed that levator muscle generates 40% less 

vaginal closure force during maximal voluntary muscle contraction (Ashton-Miller and 

DeLancey 2009), which confirmed that the levator impairment may lead to conditions 

fostering the cystocele or rectocele. 

Characteristics of cystocele and rectocele from this study’s simulation are 

consistent with published literatures (Larson et al. 2010a; Luo et al. 2012). It should be 

noted that in this 2-D FE model, we only showed the main characteristics which could be 

summarized from the mid-sagittal deformation, except for the vaginal widening. For the 
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vaginal widening characteristics, although there is no significant difference between 

women with and without pelvic organ prolapse (Larson et al. 2012a; Luo et al. 2012), it 

would be good to analyze why this happens and how important of this issue is in our 

future 3-D simulation study. 

We found that the anterior support impairment was more related to AVP while 

posterior support impairment was more related to PVP. It could be easily explained by 

the pressure difference between IAP and atmosphere applied on each compartment and 

with the supporting force provided by the support system. With less anterior or posterior 

support, the support system could reduce the related anterior or posterior support force, 

which is the total force on each vaginal wall.    

Furthermore, we did observe the interaction between AVW and PVW, which 

could be called as ‘organ competition’ (Kelvin and Maglinte 1997; Comiter et al. 1999; 

Safir et al. 1999; Stovall 2000; Kaufman et al. 2001; Kester et al. 2003; Lewicky-Gaupp 

et al. 2010). This main component behind organ competition is the total force (i.e.: Fa for 

anterior total force and Fb for posterior total force) applied on each compartment. If Fb > 

Fa, PVP can happen first. While the opening hiatus size is a quasi-static constant under 

some specific support system impairment, the more exposed PVW could take more space 

provided by the hiatus, and thus decreasing the exposed AVW and protecting the AVW 

from getting more pressure difference, and vice versa when Fa > Fb. The above 

phenomenon could explain some clinical findings (Withagen et al. 2012; Milani et al. 

2012) that either cystocele or rectocele happened after a rectocele or cystocele repair only. 

An anterior support repair surgery will only correct the cystocele and reduce the 
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protection for PVW, and while there is posterior impairment, the rectocele will then 

happen after the surgery. This might be why the prolapse recurrence is so high. 

We found that intra-abdominal pressure played an important role in the 

development of prolapse, which was consistent with other studies (O’Dell et al. 2007; 

Chen et al. 2009). While the anterior and posterior compartments are not in a balanced 

condition, larger IAP will definitely lead to increase prolapse size. As chronic coughing 

(Rinne and Kirkinen 1999), heavy physical activity (Woodman et al. 2006) , and obesity 

(Hendrix et al. 2002; Moalli et al. 2003), etc. are associated with chronic increased IAP, 

women with mild small prolapse are suggested to reduce the chronic increased IAP by 

reducing the above symptoms or activities. 

To our knowledge, this is the first dynamic model to investigate the interaction 

between anterior and posterior vaginal walls, along with muscular and connective tissue 

supports. With this model, we can develop either rectocele or cystocele, or both of them 

under different conditions, which cannot happen on one single subject in reality. The 

interaction between AVP and PVP suggests that future surgeries for repairing the 

cystocele or rectocele should take this issue into consideration, and more reasonable 

repairing procedures are needed.  

It should be noted that this study also has several limitations. First, this is a 2-D 

simplified model with most of the prolapse characteristics being investigated, except 

vaginal widening which is not significant between prolapse and normal patients (Larson 

et al. 2010a; Luo et al. 2012). Future 3-D model should analyze the vaginal widening 

along with paravaginal supports. Second, we did not consider the active contraction of 

levator ani muscle. This might not be a significant limitation, since we simulated the 
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vaginal wall deformation under Valsalva condition while patients were instructed to relax 

the levator ani muscle. Third, we only considered isotropic material properties. It would 

be better to consider the anisotropic material properties for levator ani muscle as it 

consists of different portions with different fiber direction. 

In general, this study created a novel 2D dynamic model, including both anterior 

and posterior vaginal wall, and muscular and connective support, to investigate the 

mechanism of prolapse development. The result of this study could provide surgeons 

more insights to repair pelvic organ prolapse. Our future 3-D model study will provide 

more information on vaginal widening and paravaginal support information. 
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CHAPTER 9  

A 3-D BIOMECHANICAL MODEL TO EVALUATE PUTATIVE MECHANISMS 

UNDERLYING PELVIC ORGAN PROLAPSE 

 

Abstract 

 

Objective: To develop a 3D anatomically-based 2 compartment finite element (FE) 

computer model with apical support elements to investigate putative mechanisms 

underlying pelvic organ prolapse under increases in intra-abdominal pressure (IAP) that 

allows the effect of alterations in specific support structures to be measured. The null 

hypothesis was tested that the size of an AVP or PVP depends only on the degree of the 

impairment in the structural supports of that compartment and is not influenced by 

changes in the other compartment. 

Methods: A subject-specific FE model was created based on magnetic resonance image 

(MRI) 3D geometry of an average sized 45 year-old multiparous healthy woman. The 

model included AVW, PVW, levator ani muscle, cardinal and uterosacral ligaments, 

paravaginal anterior vaginal support, arcus tendineus levator ani, posterior arcus, 

paravaginal posterior vaginal support, perineal body (PeB), and anal sphincter. Tissue 

material properties were assigned from published literature. The FE model equations 

were solved using Abaqus v 6.11 Explicit Solver. The sensitivity of changes in  AVW 

and PVW geometry under increasing Valsalva intra-abdominal pressures were then 
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calculated under different combinations of muscular and connective tissue impairments. 

Validation against observed 3D deformation in women with prolapse was assessed. 

Results: The development of rectocele and cystocele was sensitive to levator and apical 

impairment, IAP, as well as anterior and posterior paravaginal support. The type of 

prolapse was strongly related to the type of anterior or posterior support impairment. 

Greater levator impairment, larger apical impairment, and larger IAP can all lead to 

increased AVP and PVP.  Increased impairment of the opposite compartment reduced 

prolapse size demonstrating interactions between the two compartments.   

Conclusions: The development and size of AVP and PVP are dependent on the presence 

of an anterior, posterior, levator or apical support impairment.  But they also depend on 

the interaction between different impairment combinations as well as on organ 

competition. 

Key words:  pelvic organ prolapse, cystocele, rectocele, 3D, finite element model, 

biomechanical model 

 

9.1 Introduction 

Pelvic floor dysfunction, including stress urinary incontinence (SUI) and pelvic 

organ prolapse (POP), results in 11% of U.S. women undergoing surgery (Olsen et al. 

1997).  Over 200,000 operations are performed for POP (Boyles et al. 2003) with repair 

of posterior vaginal prolapse (PVP) occurring in 87% (Silva et al. 2006) of cases. The 

annual estimated cost for these operations exceeds US $1 billion (Subak et al. 2001).    

The geometric changes (Hsu et al. 2008a; Chen et al. 2009; Larson et al. 2010a; 

Larson et al. 2012) and putative biomechanical changes (Chen et al. 2009) associated 
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with the development of an anterior vaginal prolapse (AVP, cystocele) have only recently 

begun to receive attention.  But a knowledge gap remains as to how and why a PVP 

(rectocele) forms.  In Chapter 8, we started to investigate this using a two-dimensional 

(2D) anatomically-based finite element (FE) model with both AVW and PVW and their 

structural support systems. The model was useful for analyzing how both AVP and PVP 

might develop under the effect of specific isolated and combined muscular and 

connective tissue impairments. But the 2D model has significant limitations when 

investigating the effect of changes in paravaginal supports and/or vaginal widening. 

Therefore, the goal of this study was to create a subject-specific 3-D 

anatomically-based FE model with representations of both AVW and PVW and their 

respective structural support systems.  We tested the hypotheses that 1) the size of AVP 

and PVP are only dependent on anterior and posterior support impairments, respectively, 

along with impairment of levator and apical support systems, and 2) AVP and PVP do 

not mechanically interact with one another so as to affect their relative sizes. 

9.2 Materials and Methods 

9.2.1 Subject-specific Model Anatomy and Finite Element Mesh 

The simulation model was based upon geometric data from a 45 year-old 

multiparous healthy woman, who was selected from an ongoing University of Michigan 

Institutional Review Board-approved (IRB # 1999–0395) case-control study of pelvic 

organ prolapse. As described in Chapter 8, this subject’s vaginal dimension (AVW: 59 

mm; PVW: 98 mm; Cervix: 38 mm) is representative of average female dimensions. 

 As described in our previous work (Luo et al. 2012), each subject in this study 

underwent supine multiplanar, two-dimensional, fast spin, proton density MR imaging 
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both at rest and during maximal Valsalva using a 3T superconducting magnet (Philips 

Medical Systems Inc., Bothell, WA, USA) with version 2.5.1.0 software. At rest, 30 

images were serially obtained in the axial, sagittal, and coronal planes using a 20×20 cm 

field of view, 4 mm slice thickness, and a 1 mm gap between slices. Similarly, at 

maximal Valsalva, 14 images were serially obtained at the same three serial planes, with 

36×36 cm fields of view, 6 mm slice thickness, and 1 mm gap. In order for the images to 

be considered adequate, they had to allow visualization of vaginal margins. 

A detailed 3-D pelvic floor model which included 23 structures was created, as 

previously described (Luo et al. 2011), using 3D Slicer software (version 3.4.1; Brigham 

and Women’s Hospital, Boston, MA).  Each structure was traced using the most clearly 

visible axial and/or coronal plane images and lofted into a 3D virtual model based on our 

previous anatomic work (Hsu et al. 2005; Margulies et al. 2006; Hsu et al. 2008b; 

Brandon et al. 2009; Larson et al. 2010b). The volumetric 3D model was imported into 

Imageware (version 13.0; Siemens Product Lifecycle Management Software Inc., 2008).  

Vaginal walls, levator ani, and other pelvic floor structures were lofted to form smooth 

surfaces. The simplified models were then imported into Abaqus (version 6.11, Dassault 

Systèmes Simulia Corp., Providence, RI, USA), to generate the structural mesh used to 

simulate the prolapse. The model development process is shown schematically in Figure 

9.1.  
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Figure 9.1 Model development. (A) and (B) MR-based 3D pelvic floor reconstruction model 

shown with and without pelvic bones; (C) and (D) 3-D finite element model in left three quarter 

view and bottom view.  The region in the anterior vaginal wall occupied by the cervix was 

represented by a simplified region connecting both AVW and PVW. The bottom view is used to 

mimic what is seen during pelvic examination. The reference plane is located at the position of 

the hymen at rest, and is used to help visualize development of the prolapse.  PB denotes pubic 

bone; U, uterus; V, vagina; CL, cardinal ligament; USL, uterosacral ligament; PeB, perineal body; 

PM, perineal membrane; LA, levator ani; Cx, cervix; AVW, anterior vaginal wall; PVW, 

posterior vaginal wall; APS, anterior paravaginal support; PArcus, posterior arcus; PPS, posterior 

paravaginal support; AS, anal sphincter; and ATLA, arcus tendineus levator ani.  

  

The 3D FE model mesh was generated by Abaqus CAE mesh module and the 

simulation was solved using Abaqus Explicit Solver.  
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The finite element model consisted of total 7,182 elements and 10,151 nodes. The 

anterior vaginal wall, posterior vaginal wall, cervix, and perineal body were modeled 

using 3D deformable elements consisting of 5 mm-thick 8-node linear Hexagonal 

elements using reduced integration. The levator ani muscle was modeled as a deformable 

shell element using 4 mm-thick 4-node quadrilateral elements using reduced integration.  

The hymen reference plane was simulated as a display body. The cardinal and uterosacral 

ligaments, anterior vaginal support, and posterior vaginal support were simulated using 

connector elements. The arcus tendineus levator ani (ATLA) and posterior arcus were 

simulated using 2-node linear 3D truss elements. Each single simulation took about 4 

hours to solve on a Linux-based (Red Hat Enterprise Linux version 5.8) High 

Performance Computing (HPC) cluster. The cluster, based on the Intel platform, 

consisted of four parallel 2.67 GHz cores (Intel Xeon X5650 processors) with 4 GB 

RAM per core interconnected with 40 Gbps InfiniBand networking. 

9.2.2 Model Contact and Boundary Conditions 

The anterior and posterior vaginal wall used a frictionless finite sliding penalty 

contact algorithm. The posterior vaginal wall and levator ani employed a frictionless 

finite sliding penalty contact algorithm. The origins of the perineal membrane from the 

pubic bone were fixed for translation but permitted rotation. The ends of the perineal 

body were connected with levator ani using connector elements. The top edges of levator 

ani (ICM) were tied to the ATLA. The origin and insertion of ATLA were both located 

on the pelvis and therefore set to be fixed for translation but allow rotation. The front 

edges of the levator ani (PCM) and posterior edges of the levator ani (ICM) were fixed 

for translation but also allowed rotation. The posterior arcus was tied to the levator ani, 
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and the origin and insertion of posterior arcus were fixed for translation but allowed 

rotation. The origins of anterior vaginal support were on the arcus tendineus fascia pelvis 

(ATFP) in 3-D space. All the origins for the anterior vaginal support and apical vaginal 

supports were fixed for translation and allowed rotation. 

9.2.3 Model Material Properties 

In this study all the deformable structures, including the connector elements, were 

assumed to be hyperelastic. For simplicity, the hyperelastic deformed structures was 

assumed to be isotropic and quasi-incompressible while using Abaqus Explicit Solver. 

All the material properties values were taken from the published literature (Yamada 1970; 

Bartscht and DeLancey 1988). The behavior of the levator muscle was only considered 

under passive stretch, since for the Valsalva maneuver patients were specifically coached 

to relax their pelvic floor muscles as much as possible. 

9.2.4 Simulation Process 

The purpose of the simulation was to predict how the structures would deform 

under increasing IAP. Sensitivity analyses were performed using different combinations 

of muscular and connective tissue impairments under different maximum IAP values. 

The impairment was simulated as decreased tensile stiffness. The prolapse size was 

quantified by POP-Q parameters Ba and Bp (Bump et al. 1996), which are 3 cm above 

the hymenal ring that is at the perineal membrane under resting condition by definition. 

The IAP was applied perpendicular to nodes on the surface of the anterior vaginal wall, 

cervix, posterior vaginal wall, perineal body, and levator ani. To reduce computation time, 

and to simulate the Valsalva process, the simulation time was scaled to 1 second. 
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9.2.5 Model Validation 

Clinical images of a prolapse at rest and under maximal Valsalva pressure were 

used to validate a developing prolapse in the simulations. The model was further 

validated by comparing the deformations of the model anterior and posterior vaginal 

walls,  against published 3-D models of cystocele and rectocele deformation 3-D Stress 

MR studies of women with these conditions (Larson et al. 2010a; Luo et al. 2012) to 

check whether predicted prolapse deformation characteristics were reasonable.  

9.3 Results 

Figure 9.2 shows one typical model-generated simulation example of AVP, which 

was developed under 140 cm H2O IAP with 50% levator impairment, 90% anterior 

impairment, no posterior impairment and 20% apical support impairment. The model 

generated simulation result of AVP can be seen to be similar to that in a picture of a 

patient with AVP while performing a Valsalva supine for a clinical exam. 

 

Figure 9.2 Comparison of model simulation and pelvic examination findings in anterior vaginal 

prolapse. (A) shows a model generated simulation result of AVP forming in a similar manner to 

that seen clinically in a picture of AVP in a patient performing a Valsalva in (B). 
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The geometric characteristics of the model-generated AVP are shown in Figure 

9.3 and Figure 9.4.  Figure 9.3 first shows the characteristics of AVP in a mid-sagittal 

view, with evident sagittal “cupping”, distal pivot, and downward displacement 

characteristic of AVP that are seen in 3-D stress MRI (Larson et al. 2010a). In addition to 

sagittal “cupping”, coronal “cupping” is also seen for AVP (Figure 9.4 C and D) for the 

exposed portion of AVW. 

 

Figure 9.3  Anterior vaginal prolapse characteristics from rest to strain. (A) and (B) show left 

three quarter view of rest and AVP strain model. (C) shows middle sagittal view of model in rest. 

In (D), sagittal “cupping”, distal pivot, and downward displacement are seen for AVP. 
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Figure 9.4  Anterior vaginal prolapse “cupping”. (A) shows left three quarter view of anterior 

vaginal part. (B) shows the two cutting locations in middle sagittal plane. (C) and (D) show the 

resulting cutting cross section in front view and left three quarter view.  

The model generated simulation result for a PVP is shown in Figure 9.5 and 

Figure 9.6. The shape of the PVP is similar to that seen in the clinical picture of a patient 

with PVP when performing a Valsalva (Figure 9.5 B). The characteristic “kneeling” 

profile of the PVP that is seen in 3-D stress MRI (Luo et al. 2012), along with downward 

displacement, forward protrusion, and perineal descent (Figure 9.6 B and D).  Distal 

vaginal widening was not found for this PVP.  One can also see that the length of the CL 

and USL increases more under strain than at rest. In addition, the angle subtended with 
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the body axis by those two ligaments changes from rest to strain, and the changed in 

angle for the USL is bigger than that for the CL (Figure 9.6 B). 

 

Figure 9.5  Posterior vaginal prolapse. (A) shows a model generated simulation result of PVP 

formed in the manner of one seen clinically in a picture from one patient performing a Valsalva in 

(B).  
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Figure 9.6  Posterior vaginal prolapse characteristics.  (A) and (B) show left three quarter view of 

PVP model at rest and during a Valsalva .  (C) shows a mid-sagittal view of the model at rest.  In 

(D), the “kneeling” profile, downward displacement, forward protrusion and perineal descent are 

all observed as being characteristic of PVP. 

The mechanical interaction between AVW and PVW was first demonstrated in 

Chapter 8 using a 2D model. The 3D FE model shows a similar ‘organ competition’ 

phenomena (Figure 9.7).  For example, under the same simulation conditions (140 cm 

H2O, levator 50% impairment and apical 80% impairment) but with different anterior or 
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posterior support impairments, the presence of more impairment in the posterior 

compartment support reduces the cystocele size, and the presence of more impairment in 

the anterior compartment support reduces rectocele size.  

 

Figure 9.7  Examples of AVW and PVW ‘organ competition’.  Under 140 cm H2O and with 

levator 50% impairment, (A) shows a model generated cystocele with anterior support 50% and 

posterior support 10% impairment; and (B) shows a rectocele with same anterior support 

impairment but posterior support 90% impairment.  Presence of more impairment in posterior 

compartment support in (B) reduces the cystocele size, and vice versa in (A) for the rectocele. 

To visualize the development of a typical PVP, Figure 9.8 shows the model 

simulation under systematically increasing values of IAP over time.  

 

Figure 9.8  An example of the development of a typical PVP in a three-quarter, left and anterior 

view. The loading conditions for (A), (B) and (C) were 0, 70, and 140 cm H2O IAP, respectively, 
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all with levator 50% impairment, apical 80% impairment and posterior support 95% impairment, 

and without anterior support impairment. The color map shows stress distribution in different 

regions, with blue indicating low stress region, green indicating medium stress region, and red 

indicating high stress region.  The box in the left upper corner shows the increase in the 

magnitude of IAP (from 0 cm to 140 cm H2O) applied to the pelvic floor from (A) to (C). 

 

The biomechanical effect of changes in IAP and apical support on PVP size is 

shown in Figure 9.9. The simulations were run with levator 20% impairment, posterior 

support 95% impairment and no anterior support impairment. The simulation results 

show both Ba and Bp dimensions increasing as IAP was increased. We found that the 

greater the apical impairment was, the larger the PVP size. Note, however, that the Bp 

dimension changed more quickly than Ba when only posterior support impairment was 

present. The apical location moved caudally with both larger IAP and greater apical 

impairment. Without apical impairment, the compliance was 0.12 mm/cm H2O for 

anterior compartment, 0.23 mm/cm H2O for posterior compartment and 0.11 mm/cm H2O 

for apex. But with 60% apical impairment, the compliance increased to 0.18 mm/cm H2O 

for anterior compartment, 0.28 mm/cm H2O for posterior compartment and 0.15 mm/cm 

H2O for apex. 

The effect of levator ani muscle and apical support on PVP size is shown in 

Figure 9.10. The conditions for these simulations were 140 cm H2O IAP with 95% 

posterior support impairment and no anterior support impairment.  When there was no 

anterior support impairment, all the Ba parameter values were less than zero (i.e., above 

the hymen) and the Bp values were greater than zero (i.e., below the hymen). The same 

effect of apical support impairment on PVP size is shown here also. PVP size increased 

when the apical impairment was increased. It should be noted that, when the levator 
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impairment was changed from 40% to 60%, the Bp parameter values were nearly twice 

as large as those when levator impairment was changed from 20% to 40%. 
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Figure 9.9 Predicted posterior vaginal prolapse size under increasing IAP and apical impairment.  

Simulations were run with 20% levator ani impairment, 95% posterior support impairment, and 

no anterior vaginal wall support impairment. 
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Figure 9.10 Predicted posterior vaginal prolapse size with increasing levator and apical 

impairment under 140 cm H2O load.  Simulations were run with 95% posterior support 

impairment and no anterior vaginal wall support impairment. 
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9.4 Discussion 

This is the first subject-specific model for studying of the mechanisms underlying 

prolapse to include both the anterior and posterior vaginal walls as well as muscular and 

connective tissue supports in 3-D space.  It is also the first model to simulate the 

formation of both a cystocele and rectocele, based on specific changes in the initial 

conditions. The model is based on normal has geometry based on that of a healthy living 

woman.  It allows the consequences of specific alterations in individual components of 

the support system to be studied in a way that is not possible in human subjects where 

causing specific damage to an element of the support system to study its consequences is 

unethical.  It is a strength that the simulation results show many similarities to the manner 

in which cystocele and rectocele may be seen to develop during clinical exams.  Likewise, 

they also show similarities to the geometry of 3D models based on sequential images 

taken during “stress” MR examinations conducted during a Valsalva maneuver (Larson et 

al. 2010a; Luo et al. 2012).   

Based on the simulation results shown in Figure 9.7 where the size of the 

cystocele was reduced by changing the supports of the posterior vaginal wall despite no 

change in the anterior supports, we therefore rejected the primary hypotheses stated in the 

Introduction.  The size of AVP and PVP are not only dependent on the impairments of 

anterior and posterior support, but also impairments of the levator muscle and apical 

support system.  In addition, the model clearly demonstrates that there is a mechanical 

interaction between the development of anterior and posterior prolapse via so-called 

‘organ competition’ (Kelvin and Maglinte 1997; Comiter et al. 1999; Safir et al. 1999; 

Stovall 2000; Kaufman et al. 2001; Kester et al. 2003; Lewicky-Gaupp et al. 2010):   
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when one vaginal wall prolapses first, it can fill the genital hiatus thereby blocking 

prolapse of the other wall, and vice versa. When levator muscle and apical impairment 

are combined with anterior and posterior wall support impairment, this will result in a 

prolapse happening. But, it is a novel finding to show the mechanism by which the 

development of a cystocele tends to protect the posterior compartment from prolapsing 

under increasing IAP, and a rectocele tends to likewise protect the anterior compartment 

from prolapsing.  

While this 3D FE model corroborates and extends the results found in the 2D FE 

model (Chapter 8), it provides much richer information about why prolapse can develop. 

For example, the predicted geometric characteristics of the simulated cystocele and 

rectocele are consistent with those in the published literature (Larson et al. 2010a; Luo et 

al. 2012). Although the 2D FE model showed several structural characteristics based on 

the deformations in the mid-sagittal plane, it was unable to demonstrate the cystocele 

“cupping” seen in the coronal section or the vaginal widening of the 3-D model based on 

comparing static MR scans at rest and under Valsalva. For the cystocele “cupping”, we 

saw the same characteristic sagittal “cupping” and also the coronal “cupping” in this 3D 

FE model. Vaginal widening is not clearly visible in this model, which is consistent with 

previous studies (Larson et al. 2012; Luo et al. 2012) that vaginal widening is not 

significantly affected when prolapse patients are compared to women without prolapse. 

That levator and apical impairment can result in cystocele has been demonstrated 

in earlier simulation studies (Chen et al. 2006; Chen et al. 2009).  The present modeling 

study not only confirms those previous results, but also proved that levator and apical 

impairment can also contribute to rectocele. This is a finding that is consistent with 
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clinical studies about apical and levator impairment (Summers et al. 2006; DeLancey et 

al. 2007; Dietz and Simpson 2008). We noticed that when levator impairment increased 

to 60% from 40%, the PVP size was twice as large as when levator impairment increased 

from 20% to 40%.  So, a larger levator impairment will decrease the vaginal closure force 

and allow a greater length of the vaginal wall to be exposed to the pressure differential 

(the difference between IAP and atmospheric pressure) acting across the exposed vaginal 

wall, thus fostering the development of cystocele or rectocele. This nonlinear behavior 

was similar to other hernia mechanics study (Engin and Akkas 1983). We also noticed 

that the movement direction of AVP is similar to the movement direction of the levator 

muscle, but the movement direction in PVP is in the opposite direction (c.f., Figure 9.3 

and Figure 9.6). This could help explain why AVP occurs more commonly than PVP 

when there is only levator defect and no anterior support and posterior support 

impairment. It is also consistent with other studies which also show that the development 

of an AVP is more closely related to a levator impairment than is the case for a PVP 

(Berger et al. 2011).  Put simply, we found that anterior support impairment often gave 

rise to AVW, while posterior support impairment more often gave rise to PVW (c.f., 

Figure 9.9 and Figure 9.10) in that Bp changes more than Ba while there is only posterior 

impairment. It could be easily explained by the pressure difference between big IAP and 

small atmospheric pressure applied on each compartment and with the supporting force 

provided by the support system structures. With less either anterior or posterior support, 

the support system will reduce the related either anterior or posterior support force, that is 

the total force on each vaginal wall, then the less supported compartment will deform 

more. This model also shows the importance the apical supports. We saw that 60% 
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impairment of the apical supports will lead to bigger prolapse size (1 cm bigger) and 

more apex descent, than those with normal apical supports under simulated condition (c.f., 

Figure 9.9). 

The finding that degree of intra-abdominal pressure rise is correlated with 

increasing prolapse shows that the model reproduces clinical pelvic floor behavior.  It is 

consistent with the widely held concept that prolapse and increased abdominal pressure 

are related (O’Dell et al. 2007; Chen et al. 2009). With levator 20% impairment, and 

apical 60% impairment, the posterior compartment compliance was 0.28 mm/cm H2O. 

We can infer that with more levator and apical impairment, the compliance of the 

posterior compartment will increase. While the anterior and posterior compartments are 

not equilibrated, a larger IAP will definitely lead to bigger prolapse. As chronic coughing 

(Rinne and Kirkinen 1999), heavy physical activity (Woodman et al. 2006) , and obesity 

(Hendrix et al. 2002; Moalli et al. 2003), etc. are all associated to chronic increased IAP, 

women with mild small prolapse are suggested to reduce the chronic increased IAP by 

reducing the above symptoms or activities. 

We also studied the interaction between AVW and PVW, which could explain 

how different types of prolapse develop. When there is only posterior support impairment 

and no anterior support impairment, or more posterior than anterior support impairment 

(c.f., Figure 9.7 and Figure 9.9), the change in PVP size was considerably larger than that 

of AVP size. For any given hiatal size, a more exposed PVW will take more of the 

available hiatal cross-sectional area, and as a result limit the area of AVW exposed to the 

IAP-atmospheric pressure differential thereby helping to protect the AVW from the 

pressure differential. The reverse is also true. Postoperative prolapse in a non-operated 
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compartment emphasizes the importance of understanding interactions between anterior 

and posterior supports (Withagen et al. 2012). An anterior support repair-only surgery 

will correct the cystocele and reduce the protection for PVW, and while there is posterior 

support impairment, there is an increased risk for rectocele after the surgery. This could 

also explain why the prolapse recurrence is high for these cases. 

To our knowledge, this is the first 3-D FE computer model to investigate the 

interaction between anterior and posterior vaginal walls in the form of organ competition, 

along with muscular and connective tissue support impairments. A strength is that it 

includes accurate initial pelvic floor anatomy and geometry, and provides information on 

prolapse geometry that the 2D model lacks in the frontal and transverse planes.  It also 

helps to visualize the prolapse formation better.  This model shows rectocele and 

cystocele developing in 3D under different conditions, a phenomenon that cannot happen 

in one single subject in reality. Just as we saw the interaction between AVW and PVW, 

planning for improved future surgical approaches for repairing cystocele or rectocele 

might usefully consider this issue more carefully.  

Our approach has several methodological limitations. Firstly, we had to simplify 

the geometry of the vaginal wall and levator muscle in order to keep the computational 

time tractable. Secondly, we did not consider the effect of an active contraction of the 

levator ani muscle. This might not actually be a significant limitation, since the goal was 

to simulate vaginal wall deformations under a Valsalva condition in which patients were 

specifically instructed to relax their levator ani muscle (in order to maximize the size of 

their prolapse). Thirdly, we only considered hyperelastic material properties in this study.  

It would have strengthened the analysis had we included the known viscous material 
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properties of the levator ani muscle and passive connective tissues. Our simulation results 

are therefore underestimates of the deformation, which would be expected to increase 

with time due to viscous effects (i.e. hysteresis effect).  Forth, in order to evaluate the two 

support systems separately we have not yet evaluated the nature of connections between 

the anterior and posterior vaginal walls. Finally, this model only considers average size 

pelvic floor geometry and normal initial geometry; it would be useful to study how 

variations in initial geometry affect prolapse behavior. 
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CHAPTER 10  

GENERAL DISCUSSION 

 

Pelvic organ prolapse is an abnormal downward displacement and deformation of 

the female pelvic organs. A current knowledge gap concerns the biomechanical 

mechanisms underlying the development of prolapse, and in particular posterior vaginal 

prolapse.  We hypothesized that the occurrence, size and type of posterior vaginal prolapse 

is not explained by failure of any single structure; rather it involves failure of connective 

tissue supports at two, and possibly up to 20, anatomical sites, along with impairment of the 

levator ani muscle. 

To test the above hypotheses, we needed to know following information: 1) What is 

the normal of pelvic floor anatomy and how can we get accurate 3D geometry of the pelvic 

floor supportive structures? (Chapters 2 & 3); 2) What are the phenomena of pelvic organ 

prolapse and how do we best measure them? (Chapters 4 & 5); 3) What biomechanical 

factors are related to pelvic organ prolapse? (Chapters 6 & 7); and finally, 4) How do we 

create one quantitative unified biomechanical model to test the above hypotheses? (Chapters 

8 & 9). 

Using in vivo magnetic resonance imaging we first visualized the detailed 3-D pelvic 

floor anatomy of 84 healthy women (Chapter 2). We found a large variation in vaginal 

dimension and shape in the 84 healthy women, and there was no single demographic 

characteristic can explain the vaginal dimension variation: there was more variation in 
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vaginal dimension and shape proximally than distally. Less variation proximally than 

distally could be explained by the spatial constraint imposed bilaterally by the levator ani 

muscle. The lower portion of the vagina corresponds to a high pressure zone due to 

contraction of the levator ani muscle that help close the hiatus and support the pelvic 

floor organs (Ashton-Miller and DeLancey 2009).  

Based on the findings of Chapter 2, a detailed geometric 3-D MR-based 

interactive model of pelvic floor of an average dimensioned pelvic floor was then created 

(Chapter 3). This included 23 potential structures that may be involved in pelvic organ 

prolapse. Those structures include the muscles, ligaments, and fascia of the pelvic floor 

and the organs it supports. Bones, blood vessels, and the perineum are illustrated as well. 

This anatomically accuracy of this model helps the viewer avoid errors in comprehension 

that can arise from conceptual representations that are not based on living anatomy. This 

model clearly shows the anatomy of the levator ani muscle, while anatomy textbooks 

often erroneously show the female pelvic floor as a deep bowl-shaped structure with 

distorted relationships caused by loss of postmortem muscle tone along with the effect of 

high pressure embalming fluid. The model also clearly shows the three levels of supports 

(DeLancey 1992) for the pelvic floor. The 3-D model helps to visualize the contact 

information between the vagina and its supportive system, which can provide this 

information for potential biomechanical models. The techniques we created to reconstruct 

the 3-D MR-based normal pelvic floor model were then used to create 3-D MR-based 

prolapse models (Chapter 4 & 5). 

Following the studies of normal anatomy in Chapters 2 & 3, we then studied the 

phenomena of the pelvic organ prolapse. We created 10 normal and 10 PVP 3-D MR-
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based models to study the characteristics of PVP (Chapter 4). In those women we studied, 

increased folding (“Kneeling”) of the vagina and an overall downward displacement were 

consistently present in rectocele. Forward protrusion, perineal descent and distal 

widening are sometimes seen as well. Those results provide the geometric basis for an 

accurate anatomically-based biomechanical computer model in Chapter 9. 

Although the main purpose of the dissertation was to understand the mechanism 

underlying the development of PVP, in reality the main two types of prolapse, namely 

AVP and PVP, can occur at the same time but in differing degrees. A previous study 

from our group (Larson et al. 2010) shows downward translation, cupping, and distal 

rotation are three novel characteristics of AVP. The downward displacement is a 

characteristic of both AVP and PVP. The above information suggests AVP and PVP may 

result from similar failures but different mechanisms. In addition, the anterior vaginal 

wall (AVW) and posterior vaginal wall (PVW) always interact with each other. In 

Chapter 5 we then studied the AVP in 3-D using MR images from 10 normal and 10 

AVP women, to assess relative contributions of “midline defects” (widening of the 

vagina) and “paravaginal defects” (separation of the lateral vagina from the pelvic 

sidewall). The results show that changes in lateral AVW location were considerably 

greater than changes in vaginal width in cases vs controls, both in number of sites 

affected and effect sizes. These “paravaginal defects” are highly correlated with apical 

descent. This study provides more knowledge about the AVP, and will function as a 

complementary research to help understand more of the mechanism underlying PVP. The 

results of Chapter 5 also provide insights for the biomechanical computer model to help 

understand how PVP can develop without AVP.  
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Since the apical descent or downward displacement as a characteristic of prolapse 

shows that the apical supports (or “Level 1” supports) play an important role in prolapse, 

and the “paravaginal defects” are related to the paravaginal fascia supports ( or “Level 2” 

supports), Chapters 6 and 7 then investigate the failure of the two factors and their  

contribution to prolapse.  

Based on a case - control study (10 cases and 10 controls), the apical support 

system was analyzed based on 3-D MRI-based prolapse and non-prolapse models 

(Chapter 6). The length of the ligaments at rest was no different between prolapse and 

healthy women at rest; CL ligament elongation (length change from rest to Valsalva) for 

each ligament was greater in prolapse than healthy women, while USL was not (at the 

same sample size); CL exhibited more changes in the ligament length, while USL had 

more changes in ligament angle with normal support and prolapse. Knowing how much 

each ligament changes under load in women with prolapse compared to normal support 

helps one understand how prolapse can occur with downward displacement. 

The paravaginal fascia supports include the arcus tendineus fascia pelvis (ATFP) 

and arcus tendineus levator ani (ATLA). In Chapter 7 we analyzed the 3-D MRI-based 

arcus models of subjects with unilateral defects and show the ventral arcus anatomy is 

significantly altered in the presence of levator defects and architectural distortion. 

Alterations of these key fixation points will change the supportive force direction along 

the lateral AVW, and indirectly change the interaction between PVW. The results of 

Chapters 6 and 7 also provide the basis for the biomechanical model in Chapter 9.  

Finally, two biomechanical computer models were used to test the dissertation 

hypotheses. The models include a 2-D finite element (FE) dynamic model (Chapter 8) 
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and an anatomically more accurate, 3-D, subject specific FE model (Chapter 9). Those 

unified models help to test a series of “what-if” problems, including situations in which 

tests are not ethically possible in living women. 

The model-generated simulation results show that the development and size of 

AVP and PVP are not only dependent on a single anterior, posterior or apical support 

impairment: they also depend on the interaction between different combinations of 

impairments, as well as with organ competition.  

The levator and apical impairment, along with the posterior support impairment, 

will result in the occurrence of a PVP. Increased IAP will lead to a larger PVP. These 

results help fill a gap in understanding the mechanism of PVP. 

In addition, one interesting result shows that under 140 cm H2O and with levator 

50% impairment, a model with anterior 50% and posterior 10% support impairment will 

generate a cystocele; and a model with same anterior support impairment but posterior 

support 90% impairment will generate a rectocele. Thus, presence of more impairment in 

posterior compartment support reduces the cystocele size, and vice versa. This addresses 

another knowledge gap in which we sought to understand the interaction between AVP 

and PVP. This finding could help explain common clinical findings. For example, 

postoperative prolapse in a non-operated compartment emphasizes the importance of 

understanding such interactions between anterior and posterior supports(Withagen et al. 

2012). An anterior support repair-only surgery will correct the cystocele but 

simultaneously reduce the protection for PVW, and if there is posterior support 

impairment, the probability for rectocele increases after the anterior support surgery. 
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When this dissertation work started in the year 2009, there only existed one 2-D 

and one 3-D biomechanical computer model to study AVP.  No model of PVP was 

available. This dissertation therefore extends the literature about the mechanism of pelvic 

organ prolapse: not only the mechanism of posterior vaginal prolapse, but also the 

interaction between AVP and PVP.  The availability of an anatomically accurate 3-D 

biomechanical computer model now also makes it possible to help design and test 

surgical implants (i.e., vaginal mesh) before they are applied to living women.  But it is 

also sometimes helpful to have a conceptual model to explain a phenomenon.  Just such a 

model is presented in Figure 10.1 to explore the pathomechanics of pelvic organ prolapse. 

In this conceptual model, inputs to the support system include the intensity (α) of 

the pubovisceral (“PV”) muscle contraction (yielding tension,T), intra-abdominal 

pressure (pa) and atmospheric pressure (po). “Pa” acts on the surface of the levator ani 

muscle (_1_) so as to increase T and help determine total hiatal area (_2_). It can also 

drive the uterus partially into the hiatus (dashed line), leaving the remaining hiatal 

aperture (_3_), which will be spanned by the distal anterior vaginal wall (AVW) along 

with distal posterior vaginal wall (PVW). With a competition between the AVW and 

PVW (_4_), the winner will be exposed to more pressure differential (∆PAVW or  ∆PPVW). 

The resulting tension (TAVW) (_5_) in the AVW (_7_) then applies tension to its Apical 

(_6_) and Paravaginal Supports (_8_) (ATLA & ATFP) helping to determine the size 

(_9_) of the resulting cystocele (Ba). The resulting tension (TPVW) (_10_) in the PVW 

(_12_) then applies tension to its Apical (_11_), Paravaginal (_13_) (Posterior Arcus), 

and distal supports (PeB and Sphincter) (_14_ and _15_) helping to determine the size 

(_16_) of the resulting rectocele (Bp). Birth damage, aging, collagen/elastin disorder, and 
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hormonal effects (_17_) are postulated to affect the properties of the levator ani muscle 

(_18_) and all the other given structures.  

 

There are several limitations to the approaches used in this dissertation. First, the 

MR images used for 3-D models were obtained in the supine position and not during 

defecation.  However, the studies we used are similar to a supine pelvic examination with 

associated Valsalva that clinicians use to examine the prolapse and perform a POP-Q 

examination (except for somewhat less thigh abduction).  Second, it is a limitation that 

we used gel in the vagina of some women (23 of 84) recruited for the vaginal dimensions 

study to help with visualization. But in some instances in healthy women it fills the upper 

vagina thereby changes the contour and the internal surface geometry of the vagina.  

However, by using gel, it also helps identify the AVW and PVW separately, and also 

helps identify the anterior and posterior fornix.  And one good Valsalva can expel much 

of the surplus gel.  Third, we did not consider the active contraction of levator ani muscle. 

This might not be a significant limitation, since we specifically asked the woman to 

perform a Valsalva with relaxed levator ani muscles. Fourth, we only consider isotropic 

hyperelastic material properties in this study; it would have been better to consider 

anisotropic, visco-hyperelastic material properties for levator ani muscle and connective 

tissue, and to have considered hysteresis. Although some studies have shown the fiber 

direction of levator ani (Shobeiri et al. 2008) and applied it into computer models (Jing et 

al. 2012), the fiber direction information was from cadaver tissue not living women. It 

would be useful and possible to study the fiber direction of levator ani based on 1 mm 

high quality MR image and then implement it into the current model. Prolapse usually  
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happens over about 30 years after the first childbirth. So it would have been better to 

consider the time-dependent effects of viscous material properties, and to have 

considered loading rates and numbers and severity of loading cycles. The repeated 

loading might change the tissue’s material properties such as stiffness by changing its 

structure or density (tissue adaption issue). Fifth, impairment of supportive structures was 

simulated by a simply decrease in its stiffness, not considering other issues such as initial 

geometry change. Sixth, the anatomy of the posterior paravaginal support and its 

attachment needs to be refined in detail in the future and then incorporated into this 

model. Seventh, the current validation was based on using clinical exam results and MR-

based prolapse models. Even though the character of the prolapse is similar, ideally, it 

would be better to use data from living prolapse patients with detailed known 

impairments to compare with the model generated simulation results. However, based on 

current technique and knowledge, and ethical and legal restrictions, it is difficult to 

measure the detailed tissue condition for paravaginal supports and other connective 

tissues in living women. Eighth, we have seen that the vagina has a large variation in size 

and shape, but we only created one subject-specific model to study prolapse due to time 

limitations. It would be useful to study the mechanism of prolapse in subjects having a 

variety of vaginal dimensions. In addition, it might be interesting to also create 

biomechanical computer models from abnormal geometry, and to examine the effect of 

changing the initial geometry. 

In summary, this dissertation fills several gaps in the existing literature: (1) the 

mechanism of posterior vaginal prolapse; and (2) the interaction between anterior vaginal 

prolapse and posterior vaginal prolapse. The dissertation also extends and improves 
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existing studies by providing: (1) in portable document format (PDF), a detailed 3-D 

interactive anatomic pelvic floor model; and (2) a more accurate anatomically realistic 

finite element model of the pelvic organ prolapse. 

Despite its limitations, we believe this dissertation captures many of the important 

features of the mechanism of posterior vaginal prolapse, and the results support the 

working hypothesis proposed in Chapter 1. 
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CHAPTER 11  

CONCLUSIONS 

 

The major findings of this dissertation are as follows: 

(1) Among the 84 subjects studied, we found a large variation in vaginal dimension 

and shape. No single demographic characteristic explained the variation in 

vaginal dimensions. The average location of the cervical os was to the left side of 

pelvic mid-sagittal plane, the left side of the vagina was wider than the right side, 

on average, and there was more in variation in vaginal dimension and shape 

proximally than distally. (Chapter 2) 

(2) The pelvic floor support system involves about 23 structures that include the 

muscles, ligaments, and fascia of the pelvic floor, bones, blood vessels, and the 

perineum, and the organs it supports. A 3-D interactive portable document file 

(PDF) of pelvic floor model is now possible and actually created, to help visualize 

the detailed structures without any specialized software. (Chapter 3)  

(3) Increased folding (“Kneeling”) of the vagina and an overall downward 

displacement are consistently present in rectocele. Forward protrusion, perineal 

descent and distal widening are sometimes seen as well. (Chapter 4) 

(4) Changes in lateral AVW location were considerably greater than changes in 

vaginal width in the case-control study, both in number of sites affected and the 



 179 

 

effect sizes. These "paravaginal defects" were highly correlated with apical 

descent. (Chapter 5) 

(5) The length of both pairs of apical support ligaments at rest are no different 

between prolapse and normal women at rest; CL ligament elongation (length 

change from rest to Valsalva) was greater in prolapse than normal women, while 

USL was not (at this same sample size); CL exhibits greater differences in the 

ligament length, while USL exhibits larger differences in ligament inclination 

angle when comparing women with normal support and prolapse. (Chapter 6) 

(6) The ventral arcus anatomy is significantly altered in the presence of levator 

defects and architectural distortion. Alterations of these key fixation points will 

change the supportive force direction along the lateral anterior vaginal wall, 

thereby increasing the risk for anterior vaginal wall prolapse. (Chapter 7) 

(7) The combination of levator and apical impairment, along with the posterior 

support impairment, will result in PVP. Increasing IAP will lead to a larger 

prolapse. (Chapters 8 and 9) 

(8) Under 140 cm H2O and with levator 50% impairment, a model with anterior 

support 50% and posterior support 10% impairment will generate a cystocele; and 

a model with same anterior support impairment but posterior support 90% 

impairment will generate a rectocele. Presence of more impairment in posterior 

compartment support reduces the cystocele size, and vice versa. (Chapter 9) 

(9) The development and size of AVP and PVP are not only dependent on a single 

anterior, posterior or apical support impairment: they also depend on the 
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interaction between different combinations of impairments, as well as with organ 

competition. (Chapters 8 and 9)
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CHAPTER 12  

SUGGESTIONS FOR FUTURE RESEARCH 

 

This dissertation provides insights into the biomechanical mechanisms underlying 

the PVP as well as organ competition. It focused on the interaction among the following 

structures: 1) anterior vaginal wall; 2) posterior vaginal wall; 3) cervix; 4) levator ani 

muscle; 5) apical supports; 6) anterior paravaginal supports; 7) posterior paravaginal 

supports; 8) perineal membrane and perineal body. We also investigated the 

biomechanical factors from the change of the above the supporting systems that are 

involved in the development of prolapse and organ competition. However, several 

limitations of current study and some other related factors remaining to be investigated 

warrant further research work. 

First, some regions of the present model need refinement, such as perineal 

membrane, the attachment of the perineal body, and the posterior arcus. The functional 

anatomy of those regions needs to be clarified and implemented in the 3-D FE model. 

Second, more accurate material properties need to be implemented in the model. 

It would be better to measure visco-hyperelastic properties from the living women for the 

apical supports and other tissues, although it may be impossible for the smaller 

connective tissue. We have designed a computer controlled servo-motor driven testing 

apparatus to test in vivo apical supports materials properties. We hope to collect enough 

sample data to analyze the material properties in the next year. 
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Third, we need to investigate the effect of repeatitive loading. With the visco-

hyperelastic material properties provided in the future, it will be possible to simulate the 

effect of repeated loading based on current model by changing the material properties and 

adding loading and unloading cycles. 

Fourth, since we have seen that the vagina has large variations in size and shape, 

and the support system can be abnormal, we need to consider creating models with 

different vaginal dimensions and abnormal geometry, and then simulate the prolapse. 

Other factors that could be considered in future research include the effects of 

childbirth, the effect of aging, the effect of chronic increased intra-abdominal pressure 

caused by chronic coughing, heavy physical activity and obesity, the effects of collagen 

and elastin disorders, the effect of neural muscular dysfunction, as well as the hormonal 

effects, and the effect of tissue adaption over time. 
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APPENDIX A 

 

Below is a video embedded in PDF for instructing how to manipulate the 

interactive 3-D pelvic floor model. The video can be activated by clicking on the image.
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APPENDIX B 

 

The interactive 3-D pelvic floor model was shown in the next page. The 

manipulation can be activated by clicking on the figure. 




	Dissertation_all_1028-v5-video-3Dmodel
	3D_FemalePelvicFloor



