Appendix 2Supporting Information for Chapter 3Cross-propagation in Ni-catalyzed copolymerizations of 3-alkylthiophenes and 2,5-dialkoxybenzenes
Contents
I. Materials
PageI. .
II. General Experimental 114
III. General and Representative Procedures 115
IV. Synthetic Procedures 117
V. NMR Spectra 126
VI. Calibration Curves 147
VII. M_{n} and PDI versus conversion 157
VIII. Small Molecule Studies 158

I. Materials

Flash chromatography was performed on SiliCycle silica gel ($40-63 \mu \mathrm{~m}$) and thin layer chromatography was performed on Merck TLC plates pre-coated with silica gel 60 F254. $i-\mathrm{PrMgCl}\left(2 \mathrm{M}\right.$ in THF) was purchased in 100 mL quantities from Aldrich and $\mathrm{Ni}(\mathrm{cod})_{2}$ was purchased from Strem. All other reagent grade materials and solvents were purchased from Aldrich, Acros, EMD, or Fisher and used without further purification unless otherwise noted. THF was dried and deoxygenated using an Innovative Technology (IT) solvent purification system composed of activated alumina, copper catalyst, and molecular sieves. N-bromosuccinimide was recrystallized from hot water and dried over $\mathrm{P}_{2} \mathrm{O}_{5}$. Decane was distilled from CaH_{2}. Compounds $\mathbf{1 a}{ }^{1}, \mathbf{2 a}{ }^{1}, 1,2$-bis(di-4chlorophenylphosphino) ethane ${ }^{2}$, and 1,2-bis(di-4-methoxyphenylphosphino)ethane ${ }^{2}$, were prepared by literature procedures. Monomers were titrated by the method of Love and Jones ${ }^{3}$ before use.

II. General Experimental

NMR Spectroscopy: Unless otherwise noted, ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, and ${ }^{31} \mathrm{P}$ NMR spectra for all compounds were acquired in CDCl_{3} on a Varian MR400 or a Varian Inova 400 Spectrometer operating at 400, 100, and 161 MHz , respectively. For ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra the chemical shift data are reported in units of $\delta(\mathrm{ppm})$ relative to tetramethylsilane (TMS) and referenced with residual solvent. ${ }^{31} \mathrm{P}$ NMR spectra were referenced to external $\mathrm{H}_{3} \mathrm{PO}_{4}(85 \% \mathrm{aq})$. Multiplicities are reported as follows: singlet (s), doublet (d), doublet of doublets (dd), multiplet (m), and broad resonance (br). Unless otherwise indicated, the ${ }^{1} \mathrm{H},{ }^{31} \mathrm{P}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded at room temperature. Note that integrations for protons on the alkyl chains of some compounds are high due to insufficient relaxation time.

Mass Spectrometry: HRMS data were obtained on a Micromass AutoSpec Ultima Magnetic Sector mass spectrometer.

Gel-Permeation Chromatography: Polymer molecular weights were determined by comparison with polystyrene standards (Varian, EasiCal PS-2 MW 580-377,400) on a Waters 1515 HPLC instrument equipped with Waters Styragel® $(7.8 \times 300 \mathrm{~mm})$ THF HR 0.5 , THF HR 1 , and THF HR 4 type columns in sequence and analyzed with Waters 2487 dual absorbance detector (254 and 350 nm). Samples were dissolved in THF (with mild heating), and passed through a $0.2 \mu \mathrm{~m}$ PTFE filter prior to analysis.

Gas Chromatography: Gas chromatography was carried out using a Shimadzu GC 2010 using a Shimadzu SHRX5 (crossbound 5\% diphenyl - 95\% dimethyl polysiloxane; 15 m , $0.25 \mathrm{mmID}, 0.25 \mu \mathrm{~m} \mathrm{df}$) column.

III. General and Representative Procedures

Representative procedure for obtaining plots of M_{n} and PDI versus conversion

An oven-dried 10 mL flask equipped with a stir bar and a rubber septum was cooled under vacuum and then refilled with N_{2}. Following two more cycles of evacuation and refilling the flask was charged with docosane ($0.1 \mathrm{~mL}, 0.1 \mathrm{M}$ in THF), THF (7.0), 1a ($0.50 \mathrm{~mL}, 0.25 \mathrm{M}, 0.125 \mathrm{mmol}, 1.0$ equiv) and $\mathbf{2 a}(0.29 \mathrm{~mL}, 0.44 \mathrm{M}, 0.125 \mathrm{mmol}, 1.0$ equiv). A solution of $\mathbf{3 b}(0.500 \mathrm{~mL}, 0.0125 \mathrm{mmol} 0.01$ equiv) was injected. Aliquots (\sim 0.2 mL) were withdrawn through the septum and immediately quenched with $5 \mathrm{M} \mathrm{HCl}(\sim$ 1 mL). Each aliquot was then extracted with CHCl_{3} (with mild heating if polymer had precipitated) and a portion analyzed by GC. The remainder was dried over MgSO_{4}, filtered, and then concentrated. The samples were dissolved in THF (with heating) and passed through a $0.2 \mu \mathrm{~m}$ PTFE filter for GPC analysis.

Representative procedure for conducting block copolymerizations

In the glovebox, $1 \mathbf{1 a}(0.55 \mathrm{~mL}, 0.250 \mathrm{M}, 0.125 \mathrm{mmol}, 1.00$ equiv) was combined with THF (11 mL) in a 20 mL vial with a stir bar. A solution of $\mathbf{3 b}(0.5 \mathrm{~mL}, 0.025 \mathrm{M}, 0.0125$ mmol 0.01 equiv) was added with vigorous stirring and the reaction stirred for 3 h . An aliquot $(\sim 0.100 \mathrm{~mL})$ was taken from the reaction, removed from the glovebox, quenched with $5 \mathrm{M} \mathrm{HCl}(1 \mathrm{~mL})$, extracted with $\mathrm{CHCl}_{3}(3 \times 1 \mathrm{~mL})$, the solvent removed in vacuo and the resulting polymer prepared for GPC analysis. A solution of $\mathbf{2 a}(0.260 \mathrm{~mL}, 0.450$ $\mathrm{M}, 0.125 \mathrm{mmol}, 1.00$ equiv) was then added to the reaction and the reaction stirred for an additional 3 h . The reaction was then removed from the glovebox and quenched with 5 M $\mathrm{HCl}(10 \mathrm{~mL})$. It was then extracted with hot $\mathrm{CHCl}_{3}(4 \times 5 \mathrm{~mL})$, and the solvent removed in vacuo. A sample ($\sim 1 \mathrm{mg}$) of the resultant purple solid was then removed for GPC analysis.

Representative procedure for conducting batch copolymerizations

In the glovebox, $\mathbf{1 a}(0.55 \mathrm{~mL}, 0.250 \mathrm{M}, 0.125 \mathrm{mmol}, 1.00$ equiv) and $\mathbf{2 a}(0.26 \mathrm{~mL}, 0.45$ $\mathrm{M}, 0.125 \mathrm{mmol}, 1.00$ equiv) were combined with THF (11 mL) in a 20 mL vial with a stir bar. A solution of $\mathbf{3 b}(0.5 \mathrm{~mL}, 0.025 \mathrm{M}, 0.0125 \mathrm{mmol} 0.01$ equiv) was added with vigorous stirring and the reaction stirred for 4 h . The reaction was then removed from the glovebox and quenched with $5 \mathrm{M} \mathrm{HCl}(10 \mathrm{~mL})$. It was then extracted with hot $\mathrm{CHCl}_{3}(4 \mathrm{x}$ 5 mL), and the solvent removed in vacuo. A sample ($\sim 1 \mathrm{mg}$) of the resultant purple solid was then removed for GPC analysis.

Representative procedure for conducting crossover studies

In the glovebox, $\mathbf{4 b}(0.0198 \mathrm{~g}, 0.0263 \mathrm{mmol}, 1.00$ equiv) was dissolved in THF (1.9 mL) in a 4 mL vial with equipped with a stir bar. Decane $(0.100 \mathrm{~mL}, 0.1 \mathrm{M})$ and dppe (0.0105 $\mathrm{g}, 0.0263 \mathrm{mmol}, 1.00$ equiv) were added and the reaction stirred for 1 min to combine. 1b ($0.087 \mathrm{~mL}, 0.0237 \mathrm{mmol}, 0.90$ equiv) was added and the reaction stirred for 15 min . The reaction was then removed from the glovebox and quenched with $12 \mathrm{MHCl}(1 \mathrm{~mL},) . \mathrm{H}_{2} \mathrm{O}$ $(2 \mathrm{~mL})$ was added and the reaction extracted with $\mathrm{CHCl}_{3}(3 \times 1 \mathrm{~mL})$. The combined organic extracts were then analyzed by GC.

Representative procedure for conducting chain-extension studies

In the glovebox, $\mathbf{4 b}(0.0303 \mathrm{~g}, 0.0402 \mathrm{mmol}, 1.00$ equiv) was dissolved in THF (2.0 mL) in a 4 mL vial with equipped with a stir bar. Decane $(0.100 \mathrm{~mL}, 0.1 \mathrm{M})$ and dppe $(0.0160$ $\mathrm{g}, 0.0402 \mathrm{mmol}, 1.00$ equiv) were added and the reaction stirred for 1 min to combine. $\mathbf{2 b}$ ($0.086 \mathrm{~mL}, 0.037 \mathrm{mmol}, 0.90$ equiv) was added and the reaction stirred for 15 min . The reaction was then removed from the glovebox and quenched with $\mathrm{HCl}(1 \mathrm{~mL}, 12 \mathrm{M}) . \mathrm{H}_{2} \mathrm{O}$ $(2 \mathrm{~mL})$ was added and the reaction extracted with $\mathrm{CHCl}_{3}(3 \times 1 \mathrm{~mL})$. The combined organic extracts were then analyzed by GC.

Representative procedure for conducting competition studies

In the glovebox, $\mathbf{4 b}(0.0303 \mathrm{~g}, 0.0402 \mathrm{mmol}, 1.00$ equiv) was dissolved in THF (2.0 mL) in a 4 mL vial with equipped with a stir bar. Decane $(0.100 \mathrm{~mL}, 0.1 \mathrm{M})$ and dppe $(0.0160$ $\mathrm{g}, 0.0402 \mathrm{mmol}, 1.00$ equiv) were added and the reaction stirred for 1 min to combine. $\mathbf{2 c}$ ($0.086 \mathrm{~mL}, 0.037 \mathrm{mmol}, 0.90$ equiv) was added and the reaction stirred for 15 min . The reaction was then removed from the glovebox and quenched with $\mathrm{HCl}(1 \mathrm{~mL}, 12 \mathrm{M}) . \mathrm{H}_{2} \mathrm{O}$ $(2 \mathrm{~mL})$ was added and the reaction extracted with $\mathrm{CHCl}_{3}(3 \times 1 \mathrm{~mL})$. The combined organic extracts were then analyzed by GC.

IV. Synthetic Procedures

1b
1b: An oven-dried 20 mL Schlenk flask equipped with a stir bar and septum was cooled under vacuum then filled with N_{2}. 3-methylthiophene $(0.0966 \mathrm{~mL}, 1.00 \mathrm{mmol}, 1.00$ equiv) and THF (2.4 mL) were added and the flask cooled to $-78^{\circ} \mathrm{C}$ and equilibrated for $5 \mathrm{~min} . n-\operatorname{BuLi}(0.625 \mathrm{~mL}, 1.6 \mathrm{M}, 1.00 \mathrm{mmol}, 1.00$ equiv) was added dropwise and the reaction maintained at $-78{ }^{\circ} \mathrm{C}$ for 3 h . The solution was then cannula transferred to a second vacuum-dried, N_{2} filled 20 mL Schlenk flask equipped with a stir bar and septum containing MgBr_{2} at $-78{ }^{\circ} \mathrm{C}$ and the reaction maintained at $-78{ }^{\circ} \mathrm{C}$ for 30 min , then warmed to rt .

S1
2-bromo-3-methylthiophene (S1): An oven-dried 100 mL Schlenk flask equipped with a stir bar and septum was cooled under a positive flow of N_{2}, then 3-methylthiophene ($0.48 \mathrm{~mL}, 5.0 \mathrm{mmol}, 1.00$ equiv) and THF (10 mL) were added. The flask was then cooled to $0{ }^{\circ} \mathrm{C}$ for 5 min , after which NBS ($0.9293 \mathrm{~g}, 5.25 \mathrm{~mol}, 1.05$ equiv) was added under positive N_{2}. After 6 h the reaction was quenched with 10% aq $\mathrm{Na}_{2} \mathrm{CO}_{3}(10 \mathrm{~mL})$ and extracted with hexanes ($3 \times 10 \mathrm{~mL}$). The combined organics were washed with brine (1 x 15 mL), dried over decolorizing carbon and MgSO_{4}, filtered and concentrated in vacuo. The resulting yellow oil was chromatographed through silica gel using hexanes as the eluent then purified via distillation to yield 2-bromo-3-methylthiophene (S1) (0.4301 g , 49% yield) as a clear oil. HRMS (EI): Calcd. for $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{BrS}$ [M+] 175.92953; found, 175.9292.

2-bromo-3-methyl-5-iodothiophene (S2): An oven-dried 50 mL Schlenk flask equipped with a stir bar and septum was cooled under a positive flow of $\mathrm{N}_{2} . \mathbf{S} 1(0.4301 \mathrm{~g}, 2.43$ mmol, 1.00 equiv) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ were added to the flask and the flask was cooled
to $0{ }^{\circ} \mathrm{C} . \mathrm{I}_{2}\left(0.3390 \mathrm{~g}, 1.34 \mathrm{mmol}, 0.550\right.$ equiv) and $\mathrm{PhI}(\mathrm{OAc})_{2}(0.4450 \mathrm{~g}, 1.34 \mathrm{mmol}$, 0.550 equiv) were added under positive N_{2}. The reaction was stirred at $0{ }^{\circ} \mathrm{C}$ for 4 h in the dark after which it was quenched with saturated aq $\mathrm{Na}_{2} \mathrm{SO}_{3}(\sim 10 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organics were then washed with brine ($1 \times 20 \mathrm{~mL}$), dried over decolorizing carbon and MgSO_{4}, filtered and concentrated in vacuo. The resulting yellow oil was chromatographed through silica using hexanes as the eluent and then purified via distillation to yield 2-bromo-3-methyl-5-iodothiophene (S2) (2.40 g, 61% yield) as a clear oil. HRMS (EI): Calcd. for $\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{BrIS}$ [M+] 301.82618; found, 301.8252.

1c: $\mathbf{S 2}(0.1577 \mathrm{~g}, 0.520 \mathrm{mmol}, 1.05$ equiv) was dissolved in THF $(1.75 \mathrm{~mL})$ in a 25 mL Schlenk tube equipped with a stir bar and septum under an N_{2} atmosphere. The tube was sealed and cooled to $0{ }^{\circ} \mathrm{C} . i-\mathrm{PrMgCl}(0.250 \mathrm{~mL}, 0.500 \mathrm{mmol}, 1.00$ equiv $)$ was added under N_{2} and the reaction stirred at to $0{ }^{\circ} \mathrm{C}$ for 30 min , then warmed to rt .

2b: Bromo-2,5-dimethoxybenzene ($0.6512 \mathrm{~g}, 3.00 \mathrm{mmol}, 1.00$ equiv) and $\mathrm{Mg}(0.0729 \mathrm{~g}$, 3.00 mmol , 1.0 equiv) were combined in THF (6 mL) in a 25 mL Schlenk tube equipped with a stir bar and septum under an N_{2} atmosphere. The tube was sonicated for 5 h then heated to $65{ }^{\circ} \mathrm{C}$ overnight.

1,4-dibromo-2,5-dimethoxybenzene (S3): p-Dimethoxybenzene ($1.000 \mathrm{~g}, 7.237 \mathrm{mmol}$, 1.00 equiv) was dissolved in $15 \mathrm{~mL} \mathrm{CHCl}_{3}$ in a 30 mL flask equipped with a stir bar. The flask was cooled to $0{ }^{\circ} \mathrm{C}$ and $\mathrm{Br}_{2}(0.9327 \mathrm{~mL}, 1.809 \mathrm{mmol}, 2.5$ equiv) was added dropwise. After 2 h the reaction was quenched with aq $\mathrm{Na}_{2} \mathrm{SO}_{3}(\sim 10 \mathrm{~mL})$ then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 10 \mathrm{~mL})$ and the solvent removed in vacuo. The resulting white powder was recrystallized from $\mathrm{CHCl}_{3} / \mathrm{EtOH}$ and dried under vacuum to yield 1,4-dibromo-2,5-
dimethoxybenzene ($1.8208 \mathrm{~g}, 85 \%$) as white crystals. HRMS (EI): Calcd. for $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{Br}_{2} \mathrm{O}_{2}$ [M+] 293.8891; found, 283.8892.

5

2-(2,5-dimethoxyphenyl)-4-methylthiophene (5): A 50 mL oven-dried Schlenk flask equipped with stir bar and septum was cooled under vacuum. Once cool, the flask was filled with N_{2} then re-evacuated. This procedure was repeated twice, then the flask was refilled with N_{2} and charged with 3-methylthiophene ($0.193 \mathrm{~mL}, 2.0 \mathrm{mmol}, 1.0$ equiv). THF (4 mL) was added and the flask cooled to $0^{\circ} \mathrm{C}$. BuLi $(1.25 \mathrm{~mL}, 2.0 \mathrm{mmol}, 1.0$ equiv) was added dropwise and the reaction maintained at $0^{\circ} \mathrm{C}$ for 2 h . A solution of $\mathrm{ZnCl}_{2}(0.2726 \mathrm{~g}, 2.0 \mathrm{mmol}, 1.0$ equiv) in THF (4 mL) was added to the flask and the solution stirred at $0{ }^{\circ} \mathrm{C}$ for 30 min . Then a solution of 1-bromo-2,5-dimethoxybenzene ($0.301 \mathrm{~mL}, 2.0 \mathrm{mmol}, 1.0$ equiv) and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.0920 \mathrm{~g}, 0.08 \mathrm{mmol})$ in THF (8 mL) was added and the reaction brought to $60{ }^{\circ} \mathrm{C}$ and stirred overnight. The reaction was cooled to rt then quenched with $\mathrm{H}_{2} \mathrm{SO}_{4}\left(10 \mathrm{~mL}, 5 \%\right.$ in $\left.\mathrm{H}_{2} \mathrm{O}\right)$, then extracted with $\mathrm{Et}_{2} \mathrm{O}$ (3 x 10 mL). The combined organics were washed with 10 mL brine and dried over MgSO_{4}, filtered and the solvent removed in vacuo. The resulting brown oil was chromatographed on silica eluting with 5% EtOAc in hexanes, then p-dimethoxybenzene removed by sublimation to yield $5\left(0.0258 \mathrm{~g}, 11 \%\right.$ yield) as a clear oil. HRMS (EI): $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+]$ 234.0715; found, 234.0707.

5,5'-(2,5-dimethoxy-1,4-phenylene)bis(3-methylthiophene) (6): A 50 mL oven-dried Schlenk flask equipped with stir bar and septum was cooled under vacuum. Once cool, the flask was filled with N_{2} then re-evacuated. This procedure was repeated twice, then the flask was refilled with N_{2} and charged with 3-methylthiophene ($0.193 \mathrm{~mL}, 2.0 \mathrm{mmol}$, 1.0 equiv). THF (4 mL) was added and the flask cooled to $0{ }^{\circ} \mathrm{C}$. BuLi ($1.25 \mathrm{~mL}, 2.0$ $\mathrm{mmol}, 1.0$ equiv) was added dropwise and the reaction maintained at $0^{\circ} \mathrm{C}$ for 3 h . A solution of $\mathrm{ZnCl}_{2}(0.2726 \mathrm{~g}, 2.0 \mathrm{mmol}, 1.0$ equiv) in THF (4 mL) was added to the flask and the solution stirred at $0{ }^{\circ} \mathrm{C}$ for 30 min . Then a solution of 1,4-dibromo-2,5dimethoxybenzene ($0.2950 \mathrm{~g}, 1.0 \mathrm{mmol}, 0.5$ equiv) and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.0920 \mathrm{~g}, 0.08 \mathrm{mmol})$ in THF (8 mL) was added and the reaction brought to $60^{\circ} \mathrm{C}$ and stirred for 48 h . The reaction was cooled to rt then quenched with $\mathrm{H}_{2} \mathrm{SO}_{4}\left(20 \mathrm{~mL}, 5 \%\right.$ in $\left.\mathrm{H}_{2} \mathrm{O}\right)$, then extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 15 \mathrm{~mL})$. The combined organics were washed with 10 mL brine and dried over MgSO_{4}, filtered and the solvent removed in vacuo. The resulting yellow solid was
chromatographed on silica eluting with $5 \% \mathrm{EtOAc}$ in hexanes, then recrystallized from hot CHCl_{3} to yield 6 ($0.0410 \mathrm{~g}, 12 \%$ yield) as yellow powder. HRMS (EI): $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{~S}_{2}$ $[\mathrm{M}+] 330.0748$; found, 330.0743 .

2-(4-bromo-2,5-dimethoxyphenyl)-4-methylthiophene (7): A 50 mL oven-dried Schlenk flask equipped with stir bar and septum was cooled under vacuum. Once cool, the flask was filled with N_{2} then re-evacuated. This was repeated twice, then the flask was refilled with N_{2} and charged with 3-methylthiophene $(0.193 \mathrm{~mL}, 2.00 \mathrm{mmol}, 1.0$ equiv). THF (4 mL) was added and the flask cooled to $0^{\circ} \mathrm{C} . \mathrm{BuLi}(1.25 \mathrm{~mL}, 2.0 \mathrm{mmol}$, 1.0 equiv) was added dropwise and the reaction maintained at $0^{\circ} \mathrm{C}$ for 2 h . A solution of $\mathrm{ZnCl}_{2}(0.2726 \mathrm{~g}, 2.00 \mathrm{mmol}, 1.0$ equiv) in THF (4 mL) was added to the flask and the solution stirred at $0^{\circ} \mathrm{C}$ for 30 min . Then a solution of $\mathbf{S 3}(0.6000 \mathrm{~g}, 1.0 \mathrm{mmol}, 1.0$ equiv) and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.0920 \mathrm{~g}, 0.08 \mathrm{mmol})$ in THF $(8 \mathrm{~mL})$ was added and the reaction brought to $60{ }^{\circ} \mathrm{C}$ and stirred for 24 h . The reaction was cooled to rt then quenched with $\mathrm{H}_{2} \mathrm{SO}_{4}(15$ $\mathrm{mL}, 5 \%$ in $\mathrm{H}_{2} \mathrm{O}$), then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organics were washed with brine (10 mL) and dried over MgSO_{4}, filtered and the solvent removed in vacuo. The resulting yellow solid was chromatographed on silica eluting with 15% $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ in hexanes then residual p-dimethoxybenzene removed by sublimation and the resulting white solid recrystallized from $\mathrm{CHCl}_{3} / \mathrm{CH}_{3} \mathrm{OH}$ to yield $7(0.0940 \mathrm{~g}, 15 \%$ yield) as a colorless wax. HRMS (EI): $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{BrO}_{2} \mathrm{~S}[\mathrm{M}+] 311.9820$; found, 311.9824 .

2,2',5,5'-tetramethoxy-1,1'-biphenyl (8): A 25 mL oven-dried Schlenk flask equipped with a septum and stir bar was cooled under N_{2}. The vessel was charged with 1-bromo-2,5-dimethoxybenzene ($0.3255 \mathrm{~g}, 1.50 \mathrm{mmol}, 1.0$ equiv), 2,5-dimethoxyphenyl boronic acid ($0.3275 \mathrm{~g}, 1.80 \mathrm{mmol}, 1.2$ equiv), $\mathrm{Cs}_{2} \mathrm{CO}_{3}(1.466 \mathrm{~g}, 4.50 \mathrm{mmol}, 3.0$ equiv), $\mathrm{Pd}(\mathrm{OAc})_{2}(0.0168 \mathrm{~g}, 0.075 \mathrm{mmol} 0.05$ equiv), (2-biphenyl)di-tert-butylphosphine (0.0223 $\mathrm{g}, 0.075 \mathrm{mmol}, 0.05$ equiv) and $\mathrm{PhMe}(7 \mathrm{~mL})$. The solution was sparged with N_{2} for 10 min , then heated to $80{ }^{\circ} \mathrm{C}$ overnight. The reaction was cooled to rt , then $\mathrm{H}_{2} \mathrm{O}(15 \mathrm{~mL})$ was added and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 15 \mathrm{~mL})$. The combined organics were washed with brine (10 mL) then dried over MgSO_{4} and the volatiles removed in vacuo. The resultant oil was chromatographed on silica eluting with $15 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}$ in hexanes to yield a white solid ($0.154 \mathrm{~g}, 37 \%$). HRMS (APCI): $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]+275.1287$; found,
275.1278.

2,2',2',5,5',5'-hexamethoxy-1,1':4',1"-terphenyl (9): A 25 mL oven-dried Schlenk flask which had been cooled under vacuum then filled with N_{2} was equipped with a stirbar and septum was charged with $\mathbf{S 3}(0.074 \mathrm{~g}, 0.25 \mathrm{mmol}, 1.0$ equiv), 2,5dimethoxyphenylmagnesium bromide ($1.2 \mathrm{~mL}, 0.42 \mathrm{M}$ in THF, $0.50 \mathrm{mmol}, 2.1$ equiv), [1,3-bis(2,6-Diisopropylphenyl)imidazol-2-ylidene] (3-chloropyridyl)palladium(II) dichloride ($7.4 \mathrm{mg}, 0.0109 \mathrm{mmol}, 0.044$ equiv) and THF (4 mL). The flask was then heated to $65{ }^{\circ} \mathrm{C}$ overnight. After 12 h the flask was cooled to rt and saturated aq $\mathrm{NH}_{4} \mathrm{Cl}$ $(10 \mathrm{~mL})$ added then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{x} 10 \mathrm{~mL})$. The combined organics were washed with brine (10 mL) then dried over MgSO_{4}. The solvent was removed en vacuo and the residue chromatographed on silica eluting with $15 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}$ in hexanes. HRMS (APCI): $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]+411.1802$; found, 411.1800 .

4,4'-dibromo-2,2',5,5'-tetramethoxy-1,1'-biphenyl (S4): Bromo-2,5-dimethoxybenzene ($0.181 \mathrm{~mL}, 1.2 \mathrm{mmol}, 1.2$ equiv) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ in a 25 mL roundbottom flask equipped with a stir bar. $\mathrm{FeCl}_{3}(0.1622 \mathrm{~g}, 1.00 \mathrm{mmol}, 1.0$ equiv) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added to the flask and the reaction placed under N_{2} overnight. The reaction was quenched with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$, extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3×15 mL) and the combined organics dried over MgSO_{4}. The solvent was removed in vacuo to yield a red powder, which was chromatographed through silica eluting with $20 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}$ in hexanes to yield a grayish powder, which was recrystallized from hot MeOH to yield a white powder ($0.1142 \mathrm{~g}, 44 \%$) HRMS (EI): $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{Br}_{2} \mathrm{O}_{4}$ [M+] 429.9413; found, 429.9430.

4-bromo-2,2',5,5'-tetramethoxy-1,1'-biphenyl (10): A 25 mL oven-dried Schlenk flask
equipped with stir bar and septum was cooled under vacuum. Once cool the flask was filled with N_{2}, charged with $\mathbf{S} 4(0.1865 \mathrm{~g}, 0.4316 \mathrm{mmol}, 1.0$ equiv), re-evacuated and filled with N_{2}. THF (4 mL) was added and the flask cooled to $0{ }^{\circ} \mathrm{C}$, then n - $\mathrm{BuLi}(0.27$ $\mathrm{mL}, 0.4316 \mathrm{mmol}, 1.0$ equiv) was added and the reaction kept at $0{ }^{\circ} \mathrm{C}$ for 2 h . The reaction was quenched with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ then extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 5 \mathrm{~mL})$, the combined organics were washed with brine (5 mL) then dried over MgSO_{4} and solvent removed in vacuo to yield a yellow wax. The product was chromatographed on silica eluting with 9:1 hexanes: EtOAc to yield 10 as a white powder ($0.0166 \mathrm{~g}, 11 \%$). HRMS $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{BrO}_{4}[\mathrm{M}+] 352.0310$; found, 352.0313 .

2-bromo-5-(2,5-dimethoxyphenyl)-3-methylthiophene (11) An oven-dried 20 mL Schlenk flask equipped with a stir bar was cooled under N_{2} then charged with 5 (0.1671 $\mathrm{g}, 0.713 \mathrm{mmol}, 1.00$ equiv) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.5 \mathrm{~mL})$ under N_{2}. The flask was cooled to $0{ }^{\circ} \mathrm{C}$ then NBS ($0.1262 \mathrm{~g}, 0.713 \mathrm{mmol}, 1.00$ equiv) was added and the reaction kept at to $0{ }^{\circ} \mathrm{C}$ for 3 h . The reaction was quenched with aq $\mathrm{Na}_{2} \mathrm{CO}_{3}(10 \mathrm{~mL})$ then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 x 5 mL). The combined organics were washed with aq $\mathrm{Na}_{2} \mathrm{SO}_{3}(10 \mathrm{~mL})$, brine (10 mL), then dried over MgSO_{4}. The solvent was removed in vacuo and the residue chromatographed on silica eluting with $10 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}$ in hexanes to yield $\mathbf{1 1}$ as a colorless wax ($0.2041 \mathrm{~g}, 90 \%$ yield). HRMS (EI): $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{BrO}_{2} \mathrm{~S}[\mathrm{M}+] 311.9820$; found, 311.9824.

2-bromo-5-(4-bromo-2,5-dimethoxyphenyl)-3-methylthiophene (S5): 11 (0.0711 g, $0.227 \mathrm{mmol}, 1.00$ equiv) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ in an oven dried 50 mL Schlenk flask equipped with a stir bar under N_{2}. The flask was cooled to $0^{\circ} \mathrm{C}$ then NBS ($0.0441 \mathrm{~g}, 0.250 \mathrm{mmol}, 1.1$ equiv) was added and the reaction kept at to $0^{\circ} \mathrm{C}$ for 2 h . The reaction was quenched with aq $\mathrm{Na}_{2} \mathrm{CO}_{3}(5 \mathrm{~mL})$ then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$. The organics were washed with brine (5 mL) then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed in vacuo and the residue chromatographed on silica eluting with $15 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}$ in hexanes to yield $\mathbf{S 5}$ as a white powder ($0.0594 \mathrm{~g}, 67 \%$ yield). HRMS (EI): $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{Br}_{2} \mathrm{O}_{2} \mathrm{~S}$ [M+] 389.8925; found, 389.8922.

S6: In the glovebox an oven-dried 20 mL vial was equipped with a stir bar and charged with $\mathrm{Ni}(\operatorname{cod})_{2}\left(550.1 \mathrm{mg}, 2.00 \mathrm{mmol}, 1.0\right.$ equiv), $\mathrm{PPh}_{3}(1.0490 \mathrm{~g}, 4.00 \mathrm{mmol}, 2.0$ equiv) and $\mathrm{PhMe}(6.0 \mathrm{~mL})$. 2-Bromoanisole ($0.374 \mathrm{~mL}, 3.00 \mathrm{mmol}, 1.5$ equiv) was added by syringe and the solution was allowed to stir at rt for 45 min . The product was precipitated by adding hexanes (20 mL), cooled to $-35^{\circ} \mathrm{C}$ for 15 min then collected by filtration and washed with hexanes (20 mL) and cold $\mathrm{MeOH}(15 \mathrm{~mL})$ to give 1.2740 of $\mathbf{S 6}$ as a yellow solid (83% yield). The product is air-stable.

3a In the glovebox an oven-dried 20 mL vial was equipped with a stir bar and charged with S6 ($0.250 \mathrm{~g}, 0.325 \mathrm{mmol}, 1.00$ equiv) and THF (4 mL). 1,2-Bis(di-4chlorophenylphosphino)ethane ($0.1827 \mathrm{~g}, 0.341 \mathrm{mmol}, 1.05$ equiv) was added and the reaction stirred for 20 min , then hexanes (15 mL) was added and the vial cooled to $-35^{\circ} \mathrm{C}$ for 15 min . The yellow precipitate was collected by filtration and washed with hexanes $(20 \mathrm{~mL})$. The product was then recrystallized from THF/hexanes to yield orange needles ($0.2356 \mathrm{~g}, 93 \%$).

3b: In the glovebox an oven-dried 20 mL vial was equipped with a stir bar and charged with S6 ($0.250 \mathrm{~g}, \quad 0.325 \mathrm{mmol}, 1.00$ equiv) and THF (4 mL). 1,2$\operatorname{Bis}($ diphenylphosphino) ethane ($0.1422 \mathrm{~g}, 0.357 \mathrm{mmol}, 1.10$ equiv) was added and the reaction stirred for 20 min , then hexanes (15 mL) was added and the vial cooled to $-35^{\circ} \mathrm{C}$ for 15 min . The yellow precipitate was collected by filtration and washed with hexanes $(10 \mathrm{~mL})$ and cold $\mathrm{Et}_{2} \mathrm{O}$. The product was then recrystallized from $\mathrm{THF} /$ hexanes to yield orange needles. ($0.1629 \mathrm{~g}, 78$ \%)

3c: In the glovebox an oven-dried 20 mL vial was equipped with a stir bar and charged with S6 ($0.250 \mathrm{~g}, 0.325 \mathrm{mmol}, 1.00$ equiv) and THF (4 mL). 1,2-Bis(di-4methoxyphenylphosphino) ethane ($0.1767 \mathrm{~g}, 0.341 \mathrm{mmol}, 1.05$ equiv) was added and the reaction stirred for 20 min , then hexanes (15 mL) was added and the vial cooled to $-35^{\circ} \mathrm{C}$ for 15 min . The yellow precipitate was collected by filtration and washed with hexanes $(20 \mathrm{~mL})$ to yield a yellow powder. ($0.2213 \mathrm{~g}, 89 \%$).

S7: In the glovebox, an oven-dried 20 mL vial was equipped with a stir bar and charged with $\mathrm{Ni}(\operatorname{cod})_{2}\left(0.6090 \mathrm{~g}, 2.21 \mathrm{mmol}, 1.00\right.$ equiv), $\mathrm{PPh}_{3}(1.1613 \mathrm{~g}, 4.42 \mathrm{mmol}, 2.00$ equiv) and $\mathrm{PhMe}(10 \mathrm{~mL})$. A solution of $\mathbf{S 3}(0.8749 \mathrm{~g}, 3.33 \mathrm{mmol}, 1.5$ equiv) in 1:1 THF:PhMe $(4 \mathrm{~mL})$ was added to the vial and the mixture stirred for 1 h . Then 5 mL of hexanes was added to the reaction and the resulting suspension triturated. The reaction was then filtered and washed with hexanes ($3 \times 20 \mathrm{~mL}$) then cold $\mathrm{MeOH}(2 \times 20 \mathrm{~mL})$ and the resulting yellow powder dried in vacuo ($1.1628 \mathrm{~g}, 60 \%$).

4a: In the glovebox an oven-dried 20 mL vial was equipped with a stir bar and charged with $\mathbf{S 7}(0.300 \mathrm{~g}, 0.341 \mathrm{mmol}, 1.00$ equiv) and THF (4 mL). 1,2-bis(di-4chlorophenylphosphino)ethane ($0.1857 \mathrm{~g}, 0.358 \mathrm{mmol}, 1.05$ equiv) was added and the reaction stirred for 30 min , then hexanes (16 mL) was added. The yellow precipitate was collected by filtration and recrystallized from THF/hexanes to yield a yellow powder ($0.2233 \mathrm{~g}, 75 \%$).

4b: In the glovebox an oven-dried 20 mL vial was equipped with a stir bar and charged with $\mathbf{S 7}(0.2500 \mathrm{~g}, 0.2843 \mathrm{mmol}, 1.00$ equiv) and THF (7 mL). A solution of 1,2bis(diphenylphosphino)ethane ($0.1132 \mathrm{~g}, 0.2843 \mathrm{mmol}, 1.00$ equiv) in THF (1 mL)was added and the reaction stirred for 10 min , then hexanes (10 mL) was added and the vial cooled to $-35{ }^{\circ} \mathrm{C}$ for 15 min .. The yellow precipitate was collected by filtration and washed with hexanes $(20 \mathrm{~mL})$ to yield a yellow powder $(0.1677 \mathrm{~g}, 78 \%)$.

4c: In the glovebox an oven-dried 20 mL vial was equipped with a stir bar and charged with $\mathbf{S 7}(0.300 \mathrm{~g}, 0.341 \mathrm{mmol}, 1.00$ equiv) and THF (4 mL). 1,2-bis(di-4methoxyphenylphosphino) ethane ($0.1910 \mathrm{~g}, 0.358 \mathrm{mmol}, 1.05$ equiv) was added and the reaction stirred for 30 min , then hexanes $(16 \mathrm{~mL})$ was added. The yellow precipitate was collected by filtration and recrystallized from THF/hexanes to yield a yellow powder ($0.1947 \mathrm{~g}, 64$ \%).

V. NMR Spectra

S1

Figure $\mathbf{S 1}{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for $\mathbf{S 1}$
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.15(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.18(\mathrm{~s}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 137.112$, 129.188, 124.969, 109.212, 15.063.

Figure $\mathbf{S 2}{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for $\mathbf{S 2}$
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.938(\mathrm{~s}, 1 \mathrm{H}), 2.145(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 139.317,138.866,112.106,70.800,14.794$.

Figure $\mathbf{S 3}{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for $\mathbf{S 3}$
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.096(\mathrm{~s}, 2 \mathrm{H}), 3.844(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 150.468,117.060,110.439,56.986$.

* denotes $\mathrm{H}_{2} \mathrm{O}$ present in solvent

Figure $\mathbf{S 5}{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for 5
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.316(\mathrm{~s}, 1 \mathrm{H}), 7.178(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.914$ (br, 1H) $6.896(\mathrm{~s}, 1 \mathrm{H}), 6.803(\mathrm{dd}, J=5.6,2.8 \mathrm{~Hz}), 3.874(\mathrm{~s}, 3 \mathrm{H}), 3.817(\mathrm{~s}, 3 \mathrm{H}), 2.305(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 153.682,149.786,138.053,136.443,126.548,123.377$, $113.345,113.026,112.688,110.270,56.210,55.709,15.125$.

Figure $\mathbf{S 6}{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for $\mathbf{S 1 1}$
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.153(\mathrm{~s}, 1 \mathrm{H}), 7.123(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.908(\mathrm{~d}, J=9.2$ $\mathrm{Hz}, 1 \mathrm{H}), 6.801(\mathrm{dd}, J=8.8,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.878(\mathrm{~s}, 3 \mathrm{H}), 3.808(\mathrm{~s}, 3 \mathrm{H}), 2.217(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 150.164,150.102,138.323$, 137.537, 128.187, 123.371, $121.395,117.265,112.023,110.260,56.891,56.433,15.816$.

* denotes $\mathrm{H}_{2} \mathrm{O}$ present in solvent

Figure $\mathbf{S} 7{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for 7
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.294(\mathrm{~s}, 1 \mathrm{H}), 7.143(\mathrm{~s}, 1 \mathrm{H}), 7.127$ ($\left.\mathrm{s}, 1 \mathrm{H}\right), 6.919(\mathrm{~s}, 1 \mathrm{H})$, $3.886(\mathrm{~s}, 3 \mathrm{H}), 3.853(\mathrm{~s}, 3 \mathrm{H}), 2.296(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 150.164$, 150.102, 138.323, 137.537, 128.187, 123.371, 121.395, 117.265, 112.023, 110.260, 56.891, 56.433, 15.816

Figure $\mathbf{S 8}{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for $\mathbf{S 5}$
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.137(\mathrm{~s}, 2 \mathrm{H}), 7.065(\mathrm{~s}, 1 \mathrm{H}), 3.890(\mathrm{~s}, 3 \mathrm{H}), 3.869(\mathrm{~s}, 3 \mathrm{H})$, $2.220(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 150.277,149.816,137.494,136.684$, 126.723, 122/488, 117.319, 110.756, 110.717, 110.663, 56.898, 56.433, 15.219.

Figure $\mathbf{S 9}{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for $\mathbf{6}$
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.338$ (s, 2H), 7.203 (s, 2H), 6.919 (s, 2H), 3.933 (s, 6H), $2.310(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.970,138.843,137.510,127.897$, 122.961, 121.163, 112.146, 56.391, 15.808.

* denotes $\mathrm{H}_{2} \mathrm{O}$ present in solvent

Figure S10 ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for 9
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.910(\mathrm{~m}, 8 \mathrm{H}), 3.787(\mathrm{~s}, 6 \mathrm{H}), 3.761(\mathrm{~s}, 6 \mathrm{H}), 3.717(\mathrm{~s}, 6 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.363,151.370,150.717,128.716,127.273,117.340$, 115.126, 113.406, 112.533, 56.517, 56.476, 55.473.

Figure $\mathbf{S 1 1}{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for $\mathbf{1 0}$
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.242(\mathrm{~s}, 1 \mathrm{H}), 7.149(\mathrm{~s}, 1 \mathrm{H}), 6.828(\mathrm{~m}, 3 \mathrm{H}), 3.830(\mathrm{~s}, 3 \mathrm{H})$, $3.775(\mathrm{~s}, 3 \mathrm{H}), 3.719(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.325,151.358,151,138$, $149,813,127.808,127.512,17.158,116.816,115.399,113.467,112.453,110.558$, 56.840, 56.597, 56.453, 55.735.

* denotes $\mathrm{H}_{2} \mathrm{O}$ present in solvent

Figure $\mathbf{S 1 2}{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for $\mathbf{S 4}$
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.165(\mathrm{~s}, 2 \mathrm{H}), 6.813(\mathrm{~s}, 2 \mathrm{H}), 3.848(\mathrm{~s}, 6 \mathrm{H}), 3.728(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 151.279,149.923,126.726,116.958,115.355,111.034$, 56.941, 56.603.

* denotes $\mathrm{H}_{2} \mathrm{O}$ present in solvent

Figure S13. ${ }^{1} \mathrm{H},{ }^{31} \mathrm{P}$ and ${ }^{13} \mathrm{C}$ NMR spectra for $\mathbf{S 6}$
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 7.61$ (br, 12 H), 7.31 (br m, 19 H), 6.24 (m, 2H), 5.19 (br, 1 H), 3.06 (br, 3H). ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 22.42$ (s). ${ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 134.60,134.54,134.49,132.70,132.48,132.27,129.26,127.40,127.13$, 127.31, 123.20, 119.46, 108.11.

Figure S14. ${ }^{1} \mathrm{H},{ }^{31} \mathrm{P}$ NMR spectra for 3a
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 8.299(\mathrm{~s}, 2 \mathrm{H}), 8.109(\mathrm{~s}, 2 \mathrm{H}), 7.562(\mathrm{br}, 8 \mathrm{H}), 7.057(\mathrm{~s}, 4 \mathrm{H}) 6.662(\mathrm{br}, 4 \mathrm{H})$ $5.989(\mathrm{~s}, 1 \mathrm{H}), 3.657(\mathrm{~s}, 1 \mathrm{H}), 3.282(\mathrm{~s}, 2 \mathrm{H}) 2.211(\mathrm{br}, 4 \mathrm{H}) 1.821(\mathrm{~s}, 1 \mathrm{H}) 1.521(\mathrm{~s}, 2 \mathrm{H}) 1.267(\mathrm{~s}, 1 \mathrm{H}){ }^{31} \mathrm{P}$ NMR (162 MHz, $\mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 57.613(\mathrm{~d}, J=25 \mathrm{~Hz}), 39.637(\mathrm{~d}, J=25 \mathrm{~Hz})$

Figure S15. ${ }^{1} \mathrm{H},{ }^{31} \mathrm{P}$ and ${ }^{13} \mathrm{C}$, NMR spectra for 3b
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 8.38(\mathrm{~s}, 1 \mathrm{H}), 8.22(\mathrm{~s}, 2 \mathrm{H}), 7.58(\mathrm{br} \mathrm{m}, 12 \mathrm{H}), 7.25(\mathrm{~s}, 1 \mathrm{H}), 7.11(\mathrm{~m}, 3 \mathrm{H})$, 6.76 (br, 2H), $6.61(\mathrm{br}, 1 \mathrm{H}), 6.49(\mathrm{br}, 1 \mathrm{H}), 5.91(\mathrm{br}, 1 \mathrm{H}) 3.25(\mathrm{br} 3 \mathrm{H}), 2.24$ (br m, 4H). ${ }^{31} \mathrm{P}$ NMR (162 $\left.\mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 57.64(\mathrm{~d}, J=27.3 \mathrm{~Hz}), 40.75(\mathrm{~d}, J=27.3 \mathrm{~Hz}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 161.7$, 137.51, 135.03, 134.91, 134.74, 134.63, 132.67, 132.57, 131.58, 131.50, 131.11, 130.13, 129.56, 128.92, $128.82,128.73,128.28,128.18,127.30,127.20,123.57,120.18,108.17,28.12\left(\mathrm{dd}, J_{P C}=26.4,20.7 \mathrm{~Hz}\right)$, $23.2\left(\mathrm{dd}, J_{P C}=12.5,11.7 \mathrm{~Hz}\right)$.

Figure S16. ${ }^{1} \mathrm{H},{ }^{31} \mathrm{P}$ NMR spectra for $\mathbf{3 c}$
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 8.289(\mathrm{t}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.109(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.549(\mathrm{t}, J=9.2 \mathrm{~Hz}, 2$ H), $7.086(\mathrm{~m}, 6 \mathrm{H}), 6.651(\mathrm{~m}, 3 \mathrm{H}), 5.981(\mathrm{~m}, 1 \mathrm{H}) 3.896(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.829(\mathrm{~s}, 2 \mathrm{H}), 3.729(\mathrm{~s}, 2 \mathrm{H})$, $3.302(\mathrm{~s}, 2 \mathrm{H}) .{ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 56.911(\mathrm{~d}, J=32 \mathrm{~Hz}), 38.602(\mathrm{~d}, J=32 \mathrm{~Hz})$

Figure S17. ${ }^{1} \mathrm{H},{ }^{31} \mathrm{P}$ NMR spectra for $\mathbf{S} 7$
${ }^{1} \mathrm{H}$ NMR $\left.\left.\left(400 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right) \delta 7.685(\mathrm{br}, 10 \mathrm{H}), 7.355(\mathrm{~m}, 20 \mathrm{H}) 6.589(\mathrm{~s}, 1 \mathrm{H}), 5.393\right) \mathrm{s}, 1 \mathrm{H}\right) 3.312(\mathrm{~s}$, $2 \mathrm{H}), 3.161(\mathrm{~s}, 2 \mathrm{H}), 2.780(\mathrm{~m}, 6 \mathrm{H}), 2.295(\mathrm{~s}, 2 \mathrm{H}) .{ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 23.469$

Figure S18. ${ }^{1} \mathrm{H},{ }^{31} \mathrm{P}$ NMR spectra for $\mathbf{4 a}$
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.242(\mathrm{t}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 8.051(\mathrm{t}, J=10.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.544(\mathrm{~m}, 8 \mathrm{H}), 7.167$ (d, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.761(\mathrm{t}, J=9.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.686(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.136(\mathrm{~s}, 1 \mathrm{H}) 3.575(\mathrm{~s}, 3 \mathrm{H}), 3.248$ (s 3 H$).{ }^{31} \mathrm{P}$ NMR $\left(162 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 60.613(\mathrm{~d}, J=25 \mathrm{~Hz}), 42.637(\mathrm{~d}, J=25 \mathrm{~Hz})$

Figure S19. ${ }^{1} \mathrm{H}$, ${ }^{31} \mathrm{P}$ NMR spectra for $\mathbf{4 b}$
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.355(\mathrm{~s}, 2 \mathrm{H}), 8.199(\mathrm{~s}, 2 \mathrm{H}), 7.96(\mathrm{br}, 2 \mathrm{H}) 7.522(\mathrm{~m}, 16 \mathrm{H}), 7.290(\mathrm{br}, 3 \mathrm{H})$, $7.120(\mathrm{~s}, 2 \mathrm{H}), 6.783(2,3 \mathrm{H}), 6.019(\mathrm{~s}, 1 \mathrm{H}), 3.910(\mathrm{~m}, 3 \mathrm{H}), 3.522(\mathrm{~s}, 3 \mathrm{H}), 3.196(\mathrm{~s}, 3 \mathrm{H}), 2.503(\mathrm{~s}, 1 \mathrm{H})$, $2.215(\mathrm{br}, 3 \mathrm{H}), 1.716(\mathrm{br}, 1 \mathrm{H}) 1.527(\mathrm{~s}, 3 \mathrm{H}) .{ }^{31} \mathrm{P}$ NMR ($\left.162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 58.703(\mathrm{~d}, J=28 \mathrm{~Hz}), 41.076$ (d, $J=28 \mathrm{~Hz}$)

Figure S20. ${ }^{1} \mathrm{H},{ }^{31} \mathrm{P}$ NMR spectra for $\mathbf{4 c}$
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.273(\mathrm{~s}, 2 \mathrm{H}), 8.104(\mathrm{~s}, 2 \mathrm{H}), 7.878(\mathrm{~s}, 2 \mathrm{H}), 7.527(\mathrm{br}, 4 \mathrm{H}), 7.248(\mathrm{~s}, 2 \mathrm{H})$, $6.990(\mathrm{~m}, 8 \mathrm{H}), 6.701(\mathrm{~m}, 5 \mathrm{H}), 6.031(\mathrm{~s}, 1 \mathrm{H}), 3.875(\mathrm{~m}, 20 \mathrm{H}) 4.585(\mathrm{~s}, 3 \mathrm{H}), 3.279(\mathrm{~s}, 3 \mathrm{H}), 2.110(\mathrm{br}, 4 \mathrm{H})$, $1.838(\mathrm{~s}, 3 \mathrm{H}), 1.584(\mathrm{~s}, 3 \mathrm{H}){ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 56.697(\mathrm{~d}, J=32 \mathrm{~Hz}), 40.099(\mathrm{~d}, J=32 \mathrm{~Hz})$.

VI. Block Copolymerizations

Table S1 Summary of block copolymerization data

Initiator	$\begin{gathered} p-P P \\ M_{n}(k D a) \end{gathered}$	$\begin{gathered} \hline \text { p-PP } \\ \text { PDI } \end{gathered}$	$\begin{gathered} \hline \text { p-PP-b-3HT } \\ M_{n}(k D a) \end{gathered}$	$\begin{gathered} \hline \text { p-PP-b-3HT } \\ \text { PDI } \end{gathered}$
3 a	28.3	2.02	48.0	1.96
3a	27.6	1.98	47.9	2.10
3b	26.5	1.29	57.8	1.55
3b	28.5	1.25	55.6	1.49
3 c	31.2	1.33	59.5	1.31
3c	30.5	1.29	55.8	1.32
	$\begin{gathered} \text { p3HT } \\ M_{\mathrm{n}}(\mathrm{kDa}) \end{gathered}$	$\begin{gathered} \hline \text { p3HT } \\ \text { PDI } \end{gathered}$	$\begin{gathered} \hline \text { p3HT-b-PP } \\ M_{n}(\mathrm{kDa}) \end{gathered}$	$\begin{gathered} \hline \text { p3HT-b-PP } \\ \text { PDI } \end{gathered}$
3a	31.5	1.12	39.7	2.44
3a	25.7	1.13	37.6	2.50
3b	25.4	1.07	41.5	1.68
3b	26.5	1.10	40.7	1.56
3 c	27.9	1.04	38.2	1.71
3c	28.1	1.09	39.9	1.61

VIII. Batch Copolymerizations

Figure S21 Plot of $\mathrm{M}_{\mathrm{n}}(\mathrm{O})$ and PDI (■) versus monomer-to-initiator ratio (M:I) for the batch copolymerization of 1a and 2a initiated by 3a ($[\mathbf{1 a}]=[\mathbf{2 a}]=0.04 \mathrm{M}$).

Table S2 Data used for Figure S21

$[\mathbf{M}]: \mathbf{3 a}$	$\mathbf{M}_{\mathbf{n}} \mathbf{(k D a)}$	PDI
20	5.4	1.48
40	10.0	1.55
100	16.8	1.93
133.3	18.5	2
200	19.3	2.35

Figure 3.3B Plot of $\mathrm{M}_{\mathrm{n}}(\mathrm{O})$ and PDI (\square) versus monomer-to-initiator ratio (M:I) for the batch copolymerization of $\mathbf{1 a}$ and $\mathbf{2 a}$ initiated by $\mathbf{3 b}([\mathbf{1 a}]=[\mathbf{2 a}]=0.04 \mathrm{M})$.

Table S2 Data used for Figure 3.3B

$[\mathbf{M}] \mathbf{3 b}$	$\left.\mathbf{M}_{\mathbf{n}} \mathbf{(k D a}\right)$	PDI
200	51.7	1.15
100	31.1	1.10
40	11.9	1.27
20	5.4	1.43

Figure 3.3C Plot of $M_{n}(O)$ and PDI ($■$) versus monomer-to-initiator ratio (M:I) for the batch copolymerization of $\mathbf{1 a}$ and $\mathbf{2 a}$ initiated by $\mathbf{3 c}([\mathbf{1 a}]=[\mathbf{2 a}]=0.04 \mathrm{M})$.

Table S3 Data used for Figure 3.3C

$[\mathbf{M}]: \mathbf{3 c}$	$\mathbf{M}_{\mathbf{n}} \mathbf{(k D a)}$	PDI
20	4.2	1.27
40	8.4	1.34
100	16.8	1.54
133	19.7	1.74
200	23.4	1.95

IX. Calibration Curves

Solutions containing a constant concentration of decane (0.010 M) and varying concentrations of $\mathbf{S 4}, \mathbf{S 5}, \mathbf{5 , 6}, \mathbf{7}, \mathbf{8 , 9}, \mathbf{1 0}, 11$ were prepared in CHCl_{3}. Each was analyzed by GC and the response factor \mathbf{F} calculated by fitting the data to the following equation:

$$
\frac{\text { analyte area }}{\text { [analyte] }}=F \frac{\text { decane area }}{\text { [decane] }}
$$

Figure S18 Plot of bromo-2,5-dimethoxybenzene area versus (decane area x [bromo-2,5dimethoxybenzene]) / [decane] fitted to $\mathrm{y}=m \mathrm{x}+b$ where $m=1.07 \pm 0.02$ and $b=-0.042$ $\pm 0.001 \times 10^{6}$.

Table S4 Data for the plot in Figure S18

[bromo-2,5- dimethoxybenzene] (M)	Area bromo-2,5- dimethoxybenzene (au x $\left.10^{6}\right)$	Area decane $\left(\right.$ au x $\left.10^{6}\right)$	(docosane area x [bromo- 2,5-dimethoxybenzene]) / [docosane]
0.00007675	0.003170	0.286338	0.002198
0.0001535	0.007631	0.262090	0.004023
0.0007675	0.044692	0.227986	0.017497
0.001535	0.088341	0.212714	0.032651
0.007675	0.484289	0.227143	0.174332

Figure S19 Plot of 5 area versus (decane area x [5]) / [decane] fitted to $\mathrm{y}=m \mathrm{x}+b$ where $m=0.77 \pm 0.02$ and $b=-0.029 \pm 0.001 \times 10^{6}$.

Table S5 Data for the plot in Figure S19

$[\mathbf{5}](\mathrm{M})$	Area 5 $\left(\mathrm{au} \mathrm{x} \mathrm{10} \mathbf{}^{6}\right)$	Area decane $(\mathrm{au} \mathrm{x} \mathrm{10})$	(decane area x [5]) $/$ [decane]
0.001395	0.025600	0.3353354	0.046797
0.002791	0.035660	0.2365828	0.066033
0.013955	0.185003	0.231063	0.322460
0.027911	0.397512	0.2315583	0.646302
0.139555	2.249090	0.2323087	3.241984

Figure S20 Plot of $\mathbf{6}$ area versus (decane area $\mathrm{x}[6]$) / [decane] fitted to $\mathrm{y}=m \mathrm{x}+b$ where $m=2.798 \pm 0.004$ and $b=-0.0322 \pm 0.02 \times 10^{6}$.

Table S6 Data for the plot in Figure S20

$[6](\mathrm{M})$	Area 6 $\left(\mathrm{au} \times 10^{6}\right)$	Area decane $\left(\mathrm{aux} 10^{6}\right)$	(decane area x [6]) / [decane]
$6.975 \mathrm{E}-07$	0.0047014	0.2082496	0.01452541
0.000001395	0.0112747	0.2072297	0.028908543
0.000006975	0.0836397	0.1913225	0.133447444
0.00001395	0.1995605	0.2234205	0.311671598
0.00006975	1.3050664	0.2123266	1.480978035

Figure S21 Plot of 7 area versus (decane area x [7]) / [decane] fitted to $\mathrm{y}=m \mathrm{x}+b$ where $m=1.86 \pm 0.05$ and $b=0.115 \pm 0.01 \times 10^{6}$.

Table S7 Data for the plot in Figure S21

$[7](\mathrm{M})$	Area 7 $(\mathrm{au} \mathrm{x} \mathrm{10}$)	Area decane $(\mathrm{au} \mathrm{x} \mathrm{10})$	(decane area x [7]) / [decane]
0.003113	0.071510	0.218939	0.0681666
0.006227	0.16985	0.189294	0.117873
0.031135	1.07051	0.260103	0.809833
0.062270	2.49093	0.172453	1.073864
0.311350	14.3662	0.247392	7.702562

Figure S22 Plot of $\mathbf{8}$ area versus (decane area x [8]) / [decane] fitted to $\mathrm{y}=m \mathrm{x}+b$ where $m=1.86 \pm 0.05$ and $b=0.115 \pm 0.01 \times 10^{6}$.

Table S8 Data for the plot in Figure S22

$[\mathbf{8}](\mathrm{M})$	Area 8 $(\mathrm{au} \mathrm{x} \mathrm{10}$)	Area decane $(\mathrm{au} \mathrm{x} \mathrm{10})$	(decane area x [8]) / [decane]
0.003113	0.071510	0.218939	0.0681666
0.006227	0.16985	0.189294	0.117873
0.031135	1.07051	0.260103	0.809833
0.062270	2.49093	0.172453	1.073864
0.311350	14.3662	0.247392	7.702562

Figure S23 Plot of 9 area versus (decane area x [9]) / [decane] fitted to $\mathrm{y}=m \mathrm{x}+b$ where $m=2.798 \pm 0.004$ and $b=-0.0035 \pm 0.0003 \times 10^{6}$.

Table S9 Data for the plot in Figure S23

$[9](\mathrm{M})$	Area 9 $(\mathrm{au} \mathrm{x} \mathrm{10}$)	Area decane $(\mathrm{au} \mathrm{x} \mathrm{10})$	(decane area x [9]) / [decane]
$7.675 \mathrm{E}-08$	0.2863379	0.0031702	0.002197643
$1.535 \mathrm{E}-07$	0.2620905	0.0076308	0.004023089
$7.675 \mathrm{E}-07$	0.2279863	0.0446921	0.017497949
0.000001535	0.2127142	0.0883407	0.03265163
0.000007675	0.2271426	0.4842895	0.174331946

Figure S24 Plot of $\mathbf{1 0}$ area versus (decane area $\mathrm{x}[10]$) / [decane] fitted to $\mathrm{y}=m \mathrm{x}+b$ where $m=1.86 \pm 0.05$ and $b=0.115 \pm 0.01 \times 10^{6}$.

Table S10 Data for the plot in Figure S24

$[\mathbf{1 0]}(\mathrm{M})$	Area $\mathbf{1 0}\left(\mathrm{au} \times 10^{6}\right)$	Area decane $\left(\mathrm{aux} 10^{6}\right)$	$($ decane area x $[\mathbf{1 0]}) /$ [decane]
$2.322 \mathrm{E}-07$	0.201092	0.012873	0.004669356
0.000001161	0.1775401	0.0492814	0.020612406
0.000002322	0.1953252	0.1168265	0.045354511
0.00001161	0.1806269	0.5545728	0.209707831
$2.322 \mathrm{E}-07$	0.201092	0.0112873	0.004669356

Figure S25 Plot of $\mathbf{1 1}$ area versus (decane area $\mathbf{x}[11]$) / [decane] fitted to $\mathrm{y}=m \mathrm{x}+b$ where $m=2.5863 \pm 0.03$ and $b=0.073 \pm 0.06 \times 10^{6}$.

Table S11 Data for the plot in Figure S25

$[\mathbf{1 1] ~ (M) ~}$	Area $\mathbf{1 1}\left(\mathrm{au} \times 10^{6}\right)$	Area decane $(\mathrm{au} \mathrm{x} \mathrm{106})$	(decane area x [11]) / [decane]
$1.50538 \mathrm{E}-06$	0.2442017	0.0765738	0.036761629
$3.01076 \mathrm{E}-06$	0.1992621	0.1663903	0.059993026
$1.50538 \mathrm{E}-05$	0.2287574	0.9922743	0.344366758
$3.01076 \mathrm{E}-05$	0.2620049	2.265544	0.788833742
0.000150538	0.2921184	11.4180246	4.39749124

Figure S26 Plot of $\mathbf{S 5}$ area versus (decane area $\mathbf{x}[\mathbf{S 5}]$) / [decane] fitted to $\mathrm{y}=m \mathrm{x}+b$ where $m=2.462 \pm 0.01$ and $b=-0.0223 \pm 0.009 \times 10^{6}$.

Table S12 Data for the plot in Figure S26

[S5] (M)	Area S5 $\left(\mathrm{au} \times \mathbf{1 0}^{6}\right)$	Area decane $(\mathrm{au} \mathrm{x} \mathrm{10})^{2}$	(decane area x [S5]) / [decane]
$8.174 \mathrm{E}-07$	0.0368447	0.236905	0.0193646
$1.6348 \mathrm{E}-06$	0.0690864	0.189644	0.0310030
0.000008174	0.408340	0.223262	0.182494
0.000016348	0.867896	0.224081	0.366328
0.00008174	4.202393	0.209709	1.7141613

Figure S27 Plot of $\mathrm{M}_{\mathrm{n}}(\mathrm{O})$ and PDI (\square) versus time for the batch copolymerization of 1a and $\mathbf{2 a}$ initiated by $\mathbf{3 b}([\mathbf{1 a}]=[\mathbf{2 a}]=0.10 \mathrm{M}[\mathbf{3 b}]=0.0025 \mathrm{M})$.
Table S13 Data used to create Figure S27

\% conversion	Mn (kDa)	PDI
7.0	2.0	1.49
17.3	8.3	1.29
29.5	12.2	1.36
39.3	14.9	1.41
45.7	16.0	1.5
54.7	14.4	1.75
53.9	13.7	1.81
64.3	13.1	1.83
76.4	14.3	1.80

Small molecule studies

Table S23 Crossover experiments

$[\mathbf{N i}]$	Initial moles Ni $\left(\mathbf{x} \mathbf{1 0}^{\wedge} \mathbf{5}\right)$	Moles quenched $[\mathbf{N i}]$ $(\mathbf{x ~ 1 0 \wedge 5 ~}$	Moles 5 $\left(\mathbf{x ~ 1 0}^{\wedge} \mathbf{5}\right)$	Moles 6 $\left(\mathbf{x ~ 1 0}^{\wedge} \mathbf{5}\right)$	Moles 7 $\left(\mathbf{x ~ 1 0}^{\wedge} \mathbf{5}\right)$	\% associative
4a	4.15	0.685	1.29	2.04	0.0855	97
4a	2.97	0.617	1.42	0.571	0.338	85
4a	4.80	0.578	1.29	2.79	0.115	97
4a	5.50	1.05	2.33	1.94	0.176	96
4b	3.91	0.303	1.73	1.53	0.291	92
4b	2.97	0.617	1.42	0.571	0.338	85
4b	5.01	0.507	1.52	0.203	2.74	95
4b	6.13	0.261	0.728	2.21	3.35	90
4c	4.80	0.256	1.55	2.73	0.232	97
4c	2.97	0.617	1.42	0.571	0.338	85
4c	5.20	0.243	1.48	0.392	3.09	92
4c	13.7	0.256	6.30	7.61	0.61	96

Table S24 Chain Extension Experiments

[Ni]	$\begin{gathered} \text { Initial } \\ \text { moles Ni } \\ \left(x \operatorname{lo} 10^{\wedge} 5\right) \end{gathered}$	$\begin{gathered} \text { Moles } \\ \text { quenched } \\ {[\mathrm{Ni}]} \\ \left(\times 10^{\wedge} 5\right. \\ \hline \end{gathered}$	$\begin{aligned} & \text { Moles } 8 \\ & \left(x 10^{\wedge} 5\right) \end{aligned}$	$\begin{aligned} & \hline \text { Moles } 9 \\ & \left(x 10^{\wedge} 5\right) \end{aligned}$	$\begin{gathered} \text { Moles } 10 \\ (x \text { 10 } \end{gathered}$	$\%$ associative
4a	4.19	1.50	0.489	1.179	0.348	87
4a	2.02	0.712	0.234	0.875	0.179	86
4a	1.07	0.291	0.107	0.00747	0.607	90
4b	1.97	0.800	0.393	0.659	0.109	91
4b	2.65	1.18	0.598	0.420	0.443	70
4b	6.10	0.923	0.451	2.10	2.21	55
4c	2.81	0.927	0.830	0.870	0.165	91
4c	2.66	1.18	0.598	0.420	0.443	70
4c	1.72	0.244	0.062	0.165	1.18	88

Table S25 Competition Experiments

[Ni]	$\begin{gathered} \text { Initial } \\ \text { moles [Ni] } \\ \left(\times 10^{\wedge} 5\right) \end{gathered}$	Moles quenched $[\mathrm{Ni}]$ $\left(\times 10^{\wedge} 5\right.$	$\begin{aligned} & \text { Moles } 7 \\ & \left(\times 10^{\wedge} 5\right) \end{aligned}$	$\begin{gathered} \text { Moles } 11 \\ \left(\times 10^{\wedge} 5\right) \end{gathered}$	$\begin{gathered} \text { Moles S5 } \\ \left(x 1^{\wedge} 5\right) \end{gathered}$
4a	2.37	0.17	2.16	n.d.	n.d.
4a	2.02	0.712	1.24	n.d.	n.d.
4a	1.87	0.241	1.58	n.d.	n.d.
4b	1.99	0.130	1.81	n.d.	n.d.
4b	1.75	0.58	1.08	n.d.	n.d.
4b	2.14	0.923	1.19	n.d.	n.d.
4c	2.34	0.927	1.42	n.d.	n.d.
4c	1.92	0.742	1.21	n.d.	n.d.
4c	1.89	0.276	1.51	n.d.	n.d.

References Cited

(1) (a) Lanni, E.L.; McNeil, A.J. J. Am. Chem. Soc. 2009, 131, 16573. (b) Lanni, E.L.; McNeil, A.J. Macromolecules 2010, 43, 8039.
(2) Lee, S.R.; Bryan, Z.J.; Wagner, A.M.; McNeil, A.J. Chem. Sci. 2012, 3, 1562-1566.
(3) Love, B.E.; Jones, E.G. J. Org. Chem. 1999, 64, 3755-3756.

Appendix 3
 Supporting Information for Chapter 4
 Challenges in Ni-catalyzed Controlled Copolymerizations

Contents Page
I. Materials 164
II. General Experimental 164
III. Synthetic Procedures 165
IV. M_{n} and PDI versus conversion 178
V. Calibration Curves 191
VI. NMR Spectra 193

I. Materials

Flash chromatography was performed on SiliCycle silica gel (40-63 $\mu \mathrm{m}$) and thin layer chromatography was performed on Merck TLC plates pre-coated with silica gel 60 F254. $i-\mathrm{PrMgCl}\left(2 \mathrm{M}\right.$ in THF) was purchased in 100 mL quantities from Aldrich and $\mathrm{Ni}(\mathrm{cod})_{2}$ was purchased from Strem. All other reagent grade materials and solvents were purchased from Aldrich, Acros, EMD, or Fisher and used without further purification unless otherwise noted. THF was dried and deoxygenated using an Innovative Technology (IT) solvent purification system composed of activated alumina, copper catalyst, and molecular sieves. N -bromosuccinimide was recrystallized from hot water and dried over $\mathrm{P}_{2} \mathrm{O}_{5}$. Decane was distilled from CaH_{2}. Compounds $\mathrm{Ni}($ depe $) \mathrm{Cl}_{2}{ }^{1}$, $\mathrm{Ni}($ dppe $)(\mathrm{Ph}) \mathrm{Cl},{ }^{2} \mathrm{Ni}($ dppe $)\left(o\right.$-anisyl) $\mathrm{Br},{ }^{3} \mathbf{1},{ }^{4} \mathbf{3},{ }^{4}$ were prepared by literature procedures. Monomers were titrated by the method of Love and Jones before use. ${ }^{5}$

II. General Experimental

NMR Spectroscopy: Unless otherwise noted, ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, and ${ }^{31} \mathrm{P}$ NMR spectra for all compounds were acquired in CDCl_{3} on a Varian MR400 or a Varian Inova 400 Spectrometer operating at 400, 100, and 161 MHz , respectively. For ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra the chemical shift data are reported in units of $\delta(\mathrm{ppm})$ relative to tetramethylsilane (TMS) and referenced with residual solvent. ${ }^{31} \mathrm{P}$ NMR spectra were referenced to external $\mathrm{H}_{3} \mathrm{PO}_{4}(85 \% \mathrm{aq})$. Multiplicities are reported as follows: singlet (s), doublet (d), doublet of doublets (dd), multiplet (m), and broad resonance (br). Unless otherwise indicated, the ${ }^{1} \mathrm{H},{ }^{31} \mathrm{P}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded at room temperature. Note that integrations for protons on the alkyl chains of some compounds are high due to insufficient relaxation time.

IR Spectroscopy: Samples were recorded using a Mettler Toledo ReactIR iC10 fitted with a Mercury Cadmium Telluride (MCT) detector, and $\mathrm{AgX}(9.5 \mathrm{~mm} \times 1.5 \mathrm{~mm}$) probe with a SiComp tip. Spectra were processed using icIR 4.0 software and raw absorbances were exported into Microsoft Excel or Sigma Plot 10 for analysis.

Mass Spectrometry: HRMS data were obtained on a Micromass AutoSpec Ultima Magnetic Sector mass spectrometer.

Gel-Permeation Chromatography: Polymer molecular weights were determined by comparison with polystyrene standards (Varian, EasiCal PS-2 MW 580-377,400) on a Waters 1515 HPLC instrument equipped with Waters Styragel® $(7.8 \times 300 \mathrm{~mm})$ THF HR 0.5 , THF HR 1 , and THF HR 4 type columns in sequence and analyzed with Waters 2487 dual absorbance detector (254 and 350 nm). Samples were dissolved in THF (with mild heating), and passed through a $0.2 \mu \mathrm{~m}$ PTFE filter prior to analysis.

Gas Chromatography: Gas chromatography was carried out using a Shimadzu GC 2010 using a Shimadzu SHRX5 (crossbound 5\% diphenyl - 95\% dimethyl polysiloxane; 15 m , $0.25 \mathrm{mmID}, 0.25 \mu \mathrm{~m} \mathrm{df}$) column.
$\underline{U V \text {-vis Spectroscopy: UV-vis spectra were acquired using a Perkin Elmer Lambda } 850}$ UV-vis Spectrometer. Solution samples were prepared at $1 \times 10^{-4} \mathrm{M}$ in CHCl_{3}. Thin-films were spin-cast on glass slides from $1 \mathrm{mg} / \mathrm{mL}$ solutions in CHCl_{3}.

Fluorescence Spectroscopy: Fluorescence spectra were recorded on a Fluoromax-2 fluorimeter. Solution samples were prepared in at $1 \times 10^{-4} \mathrm{M}_{\mathrm{in}} \mathrm{CHCl}_{3}$. Thin-films were spin-cast on glass slides from $1 \mathrm{mg} / \mathrm{mL}$ solutions in CHCl_{3}.

III. Synthetic Procedures

2: All actions were performed in a glovebox under N_{2} atmosphere. A 20 mL flask was equipped with a stir bar. 2,7-Dibromo-9,9-bisoctylfluorene ($1.00 \mathrm{~g}, 1.80 \mathrm{mmol}, 1.00 \mathrm{eq}$), $\mathrm{LiCl}(0.077 \mathrm{~g}, 1.80 \mathrm{mmol}, 1.00 \mathrm{eq})$ and THF $(2.70 \mathrm{~mL})$ were added and stirred until a homogeneous solution was obtained. Then $i-\mathrm{PrMgCl}(0.960 \mathrm{~mL}, 1.80 \mathrm{mmol}, 1.00 \mathrm{eq})$ was added to the flask. The reaction mixture was stirred overnight and then titrated.

S1: A $100-\mathrm{mL}$ oven-dried Schlenk flask equipped with a stir bar and septum was cooled under N_{2}. Tetrabutylammonium bromide ($2.40 \mathrm{~g}, 75.5 \mathrm{mmol}, 0.500$ equiv), $\mathrm{KOH}(9.70 \mathrm{~g}$, $160 \mathrm{mmol}, 1.10$ equiv) and pyrrole ($10.3 \mathrm{~mL}, 149 \mathrm{mmol}, 1.00$ equiv) were added to the
flask and heated to $80^{\circ} \mathrm{C}$. Then 1-bromohexane ($31.4 \mathrm{~mL}, 224 \mathrm{mmol}, 1.50$ equiv) was added and the reaction stirred overnight. The reaction was cooled to rt, then filtered and the solids washed with hexanes. The filtrate was washed with $\mathrm{H}_{2} \mathrm{O}$, then brine, dried over MgSO_{4}, then filtered and solvent removed in vacuo. The resultant brown oil was chromatographed on silica, eluting with hexanes and then distilled $\left(98^{\circ} \mathrm{C}, 0.30\right.$ torr $)$ to yield a colorless oil ($17.9 \mathrm{~g}, 79 \%$ yield). Calcd. for $\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{~N}, 151.1361$ [M]+; found, 151.1356.

S2: A $50-\mathrm{mL}$ oven-dried Schlenk flask equipped with a stir bar and septum was cooled under $\mathrm{N}_{2} . N$-hexylpyrrole ($2 \mathrm{~g}, 0.01 \mathrm{~mol}, 1$ equiv) and THF (20 mL) were added via syringe. The solution was cooled to $-78{ }^{\circ} \mathrm{C}$. NBS ($4.67 \mathrm{~g}, 27.0 \mathrm{mmol}, 2.05$ equiv) was added portion-wise ($\sim 0.5 \mathrm{~g}$) over 20 min . After 5 h , the reaction mixture was then warmed to $-10^{\circ} \mathrm{C}$ and stirred vigorously. After 30 min the reaction was quenched with a mixture of saturated aq. $\mathrm{Na}_{2} \mathrm{SO}_{3}(15 \mathrm{~mL})$ and 10% aq. $\mathrm{Na}_{2} \mathrm{CO}_{3}(5 \mathrm{~mL})$, then extracted with hexanes. The combined organics were dried over $\mathrm{Na}_{2} \mathrm{SO}_{3} / \mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was reduced in vacuo to $\sim 10 \mathrm{~mL}$ and then filtered through basic alumina. The crude product was then chromatographed through silica eluting with hexanes to yield a colorless oil $\left(2.4411 \mathrm{~g}, 60 \%\right.$ yield). Calcd. for $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{NBr}_{2}, 306.9571$ [M]+; found, 306.9581 .

4: All actions were performed in a glovebox under N_{2} atmosphere. A 20 mL vial was equipped with a stir bar. Sequentially, S2 ($973 \mathrm{mg}, 3.15 \mathrm{mmol}, 1.05$ equiv), THF (3.5 mL), $\mathrm{LiCl}(126 \mathrm{mg}, 3.40 \mathrm{mmol}, 1.05$ equiv) and $i-\mathrm{PrMgCl}(1.5 \mathrm{~mL}, 2.5 \mathrm{mmol}, 1.0$ equiv) were added to the flask. The reaction mixture was stirred at rt overnight.

S3

S3: A 50 mL oven-dried Schlenk flask equipped with a stir bar and septum was cooled under N_{2}. Once cool, $\mathrm{NaH}(1.296 \mathrm{~g}, 54 \mathrm{mmol}, 1.50$ equiv) was added and suspended in DMF (12 mL). n-Octanol ($28.4 \mathrm{~mL}, 189 \mathrm{mmol}, 5.40$ equiv) was added dropwise over 1 h and the suspension stirred for 1 h . The flask was then charged with 3-bromothiophene ($3.38 \mathrm{~mL}, 35.0 \mathrm{mmol}, 1.00$ equiv) and heated to $120^{\circ} \mathrm{C} . \mathrm{CuI}(1.01 \mathrm{~g}, 70.1 \mathrm{mmol}, 2.00$
equiv) was added and the reaction maintained at $120^{\circ} \mathrm{C}$ for 4 h . The reaction was cooled to rt then filtered through a celite pad. The celite was washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 30 \mathrm{~mL})$, then hexanes ($4 \times 15 \mathrm{~mL}$). The combined organics were washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 10 \mathrm{~mL})$ then brine (20 mL) and dried over MgSO_{4}. The solvent was removed in vacuo and the product chromatographed on silica eluting with hexanes. The resultant oil was distilled $\left(70^{\circ} \mathrm{C}\right.$, 0.150 torr) to yield $\mathbf{S 3}(6.20 \mathrm{~g}, 44 \%)$.

S4: A 50 mL oven-dried Schlenk flask equipped with a stir bar and septum was cooled under N_{2}. Once cool, $\mathbf{S 3}$ ($1.00 \mathrm{~g}, 4.71 \mathrm{mmol}, 1.00$ equiv) was added and the flask cooled to $0{ }^{\circ} \mathrm{C}$. NBS ($0.838 \mathrm{~g}, 4.71 \mathrm{mmol}, 1.00$ equiv) was added and the reaction maintained at $0{ }^{\circ} \mathrm{C}$ for 3 h . The reaction was quenched with 10% aq. $\mathrm{Na}_{2} \mathrm{CO}_{3}(5 \mathrm{~mL})$, then extracted with hexanes. The combined organics were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent removed in vacuo. The residue was chromatographed on silica eluting with hexanes to yield $\mathbf{S 4}$ (1.146 g, 84\%).

S5: A 15 mL oven-dried Schlenk flask equipped with a stir bar and septum was cooled under N_{2}. Once cool, $\mathbf{S 4}\left(0.178 \mathrm{~g}, 0.600 \mathrm{mmol}, 1.00\right.$ equiv) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.7 \mathrm{~mL})$ was added and the flask cooled to $0^{\circ} \mathrm{C}$. $\mathrm{I}_{2}\left(0.085 \mathrm{~g}, 0.336 \mathrm{mmol}, 0.550\right.$ equiv) and $\mathrm{PhI}(\mathrm{OAc})_{2}$ $\left(0.108 \mathrm{~g}, 0.336 \mathrm{mmol}, 0.550\right.$ equiv) were added and the reaction maintained at $0{ }^{\circ} \mathrm{C}$ for 12 h . The reaction was quenched with a mixture of saturated aq. $\mathrm{Na}_{2} \mathrm{SO}_{3}(15 \mathrm{~mL})$ and 10% aq. $\mathrm{Na}_{2} \mathrm{CO}_{3}(5 \mathrm{~mL})$, then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organics were washed with brine (10 mL) then dried over MgSO_{4} and activated carbon, then the solvent removed in vacuo to yield an orange oil. The oil was chromatographed eluting with hexanes then distilled under vacuum ($105{ }^{\circ} \mathrm{C}, 0.030$ torr) to yield $\mathbf{S 5}(0.1926 \mathrm{~g}, 86 \%)$. as a clear oil.

5: All actions were performed under N_{2} atmosphere. A 20 Schlenk tube was equipped with a stir bar and septum. Sequentially, $\mathbf{S 5}(229 \mathrm{mg}, 5.50 \mathrm{mmol}, 1.05$ equiv) and THF (2 $\mathrm{mL})$, were added to the flask and the reaction cooled to $0^{\circ} \mathrm{C} . i-\mathrm{PrMgCl}(0.250 \mathrm{~mL}, 2 \mathrm{M}$,
$5 \mathrm{mmol}, 1.00$ equiv) and the reaction stirred at $0{ }^{\circ} \mathrm{C}$ for 45 min .

S6: Decene ($5.00 \mathrm{~g}, 6.75 \mathrm{~mL}, 35.6 \mathrm{mmol}, 1.0$ equiv) was dissolved in $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ and acetone (7 mL) in a 100 mL round-bottomed flask equipped with a stir bar. NBS (6.92 g , $39.1 \mathrm{mmol}, 1.10$ equiv) was added and a reflux condenser attached. The flask was heated to $60^{\circ} \mathrm{C}$ for 2 h , after which all NBS had been consumed and the reaction was complete by TLC. $\mathrm{CrO}_{3}\left(4.60 \mathrm{~g}, 46.0 \mathrm{mmol}, 1.30\right.$ equiv) was dissolved in $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{SO}_{4}$ $(3.2 \mathrm{~mL})$. The flask was cooled to $0{ }^{\circ} \mathrm{C}$, then the Cr solution was added, the reaction stirred overnight and allowed to come to rt. The reaction was extracted with $\mathrm{Et}_{2} \mathrm{O}$ (3×30 mL), the organics washed with brine (20 mL) then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Solvents were removed in vacuo and run through a silica plug eluting with 5\% EtOAc to yield $\mathbf{S 6}$ as a clear oil.

S7: Thiourea ($1.616 \mathrm{~g}, 0.021 \mathrm{~mol}) 1.0$ equiv) and $\mathbf{S 6}$ ($5.00 \mathrm{~g} 0.021 \mathrm{~mol}, 1.0$ equiv) were dissolved in $\mathrm{MeOH}(3.5 \mathrm{~mL})$ in a 100 mL round-bottomed flask equipped with a stir bar and the flask heated to $100{ }^{\circ} \mathrm{C}$. After 2 h the reaction was cooled and $\mathrm{NaOH}(1.27 \mathrm{~g}$, $0.0318 \mathrm{~mol}, 1.5$ equiv) was added and the reaction heated to $100^{\circ} \mathrm{C}$. The reaction was stirred for another 2 h then cooled to rt and diluted with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$, extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$. The combined organics were washed with brine and dried over MgSO_{4} then the solvents removed in vacuo. The resulting brown liquid was chromatographed on silica with 50% EtOAc in hexanes, then on neutral alumina with 50% EtOAc in hexanes to yield $\mathbf{S} 7(2.816 \mathrm{~g} 63 \%)$ as a yellow wax.

S7

S8

S9

2,5-dibromo-4-octylthiazole (S8), 5-bromo-4-octylthiazole (S9): S6 (0.150 g, 0.707 mmol, 1.00 equiv) was added to a dry 25 mL Schlenk flask equipped with a stir bar which had been cooled under $\mathrm{N}_{2} . \mathrm{CH}_{3} \mathrm{CN}(8.8 \mathrm{~mL})$ and $\mathrm{CuBr}_{2}(0.237 \mathrm{~g}, 1.06 \mathrm{mmol}, 1.50$ equiv) were added and the reaction stirred at rt for 20 minutes or until reaction was
complete by TLC. Then tBuONO ($0.127 \mathrm{~g}, 1.06 \mathrm{mmol}, 1.50$ equiv) was added and the reaction heated to $65^{\circ} \mathrm{C}$. After 20 min the reaction was cooled to rt and solvent removed in vacuo. The residue was taken up in $\mathrm{Et}_{2} \mathrm{O}(15 \mathrm{~mL})$ then washed with aq $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$ then $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ then brine $(10 \mathrm{~mL})$. The organic layer was dried over MgSO_{4} then volatiles removed en vacuo and the resulting brown oil chromatographed on silica eluting with 20% EtOAc to yield 2,5-dibromo-4-octylthiazole (S8) ($0.1833 \mathrm{~g}, 72 \%$) as a clear oil and 5-bromo-4-octylthiazole ($0.0332 \mathrm{~g}, 17 \%$) as a clear oil.

6a: All actions were performed under N_{2} atmosphere. A 20 mL Schlenk tube was equipped with a stir bar and septum and 2,5-dibromo-4-octylthiazole ($0.1775 \mathrm{~g}, 0.500$ mmol, 1.00 equiv) and THF (2 mL) was added and the reaction cooled to $-10{ }^{\circ} \mathrm{C}$. $\sec \mathrm{BuMgCl}(0.250 \mathrm{~mL}, 0.500 \mathrm{mmol}, 1.00$ equiv) was added and the reaction stirred at $10^{\circ} \mathrm{C}$ for 10 min .

6b: An oven-dried, 20 mL Schlenk flask equipped with a stir bar and septum was cooled under $\mathrm{N}_{2} .5$-bromo-4-octylthiazole ($0.1279 \mathrm{~g}, 0.463 \mathrm{mmol}, 1.05$ equiv) and THF (0.8 mL) were added to the flask and the flask cooled to $-78{ }^{\circ} \mathrm{C}$. LDA $(0.882 \mathrm{~mL}, 0.50 \mathrm{M}, 0.44$ $\mathrm{mmol}, 1.00$ equiv) was added and the reaction maintained at $-78^{\circ} \mathrm{C}$ for 30 min then warmed to rt .

S10: An oven-dried 50 mL Schlenk flask was cooled equipped with a stir bar and septum was cooled under N_{2}. Once cool the flask was charged with p-dichlorobenzene (1.57 g , $10.7 \mathrm{mmol}, 0.50$ equiv), $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$ and $\mathrm{Ni}(\mathrm{dppp}) \mathrm{Cl}_{2}(0.3471 \mathrm{~g}, 0.641 \mathrm{mmol}, 0.030$ equiv). n -Hexylmagnesium bromide ($22 \mathrm{~mL}, 21.4 \mathrm{mmol}, 2.00$ equiv) was added and the reaction refluxed overnight. The reaction was quenched with $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ then extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$. The combined organics were washed with brine (15 mL), dried over MgSO_{4} and solvent removed in vacuo. The product was chromatographed eluting with hexanes to yield $\mathbf{S 1 0}(1.968 \mathrm{~g}, 75 \%)$ as a clear oil.

S11: An oven-dried 25 mL Schlenk flask equipped with a stir bar and septum was cooled under N_{2}. Once cool the flask was charged with $\mathbf{S 1 0}(0.500 \mathrm{~g}, 2.03 \mathrm{mmol}, 1.00$ equiv) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ and the flask cooled to $0{ }^{\circ} \mathrm{C} . \mathrm{Br}_{2}(0.262 \mathrm{~g}, 5.08 \mathrm{mmol}, 2.5$ equiv) was added and the reaction allowed to warm to rt overnight. The reaction was quenched with saturated aq. $\mathrm{Na}_{2} \mathrm{SO}_{3}(8 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 15 \mathrm{~mL})$. The organic layer was washed with brine (10 mL) and dried over MgSO_{4}. The yellow solid was recrystallized from EtOH to yield $\mathbf{S 1 1}(0.753 \mathrm{~g}, 92 \%)$ as a white solid.

S12: An oven-dried 50 mL Schlenk flask equipped with a stir bar and septum was cooled under vacuum. Once cool the flask filled with N_{2} and charged with $\mathbf{S 1 1}(0.3000 \mathrm{~g}, 0.742$ mmol, 1.00 equiv) and THF (7 mL) then cooled to $-78{ }^{\circ} \mathrm{C} . \mathrm{BuLi}(0.518 \mathrm{~mL}, 1.6 \mathrm{M}, 0.816$ $\mathrm{mmol}, 1.10$ equiv) was added dropwise and the reaction maintained at $-78^{\circ} \mathrm{C}$ for 1 h . The reaction was then transferred to a solution of $\mathrm{I}_{2}(0.207 \mathrm{~g}, 0.816 \mathrm{mmol} 1.10$ equiv $)$ in THF $(5 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$. The reaction was quenched with saturated aq. $\mathrm{Na}_{2} \mathrm{SO}_{3}(8 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$. The combined organics were washed with brine (10 mL), dried over MgSO_{4} and solvents removed in vacuo. The product was chromatographed on silica eluting with hexanes to yield $\mathbf{S 1 2}(0.2573 \mathrm{~g}, 77 \%)$ as a white solid.

7: In the glovebox, $\mathbf{S 1 2}(0.100 \mathrm{~g}, 0.222 \mathrm{mmol}, 1.2$ equiv) was dissolved in THF (0.915 $\mathrm{mL})$ in a 20 mL vial equipped with a stir bar. $i-\mathrm{PrMgCl}(0.0925 \mathrm{~mL}, 0.185 \mathrm{mmol}, 1.0$ equiv) was added and the reaction stirred for 1 h .

p3HT-b-Py: In the glovebox, $\mathbf{3}(2.00 \mathrm{~mL}, 0.250 \mathrm{M}, 0.500 \mathrm{mmol}, 1.00$ equiv) was added to a 20 mL vial with a stir bar. [Ni] (0.0125 mmol 0.025 equiv) was added with vigorous stirring and the reaction stirred for 2 h . An aliquot ($\sim 0.100 \mathrm{~mL}$) was taken from the reaction, removed from the glovebox, quenched with $5 \mathrm{M} \mathrm{HCl}(1 \mathrm{~mL})$, extracted with $\mathrm{CHCl}_{3}(3 \times 1 \mathrm{~mL})$, the solvent removed in vacuo and the resulting polymer prepared for GPC analysis. A solution of $4(1.00 \mathrm{~mL}, 0.500 \mathrm{M}, 0.125 \mathrm{mmol}, 1.00$ equiv) was then added to the vial and the reaction stirred for an additional 3 h . The reaction was then removed from the glovebox and quenched with aq $\mathrm{Na}_{2} \mathrm{CO}_{3}(10 \mathrm{~mL})$. It was then extracted with hot $\mathrm{CHCl}_{3}(4 \times 5 \mathrm{~mL})$, and the solvent removed in vacuo. A sample ($\sim 1 \mathrm{mg}$) of the resultant purple solid was then removed for GPC analysis.

Table S1: Summary of block copolymerizations for $\mathrm{p} 3 \mathrm{HT}-b-\mathrm{Py}$

	p3HT		p3HT- \boldsymbol{b}-Py	
$[\mathbf{N i}]$	$\mathbf{M}_{\mathbf{n}}(\mathbf{k D a})$	PDI	$\mathbf{M}_{\mathbf{n}}(\mathbf{k D a})$	PDI
$\mathrm{Ni}($ dppe $) \mathrm{Cl}_{2}$	8.7	1.4	13.9	1.6
$\mathrm{Ni}(\mathrm{dppp}) \mathrm{Cl}_{2}$	5.5	1.3	14.0	1.6
$\mathrm{Ni}($ depe $) \mathrm{Cl}_{2}$	5.7	1.2	6.8	1.3

pPy-b-3HT: In the glovebox, $\mathbf{4}(1.0 \mathrm{~mL}, 0.500 \mathrm{M}, 0.500 \mathrm{mmol}, 1.00$ equiv) was added to a 20 mL vial with a stir bar and combined with THF (1 mL). [Ni] (0.0125 mmol 0.025 equiv) was added with vigorous stirring and the reaction stirred for 2 h . An aliquot $(\sim 0.100 \mathrm{~mL})$ was taken from the reaction, removed from the glovebox, quenched with aq $\mathrm{Na}_{2} \mathrm{CO}_{3}(1 \mathrm{~mL})$, extracted with $\mathrm{CHCl}_{3}(3 \times 1 \mathrm{~mL})$, the solvent removed in vacuo and the resulting polymer prepared for GPC analysis. A solution of $\mathbf{3}(2.0 \mathrm{~mL}, 0.250 \mathrm{M}, 0.500$ $\mathrm{mmol}, 1.00$ equiv) was then added to the vial and the reaction stirred for an additional 3 h. The reaction was then removed from the glovebox and quenched with aq $\mathrm{Na}_{2} \mathrm{CO}_{3}$ (10
$\mathrm{mL})$. It was then extracted with hot $\mathrm{CHCl}_{3}(4 \times 5 \mathrm{~mL})$, and the solvent removed in vacuo. A sample ($\sim 1 \mathrm{mg}$) of the resultant purple solid was then removed for GPC analysis.

Table S2 Summary of block copolymerizations for pPy - b-3HT

	pPy		pPy- $\boldsymbol{b - 3 H T}$	
	$\mathbf{M}_{\mathbf{n}}(\mathbf{k D a})$	PDI	$\mathbf{M}_{\mathbf{n}}(\mathbf{k D a})$	PDI
$\mathrm{Ni}($ dppe $) \mathrm{Cl}_{2}$	8.7	1.4	8.7	1.7
$\mathrm{Ni}($ dppp $) \mathrm{Cl}_{2}$	6.3	1.3	10.5	1.4
$\mathrm{Ni}($ depe $) \mathrm{Cl}_{2}$	8.4	1.3	6.2	1.5

pPy-b-3HT: Solutions of $\mathbf{4}(1.0 \mathrm{~mL}, 0.5 \mathrm{M}, 0.500 \mathrm{mmol}, 1.00$ equiv) and $\mathbf{3}(2.0 \mathrm{~mL}$, $0.500 \mathrm{M}, 0.125 \mathrm{mmol}, 1.00$ equiv) were added under N_{2} to a an oven-dried 20 mL Schlenk flask with a stir bar and combined with THF (1 mL). A suspension of $\mathrm{Ni}(\mathrm{dppp}) \mathrm{Cl}_{2}$ ($06.8 \mathrm{mg}, 0.0125 \mathrm{mmol} 0.025$ equiv) in THF $(0.100 \mathrm{~mL})$ was added with vigorous stirring and the reaction stirred for 6 h . Aliquots ($\sim 0.100 \mathrm{~mL}$) were taken from the reaction via syringe, quenched with aq $\mathrm{Na}_{2} \mathrm{CO}_{3}(1 \mathrm{~mL})$, extracted with $\mathrm{CHCl}_{3}(3 \times 1$ mL), the solvent removed in vacuo and the resulting polymer prepared for GPC and ${ }^{1} \mathrm{H}$ NMR analysis.

Figure S1 (A) Plot of $\mathrm{M}_{\mathrm{n}}(\bullet)$ and PDI (ロ) versus time for the batch copolymerization of 3 and 4 initiated by $\mathrm{Ni}(\mathrm{dppp}) \mathrm{Cl}_{2}([3]=[4]=0.25 \mathrm{M},[\mathrm{Ni}]=6.3 \mathrm{mM})$. (B) Plot of the mole fraction of $\mathbf{4}$ in the copolymer versus time during the batch copolymerization of 3 and 4.

Table S3 Data used for Figure S1A and B

Time (min)	M_{n}	PDI	mole fraction 4
1	2.157	1.34	0
5	4.602	1.56	0.051
15	6.243	1.66	0.197
60	10.25	1.43	0.357
90	8.007	1.57	0.380
180	7.109	1.48	0.412
360	6.616	1.69	0.448

p3HT-b-3OOT: In the glovebox, $\mathbf{3}(2.00 \mathrm{~mL}, 0.250 \mathrm{M}, 0.500 \mathrm{mmol}, 1.00$ equiv) was added to a 20 mL vial with a stir bar. [Ni] (0.0125 mmol 0.025 equiv) was added with vigorous stirring and the reaction stirred for 2 h . An aliquot $(\sim 0.100 \mathrm{~mL})$ was taken from the reaction, removed from the glovebox, quenched with $5 \mathrm{M} \mathrm{HCl}(1 \mathrm{~mL})$, extracted with CHCl_{3} ($3 \times 1 \mathrm{~mL}$), the solvent removed in vacuo and the resulting polymer prepared for GPC analysis. A solution of $5(2.20 \mathrm{~mL}, 0.222 \mathrm{M}, 0.500 \mathrm{mmol}, 1.00$ equiv) was then added to the vial and the reaction stirred for an additional 3 h . The reaction was then removed from the glovebox and quenched with $5 \mathrm{M} \mathrm{HCl}(10 \mathrm{~mL})$. It was then extracted with hot $\mathrm{CHCl}_{3}(4 \times 5 \mathrm{~mL})$, and the solvent removed in vacuo. A sample $(\sim 1 \mathrm{mg})$ of the resultant purple solid was then removed for GPC analysis.

Table S4 Summary of block copolymerizations for p3HT-b-3OOT

	p3HT		p3HT- $\boldsymbol{b - 3 O O T}$	
$[\mathbf{N i}]$	$\mathbf{M}_{\mathbf{n}}(\mathbf{k D a})$	PDI	$\mathbf{M}_{\mathbf{n}}(\mathbf{k D a})$	PDI
$\mathrm{Ni}(\mathrm{dppe}) \mathrm{Cl}_{2}$	3.3	1.2	3.5	1.5
$\mathrm{Ni}(\mathrm{dppp}) \mathrm{Cl}_{2}$	3.5	1.2	4.5	1.5

p3OOT-b-3HT: In the glovebox, $5(2.20 \mathrm{~mL}, 0.250 \mathrm{M}, 0.500 \mathrm{mmol}, 1.00$ equiv) was added to a 20 mL vial with a stir bar. [Ni] (0.0125 mmol 0.025 equiv) was added with
vigorous stirring and the reaction stirred for 2 h . An aliquot ($\sim 0.100 \mathrm{~mL}$) was taken from the reaction, removed from the glovebox, quenched with $5 \mathrm{M} \mathrm{HCl}(1 \mathrm{~mL})$, extracted with $\mathrm{CHCl}_{3}(3 \times 1 \mathrm{~mL})$, the solvent removed in vacuo and the resulting polymer prepared for GPC analysis. A solution of $3(2.00 \mathrm{~mL}, 0.250 \mathrm{M}, 0.500 \mathrm{mmol}, 1.00$ equiv) was then added to the vial and the reaction stirred for an additional 3 h . The reaction was then removed from the glovebox and quenched with $5 \mathrm{M} \mathrm{HCl}(10 \mathrm{~mL})$. It was then extracted with hot $\mathrm{CHCl}_{3}(4 \times 5 \mathrm{~mL})$, and the solvent removed in vacuo. A sample ($\sim 1 \mathrm{mg}$) of the resultant purple solid was then removed for GPC analysis.

Table S5 Summary of block copolymerizations for p3OOT-b-3HT

	p3OOT		p3OOT- $\boldsymbol{b} \mathbf{3 H T}$	
	$\mathbf{M}_{\mathbf{n}}(\mathbf{k D a})$	PDI	$\mathbf{M}_{\mathbf{n}}(\mathbf{k D a})$	PDI
$\mathrm{Ni}(\mathrm{dppe}) \mathrm{Cl}_{2}$	1.7	1.2	2.4	1.4
$\mathrm{Ni}(\mathrm{dppp}) \mathrm{Cl}_{2}$	1.5	1.3	2.1	1.5

p3OOT: A solution of $5(2.20 \mathrm{~mL}, 0.250 \mathrm{M}, 0.500 \mathrm{mmol}, 1.00$ equiv) was added under N_{2} to a an oven-dried 20 mL Schlenk flask with a stir bar and combined with THF (1 $\mathrm{mL})$. A suspension of $\mathrm{Ni}(\mathrm{dppp}) \mathrm{Cl}_{2}(06.8 \mathrm{mg}, 0.0125 \mathrm{mmol} 0.025$ equiv) in THF (0.100 mL) was added with vigorous stirring and the reaction stirred for 6 h . Aliquots (~ 0.100 mL) were taken from the reaction via syringe, quenched with $5 \mathrm{M} \mathrm{HCl}(1 \mathrm{~mL})$, extracted with $\mathrm{CHCl}_{3}(3 \times 1 \mathrm{~mL})$, the solvent removed in vacuo and the resulting polymer prepared for GPC and ${ }^{1} \mathrm{H}$ NMR analysis.

Figure S2 Plot of $\mathrm{M}_{\mathrm{n}}(\mathrm{O})$ and PDI (■) versus conversion for the $\mathrm{Ni}(\mathrm{dppp}) \mathrm{Cl}_{2}$ initiated polymerization of $5([5]=0.10 \mathrm{M},[\mathrm{Ni}]=1.5 \mathrm{mM})$.

Table S6 Data used for Figure S2

\% Conversion	Mn (kDa)	PDI
6.7	1.6	1.51
13.9	1.5	1.35
27.4	2.0	1.37
36.2	2.2	1.21
44.5	2.1	1.20
53.6	2.1	1.35
59.1	2.1	2.00
77.8	2.1	1.90

[5]:[Ni]
Figure S3 Plot of $M_{n}(O)$ and PDI (■) versus monomer to initiator ratio for the $\mathrm{Ni}(\mathrm{dppp}) \mathrm{Cl}_{2}$ initiated polymerization of $\mathbf{5}([\mathbf{5}]=0.10 \mathrm{M})$.

Table S7 Data used for Figure S3

$[\mathbf{5] :} \mathbf{[\mathbf { N i }]}$	$\mathbf{M}_{\mathbf{n}}$	PDI
20	1.6	1.51
50	1.7	1.10
67	2.1	1.35
100	1.7	1.20

pTz: An oven-dried 50 mL Schlenk flask equipped with a stir bar and three-way adapter with septum was evacuated and cooled under vacuum. Once cool, the flask was filled with N_{2} and re-evacuated: this process was repeated twice and the flask filled with N_{2}.

THF (3 mL) was added to the flask and cooled to $0{ }^{\circ} \mathrm{C} .6 \mathrm{Ga}(2.00 \mathrm{~mL}, 0.500 \mathrm{mmol} 1.00$ equiv) was added by syringe and the solution stirred for 1 min . A suspension of [Ni] ($0.001 \mathrm{mmol}, 0.01$ equiv) in THF (0.1 mL) was added to the flask and the reaction maintained at $0{ }^{\circ} \mathrm{C}$ for 3 h . The reaction was quenched with $5 \mathrm{M} \mathrm{HCl}(10 \mathrm{~mL})$, extracted with $\mathrm{CHCl}_{3}(3 \times 10 \mathrm{~mL})$ and the solvent removed in vacuo. A sample of the resultant brown solid ($\sim 1 \mathrm{mg}$) was then prepared for GPC analysis.

Table S8 Summary of polymerization data for pTz

$[\mathbf{N i}]$	$\mathbf{M}_{\mathbf{n}}(\mathbf{k D a})$	PDI	\% Conversion
$\mathrm{Ni}(\mathrm{dppp}) \mathrm{Cl}_{2}$	2.5	1.8	71
$\mathrm{Ni}($ dppe $) \mathrm{Cl}_{2}$	2.8	1.6	65
$\mathrm{Ni}($ depe $) \mathrm{Cl}_{2}$	3.2	1.9	63
$\mathrm{Ni}($ dppe $)(o-$-anisyl $) \mathrm{Br}$	2.5	2.2	65
$\mathrm{Ni}($ dppe $)(\mathrm{Ph}) \mathrm{Br}$	5.6	2.2	77

pTz: An oven-dried 50 mL Schlenk flask equipped with a stir bar and three-way adapter with septum was evacuated and cooled under vacuum. Once cool, the flask was filled with N_{2} and re-evacuated: this process was repeated twice and the flask filled with N_{2}. THF (3 mL) was added to the flask and cooled to $0{ }^{\circ} \mathrm{C} .6 \mathbf{b}(1.6 \mathrm{~mL}, 0.46 \mathrm{mmol} 1.00$ equiv) was added by syringe and the solution stirred for 1 min . A suspension of [Ni] ($0.0046 \mathrm{mmol}, 0.01$ equiv) in THF $(0.1 \mathrm{~mL})$ was added to the flask and the reaction maintained at $0{ }^{\circ} \mathrm{C}$ for 3 h . The reaction was quenched with $5 \mathrm{M} \mathrm{HCl}(10 \mathrm{~mL})$, extracted with $\mathrm{CHCl}_{3}(3 \times 10 \mathrm{~mL})$ and the solvent removed in vacuo. A sample of the resultant brown solid ($\sim 1 \mathrm{mg}$) was then prepared for GPC analysis.

Table S9 Summary of polymerization data for pTz

$\mathrm{Ni}($ dppp $) \mathrm{Cl}_{2}$	2.7	1.7	59
$\mathrm{Ni}($ dppe $) \mathrm{Cl}_{2}$	2.1	1.6	63
$\mathrm{Ni}($ dppe $)(o$-anisyl)Br	2.2	1.5	65

pPP: In the glovebox, $7(1.00 \mathrm{~mL}, 0.222 \mathrm{mmol}, 1.00$ equiv) was added to a 20 mL vial with a stir bar. [Ni] (0.0125 mmol 0.025 equiv) was added with vigorous stirring and the reaction stirred for 5 h . The reaction was then removed from the glovebox and quenched with $5 \mathrm{M} \mathrm{HCl}(10 \mathrm{~mL})$. It was then extracted with hot $\mathrm{CHCl}_{3}(4 \times 5 \mathrm{~mL})$, and the solvent removed in vacuo. A sample ($\sim 1 \mathrm{mg}$) of the resultant white solid was then removed for GPC analysis.

Table S10 Summary of polymerization data for pPP

$[\mathbf{N i}]$	$\mathbf{M}_{\mathbf{n}}(\mathbf{k D a})$	PDI	\% Conversion
$\mathrm{Ni}(\mathrm{dppp}) \mathrm{Cl}_{2}$	0.7	1.1	89
$\mathrm{Ni}(\mathrm{dppe}) \mathrm{Cl}_{2}$	0.8	1.1	85

$\mathbf{M}_{\mathbf{n}}$ and PDI versus conversion

General procedure for obtaining plots of M_{n} and PDI vs. conversion:
The nickel initiator was suspended in THF within a 50 mL 2 -neck round bottom flask. The IR probe was then inserted through an O-ring sealed $14 / 20$ ground glass adapter (custom made) into the flask under positive N_{2} from a three-way adapter fitted with a septum for injections and an N_{2} line. The flask and monomer solutions was then cooled to $0{ }^{\circ} \mathrm{C}$ over $\sim 5 \mathrm{~min}$. After recording a background spectrum, 1 and 2 (see Synthetic Procedures) were added by syringe and spectra were recorded every 15 s over the entire reaction. To account for mixing and temperature equilibration, spectra recorded in the first 30 s of the reaction were discarded. Aliquots ($\sim 0.5 \mathrm{~mL}$) were withdrawn via syringe through the three-way adaptor and quenched with $5 \mathrm{M} \mathrm{HCl}(\sim 1 \mathrm{~mL})$. Each aliquot was then extracted with CHCl_{3} with mild heating, dried over MgSO_{4}, filtered, then concentrated. The samples were then dissolved in THF and passed through a $0.2 \mu \mathrm{~m}$ PTFE filter for GPC analysis.

Figure S4 Plot of $\mathrm{M}_{\mathrm{n}}(\bullet)$ and PDI ($\left.\boldsymbol{\square}\right)$ versus conversion for the batch copolymerization of $\mathbf{1}$ and $\mathbf{2}$ with $[\mathrm{Ni}]=\mathrm{Ni}(\mathrm{dppp}) \mathrm{Cl}_{2}$
Table S11 Data for Figure S4

\% Conversion	Mn (kDa)	PDI
10	1.6	1.2
22	4.5	1.8
39	6.6	1.7
49	7.7	1.7
58	7.6	1.9
67	6.9	2.1
72	8	1.9
82	6.6	2
85	7.2	1.7

Figure $\mathbf{S 5}$ Plot of $\mathrm{M}_{\mathrm{n}}(\bullet)$ and PDI $(■)$ versus conversion for the batch copolymerization of $\mathbf{1}$ and $\mathbf{2}$ with $[\mathrm{Ni}]=\mathrm{Ni}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$
Table S12 Data for Figure S5

Conversion	Mn (kDa)	PDI
22	2.6	1.5
47	3.2	1.9
65	3.2	1.9
87	3.7	1.8
96	3	2.2

General procedure for semi-batch polymerizations:
The nickel initiator was suspended in THF within a 50 mL 2-neck round bottom flask. The IR probe was then inserted through an O-ring sealed 14/20 ground glass adapter (custom made) into the flask under positive N_{2} from a three-way adapter fitted with a septum for injections and an N_{2} line. The flask and monomer solutions was then cooled to $0{ }^{\circ} \mathrm{C}$ over $\sim 5 \mathrm{~min}$. After recording a background spectrum, a solution of $\mathbf{2}$ was taken up into a syringe. The stainless steel needle inserted through the septum and into the reaction vessel and the syringe placed into a syringe pump. 1 was added by syringe and spectra were recorded every 15 s over the entire reaction and 2 added to the reaction mixture via syringe pump at a constant rate. To account for mixing and temperature equilibration, spectra recorded in the first 30 s of the reaction were discarded. Aliquots (\sim 0.5 mL) were withdrawn via syringe through the three-way adapter and quenched with 5 $\mathrm{M} \mathrm{HCl}(\sim 1 \mathrm{~mL})$. Each aliquot was then extracted with CHCl_{3} with mild heating, dried over MgSO_{4}, filtered, then concentrated. The samples were then dissolved in CDCl_{3} for ${ }^{1} \mathrm{H}$ NMR analysis to determine the composition of the copolymer. After NMR analysis the polymer samples were concentrated to dryness, taken up in hot THF and passed through a $0.2 \mu \mathrm{~m}$ PTFE filter for GPC analysis.

Reactivity Ratios

General Procedure for Determining Reactivity Ratios via ReactIR

Solutions of $\mathbf{1}$ and $\mathbf{2}$ were pre-mixed in varying molar ratios and the mole ratio checked by ${ }^{1} \mathrm{H}$ NMR. Ni (dppe) Cl_{2} was suspended in THF in a 50 mL 2-neck round bottom flask with a magnetic stir bar. A three-way adapter fitted with a septum and an N_{2} line was inserted into the flask and the IR probe inserted through an O-ring sealed 14/20 ground glass adapter into the other neck under positive nitrogen flow. The flask was then cooled to $0^{\circ} \mathrm{C}$ and allowed to equilibrate. After recording a background spectrum the pre-mixed monomer solution, which had been cooled to $0^{\circ} \mathrm{C}$, was added by syringe and spectra were recorded every 15 s over the first $30-40 \%$ conversion. To account for mixing and temperature equilibration, spectra recorded in the first 60 s of the reaction were discarded. The data were converted to concentrations using the appropriate calibration curves. From these the mole ratio of monomers was calculated and the data from 10-30\% conversion fit to the integrated copolymerization (Eq S1) where $1-[\mathrm{M}] /[\mathrm{M}]_{0}$ is conversion, f_{1} is the mole fraction of monomer $\mathbf{1}$ at that conversion and $\left(f_{1}\right)_{0}$ is the initial mole fraction of monomer 1 using least-squares regression in SigmaPlot 10.

Equation S1 The integrated copolymerization equation
Procedure for inputting the copolymerization equation in SigmaPlot 10
Input your data for $1-[M] /[M]_{0}, f_{1}$ and $\left(f_{1}\right)$ into a Sigmaplot data file. Go to the Statistics toolbar, choose Dynamic Fit Wizard, Equation Category: User Defined => New and input the following:

Equation: $\mathrm{f}=1-\left((\mathrm{x} / \mathrm{z})^{\wedge}(\mathrm{b} /(1-\mathrm{b}))\right)^{*}\left(((1-\mathrm{x}) /(1-\mathrm{z}))^{\wedge}(\mathrm{a} /(1-\mathrm{a}))\right)^{*}\left(((\mathrm{z}-((1-\mathrm{b}) /(2-\mathrm{a}-\mathrm{b}))))^{\wedge}((1-\right.$ a*b) $\left.\left./\left((1-a)^{*}(1-b)\right)\right)\right)$
fit f to y
Constraints $\mathrm{a}>0, \mathrm{~b}>0$
Variables $\mathrm{x}=\operatorname{col}(1)$
$\mathrm{z}=\operatorname{col}(2)$
$y=\operatorname{col}(3)$
Initial Parameters $a=1, b=1$
Press Next, then, then Next again.
From this equation
Table S13 Reactivity ratio data used to find reactivity ratios.

\mathbf{f}_{2}	$\left.\mathbf{(f}_{\mathbf{2}}\right)_{\mathbf{o}}$	$\mathbf{1}-[\mathbf{M}] /[\mathbf{M}]_{\mathbf{o}}$
0.42037157	0.528	0.191238139
0.416410628	0.528	0.201411287
0.409698551	0.528	0.218855041
0.418832298	0.528	0.203158363
0.41392164	0.528	0.198427772
0.394146747	0.528	0.22554736
0.405739341	0.528	0.216321279

0.39476968	0.528	0.238282701
0.387277313	0.528	0.235215505
0.387174922	0.528	0.241299679
0.408589333	0.528	0.220837476
0.384039254	0.528	0.246040693
0.397259114	0.528	0.231628704
0.386692123	0.528	0.256354477
0.389067885	0.528	0.224849081
0.389731044	0.528	0.242718542
0.382494539	0.528	0.250745558
0.496175606	0.561	0.130035083
0.486812762	0.561	0.145834662
0.502057508	0.561	0.134532376
0.481631676	0.561	0.164983495
0.479347789	0.561	0.169955686
0.493259295	0.561	0.162862561
0.463761866	0.561	0.201788327
0.446080865	0.561	0.234054629
0.480792127	0.561	0.178911139
0.472794445	0.561	0.196815229
0.470936269	0.561	0.197981596
0.454437637	0.561	0.220306389
0.451754795	0.561	0.241465839
0.464391716	0.561	0.213428102
0.466348189	0.561	0.20585092
0.456640352	0.561	0.218724428
0.334702044	0.49	0.262240311
0.325768652	0.49	0.27999107
0.314731331	0.49	0.302155191
0.332588828	0.49	0.307151669
0.315750316	0.49	0.323379317
0.322384498	0.49	0.341863114
0.538807682	0.606	0.168542741
0.531629038	0.606	0.178163681
0.52948323	0.606	0.181316825
0.524879277	0.606	0.180213245
0.523552351	0.606	0.190459784
0.508844372	0.606	0.215438309
0.516141393	0.606	0.20167085
0.515508728	0.606	0.203247031
0.528738062	0.606	0.188154672
0.514246426	0.606	0.212707626
0.516633911	0.606	0.205403452
0.511361622	0.606	0.204841128
0.510763682	0.606	0.218786184
0.506216967	0.606	0.223382873
0.50677773	0.606	0.2244834
0.497637071	0.606	0.237485169
0.503471777	0.606	0.239276421
0.498869679	0.606	0.239980356
0.497869874	0.606	0.231925548
0.497373049	0.606	0.255510954
0.497346974	0.606	0.241771835

0.540101418	0.606	0.164735045
0.532370014	0.606	0.169910278
0.528050415	0.606	0.181407819
0.531283813	0.606	0.171279989
0.530165462	0.606	0.180422024
0.513762141	0.606	0.200790612
0.506180805	0.606	0.216222034
0.519261964	0.606	0.189957592
0.516656004	0.606	0.199226861
0.52260176	0.606	0.191615751
0.502336093	0.606	0.225402247
0.489996097	0.606	0.241504781
0.48716439	0.606	0.247078106
0.510110265	0.606	0.211988771
0.512551172	0.606	0.21767967
0.506848917	0.606	0.216918623
0.505714591	0.606	0.226050558
0.505380843	0.606	0.23099221
0.487940442	0.606	0.255815234
0.48493714	0.606	0.252155628
0.496889407	0.606	0.239943384
0.50019109	0.606	0.230039808
0.502252941	0.606	0.231567374
0.481144376	0.606	0.258416642
0.47748149	0.606	0.263713582
0.434260874	0.497	0.151998667
0.426443218	0.497	0.151095916
0.410985842	0.497	0.181428834
0.415721666	0.497	0.202316501
0.39352473	0.497	0.204371072
0.385274249	0.497	0.203805238
0.38133104	0.497	0.212716197
0.395342471	0.497	0.227629649
0.384010306	0.497	0.241473345
0.379217346	0.497	0.235049777
0.357774876	0.497	0.247003103
0.369402544	0.497	0.258650487
0.348806635	0.497	0.269681229
0.356397318	0.497	0.256611739
0.342582332	0.497	0.271059801
0.349858138	0.497	0.272774226
0.351635712	0.497	0.258236791
0.346289294	0.497	0.262100731
0.354858873	0.497	0.304186514
0.414983677	0.497	0.157452816
0.401019661	0.497	0.183048034
0.376588238	0.497	0.220393127
0.378252451	0.497	0.228600787
0.359710926	0.497	0.244263273
0.364809402	0.497	0.242395189
0.353562164	0.497	0.246851647
0.335170036	0.497	0.268697529
0.347655967	0.497	0.261515242

0.354583332	0.497	0.261696331
0.350170307	0.497	0.267528143
0.332882207	0.497	0.287806812
0.314418505	0.497	0.298620426
0.320362227	0.497	0.302025771
0.328008283	0.497	0.287883683
0.320482102	0.497	0.307132639
0.318060636	0.497	0.29559112
0.309597529	0.497	0.310994505
0.511028824	0.569	0.110754281
0.447195775	0.569	0.186581662
0.431956234	0.569	0.239133203
0.413008704	0.569	0.245380264
0.434062096	0.569	0.252570352
0.387181821	0.569	0.301252857
0.404856395	0.569	0.298933581
0.373831587	0.569	0.326637866
0.423127357	0.569	0.282307437
0.363911009	0.569	0.334235388
0.364399	0.569	0.342353144
0.493218613	0.569	0.123710374
0.466269881	0.569	0.14212664
0.464790285	0.569	0.174042333
0.423236974	0.569	0.229935632
0.441883494	0.569	0.235607651
0.422634445	0.569	0.247309113
0.383872295	0.569	0.284537811
0.401829064	0.569	0.275388795
0.368868421	0.569	0.330942912
0.359005283	0.569	0.313284282
0.418213129	0.569	0.297621655
0.421180564	0.569	0.263951611
0.385989668	0.569	0.30685227
0.257243591	0.355	0.164117285
0.271672614	0.355	0.158358291
0.282613582	0.355	0.172881688
0.236232887	0.355	0.221322439
0.231230844	0.355	0.235281573
0.216996773	0.355	0.254371656
0.282760177	0.355	0.111001993
0.282817703	0.355	0.156265207
0.280631485	0.355	0.154009469
0.262313043	0.355	0.182792292
0.27788299	0.355	0.165522158
0.251608861	0.355	0.217534747
0.275315913	0.355	0.213861717
0.235938551	0.355	0.27339855
0.244225126	0.355	0.257895531
0.258132353	0.355	0.276432267
0.239820029	0.355	0.267740532
0.292095173	0.33	0.22093368
0.259331142	0.33	0.292201744
0.481144376	0.606	0.258416642

0.47748149	0.606	0.263713582
0.434260874	0.497	0.151998667
0.426443218	0.497	0.151095916
0.410985842	0.497	0.181428834
0.415721666	0.497	0.202316501
0.39352473	0.497	0.204371072
0.385274249	0.497	0.203805238
0.38133104	0.497	0.212716197
0.395342471	0.497	0.227629649
0.384010306	0.497	0.241473345
0.379217346	0.497	0.235049777
0.357774876	0.497	0.247003103
0.369402544	0.497	0.258650487
0.348806635	0.497	0.269681229
0.356397318	0.497	0.256611739
0.342582332	0.497	0.271059801
0.238170884	0.33	0.331137388
0.243500549	0.33	0.337353234
0.20581763	0.33	0.392739739
0.207718122	0.33	0.388241049
0.228079433	0.33	0.367008413
0.178121431	0.33	0.42544181
0.184723686	0.33	0.435640565
0.182596769	0.33	0.446482284
0.178242336	0.33	0.458029581
0.183997267	0.33	0.445090164
0.180094965	0.33	0.444829072
0.177725753	0.33	0.456137843
0.17245693	0.33	0.457809188
0.176557431	0.33	0.469211465
0.142853088	0.33	0.493824242
0.150265972	0.33	0.488874761
0.176460723	0.33	0.464493741
0.139286792	0.33	0.497299957
0.132282062	0.33	0.497989773
0.169631825	0.33	0.465287172
0.133364284	0.33	0.486914359
0.153494053	0.33	0.498361508
0.13722863	0.33	0.499456195
0.182529447	0.33	0.490272439
0.22416903	0.33	0.146472502
0.216553461	0.33	0.155479822
0.21333616	0.33	0.166285403
0.197730465	0.33	0.192259825
0.211252206	0.33	0.161001304
0.217325658	0.33	0.174405292
0.209745977	0.33	0.198523597
0.20004659	0.33	0.194244286
0.192748069	0.33	0.204897752
0.207942196	0.33	0.20649243
0.193310545	0.33	0.210674184
0.223766234	0.29	0.124358364
0.211315264	0.29	0.151529844

0.222278677	0.29	0.138926331
0.218048543	0.29	0.150002445
0.210094944	0.29	0.170319742
0.211523513	0.29	0.175283297
0.208440171	0.29	0.186633838
0.221460182	0.29	0.164878125
0.198291539	0.29	0.201072263
0.186511085	0.29	0.223175175
0.215033837	0.29	0.188677318
0.191929252	0.29	0.203784245
0.212618909	0.29	0.201276447
0.199992511	0.29	0.214713276
0.198292963	0.29	0.212883774
0.228859285	0.29	0.175852505
0.208886891	0.29	0.208451588
0.186878821	0.29	0.232245691
0.209448021	0.29	0.202967471
0.163704949	0.29	0.262282546
0.198343652	0.29	0.22005524
0.214458334	0.254	0.063917594
0.200358637	0.254	0.086105931
0.19712507	0.254	0.096706763
0.19979826	0.254	0.091933346
0.209686851	0.254	0.082199309
0.198931623	0.254	0.095867249
0.199333185	0.254	0.09618994
0.188928816	0.254	0.113288545
0.218238561	0.254	0.076686748
0.205129798	0.254	0.095194894
0.193997483	0.254	0.116860809
0.191111428	0.254	0.115126154
0.204060538	0.254	0.099300417
0.201464444	0.254	0.104141364
0.198342168	0.254	0.110766399
0.19695212	0.254	0.110738597
0.198637213	0.254	0.113489996
0.206091243	0.254	0.10181415
0.20528438	0.254	0.111852972
0.203499147	0.254	0.107213095
0.177350742	0.254	0.129224218
0.159519925	0.219	0.104908375
0.147983614	0.219	0.129432738
0.160064999	0.219	0.114052858
0.15599818	0.219	0.128868727
0.168804846	0.219	0.119643952
0.163208761	0.219	0.127370654
0.167715562	0.219	0.105439083
0.162245387	0.219	0.113233163
0.154627238	0.219	0.134485957
0.163171766	0.219	0.130188534
0.170607246	0.219	0.123996199
0.170564975	0.219	0.118981626
0.149521153	0.219	0.140919768

0.175874108	0.219	0.111201152
0.154488307	0.219	0.13611302
0.161396904	0.219	0.129293409
0.173445626	0.219	0.11769736
0.172507697	0.219	0.128500449
0.159107711	0.219	0.1418982
0.166942837	0.219	0.131612651
0.158486519	0.219	0.141516932
0.199479097	0.219	0.157985201
0.186531858	0.219	0.182424398
0.182791693	0.219	0.197048118
0.201552565	0.219	0.186482754
0.174643965	0.219	0.213162948
0.187293628	0.219	0.206275926
0.180308731	0.219	0.211296956
0.172867138	0.219	0.215571785
0.174007464	0.219	0.217354088
0.164072111	0.219	0.227077884
0.176719662	0.219	0.214885416
0.162318901	0.219	0.230171061
0.158305489	0.219	0.237800278
0.158935917	0.219	0.233197235
0.174488952	0.219	0.232764605
0.15615101	0.219	0.250331748
0.171687929	0.219	0.234802438
0.153455665	0.219	0.25178802
0.169090206	0.219	0.232811043
0.170544149	0.219	0.239468918
0.158891232	0.219	0.241046715
0.126512637	0.13	0.171994694
0.116627016	0.13	0.253979389
0.113745523	0.13	0.2810862
0.11339161	0.13	0.28058626
0.110557126	0.13	0.316653309
0.108099415	0.13	0.339323962
0.090794047	0.13	0.431981642
0.099089651	0.13	0.380837803
0.092303234	0.13	0.420423248
0.099140867	0.13	0.406118802
0.109713682	0.13	0.33858713
0.111527232	0.13	0.347117646
0.096406941	0.13	0.425813743
0.093252689	0.13	0.4506784
0.107345433	0.13	0.374733487
0.092505321	0.13	0.455733792
0.094995396	0.13	0.437390908
0.103009845	0.13	0.403284766
0.110091582	0.13	0.384017933
0.105979659	0.13	0.407788391
0.098582632	0.13	0.443282432
0.066713931	0.0909	0.094271847
0.067116868	0.0909	0.098887456
0.06548761	0.0909	0.093994802

0.059970295	0.0909	0.101379633
0.063866945	0.0909	0.10892681
0.055511815	0.0909	0.103392993
0.055255144	0.0909	0.118002806
0.058961325	0.0909	0.128905431
0.053451194	0.0909	0.127564722
0.056003331	0.0909	0.126876164
0.061215367	0.0909	0.118944797
0.057050775	0.0909	0.147478701
0.05736629	0.0909	0.145727763
0.052196662	0.0909	0.1439312
0.063127212	0.0909	0.142022881
0.061846817	0.0909	0.151438663
0.051239591	0.0909	0.165273951
0.061352479	0.0909	0.16873254
0.042364873	0.0909	0.184979841
0.049372399	0.0909	0.179720449
0.046365505	0.0909	0.208918201
0.102698215	0.13	0.051222358
0.110015531	0.13	0.045723209
0.099823243	0.13	0.062843276
0.09435083	0.13	0.071014643
0.097187671	0.13	0.071238294
0.090663789	0.13	0.079583742
0.100996233	0.13	0.078460339
0.091750255	0.13	0.08833706
0.091419478	0.13	0.092555551
0.092662743	0.13	0.088624671
0.092554161	0.13	0.08954357
0.098217148	0.13	0.086517175
0.102364668	0.13	0.092566779
0.087688327	0.13	0.109401861
0.084110277	0.13	0.112450406
0.081921842	0.13	0.117010441
0.086264094	0.13	0.117222608
0.088395252	0.13	0.106364891
0.088059866	0.13	0.113433576
0.091143659	0.13	0.108697313
0.088615223	0.13	0.130413353
0.088637315	0.13	0.127325516
0.088595807	0.13	0.120395237
0.079953495	0.13	0.12882758
0.089270843	0.13	0.118092519
0.087326201	0.13	0.119217624
0.085481477	0.13	0.134883677
0.083869247	0.13	0.130400224
0.097115593	0.13	0.118320213
0.084405633	0.13	0.137585272
0.082428968	0.13	0.15043454
0.094051929	0.13	0.13391954
0.089573018	0.13	0.138064742
0.088524321	0.13	0.139046824
0.077471489	0.13	0.151349477

0.088205071	0.13	0.143435877
0.080682627	0.13	0.150716595
0.086424414	0.13	0.145185375
0.090280932	0.13	0.142624789
0.085940296	0.13	0.158716093
0.08488379	0.14	0.112905547
0.081872426	0.14	0.114795459
0.109749928	0.14	0.086047686
0.093617007	0.14	0.1021144
0.099318873	0.14	0.101616678
0.07118746	0.14	0.124995963
0.089285938	0.14	0.117639471
0.08548475	0.14	0.131619068
0.070961745	0.14	0.139152869
0.076570553	0.14	0.141605623
0.08002357	0.14	0.128007869
0.08505815	0.14	0.141252117
0.073641353	0.14	0.147563858
0.088875346	0.14	0.137252823
0.087007062	0.14	0.145772636
0.089617047	0.14	0.144820529
0.076439323	0.14	0.15370306
0.08694347	0.14	0.145882872
0.073814384	0.14	0.167294502
0.077822363	0.14	0.170319154
0.07189153	0.14	0.179707455
0.08434243	0.14	0.157430596
0.065807314	0.14	0.165036303
0.063594538	0.14	0.19168271
0.080822966	0.14	0.172574602
0.076734638	0.14	0.171916094
0.071020692	0.14	0.177073084
0.082000642	0.14	0.175881244
0.075484849	0.14	0.184613279
0.07730881	0.14	0.186640921
0.054760308	0.14	0.204747104
0.110749699	0.14	0.065364953
0.118018987	0.14	0.060869834
0.108958192	0.14	0.06657918
0.105577709	0.14	0.083415973
0.102968043	0.14	0.07611627
0.117698972	0.14	0.06560988
0.099764638	0.14	0.088613222
0.096364846	0.14	0.101545505
0.110088329	0.14	0.080024005
0.09078187	0.14	0.099479867
0.100735985	0.14	0.102164134
0.10534681	0.14	0.08695314
0.090237385	0.14	0.118536817
0.094698795	0.14	0.10914595
0.099235772	0.14	0.111383896
0.101249299	0.14	0.110061349
0.095370416	0.14	0.110095678

0.097104286	0.14	0.115288092
0.091510131	0.14	0.126935052
0.082142102	0.14	0.142572703
0.094444985	0.14	0.122436133
0.20330552	0.27	0.125491513
0.181677263	0.27	0.142462974
0.191597223	0.27	0.124725302
0.179400789	0.27	0.136734838
0.174258766	0.27	0.156974816
0.182497987	0.27	0.149911971
0.164501814	0.27	0.174893085
0.162175706	0.27	0.174724141
0.176562185	0.27	0.161441254
0.151777783	0.27	0.191532773
0.174303325	0.27	0.156713193
0.149994017	0.27	0.192375446
0.182880497	0.27	0.157783733
0.148301707	0.27	0.199466257
0.140274417	0.27	0.199863389
0.158629641	0.27	0.195441828
0.146181481	0.27	0.194832157
0.162099921	0.27	0.19153418
0.131819422	0.27	0.229062846
0.135392021	0.27	0.2118241
0.154317875	0.27	0.201694713
0.216622772	0.27	0.100649168
0.190684782	0.27	0.133977668
0.182544456	0.27	0.13780723
0.178614953	0.27	0.152565098
0.180239174	0.27	0.160421869
0.17596983	0.27	0.171546101
0.17654771	0.27	0.161942405
0.190647592	0.27	0.155951954
0.17457039	0.27	0.166251222
0.183081721	0.27	0.17049088
0.147429669	0.27	0.195202644

Calibration Curves

General Procedure for Creating Calibration Curves for in-situ IR spectroscopy
An oven-dried 50 mL 2-neck round-bottom flask was equipped with a magnetic stir bar and the IR probe inserted through an O-ring sealed 14/20 ground glass adapter inserted into the neck. Into the other neck was inserted a three-way adapter fitted with a septum and an N_{2} line. The hot flask was cooled under vacuum and then refilled with N_{2}. After two more cycles of evacuation and refilling the flask was charged with THF and cooled to $0^{\circ} \mathrm{C}$ in an ice/water bath. After 5 minutes a background spectrum was recorded, then a solution of $\mathbf{1}$ or $\mathbf{2}$ was added and the solution equilibrated for several minutes after which a spectrum was taken.

Figure S6 Plot of absorbance versus [1] fitted to $\mathrm{y}=\mathrm{mx}+\mathrm{b}$ where $\mathrm{m}=0.396 \pm 0.002$ and $b=0.001 \pm 0.002$.
Table S14. Data for the plot in Figure S6

$[\mathbf{1}](\mathrm{M})$	Absorbance (au)
0.1	$4.1 \pm 0.1 \times 10^{-2}$
0.15	$6.1 \pm 0.5 \times 10^{-2}$
0.2	$8.3 \pm 0.5 \times 10^{-2}$
0.3	$11.8 \pm 0.5 \times 10^{-2}$
0.4	$16 \pm 1 \times 10^{-2}$

Figure S7 Plot of absorbance versus [2] fitted to $\mathrm{y}=\mathrm{mx}+\mathrm{b}$ where $\mathrm{m}=0.468 \pm 0.007$ and $\mathrm{b}=-0.003 \pm 0.001$.
Table S15 Data for plot in Figure S7

$[\mathbf{2}](\mathrm{M})$	Absorbance (au)
0.4	$18 \pm 0.2 \times 10^{-2}$
0.2	$9.2 \pm 0.3 \times 10^{-2}$
0.13	$6.1 \pm 0.3 \times 10^{-2}$
0.1	$4.5 \pm 0.4 \times 10^{-2}$

NMR Spectra

S1

Figure $\mathbf{S} 7{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for $\mathbf{S} 1$
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.67(\mathrm{~s}, 2 \mathrm{H}), 6.16(\mathrm{~m}, 2 \mathrm{H}), 3.88(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.84-$ $1.73(\mathrm{~m}, 2 \mathrm{H}), 1.38-1.25(\mathrm{~m}, 6 \mathrm{H}), 0.95-0.85(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $120.43,107.71,49.62,31.53,31.48,26.43,22.51,12.99$.

Figure $\mathbf{S 8}{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for $\mathbf{S 2}$
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.17(\mathrm{~m}, 2 \mathrm{H}), 3.96(\mathrm{~m}, 2 \mathrm{H}), 1.74-1.62(\mathrm{~m}, 2 \mathrm{H}), 1.41-1.27$ $(\mathrm{m}, 6 \mathrm{H}), 0.95-0.85(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 111.55,100.56,47.25,31.33$, 30.23, 26.12, 22.51, 13.98.

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.169(\mathrm{dd}, J=2.8,8 \mathrm{~Hz}, 1 \mathrm{H}) 6.759(\mathrm{dd}, J=7.2,2.0 \mathrm{~Hz}$, $1 \mathrm{H}), 6.227(\mathrm{dd}, J=2.4,1.6 \mathrm{~Hz} 1 \mathrm{H}), 3.937(\mathrm{t}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.760(\mathrm{~m}, 2 \mathrm{H}) 1.262(\mathrm{br}$, $10 \mathrm{H}), 0.908(\mathrm{t}, J=9.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.531$, 124.092, 117.501, 72.246, 31.773, 29.452, 29.274, 29.192, 25.790, 22.622, 14.082.

Figure $\mathbf{S 1 1}{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for $\mathbf{S} 4$
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.174(\mathrm{~d}, J=6 \mathrm{~Hz}, 1 \mathrm{H}), 6.747(\mathrm{~d}, J=6 \mathrm{~Hz}, 1 \mathrm{H}), 4.028(\mathrm{t}$, $J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.753(\mathrm{~m}, 2 \mathrm{H}), 1.298(\mathrm{br}, 14 \mathrm{H}), 0.884(\mathrm{t}, J=7.2 \mathrm{~Hz}){ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.531,124.092$, 117.501, 72.246, 31.773, 29.452, 29.274, 29.192, 25.790, 22.622, 14.082.

Figure S12 ${ }^{220}{ }^{200} \mathrm{H}$ and ${ }^{180} \stackrel{160}{13} \mathrm{C}$ NMR spectra for ${ }^{140}{ }^{120} 5$
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.757(\mathrm{~s}, 1 \mathrm{H}), 3.986(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.727(\mathrm{~m}, 2 \mathrm{H})$, $1.279(\mathrm{br}, 14 \mathrm{H}), 0.884(\mathrm{t}, J=7.2 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 164.431,130.292$, 81.546, 68.726, 31.942 29.673, 29.373, 25.631, 22.74, 14.109.

Figure S13 ${ }^{1} \mathrm{H}$ NMR spectrum for $\mathbf{S 6}$
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.840(\mathrm{~s}, 2 \mathrm{H}), 2.605(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, 1.219(\mathrm{br}, 12 \mathrm{H})$, $0.826(\mathrm{t}, J=4 \mathrm{~Hz}, 3 \mathrm{H})$.

Figure S14 ${ }^{1} \mathrm{H}$ NMR spectrum for $\mathbf{S 7}$
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 6.083(\mathrm{~s}, 1 \mathrm{H}), 4.900(\mathrm{br}, 2 \mathrm{H}), 2.539(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H})$, $1.630(\mathrm{~m}, 2 \mathrm{H}), 1.250(\mathrm{br}, 10 \mathrm{H}), 0.889(\mathrm{t}, J=2.8 \mathrm{~Hz}, 3 \mathrm{H})$

Figure S15 ${ }^{1} \mathrm{H}$ NMR spectrum for $\mathbf{S 8}$
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $2.539(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.630(\mathrm{~m}, 2 \mathrm{H}), 1.250(\mathrm{br}, 10 \mathrm{H})$, $0.889(\mathrm{t}, J=2.8 \mathrm{~Hz}, 3 \mathrm{H})$

Figure S16 ${ }^{1} \mathrm{H}$ NMR spectrum for $\mathbf{S 9}$
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $8.689(\mathrm{~s}, 1 \mathrm{H}) 2.549$ (t, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$), 1.681 (br, 2H), $1.341(\mathrm{br}, 10 \mathrm{H}), 0.856(\mathrm{t}, J=2.8 \mathrm{~Hz}, 3 \mathrm{H})$

Figure $\mathbf{S 1 7}{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for $\mathbf{S 1 0}$
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{mHz}, \mathrm{CDCl}_{3}$) $\delta 7.084(\mathrm{~s}, 4 \mathrm{H}), 2.566(\mathrm{t}, J=7.6 \mathrm{~Hz}, 4 \mathrm{H}), 1.597(\mathrm{~m}, 4 \mathrm{H})$, $1.308(\mathrm{br}, 12 \mathrm{H}), 0.885(\mathrm{t}, J=7.2 \mathrm{~Hz}){ }^{13} \mathrm{C}$ NMR ($100 \mathrm{mHz}, \mathrm{CDCl}_{3}$) $\delta 140.062,128.219$, 35.591, 31.773, 31.587, 29.090, 22.636, 14.102.

Figure S18 ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for $\mathbf{S 1 1}$
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{mHz}, \mathrm{CDCl}_{3}$) $\delta 7.352(\mathrm{~s}, 2 \mathrm{H}), 2.656(\mathrm{t}, J=6.4 \mathrm{~Hz}, 4 \mathrm{H}), 1.557(\mathrm{~m}, 4 \mathrm{H})$, 1.314 (br, 12 H), $0.901(\mathrm{t}, J=7.6 \mathrm{~Hz}){ }^{13} \mathrm{C}$ NMR ($100 \mathrm{mHz}, \mathrm{CDCl}_{3}$) δ 141.299, 133.713, 123.027, 35.500, 31.579, 29.750, 28.991, 22.599, 14.051.

Figure $\mathbf{S 1 9}{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for $\mathbf{S 1 2}$
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{mHz}, \mathrm{CDCl}_{3}\right) \delta 7.616(\mathrm{~s}, 1 \mathrm{H}), 7.328(\mathrm{~s}, 1 \mathrm{H}), 2.611(\mathrm{~m}, 4 \mathrm{H}), 1.564(\mathrm{~m}, 4$ H), 1.318 (br, 14 H), $0.897(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{mHz}, \mathrm{CDCl}_{3}$) $\delta 144.649,141.508$, $140.267,132.756,124.433,98.764,40.053,35.28033 .879,31.563,30.082,29.786$, 28.985, 28.935, 22.541, 14.028.

References Cited

${ }^{1}$ Lanni, E. L.; Locke, J. R.; Gleave, C. M.; McNeil, A. J. Macromolecules 2011, 44, 5136-5145.
${ }^{2}$ (a) Lanni, E.L.; McNeil, A.J. J. Am. Chem. Soc. 2009, 131, 16573. (b) Lanni, E.L.; McNeil, A.J. Macromolecules 2010, 43, 8039.
${ }^{3}$ Locke, J. R.; McNeil, A. J. Macromolecules 2010, 43, 8709-8710.
${ }^{5}$ Love, B. E.; Jones, E. G. J. Org. Chem. 1999, 64, 3755-3756.

